Add --stats option to print runtime and memory usage statistics.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Return whether PREFIX is a prefix of STR.
90
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
93 {
94   return strncmp(prefix, str, strlen(prefix)) == 0;
95 }
96
97 // Whether to include this section in the link.
98
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102                         const elfcpp::Shdr<size, big_endian>& shdr)
103 {
104   // Some section types are never linked.  Some are only linked when
105   // doing a relocateable link.
106   switch (shdr.get_sh_type())
107     {
108     case elfcpp::SHT_NULL:
109     case elfcpp::SHT_SYMTAB:
110     case elfcpp::SHT_DYNSYM:
111     case elfcpp::SHT_STRTAB:
112     case elfcpp::SHT_HASH:
113     case elfcpp::SHT_DYNAMIC:
114     case elfcpp::SHT_SYMTAB_SHNDX:
115       return false;
116
117     case elfcpp::SHT_RELA:
118     case elfcpp::SHT_REL:
119     case elfcpp::SHT_GROUP:
120       return parameters->output_is_object();
121
122     case elfcpp::SHT_PROGBITS:
123       if (parameters->strip_debug()
124           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
125         {
126           // Debugging sections can only be recognized by name.
127           if (is_prefix_of(".debug", name)
128               || is_prefix_of(".gnu.linkonce.wi.", name)
129               || is_prefix_of(".line", name)
130               || is_prefix_of(".stab", name))
131             return false;
132         }
133       return true;
134
135     default:
136       return true;
137     }
138 }
139
140 // Return an output section named NAME, or NULL if there is none.
141
142 Output_section*
143 Layout::find_output_section(const char* name) const
144 {
145   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146        p != this->section_name_map_.end();
147        ++p)
148     if (strcmp(p->second->name(), name) == 0)
149       return p->second;
150   return NULL;
151 }
152
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear.  Return NULL if there is none.
155
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158                             elfcpp::Elf_Word clear) const
159 {
160   for (Segment_list::const_iterator p = this->segment_list_.begin();
161        p != this->segment_list_.end();
162        ++p)
163     if (static_cast<elfcpp::PT>((*p)->type()) == type
164         && ((*p)->flags() & set) == set
165         && ((*p)->flags() & clear) == 0)
166       return *p;
167   return NULL;
168 }
169
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
172
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
176 {
177   // We should ignore some flags.
178   flags &= ~ (elfcpp::SHF_INFO_LINK
179               | elfcpp::SHF_LINK_ORDER
180               | elfcpp::SHF_GROUP
181               | elfcpp::SHF_MERGE
182               | elfcpp::SHF_STRINGS);
183
184   const Key key(name_key, std::make_pair(type, flags));
185   const std::pair<Key, Output_section*> v(key, NULL);
186   std::pair<Section_name_map::iterator, bool> ins(
187     this->section_name_map_.insert(v));
188
189   if (!ins.second)
190     return ins.first->second;
191   else
192     {
193       // This is the first time we've seen this name/type/flags
194       // combination.
195       Output_section* os = this->make_output_section(name, type, flags);
196       ins.first->second = os;
197       return os;
198     }
199 }
200
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
203 // offset of this input section without the output section.
204
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
209 {
210   if (!this->include_section(object, name, shdr))
211     return NULL;
212
213   // If we are not doing a relocateable link, choose the name to use
214   // for the output section.
215   size_t len = strlen(name);
216   if (!parameters->output_is_object())
217     name = Layout::output_section_name(name, &len);
218
219   // FIXME: Handle SHF_OS_NONCONFORMING here.
220
221   // Canonicalize the section name.
222   Stringpool::Key name_key;
223   name = this->namepool_.add(name, len, &name_key);
224
225   // Find the output section.  The output section is selected based on
226   // the section name, type, and flags.
227   Output_section* os = this->get_output_section(name, name_key,
228                                                 shdr.get_sh_type(),
229                                                 shdr.get_sh_flags());
230
231   // Special GNU handling of sections named .eh_frame.
232   if (!parameters->output_is_object()
233       && strcmp(name, ".eh_frame") == 0
234       && shdr.get_sh_size() > 0
235       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
237     {
238       this->layout_eh_frame(object, shndx, name, shdr, os, off);
239       return os;
240     }
241
242   // FIXME: Handle SHF_LINK_ORDER somewhere.
243
244   *off = os->add_input_section(object, shndx, name, shdr);
245
246   return os;
247 }
248
249 // Special GNU handling of sections named .eh_frame.  They will
250 // normally hold exception frame data.
251
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255                         unsigned int shndx,
256                         const char* name,
257                         const elfcpp::Shdr<size, big_endian>& shdr,
258                         Output_section* os, off_t* off)
259 {
260   if (this->eh_frame_section_ == NULL)
261     {
262       this->eh_frame_section_ = os;
263
264       if (this->options_.create_eh_frame_hdr())
265         {
266           Stringpool::Key hdr_name_key;
267           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268                                                      &hdr_name_key);
269           Output_section* hdr_os =
270             this->get_output_section(hdr_name, hdr_name_key,
271                                      elfcpp::SHT_PROGBITS,
272                                      elfcpp::SHF_ALLOC);
273
274           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
275           hdr_os->add_output_section_data(hdr_posd);
276
277           Output_segment* hdr_oseg =
278             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
279           this->segment_list_.push_back(hdr_oseg);
280           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
281         }
282     }
283
284   gold_assert(this->eh_frame_section_ == os);
285
286   *off = os->add_input_section(object, shndx, name, shdr);
287 }
288
289 // Add POSD to an output section using NAME, TYPE, and FLAGS.
290
291 void
292 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
293                                 elfcpp::Elf_Xword flags,
294                                 Output_section_data* posd)
295 {
296   // Canonicalize the name.
297   Stringpool::Key name_key;
298   name = this->namepool_.add(name, &name_key);
299
300   Output_section* os = this->get_output_section(name, name_key, type, flags);
301   os->add_output_section_data(posd);
302 }
303
304 // Map section flags to segment flags.
305
306 elfcpp::Elf_Word
307 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
308 {
309   elfcpp::Elf_Word ret = elfcpp::PF_R;
310   if ((flags & elfcpp::SHF_WRITE) != 0)
311     ret |= elfcpp::PF_W;
312   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
313     ret |= elfcpp::PF_X;
314   return ret;
315 }
316
317 // Make a new Output_section, and attach it to segments as
318 // appropriate.
