PR gold/12880
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list.  Creates a single free list node that
74 // describes the entire region of length LEN.  If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81   this->list_.push_front(Free_list_node(0, len));
82   this->last_remove_ = this->list_.begin();
83   this->extend_ = extend;
84   this->length_ = len;
85   ++Free_list::num_lists;
86   ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list.  Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node.  We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101   if (start == end)
102     return;
103   gold_assert(start < end);
104
105   ++Free_list::num_removes;
106
107   Iterator p = this->last_remove_;
108   if (p->start_ > start)
109     p = this->list_.begin();
110
111   for (; p != this->list_.end(); ++p)
112     {
113       ++Free_list::num_remove_visits;
114       // Find a node that wholly contains the indicated region.
115       if (p->start_ <= start && p->end_ >= end)
116         {
117           // Case 1: the indicated region spans the whole node.
118           // Add some fuzz to avoid creating tiny free chunks.
119           if (p->start_ + 3 >= start && p->end_ <= end + 3)
120             p = this->list_.erase(p);
121           // Case 2: remove a chunk from the start of the node.
122           else if (p->start_ + 3 >= start)
123             p->start_ = end;
124           // Case 3: remove a chunk from the end of the node.
125           else if (p->end_ <= end + 3)
126             p->end_ = start;
127           // Case 4: remove a chunk from the middle, and split
128           // the node into two.
129           else
130             {
131               Free_list_node newnode(p->start_, start);
132               p->start_ = end;
133               this->list_.insert(p, newnode);
134               ++Free_list::num_nodes;
135             }
136           this->last_remove_ = p;
137           return;
138         }
139     }
140
141   // Did not find a node containing the given chunk.  This could happen
142   // because a small chunk was already removed due to the fuzz.
143   gold_debug(DEBUG_INCREMENTAL,
144              "Free_list::remove(%d,%d) not found",
145              static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155   gold_debug(DEBUG_INCREMENTAL,
156              "Free_list::allocate(%08lx, %d, %08lx)",
157              static_cast<long>(len), static_cast<int>(align),
158              static_cast<long>(minoff));
159   if (len == 0)
160     return align_address(minoff, align);
161
162   ++Free_list::num_allocates;
163
164   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165     {
166       ++Free_list::num_allocate_visits;
167       off_t start = p->start_ > minoff ? p->start_ : minoff;
168       start = align_address(start, align);
169       off_t end = start + len;
170       if (end <= p->end_)
171         {
172           if (p->start_ + 3 >= start && p->end_ <= end + 3)
173             this->list_.erase(p);
174           else if (p->start_ + 3 >= start)
175             p->start_ = end;
176           else if (p->end_ <= end + 3)
177             p->end_ = start;
178           else
179             {
180               Free_list_node newnode(p->start_, start);
181               p->start_ = end;
182               this->list_.insert(p, newnode);
183               ++Free_list::num_nodes;
184             }
185           return start;
186         }
187     }
188   return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195   gold_info("Free list:\n     start      end   length\n");
196   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
198               static_cast<long>(p->end_),
199               static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206   fprintf(stderr, _("%s: total free lists: %u\n"),
207           program_name, Free_list::num_lists);
208   fprintf(stderr, _("%s: total free list nodes: %u\n"),
209           program_name, Free_list::num_nodes);
210   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211           program_name, Free_list::num_removes);
212   fprintf(stderr, _("%s: nodes visited: %u\n"),
213           program_name, Free_list::num_remove_visits);
214   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215           program_name, Free_list::num_allocates);
216   fprintf(stderr, _("%s: nodes visited: %u\n"),
217           program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228     const Layout::Section_list& sections,
229     const Layout::Data_list& special_outputs)
230 {
231   for(Layout::Section_list::const_iterator p = sections.begin();
232       p != sections.end();
233       ++p)
234     gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236   for(Layout::Data_list::const_iterator p = special_outputs.begin();
237       p != special_outputs.end();
238       ++p)
239     gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241   
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246     const Layout::Section_list& sections)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     {
252       Output_section* os = *p;
253       Section_info info;
254       info.output_section = os;
255       info.address = os->is_address_valid() ? os->address() : 0;
256       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257       info.offset = os->is_offset_valid()? os->offset() : -1 ;
258       this->section_infos_.push_back(info);
259     }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266     const Layout::Section_list& sections)
267 {
268   size_t i = 0;
269   for(Layout::Section_list::const_iterator p = sections.begin();
270       p != sections.end();
271       ++p, ++i)
272     {
273       Output_section* os = *p;
274       uint64_t address = os->is_address_valid() ? os->address() : 0;
275       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278       if (i >= this->section_infos_.size())
279         {
280           gold_fatal("Section_info of %s missing.\n", os->name());
281         }
282       const Section_info& info = this->section_infos_[i];
283       if (os != info.output_section)
284         gold_fatal("Section order changed.  Expecting %s but see %s\n",
285                    info.output_section->name(), os->name());
286       if (address != info.address
287           || data_size != info.data_size
288           || offset != info.offset)
289         gold_fatal("Section %s changed.\n", os->name());
290     }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections.  This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301   Layout* layout = this->layout_;
302   off_t file_size = layout->finalize(this->input_objects_,
303                                      this->symtab_,
304                                      this->target_,
305                                      task);
306
307   // Now we know the final size of the output file and we know where
308   // each piece of information goes.
309
310   if (this->mapfile_ != NULL)
311     {
312       this->mapfile_->print_discarded_sections(this->input_objects_);
313       layout->print_to_mapfile(this->mapfile_);
314     }
315
316   Output_file* of;
317   if (layout->incremental_base() == NULL)
318     {
319       of = new Output_file(parameters->options().output_file_name());
320       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321         of->set_is_temporary();
322       of->open(file_size);
323     }
324   else
325     {
326       of = layout->incremental_base()->output_file();
327
328       // Apply the incremental relocations for symbols whose values
329       // have changed.  We do this before we resize the file and start
330       // writing anything else to it, so that we can read the old
331       // incremental information from the file before (possibly)
332       // overwriting it.
333       if (parameters->incremental_update())
334         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335                                                              this->layout_,
336                                                              of);
337
338       of->resize(file_size);
339     }
340
341   // Queue up the final set of tasks.
342   gold::queue_final_tasks(this->options_, this->input_objects_,
343                           this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349   : number_of_input_files_(number_of_input_files),
350     script_options_(script_options),
351     namepool_(),
352     sympool_(),
353     dynpool_(),
354     signatures_(),
355     section_name_map_(),
356     segment_list_(),
357     section_list_(),
358     unattached_section_list_(),
359     special_output_list_(),
360     section_headers_(NULL),
361     tls_segment_(NULL),
362     relro_segment_(NULL),
363     interp_segment_(NULL),
364     increase_relro_(0),
365     symtab_section_(NULL),
366     symtab_xindex_(NULL),
367     dynsym_section_(NULL),
368     dynsym_xindex_(NULL),
369     dynamic_section_(NULL),
370     dynamic_symbol_(NULL),
371     dynamic_data_(NULL),
372     eh_frame_section_(NULL),
373     eh_frame_data_(NULL),
374     added_eh_frame_data_(false),
375     eh_frame_hdr_section_(NULL),
376     build_id_note_(NULL),
377     debug_abbrev_(NULL),
378     debug_info_(NULL),
379     group_signatures_(),
380     output_file_size_(-1),
381     have_added_input_section_(false),
382     sections_are_attached_(false),
383     input_requires_executable_stack_(false),
384     input_with_gnu_stack_note_(false),
385     input_without_gnu_stack_note_(false),
386     has_static_tls_(false),
387     any_postprocessing_sections_(false),
388     resized_signatures_(false),
389     have_stabstr_section_(false),
390     incremental_inputs_(NULL),
391     record_output_section_data_from_script_(false),
392     script_output_section_data_list_(),
393     segment_states_(NULL),
394     relaxation_debug_check_(NULL),
395     incremental_base_(NULL),
396     free_list_()
397 {
398   // Make space for more than enough segments for a typical file.
399   // This is just for efficiency--it's OK if we wind up needing more.
400   this->segment_list_.reserve(12);
401
402   // We expect two unattached Output_data objects: the file header and
403   // the segment headers.
404   this->special_output_list_.reserve(2);
405
406   // Initialize structure needed for an incremental build.
407   if (parameters->incremental())
408     this->incremental_inputs_ = new Incremental_inputs;
409
410   // The section name pool is worth optimizing in all cases, because
411   // it is small, but there are often overlaps due to .rel sections.
412   this->namepool_.set_optimize();
413 }
414
415 // For incremental links, record the base file to be modified.
416
417 void
418 Layout::set_incremental_base(Incremental_binary* base)
419 {
420   this->incremental_base_ = base;
421   this->free_list_.init(base->output_file()->filesize(), true);
422 }
423
424 // Hash a key we use to look up an output section mapping.
425
426 size_t
427 Layout::Hash_key::operator()(const Layout::Key& k) const
428 {
429  return k.first + k.second.first + k.second.second;
430 }
431
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb.  Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
435
436 static const char* gdb_sections[] =
437 { ".debug_abbrev",
438   // ".debug_aranges",   // not used by gdb as of 6.7.1
439   ".debug_frame",
440   ".debug_info",
441   ".debug_types",
442   ".debug_line",
443   ".debug_loc",
444   ".debug_macinfo",
445   // ".debug_pubnames",  // not used by gdb as of 6.7.1
446   ".debug_ranges",
447   ".debug_str",
448 };
449
450 static const char* lines_only_debug_sections[] =
451 { ".debug_abbrev",
452   // ".debug_aranges",   // not used by gdb as of 6.7.1
453   // ".debug_frame",
454   ".debug_info",
455   // ".debug_types",
456   ".debug_line",
457   // ".debug_loc",
458   // ".debug_macinfo",
459   // ".debug_pubnames",  // not used by gdb as of 6.7.1
460   // ".debug_ranges",
461   ".debug_str",
462 };
463
464 static inline bool
465 is_gdb_debug_section(const char* str)
466 {
467   // We can do this faster: binary search or a hashtable.  But why bother?
468   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469     if (strcmp(str, gdb_sections[i]) == 0)
470       return true;
471   return false;
472 }
473
474 static inline bool
475 is_lines_only_debug_section(const char* str)
476 {
477   // We can do this faster: binary search or a hashtable.  But why bother?
478   for (size_t i = 0;
479        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
480        ++i)
481     if (strcmp(str, lines_only_debug_sections[i]) == 0)
482       return true;
483   return false;
484 }
485
486 // Sometimes we compress sections.  This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections.  This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
494
495 static bool
496 is_compressible_debug_section(const char* secname)
497 {
498   return (is_prefix_of(".debug", secname));
499 }
500
501 // We may see compressed debug sections in input files.  Return TRUE
502 // if this is the name of a compressed debug section.
503
504 bool
505 is_compressed_debug_section(const char* secname)
506 {
507   return (is_prefix_of(".zdebug", secname));
508 }
509
510 // Whether to include this section in the link.
511
512 template<int size, bool big_endian>
513 bool
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515                         const elfcpp::Shdr<size, big_endian>& shdr)
516 {
517   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
518     return false;
519
520   switch (shdr.get_sh_type())
521     {
522     case elfcpp::SHT_NULL:
523     case elfcpp::SHT_SYMTAB:
524     case elfcpp::SHT_DYNSYM:
525     case elfcpp::SHT_HASH:
526     case elfcpp::SHT_DYNAMIC:
527     case elfcpp::SHT_SYMTAB_SHNDX:
528       return false;
529
530     case elfcpp::SHT_STRTAB:
531       // Discard the sections which have special meanings in the ELF
532       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
533       // checking the sh_link fields of the appropriate sections.
534       return (strcmp(name, ".dynstr") != 0
535               && strcmp(name, ".strtab") != 0
536               && strcmp(name, ".shstrtab") != 0);
537
538     case elfcpp::SHT_RELA:
539     case elfcpp::SHT_REL:
540     case elfcpp::SHT_GROUP:
541       // If we are emitting relocations these should be handled
542       // elsewhere.
543       gold_assert(!parameters->options().relocatable()
544                   && !parameters->options().emit_relocs());
545       return false;
546
547     case elfcpp::SHT_PROGBITS:
548       if (parameters->options().strip_debug()
549           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
550         {
551           if (is_debug_info_section(name))
552             return false;
553         }
554       if (parameters->options().strip_debug_non_line()
555           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
556         {
557           // Debugging sections can only be recognized by name.
558           if (is_prefix_of(".debug", name)
559               && !is_lines_only_debug_section(name))
560             return false;
561         }
562       if (parameters->options().strip_debug_gdb()
563           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
564         {
565           // Debugging sections can only be recognized by name.
566           if (is_prefix_of(".debug", name)
567               && !is_gdb_debug_section(name))
568             return false;
569         }
570       if (parameters->options().strip_lto_sections()
571           && !parameters->options().relocatable()
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           // Ignore LTO sections containing intermediate code.
575           if (is_prefix_of(".gnu.lto_", name))
576             return false;
577         }
578       // The GNU linker strips .gnu_debuglink sections, so we do too.
579       // This is a feature used to keep debugging information in
580       // separate files.
581       if (strcmp(name, ".gnu_debuglink") == 0)
582         return false;
583       return true;
584
585     default:
586       return true;
587     }
588 }
589
590 // Return an output section named NAME, or NULL if there is none.
591
592 Output_section*
593 Layout::find_output_section(const char* name) const
594 {
595   for (Section_list::const_iterator p = this->section_list_.begin();
596        p != this->section_list_.end();
597        ++p)
598     if (strcmp((*p)->name(), name) == 0)
599       return *p;
600   return NULL;
601 }
602
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear.  Return NULL if there is none.
605
606 Output_segment*
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608                             elfcpp::Elf_Word clear) const
609 {
610   for (Segment_list::const_iterator p = this->segment_list_.begin();
611        p != this->segment_list_.end();
612        ++p)
613     if (static_cast<elfcpp::PT>((*p)->type()) == type
614         && ((*p)->flags() & set) == set
615         && ((*p)->flags() & clear) == 0)
616       return *p;
617   return NULL;
618 }
619
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS.  NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key.  ORDER is where this should appear
623 // in the output sections.  IS_RELRO is true for a relro section.
624
625 Output_section*
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628                            Output_section_order order, bool is_relro)
629 {
630   elfcpp::Elf_Xword lookup_flags = flags;
631
632   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633   // read-write with read-only sections.  Some other ELF linkers do
634   // not do this.  FIXME: Perhaps there should be an option
635   // controlling this.
636   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
637
638   const Key key(name_key, std::make_pair(type, lookup_flags));
639   const std::pair<Key, Output_section*> v(key, NULL);
640   std::pair<Section_name_map::iterator, bool> ins(
641     this->section_name_map_.insert(v));
642
643   if (!ins.second)
644     return ins.first->second;
645   else
646     {
647       // This is the first time we've seen this name/type/flags
648       // combination.  For compatibility with the GNU linker, we
649       // combine sections with contents and zero flags with sections
650       // with non-zero flags.  This is a workaround for cases where
651       // assembler code forgets to set section flags.  FIXME: Perhaps
652       // there should be an option to control this.
653       Output_section* os = NULL;
654
655       if (type == elfcpp::SHT_PROGBITS)
656         {
657           if (flags == 0)
658             {
659               Output_section* same_name = this->find_output_section(name);
660               if (same_name != NULL
661                   && same_name->type() == elfcpp::SHT_PROGBITS
662                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
663                 os = same_name;
664             }
665           else if ((flags & elfcpp::SHF_TLS) == 0)
666             {
667               elfcpp::Elf_Xword zero_flags = 0;
668               const Key zero_key(name_key, std::make_pair(type, zero_flags));
669               Section_name_map::iterator p =
670                   this->section_name_map_.find(zero_key);
671               if (p != this->section_name_map_.end())
672                 os = p->second;
673             }
674         }
675
676       if (os == NULL)
677         os = this->make_output_section(name, type, flags, order, is_relro);
678
679       ins.first->second = os;
680       return os;
681     }
682 }
683
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
686 // linker created section.  IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file.  ORDER is where this section should appear in the output
689 // sections.  IS_RELRO is true for a relro section.  This will return
690 // NULL if the input section should be discarded.
691
692 Output_section*
693 Layout::choose_output_section(const Relobj* relobj, const char* name,
694                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
695                               bool is_input_section, Output_section_order order,
696                               bool is_relro)
697 {
698   // We should not see any input sections after we have attached
699   // sections to segments.
700   gold_assert(!is_input_section || !this->sections_are_attached_);
701
702   // Some flags in the input section should not be automatically
703   // copied to the output section.
704   flags &= ~ (elfcpp::SHF_INFO_LINK
705               | elfcpp::SHF_GROUP
706               | elfcpp::SHF_MERGE
707               | elfcpp::SHF_STRINGS);
708
709   // We only clear the SHF_LINK_ORDER flag in for
710   // a non-relocatable link.
711   if (!parameters->options().relocatable())
712     flags &= ~elfcpp::SHF_LINK_ORDER;
713
714   if (this->script_options_->saw_sections_clause())
715     {
716       // We are using a SECTIONS clause, so the output section is
717       // chosen based only on the name.
718
719       Script_sections* ss = this->script_options_->script_sections();
720       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
721       Output_section** output_section_slot;
722       Script_sections::Section_type script_section_type;
723       const char* orig_name = name;
724       name = ss->output_section_name(file_name, name, &output_section_slot,
725                                      &script_section_type);
726       if (name == NULL)
727         {
728           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
729                                      "because it is not allowed by the "
730                                      "SECTIONS clause of the linker script"),
731                      orig_name);
732           // The SECTIONS clause says to discard this input section.
733           return NULL;
734         }
735
736       // We can only handle script section types ST_NONE and ST_NOLOAD.
737       switch (script_section_type)
738         {
739         case Script_sections::ST_NONE:
740           break;
741         case Script_sections::ST_NOLOAD:
742           flags &= elfcpp::SHF_ALLOC;
743           break;
744         default:
745           gold_unreachable();
746         }
747
748       // If this is an orphan section--one not mentioned in the linker
749       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750       // default processing below.
751
752       if (output_section_slot != NULL)
753         {
754           if (*output_section_slot != NULL)
755             {
756               (*output_section_slot)->update_flags_for_input_section(flags);
757               return *output_section_slot;
758             }
759
760           // We don't put sections found in the linker script into
761           // SECTION_NAME_MAP_.  That keeps us from getting confused
762           // if an orphan section is mapped to a section with the same
763           // name as one in the linker script.
764
765           name = this->namepool_.add(name, false, NULL);
766
767           Output_section* os = this->make_output_section(name, type, flags,
768                                                          order, is_relro);
769
770           os->set_found_in_sections_clause();
771
772           // Special handling for NOLOAD sections.
773           if (script_section_type == Script_sections::ST_NOLOAD)
774             {
775               os->set_is_noload();
776
777               // The constructor of Output_section sets addresses of non-ALLOC
778               // sections to 0 by default.  We don't want that for NOLOAD
779               // sections even if they have no SHF_ALLOC flag.
