* layout.cc (Layout::set_segment_offsets): Accept writable .text
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   // See if any of the input definitions violate the One Definition Rule.
321   // TODO: if this is too slow, do this as a task, rather than inline.
322   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
323
324   Layout* layout = this->layout_;
325   off_t file_size = layout->finalize(this->input_objects_,
326                                      this->symtab_,
327                                      this->target_,
328                                      task);
329
330   // Now we know the final size of the output file and we know where
331   // each piece of information goes.
332
333   if (this->mapfile_ != NULL)
334     {
335       this->mapfile_->print_discarded_sections(this->input_objects_);
336       layout->print_to_mapfile(this->mapfile_);
337     }
338
339   Output_file* of;
340   if (layout->incremental_base() == NULL)
341     {
342       of = new Output_file(parameters->options().output_file_name());
343       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
344         of->set_is_temporary();
345       of->open(file_size);
346     }
347   else
348     {
349       of = layout->incremental_base()->output_file();
350
351       // Apply the incremental relocations for symbols whose values
352       // have changed.  We do this before we resize the file and start
353       // writing anything else to it, so that we can read the old
354       // incremental information from the file before (possibly)
355       // overwriting it.
356       if (parameters->incremental_update())
357         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
358                                                              this->layout_,
359                                                              of);
360
361       of->resize(file_size);
362     }
363
364   // Queue up the final set of tasks.
365   gold::queue_final_tasks(this->options_, this->input_objects_,
366                           this->symtab_, layout, workqueue, of);
367 }
368
369 // Layout methods.
370
371 Layout::Layout(int number_of_input_files, Script_options* script_options)
372   : number_of_input_files_(number_of_input_files),
373     script_options_(script_options),
374     namepool_(),
375     sympool_(),
376     dynpool_(),
377     signatures_(),
378     section_name_map_(),
379     segment_list_(),
380     section_list_(),
381     unattached_section_list_(),
382     special_output_list_(),
383     section_headers_(NULL),
384     tls_segment_(NULL),
385     relro_segment_(NULL),
386     interp_segment_(NULL),
387     increase_relro_(0),
388     symtab_section_(NULL),
389     symtab_xindex_(NULL),
390     dynsym_section_(NULL),
391     dynsym_xindex_(NULL),
392     dynamic_section_(NULL),
393     dynamic_symbol_(NULL),
394     dynamic_data_(NULL),
395     eh_frame_section_(NULL),
396     eh_frame_data_(NULL),
397     added_eh_frame_data_(false),
398     eh_frame_hdr_section_(NULL),
399     gdb_index_data_(NULL),
400     build_id_note_(NULL),
401     debug_abbrev_(NULL),
402     debug_info_(NULL),
403     group_signatures_(),
404     output_file_size_(-1),
405     have_added_input_section_(false),
406     sections_are_attached_(false),
407     input_requires_executable_stack_(false),
408     input_with_gnu_stack_note_(false),
409     input_without_gnu_stack_note_(false),
410     has_static_tls_(false),
411     any_postprocessing_sections_(false),
412     resized_signatures_(false),
413     have_stabstr_section_(false),
414     section_ordering_specified_(false),
415     unique_segment_for_sections_specified_(false),
416     incremental_inputs_(NULL),
417     record_output_section_data_from_script_(false),
418     script_output_section_data_list_(),
419     segment_states_(NULL),
420     relaxation_debug_check_(NULL),
421     section_order_map_(),
422     section_segment_map_(),
423     input_section_position_(),
424     input_section_glob_(),
425     incremental_base_(NULL),
426     free_list_()
427 {
428   // Make space for more than enough segments for a typical file.
429   // This is just for efficiency--it's OK if we wind up needing more.
430   this->segment_list_.reserve(12);
431
432   // We expect two unattached Output_data objects: the file header and
433   // the segment headers.
434   this->special_output_list_.reserve(2);
435
436   // Initialize structure needed for an incremental build.
437   if (parameters->incremental())
438     this->incremental_inputs_ = new Incremental_inputs;
439
440   // The section name pool is worth optimizing in all cases, because
441   // it is small, but there are often overlaps due to .rel sections.
442   this->namepool_.set_optimize();
443 }
444
445 // For incremental links, record the base file to be modified.
446
447 void
448 Layout::set_incremental_base(Incremental_binary* base)
449 {
450   this->incremental_base_ = base;
451   this->free_list_.init(base->output_file()->filesize(), true);
452 }
453
454 // Hash a key we use to look up an output section mapping.
455
456 size_t
457 Layout::Hash_key::operator()(const Layout::Key& k) const
458 {
459  return k.first + k.second.first + k.second.second;
460 }
461
462 // These are the debug sections that are actually used by gdb.
463 // Currently, we've checked versions of gdb up to and including 7.4.
464 // We only check the part of the name that follows ".debug_" or
465 // ".zdebug_".
466
467 static const char* gdb_sections[] =
468 {
469   "abbrev",
470   "addr",         // Fission extension
471   // "aranges",   // not used by gdb as of 7.4
472   "frame",
473   "info",
474   "types",
475   "line",
476   "loc",
477   "macinfo",
478   "macro",
479   // "pubnames",  // not used by gdb as of 7.4
480   // "pubtypes",  // not used by gdb as of 7.4
481   "ranges",
482   "str",
483 };
484
485 // This is the minimum set of sections needed for line numbers.
486
487 static const char* lines_only_debug_sections[] =
488 {
489   "abbrev",
490   // "addr",      // Fission extension
491   // "aranges",   // not used by gdb as of 7.4
492   // "frame",
493   "info",
494   // "types",
495   "line",
496   // "loc",
497   // "macinfo",
498   // "macro",
499   // "pubnames",  // not used by gdb as of 7.4
500   // "pubtypes",  // not used by gdb as of 7.4
501   // "ranges",
502   "str",
503 };
504
505 // These sections are the DWARF fast-lookup tables, and are not needed
506 // when building a .gdb_index section.
507
508 static const char* gdb_fast_lookup_sections[] =
509 {
510   "aranges",
511   "pubnames",
512   "pubtypes",
513 };
514
515 // Returns whether the given debug section is in the list of
516 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
517 // portion of the name following ".debug_" or ".zdebug_".
518
519 static inline bool
520 is_gdb_debug_section(const char* suffix)
521 {
522   // We can do this faster: binary search or a hashtable.  But why bother?
523   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
524     if (strcmp(suffix, gdb_sections[i]) == 0)
525       return true;
526   return false;
527 }
528
529 // Returns whether the given section is needed for lines-only debugging.
530
531 static inline bool
532 is_lines_only_debug_section(const char* suffix)
533 {
534   // We can do this faster: binary search or a hashtable.  But why bother?
535   for (size_t i = 0;
536        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
537        ++i)
538     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
539       return true;
540   return false;
541 }
542
543 // Returns whether the given section is a fast-lookup section that
544 // will not be needed when building a .gdb_index section.
545
546 static inline bool
547 is_gdb_fast_lookup_section(const char* suffix)
548 {
549   // We can do this faster: binary search or a hashtable.  But why bother?
550   for (size_t i = 0;
551        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
552        ++i)
553     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
554       return true;
555   return false;
556 }
557
558 // Sometimes we compress sections.  This is typically done for
559 // sections that are not part of normal program execution (such as
560 // .debug_* sections), and where the readers of these sections know
561 // how to deal with compressed sections.  This routine doesn't say for
562 // certain whether we'll compress -- it depends on commandline options
563 // as well -- just whether this section is a candidate for compression.
564 // (The Output_compressed_section class decides whether to compress
565 // a given section, and picks the name of the compressed section.)
566
567 static bool
568 is_compressible_debug_section(const char* secname)
569 {
570   return (is_prefix_of(".debug", secname));
571 }
572
573 // We may see compressed debug sections in input files.  Return TRUE
574 // if this is the name of a compressed debug section.
575
576 bool
577 is_compressed_debug_section(const char* secname)
578 {
579   return (is_prefix_of(".zdebug", secname));
580 }
581
582 // Whether to include this section in the link.
583
584 template<int size, bool big_endian>
585 bool
586 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
587                         const elfcpp::Shdr<size, big_endian>& shdr)
588 {
589   if (!parameters->options().relocatable()
590       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
591     return false;
592
593   switch (shdr.get_sh_type())
594     {
595     case elfcpp::SHT_NULL:
596     case elfcpp::SHT_SYMTAB:
597     case elfcpp::SHT_DYNSYM:
598     case elfcpp::SHT_HASH:
599     case elfcpp::SHT_DYNAMIC:
600     case elfcpp::SHT_SYMTAB_SHNDX:
601       return false;
602
603     case elfcpp::SHT_STRTAB:
604       // Discard the sections which have special meanings in the ELF
605       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
606       // checking the sh_link fields of the appropriate sections.
607       return (strcmp(name, ".dynstr") != 0
608               && strcmp(name, ".strtab") != 0
609               && strcmp(name, ".shstrtab") != 0);
610
611     case elfcpp::SHT_RELA:
612     case elfcpp::SHT_REL:
613     case elfcpp::SHT_GROUP:
614       // If we are emitting relocations these should be handled
615       // elsewhere.
616       gold_assert(!parameters->options().relocatable());
617       return false;
618
619     case elfcpp::SHT_PROGBITS:
620       if (parameters->options().strip_debug()
621           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622         {
623           if (is_debug_info_section(name))
624             return false;
625         }
626       if (parameters->options().strip_debug_non_line()
627           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
628         {
629           // Debugging sections can only be recognized by name.
630           if (is_prefix_of(".debug_", name)
631               && !is_lines_only_debug_section(name + 7))
632             return false;
633           if (is_prefix_of(".zdebug_", name)
634               && !is_lines_only_debug_section(name + 8))
635             return false;
636         }
637       if (parameters->options().strip_debug_gdb()
638           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
639         {
640           // Debugging sections can only be recognized by name.
641           if (is_prefix_of(".debug_", name)
642               && !is_gdb_debug_section(name + 7))
643             return false;
644           if (is_prefix_of(".zdebug_", name)
645               && !is_gdb_debug_section(name + 8))
646             return false;
647         }
648       if (parameters->options().gdb_index()
649           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
650         {
651           // When building .gdb_index, we can strip .debug_pubnames,
652           // .debug_pubtypes, and .debug_aranges sections.
653           if (is_prefix_of(".debug_", name)
654               && is_gdb_fast_lookup_section(name + 7))
655             return false;
656           if (is_prefix_of(".zdebug_", name)
657               && is_gdb_fast_lookup_section(name + 8))
658             return false;
659         }
660       if (parameters->options().strip_lto_sections()
661           && !parameters->options().relocatable()
662           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
663         {
664           // Ignore LTO sections containing intermediate code.
665           if (is_prefix_of(".gnu.lto_", name))
666             return false;
667         }
668       // The GNU linker strips .gnu_debuglink sections, so we do too.
669       // This is a feature used to keep debugging information in
670       // separate files.
671       if (strcmp(name, ".gnu_debuglink") == 0)
672         return false;
673       return true;
674
675     default:
676       return true;
677     }
678 }
679
680 // Return an output section named NAME, or NULL if there is none.
681
682 Output_section*
683 Layout::find_output_section(const char* name) const
684 {
685   for (Section_list::const_iterator p = this->section_list_.begin();
686        p != this->section_list_.end();
687        ++p)
688     if (strcmp((*p)->name(), name) == 0)
689       return *p;
690   return NULL;
691 }
692
693 // Return an output segment of type TYPE, with segment flags SET set
694 // and segment flags CLEAR clear.  Return NULL if there is none.
695
696 Output_segment*
697 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
698                             elfcpp::Elf_Word clear) const
699 {
700   for (Segment_list::const_iterator p = this->segment_list_.begin();
701        p != this->segment_list_.end();
702        ++p)
703     if (static_cast<elfcpp::PT>((*p)->type()) == type
704         && ((*p)->flags() & set) == set
705         && ((*p)->flags() & clear) == 0)
706       return *p;
707   return NULL;
708 }
709
710 // When we put a .ctors or .dtors section with more than one word into
711 // a .init_array or .fini_array section, we need to reverse the words
712 // in the .ctors/.dtors section.  This is because .init_array executes
713 // constructors front to back, where .ctors executes them back to
714 // front, and vice-versa for .fini_array/.dtors.  Although we do want
715 // to remap .ctors/.dtors into .init_array/.fini_array because it can
716 // be more efficient, we don't want to change the order in which
717 // constructors/destructors are run.  This set just keeps track of
718 // these sections which need to be reversed.  It is only changed by
719 // Layout::layout.  It should be a private member of Layout, but that
720 // would require layout.h to #include object.h to get the definition
721 // of Section_id.
722 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
723
724 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
725 // .init_array/.fini_array section.
726
727 bool
728 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
729 {
730   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
731           != ctors_sections_in_init_array.end());
732 }
733
734 // Return the output section to use for section NAME with type TYPE
735 // and section flags FLAGS.  NAME must be canonicalized in the string
736 // pool, and NAME_KEY is the key.  ORDER is where this should appear
737 // in the output sections.  IS_RELRO is true for a relro section.
738
739 Output_section*
740 Layout::get_output_section(const char* name, Stringpool::Key name_key,
741                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
742                            Output_section_order order, bool is_relro)
743 {
744   elfcpp::Elf_Word lookup_type = type;
745
746   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
747   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
748   // .init_array, .fini_array, and .preinit_array sections by name
749   // whatever their type in the input file.  We do this because the
750   // types are not always right in the input files.
751   if (lookup_type == elfcpp::SHT_INIT_ARRAY
752       || lookup_type == elfcpp::SHT_FINI_ARRAY
753       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
754     lookup_type = elfcpp::SHT_PROGBITS;
755
756   elfcpp::Elf_Xword lookup_flags = flags;
757
758   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
759   // read-write with read-only sections.  Some other ELF linkers do
760   // not do this.  FIXME: Perhaps there should be an option
761   // controlling this.
762   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
763
764   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
765   const std::pair<Key, Output_section*> v(key, NULL);
766   std::pair<Section_name_map::iterator, bool> ins(
767     this->section_name_map_.insert(v));
768
769   if (!ins.second)
770     return ins.first->second;
771   else
772     {
773       // This is the first time we've seen this name/type/flags
774       // combination.  For compatibility with the GNU linker, we
775       // combine sections with contents and zero flags with sections
776       // with non-zero flags.  This is a workaround for cases where
777       // assembler code forgets to set section flags.  FIXME: Perhaps
778       // there should be an option to control this.
779       Output_section* os = NULL;
780
781       if (lookup_type == elfcpp::SHT_PROGBITS)
782         {
783           if (flags == 0)
784             {
785               Output_section* same_name = this->find_output_section(name);
786               if (same_name != NULL
787                   && (same_name->type() == elfcpp::SHT_PROGBITS
788                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
789                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
790                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
791                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
792                 os = same_name;
793             }
794           else if ((flags & elfcpp::SHF_TLS) == 0)
795             {
796               elfcpp::Elf_Xword zero_flags = 0;
797               const Key zero_key(name_key, std::make_pair(lookup_type,
798                                                           zero_flags));
799               Section_name_map::iterator p =
800                   this->section_name_map_.find(zero_key);
801               if (p != this->section_name_map_.end())
802                 os = p->second;
803             }
804         }
805
806       if (os == NULL)
807         os = this->make_output_section(name, type, flags, order, is_relro);
808
809       ins.first->second = os;
810       return os;
811     }
812 }
813
814 // Returns TRUE iff NAME (an input section from RELOBJ) will
815 // be mapped to an output section that should be KEPT.
816
817 bool
818 Layout::keep_input_section(const Relobj* relobj, const char* name)
819 {
820   if (! this->script_options_->saw_sections_clause())
821     return false;
822
823   Script_sections* ss = this->script_options_->script_sections();
824   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
825   Output_section** output_section_slot;
826   Script_sections::Section_type script_section_type;
827   bool keep;
828
829   name = ss->output_section_name(file_name, name, &output_section_slot,
830                                  &script_section_type, &keep);
831   return name != NULL && keep;
832 }
833
834 // Clear the input section flags that should not be copied to the
835 // output section.
836
837 elfcpp::Elf_Xword
838 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
839 {
840   // Some flags in the input section should not be automatically
841   // copied to the output section.
842   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
843                             | elfcpp::SHF_GROUP
844                             | elfcpp::SHF_MERGE
845                             | elfcpp::SHF_STRINGS);
846
847   // We only clear the SHF_LINK_ORDER flag in for
848   // a non-relocatable link.
849   if (!parameters->options().relocatable())
850     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
851
852   return input_section_flags;
853 }
854
855 // Pick the output section to use for section NAME, in input file
856 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
857 // linker created section.  IS_INPUT_SECTION is true if we are
858 // choosing an output section for an input section found in a input
859 // file.  ORDER is where this section should appear in the output
860 // sections.  IS_RELRO is true for a relro section.  This will return
861 // NULL if the input section should be discarded.
862
863 Output_section*
864 Layout::choose_output_section(const Relobj* relobj, const char* name,
865                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
866                               bool is_input_section, Output_section_order order,
867                               bool is_relro)
868 {
869   // We should not see any input sections after we have attached
870   // sections to segments.
871   gold_assert(!is_input_section || !this->sections_are_attached_);
872
873   flags = this->get_output_section_flags(flags);
874
875   if (this->script_options_->saw_sections_clause())
876     {
877       // We are using a SECTIONS clause, so the output section is
878       // chosen based only on the name.
879
880       Script_sections* ss = this->script_options_->script_sections();
881       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
882       Output_section** output_section_slot;
883       Script_sections::Section_type script_section_type;
884       const char* orig_name = name;
885       bool keep;
886       name = ss->output_section_name(file_name, name, &output_section_slot,
887                                      &script_section_type, &keep);
888
889       if (name == NULL)
890         {
891           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
892                                      "because it is not allowed by the "
893                                      "SECTIONS clause of the linker script"),
894                      orig_name);
895           // The SECTIONS clause says to discard this input section.
896           return NULL;
897         }
898
899       // We can only handle script section types ST_NONE and ST_NOLOAD.
900       switch (script_section_type)
901         {
902         case Script_sections::ST_NONE:
903           break;
904         case Script_sections::ST_NOLOAD:
905           flags &= elfcpp::SHF_ALLOC;
906           break;
907         default:
908           gold_unreachable();
909         }
910
911       // If this is an orphan section--one not mentioned in the linker
912       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
913       // default processing below.
914
915       if (output_section_slot != NULL)
916         {
917           if (*output_section_slot != NULL)
918             {
919               (*output_section_slot)->update_flags_for_input_section(flags);
920               return *output_section_slot;
921             }
922
923           // We don't put sections found in the linker script into
924           // SECTION_NAME_MAP_.  That keeps us from getting confused
925           // if an orphan section is mapped to a section with the same
926           // name as one in the linker script.
927
928           name = this->namepool_.add(name, false, NULL);
929
930           Output_section* os = this->make_output_section(name, type, flags,
931                                                          order, is_relro);
932
933           os->set_found_in_sections_clause();
934
935           // Special handling for NOLOAD sections.
936           if (script_section_type == Script_sections::ST_NOLOAD)
937             {
938               os->set_is_noload();
939
940               // The constructor of Output_section sets addresses of non-ALLOC
941               // sections to 0 by default.  We don't want that for NOLOAD
942               // sections even if they have no SHF_ALLOC flag.
943               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
944                   && os->is_address_valid())
945                 {
946                   gold_assert(os->address() == 0
947                               && !os->is_offset_valid()
948                               && !os->is_data_size_valid());
949                   os->reset_address_and_file_offset();
950                 }
951             }
952
953           *output_section_slot = os;
954           return os;
955         }
956     }
957
958   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
959
960   size_t len = strlen(name);
961   char* uncompressed_name = NULL;
962
963   // Compressed debug sections should be mapped to the corresponding
964   // uncompressed section.
965   if (is_compressed_debug_section(name))
966     {
967       uncompressed_name = new char[len];
968       uncompressed_name[0] = '.';
969       gold_assert(name[0] == '.' && name[1] == 'z');
970       strncpy(&uncompressed_name[1], &name[2], len - 2);
971       uncompressed_name[len - 1] = '\0';
972       len -= 1;
973       name = uncompressed_name;
974     }
975
976   // Turn NAME from the name of the input section into the name of the
977   // output section.
978   if (is_input_section
979       && !this->script_options_->saw_sections_clause()
980       && !parameters->options().relocatable())
981     {
982       const char *orig_name = name;
983       name = parameters->target().output_section_name(relobj, name, &len);
984       if (name == NULL)
985         name = Layout::output_section_name(relobj, orig_name, &len);
986     }
987
988   Stringpool::Key name_key;
989   name = this->namepool_.add_with_length(name, len, true, &name_key);
990
991   if (uncompressed_name != NULL)
992     delete[] uncompressed_name;
993
994   // Find or make the output section.  The output section is selected
995   // based on the section name, type, and flags.
996   return this->get_output_section(name, name_key, type, flags, order, is_relro);
997 }
998
999 // For incremental links, record the initial fixed layout of a section
1000 // from the base file, and return a pointer to the Output_section.
1001
1002 template<int size, bool big_endian>
1003 Output_section*
1004 Layout::init_fixed_output_section(const char* name,
1005                                   elfcpp::Shdr<size, big_endian>& shdr)
1006 {
1007   unsigned int sh_type = shdr.get_sh_type();
1008
1009   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1010   // PRE_INIT_ARRAY, and NOTE sections.
1011   // All others will be created from scratch and reallocated.
1012   if (!can_incremental_update(sh_type))
1013     return NULL;
1014
1015   // If we're generating a .gdb_index section, we need to regenerate
1016   // it from scratch.