319
320 Output_section*
321 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
322                             elfcpp::Elf_Xword flags)
323 {
324   Output_section* os = new Output_section(name, type, flags);
325   this->section_list_.push_back(os);
326
327   if ((flags & elfcpp::SHF_ALLOC) == 0)
328     this->unattached_section_list_.push_back(os);
329   else
330     {
331       // This output section goes into a PT_LOAD segment.
332
333       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
334
335       // The only thing we really care about for PT_LOAD segments is
336       // whether or not they are writable, so that is how we search
337       // for them.  People who need segments sorted on some other
338       // basis will have to wait until we implement a mechanism for
339       // them to describe the segments they want.
340
341       Segment_list::const_iterator p;
342       for (p = this->segment_list_.begin();
343            p != this->segment_list_.end();
344            ++p)
345         {
346           if ((*p)->type() == elfcpp::PT_LOAD
347               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
348             {
349               (*p)->add_output_section(os, seg_flags);
350               break;
351             }
352         }
353
354       if (p == this->segment_list_.end())
355         {
356           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
357                                                     seg_flags);
358           this->segment_list_.push_back(oseg);
359           oseg->add_output_section(os, seg_flags);
360         }
361
362       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
363       // segment.
364       if (type == elfcpp::SHT_NOTE)
365         {
366           // See if we already have an equivalent PT_NOTE segment.
367           for (p = this->segment_list_.begin();
368                p != segment_list_.end();
369                ++p)
370             {
371               if ((*p)->type() == elfcpp::PT_NOTE
372                   && (((*p)->flags() & elfcpp::PF_W)
373                       == (seg_flags & elfcpp::PF_W)))
374                 {
375                   (*p)->add_output_section(os, seg_flags);
376                   break;
377                 }
378             }
379
380           if (p == this->segment_list_.end())
381             {
382               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
383                                                         seg_flags);
384               this->segment_list_.push_back(oseg);
385               oseg->add_output_section(os, seg_flags);
386             }
387         }
388
389       // If we see a loadable SHF_TLS section, we create a PT_TLS
390       // segment.  There can only be one such segment.
391       if ((flags & elfcpp::SHF_TLS) != 0)
392         {
393           if (this->tls_segment_ == NULL)
394             {
395               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
396                                                       seg_flags);
397               this->segment_list_.push_back(this->tls_segment_);
398             }
399           this->tls_segment_->add_output_section(os, seg_flags);
400         }
401     }
402
403   return os;
404 }
405
406 // Create the dynamic sections which are needed before we read the
407 // relocs.
408
409 void
410 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
411                                         Symbol_table* symtab)
412 {
413   if (!input_objects->any_dynamic())
414     return;
415
416   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
417   this->dynamic_section_ = this->make_output_section(dynamic_name,
418                                                      elfcpp::SHT_DYNAMIC,
419                                                      (elfcpp::SHF_ALLOC
420                                                       | elfcpp::SHF_WRITE));
421
422   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
423                                 this->dynamic_section_, 0, 0,
424                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
425                                 elfcpp::STV_HIDDEN, 0, false, false);
426
427   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
428
429   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
430 }
431
432 // For each output section whose name can be represented as C symbol,
433 // define __start and __stop symbols for the section.  This is a GNU
434 // extension.
435
436 void
437 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
438 {
439   for (Section_list::const_iterator p = this->section_list_.begin();
440        p != this->section_list_.end();
441        ++p)
442     {
443       const char* const name = (*p)->name();
444       if (name[strspn(name,
445                       ("0123456789"
446                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
447                        "abcdefghijklmnopqrstuvwxyz"
448                        "_"))]
449           == '\0')
450         {
451           const std::string name_string(name);
452           const std::string start_name("__start_" + name_string);
453           const std::string stop_name("__stop_" + name_string);
454
455           symtab->define_in_output_data(target,
456                                         start_name.c_str(),
457                                         NULL, // version
458                                         *p,
459                                         0, // value
460                                         0, // symsize
461                                         elfcpp::STT_NOTYPE,
462                                         elfcpp::STB_GLOBAL,
463                                         elfcpp::STV_DEFAULT,
464                                         0, // nonvis
465                                         false, // offset_is_from_end
466                                         false); // only_if_ref
467
468           symtab->define_in_output_data(target,
469                                         stop_name.c_str(),
470                                         NULL, // version
471                                         *p,
472                                         0, // value
473                                         0, // symsize
474                                         elfcpp::STT_NOTYPE,
475                                         elfcpp::STB_GLOBAL,
476                                         elfcpp::STV_DEFAULT,
477                                         0, // nonvis
478                                         true, // offset_is_from_end
479                                         false); // only_if_ref
480         }
481     }
482 }
483
484 // Find the first read-only PT_LOAD segment, creating one if
485 // necessary.
486
487 Output_segment*
488 Layout::find_first_load_seg()
489 {
490   for (Segment_list::const_iterator p = this->segment_list_.begin();
491        p != this->segment_list_.end();
492        ++p)
493     {
494       if ((*p)->type() == elfcpp::PT_LOAD
495           && ((*p)->flags() & elfcpp::PF_R) != 0
496           && ((*p)->flags() & elfcpp::PF_W) == 0)
497         return *p;
498     }
499
500   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
501   this->segment_list_.push_back(load_seg);
502   return load_seg;
503 }
504
505 // Finalize the layout.  When this is called, we have created all the
506 // output sections and all the output segments which are based on
507 // input sections.  We have several things to do, and we have to do
508 // them in the right order, so that we get the right results correctly
509 // and efficiently.
510
511 // 1) Finalize the list of output segments and create the segment
512 // table header.
513
514 // 2) Finalize the dynamic symbol table and associated sections.
515
516 // 3) Determine the final file offset of all the output segments.
517
518 // 4) Determine the final file offset of all the SHF_ALLOC output
519 // sections.
520
521 // 5) Create the symbol table sections and the section name table
522 // section.
523
524 // 6) Finalize the symbol table: set symbol values to their final
525 // value and make a final determination of which symbols are going
526 // into the output symbol table.