780               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
781                   && os->is_address_valid())
782                 {
783                   gold_assert(os->address() == 0
784                               && !os->is_offset_valid()
785                               && !os->is_data_size_valid());
786                   os->reset_address_and_file_offset();
787                 }
788             }
789
790           *output_section_slot = os;
791           return os;
792         }
793     }
794
795   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
796
797   size_t len = strlen(name);
798   char* uncompressed_name = NULL;
799
800   // Compressed debug sections should be mapped to the corresponding
801   // uncompressed section.
802   if (is_compressed_debug_section(name))
803     {
804       uncompressed_name = new char[len];
805       uncompressed_name[0] = '.';
806       gold_assert(name[0] == '.' && name[1] == 'z');
807       strncpy(&uncompressed_name[1], &name[2], len - 2);
808       uncompressed_name[len - 1] = '\0';
809       len -= 1;
810       name = uncompressed_name;
811     }
812
813   // Turn NAME from the name of the input section into the name of the
814   // output section.
815   if (is_input_section
816       && !this->script_options_->saw_sections_clause()
817       && !parameters->options().relocatable())
818     name = Layout::output_section_name(name, &len);
819
820   Stringpool::Key name_key;
821   name = this->namepool_.add_with_length(name, len, true, &name_key);
822
823   if (uncompressed_name != NULL)
824     delete[] uncompressed_name;
825
826   // Find or make the output section.  The output section is selected
827   // based on the section name, type, and flags.
828   return this->get_output_section(name, name_key, type, flags, order, is_relro);
829 }
830
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
833
834 template<int size, bool big_endian>
835 Output_section*
836 Layout::init_fixed_output_section(const char* name,
837                                   elfcpp::Shdr<size, big_endian>& shdr)
838 {
839   unsigned int sh_type = shdr.get_sh_type();
840
841   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842   // All others will be created from scratch and reallocated.
843   if (sh_type != elfcpp::SHT_PROGBITS
844       && sh_type != elfcpp::SHT_NOBITS
845       && sh_type != elfcpp::SHT_NOTE)
846     return NULL;
847
848   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
849   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
850   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
851   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
852   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
853       shdr.get_sh_addralign();
854
855   // Make the output section.
856   Stringpool::Key name_key;
857   name = this->namepool_.add(name, true, &name_key);
858   Output_section* os = this->get_output_section(name, name_key, sh_type,
859                                                 sh_flags, ORDER_INVALID, false);
860   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
861   if (sh_type != elfcpp::SHT_NOBITS)
862     this->free_list_.remove(sh_offset, sh_offset + sh_size);
863   return os;
864 }
865
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
870 // relocation section if there is one.  Set *OFF to the offset of this
871 // input section without the output section.  Return NULL if the
872 // section should be discarded.  Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
875
876 template<int size, bool big_endian>
877 Output_section*
878 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
879                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
880                unsigned int reloc_shndx, unsigned int, off_t* off)
881 {
882   *off = 0;
883
884   if (!this->include_section(object, name, shdr))
885     return NULL;
886
887   Output_section* os;
888
889   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890   // correct section types.  Force them here.
891   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
892   if (sh_type == elfcpp::SHT_PROGBITS)
893     {
894       static const char init_array_prefix[] = ".init_array";
895       static const char preinit_array_prefix[] = ".preinit_array";
896       static const char fini_array_prefix[] = ".fini_array";
897       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
898       static size_t preinit_array_prefix_size =
899         sizeof(preinit_array_prefix) - 1;
900       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
901
902       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
903         sh_type = elfcpp::SHT_INIT_ARRAY;
904       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
905                == 0)
906         sh_type = elfcpp::SHT_PREINIT_ARRAY;
907       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
908         sh_type = elfcpp::SHT_FINI_ARRAY;
909     }
910
911   // In a relocatable link a grouped section must not be combined with
912   // any other sections.
913   if (parameters->options().relocatable()
914       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
915     {
916       name = this->namepool_.add(name, true, NULL);
917       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
918                                      ORDER_INVALID, false);
919     }
920   else
921     {
922       os = this->choose_output_section(object, name, sh_type,
923                                        shdr.get_sh_flags(), true,
924                                        ORDER_INVALID, false);
925       if (os == NULL)
926         return NULL;
927     }
928
929   // By default the GNU linker sorts input sections whose names match
930   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
931   // are sorted by name.  This is used to implement constructor
932   // priority ordering.  We are compatible.
933   if (!this->script_options_->saw_sections_clause()
934       && (is_prefix_of(".ctors.", name)
935           || is_prefix_of(".dtors.", name)
936           || is_prefix_of(".init_array.", name)
937           || is_prefix_of(".fini_array.", name)))
938     os->set_must_sort_attached_input_sections();
939
940   // FIXME: Handle SHF_LINK_ORDER somewhere.
941
942   elfcpp::Elf_Xword orig_flags = os->flags();
943
944   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
945                                this->script_options_->saw_sections_clause());
946
947   // If the flags changed, we may have to change the order.
948   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
949     {
950       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
951       elfcpp::Elf_Xword new_flags =
952         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
953       if (orig_flags != new_flags)
954         os->set_order(this->default_section_order(os, false));
955     }
956
957   this->have_added_input_section_ = true;
958
959   return os;
960 }
961
962 // Handle a relocation section when doing a relocatable link.
963
964 template<int size, bool big_endian>
965 Output_section*
966 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
967                      unsigned int,
968                      const elfcpp::Shdr<size, big_endian>& shdr,
969                      Output_section* data_section,
970                      Relocatable_relocs* rr)
971 {
972   gold_assert(parameters->options().relocatable()
973               || parameters->options().emit_relocs());
974
975   int sh_type = shdr.get_sh_type();
976
977   std::string name;
978   if (sh_type == elfcpp::SHT_REL)
979     name = ".rel";
980   else if (sh_type == elfcpp::SHT_RELA)
981     name = ".rela";
982   else
983     gold_unreachable();
984   name += data_section->name();
985
986   // In a relocatable link relocs for a grouped section must not be
987   // combined with other reloc sections.
988   Output_section* os;
989   if (!parameters->options().relocatable()
990       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
991     os = this->choose_output_section(object, name.c_str(), sh_type,
992                                      shdr.get_sh_flags(), false,
993                                      ORDER_INVALID, false);
994   else
995     {
996       const char* n = this->namepool_.add(name.c_str(), true, NULL);
997       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
998                                      ORDER_INVALID, false);
999     }
1000
1001   os->set_should_link_to_symtab();
1002   os->set_info_section(data_section);
1003
1004   Output_section_data* posd;
1005   if (sh_type == elfcpp::SHT_REL)
1006     {
1007       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1008       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1009                                            size,
1010                                            big_endian>(rr);
1011     }
1012   else if (sh_type == elfcpp::SHT_RELA)
1013     {
1014       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1015       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1016                                            size,
1017                                            big_endian>(rr);
1018     }
1019   else
1020     gold_unreachable();
1021
1022   os->add_output_section_data(posd);
1023   rr->set_output_data(posd);
1024
1025   return os;
1026 }
1027
1028 // Handle a group section when doing a relocatable link.
1029
1030 template<int size, bool big_endian>
1031 void
1032 Layout::layout_group(Symbol_table* symtab,
1033                      Sized_relobj_file<size, big_endian>* object,
1034                      unsigned int,
1035                      const char* group_section_name,
1036                      const char* signature,
1037                      const elfcpp::Shdr<size, big_endian>& shdr,
1038                      elfcpp::Elf_Word flags,
1039                      std::vector<unsigned int>* shndxes)
1040 {
1041   gold_assert(parameters->options().relocatable());
1042   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1043   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1044   Output_section* os = this->make_output_section(group_section_name,
1045                                                  elfcpp::SHT_GROUP,
1046                                                  shdr.get_sh_flags(),
1047                                                  ORDER_INVALID, false);
1048
1049   // We need to find a symbol with the signature in the symbol table.
1050   // If we don't find one now, we need to look again later.
1051   Symbol* sym = symtab->lookup(signature, NULL);
1052   if (sym != NULL)
1053     os->set_info_symndx(sym);
1054   else
1055     {
1056       // Reserve some space to minimize reallocations.
1057       if (this->group_signatures_.empty())
1058         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1059
1060       // We will wind up using a symbol whose name is the signature.
1061       // So just put the signature in the symbol name pool to save it.
1062       signature = symtab->canonicalize_name(signature);
1063       this->group_signatures_.push_back(Group_signature(os, signature));
1064     }
1065
1066   os->set_should_link_to_symtab();
1067   os->set_entsize(4);
1068
1069   section_size_type entry_count =
1070     convert_to_section_size_type(shdr.get_sh_size() / 4);
1071   Output_section_data* posd =
1072     new Output_data_group<size, big_endian>(object, entry_count, flags,
1073                                             shndxes);
1074   os->add_output_section_data(posd);
1075 }
1076
1077 // Special GNU handling of sections name .eh_frame.  They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1080
1081 template<int size, bool big_endian>
1082 Output_section*
1083 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1084                         const unsigned char* symbols,
1085                         off_t symbols_size,
1086                         const unsigned char* symbol_names,
1087                         off_t symbol_names_size,
1088                         unsigned int shndx,
1089                         const elfcpp::Shdr<size, big_endian>& shdr,
1090                         unsigned int reloc_shndx, unsigned int reloc_type,
1091                         off_t* off)
1092 {
1093   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1094   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1095
1096   const char* const name = ".eh_frame";
1097   Output_section* os = this->choose_output_section(object, name,
1098                                                    elfcpp::SHT_PROGBITS,
1099                                                    elfcpp::SHF_ALLOC, false,
1100                                                    ORDER_EHFRAME, false);
1101   if (os == NULL)
1102     return NULL;
1103
1104   if (this->eh_frame_section_ == NULL)
1105     {
1106       this->eh_frame_section_ = os;
1107       this->eh_frame_data_ = new Eh_frame();
1108
1109       // For incremental linking, we do not optimize .eh_frame sections
1110       // or create a .eh_frame_hdr section.
1111       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1112         {
1113           Output_section* hdr_os =
1114             this->choose_output_section(NULL, ".eh_frame_hdr",
1115                                         elfcpp::SHT_PROGBITS,
1116                                         elfcpp::SHF_ALLOC, false,
1117                                         ORDER_EHFRAME, false);
1118
1119           if (hdr_os != NULL)
1120             {
1121               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1122                                                         this->eh_frame_data_);
1123               hdr_os->add_output_section_data(hdr_posd);
1124
1125               hdr_os->set_after_input_sections();
1126
1127               if (!this->script_options_->saw_phdrs_clause())
1128                 {
1129                   Output_segment* hdr_oseg;
1130                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1131                                                        elfcpp::PF_R);
1132                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1133                                                           elfcpp::PF_R);
1134                 }
1135
1136               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1137             }
1138         }
1139     }
1140
1141   gold_assert(this->eh_frame_section_ == os);
1142
1143   elfcpp::Elf_Xword orig_flags = os->flags();
1144
1145   if (!parameters->incremental()
1146       && this->eh_frame_data_->add_ehframe_input_section(object,
1147                                                          symbols,
1148                                                          symbols_size,
1149                                                          symbol_names,
1150                                                          symbol_names_size,
1151                                                          shndx,
1152                                                          reloc_shndx,
1153                                                          reloc_type))
1154     {
1155       os->update_flags_for_input_section(shdr.get_sh_flags());
1156
1157       // A writable .eh_frame section is a RELRO section.
1158       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1159           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1160         {
1161           os->set_is_relro();
1162           os->set_order(ORDER_RELRO);
1163         }
1164
1165       // We found a .eh_frame section we are going to optimize, so now
1166       // we can add the set of optimized sections to the output
1167       // section.  We need to postpone adding this until we've found a
1168       // section we can optimize so that the .eh_frame section in
1169       // crtbegin.o winds up at the start of the output section.
1170       if (!this->added_eh_frame_data_)
1171         {
1172           os->add_output_section_data(this->eh_frame_data_);
1173           this->added_eh_frame_data_ = true;
1174         }
1175       *off = -1;
1176     }
1177   else
1178     {
1179       // We couldn't handle this .eh_frame section for some reason.
1180       // Add it as a normal section.
1181       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1182       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1183                                    saw_sections_clause);
1184       this->have_added_input_section_ = true;
1185
1186       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1187           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1188         os->set_order(this->default_section_order(os, false));
1189     }
1190
1191   return os;
1192 }
1193
1194 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1195 // the output section.
1196
1197 Output_section*
1198 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1199                                 elfcpp::Elf_Xword flags,
1200                                 Output_section_data* posd,
1201                                 Output_section_order order, bool is_relro)
1202 {
1203   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1204                                                    false, order, is_relro);
1205   if (os != NULL)
1206     os->add_output_section_data(posd);
1207   return os;
1208 }
1209
1210 // Map section flags to segment flags.
1211
1212 elfcpp::Elf_Word
1213 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1214 {
1215   elfcpp::Elf_Word ret = elfcpp::PF_R;
1216   if ((flags & elfcpp::SHF_WRITE) != 0)
1217     ret |= elfcpp::PF_W;
1218   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1219     ret |= elfcpp::PF_X;
1220   return ret;
1221 }
1222
1223 // Make a new Output_section, and attach it to segments as
1224 // appropriate.  ORDER is the order in which this section should
1225 // appear in the output segment.  IS_RELRO is true if this is a relro
1226 // (read-only after relocations) section.
1227
1228 Output_section*
1229 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1230                             elfcpp::Elf_Xword flags,
1231                             Output_section_order order, bool is_relro)
1232 {
1233   Output_section* os;
1234   if ((flags & elfcpp::SHF_ALLOC) == 0
1235       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1236       && is_compressible_debug_section(name))
1237     os = new Output_compressed_section(&parameters->options(), name, type,
1238                                        flags);
1239   else if ((flags & elfcpp::SHF_ALLOC) == 0
1240            && parameters->options().strip_debug_non_line()
1241            && strcmp(".debug_abbrev", name) == 0)
1242     {
1243       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1244           name, type, flags);
1245       if (this->debug_info_)
1246         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1247     }
1248   else if ((flags & elfcpp::SHF_ALLOC) == 0
1249            && parameters->options().strip_debug_non_line()
1250            && strcmp(".debug_info", name) == 0)
1251     {
1252       os = this->debug_info_ = new Output_reduced_debug_info_section(
1253           name, type, flags);
1254       if (this->debug_abbrev_)
1255         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1256     }
1257   else
1258     {
1259       // FIXME: const_cast is ugly.
1260       Target* target = const_cast<Target*>(&parameters->target());
1261       os = target->make_output_section(name, type, flags);
1262     }
1263
1264   // With -z relro, we have to recognize the special sections by name.
1265   // There is no other way.
1266   bool is_relro_local = false;
1267   if (!this->script_options_->saw_sections_clause()
1268       && parameters->options().relro()
1269       && type == elfcpp::SHT_PROGBITS
1270       && (flags & elfcpp::SHF_ALLOC) != 0
1271       && (flags & elfcpp::SHF_WRITE) != 0)
1272     {
1273       if (strcmp(name, ".data.rel.ro") == 0)
1274         is_relro = true;
1275       else if (strcmp(name, ".data.rel.ro.local") == 0)
1276         {
1277           is_relro = true;
1278           is_relro_local = true;
1279         }
1280       else if (type == elfcpp::SHT_INIT_ARRAY
1281                || type == elfcpp::SHT_FINI_ARRAY
1282                || type == elfcpp::SHT_PREINIT_ARRAY)
1283         is_relro = true;
1284       else if (strcmp(name, ".ctors") == 0
1285                || strcmp(name, ".dtors") == 0
1286                || strcmp(name, ".jcr") == 0)
1287         is_relro = true;
1288     }
1289
1290   if (is_relro)
1291     os->set_is_relro();
1292
1293   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1294     order = this->default_section_order(os, is_relro_local);
1295
1296   os->set_order(order);
1297
1298   parameters->target().new_output_section(os);
1299
1300   this->section_list_.push_back(os);
1301
1302   // The GNU linker by default sorts some sections by priority, so we
1303   // do the same.  We need to know that this might happen before we
1304   // attach any input sections.
1305   if (!this->script_options_->saw_sections_clause()
1306       && (strcmp(name, ".ctors") == 0
1307           || strcmp(name, ".dtors") == 0
1308           || strcmp(name, ".init_array") == 0
1309           || strcmp(name, ".fini_array") == 0))
1310     os->set_may_sort_attached_input_sections();
1311
1312   // Check for .stab*str sections, as .stab* sections need to link to
1313   // them.
1314   if (type == elfcpp::SHT_STRTAB
1315       && !this->have_stabstr_section_
1316       && strncmp(name, ".stab", 5) == 0
1317       && strcmp(name + strlen(name) - 3, "str") == 0)
1318     this->have_stabstr_section_ = true;
1319
1320   // If we have already attached the sections to segments, then we
1321   // need to attach this one now.  This happens for sections created
1322   // directly by the linker.
1323   if (this->sections_are_attached_)
1324     this->attach_section_to_segment(os);
1325
1326   return os;
1327 }
1328
1329 // Return the default order in which a section should be placed in an
1330 // output segment.  This function captures a lot of the ideas in
1331 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1332 // linker created section is normally set when the section is created;
1333 // this function is used for input sections.
1334
1335 Output_section_order
1336 Layout::default_section_order(Output_section* os, bool is_relro_local)
1337 {
1338   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1339   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1340   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1341   bool is_bss = false;
1342
1343   switch (os->type())
1344     {
1345     default:
1346     case elfcpp::SHT_PROGBITS:
1347       break;
1348     case elfcpp::SHT_NOBITS:
1349       is_bss = true;
1350       break;
1351     case elfcpp::SHT_RELA:
1352     case elfcpp::SHT_REL:
1353       if (!is_write)
1354         return ORDER_DYNAMIC_RELOCS;
1355       break;
1356     case elfcpp::SHT_HASH:
1357     case elfcpp::SHT_DYNAMIC:
1358     case elfcpp::SHT_SHLIB:
1359     case elfcpp::SHT_DYNSYM:
1360     case elfcpp::SHT_GNU_HASH:
1361     case elfcpp::SHT_GNU_verdef:
1362     case elfcpp::SHT_GNU_verneed:
1363     case elfcpp::SHT_GNU_versym:
1364       if (!is_write)
1365         return ORDER_DYNAMIC_LINKER;
1366       break;
1367     case elfcpp::SHT_NOTE:
1368       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1369     }
1370
1371   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1372     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1373
1374   if (!is_bss && !is_write)
1375     {
1376       if (is_execinstr)
1377         {
1378           if (strcmp(os->name(), ".init") == 0)
1379             return ORDER_INIT;
1380           else if (strcmp(os->name(), ".fini") == 0)
1381             return ORDER_FINI;
1382         }
1383       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1384     }
1385
1386   if (os->is_relro())
1387     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1388
1389   if (os->is_small_section())
1390     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1391   if (os->is_large_section())
1392     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1393
1394   return is_bss ? ORDER_BSS : ORDER_DATA;
1395 }
1396
1397 // Attach output sections to segments.  This is called after we have
1398 // seen all the input sections.