1017   if (parameters->options().gdb_index()
1018       && sh_type == elfcpp::SHT_PROGBITS
1019       && strcmp(name, ".gdb_index") == 0)
1020     return NULL;
1021
1022   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1023   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1024   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1025   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1026   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1027       shdr.get_sh_addralign();
1028
1029   // Make the output section.
1030   Stringpool::Key name_key;
1031   name = this->namepool_.add(name, true, &name_key);
1032   Output_section* os = this->get_output_section(name, name_key, sh_type,
1033                                                 sh_flags, ORDER_INVALID, false);
1034   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1035   if (sh_type != elfcpp::SHT_NOBITS)
1036     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1037   return os;
1038 }
1039
1040 // Return the index by which an input section should be ordered.  This
1041 // is used to sort some .text sections, for compatibility with GNU ld.
1042
1043 int
1044 Layout::special_ordering_of_input_section(const char* name)
1045 {
1046   // The GNU linker has some special handling for some sections that
1047   // wind up in the .text section.  Sections that start with these
1048   // prefixes must appear first, and must appear in the order listed
1049   // here.
1050   static const char* const text_section_sort[] = 
1051   {
1052     ".text.unlikely",
1053     ".text.exit",
1054     ".text.startup",
1055     ".text.hot"
1056   };
1057
1058   for (size_t i = 0;
1059        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1060        i++)
1061     if (is_prefix_of(text_section_sort[i], name))
1062       return i;
1063
1064   return -1;
1065 }
1066
1067 // Return the output section to use for input section SHNDX, with name
1068 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1069 // index of a relocation section which applies to this section, or 0
1070 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1071 // relocation section if there is one.  Set *OFF to the offset of this
1072 // input section without the output section.  Return NULL if the
1073 // section should be discarded.  Set *OFF to -1 if the section
1074 // contents should not be written directly to the output file, but
1075 // will instead receive special handling.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1080                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1081                unsigned int reloc_shndx, unsigned int, off_t* off)
1082 {
1083   *off = 0;
1084
1085   if (!this->include_section(object, name, shdr))
1086     return NULL;
1087
1088   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1089
1090   // In a relocatable link a grouped section must not be combined with
1091   // any other sections.
1092   Output_section* os;
1093   if (parameters->options().relocatable()
1094       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1095     {
1096       name = this->namepool_.add(name, true, NULL);
1097       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1098                                      ORDER_INVALID, false);
1099     }
1100   else
1101     {
1102       // Plugins can choose to place one or more subsets of sections in
1103       // unique segments and this is done by mapping these section subsets
1104       // to unique output sections.  Check if this section needs to be
1105       // remapped to a unique output section.
1106       Section_segment_map::iterator it
1107           = this->section_segment_map_.find(Const_section_id(object, shndx));
1108       if (it == this->section_segment_map_.end())
1109         {
1110           os = this->choose_output_section(object, name, sh_type,
1111                                            shdr.get_sh_flags(), true,
1112                                            ORDER_INVALID, false);
1113         }
1114       else
1115         {
1116           // We know the name of the output section, directly call
1117           // get_output_section here by-passing choose_output_section.
1118           elfcpp::Elf_Xword flags
1119             = this->get_output_section_flags(shdr.get_sh_flags());
1120
1121           const char* os_name = it->second->name;
1122           Stringpool::Key name_key;
1123           os_name = this->namepool_.add(os_name, true, &name_key);
1124           os = this->get_output_section(os_name, name_key, sh_type, flags,
1125                                         ORDER_INVALID, false);
1126           if (!os->is_unique_segment())
1127             {
1128               os->set_is_unique_segment();
1129               os->set_extra_segment_flags(it->second->flags);
1130               os->set_segment_alignment(it->second->align);
1131             }
1132         }
1133       if (os == NULL)
1134         return NULL;
1135     }
1136
1137   // By default the GNU linker sorts input sections whose names match
1138   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1139   // sections are sorted by name.  This is used to implement
1140   // constructor priority ordering.  We are compatible.  When we put
1141   // .ctor sections in .init_array and .dtor sections in .fini_array,
1142   // we must also sort plain .ctor and .dtor sections.
1143   if (!this->script_options_->saw_sections_clause()
1144       && !parameters->options().relocatable()
1145       && (is_prefix_of(".ctors.", name)
1146           || is_prefix_of(".dtors.", name)
1147           || is_prefix_of(".init_array.", name)
1148           || is_prefix_of(".fini_array.", name)
1149           || (parameters->options().ctors_in_init_array()
1150               && (strcmp(name, ".ctors") == 0
1151                   || strcmp(name, ".dtors") == 0))))
1152     os->set_must_sort_attached_input_sections();
1153
1154   // By default the GNU linker sorts some special text sections ahead
1155   // of others.  We are compatible.
1156   if (parameters->options().text_reorder()
1157       && !this->script_options_->saw_sections_clause()
1158       && !this->is_section_ordering_specified()
1159       && !parameters->options().relocatable()
1160       && Layout::special_ordering_of_input_section(name) >= 0)
1161     os->set_must_sort_attached_input_sections();
1162
1163   // If this is a .ctors or .ctors.* section being mapped to a
1164   // .init_array section, or a .dtors or .dtors.* section being mapped
1165   // to a .fini_array section, we will need to reverse the words if
1166   // there is more than one.  Record this section for later.  See
1167   // ctors_sections_in_init_array above.
1168   if (!this->script_options_->saw_sections_clause()
1169       && !parameters->options().relocatable()
1170       && shdr.get_sh_size() > size / 8
1171       && (((strcmp(name, ".ctors") == 0
1172             || is_prefix_of(".ctors.", name))
1173            && strcmp(os->name(), ".init_array") == 0)
1174           || ((strcmp(name, ".dtors") == 0
1175                || is_prefix_of(".dtors.", name))
1176               && strcmp(os->name(), ".fini_array") == 0)))
1177     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1178
1179   // FIXME: Handle SHF_LINK_ORDER somewhere.
1180
1181   elfcpp::Elf_Xword orig_flags = os->flags();
1182
1183   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1184                                this->script_options_->saw_sections_clause());
1185
1186   // If the flags changed, we may have to change the order.
1187   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1188     {
1189       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1190       elfcpp::Elf_Xword new_flags =
1191         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1192       if (orig_flags != new_flags)
1193         os->set_order(this->default_section_order(os, false));
1194     }
1195
1196   this->have_added_input_section_ = true;
1197
1198   return os;
1199 }
1200
1201 // Maps section SECN to SEGMENT s.
1202 void
1203 Layout::insert_section_segment_map(Const_section_id secn,
1204                                    Unique_segment_info *s)
1205 {
1206   gold_assert(this->unique_segment_for_sections_specified_); 
1207   this->section_segment_map_[secn] = s;
1208 }
1209
1210 // Handle a relocation section when doing a relocatable link.
1211
1212 template<int size, bool big_endian>
1213 Output_section*
1214 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1215                      unsigned int,
1216                      const elfcpp::Shdr<size, big_endian>& shdr,
1217                      Output_section* data_section,
1218                      Relocatable_relocs* rr)
1219 {
1220   gold_assert(parameters->options().relocatable()
1221               || parameters->options().emit_relocs());
1222
1223   int sh_type = shdr.get_sh_type();
1224
1225   std::string name;
1226   if (sh_type == elfcpp::SHT_REL)
1227     name = ".rel";
1228   else if (sh_type == elfcpp::SHT_RELA)
1229     name = ".rela";
1230   else
1231     gold_unreachable();
1232   name += data_section->name();
1233
1234   // In a relocatable link relocs for a grouped section must not be
1235   // combined with other reloc sections.
1236   Output_section* os;
1237   if (!parameters->options().relocatable()
1238       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1239     os = this->choose_output_section(object, name.c_str(), sh_type,
1240                                      shdr.get_sh_flags(), false,
1241                                      ORDER_INVALID, false);
1242   else
1243     {
1244       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1245       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1246                                      ORDER_INVALID, false);
1247     }
1248
1249   os->set_should_link_to_symtab();
1250   os->set_info_section(data_section);
1251
1252   Output_section_data* posd;
1253   if (sh_type == elfcpp::SHT_REL)
1254     {
1255       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1256       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1257                                            size,
1258                                            big_endian>(rr);
1259     }
1260   else if (sh_type == elfcpp::SHT_RELA)
1261     {
1262       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1263       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1264                                            size,
1265                                            big_endian>(rr);
1266     }
1267   else
1268     gold_unreachable();
1269
1270   os->add_output_section_data(posd);
1271   rr->set_output_data(posd);
1272
1273   return os;
1274 }
1275
1276 // Handle a group section when doing a relocatable link.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Layout::layout_group(Symbol_table* symtab,
1281                      Sized_relobj_file<size, big_endian>* object,
1282                      unsigned int,
1283                      const char* group_section_name,
1284                      const char* signature,
1285                      const elfcpp::Shdr<size, big_endian>& shdr,
1286                      elfcpp::Elf_Word flags,
1287                      std::vector<unsigned int>* shndxes)
1288 {
1289   gold_assert(parameters->options().relocatable());
1290   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1291   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1292   Output_section* os = this->make_output_section(group_section_name,
1293                                                  elfcpp::SHT_GROUP,
1294                                                  shdr.get_sh_flags(),
1295                                                  ORDER_INVALID, false);
1296
1297   // We need to find a symbol with the signature in the symbol table.
1298   // If we don't find one now, we need to look again later.
1299   Symbol* sym = symtab->lookup(signature, NULL);
1300   if (sym != NULL)
1301     os->set_info_symndx(sym);
1302   else
1303     {
1304       // Reserve some space to minimize reallocations.
1305       if (this->group_signatures_.empty())
1306         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1307
1308       // We will wind up using a symbol whose name is the signature.
1309       // So just put the signature in the symbol name pool to save it.
1310       signature = symtab->canonicalize_name(signature);
1311       this->group_signatures_.push_back(Group_signature(os, signature));
1312     }
1313
1314   os->set_should_link_to_symtab();
1315   os->set_entsize(4);
1316
1317   section_size_type entry_count =
1318     convert_to_section_size_type(shdr.get_sh_size() / 4);
1319   Output_section_data* posd =
1320     new Output_data_group<size, big_endian>(object, entry_count, flags,
1321                                             shndxes);
1322   os->add_output_section_data(posd);
1323 }
1324
1325 // Special GNU handling of sections name .eh_frame.  They will
1326 // normally hold exception frame data as defined by the C++ ABI
1327 // (http://codesourcery.com/cxx-abi/).
1328
1329 template<int size, bool big_endian>
1330 Output_section*
1331 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1332                         const unsigned char* symbols,
1333                         off_t symbols_size,
1334                         const unsigned char* symbol_names,
1335                         off_t symbol_names_size,
1336                         unsigned int shndx,
1337                         const elfcpp::Shdr<size, big_endian>& shdr,
1338                         unsigned int reloc_shndx, unsigned int reloc_type,
1339                         off_t* off)
1340 {
1341   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1342               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1343   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1344
1345   Output_section* os = this->make_eh_frame_section(object);
1346   if (os == NULL)
1347     return NULL;
1348
1349   gold_assert(this->eh_frame_section_ == os);
1350
1351   elfcpp::Elf_Xword orig_flags = os->flags();
1352
1353   if (!parameters->incremental()
1354       && this->eh_frame_data_->add_ehframe_input_section(object,
1355                                                          symbols,
1356                                                          symbols_size,
1357                                                          symbol_names,
1358                                                          symbol_names_size,
1359                                                          shndx,
1360                                                          reloc_shndx,
1361                                                          reloc_type))
1362     {
1363       os->update_flags_for_input_section(shdr.get_sh_flags());
1364
1365       // A writable .eh_frame section is a RELRO section.
1366       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1367           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1368         {
1369           os->set_is_relro();
1370           os->set_order(ORDER_RELRO);
1371         }
1372
1373       // We found a .eh_frame section we are going to optimize, so now
1374       // we can add the set of optimized sections to the output
1375       // section.  We need to postpone adding this until we've found a
1376       // section we can optimize so that the .eh_frame section in
1377       // crtbegin.o winds up at the start of the output section.
1378       if (!this->added_eh_frame_data_)
1379         {
1380           os->add_output_section_data(this->eh_frame_data_);
1381           this->added_eh_frame_data_ = true;
1382         }
1383       *off = -1;
1384     }
1385   else
1386     {
1387       // We couldn't handle this .eh_frame section for some reason.
1388       // Add it as a normal section.
1389       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1390       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1391                                    reloc_shndx, saw_sections_clause);
1392       this->have_added_input_section_ = true;
1393
1394       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1395           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1396         os->set_order(this->default_section_order(os, false));
1397     }
1398
1399   return os;
1400 }
1401
1402 // Create and return the magic .eh_frame section.  Create
1403 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1404 // input .eh_frame section; it may be NULL.
1405
1406 Output_section*
1407 Layout::make_eh_frame_section(const Relobj* object)
1408 {
1409   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1410   // SHT_PROGBITS.
1411   Output_section* os = this->choose_output_section(object, ".eh_frame",
1412                                                    elfcpp::SHT_PROGBITS,
1413                                                    elfcpp::SHF_ALLOC, false,
1414                                                    ORDER_EHFRAME, false);
1415   if (os == NULL)
1416     return NULL;
1417
1418   if (this->eh_frame_section_ == NULL)
1419     {
1420       this->eh_frame_section_ = os;
1421       this->eh_frame_data_ = new Eh_frame();
1422
1423       // For incremental linking, we do not optimize .eh_frame sections
1424       // or create a .eh_frame_hdr section.
1425       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1426         {
1427           Output_section* hdr_os =
1428             this->choose_output_section(NULL, ".eh_frame_hdr",
1429                                         elfcpp::SHT_PROGBITS,
1430                                         elfcpp::SHF_ALLOC, false,
1431                                         ORDER_EHFRAME, false);
1432
1433           if (hdr_os != NULL)
1434             {
1435               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1436                                                         this->eh_frame_data_);
1437               hdr_os->add_output_section_data(hdr_posd);
1438
1439               hdr_os->set_after_input_sections();
1440
1441               if (!this->script_options_->saw_phdrs_clause())
1442                 {
1443                   Output_segment* hdr_oseg;
1444                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1445                                                        elfcpp::PF_R);
1446                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1447                                                           elfcpp::PF_R);
1448                 }
1449
1450               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1451             }
1452         }
1453     }
1454
1455   return os;
1456 }
1457
1458 // Add an exception frame for a PLT.  This is called from target code.
1459
1460 void
1461 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1462                              size_t cie_length, const unsigned char* fde_data,
1463                              size_t fde_length)
1464 {
1465   if (parameters->incremental())
1466     {
1467       // FIXME: Maybe this could work some day....
1468       return;
1469     }
1470   Output_section* os = this->make_eh_frame_section(NULL);
1471   if (os == NULL)
1472     return;
1473   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1474                                             fde_data, fde_length);
1475   if (!this->added_eh_frame_data_)
1476     {
1477       os->add_output_section_data(this->eh_frame_data_);
1478       this->added_eh_frame_data_ = true;
1479     }
1480 }
1481
1482 // Scan a .debug_info or .debug_types section, and add summary
1483 // information to the .gdb_index section.
1484
1485 template<int size, bool big_endian>
1486 void
1487 Layout::add_to_gdb_index(bool is_type_unit,
1488                          Sized_relobj<size, big_endian>* object,
1489                          const unsigned char* symbols,
1490                          off_t symbols_size,
1491                          unsigned int shndx,
1492                          unsigned int reloc_shndx,
1493                          unsigned int reloc_type)
1494 {
1495   if (this->gdb_index_data_ == NULL)
1496     {
1497       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1498                                                        elfcpp::SHT_PROGBITS, 0,
1499                                                        false, ORDER_INVALID,
1500                                                        false);
1501       if (os == NULL)
1502         return;
1503
1504       this->gdb_index_data_ = new Gdb_index(os);
1505       os->add_output_section_data(this->gdb_index_data_);
1506       os->set_after_input_sections();
1507     }
1508
1509   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1510                                          symbols_size, shndx, reloc_shndx,
1511                                          reloc_type);
1512 }
1513
1514 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1515 // the output section.
1516
1517 Output_section*
1518 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1519                                 elfcpp::Elf_Xword flags,
1520                                 Output_section_data* posd,
1521                                 Output_section_order order, bool is_relro)
1522 {
1523   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1524                                                    false, order, is_relro);
1525   if (os != NULL)
1526     os->add_output_section_data(posd);
1527   return os;
1528 }
1529
1530 // Map section flags to segment flags.
1531
1532 elfcpp::Elf_Word
1533 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1534 {
1535   elfcpp::Elf_Word ret = elfcpp::PF_R;
1536   if ((flags & elfcpp::SHF_WRITE) != 0)
1537     ret |= elfcpp::PF_W;
1538   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1539     ret |= elfcpp::PF_X;
1540   return ret;
1541 }
1542
1543 // Make a new Output_section, and attach it to segments as
1544 // appropriate.  ORDER is the order in which this section should
1545 // appear in the output segment.  IS_RELRO is true if this is a relro
1546 // (read-only after relocations) section.
1547
1548 Output_section*
1549 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1550                             elfcpp::Elf_Xword flags,
1551                             Output_section_order order, bool is_relro)
1552 {
1553   Output_section* os;
1554   if ((flags & elfcpp::SHF_ALLOC) == 0
1555       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1556       && is_compressible_debug_section(name))
1557     os = new Output_compressed_section(&parameters->options(), name, type,
1558                                        flags);
1559   else if ((flags & elfcpp::SHF_ALLOC) == 0
1560            && parameters->options().strip_debug_non_line()
1561            && strcmp(".debug_abbrev", name) == 0)
1562     {
1563       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1564           name, type, flags);
1565       if (this->debug_info_)
1566         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1567     }
1568   else if ((flags & elfcpp::SHF_ALLOC) == 0
1569            && parameters->options().strip_debug_non_line()
1570            && strcmp(".debug_info", name) == 0)
1571     {
1572       os = this->debug_info_ = new Output_reduced_debug_info_section(
1573           name, type, flags);
1574       if (this->debug_abbrev_)
1575         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1576     }
1577   else
1578     {
1579       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1580       // not have correct section types.  Force them here.
1581       if (type == elfcpp::SHT_PROGBITS)
1582         {
1583           if (is_prefix_of(".init_array", name))
1584             type = elfcpp::SHT_INIT_ARRAY;
1585           else if (is_prefix_of(".preinit_array", name))
1586             type = elfcpp::SHT_PREINIT_ARRAY;
1587           else if (is_prefix_of(".fini_array", name))
1588             type = elfcpp::SHT_FINI_ARRAY;
1589         }
1590
1591       // FIXME: const_cast is ugly.
1592       Target* target = const_cast<Target*>(&parameters->target());
1593       os = target->make_output_section(name, type, flags);
1594     }
1595
1596   // With -z relro, we have to recognize the special sections by name.
1597   // There is no other way.
1598   bool is_relro_local = false;
1599   if (!this->script_options_->saw_sections_clause()
1600       && parameters->options().relro()
1601       && (flags & elfcpp::SHF_ALLOC) != 0
1602       && (flags & elfcpp::SHF_WRITE) != 0)
1603     {
1604       if (type == elfcpp::SHT_PROGBITS)
1605         {
1606           if ((flags & elfcpp::SHF_TLS) != 0)
1607             is_relro = true;
1608           else if (strcmp(name, ".data.rel.ro") == 0)
1609             is_relro = true;
1610           else if (strcmp(name, ".data.rel.ro.local") == 0)
1611             {
1612               is_relro = true;
1613               is_relro_local = true;
1614             }
1615           else if (strcmp(name, ".ctors") == 0
1616                    || strcmp(name, ".dtors") == 0
1617                    || strcmp(name, ".jcr") == 0)
1618             is_relro = true;
1619         }
1620       else if (type == elfcpp::SHT_INIT_ARRAY
1621                || type == elfcpp::SHT_FINI_ARRAY
1622                || type == elfcpp::SHT_PREINIT_ARRAY)
1623         is_relro = true;
1624     }
1625
1626   if (is_relro)
1627     os->set_is_relro();
1628
1629   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1630     order = this->default_section_order(os, is_relro_local);
1631
1632   os->set_order(order);
1633
1634   parameters->target().new_output_section(os);
1635
1636   this->section_list_.push_back(os);
1637
1638   // The GNU linker by default sorts some sections by priority, so we
1639   // do the same.  We need to know that this might happen before we
1640   // attach any input sections.
1641   if (!this->script_options_->saw_sections_clause()
1642       && !parameters->options().relocatable()
1643       && (strcmp(name, ".init_array") == 0
1644           || strcmp(name, ".fini_array") == 0
1645           || (!parameters->options().ctors_in_init_array()
1646               && (strcmp(name, ".ctors") == 0
1647                   || strcmp(name, ".dtors") == 0))))
1648     os->set_may_sort_attached_input_sections();
1649
1650   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1651   // sections before other .text sections.  We are compatible.  We
1652   // need to know that this might happen before we attach any input
1653   // sections.
1654   if (parameters->options().text_reorder()
1655       && !this->script_options_->saw_sections_clause()
1656       && !this->is_section_ordering_specified()
1657       && !parameters->options().relocatable()
1658       && strcmp(name, ".text") == 0)
1659     os->set_may_sort_attached_input_sections();
1660
1661   // Check for .stab*str sections, as .stab* sections need to link to
1662   // them.
1663   if (type == elfcpp::SHT_STRTAB
1664       && !this->have_stabstr_section_
1665       && strncmp(name, ".stab", 5) == 0
1666       && strcmp(name + strlen(name) - 3, "str") == 0)
1667     this->have_stabstr_section_ = true;
1668
1669   // During a full incremental link, we add patch space to most
1670   // PROGBITS and NOBITS sections.  Flag those that may be
1671   // arbitrarily padded.
