PR 10141
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout_task_runner methods.
57
58 // Lay out the sections.  This is called after all the input objects
59 // have been read.
60
61 void
62 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
63 {
64   off_t file_size = this->layout_->finalize(this->input_objects_,
65                                             this->symtab_,
66                                             this->target_,
67                                             task);
68
69   // Now we know the final size of the output file and we know where
70   // each piece of information goes.
71
72   if (this->mapfile_ != NULL)
73     {
74       this->mapfile_->print_discarded_sections(this->input_objects_);
75       this->layout_->print_to_mapfile(this->mapfile_);
76     }
77
78   Output_file* of = new Output_file(parameters->options().output_file_name());
79   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
80     of->set_is_temporary();
81   of->open(file_size);
82
83   // Queue up the final set of tasks.
84   gold::queue_final_tasks(this->options_, this->input_objects_,
85                           this->symtab_, this->layout_, workqueue, of);
86 }
87
88 // Layout methods.
89
90 Layout::Layout(int number_of_input_files, Script_options* script_options)
91   : number_of_input_files_(number_of_input_files),
92     script_options_(script_options),
93     namepool_(),
94     sympool_(),
95     dynpool_(),
96     signatures_(),
97     section_name_map_(),
98     segment_list_(),
99     section_list_(),
100     unattached_section_list_(),
101     special_output_list_(),
102     section_headers_(NULL),
103     tls_segment_(NULL),
104     relro_segment_(NULL),
105     symtab_section_(NULL),
106     symtab_xindex_(NULL),
107     dynsym_section_(NULL),
108     dynsym_xindex_(NULL),
109     dynamic_section_(NULL),
110     dynamic_data_(NULL),
111     eh_frame_section_(NULL),
112     eh_frame_data_(NULL),
113     added_eh_frame_data_(false),
114     eh_frame_hdr_section_(NULL),
115     build_id_note_(NULL),
116     debug_abbrev_(NULL),
117     debug_info_(NULL),
118     group_signatures_(),
119     output_file_size_(-1),
120     sections_are_attached_(false),
121     input_requires_executable_stack_(false),
122     input_with_gnu_stack_note_(false),
123     input_without_gnu_stack_note_(false),
124     has_static_tls_(false),
125     any_postprocessing_sections_(false),
126     resized_signatures_(false),
127     incremental_inputs_(NULL)
128 {
129   // Make space for more than enough segments for a typical file.
130   // This is just for efficiency--it's OK if we wind up needing more.
131   this->segment_list_.reserve(12);
132
133   // We expect two unattached Output_data objects: the file header and
134   // the segment headers.
135   this->special_output_list_.reserve(2);
136
137   // Initialize structure needed for an incremental build.
138   if (parameters->options().incremental())
139     this->incremental_inputs_ = new Incremental_inputs;
140 }
141
142 // Hash a key we use to look up an output section mapping.
143
144 size_t
145 Layout::Hash_key::operator()(const Layout::Key& k) const
146 {
147  return k.first + k.second.first + k.second.second;
148 }
149
150 // Returns whether the given section is in the list of
151 // debug-sections-used-by-some-version-of-gdb.  Currently,
152 // we've checked versions of gdb up to and including 6.7.1.
153
154 static const char* gdb_sections[] =
155 { ".debug_abbrev",
156   // ".debug_aranges",   // not used by gdb as of 6.7.1
157   ".debug_frame",
158   ".debug_info",
159   ".debug_line",
160   ".debug_loc",
161   ".debug_macinfo",
162   // ".debug_pubnames",  // not used by gdb as of 6.7.1
163   ".debug_ranges",
164   ".debug_str",
165 };
166
167 static const char* lines_only_debug_sections[] =
168 { ".debug_abbrev",
169   // ".debug_aranges",   // not used by gdb as of 6.7.1
170   // ".debug_frame",
171   ".debug_info",
172   ".debug_line",
173   // ".debug_loc",
174   // ".debug_macinfo",
175   // ".debug_pubnames",  // not used by gdb as of 6.7.1
176   // ".debug_ranges",
177   ".debug_str",
178 };
179
180 static inline bool
181 is_gdb_debug_section(const char* str)
182 {
183   // We can do this faster: binary search or a hashtable.  But why bother?
184   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
185     if (strcmp(str, gdb_sections[i]) == 0)
186       return true;
187   return false;
188 }
189
190 static inline bool
191 is_lines_only_debug_section(const char* str)
192 {
193   // We can do this faster: binary search or a hashtable.  But why bother?
194   for (size_t i = 0;
195        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
196        ++i)
197     if (strcmp(str, lines_only_debug_sections[i]) == 0)
198       return true;
199   return false;
200 }
201
202 // Whether to include this section in the link.
203
204 template<int size, bool big_endian>
205 bool
206 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
207                         const elfcpp::Shdr<size, big_endian>& shdr)
208 {
209   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
210     return false;
211
212   switch (shdr.get_sh_type())
213     {
214     case elfcpp::SHT_NULL:
215     case elfcpp::SHT_SYMTAB:
216     case elfcpp::SHT_DYNSYM:
217     case elfcpp::SHT_HASH:
218     case elfcpp::SHT_DYNAMIC:
219     case elfcpp::SHT_SYMTAB_SHNDX:
220       return false;
221
222     case elfcpp::SHT_STRTAB:
223       // Discard the sections which have special meanings in the ELF
224       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
225       // checking the sh_link fields of the appropriate sections.
226       return (strcmp(name, ".dynstr") != 0
227               && strcmp(name, ".strtab") != 0
228               && strcmp(name, ".shstrtab") != 0);
229
230     case elfcpp::SHT_RELA:
231     case elfcpp::SHT_REL:
232     case elfcpp::SHT_GROUP:
233       // If we are emitting relocations these should be handled
234       // elsewhere.
235       gold_assert(!parameters->options().relocatable()
236                   && !parameters->options().emit_relocs());
237       return false;
238
239     case elfcpp::SHT_PROGBITS:
240       if (parameters->options().strip_debug()
241           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
242         {
243           if (is_debug_info_section(name))
244             return false;
245         }
246       if (parameters->options().strip_debug_non_line()
247           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
248         {
249           // Debugging sections can only be recognized by name.
250           if (is_prefix_of(".debug", name)
251               && !is_lines_only_debug_section(name))
252             return false;
253         }
254       if (parameters->options().strip_debug_gdb()
255           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
256         {
257           // Debugging sections can only be recognized by name.
258           if (is_prefix_of(".debug", name)
259               && !is_gdb_debug_section(name))
260             return false;
261         }
262       if (parameters->options().strip_lto_sections()
263           && !parameters->options().relocatable()
264           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
265         {
266           // Ignore LTO sections containing intermediate code.
267           if (is_prefix_of(".gnu.lto_", name))
268             return false;
269         }
270       return true;
271
272     default:
273       return true;
274     }
275 }
276
277 // Return an output section named NAME, or NULL if there is none.
278
279 Output_section*
280 Layout::find_output_section(const char* name) const
281 {
282   for (Section_list::const_iterator p = this->section_list_.begin();
283        p != this->section_list_.end();
284        ++p)
285     if (strcmp((*p)->name(), name) == 0)
286       return *p;
287   return NULL;
288 }
289
290 // Return an output segment of type TYPE, with segment flags SET set
291 // and segment flags CLEAR clear.  Return NULL if there is none.
292
293 Output_segment*
294 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
295                             elfcpp::Elf_Word clear) const
296 {
297   for (Segment_list::const_iterator p = this->segment_list_.begin();
298        p != this->segment_list_.end();
299        ++p)
300     if (static_cast<elfcpp::PT>((*p)->type()) == type
301         && ((*p)->flags() & set) == set
302         && ((*p)->flags() & clear) == 0)
303       return *p;
304   return NULL;
305 }
306
307 // Return the output section to use for section NAME with type TYPE
308 // and section flags FLAGS.  NAME must be canonicalized in the string
309 // pool, and NAME_KEY is the key.
310
311 Output_section*
312 Layout::get_output_section(const char* name, Stringpool::Key name_key,
313                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
314 {
315   elfcpp::Elf_Xword lookup_flags = flags;
316
317   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
318   // read-write with read-only sections.  Some other ELF linkers do
319   // not do this.  FIXME: Perhaps there should be an option
320   // controlling this.