1399
1400 void
1401 Layout::attach_sections_to_segments()
1402 {
1403   for (Section_list::iterator p = this->section_list_.begin();
1404        p != this->section_list_.end();
1405        ++p)
1406     this->attach_section_to_segment(*p);
1407
1408   this->sections_are_attached_ = true;
1409 }
1410
1411 // Attach an output section to a segment.
1412
1413 void
1414 Layout::attach_section_to_segment(Output_section* os)
1415 {
1416   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1417     this->unattached_section_list_.push_back(os);
1418   else
1419     this->attach_allocated_section_to_segment(os);
1420 }
1421
1422 // Attach an allocated output section to a segment.
1423
1424 void
1425 Layout::attach_allocated_section_to_segment(Output_section* os)
1426 {
1427   elfcpp::Elf_Xword flags = os->flags();
1428   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1429
1430   if (parameters->options().relocatable())
1431     return;
1432
1433   // If we have a SECTIONS clause, we can't handle the attachment to
1434   // segments until after we've seen all the sections.
1435   if (this->script_options_->saw_sections_clause())
1436     return;
1437
1438   gold_assert(!this->script_options_->saw_phdrs_clause());
1439
1440   // This output section goes into a PT_LOAD segment.
1441
1442   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1443
1444   // Check for --section-start.
1445   uint64_t addr;
1446   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1447
1448   // In general the only thing we really care about for PT_LOAD
1449   // segments is whether or not they are writable or executable,
1450   // so that is how we search for them.
1451   // Large data sections also go into their own PT_LOAD segment.
1452   // People who need segments sorted on some other basis will
1453   // have to use a linker script.
1454
1455   Segment_list::const_iterator p;
1456   for (p = this->segment_list_.begin();
1457        p != this->segment_list_.end();
1458        ++p)
1459     {
1460       if ((*p)->type() != elfcpp::PT_LOAD)
1461         continue;
1462       if (!parameters->options().omagic()
1463           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1464         continue;
1465       if (parameters->options().rosegment()
1466           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1467         continue;
1468       // If -Tbss was specified, we need to separate the data and BSS
1469       // segments.
1470       if (parameters->options().user_set_Tbss())
1471         {
1472           if ((os->type() == elfcpp::SHT_NOBITS)
1473               == (*p)->has_any_data_sections())
1474             continue;
1475         }
1476       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1477         continue;
1478
1479       if (is_address_set)
1480         {
1481           if ((*p)->are_addresses_set())
1482             continue;
1483
1484           (*p)->add_initial_output_data(os);
1485           (*p)->update_flags_for_output_section(seg_flags);
1486           (*p)->set_addresses(addr, addr);
1487           break;
1488         }
1489
1490       (*p)->add_output_section_to_load(this, os, seg_flags);
1491       break;
1492     }
1493
1494   if (p == this->segment_list_.end())
1495     {
1496       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1497                                                        seg_flags);
1498       if (os->is_large_data_section())
1499         oseg->set_is_large_data_segment();
1500       oseg->add_output_section_to_load(this, os, seg_flags);
1501       if (is_address_set)
1502         oseg->set_addresses(addr, addr);
1503     }
1504
1505   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1506   // segment.
1507   if (os->type() == elfcpp::SHT_NOTE)
1508     {
1509       // See if we already have an equivalent PT_NOTE segment.
1510       for (p = this->segment_list_.begin();
1511            p != segment_list_.end();
1512            ++p)
1513         {
1514           if ((*p)->type() == elfcpp::PT_NOTE
1515               && (((*p)->flags() & elfcpp::PF_W)
1516                   == (seg_flags & elfcpp::PF_W)))
1517             {
1518               (*p)->add_output_section_to_nonload(os, seg_flags);
1519               break;
1520             }
1521         }
1522
1523       if (p == this->segment_list_.end())
1524         {
1525           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1526                                                            seg_flags);
1527           oseg->add_output_section_to_nonload(os, seg_flags);
1528         }
1529     }
1530
1531   // If we see a loadable SHF_TLS section, we create a PT_TLS
1532   // segment.  There can only be one such segment.
1533   if ((flags & elfcpp::SHF_TLS) != 0)
1534     {
1535       if (this->tls_segment_ == NULL)
1536         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1537       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1538     }
1539
1540   // If -z relro is in effect, and we see a relro section, we create a
1541   // PT_GNU_RELRO segment.  There can only be one such segment.
1542   if (os->is_relro() && parameters->options().relro())
1543     {
1544       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1545       if (this->relro_segment_ == NULL)
1546         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1547       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1548     }
1549
1550   // If we see a section named .interp, put it into a PT_INTERP
1551   // segment.  This seems broken to me, but this is what GNU ld does,
1552   // and glibc expects it.
1553   if (strcmp(os->name(), ".interp") == 0
1554       && !this->script_options_->saw_phdrs_clause())
1555     {
1556       if (this->interp_segment_ == NULL)
1557         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1558       else
1559         gold_warning(_("multiple '.interp' sections in input files "
1560                        "may cause confusing PT_INTERP segment"));
1561       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1562     }
1563 }
1564
1565 // Make an output section for a script.
1566
1567 Output_section*
1568 Layout::make_output_section_for_script(
1569     const char* name,
1570     Script_sections::Section_type section_type)
1571 {
1572   name = this->namepool_.add(name, false, NULL);
1573   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1574   if (section_type == Script_sections::ST_NOLOAD)
1575     sh_flags = 0;
1576   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1577                                                  sh_flags, ORDER_INVALID,
1578                                                  false);
1579   os->set_found_in_sections_clause();
1580   if (section_type == Script_sections::ST_NOLOAD)
1581     os->set_is_noload();
1582   return os;
1583 }
1584
1585 // Return the number of segments we expect to see.
1586
1587 size_t
1588 Layout::expected_segment_count() const
1589 {
1590   size_t ret = this->segment_list_.size();
1591
1592   // If we didn't see a SECTIONS clause in a linker script, we should
1593   // already have the complete list of segments.  Otherwise we ask the
1594   // SECTIONS clause how many segments it expects, and add in the ones
1595   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1596
1597   if (!this->script_options_->saw_sections_clause())
1598     return ret;
1599   else
1600     {
1601       const Script_sections* ss = this->script_options_->script_sections();
1602       return ret + ss->expected_segment_count(this);
1603     }
1604 }
1605
1606 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1607 // is whether we saw a .note.GNU-stack section in the object file.
1608 // GNU_STACK_FLAGS is the section flags.  The flags give the
1609 // protection required for stack memory.  We record this in an
1610 // executable as a PT_GNU_STACK segment.  If an object file does not
1611 // have a .note.GNU-stack segment, we must assume that it is an old
1612 // object.  On some targets that will force an executable stack.
1613
1614 void
1615 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1616                          const Object* obj)
1617 {
1618   if (!seen_gnu_stack)
1619     {
1620       this->input_without_gnu_stack_note_ = true;
1621       if (parameters->options().warn_execstack()
1622           && parameters->target().is_default_stack_executable())
1623         gold_warning(_("%s: missing .note.GNU-stack section"
1624                        " implies executable stack"),
1625                      obj->name().c_str());
1626     }
1627   else
1628     {
1629       this->input_with_gnu_stack_note_ = true;
1630       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1631         {
1632           this->input_requires_executable_stack_ = true;
1633           if (parameters->options().warn_execstack()
1634               || parameters->options().is_stack_executable())
1635             gold_warning(_("%s: requires executable stack"),
1636                          obj->name().c_str());
1637         }
1638     }
1639 }
1640
1641 // Create automatic note sections.
1642
1643 void
1644 Layout::create_notes()
1645 {
1646   this->create_gold_note();
1647   this->create_executable_stack_info();
1648   this->create_build_id();
1649 }
1650
1651 // Create the dynamic sections which are needed before we read the
1652 // relocs.
1653
1654 void
1655 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1656 {
1657   if (parameters->doing_static_link())
1658     return;
1659
1660   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1661                                                        elfcpp::SHT_DYNAMIC,
1662                                                        (elfcpp::SHF_ALLOC
1663                                                         | elfcpp::SHF_WRITE),
1664                                                        false, ORDER_RELRO,
1665                                                        true);
1666
1667   this->dynamic_symbol_ =
1668     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1669                                   this->dynamic_section_, 0, 0,
1670                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1671                                   elfcpp::STV_HIDDEN, 0, false, false);
1672
1673   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1674
1675   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1676 }
1677
1678 // For each output section whose name can be represented as C symbol,
1679 // define __start and __stop symbols for the section.  This is a GNU
1680 // extension.
1681
1682 void
1683 Layout::define_section_symbols(Symbol_table* symtab)
1684 {
1685   for (Section_list::const_iterator p = this->section_list_.begin();
1686        p != this->section_list_.end();
1687        ++p)
1688     {
1689       const char* const name = (*p)->name();
1690       if (is_cident(name))
1691         {
1692           const std::string name_string(name);
1693           const std::string start_name(cident_section_start_prefix
1694                                        + name_string);
1695           const std::string stop_name(cident_section_stop_prefix
1696                                       + name_string);
1697
1698           symtab->define_in_output_data(start_name.c_str(),
1699                                         NULL, // version
1700                                         Symbol_table::PREDEFINED,
1701                                         *p,
1702                                         0, // value
1703                                         0, // symsize
1704                                         elfcpp::STT_NOTYPE,
1705                                         elfcpp::STB_GLOBAL,
1706                                         elfcpp::STV_DEFAULT,
1707                                         0, // nonvis
1708                                         false, // offset_is_from_end
1709                                         true); // only_if_ref
1710
1711           symtab->define_in_output_data(stop_name.c_str(),
1712                                         NULL, // version
1713                                         Symbol_table::PREDEFINED,
1714                                         *p,
1715                                         0, // value
1716                                         0, // symsize
1717                                         elfcpp::STT_NOTYPE,
1718                                         elfcpp::STB_GLOBAL,
1719                                         elfcpp::STV_DEFAULT,
1720                                         0, // nonvis
1721                                         true, // offset_is_from_end
1722                                         true); // only_if_ref
1723         }
1724     }
1725 }
1726
1727 // Define symbols for group signatures.
1728
1729 void
1730 Layout::define_group_signatures(Symbol_table* symtab)
1731 {
1732   for (Group_signatures::iterator p = this->group_signatures_.begin();
1733        p != this->group_signatures_.end();
1734        ++p)
1735     {
1736       Symbol* sym = symtab->lookup(p->signature, NULL);
1737       if (sym != NULL)
1738         p->section->set_info_symndx(sym);
1739       else
1740         {
1741           // Force the name of the group section to the group
1742           // signature, and use the group's section symbol as the
1743           // signature symbol.
1744           if (strcmp(p->section->name(), p->signature) != 0)
1745             {
1746               const char* name = this->namepool_.add(p->signature,
1747                                                      true, NULL);
1748               p->section->set_name(name);
1749             }
1750           p->section->set_needs_symtab_index();
1751           p->section->set_info_section_symndx(p->section);
1752         }
1753     }
1754
1755   this->group_signatures_.clear();
1756 }
1757
1758 // Find the first read-only PT_LOAD segment, creating one if
1759 // necessary.
1760
1761 Output_segment*
1762 Layout::find_first_load_seg()
1763 {
1764   Output_segment* best = NULL;
1765   for (Segment_list::const_iterator p = this->segment_list_.begin();
1766        p != this->segment_list_.end();
1767        ++p)
1768     {
1769       if ((*p)->type() == elfcpp::PT_LOAD
1770           && ((*p)->flags() & elfcpp::PF_R) != 0
1771           && (parameters->options().omagic()
1772               || ((*p)->flags() & elfcpp::PF_W) == 0))
1773         {
1774           if (best == NULL || this->segment_precedes(*p, best))
1775             best = *p;
1776         }
1777     }
1778   if (best != NULL)
1779     return best;
1780
1781   gold_assert(!this->script_options_->saw_phdrs_clause());
1782
1783   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1784                                                        elfcpp::PF_R);
1785   return load_seg;
1786 }
1787
1788 // Save states of all current output segments.  Store saved states
1789 // in SEGMENT_STATES.
1790
1791 void
1792 Layout::save_segments(Segment_states* segment_states)
1793 {
1794   for (Segment_list::const_iterator p = this->segment_list_.begin();
1795        p != this->segment_list_.end();
1796        ++p)
1797     {
1798       Output_segment* segment = *p;
1799       // Shallow copy.
1800       Output_segment* copy = new Output_segment(*segment);
1801       (*segment_states)[segment] = copy;
1802     }
1803 }
1804
1805 // Restore states of output segments and delete any segment not found in
1806 // SEGMENT_STATES.
1807
1808 void
1809 Layout::restore_segments(const Segment_states* segment_states)
1810 {
1811   // Go through the segment list and remove any segment added in the
1812   // relaxation loop.
1813   this->tls_segment_ = NULL;
1814   this->relro_segment_ = NULL;
1815   Segment_list::iterator list_iter = this->segment_list_.begin();
1816   while (list_iter != this->segment_list_.end())
1817     {
1818       Output_segment* segment = *list_iter;
1819       Segment_states::const_iterator states_iter =
1820           segment_states->find(segment);
1821       if (states_iter != segment_states->end())
1822         {
1823           const Output_segment* copy = states_iter->second;
1824           // Shallow copy to restore states.
1825           *segment = *copy;
1826
1827           // Also fix up TLS and RELRO segment pointers as appropriate.
1828           if (segment->type() == elfcpp::PT_TLS)
1829             this->tls_segment_ = segment;
1830           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1831             this->relro_segment_ = segment;
1832
1833           ++list_iter;
1834         } 
1835       else
1836         {
1837           list_iter = this->segment_list_.erase(list_iter); 
1838           // This is a segment created during section layout.  It should be
1839           // safe to remove it since we should have removed all pointers to it.
1840           delete segment;
1841         }
1842     }
1843 }
1844
1845 // Clean up after relaxation so that sections can be laid out again.
1846
1847 void
1848 Layout::clean_up_after_relaxation()
1849 {
1850   // Restore the segments to point state just prior to the relaxation loop.
1851   Script_sections* script_section = this->script_options_->script_sections();
1852   script_section->release_segments();
1853   this->restore_segments(this->segment_states_);
1854
1855   // Reset section addresses and file offsets
1856   for (Section_list::iterator p = this->section_list_.begin();
1857        p != this->section_list_.end();
1858        ++p)
1859     {
1860       (*p)->restore_states();
1861
1862       // If an input section changes size because of relaxation,
1863       // we need to adjust the section offsets of all input sections.
1864       // after such a section.
1865       if ((*p)->section_offsets_need_adjustment())
1866         (*p)->adjust_section_offsets();
1867
1868       (*p)->reset_address_and_file_offset();
1869     }
1870   
1871   // Reset special output object address and file offsets.
1872   for (Data_list::iterator p = this->special_output_list_.begin();
1873        p != this->special_output_list_.end();
1874        ++p)
1875     (*p)->reset_address_and_file_offset();
1876
1877   // A linker script may have created some output section data objects.
1878   // They are useless now.
1879   for (Output_section_data_list::const_iterator p =
1880          this->script_output_section_data_list_.begin();
1881        p != this->script_output_section_data_list_.end();
1882        ++p)
1883     delete *p;
1884   this->script_output_section_data_list_.clear(); 
1885 }
1886
1887 // Prepare for relaxation.
1888
1889 void
1890 Layout::prepare_for_relaxation()
1891 {
1892   // Create an relaxation debug check if in debugging mode.
1893   if (is_debugging_enabled(DEBUG_RELAXATION))
1894     this->relaxation_debug_check_ = new Relaxation_debug_check();
1895
1896   // Save segment states.
1897   this->segment_states_ = new Segment_states();
1898   this->save_segments(this->segment_states_);
1899
1900   for(Section_list::const_iterator p = this->section_list_.begin();
1901       p != this->section_list_.end();
1902       ++p)
1903     (*p)->save_states();
1904
1905   if (is_debugging_enabled(DEBUG_RELAXATION))
1906     this->relaxation_debug_check_->check_output_data_for_reset_values(
1907         this->section_list_, this->special_output_list_);
1908
1909   // Also enable recording of output section data from scripts.
1910   this->record_output_section_data_from_script_ = true;
1911 }
1912
1913 // Relaxation loop body:  If target has no relaxation, this runs only once
1914 // Otherwise, the target relaxation hook is called at the end of
1915 // each iteration.  If the hook returns true, it means re-layout of
1916 // section is required.  
1917 //
1918 // The number of segments created by a linking script without a PHDRS
1919 // clause may be affected by section sizes and alignments.  There is
1920 // a remote chance that relaxation causes different number of PT_LOAD
1921 // segments are created and sections are attached to different segments.
1922 // Therefore, we always throw away all segments created during section
1923 // layout.  In order to be able to restart the section layout, we keep
1924 // a copy of the segment list right before the relaxation loop and use
1925 // that to restore the segments.
1926 // 
1927 // PASS is the current relaxation pass number. 
1928 // SYMTAB is a symbol table.
1929 // PLOAD_SEG is the address of a pointer for the load segment.
1930 // PHDR_SEG is a pointer to the PHDR segment.
1931 // SEGMENT_HEADERS points to the output segment header.
1932 // FILE_HEADER points to the output file header.
1933 // PSHNDX is the address to store the output section index.
1934
1935 off_t inline
1936 Layout::relaxation_loop_body(
1937     int pass,
1938     Target* target,
1939     Symbol_table* symtab,
1940     Output_segment** pload_seg,
1941     Output_segment* phdr_seg,
1942     Output_segment_headers* segment_headers,
1943     Output_file_header* file_header,
1944     unsigned int* pshndx)
1945 {
1946   // If this is not the first iteration, we need to clean up after
1947   // relaxation so that we can lay out the sections again.
1948   if (pass != 0)
1949     this->clean_up_after_relaxation();
1950
1951   // If there is a SECTIONS clause, put all the input sections into
1952   // the required order.
1953   Output_segment* load_seg;
1954   if (this->script_options_->saw_sections_clause())
1955     load_seg = this->set_section_addresses_from_script(symtab);
1956   else if (parameters->options().relocatable())
1957     load_seg = NULL;
1958   else
1959     load_seg = this->find_first_load_seg();
1960
1961   if (parameters->options().oformat_enum()
1962       != General_options::OBJECT_FORMAT_ELF)
1963     load_seg = NULL;
1964
1965   // If the user set the address of the text segment, that may not be
1966   // compatible with putting the segment headers and file headers into
1967   // that segment.
1968   if (parameters->options().user_set_Ttext())
1969     load_seg = NULL;
1970
1971   gold_assert(phdr_seg == NULL
1972               || load_seg != NULL
1973               || this->script_options_->saw_sections_clause());
1974
1975   // If the address of the load segment we found has been set by
1976   // --section-start rather than by a script, then adjust the VMA and
1977   // LMA downward if possible to include the file and section headers.