527
528 // 7) Create the section table header.
529
530 // 8) Determine the final file offset of all the output sections which
531 // are not SHF_ALLOC, including the section table header.
532
533 // 9) Finalize the ELF file header.
534
535 // This function returns the size of the output file.
536
537 off_t
538 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
539 {
540   Target* const target = input_objects->target();
541
542   target->finalize_sections(this);
543
544   this->create_note_section();
545
546   Output_segment* phdr_seg = NULL;
547   if (input_objects->any_dynamic())
548     {
549       // There was a dynamic object in the link.  We need to create
550       // some information for the dynamic linker.
551
552       // Create the PT_PHDR segment which will hold the program
553       // headers.
554       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
555       this->segment_list_.push_back(phdr_seg);
556
557       // Create the dynamic symbol table, including the hash table.
558       Output_section* dynstr;
559       std::vector<Symbol*> dynamic_symbols;
560       unsigned int local_dynamic_count;
561       Versions versions;
562       this->create_dynamic_symtab(target, symtab, &dynstr,
563                                   &local_dynamic_count, &dynamic_symbols,
564                                   &versions);
565
566       // Create the .interp section to hold the name of the
567       // interpreter, and put it in a PT_INTERP segment.
568       this->create_interp(target);
569
570       // Finish the .dynamic section to hold the dynamic data, and put
571       // it in a PT_DYNAMIC segment.
572       this->finish_dynamic_section(input_objects, symtab);
573
574       // We should have added everything we need to the dynamic string
575       // table.
576       this->dynpool_.set_string_offsets();
577
578       // Create the version sections.  We can't do this until the
579       // dynamic string table is complete.
580       this->create_version_sections(&versions, local_dynamic_count,
581                                     dynamic_symbols, dynstr);
582     }
583
584   // FIXME: Handle PT_GNU_STACK.
585
586   Output_segment* load_seg = this->find_first_load_seg();
587
588   // Lay out the segment headers.
589   Output_segment_headers* segment_headers;
590   segment_headers = new Output_segment_headers(this->segment_list_);
591   load_seg->add_initial_output_data(segment_headers);
592   this->special_output_list_.push_back(segment_headers);
593   if (phdr_seg != NULL)
594     phdr_seg->add_initial_output_data(segment_headers);
595
596   // Lay out the file header.
597   Output_file_header* file_header;
598   file_header = new Output_file_header(target, symtab, segment_headers);
599   load_seg->add_initial_output_data(file_header);
600   this->special_output_list_.push_back(file_header);
601
602   // We set the output section indexes in set_segment_offsets and
603   // set_section_offsets.
604   unsigned int shndx = 1;
605
606   // Set the file offsets of all the segments, and all the sections
607   // they contain.
608   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
609
610   // Create the symbol table sections.
611   this->create_symtab_sections(input_objects, symtab, &off);
612
613   // Create the .shstrtab section.
614   Output_section* shstrtab_section = this->create_shstrtab();
615
616   // Set the file offsets of all the sections not associated with
617   // segments.
618   off = this->set_section_offsets(off, &shndx);
619
620   // Create the section table header.
621   Output_section_headers* oshdrs = this->create_shdrs(&off);
622
623   file_header->set_section_info(oshdrs, shstrtab_section);
624
625   // Now we know exactly where everything goes in the output file.
626   Output_data::layout_complete();
627
628   this->output_file_size_ = off;
629
630   return off;
631 }
632
633 // Create a .note section for an executable or shared library.  This
634 // records the version of gold used to create the binary.
635
636 void
637 Layout::create_note_section()
638 {
639   if (parameters->output_is_object())
640     return;
641
642   const int size = parameters->get_size();
643
644   // The contents of the .note section.
645   const char* name = "GNU";
646   std::string desc(std::string("gold ") + gold::get_version_string());
647   size_t namesz = strlen(name) + 1;
648   size_t aligned_namesz = align_address(namesz, size / 8);
649   size_t descsz = desc.length() + 1;
650   size_t aligned_descsz = align_address(descsz, size / 8);
651   const int note_type = 4;
652
653   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
654
655   unsigned char buffer[128];
656   gold_assert(sizeof buffer >= notesz);
657   memset(buffer, 0, notesz);
658
659   bool is_big_endian = parameters->is_big_endian();
660
661   if (size == 32)
662     {
663       if (!is_big_endian)
664         {
665           elfcpp::Swap<32, false>::writeval(buffer, namesz);
666           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
667           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
668         }
669       else
670         {
671           elfcpp::Swap<32, true>::writeval(buffer, namesz);
672           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
673           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
674         }
675     }
676   else if (size == 64)
677     {
678       if (!is_big_endian)
679         {
680           elfcpp::Swap<64, false>::writeval(buffer, namesz);
681           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
682           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
683         }
684       else
685         {
686           elfcpp::Swap<64, true>::writeval(buffer, namesz);
687           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
688           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
689         }
690     }
691   else
692     gold_unreachable();
693
694   memcpy(buffer + 3 * (size / 8), name, namesz);
695   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
696
697   const char* note_name = this->namepool_.add(".note", NULL);
698   Output_section* os = this->make_output_section(note_name,
699                                                  elfcpp::SHT_NOTE,
700                                                  0);
701   Output_section_data* posd = new Output_data_const(buffer, notesz,
702                                                     size / 8);
703   os->add_output_section_data(posd);
704 }
705
706 // Return whether SEG1 should be before SEG2 in the output file.  This
707 // is based entirely on the segment type and flags.  When this is
708 // called the segment addresses has normally not yet been set.
709
710 bool
711 Layout::segment_precedes(const Output_segment* seg1,
712                          const Output_segment* seg2)
713 {
714   elfcpp::Elf_Word type1 = seg1->type();
715   elfcpp::Elf_Word type2 = seg2->type();
716
717   // The single PT_PHDR segment is required to precede any loadable
718   // segment.  We simply make it always first.
719   if (type1 == elfcpp::PT_PHDR)
720     {
721       gold_assert(type2 != elfcpp::PT_PHDR);
722       return true;
723     }
724   if (type2 == elfcpp::PT_PHDR)
725     return false;
726
727   // The single PT_INTERP segment is required to precede any loadable
728   // segment.  We simply make it always second.