1672   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1673       && order != ORDER_INTERP
1674       && order != ORDER_INIT
1675       && order != ORDER_PLT
1676       && order != ORDER_FINI
1677       && order != ORDER_RELRO_LAST
1678       && order != ORDER_NON_RELRO_FIRST
1679       && strcmp(name, ".eh_frame") != 0
1680       && strcmp(name, ".ctors") != 0
1681       && strcmp(name, ".dtors") != 0
1682       && strcmp(name, ".jcr") != 0)
1683     {
1684       os->set_is_patch_space_allowed();
1685
1686       // Certain sections require "holes" to be filled with
1687       // specific fill patterns.  These fill patterns may have
1688       // a minimum size, so we must prevent allocations from the
1689       // free list that leave a hole smaller than the minimum.
1690       if (strcmp(name, ".debug_info") == 0)
1691         os->set_free_space_fill(new Output_fill_debug_info(false));
1692       else if (strcmp(name, ".debug_types") == 0)
1693         os->set_free_space_fill(new Output_fill_debug_info(true));
1694       else if (strcmp(name, ".debug_line") == 0)
1695         os->set_free_space_fill(new Output_fill_debug_line());
1696     }
1697
1698   // If we have already attached the sections to segments, then we
1699   // need to attach this one now.  This happens for sections created
1700   // directly by the linker.
1701   if (this->sections_are_attached_)
1702     this->attach_section_to_segment(&parameters->target(), os);
1703
1704   return os;
1705 }
1706
1707 // Return the default order in which a section should be placed in an
1708 // output segment.  This function captures a lot of the ideas in
1709 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1710 // linker created section is normally set when the section is created;
1711 // this function is used for input sections.
1712
1713 Output_section_order
1714 Layout::default_section_order(Output_section* os, bool is_relro_local)
1715 {
1716   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1717   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1718   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1719   bool is_bss = false;
1720
1721   switch (os->type())
1722     {
1723     default:
1724     case elfcpp::SHT_PROGBITS:
1725       break;
1726     case elfcpp::SHT_NOBITS:
1727       is_bss = true;
1728       break;
1729     case elfcpp::SHT_RELA:
1730     case elfcpp::SHT_REL:
1731       if (!is_write)
1732         return ORDER_DYNAMIC_RELOCS;
1733       break;
1734     case elfcpp::SHT_HASH:
1735     case elfcpp::SHT_DYNAMIC:
1736     case elfcpp::SHT_SHLIB:
1737     case elfcpp::SHT_DYNSYM:
1738     case elfcpp::SHT_GNU_HASH:
1739     case elfcpp::SHT_GNU_verdef:
1740     case elfcpp::SHT_GNU_verneed:
1741     case elfcpp::SHT_GNU_versym:
1742       if (!is_write)
1743         return ORDER_DYNAMIC_LINKER;
1744       break;
1745     case elfcpp::SHT_NOTE:
1746       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1747     }
1748
1749   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1750     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1751
1752   if (!is_bss && !is_write)
1753     {
1754       if (is_execinstr)
1755         {
1756           if (strcmp(os->name(), ".init") == 0)
1757             return ORDER_INIT;
1758           else if (strcmp(os->name(), ".fini") == 0)
1759             return ORDER_FINI;
1760         }
1761       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1762     }
1763
1764   if (os->is_relro())
1765     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1766
1767   if (os->is_small_section())
1768     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1769   if (os->is_large_section())
1770     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1771
1772   return is_bss ? ORDER_BSS : ORDER_DATA;
1773 }
1774
1775 // Attach output sections to segments.  This is called after we have
1776 // seen all the input sections.
1777
1778 void
1779 Layout::attach_sections_to_segments(const Target* target)
1780 {
1781   for (Section_list::iterator p = this->section_list_.begin();
1782        p != this->section_list_.end();
1783        ++p)
1784     this->attach_section_to_segment(target, *p);
1785
1786   this->sections_are_attached_ = true;
1787 }
1788
1789 // Attach an output section to a segment.
1790
1791 void
1792 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1793 {
1794   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1795     this->unattached_section_list_.push_back(os);
1796   else
1797     this->attach_allocated_section_to_segment(target, os);
1798 }
1799
1800 // Attach an allocated output section to a segment.
1801
1802 void
1803 Layout::attach_allocated_section_to_segment(const Target* target,
1804                                             Output_section* os)
1805 {
1806   elfcpp::Elf_Xword flags = os->flags();
1807   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1808
1809   if (parameters->options().relocatable())
1810     return;
1811
1812   // If we have a SECTIONS clause, we can't handle the attachment to
1813   // segments until after we've seen all the sections.
1814   if (this->script_options_->saw_sections_clause())
1815     return;
1816
1817   gold_assert(!this->script_options_->saw_phdrs_clause());
1818
1819   // This output section goes into a PT_LOAD segment.
1820
1821   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1822
1823   // If this output section's segment has extra flags that need to be set,
1824   // coming from a linker plugin, do that.
1825   seg_flags |= os->extra_segment_flags();
1826
1827   // Check for --section-start.
1828   uint64_t addr;
1829   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1830
1831   // In general the only thing we really care about for PT_LOAD
1832   // segments is whether or not they are writable or executable,
1833   // so that is how we search for them.
1834   // Large data sections also go into their own PT_LOAD segment.
1835   // People who need segments sorted on some other basis will
1836   // have to use a linker script.
1837
1838   Segment_list::const_iterator p;
1839   if (!os->is_unique_segment())
1840     {
1841       for (p = this->segment_list_.begin();
1842            p != this->segment_list_.end();
1843            ++p)
1844         {
1845           if ((*p)->type() != elfcpp::PT_LOAD)                        
1846             continue;                        
1847           if ((*p)->is_unique_segment())                        
1848             continue;                        
1849           if (!parameters->options().omagic()                        
1850               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1851             continue;                        
1852           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1853               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1854             continue;                        
1855           // If -Tbss was specified, we need to separate the data and BSS                        
1856           // segments.                        
1857           if (parameters->options().user_set_Tbss())                        
1858             {                        
1859               if ((os->type() == elfcpp::SHT_NOBITS)                        
1860                   == (*p)->has_any_data_sections())                        
1861                 continue;                        
1862             }                        
1863           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1864             continue;                        
1865                             
1866           if (is_address_set)                        
1867             {                        
1868               if ((*p)->are_addresses_set())                        
1869                 continue;                        
1870                             
1871               (*p)->add_initial_output_data(os);                        
1872               (*p)->update_flags_for_output_section(seg_flags);                        
1873               (*p)->set_addresses(addr, addr);                        
1874               break;                        
1875             }                        
1876                             
1877           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1878           break;                        
1879         }                        
1880     }
1881
1882   if (p == this->segment_list_.end()
1883       || os->is_unique_segment())
1884     {
1885       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1886                                                        seg_flags);
1887       if (os->is_large_data_section())
1888         oseg->set_is_large_data_segment();
1889       oseg->add_output_section_to_load(this, os, seg_flags);
1890       if (is_address_set)
1891         oseg->set_addresses(addr, addr);
1892       // Check if segment should be marked unique.  For segments marked
1893       // unique by linker plugins, set the new alignment if specified.
1894       if (os->is_unique_segment())
1895         {
1896           oseg->set_is_unique_segment();
1897           if (os->segment_alignment() != 0)
1898             oseg->set_minimum_p_align(os->segment_alignment());
1899         }
1900     }
1901
1902   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1903   // segment.
1904   if (os->type() == elfcpp::SHT_NOTE)
1905     {
1906       // See if we already have an equivalent PT_NOTE segment.
1907       for (p = this->segment_list_.begin();
1908            p != segment_list_.end();
1909            ++p)
1910         {
1911           if ((*p)->type() == elfcpp::PT_NOTE
1912               && (((*p)->flags() & elfcpp::PF_W)
1913                   == (seg_flags & elfcpp::PF_W)))
1914             {
1915               (*p)->add_output_section_to_nonload(os, seg_flags);
1916               break;
1917             }
1918         }
1919
1920       if (p == this->segment_list_.end())
1921         {
1922           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1923                                                            seg_flags);
1924           oseg->add_output_section_to_nonload(os, seg_flags);
1925         }
1926     }
1927
1928   // If we see a loadable SHF_TLS section, we create a PT_TLS
1929   // segment.  There can only be one such segment.
1930   if ((flags & elfcpp::SHF_TLS) != 0)
1931     {
1932       if (this->tls_segment_ == NULL)
1933         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1934       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1935     }
1936
1937   // If -z relro is in effect, and we see a relro section, we create a
1938   // PT_GNU_RELRO segment.  There can only be one such segment.
1939   if (os->is_relro() && parameters->options().relro())
1940     {
1941       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1942       if (this->relro_segment_ == NULL)
1943         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1944       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1945     }
1946
1947   // If we see a section named .interp, put it into a PT_INTERP
1948   // segment.  This seems broken to me, but this is what GNU ld does,
1949   // and glibc expects it.
1950   if (strcmp(os->name(), ".interp") == 0
1951       && !this->script_options_->saw_phdrs_clause())
1952     {
1953       if (this->interp_segment_ == NULL)
1954         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1955       else
1956         gold_warning(_("multiple '.interp' sections in input files "
1957                        "may cause confusing PT_INTERP segment"));
1958       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1959     }
1960 }
1961
1962 // Make an output section for a script.
1963
1964 Output_section*
1965 Layout::make_output_section_for_script(
1966     const char* name,
1967     Script_sections::Section_type section_type)
1968 {
1969   name = this->namepool_.add(name, false, NULL);
1970   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1971   if (section_type == Script_sections::ST_NOLOAD)
1972     sh_flags = 0;
1973   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1974                                                  sh_flags, ORDER_INVALID,
1975                                                  false);
1976   os->set_found_in_sections_clause();
1977   if (section_type == Script_sections::ST_NOLOAD)
1978     os->set_is_noload();
1979   return os;
1980 }
1981
1982 // Return the number of segments we expect to see.
1983
1984 size_t
1985 Layout::expected_segment_count() const
1986 {
1987   size_t ret = this->segment_list_.size();
1988
1989   // If we didn't see a SECTIONS clause in a linker script, we should
1990   // already have the complete list of segments.  Otherwise we ask the
1991   // SECTIONS clause how many segments it expects, and add in the ones
1992   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1993
1994   if (!this->script_options_->saw_sections_clause())
1995     return ret;
1996   else
1997     {
1998       const Script_sections* ss = this->script_options_->script_sections();
1999       return ret + ss->expected_segment_count(this);
2000     }
2001 }
2002
2003 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2004 // is whether we saw a .note.GNU-stack section in the object file.
2005 // GNU_STACK_FLAGS is the section flags.  The flags give the
2006 // protection required for stack memory.  We record this in an
2007 // executable as a PT_GNU_STACK segment.  If an object file does not
2008 // have a .note.GNU-stack segment, we must assume that it is an old
2009 // object.  On some targets that will force an executable stack.
2010
2011 void
2012 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2013                          const Object* obj)
2014 {
2015   if (!seen_gnu_stack)
2016     {
2017       this->input_without_gnu_stack_note_ = true;
2018       if (parameters->options().warn_execstack()
2019           && parameters->target().is_default_stack_executable())
2020         gold_warning(_("%s: missing .note.GNU-stack section"
2021                        " implies executable stack"),
2022                      obj->name().c_str());
2023     }
2024   else
2025     {
2026       this->input_with_gnu_stack_note_ = true;
2027       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2028         {
2029           this->input_requires_executable_stack_ = true;
2030           if (parameters->options().warn_execstack()
2031               || parameters->options().is_stack_executable())
2032             gold_warning(_("%s: requires executable stack"),
2033                          obj->name().c_str());
2034         }
2035     }
2036 }
2037
2038 // Create automatic note sections.
2039
2040 void
2041 Layout::create_notes()
2042 {
2043   this->create_gold_note();
2044   this->create_executable_stack_info();
2045   this->create_build_id();
2046 }
2047
2048 // Create the dynamic sections which are needed before we read the
2049 // relocs.
2050
2051 void
2052 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2053 {
2054   if (parameters->doing_static_link())
2055     return;
2056
2057   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2058                                                        elfcpp::SHT_DYNAMIC,
2059                                                        (elfcpp::SHF_ALLOC
2060                                                         | elfcpp::SHF_WRITE),
2061                                                        false, ORDER_RELRO,
2062                                                        true);
2063
2064   // A linker script may discard .dynamic, so check for NULL.
2065   if (this->dynamic_section_ != NULL)
2066     {
2067       this->dynamic_symbol_ =
2068         symtab->define_in_output_data("_DYNAMIC", NULL,
2069                                       Symbol_table::PREDEFINED,
2070                                       this->dynamic_section_, 0, 0,
2071                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2072                                       elfcpp::STV_HIDDEN, 0, false, false);
2073
2074       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2075
2076       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2077     }
2078 }
2079
2080 // For each output section whose name can be represented as C symbol,
2081 // define __start and __stop symbols for the section.  This is a GNU
2082 // extension.
2083
2084 void
2085 Layout::define_section_symbols(Symbol_table* symtab)
2086 {
2087   for (Section_list::const_iterator p = this->section_list_.begin();
2088        p != this->section_list_.end();
2089        ++p)
2090     {
2091       const char* const name = (*p)->name();
2092       if (is_cident(name))
2093         {
2094           const std::string name_string(name);
2095           const std::string start_name(cident_section_start_prefix
2096                                        + name_string);
2097           const std::string stop_name(cident_section_stop_prefix
2098                                       + name_string);
2099
2100           symtab->define_in_output_data(start_name.c_str(),
2101                                         NULL, // version
2102                                         Symbol_table::PREDEFINED,
2103                                         *p,
2104                                         0, // value
2105                                         0, // symsize
2106                                         elfcpp::STT_NOTYPE,
2107                                         elfcpp::STB_GLOBAL,
2108                                         elfcpp::STV_DEFAULT,
2109                                         0, // nonvis
2110                                         false, // offset_is_from_end
2111                                         true); // only_if_ref
2112
2113           symtab->define_in_output_data(stop_name.c_str(),
2114                                         NULL, // version
2115                                         Symbol_table::PREDEFINED,
2116                                         *p,
2117                                         0, // value
2118                                         0, // symsize
2119                                         elfcpp::STT_NOTYPE,
2120                                         elfcpp::STB_GLOBAL,
2121                                         elfcpp::STV_DEFAULT,
2122                                         0, // nonvis
2123                                         true, // offset_is_from_end
2124                                         true); // only_if_ref
2125         }
2126     }
2127 }
2128
2129 // Define symbols for group signatures.
2130
2131 void
2132 Layout::define_group_signatures(Symbol_table* symtab)
2133 {
2134   for (Group_signatures::iterator p = this->group_signatures_.begin();
2135        p != this->group_signatures_.end();
2136        ++p)
2137     {
2138       Symbol* sym = symtab->lookup(p->signature, NULL);
2139       if (sym != NULL)
2140         p->section->set_info_symndx(sym);
2141       else
2142         {
2143           // Force the name of the group section to the group
2144           // signature, and use the group's section symbol as the
2145           // signature symbol.
2146           if (strcmp(p->section->name(), p->signature) != 0)
2147             {
2148               const char* name = this->namepool_.add(p->signature,
2149                                                      true, NULL);
2150               p->section->set_name(name);
2151             }
2152           p->section->set_needs_symtab_index();
2153           p->section->set_info_section_symndx(p->section);
2154         }
2155     }
2156
2157   this->group_signatures_.clear();
2158 }
2159
2160 // Find the first read-only PT_LOAD segment, creating one if
2161 // necessary.
2162
2163 Output_segment*
2164 Layout::find_first_load_seg(const Target* target)
2165 {
2166   Output_segment* best = NULL;
2167   for (Segment_list::const_iterator p = this->segment_list_.begin();
2168        p != this->segment_list_.end();
2169        ++p)
2170     {
2171       if ((*p)->type() == elfcpp::PT_LOAD
2172           && ((*p)->flags() & elfcpp::PF_R) != 0
2173           && (parameters->options().omagic()
2174               || ((*p)->flags() & elfcpp::PF_W) == 0)
2175           && (!target->isolate_execinstr()
2176               || ((*p)->flags() & elfcpp::PF_X) == 0))
2177         {
2178           if (best == NULL || this->segment_precedes(*p, best))
2179             best = *p;
2180         }
2181     }
2182   if (best != NULL)
2183     return best;
2184
2185   gold_assert(!this->script_options_->saw_phdrs_clause());
2186
2187   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2188                                                        elfcpp::PF_R);
2189   return load_seg;
2190 }
2191
2192 // Save states of all current output segments.  Store saved states
2193 // in SEGMENT_STATES.
2194
2195 void
2196 Layout::save_segments(Segment_states* segment_states)
2197 {
2198   for (Segment_list::const_iterator p = this->segment_list_.begin();
2199        p != this->segment_list_.end();
2200        ++p)
2201     {
2202       Output_segment* segment = *p;
2203       // Shallow copy.
2204       Output_segment* copy = new Output_segment(*segment);
2205       (*segment_states)[segment] = copy;
2206     }
2207 }
2208
2209 // Restore states of output segments and delete any segment not found in
2210 // SEGMENT_STATES.
2211
2212 void
2213 Layout::restore_segments(const Segment_states* segment_states)
2214 {
2215   // Go through the segment list and remove any segment added in the
2216   // relaxation loop.
2217   this->tls_segment_ = NULL;
2218   this->relro_segment_ = NULL;
2219   Segment_list::iterator list_iter = this->segment_list_.begin();
2220   while (list_iter != this->segment_list_.end())
2221     {
2222       Output_segment* segment = *list_iter;
2223       Segment_states::const_iterator states_iter =
2224           segment_states->find(segment);
2225       if (states_iter != segment_states->end())
2226         {
2227           const Output_segment* copy = states_iter->second;
2228           // Shallow copy to restore states.
2229           *segment = *copy;
2230
2231           // Also fix up TLS and RELRO segment pointers as appropriate.
2232           if (segment->type() == elfcpp::PT_TLS)
2233             this->tls_segment_ = segment;
2234           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2235             this->relro_segment_ = segment;
2236
2237           ++list_iter;
2238         }
2239       else
2240         {
2241           list_iter = this->segment_list_.erase(list_iter);
2242           // This is a segment created during section layout.  It should be
2243           // safe to remove it since we should have removed all pointers to it.
2244           delete segment;
2245         }
2246     }
2247 }
2248
2249 // Clean up after relaxation so that sections can be laid out again.
2250
2251 void
2252 Layout::clean_up_after_relaxation()
2253 {
2254   // Restore the segments to point state just prior to the relaxation loop.
2255   Script_sections* script_section = this->script_options_->script_sections();
2256   script_section->release_segments();
2257   this->restore_segments(this->segment_states_);
2258
2259   // Reset section addresses and file offsets
2260   for (Section_list::iterator p = this->section_list_.begin();
2261        p != this->section_list_.end();
2262        ++p)
2263     {
2264       (*p)->restore_states();
2265
2266       // If an input section changes size because of relaxation,
2267       // we need to adjust the section offsets of all input sections.
2268       // after such a section.
2269       if ((*p)->section_offsets_need_adjustment())
2270         (*p)->adjust_section_offsets();
2271
2272       (*p)->reset_address_and_file_offset();
2273     }
2274
2275   // Reset special output object address and file offsets.
2276   for (Data_list::iterator p = this->special_output_list_.begin();
2277        p != this->special_output_list_.end();
2278        ++p)
2279     (*p)->reset_address_and_file_offset();
2280
2281   // A linker script may have created some output section data objects.
2282   // They are useless now.
2283   for (Output_section_data_list::const_iterator p =
2284          this->script_output_section_data_list_.begin();
2285        p != this->script_output_section_data_list_.end();
2286        ++p)
2287     delete *p;
2288   this->script_output_section_data_list_.clear();
2289 }
2290
2291 // Prepare for relaxation.
2292
2293 void
2294 Layout::prepare_for_relaxation()
2295 {
2296   // Create an relaxation debug check if in debugging mode.
2297   if (is_debugging_enabled(DEBUG_RELAXATION))
2298     this->relaxation_debug_check_ = new Relaxation_debug_check();
2299
2300   // Save segment states.
2301   this->segment_states_ = new Segment_states();
2302   this->save_segments(this->segment_states_);
2303
2304   for(Section_list::const_iterator p = this->section_list_.begin();
2305       p != this->section_list_.end();
2306       ++p)
2307     (*p)->save_states();
2308
2309   if (is_debugging_enabled(DEBUG_RELAXATION))
2310     this->relaxation_debug_check_->check_output_data_for_reset_values(
2311         this->section_list_, this->special_output_list_);
2312
2313   // Also enable recording of output section data from scripts.
2314   this->record_output_section_data_from_script_ = true;
2315 }
2316
2317 // Relaxation loop body:  If target has no relaxation, this runs only once
2318 // Otherwise, the target relaxation hook is called at the end of
2319 // each iteration.  If the hook returns true, it means re-layout of
2320 // section is required.
2321 //
2322 // The number of segments created by a linking script without a PHDRS
2323 // clause may be affected by section sizes and alignments.  There is
2324 // a remote chance that relaxation causes different number of PT_LOAD
2325 // segments are created and sections are attached to different segments.
2326 // Therefore, we always throw away all segments created during section
2327 // layout.  In order to be able to restart the section layout, we keep
2328 // a copy of the segment list right before the relaxation loop and use
2329 // that to restore the segments.
2330 //
2331 // PASS is the current relaxation pass number.