321   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
322
323   const Key key(name_key, std::make_pair(type, lookup_flags));
324   const std::pair<Key, Output_section*> v(key, NULL);
325   std::pair<Section_name_map::iterator, bool> ins(
326     this->section_name_map_.insert(v));
327
328   if (!ins.second)
329     return ins.first->second;
330   else
331     {
332       // This is the first time we've seen this name/type/flags
333       // combination.  For compatibility with the GNU linker, we
334       // combine sections with contents and zero flags with sections
335       // with non-zero flags.  This is a workaround for cases where
336       // assembler code forgets to set section flags.  FIXME: Perhaps
337       // there should be an option to control this.
338       Output_section* os = NULL;
339
340       if (type == elfcpp::SHT_PROGBITS)
341         {
342           if (flags == 0)
343             {
344               Output_section* same_name = this->find_output_section(name);
345               if (same_name != NULL
346                   && same_name->type() == elfcpp::SHT_PROGBITS
347                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
348                 os = same_name;
349             }
350           else if ((flags & elfcpp::SHF_TLS) == 0)
351             {
352               elfcpp::Elf_Xword zero_flags = 0;
353               const Key zero_key(name_key, std::make_pair(type, zero_flags));
354               Section_name_map::iterator p =
355                   this->section_name_map_.find(zero_key);
356               if (p != this->section_name_map_.end())
357                 os = p->second;
358             }
359         }
360
361       if (os == NULL)
362         os = this->make_output_section(name, type, flags);
363       ins.first->second = os;
364       return os;
365     }
366 }
367
368 // Pick the output section to use for section NAME, in input file
369 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
370 // linker created section.  IS_INPUT_SECTION is true if we are
371 // choosing an output section for an input section found in a input
372 // file.  This will return NULL if the input section should be
373 // discarded.
374
375 Output_section*
376 Layout::choose_output_section(const Relobj* relobj, const char* name,
377                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
378                               bool is_input_section)
379 {
380   // We should not see any input sections after we have attached
381   // sections to segments.
382   gold_assert(!is_input_section || !this->sections_are_attached_);
383
384   // Some flags in the input section should not be automatically
385   // copied to the output section.
386   flags &= ~ (elfcpp::SHF_INFO_LINK
387               | elfcpp::SHF_LINK_ORDER
388               | elfcpp::SHF_GROUP
389               | elfcpp::SHF_MERGE
390               | elfcpp::SHF_STRINGS);
391
392   if (this->script_options_->saw_sections_clause())
393     {
394       // We are using a SECTIONS clause, so the output section is
395       // chosen based only on the name.
396
397       Script_sections* ss = this->script_options_->script_sections();
398       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
399       Output_section** output_section_slot;
400       name = ss->output_section_name(file_name, name, &output_section_slot);
401       if (name == NULL)
402         {
403           // The SECTIONS clause says to discard this input section.
404           return NULL;
405         }
406
407       // If this is an orphan section--one not mentioned in the linker
408       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
409       // default processing below.
410
411       if (output_section_slot != NULL)
412         {
413           if (*output_section_slot != NULL)
414             return *output_section_slot;
415
416           // We don't put sections found in the linker script into
417           // SECTION_NAME_MAP_.  That keeps us from getting confused
418           // if an orphan section is mapped to a section with the same
419           // name as one in the linker script.
420
421           name = this->namepool_.add(name, false, NULL);
422
423           Output_section* os = this->make_output_section(name, type, flags);
424           os->set_found_in_sections_clause();
425           *output_section_slot = os;
426           return os;
427         }
428     }
429
430   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
431
432   // Turn NAME from the name of the input section into the name of the
433   // output section.
434
435   size_t len = strlen(name);
436   if (is_input_section
437       && !this->script_options_->saw_sections_clause()
438       && !parameters->options().relocatable())
439     name = Layout::output_section_name(name, &len);
440
441   Stringpool::Key name_key;
442   name = this->namepool_.add_with_length(name, len, true, &name_key);
443
444   // Find or make the output section.  The output section is selected
445   // based on the section name, type, and flags.
446   return this->get_output_section(name, name_key, type, flags);
447 }
448
449 // Return the output section to use for input section SHNDX, with name
450 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
451 // index of a relocation section which applies to this section, or 0
452 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
453 // relocation section if there is one.  Set *OFF to the offset of this
454 // input section without the output section.  Return NULL if the
455 // section should be discarded.  Set *OFF to -1 if the section
456 // contents should not be written directly to the output file, but
457 // will instead receive special handling.
458
459 template<int size, bool big_endian>
460 Output_section*
461 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
462                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
463                unsigned int reloc_shndx, unsigned int, off_t* off)
464 {
465   *off = 0;
466
467   if (!this->include_section(object, name, shdr))
468     return NULL;
469
470   Output_section* os;
471
472   // In a relocatable link a grouped section must not be combined with
473   // any other sections.
474   if (parameters->options().relocatable()
475       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
476     {
477       name = this->namepool_.add(name, true, NULL);
478       os = this->make_output_section(name, shdr.get_sh_type(),
479                                      shdr.get_sh_flags());
480     }
481   else
482     {
483       os = this->choose_output_section(object, name, shdr.get_sh_type(),
484                                        shdr.get_sh_flags(), true);
485       if (os == NULL)
486         return NULL;
487     }
488
489   // By default the GNU linker sorts input sections whose names match
490   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
491   // are sorted by name.  This is used to implement constructor
492   // priority ordering.  We are compatible.
493   if (!this->script_options_->saw_sections_clause()
494       && (is_prefix_of(".ctors.", name)
495           || is_prefix_of(".dtors.", name)
496           || is_prefix_of(".init_array.", name)
497           || is_prefix_of(".fini_array.", name)))
498     os->set_must_sort_attached_input_sections();
499
500   // FIXME: Handle SHF_LINK_ORDER somewhere.
501
502   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
503                                this->script_options_->saw_sections_clause());
504
505   return os;
506 }
507
508 // Handle a relocation section when doing a relocatable link.
509
510 template<int size, bool big_endian>
511 Output_section*
512 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
513                      unsigned int,
514                      const elfcpp::Shdr<size, big_endian>& shdr,
515                      Output_section* data_section,
516                      Relocatable_relocs* rr)
517 {
518   gold_assert(parameters->options().relocatable()
519               || parameters->options().emit_relocs());
520
521   int sh_type = shdr.get_sh_type();
522
523   std::string name;
524   if (sh_type == elfcpp::SHT_REL)
525     name = ".rel";
526   else if (sh_type == elfcpp::SHT_RELA)
527     name = ".rela";
528   else
529     gold_unreachable();
530   name += data_section->name();
531
532   Output_section* os = this->choose_output_section(object, name.c_str(),
533                                                    sh_type,
534                                                    shdr.get_sh_flags(),
535                                                    false);
536
537   os->set_should_link_to_symtab();
538   os->set_info_section(data_section);
539
540   Output_section_data* posd;
541   if (sh_type == elfcpp::SHT_REL)
542     {
543       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
544       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
545                                            size,
546                                            big_endian>(rr);
547     }
548   else if (sh_type == elfcpp::SHT_RELA)
549     {
550       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
551       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
552                                            size,
553                                            big_endian>(rr);
554     }
555   else
556     gold_unreachable();
557
558   os->add_output_section_data(posd);
559   rr->set_output_data(posd);
560
561   return os;
562 }
563
564 // Handle a group section when doing a relocatable link.
565
566 template<int size, bool big_endian>
567 void
568 Layout::layout_group(Symbol_table* symtab,
569                      Sized_relobj<size, big_endian>* object,
570                      unsigned int,
571                      const char* group_section_name,
572                      const char* signature,
573                      const elfcpp::Shdr<size, big_endian>& shdr,
574                      elfcpp::Elf_Word flags,
575                      std::vector<unsigned int>* shndxes)
576 {
577   gold_assert(parameters->options().relocatable());
578   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
579   group_section_name = this->namepool_.add(group_section_name, true, NULL);
580   Output_section* os = this->make_output_section(group_section_name,
581                                                  elfcpp::SHT_GROUP,
582                                                  shdr.get_sh_flags());
583
584   // We need to find a symbol with the signature in the symbol table.
585   // If we don't find one now, we need to look again later.
586   Symbol* sym = symtab->lookup(signature, NULL);
587   if (sym != NULL)
588     os->set_info_symndx(sym);
589   else
590     {
591       // Reserve some space to minimize reallocations.