1978   uint64_t header_gap = 0;
1979   if (load_seg != NULL
1980       && load_seg->are_addresses_set()
1981       && !this->script_options_->saw_sections_clause()
1982       && !parameters->options().relocatable())
1983     {
1984       file_header->finalize_data_size();
1985       segment_headers->finalize_data_size();
1986       size_t sizeof_headers = (file_header->data_size()
1987                                + segment_headers->data_size());
1988       const uint64_t abi_pagesize = target->abi_pagesize();
1989       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1990       hdr_paddr &= ~(abi_pagesize - 1);
1991       uint64_t subtract = load_seg->paddr() - hdr_paddr;
1992       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1993         load_seg = NULL;
1994       else
1995         {
1996           load_seg->set_addresses(load_seg->vaddr() - subtract,
1997                                   load_seg->paddr() - subtract);
1998           header_gap = subtract - sizeof_headers;
1999         }
2000     }
2001
2002   // Lay out the segment headers.
2003   if (!parameters->options().relocatable())
2004     {
2005       gold_assert(segment_headers != NULL);
2006       if (header_gap != 0 && load_seg != NULL)
2007         {
2008           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2009           load_seg->add_initial_output_data(z);
2010         }
2011       if (load_seg != NULL)
2012         load_seg->add_initial_output_data(segment_headers);
2013       if (phdr_seg != NULL)
2014         phdr_seg->add_initial_output_data(segment_headers);
2015     }
2016
2017   // Lay out the file header.
2018   if (load_seg != NULL)
2019     load_seg->add_initial_output_data(file_header);
2020
2021   if (this->script_options_->saw_phdrs_clause()
2022       && !parameters->options().relocatable())
2023     {
2024       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2025       // clause in a linker script.
2026       Script_sections* ss = this->script_options_->script_sections();
2027       ss->put_headers_in_phdrs(file_header, segment_headers);
2028     }
2029
2030   // We set the output section indexes in set_segment_offsets and
2031   // set_section_indexes.
2032   *pshndx = 1;
2033
2034   // Set the file offsets of all the segments, and all the sections
2035   // they contain.
2036   off_t off;
2037   if (!parameters->options().relocatable())
2038     off = this->set_segment_offsets(target, load_seg, pshndx);
2039   else
2040     off = this->set_relocatable_section_offsets(file_header, pshndx);
2041
2042    // Verify that the dummy relaxation does not change anything.
2043   if (is_debugging_enabled(DEBUG_RELAXATION))
2044     {
2045       if (pass == 0)
2046         this->relaxation_debug_check_->read_sections(this->section_list_);
2047       else
2048         this->relaxation_debug_check_->verify_sections(this->section_list_);
2049     }
2050
2051   *pload_seg = load_seg;
2052   return off;
2053 }
2054
2055 // Search the list of patterns and find the postion of the given section
2056 // name in the output section.  If the section name matches a glob
2057 // pattern and a non-glob name, then the non-glob position takes
2058 // precedence.  Return 0 if no match is found.
2059
2060 unsigned int
2061 Layout::find_section_order_index(const std::string& section_name)
2062 {
2063   Unordered_map<std::string, unsigned int>::iterator map_it;
2064   map_it = this->input_section_position_.find(section_name);
2065   if (map_it != this->input_section_position_.end())
2066     return map_it->second;
2067
2068   // Absolute match failed.  Linear search the glob patterns.
2069   std::vector<std::string>::iterator it;
2070   for (it = this->input_section_glob_.begin();
2071        it != this->input_section_glob_.end();
2072        ++it)
2073     {
2074        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2075          {
2076            map_it = this->input_section_position_.find(*it);
2077            gold_assert(map_it != this->input_section_position_.end());
2078            return map_it->second;
2079          }
2080     }
2081   return 0;
2082 }
2083
2084 // Read the sequence of input sections from the file specified with
2085 // --section-ordering-file.
2086
2087 void
2088 Layout::read_layout_from_file()
2089 {
2090   const char* filename = parameters->options().section_ordering_file();
2091   std::ifstream in;
2092   std::string line;
2093
2094   in.open(filename);
2095   if (!in)
2096     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2097                filename, strerror(errno));
2098
2099   std::getline(in, line);   // this chops off the trailing \n, if any
2100   unsigned int position = 1;
2101
2102   while (in)
2103     {
2104       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2105         line.resize(line.length() - 1);
2106       // Ignore comments, beginning with '#'
2107       if (line[0] == '#')
2108         {
2109           std::getline(in, line);
2110           continue;
2111         }
2112       this->input_section_position_[line] = position;
2113       // Store all glob patterns in a vector.
2114       if (is_wildcard_string(line.c_str()))
2115         this->input_section_glob_.push_back(line);
2116       position++;
2117       std::getline(in, line);
2118     }
2119 }
2120
2121 // Finalize the layout.  When this is called, we have created all the
2122 // output sections and all the output segments which are based on
2123 // input sections.  We have several things to do, and we have to do
2124 // them in the right order, so that we get the right results correctly
2125 // and efficiently.
2126
2127 // 1) Finalize the list of output segments and create the segment
2128 // table header.
2129
2130 // 2) Finalize the dynamic symbol table and associated sections.
2131
2132 // 3) Determine the final file offset of all the output segments.
2133
2134 // 4) Determine the final file offset of all the SHF_ALLOC output
2135 // sections.
2136
2137 // 5) Create the symbol table sections and the section name table
2138 // section.
2139
2140 // 6) Finalize the symbol table: set symbol values to their final
2141 // value and make a final determination of which symbols are going
2142 // into the output symbol table.
2143
2144 // 7) Create the section table header.
2145
2146 // 8) Determine the final file offset of all the output sections which
2147 // are not SHF_ALLOC, including the section table header.
2148
2149 // 9) Finalize the ELF file header.
2150
2151 // This function returns the size of the output file.
2152
2153 off_t
2154 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2155                  Target* target, const Task* task)
2156 {
2157   target->finalize_sections(this, input_objects, symtab);
2158
2159   this->count_local_symbols(task, input_objects);
2160
2161   this->link_stabs_sections();
2162
2163   Output_segment* phdr_seg = NULL;
2164   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2165     {
2166       // There was a dynamic object in the link.  We need to create
2167       // some information for the dynamic linker.
2168
2169       // Create the PT_PHDR segment which will hold the program
2170       // headers.
2171       if (!this->script_options_->saw_phdrs_clause())
2172         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2173
2174       // Create the dynamic symbol table, including the hash table.
2175       Output_section* dynstr;
2176       std::vector<Symbol*> dynamic_symbols;
2177       unsigned int local_dynamic_count;
2178       Versions versions(*this->script_options()->version_script_info(),
2179                         &this->dynpool_);
2180       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2181                                   &local_dynamic_count, &dynamic_symbols,
2182                                   &versions);
2183
2184       // Create the .interp section to hold the name of the
2185       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2186       // if we saw a .interp section in an input file.
2187       if ((!parameters->options().shared()
2188            || parameters->options().dynamic_linker() != NULL)
2189           && this->interp_segment_ == NULL)
2190         this->create_interp(target);
2191
2192       // Finish the .dynamic section to hold the dynamic data, and put
2193       // it in a PT_DYNAMIC segment.
2194       this->finish_dynamic_section(input_objects, symtab);
2195
2196       // We should have added everything we need to the dynamic string
2197       // table.
2198       this->dynpool_.set_string_offsets();
2199
2200       // Create the version sections.  We can't do this until the
2201       // dynamic string table is complete.
2202       this->create_version_sections(&versions, symtab, local_dynamic_count,
2203                                     dynamic_symbols, dynstr);
2204
2205       // Set the size of the _DYNAMIC symbol.  We can't do this until
2206       // after we call create_version_sections.
2207       this->set_dynamic_symbol_size(symtab);
2208     }
2209   
2210   // Create segment headers.
2211   Output_segment_headers* segment_headers =
2212     (parameters->options().relocatable()
2213      ? NULL
2214      : new Output_segment_headers(this->segment_list_));
2215
2216   // Lay out the file header.
2217   Output_file_header* file_header = new Output_file_header(target, symtab,
2218                                                            segment_headers);
2219
2220   this->special_output_list_.push_back(file_header);
2221   if (segment_headers != NULL)
2222     this->special_output_list_.push_back(segment_headers);
2223
2224   // Find approriate places for orphan output sections if we are using
2225   // a linker script.
2226   if (this->script_options_->saw_sections_clause())
2227     this->place_orphan_sections_in_script();
2228   
2229   Output_segment* load_seg;
2230   off_t off;
2231   unsigned int shndx;
2232   int pass = 0;
2233
2234   // Take a snapshot of the section layout as needed.
2235   if (target->may_relax())
2236     this->prepare_for_relaxation();
2237   
2238   // Run the relaxation loop to lay out sections.
2239   do
2240     {
2241       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2242                                        phdr_seg, segment_headers, file_header,
2243                                        &shndx);
2244       pass++;
2245     }
2246   while (target->may_relax()
2247          && target->relax(pass, input_objects, symtab, this, task));
2248
2249   // Set the file offsets of all the non-data sections we've seen so
2250   // far which don't have to wait for the input sections.  We need
2251   // this in order to finalize local symbols in non-allocated
2252   // sections.
2253   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2254
2255   // Set the section indexes of all unallocated sections seen so far,
2256   // in case any of them are somehow referenced by a symbol.
2257   shndx = this->set_section_indexes(shndx);
2258
2259   // Create the symbol table sections.
2260   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2261   if (!parameters->doing_static_link())
2262     this->assign_local_dynsym_offsets(input_objects);
2263
2264   // Process any symbol assignments from a linker script.  This must
2265   // be called after the symbol table has been finalized.
2266   this->script_options_->finalize_symbols(symtab, this);
2267
2268   // Create the incremental inputs sections.
2269   if (this->incremental_inputs_)
2270     {
2271       this->incremental_inputs_->finalize();
2272       this->create_incremental_info_sections(symtab);
2273     }
2274
2275   // Create the .shstrtab section.
2276   Output_section* shstrtab_section = this->create_shstrtab();
2277
2278   // Set the file offsets of the rest of the non-data sections which
2279   // don't have to wait for the input sections.
2280   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2281
2282   // Now that all sections have been created, set the section indexes
2283   // for any sections which haven't been done yet.
2284   shndx = this->set_section_indexes(shndx);
2285
2286   // Create the section table header.
2287   this->create_shdrs(shstrtab_section, &off);
2288
2289   // If there are no sections which require postprocessing, we can
2290   // handle the section names now, and avoid a resize later.
2291   if (!this->any_postprocessing_sections_)
2292     {
2293       off = this->set_section_offsets(off,
2294                                       POSTPROCESSING_SECTIONS_PASS);
2295       off =
2296           this->set_section_offsets(off,
2297                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2298     }
2299
2300   file_header->set_section_info(this->section_headers_, shstrtab_section);
2301
2302   // Now we know exactly where everything goes in the output file
2303   // (except for non-allocated sections which require postprocessing).
2304   Output_data::layout_complete();
2305
2306   this->output_file_size_ = off;
2307
2308   return off;
2309 }
2310
2311 // Create a note header following the format defined in the ELF ABI.
2312 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2313 // of the section to create, DESCSZ is the size of the descriptor.
2314 // ALLOCATE is true if the section should be allocated in memory.
2315 // This returns the new note section.  It sets *TRAILING_PADDING to
2316 // the number of trailing zero bytes required.
2317
2318 Output_section*
2319 Layout::create_note(const char* name, int note_type,
2320                     const char* section_name, size_t descsz,
2321                     bool allocate, size_t* trailing_padding)
2322 {
2323   // Authorities all agree that the values in a .note field should
2324   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2325   // they differ on what the alignment is for 64-bit binaries.
2326   // The GABI says unambiguously they take 8-byte alignment:
2327   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2328   // Other documentation says alignment should always be 4 bytes:
2329   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2330   // GNU ld and GNU readelf both support the latter (at least as of
2331   // version 2.16.91), and glibc always generates the latter for
2332   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2333   // here.
2334 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2335   const int size = parameters->target().get_size();
2336 #else
2337   const int size = 32;
2338 #endif
2339
2340   // The contents of the .note section.
2341   size_t namesz = strlen(name) + 1;
2342   size_t aligned_namesz = align_address(namesz, size / 8);
2343   size_t aligned_descsz = align_address(descsz, size / 8);
2344
2345   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2346
2347   unsigned char* buffer = new unsigned char[notehdrsz];
2348   memset(buffer, 0, notehdrsz);
2349
2350   bool is_big_endian = parameters->target().is_big_endian();
2351
2352   if (size == 32)
2353     {
2354       if (!is_big_endian)
2355         {
2356           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2357           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2358           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2359         }
2360       else
2361         {
2362           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2363           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2364           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2365         }
2366     }
2367   else if (size == 64)
2368     {
2369       if (!is_big_endian)
2370         {
2371           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2372           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2373           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2374         }
2375       else
2376         {
2377           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2378           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2379           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2380         }
2381     }
2382   else
2383     gold_unreachable();
2384
2385   memcpy(buffer + 3 * (size / 8), name, namesz);
2386
2387   elfcpp::Elf_Xword flags = 0;
2388   Output_section_order order = ORDER_INVALID;
2389   if (allocate)
2390     {
2391       flags = elfcpp::SHF_ALLOC;
2392       order = ORDER_RO_NOTE;
2393     }
2394   Output_section* os = this->choose_output_section(NULL, section_name,
2395                                                    elfcpp::SHT_NOTE,
2396                                                    flags, false, order, false);
2397   if (os == NULL)
2398     return NULL;
2399
2400   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2401                                                            size / 8,
2402                                                            "** note header");
2403   os->add_output_section_data(posd);
2404
2405   *trailing_padding = aligned_descsz - descsz;
2406
2407   return os;
2408 }
2409
2410 // For an executable or shared library, create a note to record the
2411 // version of gold used to create the binary.
2412
2413 void
2414 Layout::create_gold_note()
2415 {
2416   if (parameters->options().relocatable()
2417       || parameters->incremental_update())
2418     return;
2419
2420   std::string desc = std::string("gold ") + gold::get_version_string();
2421
2422   size_t trailing_padding;
2423   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2424                                          ".note.gnu.gold-version", desc.size(),
2425                                          false, &trailing_padding);
2426   if (os == NULL)
2427     return;
2428
2429   Output_section_data* posd = new Output_data_const(desc, 4);
2430   os->add_output_section_data(posd);
2431
2432   if (trailing_padding > 0)
2433     {
2434       posd = new Output_data_zero_fill(trailing_padding, 0);
2435       os->add_output_section_data(posd);
2436     }
2437 }
2438
2439 // Record whether the stack should be executable.  This can be set
2440 // from the command line using the -z execstack or -z noexecstack
2441 // options.  Otherwise, if any input file has a .note.GNU-stack
2442 // section with the SHF_EXECINSTR flag set, the stack should be
2443 // executable.  Otherwise, if at least one input file a
2444 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2445 // section, we use the target default for whether the stack should be
2446 // executable.  Otherwise, we don't generate a stack note.  When
2447 // generating a object file, we create a .note.GNU-stack section with
2448 // the appropriate marking.  When generating an executable or shared
2449 // library, we create a PT_GNU_STACK segment.
2450
2451 void
2452 Layout::create_executable_stack_info()
2453 {
2454   bool is_stack_executable;
2455   if (parameters->options().is_execstack_set())
2456     is_stack_executable = parameters->options().is_stack_executable();
2457   else if (!this->input_with_gnu_stack_note_)
2458     return;
2459   else
2460     {
2461       if (this->input_requires_executable_stack_)
2462         is_stack_executable = true;
2463       else if (this->input_without_gnu_stack_note_)
2464         is_stack_executable =
2465           parameters->target().is_default_stack_executable();
2466       else
2467         is_stack_executable = false;
2468     }
2469
2470   if (parameters->options().relocatable())
2471     {
2472       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2473       elfcpp::Elf_Xword flags = 0;
2474       if (is_stack_executable)
2475         flags |= elfcpp::SHF_EXECINSTR;
2476       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2477                                 ORDER_INVALID, false);
2478     }
2479   else
2480     {
2481       if (this->script_options_->saw_phdrs_clause())
2482         return;
2483       int flags = elfcpp::PF_R | elfcpp::PF_W;
2484       if (is_stack_executable)
2485         flags |= elfcpp::PF_X;
2486       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2487     }
2488 }
2489
2490 // If --build-id was used, set up the build ID note.
2491
2492 void
2493 Layout::create_build_id()
2494 {
2495   if (!parameters->options().user_set_build_id())
2496     return;
2497
2498   const char* style = parameters->options().build_id();
2499   if (strcmp(style, "none") == 0)
2500     return;
2501
2502   // Set DESCSZ to the size of the note descriptor.  When possible,
2503   // set DESC to the note descriptor contents.
2504   size_t descsz;
2505   std::string desc;
2506   if (strcmp(style, "md5") == 0)
2507     descsz = 128 / 8;
2508   else if (strcmp(style, "sha1") == 0)
2509     descsz = 160 / 8;
2510   else if (strcmp(style, "uuid") == 0)
2511     {
2512       const size_t uuidsz = 128 / 8;
2513
2514       char buffer[uuidsz];
2515       memset(buffer, 0, uuidsz);
2516
2517       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2518       if (descriptor < 0)
2519         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2520                    strerror(errno));
2521       else
2522         {
2523           ssize_t got = ::read(descriptor, buffer, uuidsz);
2524           release_descriptor(descriptor, true);
2525           if (got < 0)
2526             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2527           else if (static_cast<size_t>(got) != uuidsz)
2528             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2529                        uuidsz, got);
2530         }
2531
2532       desc.assign(buffer, uuidsz);
2533       descsz = uuidsz;
2534     }
2535   else if (strncmp(style, "0x", 2) == 0)
2536     {
2537       hex_init();
2538       const char* p = style + 2;
2539       while (*p != '\0')
2540         {
2541           if (hex_p(p[0]) && hex_p(p[1]))
2542             {
2543               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2544               desc += c;
2545               p += 2;
2546             }
2547           else if (*p == '-' || *p == ':')
2548             ++p;
2549           else
2550             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2551                        style);
2552         }
2553       descsz = desc.size();
2554     }
2555   else
2556     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2557
2558   // Create the note.
2559   size_t trailing_padding;
2560   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2561                                          ".note.gnu.build-id", descsz, true,
2562                                          &trailing_padding);
2563   if (os == NULL)
2564     return;
2565
2566   if (!desc.empty())
2567     {
2568       // We know the value already, so we fill it in now.
2569       gold_assert(desc.size() == descsz);
2570
2571       Output_section_data* posd = new Output_data_const(desc, 4);
2572       os->add_output_section_data(posd);
2573
2574       if (trailing_padding != 0)
2575         {
2576           posd = new Output_data_zero_fill(trailing_padding, 0);
2577           os->add_output_section_data(posd);
2578         }
2579     }
2580   else
2581     {
2582       // We need to compute a checksum after we have completed the
2583       // link.
2584       gold_assert(trailing_padding == 0);
2585       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2586       os->add_output_section_data(this->build_id_note_);
2587     }
2588 }
2589
2590 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2591 // field of the former should point to the latter.  I'm not sure who
2592 // started this, but the GNU linker does it, and some tools depend
2593 // upon it.