2332 // SYMTAB is a symbol table.
2333 // PLOAD_SEG is the address of a pointer for the load segment.
2334 // PHDR_SEG is a pointer to the PHDR segment.
2335 // SEGMENT_HEADERS points to the output segment header.
2336 // FILE_HEADER points to the output file header.
2337 // PSHNDX is the address to store the output section index.
2338
2339 off_t inline
2340 Layout::relaxation_loop_body(
2341     int pass,
2342     Target* target,
2343     Symbol_table* symtab,
2344     Output_segment** pload_seg,
2345     Output_segment* phdr_seg,
2346     Output_segment_headers* segment_headers,
2347     Output_file_header* file_header,
2348     unsigned int* pshndx)
2349 {
2350   // If this is not the first iteration, we need to clean up after
2351   // relaxation so that we can lay out the sections again.
2352   if (pass != 0)
2353     this->clean_up_after_relaxation();
2354
2355   // If there is a SECTIONS clause, put all the input sections into
2356   // the required order.
2357   Output_segment* load_seg;
2358   if (this->script_options_->saw_sections_clause())
2359     load_seg = this->set_section_addresses_from_script(symtab);
2360   else if (parameters->options().relocatable())
2361     load_seg = NULL;
2362   else
2363     load_seg = this->find_first_load_seg(target);
2364
2365   if (parameters->options().oformat_enum()
2366       != General_options::OBJECT_FORMAT_ELF)
2367     load_seg = NULL;
2368
2369   // If the user set the address of the text segment, that may not be
2370   // compatible with putting the segment headers and file headers into
2371   // that segment.
2372   if (parameters->options().user_set_Ttext()
2373       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2374     {
2375       load_seg = NULL;
2376       phdr_seg = NULL;
2377     }
2378
2379   gold_assert(phdr_seg == NULL
2380               || load_seg != NULL
2381               || this->script_options_->saw_sections_clause());
2382
2383   // If the address of the load segment we found has been set by
2384   // --section-start rather than by a script, then adjust the VMA and
2385   // LMA downward if possible to include the file and section headers.
2386   uint64_t header_gap = 0;
2387   if (load_seg != NULL
2388       && load_seg->are_addresses_set()
2389       && !this->script_options_->saw_sections_clause()
2390       && !parameters->options().relocatable())
2391     {
2392       file_header->finalize_data_size();
2393       segment_headers->finalize_data_size();
2394       size_t sizeof_headers = (file_header->data_size()
2395                                + segment_headers->data_size());
2396       const uint64_t abi_pagesize = target->abi_pagesize();
2397       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2398       hdr_paddr &= ~(abi_pagesize - 1);
2399       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2400       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2401         load_seg = NULL;
2402       else
2403         {
2404           load_seg->set_addresses(load_seg->vaddr() - subtract,
2405                                   load_seg->paddr() - subtract);
2406           header_gap = subtract - sizeof_headers;
2407         }
2408     }
2409
2410   // Lay out the segment headers.
2411   if (!parameters->options().relocatable())
2412     {
2413       gold_assert(segment_headers != NULL);
2414       if (header_gap != 0 && load_seg != NULL)
2415         {
2416           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2417           load_seg->add_initial_output_data(z);
2418         }
2419       if (load_seg != NULL)
2420         load_seg->add_initial_output_data(segment_headers);
2421       if (phdr_seg != NULL)
2422         phdr_seg->add_initial_output_data(segment_headers);
2423     }
2424
2425   // Lay out the file header.
2426   if (load_seg != NULL)
2427     load_seg->add_initial_output_data(file_header);
2428
2429   if (this->script_options_->saw_phdrs_clause()
2430       && !parameters->options().relocatable())
2431     {
2432       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2433       // clause in a linker script.
2434       Script_sections* ss = this->script_options_->script_sections();
2435       ss->put_headers_in_phdrs(file_header, segment_headers);
2436     }
2437
2438   // We set the output section indexes in set_segment_offsets and
2439   // set_section_indexes.
2440   *pshndx = 1;
2441
2442   // Set the file offsets of all the segments, and all the sections
2443   // they contain.
2444   off_t off;
2445   if (!parameters->options().relocatable())
2446     off = this->set_segment_offsets(target, load_seg, pshndx);
2447   else
2448     off = this->set_relocatable_section_offsets(file_header, pshndx);
2449
2450    // Verify that the dummy relaxation does not change anything.
2451   if (is_debugging_enabled(DEBUG_RELAXATION))
2452     {
2453       if (pass == 0)
2454         this->relaxation_debug_check_->read_sections(this->section_list_);
2455       else
2456         this->relaxation_debug_check_->verify_sections(this->section_list_);
2457     }
2458
2459   *pload_seg = load_seg;
2460   return off;
2461 }
2462
2463 // Search the list of patterns and find the postion of the given section
2464 // name in the output section.  If the section name matches a glob
2465 // pattern and a non-glob name, then the non-glob position takes
2466 // precedence.  Return 0 if no match is found.
2467
2468 unsigned int
2469 Layout::find_section_order_index(const std::string& section_name)
2470 {
2471   Unordered_map<std::string, unsigned int>::iterator map_it;
2472   map_it = this->input_section_position_.find(section_name);
2473   if (map_it != this->input_section_position_.end())
2474     return map_it->second;
2475
2476   // Absolute match failed.  Linear search the glob patterns.
2477   std::vector<std::string>::iterator it;
2478   for (it = this->input_section_glob_.begin();
2479        it != this->input_section_glob_.end();
2480        ++it)
2481     {
2482        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2483          {
2484            map_it = this->input_section_position_.find(*it);
2485            gold_assert(map_it != this->input_section_position_.end());
2486            return map_it->second;
2487          }
2488     }
2489   return 0;
2490 }
2491
2492 // Read the sequence of input sections from the file specified with
2493 // option --section-ordering-file.
2494
2495 void
2496 Layout::read_layout_from_file()
2497 {
2498   const char* filename = parameters->options().section_ordering_file();
2499   std::ifstream in;
2500   std::string line;
2501
2502   in.open(filename);
2503   if (!in)
2504     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2505                filename, strerror(errno));
2506
2507   std::getline(in, line);   // this chops off the trailing \n, if any
2508   unsigned int position = 1;
2509   this->set_section_ordering_specified();
2510
2511   while (in)
2512     {
2513       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2514         line.resize(line.length() - 1);
2515       // Ignore comments, beginning with '#'
2516       if (line[0] == '#')
2517         {
2518           std::getline(in, line);
2519           continue;
2520         }
2521       this->input_section_position_[line] = position;
2522       // Store all glob patterns in a vector.
2523       if (is_wildcard_string(line.c_str()))
2524         this->input_section_glob_.push_back(line);
2525       position++;
2526       std::getline(in, line);
2527     }
2528 }
2529
2530 // Finalize the layout.  When this is called, we have created all the
2531 // output sections and all the output segments which are based on
2532 // input sections.  We have several things to do, and we have to do
2533 // them in the right order, so that we get the right results correctly
2534 // and efficiently.
2535
2536 // 1) Finalize the list of output segments and create the segment
2537 // table header.
2538
2539 // 2) Finalize the dynamic symbol table and associated sections.
2540
2541 // 3) Determine the final file offset of all the output segments.
2542
2543 // 4) Determine the final file offset of all the SHF_ALLOC output
2544 // sections.
2545
2546 // 5) Create the symbol table sections and the section name table
2547 // section.
2548
2549 // 6) Finalize the symbol table: set symbol values to their final
2550 // value and make a final determination of which symbols are going
2551 // into the output symbol table.
2552
2553 // 7) Create the section table header.
2554
2555 // 8) Determine the final file offset of all the output sections which
2556 // are not SHF_ALLOC, including the section table header.
2557
2558 // 9) Finalize the ELF file header.
2559
2560 // This function returns the size of the output file.
2561
2562 off_t
2563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2564                  Target* target, const Task* task)
2565 {
2566   target->finalize_sections(this, input_objects, symtab);
2567
2568   this->count_local_symbols(task, input_objects);
2569
2570   this->link_stabs_sections();
2571
2572   Output_segment* phdr_seg = NULL;
2573   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2574     {
2575       // There was a dynamic object in the link.  We need to create
2576       // some information for the dynamic linker.
2577
2578       // Create the PT_PHDR segment which will hold the program
2579       // headers.
2580       if (!this->script_options_->saw_phdrs_clause())
2581         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2582
2583       // Create the dynamic symbol table, including the hash table.
2584       Output_section* dynstr;
2585       std::vector<Symbol*> dynamic_symbols;
2586       unsigned int local_dynamic_count;
2587       Versions versions(*this->script_options()->version_script_info(),
2588                         &this->dynpool_);
2589       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2590                                   &local_dynamic_count, &dynamic_symbols,
2591                                   &versions);
2592
2593       // Create the .interp section to hold the name of the
2594       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2595       // if we saw a .interp section in an input file.
2596       if ((!parameters->options().shared()
2597            || parameters->options().dynamic_linker() != NULL)
2598           && this->interp_segment_ == NULL)
2599         this->create_interp(target);
2600
2601       // Finish the .dynamic section to hold the dynamic data, and put
2602       // it in a PT_DYNAMIC segment.
2603       this->finish_dynamic_section(input_objects, symtab);
2604
2605       // We should have added everything we need to the dynamic string
2606       // table.
2607       this->dynpool_.set_string_offsets();
2608
2609       // Create the version sections.  We can't do this until the
2610       // dynamic string table is complete.
2611       this->create_version_sections(&versions, symtab, local_dynamic_count,
2612                                     dynamic_symbols, dynstr);
2613
2614       // Set the size of the _DYNAMIC symbol.  We can't do this until
2615       // after we call create_version_sections.
2616       this->set_dynamic_symbol_size(symtab);
2617     }
2618
2619   // Create segment headers.
2620   Output_segment_headers* segment_headers =
2621     (parameters->options().relocatable()
2622      ? NULL
2623      : new Output_segment_headers(this->segment_list_));
2624
2625   // Lay out the file header.
2626   Output_file_header* file_header = new Output_file_header(target, symtab,
2627                                                            segment_headers);
2628
2629   this->special_output_list_.push_back(file_header);
2630   if (segment_headers != NULL)
2631     this->special_output_list_.push_back(segment_headers);
2632
2633   // Find approriate places for orphan output sections if we are using
2634   // a linker script.
2635   if (this->script_options_->saw_sections_clause())
2636     this->place_orphan_sections_in_script();
2637
2638   Output_segment* load_seg;
2639   off_t off;
2640   unsigned int shndx;
2641   int pass = 0;
2642
2643   // Take a snapshot of the section layout as needed.
2644   if (target->may_relax())
2645     this->prepare_for_relaxation();
2646
2647   // Run the relaxation loop to lay out sections.
2648   do
2649     {
2650       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2651                                        phdr_seg, segment_headers, file_header,
2652                                        &shndx);
2653       pass++;
2654     }
2655   while (target->may_relax()
2656          && target->relax(pass, input_objects, symtab, this, task));
2657
2658   // If there is a load segment that contains the file and program headers,
2659   // provide a symbol __ehdr_start pointing there.
2660   // A program can use this to examine itself robustly.
2661   if (load_seg != NULL)
2662     symtab->define_in_output_segment("__ehdr_start", NULL,
2663                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2664                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2665                                      elfcpp::STV_DEFAULT, 0,
2666                                      Symbol::SEGMENT_START, true);
2667
2668   // Set the file offsets of all the non-data sections we've seen so
2669   // far which don't have to wait for the input sections.  We need
2670   // this in order to finalize local symbols in non-allocated
2671   // sections.
2672   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2673
2674   // Set the section indexes of all unallocated sections seen so far,
2675   // in case any of them are somehow referenced by a symbol.
2676   shndx = this->set_section_indexes(shndx);
2677
2678   // Create the symbol table sections.
2679   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2680   if (!parameters->doing_static_link())
2681     this->assign_local_dynsym_offsets(input_objects);
2682
2683   // Process any symbol assignments from a linker script.  This must
2684   // be called after the symbol table has been finalized.
2685   this->script_options_->finalize_symbols(symtab, this);
2686
2687   // Create the incremental inputs sections.
2688   if (this->incremental_inputs_)
2689     {
2690       this->incremental_inputs_->finalize();
2691       this->create_incremental_info_sections(symtab);
2692     }
2693
2694   // Create the .shstrtab section.
2695   Output_section* shstrtab_section = this->create_shstrtab();
2696
2697   // Set the file offsets of the rest of the non-data sections which
2698   // don't have to wait for the input sections.
2699   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2700
2701   // Now that all sections have been created, set the section indexes
2702   // for any sections which haven't been done yet.
2703   shndx = this->set_section_indexes(shndx);
2704
2705   // Create the section table header.
2706   this->create_shdrs(shstrtab_section, &off);
2707
2708   // If there are no sections which require postprocessing, we can
2709   // handle the section names now, and avoid a resize later.
2710   if (!this->any_postprocessing_sections_)
2711     {
2712       off = this->set_section_offsets(off,
2713                                       POSTPROCESSING_SECTIONS_PASS);
2714       off =
2715           this->set_section_offsets(off,
2716                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2717     }
2718
2719   file_header->set_section_info(this->section_headers_, shstrtab_section);
2720
2721   // Now we know exactly where everything goes in the output file
2722   // (except for non-allocated sections which require postprocessing).
2723   Output_data::layout_complete();
2724
2725   this->output_file_size_ = off;
2726
2727   return off;
2728 }
2729
2730 // Create a note header following the format defined in the ELF ABI.
2731 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2732 // of the section to create, DESCSZ is the size of the descriptor.
2733 // ALLOCATE is true if the section should be allocated in memory.
2734 // This returns the new note section.  It sets *TRAILING_PADDING to
2735 // the number of trailing zero bytes required.
2736
2737 Output_section*
2738 Layout::create_note(const char* name, int note_type,
2739                     const char* section_name, size_t descsz,
2740                     bool allocate, size_t* trailing_padding)
2741 {
2742   // Authorities all agree that the values in a .note field should
2743   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2744   // they differ on what the alignment is for 64-bit binaries.
2745   // The GABI says unambiguously they take 8-byte alignment:
2746   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2747   // Other documentation says alignment should always be 4 bytes:
2748   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2749   // GNU ld and GNU readelf both support the latter (at least as of
2750   // version 2.16.91), and glibc always generates the latter for
2751   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2752   // here.
2753 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2754   const int size = parameters->target().get_size();
2755 #else
2756   const int size = 32;
2757 #endif
2758
2759   // The contents of the .note section.
2760   size_t namesz = strlen(name) + 1;
2761   size_t aligned_namesz = align_address(namesz, size / 8);
2762   size_t aligned_descsz = align_address(descsz, size / 8);
2763
2764   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2765
2766   unsigned char* buffer = new unsigned char[notehdrsz];
2767   memset(buffer, 0, notehdrsz);
2768
2769   bool is_big_endian = parameters->target().is_big_endian();
2770
2771   if (size == 32)
2772     {
2773       if (!is_big_endian)
2774         {
2775           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2776           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2777           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2778         }
2779       else
2780         {
2781           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2782           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2783           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2784         }
2785     }
2786   else if (size == 64)
2787     {
2788       if (!is_big_endian)
2789         {
2790           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2791           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2792           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2793         }
2794       else
2795         {
2796           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2797           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2798           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2799         }
2800     }
2801   else
2802     gold_unreachable();
2803
2804   memcpy(buffer + 3 * (size / 8), name, namesz);
2805
2806   elfcpp::Elf_Xword flags = 0;
2807   Output_section_order order = ORDER_INVALID;
2808   if (allocate)
2809     {
2810       flags = elfcpp::SHF_ALLOC;
2811       order = ORDER_RO_NOTE;
2812     }
2813   Output_section* os = this->choose_output_section(NULL, section_name,
2814                                                    elfcpp::SHT_NOTE,
2815                                                    flags, false, order, false);
2816   if (os == NULL)
2817     return NULL;
2818
2819   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2820                                                            size / 8,
2821                                                            "** note header");
2822   os->add_output_section_data(posd);
2823
2824   *trailing_padding = aligned_descsz - descsz;
2825
2826   return os;
2827 }
2828
2829 // For an executable or shared library, create a note to record the
2830 // version of gold used to create the binary.
2831
2832 void
2833 Layout::create_gold_note()
2834 {
2835   if (parameters->options().relocatable()
2836       || parameters->incremental_update())
2837     return;
2838
2839   std::string desc = std::string("gold ") + gold::get_version_string();
2840
2841   size_t trailing_padding;
2842   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2843                                          ".note.gnu.gold-version", desc.size(),
2844                                          false, &trailing_padding);
2845   if (os == NULL)
2846     return;
2847
2848   Output_section_data* posd = new Output_data_const(desc, 4);
2849   os->add_output_section_data(posd);
2850
2851   if (trailing_padding > 0)
2852     {
2853       posd = new Output_data_zero_fill(trailing_padding, 0);
2854       os->add_output_section_data(posd);
2855     }
2856 }
2857
2858 // Record whether the stack should be executable.  This can be set
2859 // from the command line using the -z execstack or -z noexecstack
2860 // options.  Otherwise, if any input file has a .note.GNU-stack
2861 // section with the SHF_EXECINSTR flag set, the stack should be
2862 // executable.  Otherwise, if at least one input file a
2863 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2864 // section, we use the target default for whether the stack should be
2865 // executable.  Otherwise, we don't generate a stack note.  When
2866 // generating a object file, we create a .note.GNU-stack section with
2867 // the appropriate marking.  When generating an executable or shared
2868 // library, we create a PT_GNU_STACK segment.
2869
2870 void
2871 Layout::create_executable_stack_info()
2872 {
2873   bool is_stack_executable;
2874   if (parameters->options().is_execstack_set())
2875     is_stack_executable = parameters->options().is_stack_executable();
2876   else if (!this->input_with_gnu_stack_note_)
2877     return;
2878   else
2879     {
2880       if (this->input_requires_executable_stack_)
2881         is_stack_executable = true;
2882       else if (this->input_without_gnu_stack_note_)
2883         is_stack_executable =
2884           parameters->target().is_default_stack_executable();
2885       else
2886         is_stack_executable = false;
2887     }
2888
2889   if (parameters->options().relocatable())
2890     {
2891       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2892       elfcpp::Elf_Xword flags = 0;
2893       if (is_stack_executable)
2894         flags |= elfcpp::SHF_EXECINSTR;
2895       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2896                                 ORDER_INVALID, false);
2897     }
2898   else
2899     {
2900       if (this->script_options_->saw_phdrs_clause())
2901         return;
2902       int flags = elfcpp::PF_R | elfcpp::PF_W;
2903       if (is_stack_executable)
2904         flags |= elfcpp::PF_X;
2905       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2906     }
2907 }
2908
2909 // If --build-id was used, set up the build ID note.
2910
2911 void
2912 Layout::create_build_id()
2913 {
2914   if (!parameters->options().user_set_build_id())
2915     return;
2916
2917   const char* style = parameters->options().build_id();
2918   if (strcmp(style, "none") == 0)
2919     return;
2920
2921   // Set DESCSZ to the size of the note descriptor.  When possible,
2922   // set DESC to the note descriptor contents.
2923   size_t descsz;
2924   std::string desc;
2925   if (strcmp(style, "md5") == 0)
2926     descsz = 128 / 8;
2927   else if (strcmp(style, "sha1") == 0)
2928     descsz = 160 / 8;
2929   else if (strcmp(style, "uuid") == 0)
2930     {
2931       const size_t uuidsz = 128 / 8;
2932
2933       char buffer[uuidsz];
2934       memset(buffer, 0, uuidsz);
2935
2936       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2937       if (descriptor < 0)
2938         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2939                    strerror(errno));
2940       else
2941         {
2942           ssize_t got = ::read(descriptor, buffer, uuidsz);
2943           release_descriptor(descriptor, true);
2944           if (got < 0)
2945             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2946           else if (static_cast<size_t>(got) != uuidsz)
2947             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2948                        uuidsz, got);
2949         }
2950
2951       desc.assign(buffer, uuidsz);
2952       descsz = uuidsz;
2953     }
2954   else if (strncmp(style, "0x", 2) == 0)
2955     {
2956       hex_init();
2957       const char* p = style + 2;
2958       while (*p != '\0')
2959         {
2960           if (hex_p(p[0]) && hex_p(p[1]))
2961             {
2962               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2963               desc += c;
2964               p += 2;
2965             }
2966           else if (*p == '-' || *p == ':')
2967             ++p;
2968           else
2969             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2970                        style);
2971         }
2972       descsz = desc.size();
2973     }
2974   else
2975     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2976
2977   // Create the note.
2978   size_t trailing_padding;
2979   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2980                                          ".note.gnu.build-id", descsz, true,
2981                                          &trailing_padding);
2982   if (os == NULL)
2983     return;
2984
2985   if (!desc.empty())
2986     {
2987       // We know the value already, so we fill it in now.
2988       gold_assert(desc.size() == descsz);
2989
2990       Output_section_data* posd = new Output_data_const(desc, 4);
2991       os->add_output_section_data(posd);
2992
2993       if (trailing_padding != 0)
2994         {
2995           posd = new Output_data_zero_fill(trailing_padding, 0);
2996           os->add_output_section_data(posd);
2997         }
2998     }
2999   else
3000     {
3001       // We need to compute a checksum after we have completed the
3002       // link.
3003       gold_assert(trailing_padding == 0);
3004       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3005       os->add_output_section_data(this->build_id_note_);
3006     }
3007 }
3008
3009 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3010 // field of the former should point to the latter.  I'm not sure who
3011 // started this, but the GNU linker does it, and some tools depend
3012 // upon it.