592       if (this->group_signatures_.empty())
593         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
594
595       // We will wind up using a symbol whose name is the signature.
596       // So just put the signature in the symbol name pool to save it.
597       signature = symtab->canonicalize_name(signature);
598       this->group_signatures_.push_back(Group_signature(os, signature));
599     }
600
601   os->set_should_link_to_symtab();
602   os->set_entsize(4);
603
604   section_size_type entry_count =
605     convert_to_section_size_type(shdr.get_sh_size() / 4);
606   Output_section_data* posd =
607     new Output_data_group<size, big_endian>(object, entry_count, flags,
608                                             shndxes);
609   os->add_output_section_data(posd);
610 }
611
612 // Special GNU handling of sections name .eh_frame.  They will
613 // normally hold exception frame data as defined by the C++ ABI
614 // (http://codesourcery.com/cxx-abi/).
615
616 template<int size, bool big_endian>
617 Output_section*
618 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
619                         const unsigned char* symbols,
620                         off_t symbols_size,
621                         const unsigned char* symbol_names,
622                         off_t symbol_names_size,
623                         unsigned int shndx,
624                         const elfcpp::Shdr<size, big_endian>& shdr,
625                         unsigned int reloc_shndx, unsigned int reloc_type,
626                         off_t* off)
627 {
628   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
629   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
630
631   const char* const name = ".eh_frame";
632   Output_section* os = this->choose_output_section(object,
633                                                    name,
634                                                    elfcpp::SHT_PROGBITS,
635                                                    elfcpp::SHF_ALLOC,
636                                                    false);
637   if (os == NULL)
638     return NULL;
639
640   if (this->eh_frame_section_ == NULL)
641     {
642       this->eh_frame_section_ = os;
643       this->eh_frame_data_ = new Eh_frame();
644
645       if (parameters->options().eh_frame_hdr())
646         {
647           Output_section* hdr_os =
648             this->choose_output_section(NULL,
649                                         ".eh_frame_hdr",
650                                         elfcpp::SHT_PROGBITS,
651                                         elfcpp::SHF_ALLOC,
652                                         false);
653
654           if (hdr_os != NULL)
655             {
656               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
657                                                         this->eh_frame_data_);
658               hdr_os->add_output_section_data(hdr_posd);
659
660               hdr_os->set_after_input_sections();
661
662               if (!this->script_options_->saw_phdrs_clause())
663                 {
664                   Output_segment* hdr_oseg;
665                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
666                                                        elfcpp::PF_R);
667                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
668                 }
669
670               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
671             }
672         }
673     }
674
675   gold_assert(this->eh_frame_section_ == os);
676
677   if (this->eh_frame_data_->add_ehframe_input_section(object,
678                                                       symbols,
679                                                       symbols_size,
680                                                       symbol_names,
681                                                       symbol_names_size,
682                                                       shndx,
683                                                       reloc_shndx,
684                                                       reloc_type))
685     {
686       os->update_flags_for_input_section(shdr.get_sh_flags());
687
688       // We found a .eh_frame section we are going to optimize, so now
689       // we can add the set of optimized sections to the output
690       // section.  We need to postpone adding this until we've found a
691       // section we can optimize so that the .eh_frame section in
692       // crtbegin.o winds up at the start of the output section.
693       if (!this->added_eh_frame_data_)
694         {
695           os->add_output_section_data(this->eh_frame_data_);
696           this->added_eh_frame_data_ = true;
697         }
698       *off = -1;
699     }
700   else
701     {
702       // We couldn't handle this .eh_frame section for some reason.
703       // Add it as a normal section.
704       bool saw_sections_clause = this->script_options_->saw_sections_clause();
705       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
706                                    saw_sections_clause);
707     }
708
709   return os;
710 }
711
712 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
713 // the output section.
714
715 Output_section*
716 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
717                                 elfcpp::Elf_Xword flags,
718                                 Output_section_data* posd)
719 {
720   Output_section* os = this->choose_output_section(NULL, name, type, flags,
721                                                    false);
722   if (os != NULL)
723     os->add_output_section_data(posd);
724   return os;
725 }
726
727 // Map section flags to segment flags.
728
729 elfcpp::Elf_Word
730 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
731 {
732   elfcpp::Elf_Word ret = elfcpp::PF_R;
733   if ((flags & elfcpp::SHF_WRITE) != 0)
734     ret |= elfcpp::PF_W;
735   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
736     ret |= elfcpp::PF_X;
737   return ret;
738 }
739
740 // Sometimes we compress sections.  This is typically done for
741 // sections that are not part of normal program execution (such as
742 // .debug_* sections), and where the readers of these sections know
743 // how to deal with compressed sections.  (To make it easier for them,
744 // we will rename the ouput section in such cases from .foo to
745 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
746 // doesn't say for certain whether we'll compress -- it depends on
747 // commandline options as well -- just whether this section is a
748 // candidate for compression.
749
750 static bool
751 is_compressible_debug_section(const char* secname)
752 {
753   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
754 }
755
756 // Make a new Output_section, and attach it to segments as
757 // appropriate.
758
759 Output_section*
760 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
761                             elfcpp::Elf_Xword flags)
762 {
763   Output_section* os;
764   if ((flags & elfcpp::SHF_ALLOC) == 0
765       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
766       && is_compressible_debug_section(name))
767     os = new Output_compressed_section(&parameters->options(), name, type,
768                                        flags);
769
770   else if ((flags & elfcpp::SHF_ALLOC) == 0
771            && parameters->options().strip_debug_non_line()
772            && strcmp(".debug_abbrev", name) == 0)
773     {
774       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
775           name, type, flags);
776       if (this->debug_info_)
777         this->debug_info_->set_abbreviations(this->debug_abbrev_);
778     }
779   else if ((flags & elfcpp::SHF_ALLOC) == 0
780            && parameters->options().strip_debug_non_line()
781            && strcmp(".debug_info", name) == 0)
782     {
783       os = this->debug_info_ = new Output_reduced_debug_info_section(
784           name, type, flags);
785       if (this->debug_abbrev_)
786         this->debug_info_->set_abbreviations(this->debug_abbrev_);
787     }
788  else
789     os = new Output_section(name, type, flags);
790
791   parameters->target().new_output_section(os);
792
793   this->section_list_.push_back(os);
794
795   // The GNU linker by default sorts some sections by priority, so we
796   // do the same.  We need to know that this might happen before we
797   // attach any input sections.
798   if (!this->script_options_->saw_sections_clause()
799       && (strcmp(name, ".ctors") == 0
800           || strcmp(name, ".dtors") == 0
801           || strcmp(name, ".init_array") == 0
802           || strcmp(name, ".fini_array") == 0))
803     os->set_may_sort_attached_input_sections();
804
805   // With -z relro, we have to recognize the special sections by name.
806   // There is no other way.
807   if (!this->script_options_->saw_sections_clause()
808       && parameters->options().relro()
809       && type == elfcpp::SHT_PROGBITS
810       && (flags & elfcpp::SHF_ALLOC) != 0
811       && (flags & elfcpp::SHF_WRITE) != 0)
812     {
813       if (strcmp(name, ".data.rel.ro") == 0)
814         os->set_is_relro();
815       else if (strcmp(name, ".data.rel.ro.local") == 0)
816         {
817           os->set_is_relro();
818           os->set_is_relro_local();
819         }
820     }
821
822   // If we have already attached the sections to segments, then we
823   // need to attach this one now.  This happens for sections created
824   // directly by the linker.
825   if (this->sections_are_attached_)
826     this->attach_section_to_segment(os);
827
828   return os;
829 }
830
831 // Attach output sections to segments.  This is called after we have
832 // seen all the input sections.
833
834 void
835 Layout::attach_sections_to_segments()
836 {
837   for (Section_list::iterator p = this->section_list_.begin();
838        p != this->section_list_.end();
839        ++p)
840     this->attach_section_to_segment(*p);
841
842   this->sections_are_attached_ = true;
843 }
844
845 // Attach an output section to a segment.
846
847 void
848 Layout::attach_section_to_segment(Output_section* os)
849 {
850   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
851     this->unattached_section_list_.push_back(os);
852   else
853     this->attach_allocated_section_to_segment(os);
854 }
855
856 // Attach an allocated output section to a segment.
857
858 void
859 Layout::attach_allocated_section_to_segment(Output_section* os)
860 {
861   elfcpp::Elf_Xword flags = os->flags();
862   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
863
864   if (parameters->options().relocatable())
865     return;
866
867   // If we have a SECTIONS clause, we can't handle the attachment to
868   // segments until after we've seen all the sections.