729   if (type1 == elfcpp::PT_INTERP)
730     {
731       gold_assert(type2 != elfcpp::PT_INTERP);
732       return true;
733     }
734   if (type2 == elfcpp::PT_INTERP)
735     return false;
736
737   // We then put PT_LOAD segments before any other segments.
738   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
739     return true;
740   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
741     return false;
742
743   // We put the PT_TLS segment last, because that is where the dynamic
744   // linker expects to find it (this is just for efficiency; other
745   // positions would also work correctly).
746   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
747     return false;
748   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
749     return true;
750
751   const elfcpp::Elf_Word flags1 = seg1->flags();
752   const elfcpp::Elf_Word flags2 = seg2->flags();
753
754   // The order of non-PT_LOAD segments is unimportant.  We simply sort
755   // by the numeric segment type and flags values.  There should not
756   // be more than one segment with the same type and flags.
757   if (type1 != elfcpp::PT_LOAD)
758     {
759       if (type1 != type2)
760         return type1 < type2;
761       gold_assert(flags1 != flags2);
762       return flags1 < flags2;
763     }
764
765   // We sort PT_LOAD segments based on the flags.  Readonly segments
766   // come before writable segments.  Then executable segments come
767   // before non-executable segments.  Then the unlikely case of a
768   // non-readable segment comes before the normal case of a readable
769   // segment.  If there are multiple segments with the same type and
770   // flags, we require that the address be set, and we sort by
771   // virtual address and then physical address.
772   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
773     return (flags1 & elfcpp::PF_W) == 0;
774   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
775     return (flags1 & elfcpp::PF_X) != 0;
776   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
777     return (flags1 & elfcpp::PF_R) == 0;
778
779   uint64_t vaddr1 = seg1->vaddr();
780   uint64_t vaddr2 = seg2->vaddr();
781   if (vaddr1 != vaddr2)
782     return vaddr1 < vaddr2;
783
784   uint64_t paddr1 = seg1->paddr();
785   uint64_t paddr2 = seg2->paddr();
786   gold_assert(paddr1 != paddr2);
787   return paddr1 < paddr2;
788 }
789
790 // Set the file offsets of all the segments, and all the sections they
791 // contain.  They have all been created.  LOAD_SEG must be be laid out
792 // first.  Return the offset of the data to follow.
793
794 off_t
795 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
796                             unsigned int *pshndx)
797 {
798   // Sort them into the final order.
799   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
800             Layout::Compare_segments());
801
802   // Find the PT_LOAD segments, and set their addresses and offsets
803   // and their section's addresses and offsets.
804   uint64_t addr = target->text_segment_address();
805   off_t off = 0;
806   bool was_readonly = false;
807   for (Segment_list::iterator p = this->segment_list_.begin();
808        p != this->segment_list_.end();
809        ++p)
810     {
811       if ((*p)->type() == elfcpp::PT_LOAD)
812         {
813           if (load_seg != NULL && load_seg != *p)
814             gold_unreachable();
815           load_seg = NULL;
816
817           // If the last segment was readonly, and this one is not,
818           // then skip the address forward one page, maintaining the
819           // same position within the page.  This lets us store both
820           // segments overlapping on a single page in the file, but
821           // the loader will put them on different pages in memory.
822
823           uint64_t orig_addr = addr;
824           uint64_t orig_off = off;
825
826           uint64_t aligned_addr = addr;
827           uint64_t abi_pagesize = target->abi_pagesize();
828
829           // FIXME: This should depend on the -n and -N options.
830           (*p)->set_minimum_addralign(target->common_pagesize());
831
832           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
833             {
834               uint64_t align = (*p)->addralign();
835
836               addr = align_address(addr, align);
837               aligned_addr = addr;
838               if ((addr & (abi_pagesize - 1)) != 0)
839                 addr = addr + abi_pagesize;
840             }
841
842           unsigned int shndx_hold = *pshndx;
843           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
844           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
845
846           // Now that we know the size of this segment, we may be able
847           // to save a page in memory, at the cost of wasting some
848           // file space, by instead aligning to the start of a new
849           // page.  Here we use the real machine page size rather than
850           // the ABI mandated page size.
851
852           if (aligned_addr != addr)
853             {
854               uint64_t common_pagesize = target->common_pagesize();
855               uint64_t first_off = (common_pagesize
856                                     - (aligned_addr
857                                        & (common_pagesize - 1)));
858               uint64_t last_off = new_addr & (common_pagesize - 1);
859               if (first_off > 0
860                   && last_off > 0
861                   && ((aligned_addr & ~ (common_pagesize - 1))
862                       != (new_addr & ~ (common_pagesize - 1)))
863                   && first_off + last_off <= common_pagesize)
864                 {
865                   *pshndx = shndx_hold;
866                   addr = align_address(aligned_addr, common_pagesize);
867                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
868                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
869                 }
870             }
871
872           addr = new_addr;
873
874           if (((*p)->flags() & elfcpp::PF_W) == 0)
875             was_readonly = true;
876         }
877     }
878
879   // Handle the non-PT_LOAD segments, setting their offsets from their
880   // section's offsets.
881   for (Segment_list::iterator p = this->segment_list_.begin();
882        p != this->segment_list_.end();
883        ++p)
884     {
885       if ((*p)->type() != elfcpp::PT_LOAD)
886         (*p)->set_offset();
887     }
888
889   return off;
890 }
891
892 // Set the file offset of all the sections not associated with a
893 // segment.
894
895 off_t
896 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
897 {
898   for (Section_list::iterator p = this->unattached_section_list_.begin();
899        p != this->unattached_section_list_.end();
900        ++p)
901     {
902       (*p)->set_out_shndx(*pshndx);
903       ++*pshndx;
904       if ((*p)->offset() != -1)
905         continue;
906       off = align_address(off, (*p)->addralign());
907       (*p)->set_address(0, off);
908       off += (*p)->data_size();
909     }
910   return off;
911 }
912
913 // Create the symbol table sections.  Here we also set the final
914 // values of the symbols.  At this point all the loadable sections are
915 // fully laid out.