3013
3014 void
3015 Layout::link_stabs_sections()
3016 {
3017   if (!this->have_stabstr_section_)
3018     return;
3019
3020   for (Section_list::iterator p = this->section_list_.begin();
3021        p != this->section_list_.end();
3022        ++p)
3023     {
3024       if ((*p)->type() != elfcpp::SHT_STRTAB)
3025         continue;
3026
3027       const char* name = (*p)->name();
3028       if (strncmp(name, ".stab", 5) != 0)
3029         continue;
3030
3031       size_t len = strlen(name);
3032       if (strcmp(name + len - 3, "str") != 0)
3033         continue;
3034
3035       std::string stab_name(name, len - 3);
3036       Output_section* stab_sec;
3037       stab_sec = this->find_output_section(stab_name.c_str());
3038       if (stab_sec != NULL)
3039         stab_sec->set_link_section(*p);
3040     }
3041 }
3042
3043 // Create .gnu_incremental_inputs and related sections needed
3044 // for the next run of incremental linking to check what has changed.
3045
3046 void
3047 Layout::create_incremental_info_sections(Symbol_table* symtab)
3048 {
3049   Incremental_inputs* incr = this->incremental_inputs_;
3050
3051   gold_assert(incr != NULL);
3052
3053   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3054   incr->create_data_sections(symtab);
3055
3056   // Add the .gnu_incremental_inputs section.
3057   const char* incremental_inputs_name =
3058     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3059   Output_section* incremental_inputs_os =
3060     this->make_output_section(incremental_inputs_name,
3061                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3062                               ORDER_INVALID, false);
3063   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3064
3065   // Add the .gnu_incremental_symtab section.
3066   const char* incremental_symtab_name =
3067     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3068   Output_section* incremental_symtab_os =
3069     this->make_output_section(incremental_symtab_name,
3070                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3071                               ORDER_INVALID, false);
3072   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3073   incremental_symtab_os->set_entsize(4);
3074
3075   // Add the .gnu_incremental_relocs section.
3076   const char* incremental_relocs_name =
3077     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3078   Output_section* incremental_relocs_os =
3079     this->make_output_section(incremental_relocs_name,
3080                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3081                               ORDER_INVALID, false);
3082   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3083   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3084
3085   // Add the .gnu_incremental_got_plt section.
3086   const char* incremental_got_plt_name =
3087     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3088   Output_section* incremental_got_plt_os =
3089     this->make_output_section(incremental_got_plt_name,
3090                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3091                               ORDER_INVALID, false);
3092   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3093
3094   // Add the .gnu_incremental_strtab section.
3095   const char* incremental_strtab_name =
3096     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3097   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3098                                                         elfcpp::SHT_STRTAB, 0,
3099                                                         ORDER_INVALID, false);
3100   Output_data_strtab* strtab_data =
3101       new Output_data_strtab(incr->get_stringpool());
3102   incremental_strtab_os->add_output_section_data(strtab_data);
3103
3104   incremental_inputs_os->set_after_input_sections();
3105   incremental_symtab_os->set_after_input_sections();
3106   incremental_relocs_os->set_after_input_sections();
3107   incremental_got_plt_os->set_after_input_sections();
3108
3109   incremental_inputs_os->set_link_section(incremental_strtab_os);
3110   incremental_symtab_os->set_link_section(incremental_inputs_os);
3111   incremental_relocs_os->set_link_section(incremental_inputs_os);
3112   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3113 }
3114
3115 // Return whether SEG1 should be before SEG2 in the output file.  This
3116 // is based entirely on the segment type and flags.  When this is
3117 // called the segment addresses have normally not yet been set.
3118
3119 bool
3120 Layout::segment_precedes(const Output_segment* seg1,
3121                          const Output_segment* seg2)
3122 {
3123   elfcpp::Elf_Word type1 = seg1->type();
3124   elfcpp::Elf_Word type2 = seg2->type();
3125
3126   // The single PT_PHDR segment is required to precede any loadable
3127   // segment.  We simply make it always first.
3128   if (type1 == elfcpp::PT_PHDR)
3129     {
3130       gold_assert(type2 != elfcpp::PT_PHDR);
3131       return true;
3132     }
3133   if (type2 == elfcpp::PT_PHDR)
3134     return false;
3135
3136   // The single PT_INTERP segment is required to precede any loadable
3137   // segment.  We simply make it always second.
3138   if (type1 == elfcpp::PT_INTERP)
3139     {
3140       gold_assert(type2 != elfcpp::PT_INTERP);
3141       return true;
3142     }
3143   if (type2 == elfcpp::PT_INTERP)
3144     return false;
3145
3146   // We then put PT_LOAD segments before any other segments.
3147   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3148     return true;
3149   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3150     return false;
3151
3152   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3153   // segment, because that is where the dynamic linker expects to find
3154   // it (this is just for efficiency; other positions would also work
3155   // correctly).
3156   if (type1 == elfcpp::PT_TLS
3157       && type2 != elfcpp::PT_TLS
3158       && type2 != elfcpp::PT_GNU_RELRO)
3159     return false;
3160   if (type2 == elfcpp::PT_TLS
3161       && type1 != elfcpp::PT_TLS
3162       && type1 != elfcpp::PT_GNU_RELRO)
3163     return true;
3164
3165   // We put the PT_GNU_RELRO segment last, because that is where the
3166   // dynamic linker expects to find it (as with PT_TLS, this is just
3167   // for efficiency).
3168   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3169     return false;
3170   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3171     return true;
3172
3173   const elfcpp::Elf_Word flags1 = seg1->flags();
3174   const elfcpp::Elf_Word flags2 = seg2->flags();
3175
3176   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3177   // by the numeric segment type and flags values.  There should not
3178   // be more than one segment with the same type and flags.
3179   if (type1 != elfcpp::PT_LOAD)
3180     {
3181       if (type1 != type2)
3182         return type1 < type2;
3183       gold_assert(flags1 != flags2);
3184       return flags1 < flags2;
3185     }
3186
3187   // If the addresses are set already, sort by load address.
3188   if (seg1->are_addresses_set())
3189     {
3190       if (!seg2->are_addresses_set())
3191         return true;
3192
3193       unsigned int section_count1 = seg1->output_section_count();
3194       unsigned int section_count2 = seg2->output_section_count();
3195       if (section_count1 == 0 && section_count2 > 0)
3196         return true;
3197       if (section_count1 > 0 && section_count2 == 0)
3198         return false;
3199
3200       uint64_t paddr1 = (seg1->are_addresses_set()
3201                          ? seg1->paddr()
3202                          : seg1->first_section_load_address());
3203       uint64_t paddr2 = (seg2->are_addresses_set()
3204                          ? seg2->paddr()
3205                          : seg2->first_section_load_address());
3206
3207       if (paddr1 != paddr2)
3208         return paddr1 < paddr2;
3209     }
3210   else if (seg2->are_addresses_set())
3211     return false;
3212
3213   // A segment which holds large data comes after a segment which does
3214   // not hold large data.
3215   if (seg1->is_large_data_segment())
3216     {
3217       if (!seg2->is_large_data_segment())
3218         return false;
3219     }
3220   else if (seg2->is_large_data_segment())
3221     return true;
3222
3223   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3224   // segments come before writable segments.  Then writable segments
3225   // with data come before writable segments without data.  Then
3226   // executable segments come before non-executable segments.  Then
3227   // the unlikely case of a non-readable segment comes before the
3228   // normal case of a readable segment.  If there are multiple
3229   // segments with the same type and flags, we require that the
3230   // address be set, and we sort by virtual address and then physical
3231   // address.
3232   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3233     return (flags1 & elfcpp::PF_W) == 0;
3234   if ((flags1 & elfcpp::PF_W) != 0
3235       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3236     return seg1->has_any_data_sections();
3237   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3238     return (flags1 & elfcpp::PF_X) != 0;
3239   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3240     return (flags1 & elfcpp::PF_R) == 0;
3241
3242   // We shouldn't get here--we shouldn't create segments which we
3243   // can't distinguish.  Unless of course we are using a weird linker
3244   // script or overlapping --section-start options.  We could also get
3245   // here if plugins want unique segments for subsets of sections.
3246   gold_assert(this->script_options_->saw_phdrs_clause()
3247               || parameters->options().any_section_start()
3248               || this->is_unique_segment_for_sections_specified());
3249   return false;
3250 }
3251
3252 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3253
3254 static off_t
3255 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3256 {
3257   uint64_t unsigned_off = off;
3258   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3259                           | (addr & (abi_pagesize - 1)));
3260   if (aligned_off < unsigned_off)
3261     aligned_off += abi_pagesize;
3262   return aligned_off;
3263 }
3264
3265 // Set the file offsets of all the segments, and all the sections they
3266 // contain.  They have all been created.  LOAD_SEG must be be laid out
3267 // first.  Return the offset of the data to follow.
3268
3269 off_t
3270 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3271                             unsigned int* pshndx)
3272 {
3273   // Sort them into the final order.  We use a stable sort so that we
3274   // don't randomize the order of indistinguishable segments created
3275   // by linker scripts.
3276   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3277                    Layout::Compare_segments(this));
3278
3279   // Find the PT_LOAD segments, and set their addresses and offsets
3280   // and their section's addresses and offsets.
3281   uint64_t start_addr;
3282   if (parameters->options().user_set_Ttext())
3283     start_addr = parameters->options().Ttext();
3284   else if (parameters->options().output_is_position_independent())
3285     start_addr = 0;
3286   else
3287     start_addr = target->default_text_segment_address();
3288
3289   uint64_t addr = start_addr;
3290   off_t off = 0;
3291
3292   // If LOAD_SEG is NULL, then the file header and segment headers
3293   // will not be loadable.  But they still need to be at offset 0 in
3294   // the file.  Set their offsets now.
3295   if (load_seg == NULL)
3296     {
3297       for (Data_list::iterator p = this->special_output_list_.begin();
3298            p != this->special_output_list_.end();
3299            ++p)
3300         {
3301           off = align_address(off, (*p)->addralign());
3302           (*p)->set_address_and_file_offset(0, off);
3303           off += (*p)->data_size();
3304         }
3305     }
3306
3307   unsigned int increase_relro = this->increase_relro_;
3308   if (this->script_options_->saw_sections_clause())
3309     increase_relro = 0;
3310
3311   const bool check_sections = parameters->options().check_sections();
3312   Output_segment* last_load_segment = NULL;
3313
3314   unsigned int shndx_begin = *pshndx;
3315   unsigned int shndx_load_seg = *pshndx;
3316
3317   for (Segment_list::iterator p = this->segment_list_.begin();
3318        p != this->segment_list_.end();
3319        ++p)
3320     {
3321       if ((*p)->type() == elfcpp::PT_LOAD)
3322         {
3323           if (target->isolate_execinstr())
3324             {
3325               // When we hit the segment that should contain the
3326               // file headers, reset the file offset so we place
3327               // it and subsequent segments appropriately.
3328               // We'll fix up the preceding segments below.
3329               if (load_seg == *p)
3330                 {
3331                   if (off == 0)
3332                     load_seg = NULL;
3333                   else
3334                     {
3335                       off = 0;
3336                       shndx_load_seg = *pshndx;
3337                     }
3338                 }
3339             }
3340           else
3341             {
3342               // Verify that the file headers fall into the first segment.
3343               if (load_seg != NULL && load_seg != *p)
3344                 gold_unreachable();
3345               load_seg = NULL;
3346             }
3347
3348           bool are_addresses_set = (*p)->are_addresses_set();
3349           if (are_addresses_set)
3350             {
3351               // When it comes to setting file offsets, we care about
3352               // the physical address.
3353               addr = (*p)->paddr();
3354             }
3355           else if (parameters->options().user_set_Ttext()
3356                    && (parameters->options().omagic()
3357                        || ((*p)->flags() & elfcpp::PF_W) == 0))
3358             {
3359               are_addresses_set = true;
3360             }
3361           else if (parameters->options().user_set_Tdata()
3362                    && ((*p)->flags() & elfcpp::PF_W) != 0
3363                    && (!parameters->options().user_set_Tbss()
3364                        || (*p)->has_any_data_sections()))
3365             {
3366               addr = parameters->options().Tdata();
3367               are_addresses_set = true;
3368             }
3369           else if (parameters->options().user_set_Tbss()
3370                    && ((*p)->flags() & elfcpp::PF_W) != 0
3371                    && !(*p)->has_any_data_sections())
3372             {
3373               addr = parameters->options().Tbss();
3374               are_addresses_set = true;
3375             }
3376
3377           uint64_t orig_addr = addr;
3378           uint64_t orig_off = off;
3379
3380           uint64_t aligned_addr = 0;
3381           uint64_t abi_pagesize = target->abi_pagesize();
3382           uint64_t common_pagesize = target->common_pagesize();
3383
3384           if (!parameters->options().nmagic()
3385               && !parameters->options().omagic())
3386             (*p)->set_minimum_p_align(abi_pagesize);
3387
3388           if (!are_addresses_set)
3389             {
3390               // Skip the address forward one page, maintaining the same
3391               // position within the page.  This lets us store both segments
3392               // overlapping on a single page in the file, but the loader will
3393               // put them on different pages in memory. We will revisit this
3394               // decision once we know the size of the segment.
3395
3396               addr = align_address(addr, (*p)->maximum_alignment());
3397               aligned_addr = addr;
3398
3399               if (load_seg == *p)
3400                 {
3401                   // This is the segment that will contain the file
3402                   // headers, so its offset will have to be exactly zero.
3403                   gold_assert(orig_off == 0);
3404
3405                   // If the target wants a fixed minimum distance from the
3406                   // text segment to the read-only segment, move up now.
3407                   uint64_t min_addr = start_addr + target->rosegment_gap();
3408                   if (addr < min_addr)
3409                     addr = min_addr;
3410
3411                   // But this is not the first segment!  To make its
3412                   // address congruent with its offset, that address better
3413                   // be aligned to the ABI-mandated page size.
3414                   addr = align_address(addr, abi_pagesize);
3415                   aligned_addr = addr;
3416                 }
3417               else
3418                 {
3419                   if ((addr & (abi_pagesize - 1)) != 0)
3420                     addr = addr + abi_pagesize;
3421
3422                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3423                 }
3424             }
3425
3426           if (!parameters->options().nmagic()
3427               && !parameters->options().omagic())
3428             off = align_file_offset(off, addr, abi_pagesize);
3429           else
3430             {
3431               // This is -N or -n with a section script which prevents
3432               // us from using a load segment.  We need to ensure that
3433               // the file offset is aligned to the alignment of the
3434               // segment.  This is because the linker script
3435               // implicitly assumed a zero offset.  If we don't align
3436               // here, then the alignment of the sections in the
3437               // linker script may not match the alignment of the
3438               // sections in the set_section_addresses call below,
3439               // causing an error about dot moving backward.
3440               off = align_address(off, (*p)->maximum_alignment());
3441             }
3442
3443           unsigned int shndx_hold = *pshndx;
3444           bool has_relro = false;
3445           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3446                                                           &increase_relro,
3447                                                           &has_relro,
3448                                                           &off, pshndx);
3449
3450           // Now that we know the size of this segment, we may be able
3451           // to save a page in memory, at the cost of wasting some
3452           // file space, by instead aligning to the start of a new
3453           // page.  Here we use the real machine page size rather than
3454           // the ABI mandated page size.  If the segment has been
3455           // aligned so that the relro data ends at a page boundary,
3456           // we do not try to realign it.
3457
3458           if (!are_addresses_set
3459               && !has_relro
3460               && aligned_addr != addr
3461               && !parameters->incremental())
3462             {
3463               uint64_t first_off = (common_pagesize
3464                                     - (aligned_addr
3465                                        & (common_pagesize - 1)));
3466               uint64_t last_off = new_addr & (common_pagesize - 1);
3467               if (first_off > 0
3468                   && last_off > 0
3469                   && ((aligned_addr & ~ (common_pagesize - 1))
3470                       != (new_addr & ~ (common_pagesize - 1)))
3471                   && first_off + last_off <= common_pagesize)
3472                 {
3473                   *pshndx = shndx_hold;
3474                   addr = align_address(aligned_addr, common_pagesize);
3475                   addr = align_address(addr, (*p)->maximum_alignment());
3476                   if ((addr & (abi_pagesize - 1)) != 0)
3477                     addr = addr + abi_pagesize;
3478                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3479                   off = align_file_offset(off, addr, abi_pagesize);
3480
3481                   increase_relro = this->increase_relro_;
3482                   if (this->script_options_->saw_sections_clause())
3483                     increase_relro = 0;
3484                   has_relro = false;
3485
3486                   new_addr = (*p)->set_section_addresses(this, true, addr,
3487                                                          &increase_relro,
3488                                                          &has_relro,
3489                                                          &off, pshndx);
3490                 }
3491             }
3492
3493           addr = new_addr;
3494
3495           // Implement --check-sections.  We know that the segments
3496           // are sorted by LMA.
3497           if (check_sections && last_load_segment != NULL)
3498             {
3499               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3500               if (last_load_segment->paddr() + last_load_segment->memsz()
3501                   > (*p)->paddr())
3502                 {
3503                   unsigned long long lb1 = last_load_segment->paddr();
3504                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3505                   unsigned long long lb2 = (*p)->paddr();
3506                   unsigned long long le2 = lb2 + (*p)->memsz();
3507                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3508                                "[0x%llx -> 0x%llx]"),
3509                              lb1, le1, lb2, le2);
3510                 }
3511             }
3512           last_load_segment = *p;
3513         }
3514     }
3515
3516   if (load_seg != NULL && target->isolate_execinstr())
3517     {
3518       // Process the early segments again, setting their file offsets
3519       // so they land after the segments starting at LOAD_SEG.
3520       off = align_file_offset(off, 0, target->abi_pagesize());
3521
3522       for (Segment_list::iterator p = this->segment_list_.begin();
3523            *p != load_seg;
3524            ++p)
3525         {
3526           if ((*p)->type() == elfcpp::PT_LOAD)
3527             {
3528               // We repeat the whole job of assigning addresses and
3529               // offsets, but we really only want to change the offsets and
3530               // must ensure that the addresses all come out the same as
3531               // they did the first time through.
3532               bool has_relro = false;
3533               const uint64_t old_addr = (*p)->vaddr();
3534               const uint64_t old_end = old_addr + (*p)->memsz();
3535               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3536                                                               old_addr,
3537                                                               &increase_relro,
3538                                                               &has_relro,
3539                                                               &off,
3540                                                               &shndx_begin);
3541               gold_assert(new_addr == old_end);
3542             }
3543         }
3544
3545       gold_assert(shndx_begin == shndx_load_seg);
3546     }
3547
3548   // Handle the non-PT_LOAD segments, setting their offsets from their
3549   // section's offsets.
3550   for (Segment_list::iterator p = this->segment_list_.begin();
3551        p != this->segment_list_.end();
3552        ++p)
3553     {
3554       if ((*p)->type() != elfcpp::PT_LOAD)
3555         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3556                          ? increase_relro
3557                          : 0);
3558     }
3559
3560   // Set the TLS offsets for each section in the PT_TLS segment.
3561   if (this->tls_segment_ != NULL)
3562     this->tls_segment_->set_tls_offsets();
3563
3564   return off;
3565 }
3566
3567 // Set the offsets of all the allocated sections when doing a
3568 // relocatable link.  This does the same jobs as set_segment_offsets,
3569 // only for a relocatable link.
3570
3571 off_t
3572 Layout::set_relocatable_section_offsets(Output_data* file_header,
3573                                         unsigned int* pshndx)
3574 {
3575   off_t off = 0;
3576
3577   file_header->set_address_and_file_offset(0, 0);
3578   off += file_header->data_size();
3579
3580   for (Section_list::iterator p = this->section_list_.begin();
3581        p != this->section_list_.end();
3582        ++p)
3583     {
3584       // We skip unallocated sections here, except that group sections
3585       // have to come first.
3586       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3587           && (*p)->type() != elfcpp::SHT_GROUP)
3588         continue;
3589
3590       off = align_address(off, (*p)->addralign());
3591
3592       // The linker script might have set the address.
3593       if (!(*p)->is_address_valid())
3594         (*p)->set_address(0);
3595       (*p)->set_file_offset(off);
3596       (*p)->finalize_data_size();
3597       off += (*p)->data_size();
3598
3599       (*p)->set_out_shndx(*pshndx);
3600       ++*pshndx;
3601     }
3602
3603   return off;
3604 }
3605
3606 // Set the file offset of all the sections not associated with a
3607 // segment.
3608
3609 off_t
3610 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3611 {
3612   off_t startoff = off;
3613   off_t maxoff = off;
3614
3615   for (Section_list::iterator p = this->unattached_section_list_.begin();
3616        p != this->unattached_section_list_.end();
3617        ++p)
3618     {
3619       // The symtab section is handled in create_symtab_sections.
3620       if (*p == this->symtab_section_)
3621         continue;
3622
3623       // If we've already set the data size, don't set it again.
3624       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3625         continue;
3626
3627       if (pass == BEFORE_INPUT_SECTIONS_PASS
3628           && (*p)->requires_postprocessing())
3629         {
3630           (*p)->create_postprocessing_buffer();
3631           this->any_postprocessing_sections_ = true;
3632         }
3633
3634       if (pass == BEFORE_INPUT_SECTIONS_PASS
3635           && (*p)->after_input_sections())
3636         continue;
3637       else if (pass == POSTPROCESSING_SECTIONS_PASS
3638                && (!(*p)->after_input_sections()
3639                    || (*p)->type() == elfcpp::SHT_STRTAB))
3640         continue;
3641       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3642                && (!(*p)->after_input_sections()
3643                    || (*p)->type() != elfcpp::SHT_STRTAB))
3644         continue;
3645
3646       if (!parameters->incremental_update())
3647         {
3648           off = align_address(off, (*p)->addralign());
3649           (*p)->set_file_offset(off);
3650           (*p)->finalize_data_size();
3651         }
3652       else
3653         {
3654           // Incremental update: allocate file space from free list.