869   if (this->script_options_->saw_sections_clause())
870     return;
871
872   gold_assert(!this->script_options_->saw_phdrs_clause());
873
874   // This output section goes into a PT_LOAD segment.
875
876   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
877
878   // In general the only thing we really care about for PT_LOAD
879   // segments is whether or not they are writable, so that is how we
880   // search for them.  Large data sections also go into their own
881   // PT_LOAD segment.  People who need segments sorted on some other
882   // basis will have to use a linker script.
883
884   Segment_list::const_iterator p;
885   for (p = this->segment_list_.begin();
886        p != this->segment_list_.end();
887        ++p)
888     {
889       if ((*p)->type() != elfcpp::PT_LOAD)
890         continue;
891       if (!parameters->options().omagic()
892           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
893         continue;
894       // If -Tbss was specified, we need to separate the data and BSS
895       // segments.
896       if (parameters->options().user_set_Tbss())
897         {
898           if ((os->type() == elfcpp::SHT_NOBITS)
899               == (*p)->has_any_data_sections())
900             continue;
901         }
902       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
903         continue;
904
905       (*p)->add_output_section(os, seg_flags);
906       break;
907     }
908
909   if (p == this->segment_list_.end())
910     {
911       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
912                                                        seg_flags);
913       if (os->is_large_data_section())
914         oseg->set_is_large_data_segment();
915       oseg->add_output_section(os, seg_flags);
916     }
917
918   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
919   // segment.
920   if (os->type() == elfcpp::SHT_NOTE)
921     {
922       // See if we already have an equivalent PT_NOTE segment.
923       for (p = this->segment_list_.begin();
924            p != segment_list_.end();
925            ++p)
926         {
927           if ((*p)->type() == elfcpp::PT_NOTE
928               && (((*p)->flags() & elfcpp::PF_W)
929                   == (seg_flags & elfcpp::PF_W)))
930             {
931               (*p)->add_output_section(os, seg_flags);
932               break;
933             }
934         }
935
936       if (p == this->segment_list_.end())
937         {
938           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
939                                                            seg_flags);
940           oseg->add_output_section(os, seg_flags);
941         }
942     }
943
944   // If we see a loadable SHF_TLS section, we create a PT_TLS
945   // segment.  There can only be one such segment.
946   if ((flags & elfcpp::SHF_TLS) != 0)
947     {
948       if (this->tls_segment_ == NULL)
949         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
950       this->tls_segment_->add_output_section(os, seg_flags);
951     }
952
953   // If -z relro is in effect, and we see a relro section, we create a
954   // PT_GNU_RELRO segment.  There can only be one such segment.
955   if (os->is_relro() && parameters->options().relro())
956     {
957       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
958       if (this->relro_segment_ == NULL)
959         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
960       this->relro_segment_->add_output_section(os, seg_flags);
961     }
962 }
963
964 // Make an output section for a script.
965
966 Output_section*
967 Layout::make_output_section_for_script(const char* name)
968 {
969   name = this->namepool_.add(name, false, NULL);
970   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
971                                                  elfcpp::SHF_ALLOC);
972   os->set_found_in_sections_clause();
973   return os;
974 }
975
976 // Return the number of segments we expect to see.
977
978 size_t
979 Layout::expected_segment_count() const
980 {
981   size_t ret = this->segment_list_.size();
982
983   // If we didn't see a SECTIONS clause in a linker script, we should
984   // already have the complete list of segments.  Otherwise we ask the
985   // SECTIONS clause how many segments it expects, and add in the ones
986   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
987
988   if (!this->script_options_->saw_sections_clause())
989     return ret;
990   else
991     {
992       const Script_sections* ss = this->script_options_->script_sections();
993       return ret + ss->expected_segment_count(this);
994     }
995 }
996
997 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
998 // is whether we saw a .note.GNU-stack section in the object file.
999 // GNU_STACK_FLAGS is the section flags.  The flags give the
1000 // protection required for stack memory.  We record this in an
1001 // executable as a PT_GNU_STACK segment.  If an object file does not
1002 // have a .note.GNU-stack segment, we must assume that it is an old
1003 // object.  On some targets that will force an executable stack.
1004
1005 void
1006 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1007 {
1008   if (!seen_gnu_stack)
1009     this->input_without_gnu_stack_note_ = true;
1010   else
1011     {
1012       this->input_with_gnu_stack_note_ = true;
1013       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1014         this->input_requires_executable_stack_ = true;
1015     }
1016 }
1017
1018 // Create the dynamic sections which are needed before we read the
1019 // relocs.
1020
1021 void
1022 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1023 {
1024   if (parameters->doing_static_link())
1025     return;
1026
1027   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1028                                                        elfcpp::SHT_DYNAMIC,
1029                                                        (elfcpp::SHF_ALLOC
1030                                                         | elfcpp::SHF_WRITE),
1031                                                        false);
1032   this->dynamic_section_->set_is_relro();
1033
1034   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1035                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1036                                 elfcpp::STV_HIDDEN, 0, false, false);
1037
1038   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1039
1040   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1041 }
1042
1043 // For each output section whose name can be represented as C symbol,
1044 // define __start and __stop symbols for the section.  This is a GNU
1045 // extension.
1046
1047 void
1048 Layout::define_section_symbols(Symbol_table* symtab)
1049 {
1050   for (Section_list::const_iterator p = this->section_list_.begin();
1051        p != this->section_list_.end();
1052        ++p)
1053     {
1054       const char* const name = (*p)->name();
1055       if (name[strspn(name,
1056                       ("0123456789"
1057                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1058                        "abcdefghijklmnopqrstuvwxyz"
1059                        "_"))]
1060           == '\0')
1061         {
1062           const std::string name_string(name);
1063           const std::string start_name("__start_" + name_string);
1064           const std::string stop_name("__stop_" + name_string);
1065
1066           symtab->define_in_output_data(start_name.c_str(),
1067                                         NULL, // version
1068                                         *p,
1069                                         0, // value
1070                                         0, // symsize
1071                                         elfcpp::STT_NOTYPE,
1072                                         elfcpp::STB_GLOBAL,
1073                                         elfcpp::STV_DEFAULT,
1074                                         0, // nonvis
1075                                         false, // offset_is_from_end
1076                                         true); // only_if_ref
1077
1078           symtab->define_in_output_data(stop_name.c_str(),
1079                                         NULL, // version
1080                                         *p,
1081                                         0, // value
1082                                         0, // symsize
1083                                         elfcpp::STT_NOTYPE,
1084                                         elfcpp::STB_GLOBAL,
1085                                         elfcpp::STV_DEFAULT,
1086                                         0, // nonvis
1087                                         true, // offset_is_from_end
1088                                         true); // only_if_ref
1089         }
1090     }
1091 }
1092
1093 // Define symbols for group signatures.
1094
1095 void
1096 Layout::define_group_signatures(Symbol_table* symtab)
1097 {
1098   for (Group_signatures::iterator p = this->group_signatures_.begin();
1099        p != this->group_signatures_.end();
1100        ++p)
1101     {
1102       Symbol* sym = symtab->lookup(p->signature, NULL);
1103       if (sym != NULL)
1104         p->section->set_info_symndx(sym);
1105       else
1106         {
1107           // Force the name of the group section to the group
1108           // signature, and use the group's section symbol as the
1109           // signature symbol.
1110           if (strcmp(p->section->name(), p->signature) != 0)
1111             {
1112               const char* name = this->namepool_.add(p->signature,
1113                                                      true, NULL);
1114               p->section->set_name(name);
1115             }
1116           p->section->set_needs_symtab_index();
1117           p->section->set_info_section_symndx(p->section);
1118         }
1119     }
1120
1121   this->group_signatures_.clear();
1122 }
1123
1124 // Find the first read-only PT_LOAD segment, creating one if
1125 // necessary.