916
917 void
918 Layout::create_symtab_sections(const Input_objects* input_objects,
919                                Symbol_table* symtab,
920                                off_t* poff)
921 {
922   int symsize;
923   unsigned int align;
924   if (parameters->get_size() == 32)
925     {
926       symsize = elfcpp::Elf_sizes<32>::sym_size;
927       align = 4;
928     }
929   else if (parameters->get_size() == 64)
930     {
931       symsize = elfcpp::Elf_sizes<64>::sym_size;
932       align = 8;
933     }
934   else
935     gold_unreachable();
936
937   off_t off = *poff;
938   off = align_address(off, align);
939   off_t startoff = off;
940
941   // Save space for the dummy symbol at the start of the section.  We
942   // never bother to write this out--it will just be left as zero.
943   off += symsize;
944   unsigned int local_symbol_index = 1;
945
946   // Add STT_SECTION symbols for each Output section which needs one.
947   for (Section_list::iterator p = this->section_list_.begin();
948        p != this->section_list_.end();
949        ++p)
950     {
951       if (!(*p)->needs_symtab_index())
952         (*p)->set_symtab_index(-1U);
953       else
954         {
955           (*p)->set_symtab_index(local_symbol_index);
956           ++local_symbol_index;
957           off += symsize;
958         }
959     }
960
961   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
962        p != input_objects->relobj_end();
963        ++p)
964     {
965       Task_lock_obj<Object> tlo(**p);
966       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
967                                                         off,
968                                                         &this->sympool_);
969       off += (index - local_symbol_index) * symsize;
970       local_symbol_index = index;
971     }
972
973   unsigned int local_symcount = local_symbol_index;
974   gold_assert(local_symcount * symsize == off - startoff);
975
976   off_t dynoff;
977   size_t dyn_global_index;
978   size_t dyncount;
979   if (this->dynsym_section_ == NULL)
980     {
981       dynoff = 0;
982       dyn_global_index = 0;
983       dyncount = 0;
984     }
985   else
986     {
987       dyn_global_index = this->dynsym_section_->info();
988       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
989       dynoff = this->dynsym_section_->offset() + locsize;
990       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
991       gold_assert(static_cast<off_t>(dyncount * symsize)
992                   == this->dynsym_section_->data_size() - locsize);
993     }
994
995   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
996                          dyncount, &this->sympool_);
997
998   if (!parameters->strip_all())
999     {
1000       this->sympool_.set_string_offsets();
1001
1002       const char* symtab_name = this->namepool_.add(".symtab", NULL);
1003       Output_section* osymtab = this->make_output_section(symtab_name,
1004                                                           elfcpp::SHT_SYMTAB,
1005                                                           0);
1006       this->symtab_section_ = osymtab;
1007
1008       Output_section_data* pos = new Output_data_space(off - startoff,
1009                                                        align);
1010       osymtab->add_output_section_data(pos);
1011
1012       const char* strtab_name = this->namepool_.add(".strtab", NULL);
1013       Output_section* ostrtab = this->make_output_section(strtab_name,
1014                                                           elfcpp::SHT_STRTAB,
1015                                                           0);
1016
1017       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1018       ostrtab->add_output_section_data(pstr);
1019
1020       osymtab->set_address(0, startoff);
1021       osymtab->set_link_section(ostrtab);
1022       osymtab->set_info(local_symcount);
1023       osymtab->set_entsize(symsize);
1024
1025       *poff = off;
1026     }
1027 }
1028
1029 // Create the .shstrtab section, which holds the names of the
1030 // sections.  At the time this is called, we have created all the
1031 // output sections except .shstrtab itself.
1032
1033 Output_section*
1034 Layout::create_shstrtab()
1035 {
1036   // FIXME: We don't need to create a .shstrtab section if we are
1037   // stripping everything.
1038
1039   const char* name = this->namepool_.add(".shstrtab", NULL);
1040
1041   this->namepool_.set_string_offsets();
1042
1043   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1044
1045   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1046   os->add_output_section_data(posd);
1047
1048   return os;
1049 }
1050
1051 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1052 // offset.
1053
1054 Output_section_headers*
1055 Layout::create_shdrs(off_t* poff)
1056 {
1057   Output_section_headers* oshdrs;
1058   oshdrs = new Output_section_headers(this,
1059                                       &this->segment_list_,
1060                                       &this->unattached_section_list_,
1061                                       &this->namepool_);
1062   off_t off = align_address(*poff, oshdrs->addralign());
1063   oshdrs->set_address(0, off);
1064   off += oshdrs->data_size();
1065   *poff = off;
1066   this->special_output_list_.push_back(oshdrs);
1067   return oshdrs;
1068 }
1069
1070 // Create the dynamic symbol table.
1071
1072 void
1073 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1074                               Output_section **pdynstr,
1075                               unsigned int* plocal_dynamic_count,
1076                               std::vector<Symbol*>* pdynamic_symbols,
1077                               Versions* pversions)
1078 {
1079   // Count all the symbols in the dynamic symbol table, and set the
1080   // dynamic symbol indexes.
1081
1082   // Skip symbol 0, which is always all zeroes.
1083   unsigned int index = 1;
1084
1085   // Add STT_SECTION symbols for each Output section which needs one.
1086   for (Section_list::iterator p = this->section_list_.begin();
1087        p != this->section_list_.end();
1088        ++p)
1089     {
1090       if (!(*p)->needs_dynsym_index())
1091         (*p)->set_dynsym_index(-1U);
1092       else
1093         {
1094           (*p)->set_dynsym_index(index);
1095           ++index;
1096         }
1097     }
1098
1099   // FIXME: Some targets apparently require local symbols in the
1100   // dynamic symbol table.  Here is where we will have to count them,
1101   // and set the dynamic symbol indexes, and add the names to
1102   // this->dynpool_.
1103
1104   unsigned int local_symcount = index;
1105   *plocal_dynamic_count = local_symcount;
1106
1107   // FIXME: We have to tell set_dynsym_indexes whether the
1108   // -E/--export-dynamic option was used.
1109   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1110                                      pdynamic_symbols, &this->dynpool_,
1111                                      pversions);
1112
1113   int symsize;
1114   unsigned int align;
1115   const int size = parameters->get_size();
1116   if (size == 32)
1117     {
1118       symsize = elfcpp::Elf_sizes<32>::sym_size;
1119       align = 4;
1120     }
1121   else if (size == 64)
1122     {
1123       symsize = elfcpp::Elf_sizes<64>::sym_size;
1124       align = 8;
1125     }
1126   else
1127     gold_unreachable();
1128
1129   // Create the dynamic symbol table section.