2594
2595 void
2596 Layout::link_stabs_sections()
2597 {
2598   if (!this->have_stabstr_section_)
2599     return;
2600
2601   for (Section_list::iterator p = this->section_list_.begin();
2602        p != this->section_list_.end();
2603        ++p)
2604     {
2605       if ((*p)->type() != elfcpp::SHT_STRTAB)
2606         continue;
2607
2608       const char* name = (*p)->name();
2609       if (strncmp(name, ".stab", 5) != 0)
2610         continue;
2611
2612       size_t len = strlen(name);
2613       if (strcmp(name + len - 3, "str") != 0)
2614         continue;
2615
2616       std::string stab_name(name, len - 3);
2617       Output_section* stab_sec;
2618       stab_sec = this->find_output_section(stab_name.c_str());
2619       if (stab_sec != NULL)
2620         stab_sec->set_link_section(*p);
2621     }
2622 }
2623
2624 // Create .gnu_incremental_inputs and related sections needed
2625 // for the next run of incremental linking to check what has changed.
2626
2627 void
2628 Layout::create_incremental_info_sections(Symbol_table* symtab)
2629 {
2630   Incremental_inputs* incr = this->incremental_inputs_;
2631
2632   gold_assert(incr != NULL);
2633
2634   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2635   incr->create_data_sections(symtab);
2636
2637   // Add the .gnu_incremental_inputs section.
2638   const char* incremental_inputs_name =
2639     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2640   Output_section* incremental_inputs_os =
2641     this->make_output_section(incremental_inputs_name,
2642                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2643                               ORDER_INVALID, false);
2644   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2645
2646   // Add the .gnu_incremental_symtab section.
2647   const char* incremental_symtab_name =
2648     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2649   Output_section* incremental_symtab_os =
2650     this->make_output_section(incremental_symtab_name,
2651                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2652                               ORDER_INVALID, false);
2653   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2654   incremental_symtab_os->set_entsize(4);
2655
2656   // Add the .gnu_incremental_relocs section.
2657   const char* incremental_relocs_name =
2658     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2659   Output_section* incremental_relocs_os =
2660     this->make_output_section(incremental_relocs_name,
2661                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2662                               ORDER_INVALID, false);
2663   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2664   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2665
2666   // Add the .gnu_incremental_got_plt section.
2667   const char* incremental_got_plt_name =
2668     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2669   Output_section* incremental_got_plt_os =
2670     this->make_output_section(incremental_got_plt_name,
2671                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2672                               ORDER_INVALID, false);
2673   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2674
2675   // Add the .gnu_incremental_strtab section.
2676   const char* incremental_strtab_name =
2677     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2678   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2679                                                         elfcpp::SHT_STRTAB, 0,
2680                                                         ORDER_INVALID, false);
2681   Output_data_strtab* strtab_data =
2682       new Output_data_strtab(incr->get_stringpool());
2683   incremental_strtab_os->add_output_section_data(strtab_data);
2684
2685   incremental_inputs_os->set_after_input_sections();
2686   incremental_symtab_os->set_after_input_sections();
2687   incremental_relocs_os->set_after_input_sections();
2688   incremental_got_plt_os->set_after_input_sections();
2689
2690   incremental_inputs_os->set_link_section(incremental_strtab_os);
2691   incremental_symtab_os->set_link_section(incremental_inputs_os);
2692   incremental_relocs_os->set_link_section(incremental_inputs_os);
2693   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2694 }
2695
2696 // Return whether SEG1 should be before SEG2 in the output file.  This
2697 // is based entirely on the segment type and flags.  When this is
2698 // called the segment addresses has normally not yet been set.
2699
2700 bool
2701 Layout::segment_precedes(const Output_segment* seg1,
2702                          const Output_segment* seg2)
2703 {
2704   elfcpp::Elf_Word type1 = seg1->type();
2705   elfcpp::Elf_Word type2 = seg2->type();
2706
2707   // The single PT_PHDR segment is required to precede any loadable
2708   // segment.  We simply make it always first.
2709   if (type1 == elfcpp::PT_PHDR)
2710     {
2711       gold_assert(type2 != elfcpp::PT_PHDR);
2712       return true;
2713     }
2714   if (type2 == elfcpp::PT_PHDR)
2715     return false;
2716
2717   // The single PT_INTERP segment is required to precede any loadable
2718   // segment.  We simply make it always second.
2719   if (type1 == elfcpp::PT_INTERP)
2720     {
2721       gold_assert(type2 != elfcpp::PT_INTERP);
2722       return true;
2723     }
2724   if (type2 == elfcpp::PT_INTERP)
2725     return false;
2726
2727   // We then put PT_LOAD segments before any other segments.
2728   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2729     return true;
2730   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2731     return false;
2732
2733   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2734   // segment, because that is where the dynamic linker expects to find
2735   // it (this is just for efficiency; other positions would also work
2736   // correctly).
2737   if (type1 == elfcpp::PT_TLS
2738       && type2 != elfcpp::PT_TLS
2739       && type2 != elfcpp::PT_GNU_RELRO)
2740     return false;
2741   if (type2 == elfcpp::PT_TLS
2742       && type1 != elfcpp::PT_TLS
2743       && type1 != elfcpp::PT_GNU_RELRO)
2744     return true;
2745
2746   // We put the PT_GNU_RELRO segment last, because that is where the
2747   // dynamic linker expects to find it (as with PT_TLS, this is just
2748   // for efficiency).
2749   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2750     return false;
2751   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2752     return true;
2753
2754   const elfcpp::Elf_Word flags1 = seg1->flags();
2755   const elfcpp::Elf_Word flags2 = seg2->flags();
2756
2757   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2758   // by the numeric segment type and flags values.  There should not
2759   // be more than one segment with the same type and flags.
2760   if (type1 != elfcpp::PT_LOAD)
2761     {
2762       if (type1 != type2)
2763         return type1 < type2;
2764       gold_assert(flags1 != flags2);
2765       return flags1 < flags2;
2766     }
2767
2768   // If the addresses are set already, sort by load address.
2769   if (seg1->are_addresses_set())
2770     {
2771       if (!seg2->are_addresses_set())
2772         return true;
2773
2774       unsigned int section_count1 = seg1->output_section_count();
2775       unsigned int section_count2 = seg2->output_section_count();
2776       if (section_count1 == 0 && section_count2 > 0)
2777         return true;
2778       if (section_count1 > 0 && section_count2 == 0)
2779         return false;
2780
2781       uint64_t paddr1 = (seg1->are_addresses_set()
2782                          ? seg1->paddr()
2783                          : seg1->first_section_load_address());
2784       uint64_t paddr2 = (seg2->are_addresses_set()
2785                          ? seg2->paddr()
2786                          : seg2->first_section_load_address());
2787
2788       if (paddr1 != paddr2)
2789         return paddr1 < paddr2;
2790     }
2791   else if (seg2->are_addresses_set())
2792     return false;
2793
2794   // A segment which holds large data comes after a segment which does
2795   // not hold large data.
2796   if (seg1->is_large_data_segment())
2797     {
2798       if (!seg2->is_large_data_segment())
2799         return false;
2800     }
2801   else if (seg2->is_large_data_segment())
2802     return true;
2803
2804   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2805   // segments come before writable segments.  Then writable segments
2806   // with data come before writable segments without data.  Then
2807   // executable segments come before non-executable segments.  Then
2808   // the unlikely case of a non-readable segment comes before the
2809   // normal case of a readable segment.  If there are multiple
2810   // segments with the same type and flags, we require that the
2811   // address be set, and we sort by virtual address and then physical
2812   // address.
2813   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2814     return (flags1 & elfcpp::PF_W) == 0;
2815   if ((flags1 & elfcpp::PF_W) != 0
2816       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2817     return seg1->has_any_data_sections();
2818   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2819     return (flags1 & elfcpp::PF_X) != 0;
2820   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2821     return (flags1 & elfcpp::PF_R) == 0;
2822
2823   // We shouldn't get here--we shouldn't create segments which we
2824   // can't distinguish.
2825   gold_unreachable();
2826 }
2827
2828 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2829
2830 static off_t
2831 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2832 {
2833   uint64_t unsigned_off = off;
2834   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2835                           | (addr & (abi_pagesize - 1)));
2836   if (aligned_off < unsigned_off)
2837     aligned_off += abi_pagesize;
2838   return aligned_off;
2839 }
2840
2841 // Set the file offsets of all the segments, and all the sections they
2842 // contain.  They have all been created.  LOAD_SEG must be be laid out
2843 // first.  Return the offset of the data to follow.
2844
2845 off_t
2846 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2847                             unsigned int* pshndx)
2848 {
2849   // Sort them into the final order.
2850   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2851             Layout::Compare_segments());
2852
2853   // Find the PT_LOAD segments, and set their addresses and offsets
2854   // and their section's addresses and offsets.
2855   uint64_t addr;
2856   if (parameters->options().user_set_Ttext())
2857     addr = parameters->options().Ttext();
2858   else if (parameters->options().output_is_position_independent())
2859     addr = 0;
2860   else
2861     addr = target->default_text_segment_address();
2862   off_t off = 0;
2863
2864   // If LOAD_SEG is NULL, then the file header and segment headers
2865   // will not be loadable.  But they still need to be at offset 0 in
2866   // the file.  Set their offsets now.
2867   if (load_seg == NULL)
2868     {
2869       for (Data_list::iterator p = this->special_output_list_.begin();
2870            p != this->special_output_list_.end();
2871            ++p)
2872         {
2873           off = align_address(off, (*p)->addralign());
2874           (*p)->set_address_and_file_offset(0, off);
2875           off += (*p)->data_size();
2876         }
2877     }
2878
2879   unsigned int increase_relro = this->increase_relro_;
2880   if (this->script_options_->saw_sections_clause())
2881     increase_relro = 0;
2882
2883   const bool check_sections = parameters->options().check_sections();
2884   Output_segment* last_load_segment = NULL;
2885
2886   for (Segment_list::iterator p = this->segment_list_.begin();
2887        p != this->segment_list_.end();
2888        ++p)
2889     {
2890       if ((*p)->type() == elfcpp::PT_LOAD)
2891         {
2892           if (load_seg != NULL && load_seg != *p)
2893             gold_unreachable();
2894           load_seg = NULL;
2895
2896           bool are_addresses_set = (*p)->are_addresses_set();
2897           if (are_addresses_set)
2898             {
2899               // When it comes to setting file offsets, we care about
2900               // the physical address.
2901               addr = (*p)->paddr();
2902             }
2903           else if (parameters->options().user_set_Tdata()
2904                    && ((*p)->flags() & elfcpp::PF_W) != 0
2905                    && (!parameters->options().user_set_Tbss()
2906                        || (*p)->has_any_data_sections()))
2907             {
2908               addr = parameters->options().Tdata();
2909               are_addresses_set = true;
2910             }
2911           else if (parameters->options().user_set_Tbss()
2912                    && ((*p)->flags() & elfcpp::PF_W) != 0
2913                    && !(*p)->has_any_data_sections())
2914             {
2915               addr = parameters->options().Tbss();
2916               are_addresses_set = true;
2917             }
2918
2919           uint64_t orig_addr = addr;
2920           uint64_t orig_off = off;
2921
2922           uint64_t aligned_addr = 0;
2923           uint64_t abi_pagesize = target->abi_pagesize();
2924           uint64_t common_pagesize = target->common_pagesize();
2925
2926           if (!parameters->options().nmagic()
2927               && !parameters->options().omagic())
2928             (*p)->set_minimum_p_align(common_pagesize);
2929
2930           if (!are_addresses_set)
2931             {
2932               // Skip the address forward one page, maintaining the same
2933               // position within the page.  This lets us store both segments
2934               // overlapping on a single page in the file, but the loader will
2935               // put them on different pages in memory. We will revisit this
2936               // decision once we know the size of the segment.
2937
2938               addr = align_address(addr, (*p)->maximum_alignment());
2939               aligned_addr = addr;
2940
2941               if ((addr & (abi_pagesize - 1)) != 0)
2942                 addr = addr + abi_pagesize;
2943
2944               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2945             }
2946
2947           if (!parameters->options().nmagic()
2948               && !parameters->options().omagic())
2949             off = align_file_offset(off, addr, abi_pagesize);
2950           else if (load_seg == NULL)
2951             {
2952               // This is -N or -n with a section script which prevents
2953               // us from using a load segment.  We need to ensure that
2954               // the file offset is aligned to the alignment of the
2955               // segment.  This is because the linker script
2956               // implicitly assumed a zero offset.  If we don't align
2957               // here, then the alignment of the sections in the
2958               // linker script may not match the alignment of the
2959               // sections in the set_section_addresses call below,
2960               // causing an error about dot moving backward.
2961               off = align_address(off, (*p)->maximum_alignment());
2962             }
2963
2964           unsigned int shndx_hold = *pshndx;
2965           bool has_relro = false;
2966           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2967                                                           &increase_relro,
2968                                                           &has_relro,
2969                                                           &off, pshndx);
2970
2971           // Now that we know the size of this segment, we may be able
2972           // to save a page in memory, at the cost of wasting some
2973           // file space, by instead aligning to the start of a new
2974           // page.  Here we use the real machine page size rather than
2975           // the ABI mandated page size.  If the segment has been
2976           // aligned so that the relro data ends at a page boundary,
2977           // we do not try to realign it.
2978
2979           if (!are_addresses_set
2980               && !has_relro
2981               && aligned_addr != addr
2982               && !parameters->incremental())
2983             {
2984               uint64_t first_off = (common_pagesize
2985                                     - (aligned_addr
2986                                        & (common_pagesize - 1)));
2987               uint64_t last_off = new_addr & (common_pagesize - 1);
2988               if (first_off > 0
2989                   && last_off > 0
2990                   && ((aligned_addr & ~ (common_pagesize - 1))
2991                       != (new_addr & ~ (common_pagesize - 1)))
2992                   && first_off + last_off <= common_pagesize)
2993                 {
2994                   *pshndx = shndx_hold;
2995                   addr = align_address(aligned_addr, common_pagesize);
2996                   addr = align_address(addr, (*p)->maximum_alignment());
2997                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2998                   off = align_file_offset(off, addr, abi_pagesize);
2999
3000                   increase_relro = this->increase_relro_;
3001                   if (this->script_options_->saw_sections_clause())
3002                     increase_relro = 0;
3003                   has_relro = false;
3004
3005                   new_addr = (*p)->set_section_addresses(this, true, addr,
3006                                                          &increase_relro,
3007                                                          &has_relro,
3008                                                          &off, pshndx);
3009                 }
3010             }
3011
3012           addr = new_addr;
3013
3014           // Implement --check-sections.  We know that the segments
3015           // are sorted by LMA.
3016           if (check_sections && last_load_segment != NULL)
3017             {
3018               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3019               if (last_load_segment->paddr() + last_load_segment->memsz()
3020                   > (*p)->paddr())
3021                 {
3022                   unsigned long long lb1 = last_load_segment->paddr();
3023                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3024                   unsigned long long lb2 = (*p)->paddr();
3025                   unsigned long long le2 = lb2 + (*p)->memsz();
3026                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3027                                "[0x%llx -> 0x%llx]"),
3028                              lb1, le1, lb2, le2);
3029                 }
3030             }
3031           last_load_segment = *p;
3032         }
3033     }
3034
3035   // Handle the non-PT_LOAD segments, setting their offsets from their
3036   // section's offsets.
3037   for (Segment_list::iterator p = this->segment_list_.begin();
3038        p != this->segment_list_.end();
3039        ++p)
3040     {
3041       if ((*p)->type() != elfcpp::PT_LOAD)
3042         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3043                          ? increase_relro
3044                          : 0);
3045     }
3046
3047   // Set the TLS offsets for each section in the PT_TLS segment.
3048   if (this->tls_segment_ != NULL)
3049     this->tls_segment_->set_tls_offsets();
3050
3051   return off;
3052 }
3053
3054 // Set the offsets of all the allocated sections when doing a
3055 // relocatable link.  This does the same jobs as set_segment_offsets,
3056 // only for a relocatable link.
3057
3058 off_t
3059 Layout::set_relocatable_section_offsets(Output_data* file_header,
3060                                         unsigned int* pshndx)
3061 {
3062   off_t off = 0;
3063
3064   file_header->set_address_and_file_offset(0, 0);
3065   off += file_header->data_size();
3066
3067   for (Section_list::iterator p = this->section_list_.begin();
3068        p != this->section_list_.end();
3069        ++p)
3070     {
3071       // We skip unallocated sections here, except that group sections
3072       // have to come first.
3073       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3074           && (*p)->type() != elfcpp::SHT_GROUP)
3075         continue;
3076
3077       off = align_address(off, (*p)->addralign());
3078
3079       // The linker script might have set the address.
3080       if (!(*p)->is_address_valid())
3081         (*p)->set_address(0);
3082       (*p)->set_file_offset(off);
3083       (*p)->finalize_data_size();
3084       off += (*p)->data_size();
3085
3086       (*p)->set_out_shndx(*pshndx);
3087       ++*pshndx;
3088     }
3089
3090   return off;
3091 }
3092
3093 // Set the file offset of all the sections not associated with a
3094 // segment.
3095
3096 off_t
3097 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3098 {
3099   off_t startoff = off;
3100   off_t maxoff = off;
3101
3102   for (Section_list::iterator p = this->unattached_section_list_.begin();
3103        p != this->unattached_section_list_.end();
3104        ++p)
3105     {
3106       // The symtab section is handled in create_symtab_sections.
3107       if (*p == this->symtab_section_)
3108         continue;
3109
3110       // If we've already set the data size, don't set it again.
3111       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3112         continue;
3113
3114       if (pass == BEFORE_INPUT_SECTIONS_PASS
3115           && (*p)->requires_postprocessing())
3116         {
3117           (*p)->create_postprocessing_buffer();
3118           this->any_postprocessing_sections_ = true;
3119         }
3120
3121       if (pass == BEFORE_INPUT_SECTIONS_PASS
3122           && (*p)->after_input_sections())
3123         continue;
3124       else if (pass == POSTPROCESSING_SECTIONS_PASS
3125                && (!(*p)->after_input_sections()
3126                    || (*p)->type() == elfcpp::SHT_STRTAB))
3127         continue;
3128       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3129                && (!(*p)->after_input_sections()
3130                    || (*p)->type() != elfcpp::SHT_STRTAB))
3131         continue;
3132
3133       if (!parameters->incremental_update())
3134         {
3135           off = align_address(off, (*p)->addralign());
3136           (*p)->set_file_offset(off);
3137           (*p)->finalize_data_size();
3138         }
3139       else
3140         {
3141           // Incremental update: allocate file space from free list.