3655           (*p)->pre_finalize_data_size();
3656           off_t current_size = (*p)->current_data_size();
3657           off = this->allocate(current_size, (*p)->addralign(), startoff);
3658           if (off == -1)
3659             {
3660               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3661                 this->free_list_.dump();
3662               gold_assert((*p)->output_section() != NULL);
3663               gold_fallback(_("out of patch space for section %s; "
3664                               "relink with --incremental-full"),
3665                             (*p)->output_section()->name());
3666             }
3667           (*p)->set_file_offset(off);
3668           (*p)->finalize_data_size();
3669           if ((*p)->data_size() > current_size)
3670             {
3671               gold_assert((*p)->output_section() != NULL);
3672               gold_fallback(_("%s: section changed size; "
3673                               "relink with --incremental-full"),
3674                             (*p)->output_section()->name());
3675             }
3676           gold_debug(DEBUG_INCREMENTAL,
3677                      "set_section_offsets: %08lx %08lx %s",
3678                      static_cast<long>(off),
3679                      static_cast<long>((*p)->data_size()),
3680                      ((*p)->output_section() != NULL
3681                       ? (*p)->output_section()->name() : "(special)"));
3682         }
3683
3684       off += (*p)->data_size();
3685       if (off > maxoff)
3686         maxoff = off;
3687
3688       // At this point the name must be set.
3689       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3690         this->namepool_.add((*p)->name(), false, NULL);
3691     }
3692   return maxoff;
3693 }
3694
3695 // Set the section indexes of all the sections not associated with a
3696 // segment.
3697
3698 unsigned int
3699 Layout::set_section_indexes(unsigned int shndx)
3700 {
3701   for (Section_list::iterator p = this->unattached_section_list_.begin();
3702        p != this->unattached_section_list_.end();
3703        ++p)
3704     {
3705       if (!(*p)->has_out_shndx())
3706         {
3707           (*p)->set_out_shndx(shndx);
3708           ++shndx;
3709         }
3710     }
3711   return shndx;
3712 }
3713
3714 // Set the section addresses according to the linker script.  This is
3715 // only called when we see a SECTIONS clause.  This returns the
3716 // program segment which should hold the file header and segment
3717 // headers, if any.  It will return NULL if they should not be in a
3718 // segment.
3719
3720 Output_segment*
3721 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3722 {
3723   Script_sections* ss = this->script_options_->script_sections();
3724   gold_assert(ss->saw_sections_clause());
3725   return this->script_options_->set_section_addresses(symtab, this);
3726 }
3727
3728 // Place the orphan sections in the linker script.
3729
3730 void
3731 Layout::place_orphan_sections_in_script()
3732 {
3733   Script_sections* ss = this->script_options_->script_sections();
3734   gold_assert(ss->saw_sections_clause());
3735
3736   // Place each orphaned output section in the script.
3737   for (Section_list::iterator p = this->section_list_.begin();
3738        p != this->section_list_.end();
3739        ++p)
3740     {
3741       if (!(*p)->found_in_sections_clause())
3742         ss->place_orphan(*p);
3743     }
3744 }
3745
3746 // Count the local symbols in the regular symbol table and the dynamic
3747 // symbol table, and build the respective string pools.
3748
3749 void
3750 Layout::count_local_symbols(const Task* task,
3751                             const Input_objects* input_objects)
3752 {
3753   // First, figure out an upper bound on the number of symbols we'll
3754   // be inserting into each pool.  This helps us create the pools with
3755   // the right size, to avoid unnecessary hashtable resizing.
3756   unsigned int symbol_count = 0;
3757   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3758        p != input_objects->relobj_end();
3759        ++p)
3760     symbol_count += (*p)->local_symbol_count();
3761
3762   // Go from "upper bound" to "estimate."  We overcount for two
3763   // reasons: we double-count symbols that occur in more than one
3764   // object file, and we count symbols that are dropped from the
3765   // output.  Add it all together and assume we overcount by 100%.
3766   symbol_count /= 2;
3767
3768   // We assume all symbols will go into both the sympool and dynpool.
3769   this->sympool_.reserve(symbol_count);
3770   this->dynpool_.reserve(symbol_count);
3771
3772   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3773        p != input_objects->relobj_end();
3774        ++p)
3775     {
3776       Task_lock_obj<Object> tlo(task, *p);
3777       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3778     }
3779 }
3780
3781 // Create the symbol table sections.  Here we also set the final
3782 // values of the symbols.  At this point all the loadable sections are
3783 // fully laid out.  SHNUM is the number of sections so far.
3784
3785 void
3786 Layout::create_symtab_sections(const Input_objects* input_objects,
3787                                Symbol_table* symtab,
3788                                unsigned int shnum,
3789                                off_t* poff)
3790 {
3791   int symsize;
3792   unsigned int align;
3793   if (parameters->target().get_size() == 32)
3794     {
3795       symsize = elfcpp::Elf_sizes<32>::sym_size;
3796       align = 4;
3797     }
3798   else if (parameters->target().get_size() == 64)
3799     {
3800       symsize = elfcpp::Elf_sizes<64>::sym_size;
3801       align = 8;
3802     }
3803   else
3804     gold_unreachable();
3805
3806   // Compute file offsets relative to the start of the symtab section.
3807   off_t off = 0;
3808
3809   // Save space for the dummy symbol at the start of the section.  We
3810   // never bother to write this out--it will just be left as zero.
3811   off += symsize;
3812   unsigned int local_symbol_index = 1;
3813
3814   // Add STT_SECTION symbols for each Output section which needs one.
3815   for (Section_list::iterator p = this->section_list_.begin();
3816        p != this->section_list_.end();
3817        ++p)
3818     {
3819       if (!(*p)->needs_symtab_index())
3820         (*p)->set_symtab_index(-1U);
3821       else
3822         {
3823           (*p)->set_symtab_index(local_symbol_index);
3824           ++local_symbol_index;
3825           off += symsize;
3826         }
3827     }
3828
3829   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3830        p != input_objects->relobj_end();
3831        ++p)
3832     {
3833       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3834                                                         off, symtab);
3835       off += (index - local_symbol_index) * symsize;
3836       local_symbol_index = index;
3837     }
3838
3839   unsigned int local_symcount = local_symbol_index;
3840   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3841
3842   off_t dynoff;
3843   size_t dyn_global_index;
3844   size_t dyncount;
3845   if (this->dynsym_section_ == NULL)
3846     {
3847       dynoff = 0;
3848       dyn_global_index = 0;
3849       dyncount = 0;
3850     }
3851   else
3852     {
3853       dyn_global_index = this->dynsym_section_->info();
3854       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3855       dynoff = this->dynsym_section_->offset() + locsize;
3856       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3857       gold_assert(static_cast<off_t>(dyncount * symsize)
3858                   == this->dynsym_section_->data_size() - locsize);
3859     }
3860
3861   off_t global_off = off;
3862   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3863                          &this->sympool_, &local_symcount);
3864
3865   if (!parameters->options().strip_all())
3866     {
3867       this->sympool_.set_string_offsets();
3868
3869       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3870       Output_section* osymtab = this->make_output_section(symtab_name,
3871                                                           elfcpp::SHT_SYMTAB,
3872                                                           0, ORDER_INVALID,
3873                                                           false);
3874       this->symtab_section_ = osymtab;
3875
3876       Output_section_data* pos = new Output_data_fixed_space(off, align,
3877                                                              "** symtab");
3878       osymtab->add_output_section_data(pos);
3879
3880       // We generate a .symtab_shndx section if we have more than
3881       // SHN_LORESERVE sections.  Technically it is possible that we
3882       // don't need one, because it is possible that there are no
3883       // symbols in any of sections with indexes larger than
3884       // SHN_LORESERVE.  That is probably unusual, though, and it is
3885       // easier to always create one than to compute section indexes
3886       // twice (once here, once when writing out the symbols).
3887       if (shnum >= elfcpp::SHN_LORESERVE)
3888         {
3889           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3890                                                                false, NULL);
3891           Output_section* osymtab_xindex =
3892             this->make_output_section(symtab_xindex_name,
3893                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3894                                       ORDER_INVALID, false);
3895
3896           size_t symcount = off / symsize;
3897           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3898
3899           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3900
3901           osymtab_xindex->set_link_section(osymtab);
3902           osymtab_xindex->set_addralign(4);
3903           osymtab_xindex->set_entsize(4);
3904
3905           osymtab_xindex->set_after_input_sections();
3906
3907           // This tells the driver code to wait until the symbol table
3908           // has written out before writing out the postprocessing
3909           // sections, including the .symtab_shndx section.
3910           this->any_postprocessing_sections_ = true;
3911         }
3912
3913       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3914       Output_section* ostrtab = this->make_output_section(strtab_name,
3915                                                           elfcpp::SHT_STRTAB,
3916                                                           0, ORDER_INVALID,
3917                                                           false);
3918
3919       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3920       ostrtab->add_output_section_data(pstr);
3921
3922       off_t symtab_off;
3923       if (!parameters->incremental_update())
3924         symtab_off = align_address(*poff, align);
3925       else
3926         {
3927           symtab_off = this->allocate(off, align, *poff);
3928           if (off == -1)
3929             gold_fallback(_("out of patch space for symbol table; "
3930                             "relink with --incremental-full"));
3931           gold_debug(DEBUG_INCREMENTAL,
3932                      "create_symtab_sections: %08lx %08lx .symtab",
3933                      static_cast<long>(symtab_off),
3934                      static_cast<long>(off));
3935         }
3936
3937       symtab->set_file_offset(symtab_off + global_off);
3938       osymtab->set_file_offset(symtab_off);
3939       osymtab->finalize_data_size();
3940       osymtab->set_link_section(ostrtab);
3941       osymtab->set_info(local_symcount);
3942       osymtab->set_entsize(symsize);
3943
3944       if (symtab_off + off > *poff)
3945         *poff = symtab_off + off;
3946     }
3947 }
3948
3949 // Create the .shstrtab section, which holds the names of the
3950 // sections.  At the time this is called, we have created all the
3951 // output sections except .shstrtab itself.
3952
3953 Output_section*
3954 Layout::create_shstrtab()
3955 {
3956   // FIXME: We don't need to create a .shstrtab section if we are
3957   // stripping everything.
3958
3959   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3960
3961   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3962                                                  ORDER_INVALID, false);
3963
3964   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3965     {
3966       // We can't write out this section until we've set all the
3967       // section names, and we don't set the names of compressed
3968       // output sections until relocations are complete.  FIXME: With
3969       // the current names we use, this is unnecessary.
3970       os->set_after_input_sections();
3971     }
3972
3973   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3974   os->add_output_section_data(posd);
3975
3976   return os;
3977 }
3978
3979 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3980 // offset.
3981
3982 void
3983 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3984 {
3985   Output_section_headers* oshdrs;
3986   oshdrs = new Output_section_headers(this,
3987                                       &this->segment_list_,
3988                                       &this->section_list_,
3989                                       &this->unattached_section_list_,
3990                                       &this->namepool_,
3991                                       shstrtab_section);
3992   off_t off;
3993   if (!parameters->incremental_update())
3994     off = align_address(*poff, oshdrs->addralign());
3995   else
3996     {
3997       oshdrs->pre_finalize_data_size();
3998       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3999       if (off == -1)
4000           gold_fallback(_("out of patch space for section header table; "
4001                           "relink with --incremental-full"));
4002       gold_debug(DEBUG_INCREMENTAL,
4003                  "create_shdrs: %08lx %08lx (section header table)",
4004                  static_cast<long>(off),
4005                  static_cast<long>(off + oshdrs->data_size()));
4006     }
4007   oshdrs->set_address_and_file_offset(0, off);
4008   off += oshdrs->data_size();
4009   if (off > *poff)
4010     *poff = off;
4011   this->section_headers_ = oshdrs;
4012 }
4013
4014 // Count the allocated sections.
4015
4016 size_t
4017 Layout::allocated_output_section_count() const
4018 {
4019   size_t section_count = 0;
4020   for (Segment_list::const_iterator p = this->segment_list_.begin();
4021        p != this->segment_list_.end();
4022        ++p)
4023     section_count += (*p)->output_section_count();
4024   return section_count;
4025 }
4026
4027 // Create the dynamic symbol table.
4028
4029 void
4030 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4031                               Symbol_table* symtab,
4032                               Output_section** pdynstr,
4033                               unsigned int* plocal_dynamic_count,
4034                               std::vector<Symbol*>* pdynamic_symbols,
4035                               Versions* pversions)
4036 {
4037   // Count all the symbols in the dynamic symbol table, and set the
4038   // dynamic symbol indexes.
4039
4040   // Skip symbol 0, which is always all zeroes.
4041   unsigned int index = 1;
4042
4043   // Add STT_SECTION symbols for each Output section which needs one.
4044   for (Section_list::iterator p = this->section_list_.begin();
4045        p != this->section_list_.end();
4046        ++p)
4047     {
4048       if (!(*p)->needs_dynsym_index())
4049         (*p)->set_dynsym_index(-1U);
4050       else
4051         {
4052           (*p)->set_dynsym_index(index);
4053           ++index;
4054         }
4055     }
4056
4057   // Count the local symbols that need to go in the dynamic symbol table,
4058   // and set the dynamic symbol indexes.
4059   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4060        p != input_objects->relobj_end();
4061        ++p)
4062     {
4063       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4064       index = new_index;
4065     }
4066
4067   unsigned int local_symcount = index;
4068   *plocal_dynamic_count = local_symcount;
4069
4070   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4071                                      &this->dynpool_, pversions);
4072
4073   int symsize;
4074   unsigned int align;
4075   const int size = parameters->target().get_size();
4076   if (size == 32)
4077     {
4078       symsize = elfcpp::Elf_sizes<32>::sym_size;
4079       align = 4;
4080     }
4081   else if (size == 64)
4082     {
4083       symsize = elfcpp::Elf_sizes<64>::sym_size;
4084       align = 8;
4085     }
4086   else
4087     gold_unreachable();
4088
4089   // Create the dynamic symbol table section.
4090
4091   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4092                                                        elfcpp::SHT_DYNSYM,
4093                                                        elfcpp::SHF_ALLOC,
4094                                                        false,
4095                                                        ORDER_DYNAMIC_LINKER,
4096                                                        false);
4097
4098   // Check for NULL as a linker script may discard .dynsym.
4099   if (dynsym != NULL)
4100     {
4101       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4102                                                                align,
4103                                                                "** dynsym");
4104       dynsym->add_output_section_data(odata);
4105
4106       dynsym->set_info(local_symcount);
4107       dynsym->set_entsize(symsize);
4108       dynsym->set_addralign(align);
4109
4110       this->dynsym_section_ = dynsym;
4111     }
4112
4113   Output_data_dynamic* const odyn = this->dynamic_data_;
4114   if (odyn != NULL)
4115     {
4116       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4117       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4118     }
4119
4120   // If there are more than SHN_LORESERVE allocated sections, we
4121   // create a .dynsym_shndx section.  It is possible that we don't
4122   // need one, because it is possible that there are no dynamic
4123   // symbols in any of the sections with indexes larger than
4124   // SHN_LORESERVE.  This is probably unusual, though, and at this
4125   // time we don't know the actual section indexes so it is
4126   // inconvenient to check.
4127   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4128     {
4129       Output_section* dynsym_xindex =
4130         this->choose_output_section(NULL, ".dynsym_shndx",
4131                                     elfcpp::SHT_SYMTAB_SHNDX,
4132                                     elfcpp::SHF_ALLOC,
4133                                     false, ORDER_DYNAMIC_LINKER, false);
4134
4135       if (dynsym_xindex != NULL)
4136         {
4137           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4138
4139           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4140
4141           dynsym_xindex->set_link_section(dynsym);
4142           dynsym_xindex->set_addralign(4);
4143           dynsym_xindex->set_entsize(4);
4144
4145           dynsym_xindex->set_after_input_sections();
4146
4147           // This tells the driver code to wait until the symbol table
4148           // has written out before writing out the postprocessing
4149           // sections, including the .dynsym_shndx section.
4150           this->any_postprocessing_sections_ = true;
4151         }
4152     }
4153
4154   // Create the dynamic string table section.
4155
4156   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4157                                                        elfcpp::SHT_STRTAB,
4158                                                        elfcpp::SHF_ALLOC,
4159                                                        false,
4160                                                        ORDER_DYNAMIC_LINKER,
4161                                                        false);
4162   *pdynstr = dynstr;
4163   if (dynstr != NULL)
4164     {
4165       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4166       dynstr->add_output_section_data(strdata);
4167
4168       if (dynsym != NULL)
4169         dynsym->set_link_section(dynstr);
4170       if (this->dynamic_section_ != NULL)
4171         this->dynamic_section_->set_link_section(dynstr);
4172
4173       if (odyn != NULL)
4174         {
4175           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4176           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4177         }
4178     }
4179
4180   // Create the hash tables.
4181
4182   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4183       || strcmp(parameters->options().hash_style(), "both") == 0)
4184     {
4185       unsigned char* phash;
4186       unsigned int hashlen;
4187       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4188                                     &phash, &hashlen);
4189
4190       Output_section* hashsec =
4191         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4192                                     elfcpp::SHF_ALLOC, false,
4193                                     ORDER_DYNAMIC_LINKER, false);
4194
4195       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4196                                                                    hashlen,
4197                                                                    align,
4198                                                                    "** hash");
4199       if (hashsec != NULL && hashdata != NULL)
4200         hashsec->add_output_section_data(hashdata);
4201
4202       if (hashsec != NULL)
4203         {
4204           if (dynsym != NULL)
4205             hashsec->set_link_section(dynsym);
4206           hashsec->set_entsize(4);
4207         }
4208
4209       if (odyn != NULL)
4210         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4211     }
4212
4213   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4214       || strcmp(parameters->options().hash_style(), "both") == 0)
4215     {
4216       unsigned char* phash;
4217       unsigned int hashlen;
4218       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4219                                     &phash, &hashlen);
4220
4221       Output_section* hashsec =
4222         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4223                                     elfcpp::SHF_ALLOC, false,
4224                                     ORDER_DYNAMIC_LINKER, false);
4225
4226       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4227                                                                    hashlen,
4228                                                                    align,
4229                                                                    "** hash");
4230       if (hashsec != NULL && hashdata != NULL)
4231         hashsec->add_output_section_data(hashdata);
4232
4233       if (hashsec != NULL)
4234         {
4235           if (dynsym != NULL)
4236             hashsec->set_link_section(dynsym);
4237
4238           // For a 64-bit target, the entries in .gnu.hash do not have
4239           // a uniform size, so we only set the entry size for a
4240           // 32-bit target.
4241           if (parameters->target().get_size() == 32)
4242             hashsec->set_entsize(4);
4243
4244           if (odyn != NULL)
4245             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4246         }
4247     }
4248 }
4249
4250 // Assign offsets to each local portion of the dynamic symbol table.
4251
4252 void
4253 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4254 {
4255   Output_section* dynsym = this->dynsym_section_;
4256   if (dynsym == NULL)
4257     return;
4258
4259   off_t off = dynsym->offset();
4260
4261   // Skip the dummy symbol at the start of the section.
4262   off += dynsym->entsize();
4263
4264   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4265        p != input_objects->relobj_end();
4266        ++p)
4267     {
4268       unsigned int count = (*p)->set_local_dynsym_offset(off);
4269       off += count * dynsym->entsize();
4270     }
4271 }
4272
4273 // Create the version sections.
4274
4275 void
4276 Layout::create_version_sections(const Versions* versions,
4277                                 const Symbol_table* symtab,
4278                                 unsigned int local_symcount,
4279                                 const std::vector<Symbol*>& dynamic_symbols,
4280                                 const Output_section* dynstr)
4281 {
4282   if (!versions->any_defs() && !versions->any_needs())
4283     return;
4284
4285   switch (parameters->size_and_endianness())
4286     {
4287 #ifdef HAVE_TARGET_32_LITTLE
4288     case Parameters::TARGET_32_LITTLE:
4289       this->sized_create_version_sections<32, false>(versions, symtab,
4290                                                      local_symcount,
4291                                                      dynamic_symbols, dynstr);
4292       break;
4293 #endif
4294 #ifdef HAVE_TARGET_32_BIG
4295     case Parameters::TARGET_32_BIG:
4296       this->sized_create_version_sections<32, true>(versions, symtab,
4297                                                     local_symcount,
4298                                                     dynamic_symbols, dynstr);
4299       break;
4300 #endif
4301 #ifdef HAVE_TARGET_64_LITTLE
4302     case Parameters::TARGET_64_LITTLE:
4303       this->sized_create_version_sections<64, false>(versions, symtab,
4304                                                      local_symcount,
4305                                                      dynamic_symbols, dynstr);
4306       break;
4307 #endif
4308 #ifdef HAVE_TARGET_64_BIG
4309     case Parameters::TARGET_64_BIG:
4310       this->sized_create_version_sections<64, true>(versions, symtab,
4311                                                     local_symcount,
4312                                                     dynamic_symbols, dynstr);
4313       break;
4314 #endif
4315     default:
4316       gold_unreachable();
4317     }
4318 }
4319
4320 // Create the version sections, sized version.