1130
1131   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
1132   Output_section* dynsym = this->make_output_section(dynsym_name,
1133                                                      elfcpp::SHT_DYNSYM,
1134                                                      elfcpp::SHF_ALLOC);
1135
1136   Output_section_data* odata = new Output_data_space(index * symsize,
1137                                                      align);
1138   dynsym->add_output_section_data(odata);
1139
1140   dynsym->set_info(local_symcount);
1141   dynsym->set_entsize(symsize);
1142   dynsym->set_addralign(align);
1143
1144   this->dynsym_section_ = dynsym;
1145
1146   Output_data_dynamic* const odyn = this->dynamic_data_;
1147   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1148   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1149
1150   // Create the dynamic string table section.
1151
1152   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1153   Output_section* dynstr = this->make_output_section(dynstr_name,
1154                                                      elfcpp::SHT_STRTAB,
1155                                                      elfcpp::SHF_ALLOC);
1156
1157   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1158   dynstr->add_output_section_data(strdata);
1159
1160   dynsym->set_link_section(dynstr);
1161   this->dynamic_section_->set_link_section(dynstr);
1162
1163   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1164   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1165
1166   *pdynstr = dynstr;
1167
1168   // Create the hash tables.
1169
1170   // FIXME: We need an option to create a GNU hash table.
1171
1172   unsigned char* phash;
1173   unsigned int hashlen;
1174   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1175                                 &phash, &hashlen);
1176
1177   const char* hash_name = this->namepool_.add(".hash", NULL);
1178   Output_section* hashsec = this->make_output_section(hash_name,
1179                                                       elfcpp::SHT_HASH,
1180                                                       elfcpp::SHF_ALLOC);
1181
1182   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1183                                                                hashlen,
1184                                                                align);
1185   hashsec->add_output_section_data(hashdata);
1186
1187   hashsec->set_link_section(dynsym);
1188   hashsec->set_entsize(4);
1189
1190   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1191 }
1192
1193 // Create the version sections.
1194
1195 void
1196 Layout::create_version_sections(const Versions* versions,
1197                                 unsigned int local_symcount,
1198                                 const std::vector<Symbol*>& dynamic_symbols,
1199                                 const Output_section* dynstr)
1200 {
1201   if (!versions->any_defs() && !versions->any_needs())
1202     return;
1203
1204   if (parameters->get_size() == 32)
1205     {
1206       if (parameters->is_big_endian())
1207         {
1208 #ifdef HAVE_TARGET_32_BIG
1209           this->sized_create_version_sections
1210               SELECT_SIZE_ENDIAN_NAME(32, true)(
1211                   versions, local_symcount, dynamic_symbols, dynstr
1212                   SELECT_SIZE_ENDIAN(32, true));
1213 #else
1214           gold_unreachable();
1215 #endif
1216         }
1217       else
1218         {
1219 #ifdef HAVE_TARGET_32_LITTLE
1220           this->sized_create_version_sections
1221               SELECT_SIZE_ENDIAN_NAME(32, false)(
1222                   versions, local_symcount, dynamic_symbols, dynstr
1223                   SELECT_SIZE_ENDIAN(32, false));
1224 #else
1225           gold_unreachable();
1226 #endif
1227         }
1228     }
1229   else if (parameters->get_size() == 64)
1230     {
1231       if (parameters->is_big_endian())
1232         {
1233 #ifdef HAVE_TARGET_64_BIG
1234           this->sized_create_version_sections
1235               SELECT_SIZE_ENDIAN_NAME(64, true)(
1236                   versions, local_symcount, dynamic_symbols, dynstr
1237                   SELECT_SIZE_ENDIAN(64, true));
1238 #else
1239           gold_unreachable();
1240 #endif
1241         }
1242       else
1243         {
1244 #ifdef HAVE_TARGET_64_LITTLE
1245           this->sized_create_version_sections
1246               SELECT_SIZE_ENDIAN_NAME(64, false)(
1247                   versions, local_symcount, dynamic_symbols, dynstr
1248                   SELECT_SIZE_ENDIAN(64, false));
1249 #else
1250           gold_unreachable();
1251 #endif
1252         }
1253     }
1254   else
1255     gold_unreachable();
1256 }
1257
1258 // Create the version sections, sized version.
1259
1260 template<int size, bool big_endian>
1261 void
1262 Layout::sized_create_version_sections(
1263     const Versions* versions,
1264     unsigned int local_symcount,
1265     const std::vector<Symbol*>& dynamic_symbols,
1266     const Output_section* dynstr
1267     ACCEPT_SIZE_ENDIAN)
1268 {
1269   const char* vname = this->namepool_.add(".gnu.version", NULL);
1270   Output_section* vsec = this->make_output_section(vname,
1271                                                    elfcpp::SHT_GNU_versym,
1272                                                    elfcpp::SHF_ALLOC);
1273
1274   unsigned char* vbuf;
1275   unsigned int vsize;
1276   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1277       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1278       SELECT_SIZE_ENDIAN(size, big_endian));
1279
1280   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1281
1282   vsec->add_output_section_data(vdata);
1283   vsec->set_entsize(2);
1284   vsec->set_link_section(this->dynsym_section_);
1285
1286   Output_data_dynamic* const odyn = this->dynamic_data_;
1287   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1288
1289   if (versions->any_defs())
1290     {
1291       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1292       Output_section *vdsec;
1293       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1294                                         elfcpp::SHF_ALLOC);
1295
1296       unsigned char* vdbuf;
1297       unsigned int vdsize;
1298       unsigned int vdentries;
1299       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1300           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1301           SELECT_SIZE_ENDIAN(size, big_endian));
1302
1303       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1304                                                                  vdsize,
1305                                                                  4);
1306
1307       vdsec->add_output_section_data(vddata);
1308       vdsec->set_link_section(dynstr);
1309       vdsec->set_info(vdentries);
1310
1311       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1312       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1313     }
1314
1315   if (versions->any_needs())
1316     {
1317       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1318       Output_section* vnsec;
1319       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1320                                         elfcpp::SHF_ALLOC);
1321
1322       unsigned char* vnbuf;
1323       unsigned int vnsize;
1324       unsigned int vnentries;
1325       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1326         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1327          SELECT_SIZE_ENDIAN(size, big_endian));
1328
1329       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1330                                                                  vnsize,
1331                                                                  4);
1332
1333       vnsec->add_output_section_data(vndata);
1334       vnsec->set_link_section(dynstr);
1335       vnsec->set_info(vnentries);
1336
1337       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1338       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1339     }
1340 }
1341
1342 // Create the .interp section and PT_INTERP segment.