3142           (*p)->pre_finalize_data_size();
3143           off_t current_size = (*p)->current_data_size();
3144           off = this->allocate(current_size, (*p)->addralign(), startoff);
3145           if (off == -1)
3146             {
3147               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3148                 this->free_list_.dump();
3149               gold_assert((*p)->output_section() != NULL);
3150               gold_fallback(_("out of patch space for section %s; "
3151                               "relink with --incremental-full"),
3152                             (*p)->output_section()->name());
3153             }
3154           (*p)->set_file_offset(off);
3155           (*p)->finalize_data_size();
3156           if ((*p)->data_size() > current_size)
3157             {
3158               gold_assert((*p)->output_section() != NULL);
3159               gold_fallback(_("%s: section changed size; "
3160                               "relink with --incremental-full"),
3161                             (*p)->output_section()->name());
3162             }
3163           gold_debug(DEBUG_INCREMENTAL,
3164                      "set_section_offsets: %08lx %08lx %s",
3165                      static_cast<long>(off),
3166                      static_cast<long>((*p)->data_size()),
3167                      ((*p)->output_section() != NULL
3168                       ? (*p)->output_section()->name() : "(special)"));
3169         }
3170
3171       off += (*p)->data_size();
3172       if (off > maxoff)
3173         maxoff = off;
3174
3175       // At this point the name must be set.
3176       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3177         this->namepool_.add((*p)->name(), false, NULL);
3178     }
3179   return maxoff;
3180 }
3181
3182 // Set the section indexes of all the sections not associated with a
3183 // segment.
3184
3185 unsigned int
3186 Layout::set_section_indexes(unsigned int shndx)
3187 {
3188   for (Section_list::iterator p = this->unattached_section_list_.begin();
3189        p != this->unattached_section_list_.end();
3190        ++p)
3191     {
3192       if (!(*p)->has_out_shndx())
3193         {
3194           (*p)->set_out_shndx(shndx);
3195           ++shndx;
3196         }
3197     }
3198   return shndx;
3199 }
3200
3201 // Set the section addresses according to the linker script.  This is
3202 // only called when we see a SECTIONS clause.  This returns the
3203 // program segment which should hold the file header and segment
3204 // headers, if any.  It will return NULL if they should not be in a
3205 // segment.
3206
3207 Output_segment*
3208 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3209 {
3210   Script_sections* ss = this->script_options_->script_sections();
3211   gold_assert(ss->saw_sections_clause());
3212   return this->script_options_->set_section_addresses(symtab, this);
3213 }
3214
3215 // Place the orphan sections in the linker script.
3216
3217 void
3218 Layout::place_orphan_sections_in_script()
3219 {
3220   Script_sections* ss = this->script_options_->script_sections();
3221   gold_assert(ss->saw_sections_clause());
3222
3223   // Place each orphaned output section in the script.
3224   for (Section_list::iterator p = this->section_list_.begin();
3225        p != this->section_list_.end();
3226        ++p)
3227     {
3228       if (!(*p)->found_in_sections_clause())
3229         ss->place_orphan(*p);
3230     }
3231 }
3232
3233 // Count the local symbols in the regular symbol table and the dynamic
3234 // symbol table, and build the respective string pools.
3235
3236 void
3237 Layout::count_local_symbols(const Task* task,
3238                             const Input_objects* input_objects)
3239 {
3240   // First, figure out an upper bound on the number of symbols we'll
3241   // be inserting into each pool.  This helps us create the pools with
3242   // the right size, to avoid unnecessary hashtable resizing.
3243   unsigned int symbol_count = 0;
3244   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3245        p != input_objects->relobj_end();
3246        ++p)
3247     symbol_count += (*p)->local_symbol_count();
3248
3249   // Go from "upper bound" to "estimate."  We overcount for two
3250   // reasons: we double-count symbols that occur in more than one
3251   // object file, and we count symbols that are dropped from the
3252   // output.  Add it all together and assume we overcount by 100%.
3253   symbol_count /= 2;
3254
3255   // We assume all symbols will go into both the sympool and dynpool.
3256   this->sympool_.reserve(symbol_count);
3257   this->dynpool_.reserve(symbol_count);
3258
3259   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3260        p != input_objects->relobj_end();
3261        ++p)
3262     {
3263       Task_lock_obj<Object> tlo(task, *p);
3264       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3265     }
3266 }
3267
3268 // Create the symbol table sections.  Here we also set the final
3269 // values of the symbols.  At this point all the loadable sections are
3270 // fully laid out.  SHNUM is the number of sections so far.
3271
3272 void
3273 Layout::create_symtab_sections(const Input_objects* input_objects,
3274                                Symbol_table* symtab,
3275                                unsigned int shnum,
3276                                off_t* poff)
3277 {
3278   int symsize;
3279   unsigned int align;
3280   if (parameters->target().get_size() == 32)
3281     {
3282       symsize = elfcpp::Elf_sizes<32>::sym_size;
3283       align = 4;
3284     }
3285   else if (parameters->target().get_size() == 64)
3286     {
3287       symsize = elfcpp::Elf_sizes<64>::sym_size;
3288       align = 8;
3289     }
3290   else
3291     gold_unreachable();
3292
3293   // Compute file offsets relative to the start of the symtab section.
3294   off_t off = 0;
3295
3296   // Save space for the dummy symbol at the start of the section.  We
3297   // never bother to write this out--it will just be left as zero.
3298   off += symsize;
3299   unsigned int local_symbol_index = 1;
3300
3301   // Add STT_SECTION symbols for each Output section which needs one.
3302   for (Section_list::iterator p = this->section_list_.begin();
3303        p != this->section_list_.end();
3304        ++p)
3305     {
3306       if (!(*p)->needs_symtab_index())
3307         (*p)->set_symtab_index(-1U);
3308       else
3309         {
3310           (*p)->set_symtab_index(local_symbol_index);
3311           ++local_symbol_index;
3312           off += symsize;
3313         }
3314     }
3315
3316   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3317        p != input_objects->relobj_end();
3318        ++p)
3319     {
3320       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3321                                                         off, symtab);
3322       off += (index - local_symbol_index) * symsize;
3323       local_symbol_index = index;
3324     }
3325
3326   unsigned int local_symcount = local_symbol_index;
3327   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3328
3329   off_t dynoff;
3330   size_t dyn_global_index;
3331   size_t dyncount;
3332   if (this->dynsym_section_ == NULL)
3333     {
3334       dynoff = 0;
3335       dyn_global_index = 0;
3336       dyncount = 0;
3337     }
3338   else
3339     {
3340       dyn_global_index = this->dynsym_section_->info();
3341       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3342       dynoff = this->dynsym_section_->offset() + locsize;
3343       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3344       gold_assert(static_cast<off_t>(dyncount * symsize)
3345                   == this->dynsym_section_->data_size() - locsize);
3346     }
3347
3348   off_t global_off = off;
3349   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3350                          &this->sympool_, &local_symcount);
3351
3352   if (!parameters->options().strip_all())
3353     {
3354       this->sympool_.set_string_offsets();
3355
3356       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3357       Output_section* osymtab = this->make_output_section(symtab_name,
3358                                                           elfcpp::SHT_SYMTAB,
3359                                                           0, ORDER_INVALID,
3360                                                           false);
3361       this->symtab_section_ = osymtab;
3362
3363       Output_section_data* pos = new Output_data_fixed_space(off, align,
3364                                                              "** symtab");
3365       osymtab->add_output_section_data(pos);
3366
3367       // We generate a .symtab_shndx section if we have more than
3368       // SHN_LORESERVE sections.  Technically it is possible that we
3369       // don't need one, because it is possible that there are no
3370       // symbols in any of sections with indexes larger than
3371       // SHN_LORESERVE.  That is probably unusual, though, and it is
3372       // easier to always create one than to compute section indexes
3373       // twice (once here, once when writing out the symbols).
3374       if (shnum >= elfcpp::SHN_LORESERVE)
3375         {
3376           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3377                                                                false, NULL);
3378           Output_section* osymtab_xindex =
3379             this->make_output_section(symtab_xindex_name,
3380                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3381                                       ORDER_INVALID, false);
3382
3383           size_t symcount = off / symsize;
3384           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3385
3386           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3387
3388           osymtab_xindex->set_link_section(osymtab);
3389           osymtab_xindex->set_addralign(4);
3390           osymtab_xindex->set_entsize(4);
3391
3392           osymtab_xindex->set_after_input_sections();
3393
3394           // This tells the driver code to wait until the symbol table
3395           // has written out before writing out the postprocessing
3396           // sections, including the .symtab_shndx section.
3397           this->any_postprocessing_sections_ = true;
3398         }
3399
3400       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3401       Output_section* ostrtab = this->make_output_section(strtab_name,
3402                                                           elfcpp::SHT_STRTAB,
3403                                                           0, ORDER_INVALID,
3404                                                           false);
3405
3406       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3407       ostrtab->add_output_section_data(pstr);
3408
3409       off_t symtab_off;
3410       if (!parameters->incremental_update())
3411         symtab_off = align_address(*poff, align);
3412       else
3413         {
3414           symtab_off = this->allocate(off, align, *poff);
3415           if (off == -1)
3416             gold_fallback(_("out of patch space for symbol table; "
3417                             "relink with --incremental-full"));
3418           gold_debug(DEBUG_INCREMENTAL,
3419                      "create_symtab_sections: %08lx %08lx .symtab",
3420                      static_cast<long>(symtab_off),
3421                      static_cast<long>(off));
3422         }
3423
3424       symtab->set_file_offset(symtab_off + global_off);
3425       osymtab->set_file_offset(symtab_off);
3426       osymtab->finalize_data_size();
3427       osymtab->set_link_section(ostrtab);
3428       osymtab->set_info(local_symcount);
3429       osymtab->set_entsize(symsize);
3430
3431       if (symtab_off + off > *poff)
3432         *poff = symtab_off + off;
3433     }
3434 }
3435
3436 // Create the .shstrtab section, which holds the names of the
3437 // sections.  At the time this is called, we have created all the
3438 // output sections except .shstrtab itself.
3439
3440 Output_section*
3441 Layout::create_shstrtab()
3442 {
3443   // FIXME: We don't need to create a .shstrtab section if we are
3444   // stripping everything.
3445
3446   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3447
3448   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3449                                                  ORDER_INVALID, false);
3450
3451   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3452     {
3453       // We can't write out this section until we've set all the
3454       // section names, and we don't set the names of compressed
3455       // output sections until relocations are complete.  FIXME: With
3456       // the current names we use, this is unnecessary.
3457       os->set_after_input_sections();
3458     }
3459
3460   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3461   os->add_output_section_data(posd);
3462
3463   return os;
3464 }
3465
3466 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3467 // offset.
3468
3469 void
3470 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3471 {
3472   Output_section_headers* oshdrs;
3473   oshdrs = new Output_section_headers(this,
3474                                       &this->segment_list_,
3475                                       &this->section_list_,
3476                                       &this->unattached_section_list_,
3477                                       &this->namepool_,
3478                                       shstrtab_section);
3479   off_t off;
3480   if (!parameters->incremental_update())
3481     off = align_address(*poff, oshdrs->addralign());
3482   else
3483     {
3484       oshdrs->pre_finalize_data_size();
3485       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3486       if (off == -1)
3487           gold_fallback(_("out of patch space for section header table; "
3488                           "relink with --incremental-full"));
3489       gold_debug(DEBUG_INCREMENTAL,
3490                  "create_shdrs: %08lx %08lx (section header table)",
3491                  static_cast<long>(off),
3492                  static_cast<long>(off + oshdrs->data_size()));
3493     }
3494   oshdrs->set_address_and_file_offset(0, off);
3495   off += oshdrs->data_size();
3496   if (off > *poff)
3497     *poff = off;
3498   this->section_headers_ = oshdrs;
3499 }
3500
3501 // Count the allocated sections.
3502
3503 size_t
3504 Layout::allocated_output_section_count() const
3505 {
3506   size_t section_count = 0;
3507   for (Segment_list::const_iterator p = this->segment_list_.begin();
3508        p != this->segment_list_.end();
3509        ++p)
3510     section_count += (*p)->output_section_count();
3511   return section_count;
3512 }
3513
3514 // Create the dynamic symbol table.
3515
3516 void
3517 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3518                               Symbol_table* symtab,
3519                               Output_section** pdynstr,
3520                               unsigned int* plocal_dynamic_count,
3521                               std::vector<Symbol*>* pdynamic_symbols,
3522                               Versions* pversions)
3523 {
3524   // Count all the symbols in the dynamic symbol table, and set the
3525   // dynamic symbol indexes.
3526
3527   // Skip symbol 0, which is always all zeroes.
3528   unsigned int index = 1;
3529
3530   // Add STT_SECTION symbols for each Output section which needs one.
3531   for (Section_list::iterator p = this->section_list_.begin();
3532        p != this->section_list_.end();
3533        ++p)
3534     {
3535       if (!(*p)->needs_dynsym_index())
3536         (*p)->set_dynsym_index(-1U);
3537       else
3538         {
3539           (*p)->set_dynsym_index(index);
3540           ++index;
3541         }
3542     }
3543
3544   // Count the local symbols that need to go in the dynamic symbol table,
3545   // and set the dynamic symbol indexes.
3546   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3547        p != input_objects->relobj_end();
3548        ++p)
3549     {
3550       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3551       index = new_index;
3552     }
3553
3554   unsigned int local_symcount = index;
3555   *plocal_dynamic_count = local_symcount;
3556
3557   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3558                                      &this->dynpool_, pversions);
3559
3560   int symsize;
3561   unsigned int align;
3562   const int size = parameters->target().get_size();
3563   if (size == 32)
3564     {
3565       symsize = elfcpp::Elf_sizes<32>::sym_size;
3566       align = 4;
3567     }
3568   else if (size == 64)
3569     {
3570       symsize = elfcpp::Elf_sizes<64>::sym_size;
3571       align = 8;
3572     }
3573   else
3574     gold_unreachable();
3575
3576   // Create the dynamic symbol table section.
3577
3578   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3579                                                        elfcpp::SHT_DYNSYM,
3580                                                        elfcpp::SHF_ALLOC,
3581                                                        false,
3582                                                        ORDER_DYNAMIC_LINKER,
3583                                                        false);
3584
3585   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3586                                                            align,
3587                                                            "** dynsym");
3588   dynsym->add_output_section_data(odata);
3589
3590   dynsym->set_info(local_symcount);
3591   dynsym->set_entsize(symsize);
3592   dynsym->set_addralign(align);
3593
3594   this->dynsym_section_ = dynsym;
3595
3596   Output_data_dynamic* const odyn = this->dynamic_data_;
3597   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3598   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3599
3600   // If there are more than SHN_LORESERVE allocated sections, we
3601   // create a .dynsym_shndx section.  It is possible that we don't
3602   // need one, because it is possible that there are no dynamic
3603   // symbols in any of the sections with indexes larger than
3604   // SHN_LORESERVE.  This is probably unusual, though, and at this
3605   // time we don't know the actual section indexes so it is
3606   // inconvenient to check.
3607   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3608     {
3609       Output_section* dynsym_xindex =
3610         this->choose_output_section(NULL, ".dynsym_shndx",
3611                                     elfcpp::SHT_SYMTAB_SHNDX,
3612                                     elfcpp::SHF_ALLOC,
3613                                     false, ORDER_DYNAMIC_LINKER, false);
3614
3615       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3616
3617       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3618
3619       dynsym_xindex->set_link_section(dynsym);
3620       dynsym_xindex->set_addralign(4);
3621       dynsym_xindex->set_entsize(4);
3622
3623       dynsym_xindex->set_after_input_sections();
3624
3625       // This tells the driver code to wait until the symbol table has
3626       // written out before writing out the postprocessing sections,
3627       // including the .dynsym_shndx section.
3628       this->any_postprocessing_sections_ = true;
3629     }
3630
3631   // Create the dynamic string table section.
3632
3633   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3634                                                        elfcpp::SHT_STRTAB,
3635                                                        elfcpp::SHF_ALLOC,
3636                                                        false,
3637                                                        ORDER_DYNAMIC_LINKER,
3638                                                        false);
3639
3640   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3641   dynstr->add_output_section_data(strdata);
3642
3643   dynsym->set_link_section(dynstr);
3644   this->dynamic_section_->set_link_section(dynstr);
3645
3646   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3647   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3648
3649   *pdynstr = dynstr;
3650
3651   // Create the hash tables.
3652
3653   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3654       || strcmp(parameters->options().hash_style(), "both") == 0)
3655     {
3656       unsigned char* phash;
3657       unsigned int hashlen;
3658       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3659                                     &phash, &hashlen);
3660
3661       Output_section* hashsec =
3662         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3663                                     elfcpp::SHF_ALLOC, false,
3664                                     ORDER_DYNAMIC_LINKER, false);
3665
3666       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3667                                                                    hashlen,
3668                                                                    align,
3669                                                                    "** hash");
3670       hashsec->add_output_section_data(hashdata);
3671
3672       hashsec->set_link_section(dynsym);
3673       hashsec->set_entsize(4);
3674
3675       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3676     }
3677
3678   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3679       || strcmp(parameters->options().hash_style(), "both") == 0)
3680     {
3681       unsigned char* phash;
3682       unsigned int hashlen;
3683       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3684                                     &phash, &hashlen);
3685
3686       Output_section* hashsec =
3687         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3688                                     elfcpp::SHF_ALLOC, false,
3689                                     ORDER_DYNAMIC_LINKER, false);
3690
3691       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3692                                                                    hashlen,
3693                                                                    align,
3694                                                                    "** hash");
3695       hashsec->add_output_section_data(hashdata);
3696
3697       hashsec->set_link_section(dynsym);
3698
3699       // For a 64-bit target, the entries in .gnu.hash do not have a
3700       // uniform size, so we only set the entry size for a 32-bit
3701       // target.
3702       if (parameters->target().get_size() == 32)
3703         hashsec->set_entsize(4);
3704
3705       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3706     }
3707 }
3708
3709 // Assign offsets to each local portion of the dynamic symbol table.
3710
3711 void
3712 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3713 {
3714   Output_section* dynsym = this->dynsym_section_;
3715   gold_assert(dynsym != NULL);
3716
3717   off_t off = dynsym->offset();
3718
3719   // Skip the dummy symbol at the start of the section.
3720   off += dynsym->entsize();
3721
3722   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3723        p != input_objects->relobj_end();
3724        ++p)
3725     {
3726       unsigned int count = (*p)->set_local_dynsym_offset(off);
3727       off += count * dynsym->entsize();
3728     }
3729 }
3730
3731 // Create the version sections.
3732
3733 void
3734 Layout::create_version_sections(const Versions* versions,
3735                                 const Symbol_table* symtab,
3736                                 unsigned int local_symcount,
3737                                 const std::vector<Symbol*>& dynamic_symbols,
3738                                 const Output_section* dynstr)
3739 {
3740   if (!versions->any_defs() && !versions->any_needs())
3741     return;
3742
3743   switch (parameters->size_and_endianness())
3744     {
3745 #ifdef HAVE_TARGET_32_LITTLE
3746     case Parameters::TARGET_32_LITTLE:
3747       this->sized_create_version_sections<32, false>(versions, symtab,
3748                                                      local_symcount,
3749                                                      dynamic_symbols, dynstr);
3750       break;
3751 #endif
3752 #ifdef HAVE_TARGET_32_BIG
3753     case Parameters::TARGET_32_BIG:
3754       this->sized_create_version_sections<32, true>(versions, symtab,
3755                                                     local_symcount,
3756                                                     dynamic_symbols, dynstr);
3757       break;
3758 #endif
3759 #ifdef HAVE_TARGET_64_LITTLE
3760     case Parameters::TARGET_64_LITTLE:
3761       this->sized_create_version_sections<64, false>(versions, symtab,
3762                                                      local_symcount,
3763                                                      dynamic_symbols, dynstr);
3764       break;
3765 #endif
3766 #ifdef HAVE_TARGET_64_BIG
3767     case Parameters::TARGET_64_BIG:
3768       this->sized_create_version_sections<64, true>(versions, symtab,
3769                                                     local_symcount,
3770                                                     dynamic_symbols, dynstr);
3771       break;
3772 #endif
3773     default:
3774       gold_unreachable();
3775     }
3776 }
3777
3778 // Create the version sections, sized version.