1126
1127 Output_segment*
1128 Layout::find_first_load_seg()
1129 {
1130   for (Segment_list::const_iterator p = this->segment_list_.begin();
1131        p != this->segment_list_.end();
1132        ++p)
1133     {
1134       if ((*p)->type() == elfcpp::PT_LOAD
1135           && ((*p)->flags() & elfcpp::PF_R) != 0
1136           && (parameters->options().omagic()
1137               || ((*p)->flags() & elfcpp::PF_W) == 0))
1138         return *p;
1139     }
1140
1141   gold_assert(!this->script_options_->saw_phdrs_clause());
1142
1143   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1144                                                        elfcpp::PF_R);
1145   return load_seg;
1146 }
1147
1148 // Finalize the layout.  When this is called, we have created all the
1149 // output sections and all the output segments which are based on
1150 // input sections.  We have several things to do, and we have to do
1151 // them in the right order, so that we get the right results correctly
1152 // and efficiently.
1153
1154 // 1) Finalize the list of output segments and create the segment
1155 // table header.
1156
1157 // 2) Finalize the dynamic symbol table and associated sections.
1158
1159 // 3) Determine the final file offset of all the output segments.
1160
1161 // 4) Determine the final file offset of all the SHF_ALLOC output
1162 // sections.
1163
1164 // 5) Create the symbol table sections and the section name table
1165 // section.
1166
1167 // 6) Finalize the symbol table: set symbol values to their final
1168 // value and make a final determination of which symbols are going
1169 // into the output symbol table.
1170
1171 // 7) Create the section table header.
1172
1173 // 8) Determine the final file offset of all the output sections which
1174 // are not SHF_ALLOC, including the section table header.
1175
1176 // 9) Finalize the ELF file header.
1177
1178 // This function returns the size of the output file.
1179
1180 off_t
1181 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1182                  Target* target, const Task* task)
1183 {
1184   target->finalize_sections(this);
1185
1186   this->count_local_symbols(task, input_objects);
1187
1188   this->create_gold_note();
1189   this->create_executable_stack_info(target);
1190   this->create_build_id();
1191
1192   Output_segment* phdr_seg = NULL;
1193   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1194     {
1195       // There was a dynamic object in the link.  We need to create
1196       // some information for the dynamic linker.
1197
1198       // Create the PT_PHDR segment which will hold the program
1199       // headers.
1200       if (!this->script_options_->saw_phdrs_clause())
1201         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1202
1203       // Create the dynamic symbol table, including the hash table.
1204       Output_section* dynstr;
1205       std::vector<Symbol*> dynamic_symbols;
1206       unsigned int local_dynamic_count;
1207       Versions versions(*this->script_options()->version_script_info(),
1208                         &this->dynpool_);
1209       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1210                                   &local_dynamic_count, &dynamic_symbols,
1211                                   &versions);
1212
1213       // Create the .interp section to hold the name of the
1214       // interpreter, and put it in a PT_INTERP segment.
1215       if (!parameters->options().shared())
1216         this->create_interp(target);
1217
1218       // Finish the .dynamic section to hold the dynamic data, and put
1219       // it in a PT_DYNAMIC segment.
1220       this->finish_dynamic_section(input_objects, symtab);
1221
1222       // We should have added everything we need to the dynamic string
1223       // table.
1224       this->dynpool_.set_string_offsets();
1225
1226       // Create the version sections.  We can't do this until the
1227       // dynamic string table is complete.
1228       this->create_version_sections(&versions, symtab, local_dynamic_count,
1229                                     dynamic_symbols, dynstr);
1230     }
1231   
1232   if (this->incremental_inputs_)
1233     {
1234       this->incremental_inputs_->finalize();
1235       this->create_incremental_info_sections();
1236     }
1237
1238   // If there is a SECTIONS clause, put all the input sections into
1239   // the required order.
1240   Output_segment* load_seg;
1241   if (this->script_options_->saw_sections_clause())
1242     load_seg = this->set_section_addresses_from_script(symtab);
1243   else if (parameters->options().relocatable())
1244     load_seg = NULL;
1245   else
1246     load_seg = this->find_first_load_seg();
1247
1248   if (parameters->options().oformat_enum()
1249       != General_options::OBJECT_FORMAT_ELF)
1250     load_seg = NULL;
1251
1252   gold_assert(phdr_seg == NULL || load_seg != NULL);
1253
1254   // Lay out the segment headers.
1255   Output_segment_headers* segment_headers;
1256   if (parameters->options().relocatable())
1257     segment_headers = NULL;
1258   else
1259     {
1260       segment_headers = new Output_segment_headers(this->segment_list_);
1261       if (load_seg != NULL)
1262         load_seg->add_initial_output_data(segment_headers);
1263       if (phdr_seg != NULL)
1264         phdr_seg->add_initial_output_data(segment_headers);
1265     }
1266
1267   // Lay out the file header.
1268   Output_file_header* file_header;
1269   file_header = new Output_file_header(target, symtab, segment_headers,
1270                                        parameters->options().entry());
1271   if (load_seg != NULL)
1272     load_seg->add_initial_output_data(file_header);
1273
1274   this->special_output_list_.push_back(file_header);
1275   if (segment_headers != NULL)
1276     this->special_output_list_.push_back(segment_headers);
1277
1278   if (this->script_options_->saw_phdrs_clause()
1279       && !parameters->options().relocatable())
1280     {
1281       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1282       // clause in a linker script.
1283       Script_sections* ss = this->script_options_->script_sections();
1284       ss->put_headers_in_phdrs(file_header, segment_headers);
1285     }
1286
1287   // We set the output section indexes in set_segment_offsets and
1288   // set_section_indexes.
1289   unsigned int shndx = 1;
1290
1291   // Set the file offsets of all the segments, and all the sections
1292   // they contain.
1293   off_t off;
1294   if (!parameters->options().relocatable())
1295     off = this->set_segment_offsets(target, load_seg, &shndx);
1296   else
1297     off = this->set_relocatable_section_offsets(file_header, &shndx);
1298
1299   // Set the file offsets of all the non-data sections we've seen so
1300   // far which don't have to wait for the input sections.  We need
1301   // this in order to finalize local symbols in non-allocated
1302   // sections.
1303   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1304
1305   // Set the section indexes of all unallocated sections seen so far,
1306   // in case any of them are somehow referenced by a symbol.
1307   shndx = this->set_section_indexes(shndx);
1308
1309   // Create the symbol table sections.
1310   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1311   if (!parameters->doing_static_link())
1312     this->assign_local_dynsym_offsets(input_objects);
1313
1314   // Process any symbol assignments from a linker script.  This must
1315   // be called after the symbol table has been finalized.
1316   this->script_options_->finalize_symbols(symtab, this);
1317
1318   // Create the .shstrtab section.
1319   Output_section* shstrtab_section = this->create_shstrtab();
1320
1321   // Set the file offsets of the rest of the non-data sections which
1322   // don't have to wait for the input sections.
1323   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1324
1325   // Now that all sections have been created, set the section indexes
1326   // for any sections which haven't been done yet.
1327   shndx = this->set_section_indexes(shndx);
1328
1329   // Create the section table header.
1330   this->create_shdrs(shstrtab_section, &off);
1331
1332   // If there are no sections which require postprocessing, we can
1333   // handle the section names now, and avoid a resize later.
1334   if (!this->any_postprocessing_sections_)
1335     off = this->set_section_offsets(off,
1336                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1337
1338   file_header->set_section_info(this->section_headers_, shstrtab_section);
1339
1340   // Now we know exactly where everything goes in the output file
1341   // (except for non-allocated sections which require postprocessing).
1342   Output_data::layout_complete();
1343
1344   this->output_file_size_ = off;
1345
1346   return off;
1347 }
1348
1349 // Create a note header following the format defined in the ELF ABI.
1350 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1351 // descriptor.  ALLOCATE is true if the section should be allocated in
1352 // memory.  This returns the new note section.  It sets
1353 // *TRAILING_PADDING to the number of trailing zero bytes required.
1354
1355 Output_section*
1356 Layout::create_note(const char* name, int note_type,
1357                     const char* section_name, size_t descsz,
1358                     bool allocate, size_t* trailing_padding)
1359 {
1360   // Authorities all agree that the values in a .note field should
1361   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1362   // they differ on what the alignment is for 64-bit binaries.
1363   // The GABI says unambiguously they take 8-byte alignment:
1364   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1365   // Other documentation says alignment should always be 4 bytes:
1366   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1367   // GNU ld and GNU readelf both support the latter (at least as of
1368   // version 2.16.91), and glibc always generates the latter for
1369   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1370   // here.
1371 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1372   const int size = parameters->target().get_size();
1373 #else
1374   const int size = 32;
1375 #endif
1376
1377   // The contents of the .note section.