1343
1344 void
1345 Layout::create_interp(const Target* target)
1346 {
1347   const char* interp = this->options_.dynamic_linker();
1348   if (interp == NULL)
1349     {
1350       interp = target->dynamic_linker();
1351       gold_assert(interp != NULL);
1352     }
1353
1354   size_t len = strlen(interp) + 1;
1355
1356   Output_section_data* odata = new Output_data_const(interp, len, 1);
1357
1358   const char* interp_name = this->namepool_.add(".interp", NULL);
1359   Output_section* osec = this->make_output_section(interp_name,
1360                                                    elfcpp::SHT_PROGBITS,
1361                                                    elfcpp::SHF_ALLOC);
1362   osec->add_output_section_data(odata);
1363
1364   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1365   this->segment_list_.push_back(oseg);
1366   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1367 }
1368
1369 // Finish the .dynamic section and PT_DYNAMIC segment.
1370
1371 void
1372 Layout::finish_dynamic_section(const Input_objects* input_objects,
1373                                const Symbol_table* symtab)
1374 {
1375   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1376                                             elfcpp::PF_R | elfcpp::PF_W);
1377   this->segment_list_.push_back(oseg);
1378   oseg->add_initial_output_section(this->dynamic_section_,
1379                                    elfcpp::PF_R | elfcpp::PF_W);
1380
1381   Output_data_dynamic* const odyn = this->dynamic_data_;
1382
1383   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1384        p != input_objects->dynobj_end();
1385        ++p)
1386     {
1387       // FIXME: Handle --as-needed.
1388       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1389     }
1390
1391   // FIXME: Support --init and --fini.
1392   Symbol* sym = symtab->lookup("_init");
1393   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1394     odyn->add_symbol(elfcpp::DT_INIT, sym);
1395
1396   sym = symtab->lookup("_fini");
1397   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1398     odyn->add_symbol(elfcpp::DT_FINI, sym);
1399
1400   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1401
1402   // Add a DT_RPATH entry if needed.
1403   const General_options::Dir_list& rpath(this->options_.rpath());
1404   if (!rpath.empty())
1405     {
1406       std::string rpath_val;
1407       for (General_options::Dir_list::const_iterator p = rpath.begin();
1408            p != rpath.end();
1409            ++p)
1410         {
1411           if (rpath_val.empty())
1412             rpath_val = p->name();
1413           else
1414             {
1415               // Eliminate duplicates.
1416               General_options::Dir_list::const_iterator q;
1417               for (q = rpath.begin(); q != p; ++q)
1418                 if (q->name() == p->name())
1419                   break;
1420               if (q == p)
1421                 {
1422                   rpath_val += ':';
1423                   rpath_val += p->name();
1424                 }
1425             }
1426         }
1427
1428       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1429     }
1430 }
1431
1432 // The mapping of .gnu.linkonce section names to real section names.
1433
1434 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1435 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1436 {
1437   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1438   MAPPING_INIT("t", ".text"),
1439   MAPPING_INIT("r", ".rodata"),
1440   MAPPING_INIT("d", ".data"),
1441   MAPPING_INIT("b", ".bss"),
1442   MAPPING_INIT("s", ".sdata"),
1443   MAPPING_INIT("sb", ".sbss"),
1444   MAPPING_INIT("s2", ".sdata2"),
1445   MAPPING_INIT("sb2", ".sbss2"),
1446   MAPPING_INIT("wi", ".debug_info"),
1447   MAPPING_INIT("td", ".tdata"),
1448   MAPPING_INIT("tb", ".tbss"),
1449   MAPPING_INIT("lr", ".lrodata"),
1450   MAPPING_INIT("l", ".ldata"),
1451   MAPPING_INIT("lb", ".lbss"),
1452 };
1453 #undef MAPPING_INIT
1454
1455 const int Layout::linkonce_mapping_count =
1456   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1457
1458 // Return the name of the output section to use for a .gnu.linkonce
1459 // section.  This is based on the default ELF linker script of the old
1460 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1461 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1462 // initialized to the length of NAME.
1463
1464 const char*
1465 Layout::linkonce_output_name(const char* name, size_t *plen)
1466 {
1467   const char* s = name + sizeof(".gnu.linkonce") - 1;
1468   if (*s != '.')
1469     return name;
1470   ++s;
1471   const Linkonce_mapping* plm = linkonce_mapping;
1472   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1473     {
1474       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1475         {
1476           *plen = plm->tolen;
1477           return plm->to;
1478         }
1479     }
1480   return name;
1481 }
1482
1483 // Choose the output section name to use given an input section name.
1484 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1485 // length of NAME.
1486
1487 const char*
1488 Layout::output_section_name(const char* name, size_t* plen)
1489 {
1490   if (Layout::is_linkonce(name))
1491     {
1492       // .gnu.linkonce sections are laid out as though they were named
1493       // for the sections are placed into.
1494       return Layout::linkonce_output_name(name, plen);
1495     }
1496
1497   // If the section name has no '.', or only an initial '.', we use
1498   // the name unchanged (i.e., ".text" is unchanged).
1499
1500   // Otherwise, if the section name does not include ".rel", we drop
1501   // the last '.'  and everything that follows (i.e., ".text.XXX"
1502   // becomes ".text").
1503
1504   // Otherwise, if the section name has zero or one '.' after the
1505   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1506   // unchanged).
1507
1508   // Otherwise, we drop the last '.' and everything that follows
1509   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1510
1511   const char* s = name;
1512   if (*s == '.')