4321
4322 template<int size, bool big_endian>
4323 void
4324 Layout::sized_create_version_sections(
4325     const Versions* versions,
4326     const Symbol_table* symtab,
4327     unsigned int local_symcount,
4328     const std::vector<Symbol*>& dynamic_symbols,
4329     const Output_section* dynstr)
4330 {
4331   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4332                                                      elfcpp::SHT_GNU_versym,
4333                                                      elfcpp::SHF_ALLOC,
4334                                                      false,
4335                                                      ORDER_DYNAMIC_LINKER,
4336                                                      false);
4337
4338   // Check for NULL since a linker script may discard this section.
4339   if (vsec != NULL)
4340     {
4341       unsigned char* vbuf;
4342       unsigned int vsize;
4343       versions->symbol_section_contents<size, big_endian>(symtab,
4344                                                           &this->dynpool_,
4345                                                           local_symcount,
4346                                                           dynamic_symbols,
4347                                                           &vbuf, &vsize);
4348
4349       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4350                                                                 "** versions");
4351
4352       vsec->add_output_section_data(vdata);
4353       vsec->set_entsize(2);
4354       vsec->set_link_section(this->dynsym_section_);
4355     }
4356
4357   Output_data_dynamic* const odyn = this->dynamic_data_;
4358   if (odyn != NULL && vsec != NULL)
4359     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4360
4361   if (versions->any_defs())
4362     {
4363       Output_section* vdsec;
4364       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4365                                           elfcpp::SHT_GNU_verdef,
4366                                           elfcpp::SHF_ALLOC,
4367                                           false, ORDER_DYNAMIC_LINKER, false);
4368
4369       if (vdsec != NULL)
4370         {
4371           unsigned char* vdbuf;
4372           unsigned int vdsize;
4373           unsigned int vdentries;
4374           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4375                                                            &vdbuf, &vdsize,
4376                                                            &vdentries);
4377
4378           Output_section_data* vddata =
4379             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4380
4381           vdsec->add_output_section_data(vddata);
4382           vdsec->set_link_section(dynstr);
4383           vdsec->set_info(vdentries);
4384
4385           if (odyn != NULL)
4386             {
4387               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4388               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4389             }
4390         }
4391     }
4392
4393   if (versions->any_needs())
4394     {
4395       Output_section* vnsec;
4396       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4397                                           elfcpp::SHT_GNU_verneed,
4398                                           elfcpp::SHF_ALLOC,
4399                                           false, ORDER_DYNAMIC_LINKER, false);
4400
4401       if (vnsec != NULL)
4402         {
4403           unsigned char* vnbuf;
4404           unsigned int vnsize;
4405           unsigned int vnentries;
4406           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4407                                                             &vnbuf, &vnsize,
4408                                                             &vnentries);
4409
4410           Output_section_data* vndata =
4411             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4412
4413           vnsec->add_output_section_data(vndata);
4414           vnsec->set_link_section(dynstr);
4415           vnsec->set_info(vnentries);
4416
4417           if (odyn != NULL)
4418             {
4419               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4420               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4421             }
4422         }
4423     }
4424 }
4425
4426 // Create the .interp section and PT_INTERP segment.
4427
4428 void
4429 Layout::create_interp(const Target* target)
4430 {
4431   gold_assert(this->interp_segment_ == NULL);
4432
4433   const char* interp = parameters->options().dynamic_linker();
4434   if (interp == NULL)
4435     {
4436       interp = target->dynamic_linker();
4437       gold_assert(interp != NULL);
4438     }
4439
4440   size_t len = strlen(interp) + 1;
4441
4442   Output_section_data* odata = new Output_data_const(interp, len, 1);
4443
4444   Output_section* osec = this->choose_output_section(NULL, ".interp",
4445                                                      elfcpp::SHT_PROGBITS,
4446                                                      elfcpp::SHF_ALLOC,
4447                                                      false, ORDER_INTERP,
4448                                                      false);
4449   if (osec != NULL)
4450     osec->add_output_section_data(odata);
4451 }
4452
4453 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4454 // called by the target-specific code.  This does nothing if not doing
4455 // a dynamic link.
4456
4457 // USE_REL is true for REL relocs rather than RELA relocs.
4458
4459 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4460
4461 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4462 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4463 // some targets have multiple reloc sections in PLT_REL.
4464
4465 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4466 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4467 // section.
4468
4469 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4470 // executable.
4471
4472 void
4473 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4474                                 const Output_data* plt_rel,
4475                                 const Output_data_reloc_generic* dyn_rel,
4476                                 bool add_debug, bool dynrel_includes_plt)
4477 {
4478   Output_data_dynamic* odyn = this->dynamic_data_;
4479   if (odyn == NULL)
4480     return;
4481
4482   if (plt_got != NULL && plt_got->output_section() != NULL)
4483     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4484
4485   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4486     {
4487       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4488       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4489       odyn->add_constant(elfcpp::DT_PLTREL,
4490                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4491     }
4492
4493   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4494       || (dynrel_includes_plt
4495           && plt_rel != NULL
4496           && plt_rel->output_section() != NULL))
4497     {
4498       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4499       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4500       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4501                                 (have_dyn_rel
4502                                  ? dyn_rel->output_section()
4503                                  : plt_rel->output_section()));
4504       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4505       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4506         odyn->add_section_size(size_tag,
4507                                dyn_rel->output_section(),
4508                                plt_rel->output_section());
4509       else if (have_dyn_rel)
4510         odyn->add_section_size(size_tag, dyn_rel->output_section());
4511       else
4512         odyn->add_section_size(size_tag, plt_rel->output_section());
4513       const int size = parameters->target().get_size();
4514       elfcpp::DT rel_tag;
4515       int rel_size;
4516       if (use_rel)
4517         {
4518           rel_tag = elfcpp::DT_RELENT;
4519           if (size == 32)
4520             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4521           else if (size == 64)
4522             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4523           else
4524             gold_unreachable();
4525         }
4526       else
4527         {
4528           rel_tag = elfcpp::DT_RELAENT;
4529           if (size == 32)
4530             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4531           else if (size == 64)
4532             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4533           else
4534             gold_unreachable();
4535         }
4536       odyn->add_constant(rel_tag, rel_size);
4537
4538       if (parameters->options().combreloc() && have_dyn_rel)
4539         {
4540           size_t c = dyn_rel->relative_reloc_count();
4541           if (c > 0)
4542             odyn->add_constant((use_rel
4543                                 ? elfcpp::DT_RELCOUNT
4544                                 : elfcpp::DT_RELACOUNT),
4545                                c);
4546         }
4547     }
4548
4549   if (add_debug && !parameters->options().shared())
4550     {
4551       // The value of the DT_DEBUG tag is filled in by the dynamic
4552       // linker at run time, and used by the debugger.
4553       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4554     }
4555 }
4556
4557 // Finish the .dynamic section and PT_DYNAMIC segment.
4558
4559 void
4560 Layout::finish_dynamic_section(const Input_objects* input_objects,
4561                                const Symbol_table* symtab)
4562 {
4563   if (!this->script_options_->saw_phdrs_clause()
4564       && this->dynamic_section_ != NULL)
4565     {
4566       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4567                                                        (elfcpp::PF_R
4568                                                         | elfcpp::PF_W));
4569       oseg->add_output_section_to_nonload(this->dynamic_section_,
4570                                           elfcpp::PF_R | elfcpp::PF_W);
4571     }
4572
4573   Output_data_dynamic* const odyn = this->dynamic_data_;
4574   if (odyn == NULL)
4575     return;
4576
4577   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4578        p != input_objects->dynobj_end();
4579        ++p)
4580     {
4581       if (!(*p)->is_needed() && (*p)->as_needed())
4582         {
4583           // This dynamic object was linked with --as-needed, but it
4584           // is not needed.
4585           continue;
4586         }
4587
4588       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4589     }
4590
4591   if (parameters->options().shared())
4592     {
4593       const char* soname = parameters->options().soname();
4594       if (soname != NULL)
4595         odyn->add_string(elfcpp::DT_SONAME, soname);
4596     }
4597
4598   Symbol* sym = symtab->lookup(parameters->options().init());
4599   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4600     odyn->add_symbol(elfcpp::DT_INIT, sym);
4601
4602   sym = symtab->lookup(parameters->options().fini());
4603   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4604     odyn->add_symbol(elfcpp::DT_FINI, sym);
4605
4606   // Look for .init_array, .preinit_array and .fini_array by checking
4607   // section types.
4608   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4609       p != this->section_list_.end();
4610       ++p)
4611     switch((*p)->type())
4612       {
4613       case elfcpp::SHT_FINI_ARRAY:
4614         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4615         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4616         break;
4617       case elfcpp::SHT_INIT_ARRAY:
4618         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4619         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4620         break;
4621       case elfcpp::SHT_PREINIT_ARRAY:
4622         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4623         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4624         break;
4625       default:
4626         break;
4627       }
4628
4629   // Add a DT_RPATH entry if needed.
4630   const General_options::Dir_list& rpath(parameters->options().rpath());
4631   if (!rpath.empty())
4632     {
4633       std::string rpath_val;
4634       for (General_options::Dir_list::const_iterator p = rpath.begin();
4635            p != rpath.end();
4636            ++p)
4637         {
4638           if (rpath_val.empty())
4639             rpath_val = p->name();
4640           else
4641             {
4642               // Eliminate duplicates.
4643               General_options::Dir_list::const_iterator q;
4644               for (q = rpath.begin(); q != p; ++q)
4645                 if (q->name() == p->name())
4646                   break;
4647               if (q == p)
4648                 {
4649                   rpath_val += ':';
4650                   rpath_val += p->name();
4651                 }
4652             }
4653         }
4654
4655       if (!parameters->options().enable_new_dtags())
4656         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4657       else
4658         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4659     }
4660
4661   // Look for text segments that have dynamic relocations.
4662   bool have_textrel = false;
4663   if (!this->script_options_->saw_sections_clause())
4664     {
4665       for (Segment_list::const_iterator p = this->segment_list_.begin();
4666            p != this->segment_list_.end();
4667            ++p)
4668         {
4669           if ((*p)->type() == elfcpp::PT_LOAD
4670               && ((*p)->flags() & elfcpp::PF_W) == 0
4671               && (*p)->has_dynamic_reloc())
4672             {
4673               have_textrel = true;
4674               break;
4675             }
4676         }
4677     }
4678   else
4679     {
4680       // We don't know the section -> segment mapping, so we are
4681       // conservative and just look for readonly sections with
4682       // relocations.  If those sections wind up in writable segments,
4683       // then we have created an unnecessary DT_TEXTREL entry.
4684       for (Section_list::const_iterator p = this->section_list_.begin();
4685            p != this->section_list_.end();
4686            ++p)
4687         {
4688           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4689               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4690               && (*p)->has_dynamic_reloc())
4691             {
4692               have_textrel = true;
4693               break;
4694             }
4695         }
4696     }
4697
4698   if (parameters->options().filter() != NULL)
4699     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4700   if (parameters->options().any_auxiliary())
4701     {
4702       for (options::String_set::const_iterator p =
4703              parameters->options().auxiliary_begin();
4704            p != parameters->options().auxiliary_end();
4705            ++p)
4706         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4707     }
4708
4709   // Add a DT_FLAGS entry if necessary.
4710   unsigned int flags = 0;
4711   if (have_textrel)
4712     {
4713       // Add a DT_TEXTREL for compatibility with older loaders.
4714       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4715       flags |= elfcpp::DF_TEXTREL;
4716
4717       if (parameters->options().text())
4718         gold_error(_("read-only segment has dynamic relocations"));
4719       else if (parameters->options().warn_shared_textrel()
4720                && parameters->options().shared())
4721         gold_warning(_("shared library text segment is not shareable"));
4722     }
4723   if (parameters->options().shared() && this->has_static_tls())
4724     flags |= elfcpp::DF_STATIC_TLS;
4725   if (parameters->options().origin())
4726     flags |= elfcpp::DF_ORIGIN;
4727   if (parameters->options().Bsymbolic())
4728     {
4729       flags |= elfcpp::DF_SYMBOLIC;
4730       // Add DT_SYMBOLIC for compatibility with older loaders.
4731       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4732     }
4733   if (parameters->options().now())
4734     flags |= elfcpp::DF_BIND_NOW;
4735   if (flags != 0)
4736     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4737
4738   flags = 0;
4739   if (parameters->options().initfirst())
4740     flags |= elfcpp::DF_1_INITFIRST;
4741   if (parameters->options().interpose())
4742     flags |= elfcpp::DF_1_INTERPOSE;
4743   if (parameters->options().loadfltr())
4744     flags |= elfcpp::DF_1_LOADFLTR;
4745   if (parameters->options().nodefaultlib())
4746     flags |= elfcpp::DF_1_NODEFLIB;
4747   if (parameters->options().nodelete())
4748     flags |= elfcpp::DF_1_NODELETE;
4749   if (parameters->options().nodlopen())
4750     flags |= elfcpp::DF_1_NOOPEN;
4751   if (parameters->options().nodump())
4752     flags |= elfcpp::DF_1_NODUMP;
4753   if (!parameters->options().shared())
4754     flags &= ~(elfcpp::DF_1_INITFIRST
4755                | elfcpp::DF_1_NODELETE
4756                | elfcpp::DF_1_NOOPEN);
4757   if (parameters->options().origin())
4758     flags |= elfcpp::DF_1_ORIGIN;
4759   if (parameters->options().now())
4760     flags |= elfcpp::DF_1_NOW;
4761   if (parameters->options().Bgroup())
4762     flags |= elfcpp::DF_1_GROUP;
4763   if (flags != 0)
4764     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4765 }
4766
4767 // Set the size of the _DYNAMIC symbol table to be the size of the
4768 // dynamic data.
4769
4770 void
4771 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4772 {
4773   Output_data_dynamic* const odyn = this->dynamic_data_;
4774   if (odyn == NULL)
4775     return;
4776   odyn->finalize_data_size();
4777   if (this->dynamic_symbol_ == NULL)
4778     return;
4779   off_t data_size = odyn->data_size();
4780   const int size = parameters->target().get_size();
4781   if (size == 32)
4782     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4783   else if (size == 64)
4784     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4785   else
4786     gold_unreachable();
4787 }
4788
4789 // The mapping of input section name prefixes to output section names.
4790 // In some cases one prefix is itself a prefix of another prefix; in
4791 // such a case the longer prefix must come first.  These prefixes are
4792 // based on the GNU linker default ELF linker script.
4793
4794 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4795 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4796 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4797 {
4798   MAPPING_INIT(".text.", ".text"),
4799   MAPPING_INIT(".rodata.", ".rodata"),
4800   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4801   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4802   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4803   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4804   MAPPING_INIT(".data.", ".data"),
4805   MAPPING_INIT(".bss.", ".bss"),
4806   MAPPING_INIT(".tdata.", ".tdata"),
4807   MAPPING_INIT(".tbss.", ".tbss"),
4808   MAPPING_INIT(".init_array.", ".init_array"),
4809   MAPPING_INIT(".fini_array.", ".fini_array"),
4810   MAPPING_INIT(".sdata.", ".sdata"),
4811   MAPPING_INIT(".sbss.", ".sbss"),
4812   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4813   // differently depending on whether it is creating a shared library.
4814   MAPPING_INIT(".sdata2.", ".sdata"),
4815   MAPPING_INIT(".sbss2.", ".sbss"),
4816   MAPPING_INIT(".lrodata.", ".lrodata"),
4817   MAPPING_INIT(".ldata.", ".ldata"),
4818   MAPPING_INIT(".lbss.", ".lbss"),
4819   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4820   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4821   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4822   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4823   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4824   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4825   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4826   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4827   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4828   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4829   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4830   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4831   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4832   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4833   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4834   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4835   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4836   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4837   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4838   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4839   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4840 };
4841 #undef MAPPING_INIT
4842 #undef MAPPING_INIT_EXACT
4843
4844 const int Layout::section_name_mapping_count =
4845   (sizeof(Layout::section_name_mapping)
4846    / sizeof(Layout::section_name_mapping[0]));
4847
4848 // Choose the output section name to use given an input section name.
4849 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4850 // length of NAME.
4851
4852 const char*
4853 Layout::output_section_name(const Relobj* relobj, const char* name,
4854                             size_t* plen)
4855 {
4856   // gcc 4.3 generates the following sorts of section names when it
4857   // needs a section name specific to a function:
4858   //   .text.FN
4859   //   .rodata.FN
4860   //   .sdata2.FN
4861   //   .data.FN
4862   //   .data.rel.FN
4863   //   .data.rel.local.FN
4864   //   .data.rel.ro.FN
4865   //   .data.rel.ro.local.FN
4866   //   .sdata.FN
4867   //   .bss.FN
4868   //   .sbss.FN
4869   //   .tdata.FN
4870   //   .tbss.FN
4871
4872   // The GNU linker maps all of those to the part before the .FN,
4873   // except that .data.rel.local.FN is mapped to .data, and
4874   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4875   // beginning with .data.rel.ro.local are grouped together.
4876
4877   // For an anonymous namespace, the string FN can contain a '.'.
4878
4879   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4880   // GNU linker maps to .rodata.
4881
4882   // The .data.rel.ro sections are used with -z relro.  The sections
4883   // are recognized by name.  We use the same names that the GNU
4884   // linker does for these sections.
4885
4886   // It is hard to handle this in a principled way, so we don't even
4887   // try.  We use a table of mappings.  If the input section name is
4888   // not found in the table, we simply use it as the output section
4889   // name.
4890
4891   const Section_name_mapping* psnm = section_name_mapping;
4892   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4893     {
4894       if (psnm->fromlen > 0)
4895         {
4896           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4897             {
4898               *plen = psnm->tolen;
4899               return psnm->to;
4900             }
4901         }
4902       else
4903         {
4904           if (strcmp(name, psnm->from) == 0)
4905             {
4906               *plen = psnm->tolen;
4907               return psnm->to;
4908             }
4909         }
4910     }
4911
4912   // As an additional complication, .ctors sections are output in
4913   // either .ctors or .init_array sections, and .dtors sections are
4914   // output in either .dtors or .fini_array sections.
4915   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4916     {
4917       if (parameters->options().ctors_in_init_array())
4918         {
4919           *plen = 11;
4920           return name[1] == 'c' ? ".init_array" : ".fini_array";
4921         }
4922       else
4923         {
4924           *plen = 6;
4925           return name[1] == 'c' ? ".ctors" : ".dtors";
4926         }
4927     }
4928   if (parameters->options().ctors_in_init_array()
4929       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4930     {
4931       // To make .init_array/.fini_array work with gcc we must exclude
4932       // .ctors and .dtors sections from the crtbegin and crtend
4933       // files.
4934       if (relobj == NULL
4935           || (!Layout::match_file_name(relobj, "crtbegin")
4936               && !Layout::match_file_name(relobj, "crtend")))
4937         {
4938           *plen = 11;
4939           return name[1] == 'c' ? ".init_array" : ".fini_array";
4940         }
4941     }
4942
4943   return name;
4944 }
4945
4946 // Return true if RELOBJ is an input file whose base name matches
4947 // FILE_NAME.  The base name must have an extension of ".o", and must
4948 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4949 // to match crtbegin.o as well as crtbeginS.o without getting confused
4950 // by other possibilities.  Overall matching the file name this way is
4951 // a dreadful hack, but the GNU linker does it in order to better
4952 // support gcc, and we need to be compatible.
4953
4954 bool
4955 Layout::match_file_name(const Relobj* relobj, const char* match)
4956 {
4957   const std::string& file_name(relobj->name());
4958   const char* base_name = lbasename(file_name.c_str());
4959   size_t match_len = strlen(match);
4960   if (strncmp(base_name, match, match_len) != 0)
4961     return false;
4962   size_t base_len = strlen(base_name);
4963   if (base_len != match_len + 2 && base_len != match_len + 3)
4964     return false;
4965   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4966 }
4967
4968 // Check if a comdat group or .gnu.linkonce section with the given
4969 // NAME is selected for the link.  If there is already a section,
4970 // *KEPT_SECTION is set to point to the existing section and the
4971 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4972 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4973 // *KEPT_SECTION is set to the internal copy and the function returns
4974 // true.
4975
4976 bool
4977 Layout::find_or_add_kept_section(const std::string& name,
4978                                  Relobj* object,
4979                                  unsigned int shndx,
4980                                  bool is_comdat,
4981                                  bool is_group_name,
4982                                  Kept_section** kept_section)
4983 {
4984   // It's normal to see a couple of entries here, for the x86 thunk
4985   // sections.  If we see more than a few, we're linking a C++
4986   // program, and we resize to get more space to minimize rehashing.
4987   if (this->signatures_.size() > 4
4988       && !this->resized_signatures_)
4989     {
4990       reserve_unordered_map(&this->signatures_,
4991                             this->number_of_input_files_ * 64);
4992       this->resized_signatures_ = true;
4993     }
4994
4995   Kept_section candidate;
4996   std::pair<Signatures::iterator, bool> ins =
4997     this->signatures_.insert(std::make_pair(name, candidate));
4998
4999   if (kept_section != NULL)
5000     *kept_section = &ins.first->second;
5001   if (ins.second)
5002     {
5003       // This is the first time we've seen this signature.
5004       ins.first->second.set_object(object);
5005       ins.first->second.set_shndx(shndx);
5006       if (is_comdat)
5007         ins.first->second.set_is_comdat();
5008       if (is_group_name)
5009         ins.first->second.set_is_group_name();
5010       return true;
5011     }
5012
5013   // We have already seen this signature.
5014
5015   if (ins.first->second.is_group_name())
5016     {
5017       // We've already seen a real section group with this signature.
5018       // If the kept group is from a plugin object, and we're in the
5019       // replacement phase, accept the new one as a replacement.