3779
3780 template<int size, bool big_endian>
3781 void
3782 Layout::sized_create_version_sections(
3783     const Versions* versions,
3784     const Symbol_table* symtab,
3785     unsigned int local_symcount,
3786     const std::vector<Symbol*>& dynamic_symbols,
3787     const Output_section* dynstr)
3788 {
3789   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3790                                                      elfcpp::SHT_GNU_versym,
3791                                                      elfcpp::SHF_ALLOC,
3792                                                      false,
3793                                                      ORDER_DYNAMIC_LINKER,
3794                                                      false);
3795
3796   unsigned char* vbuf;
3797   unsigned int vsize;
3798   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3799                                                       local_symcount,
3800                                                       dynamic_symbols,
3801                                                       &vbuf, &vsize);
3802
3803   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3804                                                             "** versions");
3805
3806   vsec->add_output_section_data(vdata);
3807   vsec->set_entsize(2);
3808   vsec->set_link_section(this->dynsym_section_);
3809
3810   Output_data_dynamic* const odyn = this->dynamic_data_;
3811   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3812
3813   if (versions->any_defs())
3814     {
3815       Output_section* vdsec;
3816       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3817                                          elfcpp::SHT_GNU_verdef,
3818                                          elfcpp::SHF_ALLOC,
3819                                          false, ORDER_DYNAMIC_LINKER, false);
3820
3821       unsigned char* vdbuf;
3822       unsigned int vdsize;
3823       unsigned int vdentries;
3824       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3825                                                        &vdsize, &vdentries);
3826
3827       Output_section_data* vddata =
3828         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3829
3830       vdsec->add_output_section_data(vddata);
3831       vdsec->set_link_section(dynstr);
3832       vdsec->set_info(vdentries);
3833
3834       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3835       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3836     }
3837
3838   if (versions->any_needs())
3839     {
3840       Output_section* vnsec;
3841       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3842                                           elfcpp::SHT_GNU_verneed,
3843                                           elfcpp::SHF_ALLOC,
3844                                           false, ORDER_DYNAMIC_LINKER, false);
3845
3846       unsigned char* vnbuf;
3847       unsigned int vnsize;
3848       unsigned int vnentries;
3849       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3850                                                         &vnbuf, &vnsize,
3851                                                         &vnentries);
3852
3853       Output_section_data* vndata =
3854         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3855
3856       vnsec->add_output_section_data(vndata);
3857       vnsec->set_link_section(dynstr);
3858       vnsec->set_info(vnentries);
3859
3860       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3861       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3862     }
3863 }
3864
3865 // Create the .interp section and PT_INTERP segment.
3866
3867 void
3868 Layout::create_interp(const Target* target)
3869 {
3870   gold_assert(this->interp_segment_ == NULL);
3871
3872   const char* interp = parameters->options().dynamic_linker();
3873   if (interp == NULL)
3874     {
3875       interp = target->dynamic_linker();
3876       gold_assert(interp != NULL);
3877     }
3878
3879   size_t len = strlen(interp) + 1;
3880
3881   Output_section_data* odata = new Output_data_const(interp, len, 1);
3882
3883   Output_section* osec = this->choose_output_section(NULL, ".interp",
3884                                                      elfcpp::SHT_PROGBITS,
3885                                                      elfcpp::SHF_ALLOC,
3886                                                      false, ORDER_INTERP,
3887                                                      false);
3888   osec->add_output_section_data(odata);
3889 }
3890
3891 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3892 // called by the target-specific code.  This does nothing if not doing
3893 // a dynamic link.
3894
3895 // USE_REL is true for REL relocs rather than RELA relocs.
3896
3897 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3898
3899 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3900 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3901 // some targets have multiple reloc sections in PLT_REL.
3902
3903 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3904 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3905
3906 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3907 // executable.
3908
3909 void
3910 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3911                                 const Output_data* plt_rel,
3912                                 const Output_data_reloc_generic* dyn_rel,
3913                                 bool add_debug, bool dynrel_includes_plt)
3914 {
3915   Output_data_dynamic* odyn = this->dynamic_data_;
3916   if (odyn == NULL)
3917     return;
3918
3919   if (plt_got != NULL && plt_got->output_section() != NULL)
3920     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3921
3922   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3923     {
3924       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3925       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3926       odyn->add_constant(elfcpp::DT_PLTREL,
3927                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3928     }
3929
3930   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3931     {
3932       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3933                                 dyn_rel);
3934       if (plt_rel != NULL && dynrel_includes_plt)
3935         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3936                                dyn_rel, plt_rel);
3937       else
3938         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3939                                dyn_rel);
3940       const int size = parameters->target().get_size();
3941       elfcpp::DT rel_tag;
3942       int rel_size;
3943       if (use_rel)
3944         {
3945           rel_tag = elfcpp::DT_RELENT;
3946           if (size == 32)
3947             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3948           else if (size == 64)
3949             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3950           else
3951             gold_unreachable();
3952         }
3953       else
3954         {
3955           rel_tag = elfcpp::DT_RELAENT;
3956           if (size == 32)
3957             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3958           else if (size == 64)
3959             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3960           else
3961             gold_unreachable();
3962         }
3963       odyn->add_constant(rel_tag, rel_size);
3964
3965       if (parameters->options().combreloc())
3966         {
3967           size_t c = dyn_rel->relative_reloc_count();
3968           if (c > 0)
3969             odyn->add_constant((use_rel
3970                                 ? elfcpp::DT_RELCOUNT
3971                                 : elfcpp::DT_RELACOUNT),
3972                                c);
3973         }
3974     }
3975
3976   if (add_debug && !parameters->options().shared())
3977     {
3978       // The value of the DT_DEBUG tag is filled in by the dynamic
3979       // linker at run time, and used by the debugger.
3980       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3981     }
3982 }
3983
3984 // Finish the .dynamic section and PT_DYNAMIC segment.
3985
3986 void
3987 Layout::finish_dynamic_section(const Input_objects* input_objects,
3988                                const Symbol_table* symtab)
3989 {
3990   if (!this->script_options_->saw_phdrs_clause())
3991     {
3992       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3993                                                        (elfcpp::PF_R
3994                                                         | elfcpp::PF_W));
3995       oseg->add_output_section_to_nonload(this->dynamic_section_,
3996                                           elfcpp::PF_R | elfcpp::PF_W);
3997     }
3998
3999   Output_data_dynamic* const odyn = this->dynamic_data_;
4000
4001   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4002        p != input_objects->dynobj_end();
4003        ++p)
4004     {
4005       if (!(*p)->is_needed() && (*p)->as_needed())
4006         {
4007           // This dynamic object was linked with --as-needed, but it
4008           // is not needed.
4009           continue;
4010         }
4011
4012       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4013     }
4014
4015   if (parameters->options().shared())
4016     {
4017       const char* soname = parameters->options().soname();
4018       if (soname != NULL)
4019         odyn->add_string(elfcpp::DT_SONAME, soname);
4020     }
4021
4022   Symbol* sym = symtab->lookup(parameters->options().init());
4023   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4024     odyn->add_symbol(elfcpp::DT_INIT, sym);
4025
4026   sym = symtab->lookup(parameters->options().fini());
4027   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4028     odyn->add_symbol(elfcpp::DT_FINI, sym);
4029
4030   // Look for .init_array, .preinit_array and .fini_array by checking
4031   // section types.
4032   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4033       p != this->section_list_.end();
4034       ++p)
4035     switch((*p)->type())
4036       {
4037       case elfcpp::SHT_FINI_ARRAY:
4038         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4039         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4040         break;
4041       case elfcpp::SHT_INIT_ARRAY:
4042         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4043         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4044         break;
4045       case elfcpp::SHT_PREINIT_ARRAY:
4046         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4047         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4048         break;
4049       default:
4050         break;
4051       }
4052   
4053   // Add a DT_RPATH entry if needed.
4054   const General_options::Dir_list& rpath(parameters->options().rpath());
4055   if (!rpath.empty())
4056     {
4057       std::string rpath_val;
4058       for (General_options::Dir_list::const_iterator p = rpath.begin();
4059            p != rpath.end();
4060            ++p)
4061         {
4062           if (rpath_val.empty())
4063             rpath_val = p->name();
4064           else
4065             {
4066               // Eliminate duplicates.
4067               General_options::Dir_list::const_iterator q;
4068               for (q = rpath.begin(); q != p; ++q)
4069                 if (q->name() == p->name())
4070                   break;
4071               if (q == p)
4072                 {
4073                   rpath_val += ':';
4074                   rpath_val += p->name();
4075                 }
4076             }
4077         }
4078
4079       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4080       if (parameters->options().enable_new_dtags())
4081         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4082     }
4083
4084   // Look for text segments that have dynamic relocations.
4085   bool have_textrel = false;
4086   if (!this->script_options_->saw_sections_clause())
4087     {
4088       for (Segment_list::const_iterator p = this->segment_list_.begin();
4089            p != this->segment_list_.end();
4090            ++p)
4091         {
4092           if ((*p)->type() == elfcpp::PT_LOAD
4093               && ((*p)->flags() & elfcpp::PF_W) == 0
4094               && (*p)->has_dynamic_reloc())
4095             {
4096               have_textrel = true;
4097               break;
4098             }
4099         }
4100     }
4101   else
4102     {
4103       // We don't know the section -> segment mapping, so we are
4104       // conservative and just look for readonly sections with
4105       // relocations.  If those sections wind up in writable segments,
4106       // then we have created an unnecessary DT_TEXTREL entry.
4107       for (Section_list::const_iterator p = this->section_list_.begin();
4108            p != this->section_list_.end();
4109            ++p)
4110         {
4111           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4112               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4113               && (*p)->has_dynamic_reloc())
4114             {
4115               have_textrel = true;
4116               break;
4117             }
4118         }
4119     }
4120
4121   // Add a DT_FLAGS entry. We add it even if no flags are set so that
4122   // post-link tools can easily modify these flags if desired.
4123   unsigned int flags = 0;
4124   if (have_textrel)
4125     {
4126       // Add a DT_TEXTREL for compatibility with older loaders.
4127       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4128       flags |= elfcpp::DF_TEXTREL;
4129
4130       if (parameters->options().text())
4131         gold_error(_("read-only segment has dynamic relocations"));
4132       else if (parameters->options().warn_shared_textrel()
4133                && parameters->options().shared())
4134         gold_warning(_("shared library text segment is not shareable"));
4135     }
4136   if (parameters->options().shared() && this->has_static_tls())
4137     flags |= elfcpp::DF_STATIC_TLS;
4138   if (parameters->options().origin())
4139     flags |= elfcpp::DF_ORIGIN;
4140   if (parameters->options().Bsymbolic())
4141     {
4142       flags |= elfcpp::DF_SYMBOLIC;
4143       // Add DT_SYMBOLIC for compatibility with older loaders.
4144       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4145     }
4146   if (parameters->options().now())
4147     flags |= elfcpp::DF_BIND_NOW;
4148   if (flags != 0)
4149     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4150
4151   flags = 0;
4152   if (parameters->options().initfirst())
4153     flags |= elfcpp::DF_1_INITFIRST;
4154   if (parameters->options().interpose())
4155     flags |= elfcpp::DF_1_INTERPOSE;
4156   if (parameters->options().loadfltr())
4157     flags |= elfcpp::DF_1_LOADFLTR;
4158   if (parameters->options().nodefaultlib())
4159     flags |= elfcpp::DF_1_NODEFLIB;
4160   if (parameters->options().nodelete())
4161     flags |= elfcpp::DF_1_NODELETE;
4162   if (parameters->options().nodlopen())
4163     flags |= elfcpp::DF_1_NOOPEN;
4164   if (parameters->options().nodump())
4165     flags |= elfcpp::DF_1_NODUMP;
4166   if (!parameters->options().shared())
4167     flags &= ~(elfcpp::DF_1_INITFIRST
4168                | elfcpp::DF_1_NODELETE
4169                | elfcpp::DF_1_NOOPEN);
4170   if (parameters->options().origin())
4171     flags |= elfcpp::DF_1_ORIGIN;
4172   if (parameters->options().now())
4173     flags |= elfcpp::DF_1_NOW;
4174   if (flags != 0)
4175     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4176 }
4177
4178 // Set the size of the _DYNAMIC symbol table to be the size of the
4179 // dynamic data.
4180
4181 void
4182 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4183 {
4184   Output_data_dynamic* const odyn = this->dynamic_data_;
4185   odyn->finalize_data_size();
4186   off_t data_size = odyn->data_size();
4187   const int size = parameters->target().get_size();
4188   if (size == 32)
4189     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4190   else if (size == 64)
4191     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4192   else
4193     gold_unreachable();
4194 }
4195
4196 // The mapping of input section name prefixes to output section names.
4197 // In some cases one prefix is itself a prefix of another prefix; in
4198 // such a case the longer prefix must come first.  These prefixes are
4199 // based on the GNU linker default ELF linker script.
4200
4201 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4202 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4203 {
4204   MAPPING_INIT(".text.", ".text"),
4205   MAPPING_INIT(".ctors.", ".ctors"),
4206   MAPPING_INIT(".dtors.", ".dtors"),
4207   MAPPING_INIT(".rodata.", ".rodata"),
4208   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4209   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4210   MAPPING_INIT(".data.", ".data"),
4211   MAPPING_INIT(".bss.", ".bss"),
4212   MAPPING_INIT(".tdata.", ".tdata"),
4213   MAPPING_INIT(".tbss.", ".tbss"),
4214   MAPPING_INIT(".init_array.", ".init_array"),
4215   MAPPING_INIT(".fini_array.", ".fini_array"),
4216   MAPPING_INIT(".sdata.", ".sdata"),
4217   MAPPING_INIT(".sbss.", ".sbss"),
4218   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4219   // differently depending on whether it is creating a shared library.
4220   MAPPING_INIT(".sdata2.", ".sdata"),
4221   MAPPING_INIT(".sbss2.", ".sbss"),
4222   MAPPING_INIT(".lrodata.", ".lrodata"),
4223   MAPPING_INIT(".ldata.", ".ldata"),
4224   MAPPING_INIT(".lbss.", ".lbss"),
4225   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4226   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4227   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4228   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4229   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4230   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4231   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4232   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4233   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4234   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4235   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4236   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4237   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4238   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4239   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4240   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4241   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4242   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4243   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4244   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4245   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4246 };
4247 #undef MAPPING_INIT
4248
4249 const int Layout::section_name_mapping_count =
4250   (sizeof(Layout::section_name_mapping)
4251    / sizeof(Layout::section_name_mapping[0]));
4252
4253 // Choose the output section name to use given an input section name.
4254 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4255 // length of NAME.
4256
4257 const char*
4258 Layout::output_section_name(const char* name, size_t* plen)
4259 {
4260   // gcc 4.3 generates the following sorts of section names when it
4261   // needs a section name specific to a function:
4262   //   .text.FN
4263   //   .rodata.FN
4264   //   .sdata2.FN
4265   //   .data.FN
4266   //   .data.rel.FN
4267   //   .data.rel.local.FN
4268   //   .data.rel.ro.FN
4269   //   .data.rel.ro.local.FN
4270   //   .sdata.FN
4271   //   .bss.FN
4272   //   .sbss.FN
4273   //   .tdata.FN
4274   //   .tbss.FN
4275
4276   // The GNU linker maps all of those to the part before the .FN,
4277   // except that .data.rel.local.FN is mapped to .data, and
4278   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4279   // beginning with .data.rel.ro.local are grouped together.
4280
4281   // For an anonymous namespace, the string FN can contain a '.'.
4282
4283   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4284   // GNU linker maps to .rodata.
4285
4286   // The .data.rel.ro sections are used with -z relro.  The sections
4287   // are recognized by name.  We use the same names that the GNU
4288   // linker does for these sections.
4289
4290   // It is hard to handle this in a principled way, so we don't even
4291   // try.  We use a table of mappings.  If the input section name is
4292   // not found in the table, we simply use it as the output section
4293   // name.
4294
4295   const Section_name_mapping* psnm = section_name_mapping;
4296   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4297     {
4298       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4299         {
4300           *plen = psnm->tolen;
4301           return psnm->to;
4302         }
4303     }
4304
4305   return name;
4306 }
4307
4308 // Check if a comdat group or .gnu.linkonce section with the given
4309 // NAME is selected for the link.  If there is already a section,
4310 // *KEPT_SECTION is set to point to the existing section and the
4311 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4312 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4313 // *KEPT_SECTION is set to the internal copy and the function returns
4314 // true.
4315
4316 bool
4317 Layout::find_or_add_kept_section(const std::string& name,
4318                                  Relobj* object,
4319                                  unsigned int shndx,
4320                                  bool is_comdat,
4321                                  bool is_group_name,
4322                                  Kept_section** kept_section)
4323 {
4324   // It's normal to see a couple of entries here, for the x86 thunk
4325   // sections.  If we see more than a few, we're linking a C++
4326   // program, and we resize to get more space to minimize rehashing.
4327   if (this->signatures_.size() > 4
4328       && !this->resized_signatures_)
4329     {
4330       reserve_unordered_map(&this->signatures_,
4331                             this->number_of_input_files_ * 64);
4332       this->resized_signatures_ = true;
4333     }
4334
4335   Kept_section candidate;
4336   std::pair<Signatures::iterator, bool> ins =
4337     this->signatures_.insert(std::make_pair(name, candidate));
4338
4339   if (kept_section != NULL)
4340     *kept_section = &ins.first->second;
4341   if (ins.second)
4342     {
4343       // This is the first time we've seen this signature.
4344       ins.first->second.set_object(object);
4345       ins.first->second.set_shndx(shndx);
4346       if (is_comdat)
4347         ins.first->second.set_is_comdat();
4348       if (is_group_name)
4349         ins.first->second.set_is_group_name();
4350       return true;
4351     }
4352
4353   // We have already seen this signature.
4354
4355   if (ins.first->second.is_group_name())
4356     {
4357       // We've already seen a real section group with this signature.
4358       // If the kept group is from a plugin object, and we're in the
4359       // replacement phase, accept the new one as a replacement.
4360       if (ins.first->second.object() == NULL
4361           && parameters->options().plugins()->in_replacement_phase())
4362         {
4363           ins.first->second.set_object(object);
4364           ins.first->second.set_shndx(shndx);
4365           return true;
4366         }
4367       return false;
4368     }
4369   else if (is_group_name)
4370     {
4371       // This is a real section group, and we've already seen a
4372       // linkonce section with this signature.  Record that we've seen
4373       // a section group, and don't include this section group.