1378   size_t namesz = strlen(name) + 1;
1379   size_t aligned_namesz = align_address(namesz, size / 8);
1380   size_t aligned_descsz = align_address(descsz, size / 8);
1381
1382   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1383
1384   unsigned char* buffer = new unsigned char[notehdrsz];
1385   memset(buffer, 0, notehdrsz);
1386
1387   bool is_big_endian = parameters->target().is_big_endian();
1388
1389   if (size == 32)
1390     {
1391       if (!is_big_endian)
1392         {
1393           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1394           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1395           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1396         }
1397       else
1398         {
1399           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1400           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1401           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1402         }
1403     }
1404   else if (size == 64)
1405     {
1406       if (!is_big_endian)
1407         {
1408           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1409           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1410           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1411         }
1412       else
1413         {
1414           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1415           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1416           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1417         }
1418     }
1419   else
1420     gold_unreachable();
1421
1422   memcpy(buffer + 3 * (size / 8), name, namesz);
1423
1424   const char *note_name = this->namepool_.add(section_name, false, NULL);
1425   elfcpp::Elf_Xword flags = 0;
1426   if (allocate)
1427     flags = elfcpp::SHF_ALLOC;
1428   Output_section* os = this->make_output_section(note_name,
1429                                                  elfcpp::SHT_NOTE,
1430                                                  flags);
1431   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1432                                                            size / 8,
1433                                                            "** note header");
1434   os->add_output_section_data(posd);
1435
1436   *trailing_padding = aligned_descsz - descsz;
1437
1438   return os;
1439 }
1440
1441 // For an executable or shared library, create a note to record the
1442 // version of gold used to create the binary.
1443
1444 void
1445 Layout::create_gold_note()
1446 {
1447   if (parameters->options().relocatable())
1448     return;
1449
1450   std::string desc = std::string("gold ") + gold::get_version_string();
1451
1452   size_t trailing_padding;
1453   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1454                                          ".note.gnu.gold-version", desc.size(),
1455                                          false, &trailing_padding);
1456
1457   Output_section_data* posd = new Output_data_const(desc, 4);
1458   os->add_output_section_data(posd);
1459
1460   if (trailing_padding > 0)
1461     {
1462       posd = new Output_data_zero_fill(trailing_padding, 0);
1463       os->add_output_section_data(posd);
1464     }
1465 }
1466
1467 // Record whether the stack should be executable.  This can be set
1468 // from the command line using the -z execstack or -z noexecstack
1469 // options.  Otherwise, if any input file has a .note.GNU-stack
1470 // section with the SHF_EXECINSTR flag set, the stack should be
1471 // executable.  Otherwise, if at least one input file a
1472 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1473 // section, we use the target default for whether the stack should be
1474 // executable.  Otherwise, we don't generate a stack note.  When
1475 // generating a object file, we create a .note.GNU-stack section with
1476 // the appropriate marking.  When generating an executable or shared
1477 // library, we create a PT_GNU_STACK segment.
1478
1479 void
1480 Layout::create_executable_stack_info(const Target* target)
1481 {
1482   bool is_stack_executable;
1483   if (parameters->options().is_execstack_set())
1484     is_stack_executable = parameters->options().is_stack_executable();
1485   else if (!this->input_with_gnu_stack_note_)
1486     return;
1487   else
1488     {
1489       if (this->input_requires_executable_stack_)
1490         is_stack_executable = true;
1491       else if (this->input_without_gnu_stack_note_)
1492         is_stack_executable = target->is_default_stack_executable();
1493       else
1494         is_stack_executable = false;
1495     }
1496
1497   if (parameters->options().relocatable())
1498     {
1499       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1500       elfcpp::Elf_Xword flags = 0;
1501       if (is_stack_executable)
1502         flags |= elfcpp::SHF_EXECINSTR;
1503       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1504     }
1505   else
1506     {
1507       if (this->script_options_->saw_phdrs_clause())
1508         return;
1509       int flags = elfcpp::PF_R | elfcpp::PF_W;
1510       if (is_stack_executable)
1511         flags |= elfcpp::PF_X;
1512       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1513     }
1514 }
1515
1516 // If --build-id was used, set up the build ID note.
1517
1518 void
1519 Layout::create_build_id()
1520 {
1521   if (!parameters->options().user_set_build_id())
1522     return;
1523
1524   const char* style = parameters->options().build_id();
1525   if (strcmp(style, "none") == 0)
1526     return;
1527
1528   // Set DESCSZ to the size of the note descriptor.  When possible,
1529   // set DESC to the note descriptor contents.
1530   size_t descsz;
1531   std::string desc;
1532   if (strcmp(style, "md5") == 0)
1533     descsz = 128 / 8;
1534   else if (strcmp(style, "sha1") == 0)
1535     descsz = 160 / 8;
1536   else if (strcmp(style, "uuid") == 0)
1537     {
1538       const size_t uuidsz = 128 / 8;
1539
1540       char buffer[uuidsz];
1541       memset(buffer, 0, uuidsz);
1542
1543       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1544       if (descriptor < 0)
1545         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1546                    strerror(errno));
1547       else
1548         {
1549           ssize_t got = ::read(descriptor, buffer, uuidsz);
1550           release_descriptor(descriptor, true);
1551           if (got < 0)
1552             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1553           else if (static_cast<size_t>(got) != uuidsz)
1554             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1555                        uuidsz, got);
1556         }
1557
1558       desc.assign(buffer, uuidsz);
1559       descsz = uuidsz;
1560     }
1561   else if (strncmp(style, "0x", 2) == 0)
1562     {
1563       hex_init();
1564       const char* p = style + 2;
1565       while (*p != '\0')
1566         {
1567           if (hex_p(p[0]) && hex_p(p[1]))
1568             {
1569               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1570               desc += c;
1571               p += 2;
1572             }
1573           else if (*p == '-' || *p == ':')
1574             ++p;
1575           else
1576             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1577                        style);
1578         }
1579       descsz = desc.size();
1580     }
1581   else
1582     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1583
1584   // Create the note.
1585   size_t trailing_padding;
1586   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1587                                          ".note.gnu.build-id", descsz, true,
1588                                          &trailing_padding);
1589
1590   if (!desc.empty())
1591     {
1592       // We know the value already, so we fill it in now.
1593       gold_assert(desc.size() == descsz);
1594
1595       Output_section_data* posd = new Output_data_const(desc, 4);
1596       os->add_output_section_data(posd);
1597
1598       if (trailing_padding != 0)
1599         {
1600           posd = new Output_data_zero_fill(trailing_padding, 0);
1601           os->add_output_section_data(posd);
1602         }
1603     }
1604   else
1605     {
1606       // We need to compute a checksum after we have completed the
1607       // link.
1608       gold_assert(trailing_padding == 0);
1609       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1610       os->add_output_section_data(this->build_id_note_);
1611       os->set_after_input_sections();
1612     }
1613 }
1614
1615 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1616 // for the next run of incremental linking to check what has changed.
1617
1618 void
1619 Layout::create_incremental_info_sections()
1620 {
1621   gold_assert(this->incremental_inputs_ != NULL);
1622
1623   // Add the .gnu_incremental_inputs section.
1624   const char *incremental_inputs_name =
1625     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1626   Output_section* inputs_os =
1627     this->make_output_section(incremental_inputs_name,
1628                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1629   Output_section_data* posd =
1630       this->incremental_inputs_->create_incremental_inputs_section_data();
1631   inputs_os->add_output_section_data(posd);
1632   
1633   // Add the .gnu_incremental_strtab section.
1634   const char *incremental_strtab_name =
1635     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1636   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1637                                                         elfcpp::SHT_STRTAB,
1638                                                         0);
1639   Output_data_strtab* strtab_data =
1640     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1641   strtab_os->add_output_section_data(strtab_data);
1642   
1643   inputs_os->set_link_section(strtab_data);
1644 }
1645
1646 // Return whether SEG1 should be before SEG2 in the output file.  This
1647 // is based entirely on the segment type and flags.  When this is
1648 // called the segment addresses has normally not yet been set.
1649
1650 bool
1651 Layout::segment_precedes(const Output_segment* seg1,
1652                          const Output_segment* seg2)
1653 {
1654   elfcpp::Elf_Word type1 = seg1->type();
1655   elfcpp::Elf_Word type2 = seg2->type();
1656
1657   // The single PT_PHDR segment is required to precede any loadable
1658   // segment.  We simply make it always first.