1513     ++s;
1514   const char* sdot = strchr(s, '.');
1515   if (sdot == NULL)
1516     return name;
1517
1518   const char* srel = strstr(s, ".rel");
1519   if (srel == NULL)
1520     {
1521       *plen = sdot - name;
1522       return name;
1523     }
1524
1525   sdot = strchr(srel + 1, '.');
1526   if (sdot == NULL)
1527     return name;
1528   sdot = strchr(sdot + 1, '.');
1529   if (sdot == NULL)
1530     return name;
1531
1532   *plen = sdot - name;
1533   return name;
1534 }
1535
1536 // Record the signature of a comdat section, and return whether to
1537 // include it in the link.  If GROUP is true, this is a regular
1538 // section group.  If GROUP is false, this is a group signature
1539 // derived from the name of a linkonce section.  We want linkonce
1540 // signatures and group signatures to block each other, but we don't
1541 // want a linkonce signature to block another linkonce signature.
1542
1543 bool
1544 Layout::add_comdat(const char* signature, bool group)
1545 {
1546   std::string sig(signature);
1547   std::pair<Signatures::iterator, bool> ins(
1548     this->signatures_.insert(std::make_pair(sig, group)));
1549
1550   if (ins.second)
1551     {
1552       // This is the first time we've seen this signature.
1553       return true;
1554     }
1555
1556   if (ins.first->second)
1557     {
1558       // We've already seen a real section group with this signature.
1559       return false;
1560     }
1561   else if (group)
1562     {
1563       // This is a real section group, and we've already seen a
1564       // linkonce section with this signature.  Record that we've seen
1565       // a section group, and don't include this section group.
1566       ins.first->second = true;
1567       return false;
1568     }
1569   else
1570     {
1571       // We've already seen a linkonce section and this is a linkonce
1572       // section.  These don't block each other--this may be the same
1573       // symbol name with different section types.
1574       return true;
1575     }
1576 }
1577
1578 // Write out data not associated with a section or the symbol table.
1579
1580 void
1581 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1582 {
1583   if (!parameters->strip_all())
1584     {
1585       const Output_section* symtab_section = this->symtab_section_;
1586       for (Section_list::const_iterator p = this->section_list_.begin();
1587            p != this->section_list_.end();
1588            ++p)
1589         {
1590           if ((*p)->needs_symtab_index())
1591             {
1592               gold_assert(symtab_section != NULL);
1593               unsigned int index = (*p)->symtab_index();
1594               gold_assert(index > 0 && index != -1U);
1595               off_t off = (symtab_section->offset()
1596                            + index * symtab_section->entsize());
1597               symtab->write_section_symbol(*p, of, off);
1598             }
1599         }
1600     }
1601
1602   const Output_section* dynsym_section = this->dynsym_section_;
1603   for (Section_list::const_iterator p = this->section_list_.begin();
1604        p != this->section_list_.end();
1605        ++p)
1606     {
1607       if ((*p)->needs_dynsym_index())
1608         {
1609           gold_assert(dynsym_section != NULL);
1610           unsigned int index = (*p)->dynsym_index();
1611           gold_assert(index > 0 && index != -1U);
1612           off_t off = (dynsym_section->offset()
1613                        + index * dynsym_section->entsize());
1614           symtab->write_section_symbol(*p, of, off);
1615         }
1616     }
1617
1618   // Write out the Output_sections.  Most won't have anything to
1619   // write, since most of the data will come from input sections which
1620   // are handled elsewhere.  But some Output_sections do have
1621   // Output_data.
1622   for (Section_list::const_iterator p = this->section_list_.begin();
1623        p != this->section_list_.end();
1624        ++p)
1625     (*p)->write(of);
1626
1627   // Write out the Output_data which are not in an Output_section.
1628   for (Data_list::const_iterator p = this->special_output_list_.begin();
1629        p != this->special_output_list_.end();
1630        ++p)
1631     (*p)->write(of);
1632 }
1633
1634 // Write_data_task methods.
1635
1636 // We can always run this task.
1637
1638 Task::Is_runnable_type
1639 Write_data_task::is_runnable(Workqueue*)
1640 {
1641   return IS_RUNNABLE;
1642 }
1643
1644 // We need to unlock FINAL_BLOCKER when finished.
1645
1646 Task_locker*
1647 Write_data_task::locks(Workqueue* workqueue)
1648 {
1649   return new Task_locker_block(*this->final_blocker_, workqueue);
1650 }
1651
1652 // Run the task--write out the data.
1653
1654 void
1655 Write_data_task::run(Workqueue*)
1656 {
1657   this->layout_->write_data(this->symtab_, this->of_);
1658 }
1659
1660 // Write_symbols_task methods.
1661
1662 // We can always run this task.
1663
1664 Task::Is_runnable_type
1665 Write_symbols_task::is_runnable(Workqueue*)
1666 {
1667   return IS_RUNNABLE;
1668 }
1669
1670 // We need to unlock FINAL_BLOCKER when finished.
1671
1672 Task_locker*
1673 Write_symbols_task::locks(Workqueue* workqueue)
1674 {
1675   return new Task_locker_block(*this->final_blocker_, workqueue);
1676 }
1677
1678 // Run the task--write out the symbols.
1679
1680 void
1681 Write_symbols_task::run(Workqueue*)
1682 {
1683   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1684                                this->of_);
1685 }
1686
1687 // Close_task_runner methods.
1688
1689 // Run the task--close the file.
1690
1691 void
1692 Close_task_runner::run(Workqueue*)
1693 {
1694   this->of_->close();
1695 }
1696
1697 // Instantiate the templates we need.  We could use the configure
1698 // script to restrict this to only the ones for implemented targets.
1699
1700 #ifdef HAVE_TARGET_32_LITTLE
1701 template
1702 Output_section*
1703 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1704                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1705 #endif
1706
1707 #ifdef HAVE_TARGET_32_BIG
1708 template
1709 Output_section*
1710 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1711                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1712 #endif
1713
1714 #ifdef HAVE_TARGET_64_LITTLE
1715 template
1716 Output_section*
1717 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1718                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1719 #endif
1720
1721 #ifdef HAVE_TARGET_64_BIG
1722 template
1723 Output_section*
1724 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1725                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1726 #endif
1727
1728
1729 } // End namespace gold.