4374       ins.first->second.set_is_group_name();
4375       return false;
4376     }
4377   else
4378     {
4379       // We've already seen a linkonce section and this is a linkonce
4380       // section.  These don't block each other--this may be the same
4381       // symbol name with different section types.
4382       return true;
4383     }
4384 }
4385
4386 // Store the allocated sections into the section list.
4387
4388 void
4389 Layout::get_allocated_sections(Section_list* section_list) const
4390 {
4391   for (Section_list::const_iterator p = this->section_list_.begin();
4392        p != this->section_list_.end();
4393        ++p)
4394     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4395       section_list->push_back(*p);
4396 }
4397
4398 // Create an output segment.
4399
4400 Output_segment*
4401 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4402 {
4403   gold_assert(!parameters->options().relocatable());
4404   Output_segment* oseg = new Output_segment(type, flags);
4405   this->segment_list_.push_back(oseg);
4406
4407   if (type == elfcpp::PT_TLS)
4408     this->tls_segment_ = oseg;
4409   else if (type == elfcpp::PT_GNU_RELRO)
4410     this->relro_segment_ = oseg;
4411   else if (type == elfcpp::PT_INTERP)
4412     this->interp_segment_ = oseg;
4413
4414   return oseg;
4415 }
4416
4417 // Return the file offset of the normal symbol table.
4418
4419 off_t
4420 Layout::symtab_section_offset() const
4421 {
4422   if (this->symtab_section_ != NULL)
4423     return this->symtab_section_->offset();
4424   return 0;
4425 }
4426
4427 // Write out the Output_sections.  Most won't have anything to write,
4428 // since most of the data will come from input sections which are
4429 // handled elsewhere.  But some Output_sections do have Output_data.
4430
4431 void
4432 Layout::write_output_sections(Output_file* of) const
4433 {
4434   for (Section_list::const_iterator p = this->section_list_.begin();
4435        p != this->section_list_.end();
4436        ++p)
4437     {
4438       if (!(*p)->after_input_sections())
4439         (*p)->write(of);
4440     }
4441 }
4442
4443 // Write out data not associated with a section or the symbol table.
4444
4445 void
4446 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4447 {
4448   if (!parameters->options().strip_all())
4449     {
4450       const Output_section* symtab_section = this->symtab_section_;
4451       for (Section_list::const_iterator p = this->section_list_.begin();
4452            p != this->section_list_.end();
4453            ++p)
4454         {
4455           if ((*p)->needs_symtab_index())
4456             {
4457               gold_assert(symtab_section != NULL);
4458               unsigned int index = (*p)->symtab_index();
4459               gold_assert(index > 0 && index != -1U);
4460               off_t off = (symtab_section->offset()
4461                            + index * symtab_section->entsize());
4462               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4463             }
4464         }
4465     }
4466
4467   const Output_section* dynsym_section = this->dynsym_section_;
4468   for (Section_list::const_iterator p = this->section_list_.begin();
4469        p != this->section_list_.end();
4470        ++p)
4471     {
4472       if ((*p)->needs_dynsym_index())
4473         {
4474           gold_assert(dynsym_section != NULL);
4475           unsigned int index = (*p)->dynsym_index();
4476           gold_assert(index > 0 && index != -1U);
4477           off_t off = (dynsym_section->offset()
4478                        + index * dynsym_section->entsize());
4479           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4480         }
4481     }
4482
4483   // Write out the Output_data which are not in an Output_section.
4484   for (Data_list::const_iterator p = this->special_output_list_.begin();
4485        p != this->special_output_list_.end();
4486        ++p)
4487     (*p)->write(of);
4488 }
4489
4490 // Write out the Output_sections which can only be written after the
4491 // input sections are complete.
4492
4493 void
4494 Layout::write_sections_after_input_sections(Output_file* of)
4495 {
4496   // Determine the final section offsets, and thus the final output
4497   // file size.  Note we finalize the .shstrab last, to allow the
4498   // after_input_section sections to modify their section-names before
4499   // writing.
4500   if (this->any_postprocessing_sections_)
4501     {
4502       off_t off = this->output_file_size_;
4503       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4504
4505       // Now that we've finalized the names, we can finalize the shstrab.
4506       off =
4507         this->set_section_offsets(off,
4508                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4509
4510       if (off > this->output_file_size_)
4511         {
4512           of->resize(off);
4513           this->output_file_size_ = off;
4514         }
4515     }
4516
4517   for (Section_list::const_iterator p = this->section_list_.begin();
4518        p != this->section_list_.end();
4519        ++p)
4520     {
4521       if ((*p)->after_input_sections())
4522         (*p)->write(of);
4523     }
4524
4525   this->section_headers_->write(of);
4526 }
4527
4528 // If the build ID requires computing a checksum, do so here, and
4529 // write it out.  We compute a checksum over the entire file because
4530 // that is simplest.
4531
4532 void
4533 Layout::write_build_id(Output_file* of) const
4534 {
4535   if (this->build_id_note_ == NULL)
4536     return;
4537
4538   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4539
4540   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4541                                           this->build_id_note_->data_size());
4542
4543   const char* style = parameters->options().build_id();
4544   if (strcmp(style, "sha1") == 0)
4545     {
4546       sha1_ctx ctx;
4547       sha1_init_ctx(&ctx);
4548       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4549       sha1_finish_ctx(&ctx, ov);
4550     }
4551   else if (strcmp(style, "md5") == 0)
4552     {
4553       md5_ctx ctx;
4554       md5_init_ctx(&ctx);
4555       md5_process_bytes(iv, this->output_file_size_, &ctx);
4556       md5_finish_ctx(&ctx, ov);
4557     }
4558   else
4559     gold_unreachable();
4560
4561   of->write_output_view(this->build_id_note_->offset(),
4562                         this->build_id_note_->data_size(),
4563                         ov);
4564
4565   of->free_input_view(0, this->output_file_size_, iv);
4566 }
4567
4568 // Write out a binary file.  This is called after the link is
4569 // complete.  IN is the temporary output file we used to generate the
4570 // ELF code.  We simply walk through the segments, read them from
4571 // their file offset in IN, and write them to their load address in
4572 // the output file.  FIXME: with a bit more work, we could support
4573 // S-records and/or Intel hex format here.
4574
4575 void
4576 Layout::write_binary(Output_file* in) const
4577 {
4578   gold_assert(parameters->options().oformat_enum()
4579               == General_options::OBJECT_FORMAT_BINARY);
4580
4581   // Get the size of the binary file.
4582   uint64_t max_load_address = 0;
4583   for (Segment_list::const_iterator p = this->segment_list_.begin();
4584        p != this->segment_list_.end();
4585        ++p)
4586     {
4587       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4588         {
4589           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4590           if (max_paddr > max_load_address)
4591             max_load_address = max_paddr;
4592         }
4593     }
4594
4595   Output_file out(parameters->options().output_file_name());
4596   out.open(max_load_address);
4597
4598   for (Segment_list::const_iterator p = this->segment_list_.begin();
4599        p != this->segment_list_.end();
4600        ++p)
4601     {
4602       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4603         {
4604           const unsigned char* vin = in->get_input_view((*p)->offset(),
4605                                                         (*p)->filesz());
4606           unsigned char* vout = out.get_output_view((*p)->paddr(),
4607                                                     (*p)->filesz());
4608           memcpy(vout, vin, (*p)->filesz());
4609           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4610           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4611         }
4612     }
4613
4614   out.close();
4615 }
4616
4617 // Print the output sections to the map file.
4618
4619 void
4620 Layout::print_to_mapfile(Mapfile* mapfile) const
4621 {
4622   for (Segment_list::const_iterator p = this->segment_list_.begin();
4623        p != this->segment_list_.end();
4624        ++p)
4625     (*p)->print_sections_to_mapfile(mapfile);
4626 }
4627
4628 // Print statistical information to stderr.  This is used for --stats.
4629
4630 void
4631 Layout::print_stats() const
4632 {
4633   this->namepool_.print_stats("section name pool");
4634   this->sympool_.print_stats("output symbol name pool");
4635   this->dynpool_.print_stats("dynamic name pool");
4636
4637   for (Section_list::const_iterator p = this->section_list_.begin();
4638        p != this->section_list_.end();
4639        ++p)
4640     (*p)->print_merge_stats();
4641 }
4642
4643 // Write_sections_task methods.
4644
4645 // We can always run this task.
4646
4647 Task_token*
4648 Write_sections_task::is_runnable()
4649 {
4650   return NULL;
4651 }
4652
4653 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4654 // when finished.
4655
4656 void
4657 Write_sections_task::locks(Task_locker* tl)
4658 {
4659   tl->add(this, this->output_sections_blocker_);
4660   tl->add(this, this->final_blocker_);
4661 }
4662
4663 // Run the task--write out the data.
4664
4665 void
4666 Write_sections_task::run(Workqueue*)
4667 {
4668   this->layout_->write_output_sections(this->of_);
4669 }
4670
4671 // Write_data_task methods.
4672
4673 // We can always run this task.
4674
4675 Task_token*
4676 Write_data_task::is_runnable()
4677 {
4678   return NULL;
4679 }
4680
4681 // We need to unlock FINAL_BLOCKER when finished.
4682
4683 void
4684 Write_data_task::locks(Task_locker* tl)
4685 {
4686   tl->add(this, this->final_blocker_);
4687 }
4688
4689 // Run the task--write out the data.
4690
4691 void
4692 Write_data_task::run(Workqueue*)
4693 {
4694   this->layout_->write_data(this->symtab_, this->of_);
4695 }
4696
4697 // Write_symbols_task methods.
4698
4699 // We can always run this task.
4700
4701 Task_token*
4702 Write_symbols_task::is_runnable()
4703 {
4704   return NULL;
4705 }
4706
4707 // We need to unlock FINAL_BLOCKER when finished.
4708
4709 void
4710 Write_symbols_task::locks(Task_locker* tl)
4711 {
4712   tl->add(this, this->final_blocker_);
4713 }
4714
4715 // Run the task--write out the symbols.
4716
4717 void
4718 Write_symbols_task::run(Workqueue*)
4719 {
4720   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4721                                this->layout_->symtab_xindex(),
4722                                this->layout_->dynsym_xindex(), this->of_);
4723 }
4724
4725 // Write_after_input_sections_task methods.
4726
4727 // We can only run this task after the input sections have completed.
4728
4729 Task_token*
4730 Write_after_input_sections_task::is_runnable()
4731 {
4732   if (this->input_sections_blocker_->is_blocked())
4733     return this->input_sections_blocker_;
4734   return NULL;
4735 }
4736
4737 // We need to unlock FINAL_BLOCKER when finished.
4738
4739 void
4740 Write_after_input_sections_task::locks(Task_locker* tl)
4741 {
4742   tl->add(this, this->final_blocker_);
4743 }
4744
4745 // Run the task.
4746
4747 void
4748 Write_after_input_sections_task::run(Workqueue*)
4749 {
4750   this->layout_->write_sections_after_input_sections(this->of_);
4751 }
4752
4753 // Close_task_runner methods.
4754
4755 // Run the task--close the file.
4756
4757 void
4758 Close_task_runner::run(Workqueue*, const Task*)
4759 {
4760   // If we need to compute a checksum for the BUILD if, we do so here.
4761   this->layout_->write_build_id(this->of_);
4762
4763   // If we've been asked to create a binary file, we do so here.
4764   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4765     this->layout_->write_binary(this->of_);
4766
4767   this->of_->close();
4768 }
4769
4770 // Instantiate the templates we need.  We could use the configure
4771 // script to restrict this to only the ones for implemented targets.
4772
4773 #ifdef HAVE_TARGET_32_LITTLE
4774 template
4775 Output_section*
4776 Layout::init_fixed_output_section<32, false>(
4777     const char* name,
4778     elfcpp::Shdr<32, false>& shdr);
4779 #endif
4780
4781 #ifdef HAVE_TARGET_32_BIG
4782 template
4783 Output_section*
4784 Layout::init_fixed_output_section<32, true>(
4785     const char* name,
4786     elfcpp::Shdr<32, true>& shdr);
4787 #endif
4788
4789 #ifdef HAVE_TARGET_64_LITTLE
4790 template
4791 Output_section*
4792 Layout::init_fixed_output_section<64, false>(
4793     const char* name,
4794     elfcpp::Shdr<64, false>& shdr);
4795 #endif
4796
4797 #ifdef HAVE_TARGET_64_BIG
4798 template
4799 Output_section*
4800 Layout::init_fixed_output_section<64, true>(
4801     const char* name,
4802     elfcpp::Shdr<64, true>& shdr);
4803 #endif
4804
4805 #ifdef HAVE_TARGET_32_LITTLE
4806 template
4807 Output_section*
4808 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4809                           unsigned int shndx,
4810                           const char* name,
4811                           const elfcpp::Shdr<32, false>& shdr,
4812                           unsigned int, unsigned int, off_t*);
4813 #endif
4814
4815 #ifdef HAVE_TARGET_32_BIG
4816 template
4817 Output_section*
4818 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4819                          unsigned int shndx,
4820                          const char* name,
4821                          const elfcpp::Shdr<32, true>& shdr,
4822                          unsigned int, unsigned int, off_t*);
4823 #endif
4824
4825 #ifdef HAVE_TARGET_64_LITTLE
4826 template
4827 Output_section*
4828 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4829                           unsigned int shndx,
4830                           const char* name,
4831                           const elfcpp::Shdr<64, false>& shdr,
4832                           unsigned int, unsigned int, off_t*);
4833 #endif
4834
4835 #ifdef HAVE_TARGET_64_BIG
4836 template
4837 Output_section*
4838 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4839                          unsigned int shndx,
4840                          const char* name,
4841                          const elfcpp::Shdr<64, true>& shdr,
4842                          unsigned int, unsigned int, off_t*);
4843 #endif
4844
4845 #ifdef HAVE_TARGET_32_LITTLE
4846 template
4847 Output_section*
4848 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4849                                 unsigned int reloc_shndx,
4850                                 const elfcpp::Shdr<32, false>& shdr,
4851                                 Output_section* data_section,
4852                                 Relocatable_relocs* rr);
4853 #endif
4854
4855 #ifdef HAVE_TARGET_32_BIG
4856 template
4857 Output_section*
4858 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4859                                unsigned int reloc_shndx,
4860                                const elfcpp::Shdr<32, true>& shdr,
4861                                Output_section* data_section,
4862                                Relocatable_relocs* rr);
4863 #endif
4864
4865 #ifdef HAVE_TARGET_64_LITTLE
4866 template
4867 Output_section*
4868 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4869                                 unsigned int reloc_shndx,
4870                                 const elfcpp::Shdr<64, false>& shdr,
4871                                 Output_section* data_section,
4872                                 Relocatable_relocs* rr);
4873 #endif
4874
4875 #ifdef HAVE_TARGET_64_BIG
4876 template
4877 Output_section*
4878 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4879                                unsigned int reloc_shndx,
4880                                const elfcpp::Shdr<64, true>& shdr,
4881                                Output_section* data_section,
4882                                Relocatable_relocs* rr);
4883 #endif
4884
4885 #ifdef HAVE_TARGET_32_LITTLE
4886 template
4887 void
4888 Layout::layout_group<32, false>(Symbol_table* symtab,
4889                                 Sized_relobj_file<32, false>* object,
4890                                 unsigned int,
4891                                 const char* group_section_name,
4892                                 const char* signature,
4893                                 const elfcpp::Shdr<32, false>& shdr,
4894                                 elfcpp::Elf_Word flags,
4895                                 std::vector<unsigned int>* shndxes);
4896 #endif
4897
4898 #ifdef HAVE_TARGET_32_BIG
4899 template
4900 void
4901 Layout::layout_group<32, true>(Symbol_table* symtab,
4902                                Sized_relobj_file<32, true>* object,
4903                                unsigned int,
4904                                const char* group_section_name,
4905                                const char* signature,
4906                                const elfcpp::Shdr<32, true>& shdr,
4907                                elfcpp::Elf_Word flags,
4908                                std::vector<unsigned int>* shndxes);
4909 #endif
4910
4911 #ifdef HAVE_TARGET_64_LITTLE
4912 template
4913 void
4914 Layout::layout_group<64, false>(Symbol_table* symtab,
4915                                 Sized_relobj_file<64, false>* object,
4916                                 unsigned int,
4917                                 const char* group_section_name,
4918                                 const char* signature,
4919                                 const elfcpp::Shdr<64, false>& shdr,
4920                                 elfcpp::Elf_Word flags,
4921                                 std::vector<unsigned int>* shndxes);
4922 #endif
4923
4924 #ifdef HAVE_TARGET_64_BIG
4925 template
4926 void
4927 Layout::layout_group<64, true>(Symbol_table* symtab,
4928                                Sized_relobj_file<64, true>* object,
4929                                unsigned int,
4930                                const char* group_section_name,
4931                                const char* signature,
4932                                const elfcpp::Shdr<64, true>& shdr,
4933                                elfcpp::Elf_Word flags,
4934                                std::vector<unsigned int>* shndxes);
4935 #endif
4936
4937 #ifdef HAVE_TARGET_32_LITTLE
4938 template
4939 Output_section*
4940 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4941                                    const unsigned char* symbols,
4942                                    off_t symbols_size,
4943                                    const unsigned char* symbol_names,
4944                                    off_t symbol_names_size,
4945                                    unsigned int shndx,
4946                                    const elfcpp::Shdr<32, false>& shdr,
4947                                    unsigned int reloc_shndx,
4948                                    unsigned int reloc_type,
4949                                    off_t* off);
4950 #endif
4951
4952 #ifdef HAVE_TARGET_32_BIG
4953 template
4954 Output_section*
4955 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4956                                   const unsigned char* symbols,
4957                                   off_t symbols_size,
4958                                   const unsigned char* symbol_names,
4959                                   off_t symbol_names_size,
4960                                   unsigned int shndx,
4961                                   const elfcpp::Shdr<32, true>& shdr,
4962                                   unsigned int reloc_shndx,
4963                                   unsigned int reloc_type,
4964                                   off_t* off);
4965 #endif
4966
4967 #ifdef HAVE_TARGET_64_LITTLE
4968 template
4969 Output_section*
4970 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4971                                    const unsigned char* symbols,
4972                                    off_t symbols_size,
4973                                    const unsigned char* symbol_names,
4974                                    off_t symbol_names_size,
4975                                    unsigned int shndx,
4976                                    const elfcpp::Shdr<64, false>& shdr,
4977                                    unsigned int reloc_shndx,
4978                                    unsigned int reloc_type,
4979                                    off_t* off);
4980 #endif
4981
4982 #ifdef HAVE_TARGET_64_BIG
4983 template
4984 Output_section*
4985 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
4986                                   const unsigned char* symbols,
4987                                   off_t symbols_size,
4988                                   const unsigned char* symbol_names,
4989                                   off_t symbol_names_size,
4990                                   unsigned int shndx,
4991                                   const elfcpp::Shdr<64, true>& shdr,
4992                                   unsigned int reloc_shndx,
4993                                   unsigned int reloc_type,
4994                                   off_t* off);
4995 #endif
4996
4997 } // End namespace gold.