1659   if (type1 == elfcpp::PT_PHDR)
1660     {
1661       gold_assert(type2 != elfcpp::PT_PHDR);
1662       return true;
1663     }
1664   if (type2 == elfcpp::PT_PHDR)
1665     return false;
1666
1667   // The single PT_INTERP segment is required to precede any loadable
1668   // segment.  We simply make it always second.
1669   if (type1 == elfcpp::PT_INTERP)
1670     {
1671       gold_assert(type2 != elfcpp::PT_INTERP);
1672       return true;
1673     }
1674   if (type2 == elfcpp::PT_INTERP)
1675     return false;
1676
1677   // We then put PT_LOAD segments before any other segments.
1678   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1679     return true;
1680   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1681     return false;
1682
1683   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1684   // segment, because that is where the dynamic linker expects to find
1685   // it (this is just for efficiency; other positions would also work
1686   // correctly).
1687   if (type1 == elfcpp::PT_TLS
1688       && type2 != elfcpp::PT_TLS
1689       && type2 != elfcpp::PT_GNU_RELRO)
1690     return false;
1691   if (type2 == elfcpp::PT_TLS
1692       && type1 != elfcpp::PT_TLS
1693       && type1 != elfcpp::PT_GNU_RELRO)
1694     return true;
1695
1696   // We put the PT_GNU_RELRO segment last, because that is where the
1697   // dynamic linker expects to find it (as with PT_TLS, this is just
1698   // for efficiency).
1699   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1700     return false;
1701   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1702     return true;
1703
1704   const elfcpp::Elf_Word flags1 = seg1->flags();
1705   const elfcpp::Elf_Word flags2 = seg2->flags();
1706
1707   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1708   // by the numeric segment type and flags values.  There should not
1709   // be more than one segment with the same type and flags.
1710   if (type1 != elfcpp::PT_LOAD)
1711     {
1712       if (type1 != type2)
1713         return type1 < type2;
1714       gold_assert(flags1 != flags2);
1715       return flags1 < flags2;
1716     }
1717
1718   // If the addresses are set already, sort by load address.
1719   if (seg1->are_addresses_set())
1720     {
1721       if (!seg2->are_addresses_set())
1722         return true;
1723
1724       unsigned int section_count1 = seg1->output_section_count();
1725       unsigned int section_count2 = seg2->output_section_count();
1726       if (section_count1 == 0 && section_count2 > 0)
1727         return true;
1728       if (section_count1 > 0 && section_count2 == 0)
1729         return false;
1730
1731       uint64_t paddr1 = seg1->first_section_load_address();
1732       uint64_t paddr2 = seg2->first_section_load_address();
1733       if (paddr1 != paddr2)
1734         return paddr1 < paddr2;
1735     }
1736   else if (seg2->are_addresses_set())
1737     return false;
1738
1739   // A segment which holds large data comes after a segment which does
1740   // not hold large data.
1741   if (seg1->is_large_data_segment())
1742     {
1743       if (!seg2->is_large_data_segment())
1744         return false;
1745     }
1746   else if (seg2->is_large_data_segment())
1747     return true;
1748
1749   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
1750   // segments come before writable segments.  Then writable segments
1751   // with data come before writable segments without data.  Then
1752   // executable segments come before non-executable segments.  Then
1753   // the unlikely case of a non-readable segment comes before the
1754   // normal case of a readable segment.  If there are multiple
1755   // segments with the same type and flags, we require that the
1756   // address be set, and we sort by virtual address and then physical
1757   // address.
1758   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1759     return (flags1 & elfcpp::PF_W) == 0;
1760   if ((flags1 & elfcpp::PF_W) != 0
1761       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1762     return seg1->has_any_data_sections();
1763   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1764     return (flags1 & elfcpp::PF_X) != 0;
1765   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1766     return (flags1 & elfcpp::PF_R) == 0;
1767
1768   // We shouldn't get here--we shouldn't create segments which we
1769   // can't distinguish.
1770   gold_unreachable();
1771 }
1772
1773 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1774
1775 static off_t
1776 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
1777 {
1778   uint64_t unsigned_off = off;
1779   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1780                           | (addr & (abi_pagesize - 1)));
1781   if (aligned_off < unsigned_off)
1782     aligned_off += abi_pagesize;
1783   return aligned_off;
1784 }
1785
1786 // Set the file offsets of all the segments, and all the sections they
1787 // contain.  They have all been created.  LOAD_SEG must be be laid out
1788 // first.  Return the offset of the data to follow.
1789
1790 off_t
1791 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1792                             unsigned int *pshndx)
1793 {
1794   // Sort them into the final order.
1795   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1796             Layout::Compare_segments());
1797
1798   // Find the PT_LOAD segments, and set their addresses and offsets
1799   // and their section's addresses and offsets.
1800   uint64_t addr;
1801   if (parameters->options().user_set_Ttext())
1802     addr = parameters->options().Ttext();
1803   else if (parameters->options().shared())
1804     addr = 0;
1805   else
1806     addr = target->default_text_segment_address();
1807   off_t off = 0;
1808
1809   // If LOAD_SEG is NULL, then the file header and segment headers
1810   // will not be loadable.  But they still need to be at offset 0 in
1811   // the file.  Set their offsets now.
1812   if (load_seg == NULL)
1813     {
1814       for (Data_list::iterator p = this->special_output_list_.begin();
1815            p != this->special_output_list_.end();
1816            ++p)
1817         {
1818           off = align_address(off, (*p)->addralign());
1819           (*p)->set_address_and_file_offset(0, off);
1820           off += (*p)->data_size();
1821         }
1822     }
1823
1824   const bool check_sections = parameters->options().check_sections();
1825   Output_segment* last_load_segment = NULL;
1826
1827   bool was_readonly = false;
1828   for (Segment_list::iterator p = this->segment_list_.begin();
1829        p != this->segment_list_.end();
1830        ++p)
1831     {
1832       if ((*p)->type() == elfcpp::PT_LOAD)
1833         {
1834           if (load_seg != NULL && load_seg != *p)
1835             gold_unreachable();
1836           load_seg = NULL;
1837
1838           bool are_addresses_set = (*p)->are_addresses_set();
1839           if (are_addresses_set)
1840             {
1841               // When it comes to setting file offsets, we care about
1842               // the physical address.
1843               addr = (*p)->paddr();
1844             }
1845           else if (parameters->options().user_set_Tdata()
1846                    && ((*p)->flags() & elfcpp::PF_W) != 0
1847                    && (!parameters->options().user_set_Tbss()
1848                        || (*p)->has_any_data_sections()))
1849             {
1850               addr = parameters->options().Tdata();
1851               are_addresses_set = true;
1852             }
1853           else if (parameters->options().user_set_Tbss()
1854                    && ((*p)->flags() & elfcpp::PF_W) != 0
1855                    && !(*p)->has_any_data_sections())
1856             {
1857               addr = parameters->options().Tbss();
1858               are_addresses_set = true;
1859             }
1860
1861           uint64_t orig_addr = addr;
1862           uint64_t orig_off = off;
1863
1864           uint64_t aligned_addr = 0;
1865           uint64_t abi_pagesize = target->abi_pagesize();
1866           uint64_t common_pagesize = target->common_pagesize();
1867
1868           if (!parameters->options().nmagic()
1869               && !parameters->options().omagic())
1870             (*p)->set_minimum_p_align(common_pagesize);
1871
1872           if (!are_addresses_set)
1873             {
1874               // If the last segment was readonly, and this one is
1875               // not, then skip the address forward one page,
1876               // maintaining the same position within the page.  This
1877               // lets us store both segments overlapping on a single
1878               // page in the file, but the loader will put them on
1879               // different pages in memory.
1880
1881               addr = align_address(addr, (*p)->maximum_alignment());
1882               aligned_addr = addr;
1883
1884               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1885                 {
1886                   if ((addr & (abi_pagesize - 1)) != 0)
1887                     addr = addr + abi_pagesize;
1888                 }
1889
1890               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1891             }
1892
1893           if (!parameters->options().nmagic()
1894               && !parameters->options().omagic())
1895             off = align_file_offset(off, addr, abi_pagesize);
1896
1897           unsigned int shndx_hold = *pshndx;
1898           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1899                                                           &off, pshndx);
1900
1901           // Now that we know the size of this segment, we may be able
1902           // to save a page in memory, at the cost of wasting some
1903           // file space, by instead aligning to the start of a new
1904           // page.  Here we use the real machine page size rather than
1905           // the ABI mandated page size.