5020       if (ins.first->second.object() == NULL
5021           && parameters->options().plugins()->in_replacement_phase())
5022         {
5023           ins.first->second.set_object(object);
5024           ins.first->second.set_shndx(shndx);
5025           return true;
5026         }
5027       return false;
5028     }
5029   else if (is_group_name)
5030     {
5031       // This is a real section group, and we've already seen a
5032       // linkonce section with this signature.  Record that we've seen
5033       // a section group, and don't include this section group.
5034       ins.first->second.set_is_group_name();
5035       return false;
5036     }
5037   else
5038     {
5039       // We've already seen a linkonce section and this is a linkonce
5040       // section.  These don't block each other--this may be the same
5041       // symbol name with different section types.
5042       return true;
5043     }
5044 }
5045
5046 // Store the allocated sections into the section list.
5047
5048 void
5049 Layout::get_allocated_sections(Section_list* section_list) const
5050 {
5051   for (Section_list::const_iterator p = this->section_list_.begin();
5052        p != this->section_list_.end();
5053        ++p)
5054     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5055       section_list->push_back(*p);
5056 }
5057
5058 // Store the executable sections into the section list.
5059
5060 void
5061 Layout::get_executable_sections(Section_list* section_list) const
5062 {
5063   for (Section_list::const_iterator p = this->section_list_.begin();
5064        p != this->section_list_.end();
5065        ++p)
5066     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5067         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5068       section_list->push_back(*p);
5069 }
5070
5071 // Create an output segment.
5072
5073 Output_segment*
5074 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5075 {
5076   gold_assert(!parameters->options().relocatable());
5077   Output_segment* oseg = new Output_segment(type, flags);
5078   this->segment_list_.push_back(oseg);
5079
5080   if (type == elfcpp::PT_TLS)
5081     this->tls_segment_ = oseg;
5082   else if (type == elfcpp::PT_GNU_RELRO)
5083     this->relro_segment_ = oseg;
5084   else if (type == elfcpp::PT_INTERP)
5085     this->interp_segment_ = oseg;
5086
5087   return oseg;
5088 }
5089
5090 // Return the file offset of the normal symbol table.
5091
5092 off_t
5093 Layout::symtab_section_offset() const
5094 {
5095   if (this->symtab_section_ != NULL)
5096     return this->symtab_section_->offset();
5097   return 0;
5098 }
5099
5100 // Return the section index of the normal symbol table.  It may have
5101 // been stripped by the -s/--strip-all option.
5102
5103 unsigned int
5104 Layout::symtab_section_shndx() const
5105 {
5106   if (this->symtab_section_ != NULL)
5107     return this->symtab_section_->out_shndx();
5108   return 0;
5109 }
5110
5111 // Write out the Output_sections.  Most won't have anything to write,
5112 // since most of the data will come from input sections which are
5113 // handled elsewhere.  But some Output_sections do have Output_data.
5114
5115 void
5116 Layout::write_output_sections(Output_file* of) const
5117 {
5118   for (Section_list::const_iterator p = this->section_list_.begin();
5119        p != this->section_list_.end();
5120        ++p)
5121     {
5122       if (!(*p)->after_input_sections())
5123         (*p)->write(of);
5124     }
5125 }
5126
5127 // Write out data not associated with a section or the symbol table.
5128
5129 void
5130 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5131 {
5132   if (!parameters->options().strip_all())
5133     {
5134       const Output_section* symtab_section = this->symtab_section_;
5135       for (Section_list::const_iterator p = this->section_list_.begin();
5136            p != this->section_list_.end();
5137            ++p)
5138         {
5139           if ((*p)->needs_symtab_index())
5140             {
5141               gold_assert(symtab_section != NULL);
5142               unsigned int index = (*p)->symtab_index();
5143               gold_assert(index > 0 && index != -1U);
5144               off_t off = (symtab_section->offset()
5145                            + index * symtab_section->entsize());
5146               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5147             }
5148         }
5149     }
5150
5151   const Output_section* dynsym_section = this->dynsym_section_;
5152   for (Section_list::const_iterator p = this->section_list_.begin();
5153        p != this->section_list_.end();
5154        ++p)
5155     {
5156       if ((*p)->needs_dynsym_index())
5157         {
5158           gold_assert(dynsym_section != NULL);
5159           unsigned int index = (*p)->dynsym_index();
5160           gold_assert(index > 0 && index != -1U);
5161           off_t off = (dynsym_section->offset()
5162                        + index * dynsym_section->entsize());
5163           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5164         }
5165     }
5166
5167   // Write out the Output_data which are not in an Output_section.
5168   for (Data_list::const_iterator p = this->special_output_list_.begin();
5169        p != this->special_output_list_.end();
5170        ++p)
5171     (*p)->write(of);
5172 }
5173
5174 // Write out the Output_sections which can only be written after the
5175 // input sections are complete.
5176
5177 void
5178 Layout::write_sections_after_input_sections(Output_file* of)
5179 {
5180   // Determine the final section offsets, and thus the final output
5181   // file size.  Note we finalize the .shstrab last, to allow the
5182   // after_input_section sections to modify their section-names before
5183   // writing.
5184   if (this->any_postprocessing_sections_)
5185     {
5186       off_t off = this->output_file_size_;
5187       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5188
5189       // Now that we've finalized the names, we can finalize the shstrab.
5190       off =
5191         this->set_section_offsets(off,
5192                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5193
5194       if (off > this->output_file_size_)
5195         {
5196           of->resize(off);
5197           this->output_file_size_ = off;
5198         }
5199     }
5200
5201   for (Section_list::const_iterator p = this->section_list_.begin();
5202        p != this->section_list_.end();
5203        ++p)
5204     {
5205       if ((*p)->after_input_sections())
5206         (*p)->write(of);
5207     }
5208
5209   this->section_headers_->write(of);
5210 }
5211
5212 // If the build ID requires computing a checksum, do so here, and
5213 // write it out.  We compute a checksum over the entire file because
5214 // that is simplest.
5215
5216 void
5217 Layout::write_build_id(Output_file* of) const
5218 {
5219   if (this->build_id_note_ == NULL)
5220     return;
5221
5222   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5223
5224   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5225                                           this->build_id_note_->data_size());
5226
5227   const char* style = parameters->options().build_id();
5228   if (strcmp(style, "sha1") == 0)
5229     {
5230       sha1_ctx ctx;
5231       sha1_init_ctx(&ctx);
5232       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5233       sha1_finish_ctx(&ctx, ov);
5234     }
5235   else if (strcmp(style, "md5") == 0)
5236     {
5237       md5_ctx ctx;
5238       md5_init_ctx(&ctx);
5239       md5_process_bytes(iv, this->output_file_size_, &ctx);
5240       md5_finish_ctx(&ctx, ov);
5241     }
5242   else
5243     gold_unreachable();
5244
5245   of->write_output_view(this->build_id_note_->offset(),
5246                         this->build_id_note_->data_size(),
5247                         ov);
5248
5249   of->free_input_view(0, this->output_file_size_, iv);
5250 }
5251
5252 // Write out a binary file.  This is called after the link is
5253 // complete.  IN is the temporary output file we used to generate the
5254 // ELF code.  We simply walk through the segments, read them from
5255 // their file offset in IN, and write them to their load address in
5256 // the output file.  FIXME: with a bit more work, we could support
5257 // S-records and/or Intel hex format here.
5258
5259 void
5260 Layout::write_binary(Output_file* in) const
5261 {
5262   gold_assert(parameters->options().oformat_enum()
5263               == General_options::OBJECT_FORMAT_BINARY);
5264
5265   // Get the size of the binary file.
5266   uint64_t max_load_address = 0;
5267   for (Segment_list::const_iterator p = this->segment_list_.begin();
5268        p != this->segment_list_.end();
5269        ++p)
5270     {
5271       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5272         {
5273           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5274           if (max_paddr > max_load_address)
5275             max_load_address = max_paddr;
5276         }
5277     }
5278
5279   Output_file out(parameters->options().output_file_name());
5280   out.open(max_load_address);
5281
5282   for (Segment_list::const_iterator p = this->segment_list_.begin();
5283        p != this->segment_list_.end();
5284        ++p)
5285     {
5286       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5287         {
5288           const unsigned char* vin = in->get_input_view((*p)->offset(),
5289                                                         (*p)->filesz());
5290           unsigned char* vout = out.get_output_view((*p)->paddr(),
5291                                                     (*p)->filesz());
5292           memcpy(vout, vin, (*p)->filesz());
5293           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5294           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5295         }
5296     }
5297
5298   out.close();
5299 }
5300
5301 // Print the output sections to the map file.
5302
5303 void
5304 Layout::print_to_mapfile(Mapfile* mapfile) const
5305 {
5306   for (Segment_list::const_iterator p = this->segment_list_.begin();
5307        p != this->segment_list_.end();
5308        ++p)
5309     (*p)->print_sections_to_mapfile(mapfile);
5310 }
5311
5312 // Print statistical information to stderr.  This is used for --stats.
5313
5314 void
5315 Layout::print_stats() const
5316 {
5317   this->namepool_.print_stats("section name pool");
5318   this->sympool_.print_stats("output symbol name pool");
5319   this->dynpool_.print_stats("dynamic name pool");
5320
5321   for (Section_list::const_iterator p = this->section_list_.begin();
5322        p != this->section_list_.end();
5323        ++p)
5324     (*p)->print_merge_stats();
5325 }
5326
5327 // Write_sections_task methods.
5328
5329 // We can always run this task.
5330
5331 Task_token*
5332 Write_sections_task::is_runnable()
5333 {
5334   return NULL;
5335 }
5336
5337 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5338 // when finished.
5339
5340 void
5341 Write_sections_task::locks(Task_locker* tl)
5342 {
5343   tl->add(this, this->output_sections_blocker_);
5344   tl->add(this, this->final_blocker_);
5345 }
5346
5347 // Run the task--write out the data.
5348
5349 void
5350 Write_sections_task::run(Workqueue*)
5351 {
5352   this->layout_->write_output_sections(this->of_);
5353 }
5354
5355 // Write_data_task methods.
5356
5357 // We can always run this task.
5358
5359 Task_token*
5360 Write_data_task::is_runnable()
5361 {
5362   return NULL;
5363 }
5364
5365 // We need to unlock FINAL_BLOCKER when finished.
5366
5367 void
5368 Write_data_task::locks(Task_locker* tl)
5369 {
5370   tl->add(this, this->final_blocker_);
5371 }
5372
5373 // Run the task--write out the data.
5374
5375 void
5376 Write_data_task::run(Workqueue*)
5377 {
5378   this->layout_->write_data(this->symtab_, this->of_);
5379 }
5380
5381 // Write_symbols_task methods.
5382
5383 // We can always run this task.
5384
5385 Task_token*
5386 Write_symbols_task::is_runnable()
5387 {
5388   return NULL;
5389 }
5390
5391 // We need to unlock FINAL_BLOCKER when finished.
5392
5393 void
5394 Write_symbols_task::locks(Task_locker* tl)
5395 {
5396   tl->add(this, this->final_blocker_);
5397 }
5398
5399 // Run the task--write out the symbols.
5400
5401 void
5402 Write_symbols_task::run(Workqueue*)
5403 {
5404   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5405                                this->layout_->symtab_xindex(),
5406                                this->layout_->dynsym_xindex(), this->of_);
5407 }
5408
5409 // Write_after_input_sections_task methods.
5410
5411 // We can only run this task after the input sections have completed.
5412
5413 Task_token*
5414 Write_after_input_sections_task::is_runnable()
5415 {
5416   if (this->input_sections_blocker_->is_blocked())
5417     return this->input_sections_blocker_;
5418   return NULL;
5419 }
5420
5421 // We need to unlock FINAL_BLOCKER when finished.
5422
5423 void
5424 Write_after_input_sections_task::locks(Task_locker* tl)
5425 {
5426   tl->add(this, this->final_blocker_);
5427 }
5428
5429 // Run the task.
5430
5431 void
5432 Write_after_input_sections_task::run(Workqueue*)
5433 {
5434   this->layout_->write_sections_after_input_sections(this->of_);
5435 }
5436
5437 // Close_task_runner methods.
5438
5439 // Run the task--close the file.
5440
5441 void
5442 Close_task_runner::run(Workqueue*, const Task*)
5443 {
5444   // If we need to compute a checksum for the BUILD if, we do so here.
5445   this->layout_->write_build_id(this->of_);
5446
5447   // If we've been asked to create a binary file, we do so here.
5448   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5449     this->layout_->write_binary(this->of_);
5450
5451   this->of_->close();
5452 }
5453
5454 // Instantiate the templates we need.  We could use the configure
5455 // script to restrict this to only the ones for implemented targets.
5456
5457 #ifdef HAVE_TARGET_32_LITTLE
5458 template
5459 Output_section*
5460 Layout::init_fixed_output_section<32, false>(
5461     const char* name,
5462     elfcpp::Shdr<32, false>& shdr);
5463 #endif
5464
5465 #ifdef HAVE_TARGET_32_BIG
5466 template
5467 Output_section*
5468 Layout::init_fixed_output_section<32, true>(
5469     const char* name,
5470     elfcpp::Shdr<32, true>& shdr);
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_LITTLE
5474 template
5475 Output_section*
5476 Layout::init_fixed_output_section<64, false>(
5477     const char* name,
5478     elfcpp::Shdr<64, false>& shdr);
5479 #endif
5480
5481 #ifdef HAVE_TARGET_64_BIG
5482 template
5483 Output_section*
5484 Layout::init_fixed_output_section<64, true>(
5485     const char* name,
5486     elfcpp::Shdr<64, true>& shdr);
5487 #endif
5488
5489 #ifdef HAVE_TARGET_32_LITTLE
5490 template
5491 Output_section*
5492 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5493                           unsigned int shndx,
5494                           const char* name,
5495                           const elfcpp::Shdr<32, false>& shdr,
5496                           unsigned int, unsigned int, off_t*);
5497 #endif
5498
5499 #ifdef HAVE_TARGET_32_BIG
5500 template
5501 Output_section*
5502 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5503                          unsigned int shndx,
5504                          const char* name,
5505                          const elfcpp::Shdr<32, true>& shdr,
5506                          unsigned int, unsigned int, off_t*);
5507 #endif
5508
5509 #ifdef HAVE_TARGET_64_LITTLE
5510 template
5511 Output_section*
5512 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5513                           unsigned int shndx,
5514                           const char* name,
5515                           const elfcpp::Shdr<64, false>& shdr,
5516                           unsigned int, unsigned int, off_t*);
5517 #endif
5518
5519 #ifdef HAVE_TARGET_64_BIG
5520 template
5521 Output_section*
5522 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5523                          unsigned int shndx,
5524                          const char* name,
5525                          const elfcpp::Shdr<64, true>& shdr,
5526                          unsigned int, unsigned int, off_t*);
5527 #endif
5528
5529 #ifdef HAVE_TARGET_32_LITTLE
5530 template
5531 Output_section*
5532 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5533                                 unsigned int reloc_shndx,
5534                                 const elfcpp::Shdr<32, false>& shdr,
5535                                 Output_section* data_section,
5536                                 Relocatable_relocs* rr);
5537 #endif
5538
5539 #ifdef HAVE_TARGET_32_BIG
5540 template
5541 Output_section*
5542 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5543                                unsigned int reloc_shndx,
5544                                const elfcpp::Shdr<32, true>& shdr,
5545                                Output_section* data_section,
5546                                Relocatable_relocs* rr);
5547 #endif
5548
5549 #ifdef HAVE_TARGET_64_LITTLE
5550 template
5551 Output_section*
5552 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5553                                 unsigned int reloc_shndx,
5554                                 const elfcpp::Shdr<64, false>& shdr,
5555                                 Output_section* data_section,
5556                                 Relocatable_relocs* rr);
5557 #endif
5558
5559 #ifdef HAVE_TARGET_64_BIG
5560 template
5561 Output_section*
5562 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5563                                unsigned int reloc_shndx,
5564                                const elfcpp::Shdr<64, true>& shdr,
5565                                Output_section* data_section,
5566                                Relocatable_relocs* rr);
5567 #endif
5568
5569 #ifdef HAVE_TARGET_32_LITTLE
5570 template
5571 void
5572 Layout::layout_group<32, false>(Symbol_table* symtab,
5573                                 Sized_relobj_file<32, false>* object,
5574                                 unsigned int,
5575                                 const char* group_section_name,
5576                                 const char* signature,
5577                                 const elfcpp::Shdr<32, false>& shdr,
5578                                 elfcpp::Elf_Word flags,
5579                                 std::vector<unsigned int>* shndxes);
5580 #endif
5581
5582 #ifdef HAVE_TARGET_32_BIG
5583 template
5584 void
5585 Layout::layout_group<32, true>(Symbol_table* symtab,
5586                                Sized_relobj_file<32, true>* object,
5587                                unsigned int,
5588                                const char* group_section_name,
5589                                const char* signature,
5590                                const elfcpp::Shdr<32, true>& shdr,
5591                                elfcpp::Elf_Word flags,
5592                                std::vector<unsigned int>* shndxes);
5593 #endif
5594
5595 #ifdef HAVE_TARGET_64_LITTLE
5596 template
5597 void
5598 Layout::layout_group<64, false>(Symbol_table* symtab,
5599                                 Sized_relobj_file<64, false>* object,
5600                                 unsigned int,
5601                                 const char* group_section_name,
5602                                 const char* signature,
5603                                 const elfcpp::Shdr<64, false>& shdr,
5604                                 elfcpp::Elf_Word flags,
5605                                 std::vector<unsigned int>* shndxes);
5606 #endif
5607
5608 #ifdef HAVE_TARGET_64_BIG
5609 template
5610 void
5611 Layout::layout_group<64, true>(Symbol_table* symtab,
5612                                Sized_relobj_file<64, true>* object,
5613                                unsigned int,
5614                                const char* group_section_name,
5615                                const char* signature,
5616                                const elfcpp::Shdr<64, true>& shdr,
5617                                elfcpp::Elf_Word flags,
5618                                std::vector<unsigned int>* shndxes);
5619 #endif
5620
5621 #ifdef HAVE_TARGET_32_LITTLE
5622 template
5623 Output_section*
5624 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5625                                    const unsigned char* symbols,
5626                                    off_t symbols_size,
5627                                    const unsigned char* symbol_names,
5628                                    off_t symbol_names_size,
5629                                    unsigned int shndx,
5630                                    const elfcpp::Shdr<32, false>& shdr,
5631                                    unsigned int reloc_shndx,
5632                                    unsigned int reloc_type,
5633                                    off_t* off);
5634 #endif
5635
5636 #ifdef HAVE_TARGET_32_BIG
5637 template
5638 Output_section*
5639 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5640                                   const unsigned char* symbols,
5641                                   off_t symbols_size,
5642                                   const unsigned char* symbol_names,
5643                                   off_t symbol_names_size,
5644                                   unsigned int shndx,
5645                                   const elfcpp::Shdr<32, true>& shdr,
5646                                   unsigned int reloc_shndx,
5647                                   unsigned int reloc_type,
5648                                   off_t* off);
5649 #endif
5650
5651 #ifdef HAVE_TARGET_64_LITTLE
5652 template
5653 Output_section*
5654 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5655                                    const unsigned char* symbols,
5656                                    off_t symbols_size,
5657                                    const unsigned char* symbol_names,
5658                                    off_t symbol_names_size,
5659                                    unsigned int shndx,
5660                                    const elfcpp::Shdr<64, false>& shdr,
5661                                    unsigned int reloc_shndx,
5662                                    unsigned int reloc_type,
5663                                    off_t* off);
5664 #endif
5665
5666 #ifdef HAVE_TARGET_64_BIG
5667 template
5668 Output_section*
5669 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5670                                   const unsigned char* symbols,
5671                                   off_t symbols_size,
5672                                   const unsigned char* symbol_names,
5673                                   off_t symbol_names_size,
5674                                   unsigned int shndx,
5675                                   const elfcpp::Shdr<64, true>& shdr,
5676                                   unsigned int reloc_shndx,
5677                                   unsigned int reloc_type,
5678                                   off_t* off);
5679 #endif
5680
5681 #ifdef HAVE_TARGET_32_LITTLE
5682 template
5683 void
5684 Layout::add_to_gdb_index(bool is_type_unit,
5685                          Sized_relobj<32, false>* object,
5686                          const unsigned char* symbols,
5687                          off_t symbols_size,
5688                          unsigned int shndx,
5689                          unsigned int reloc_shndx,
5690                          unsigned int reloc_type);
5691 #endif
5692
5693 #ifdef HAVE_TARGET_32_BIG
5694 template
5695 void
5696 Layout::add_to_gdb_index(bool is_type_unit,
5697                          Sized_relobj<32, true>* object,
5698                          const unsigned char* symbols,
5699                          off_t symbols_size,
5700                          unsigned int shndx,
5701                          unsigned int reloc_shndx,
5702                          unsigned int reloc_type);
5703 #endif
5704
5705 #ifdef HAVE_TARGET_64_LITTLE
5706 template
5707 void
5708 Layout::add_to_gdb_index(bool is_type_unit,
5709                          Sized_relobj<64, false>* object,
5710                          const unsigned char* symbols,
5711                          off_t symbols_size,
5712                          unsigned int shndx,
5713                          unsigned int reloc_shndx,
5714                          unsigned int reloc_type);
5715 #endif
5716
5717 #ifdef HAVE_TARGET_64_BIG
5718 template
5719 void
5720 Layout::add_to_gdb_index(bool is_type_unit,
5721                          Sized_relobj<64, true>* object,
5722                          const unsigned char* symbols,
5723                          off_t symbols_size,
5724                          unsigned int shndx,
5725                          unsigned int reloc_shndx,
5726                          unsigned int reloc_type);
5727 #endif
5728
5729 } // End namespace gold.