1906
1907           if (!are_addresses_set && aligned_addr != addr)
1908             {
1909               uint64_t first_off = (common_pagesize
1910                                     - (aligned_addr
1911                                        & (common_pagesize - 1)));
1912               uint64_t last_off = new_addr & (common_pagesize - 1);
1913               if (first_off > 0
1914                   && last_off > 0
1915                   && ((aligned_addr & ~ (common_pagesize - 1))
1916                       != (new_addr & ~ (common_pagesize - 1)))
1917                   && first_off + last_off <= common_pagesize)
1918                 {
1919                   *pshndx = shndx_hold;
1920                   addr = align_address(aligned_addr, common_pagesize);
1921                   addr = align_address(addr, (*p)->maximum_alignment());
1922                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1923                   off = align_file_offset(off, addr, abi_pagesize);
1924                   new_addr = (*p)->set_section_addresses(this, true, addr,
1925                                                          &off, pshndx);
1926                 }
1927             }
1928
1929           addr = new_addr;
1930
1931           if (((*p)->flags() & elfcpp::PF_W) == 0)
1932             was_readonly = true;
1933
1934           // Implement --check-sections.  We know that the segments
1935           // are sorted by LMA.
1936           if (check_sections && last_load_segment != NULL)
1937             {
1938               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1939               if (last_load_segment->paddr() + last_load_segment->memsz()
1940                   > (*p)->paddr())
1941                 {
1942                   unsigned long long lb1 = last_load_segment->paddr();
1943                   unsigned long long le1 = lb1 + last_load_segment->memsz();
1944                   unsigned long long lb2 = (*p)->paddr();
1945                   unsigned long long le2 = lb2 + (*p)->memsz();
1946                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1947                                "[0x%llx -> 0x%llx]"),
1948                              lb1, le1, lb2, le2);
1949                 }
1950             }
1951           last_load_segment = *p;
1952         }
1953     }
1954
1955   // Handle the non-PT_LOAD segments, setting their offsets from their
1956   // section's offsets.
1957   for (Segment_list::iterator p = this->segment_list_.begin();
1958        p != this->segment_list_.end();
1959        ++p)
1960     {
1961       if ((*p)->type() != elfcpp::PT_LOAD)
1962         (*p)->set_offset();
1963     }
1964
1965   // Set the TLS offsets for each section in the PT_TLS segment.
1966   if (this->tls_segment_ != NULL)
1967     this->tls_segment_->set_tls_offsets();
1968
1969   return off;
1970 }
1971
1972 // Set the offsets of all the allocated sections when doing a
1973 // relocatable link.  This does the same jobs as set_segment_offsets,
1974 // only for a relocatable link.
1975
1976 off_t
1977 Layout::set_relocatable_section_offsets(Output_data* file_header,
1978                                         unsigned int *pshndx)
1979 {
1980   off_t off = 0;
1981
1982   file_header->set_address_and_file_offset(0, 0);
1983   off += file_header->data_size();
1984
1985   for (Section_list::iterator p = this->section_list_.begin();
1986        p != this->section_list_.end();
1987        ++p)
1988     {
1989       // We skip unallocated sections here, except that group sections
1990       // have to come first.
1991       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1992           && (*p)->type() != elfcpp::SHT_GROUP)
1993         continue;
1994
1995       off = align_address(off, (*p)->addralign());
1996
1997       // The linker script might have set the address.
1998       if (!(*p)->is_address_valid())
1999         (*p)->set_address(0);
2000       (*p)->set_file_offset(off);
2001       (*p)->finalize_data_size();
2002       off += (*p)->data_size();
2003
2004       (*p)->set_out_shndx(*pshndx);
2005       ++*pshndx;
2006     }
2007
2008   return off;
2009 }
2010
2011 // Set the file offset of all the sections not associated with a
2012 // segment.
2013
2014 off_t
2015 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2016 {
2017   for (Section_list::iterator p = this->unattached_section_list_.begin();
2018        p != this->unattached_section_list_.end();
2019        ++p)
2020     {
2021       // The symtab section is handled in create_symtab_sections.
2022       if (*p == this->symtab_section_)
2023         continue;
2024
2025       // If we've already set the data size, don't set it again.
2026       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2027         continue;
2028
2029       if (pass == BEFORE_INPUT_SECTIONS_PASS
2030           && (*p)->requires_postprocessing())
2031         {
2032           (*p)->create_postprocessing_buffer();
2033           this->any_postprocessing_sections_ = true;
2034         }
2035
2036       if (pass == BEFORE_INPUT_SECTIONS_PASS
2037           && (*p)->after_input_sections())
2038         continue;
2039       else if (pass == POSTPROCESSING_SECTIONS_PASS
2040                && (!(*p)->after_input_sections()
2041                    || (*p)->type() == elfcpp::SHT_STRTAB))
2042         continue;
2043       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2044                && (!(*p)->after_input_sections()
2045                    || (*p)->type() != elfcpp::SHT_STRTAB))
2046         continue;
2047
2048       off = align_address(off, (*p)->addralign());
2049       (*p)->set_file_offset(off);
2050       (*p)->finalize_data_size();
2051       off += (*p)->data_size();
2052
2053       // At this point the name must be set.
2054       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2055         this->namepool_.add((*p)->name(), false, NULL);
2056     }
2057   return off;
2058 }
2059
2060 // Set the section indexes of all the sections not associated with a
2061 // segment.
2062
2063 unsigned int
2064 Layout::set_section_indexes(unsigned int shndx)
2065 {
2066   for (Section_list::iterator p = this->unattached_section_list_.begin();
2067        p != this->unattached_section_list_.end();
2068        ++p)
2069     {
2070       if (!(*p)->has_out_shndx())
2071         {
2072           (*p)->set_out_shndx(shndx);
2073           ++shndx;
2074         }
2075     }
2076   return shndx;
2077 }
2078
2079 // Set the section addresses according to the linker script.  This is
2080 // only called when we see a SECTIONS clause.  This returns the
2081 // program segment which should hold the file header and segment
2082 // headers, if any.  It will return NULL if they should not be in a
2083 // segment.
2084
2085 Output_segment*
2086 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2087 {
2088   Script_sections* ss = this->script_options_->script_sections();
2089   gold_assert(ss->saw_sections_clause());
2090
2091   // Place each orphaned output section in the script.
2092   for (Section_list::iterator p = this->section_list_.begin();
2093        p != this->section_list_.end();
2094        ++p)
2095     {
2096       if (!(*p)->found_in_sections_clause())
2097         ss->place_orphan(*p);
2098     }
2099
2100   return this->script_options_->set_section_addresses(symtab, this);
2101 }
2102
2103 // Count the local symbols in the regular symbol table and the dynamic
2104 // symbol table, and build the respective string pools.
2105
2106 void
2107 Layout::count_local_symbols(const Task* task,
2108                             const Input_objects* input_objects)
2109 {
2110   // First, figure out an upper bound on the number of symbols we'll
2111   // be inserting into each pool.  This helps us create the pools with
2112   // the right size, to avoid unnecessary hashtable resizing.
2113   unsigned int symbol_count = 0;
2114   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2115        p != input_objects->relobj_end();
2116        ++p)
2117     symbol_count += (*p)->local_symbol_count();
2118
2119   // Go from "upper bound" to "estimate."  We overcount for two
2120   // reasons: we double-count symbols that occur in more than one
2121   // object file, and we count symbols that are dropped from the
2122   // output.  Add it all together and assume we overcount by 100%.
2123   symbol_count /= 2;
2124
2125   // We assume all symbols will go into both the sympool and dynpool.
2126   this->sympool_.reserve(symbol_count);
2127   this->dynpool_.reserve(symbol_count);
2128
2129   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2130        p != input_objects->relobj_end();
2131        ++p)
2132     {
2133       Task_lock_obj<Object> tlo(task, *p);
2134       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2135     }
2136 }
2137
2138 // Create the symbol table sections.  Here we also set the final
2139 // values of the symbols.  At this point all the loadable sections are
2140 // fully laid out.  SHNUM is the number of sections so far.
2141
2142 void
2143 Layout::create_symtab_sections(const Input_objects* input_objects,
2144                                Symbol_table* symtab,
2145                                unsigned int shnum,
2146                                off_t* poff)
2147 {
2148   int symsize;
2149   unsigned int align;
2150   if (parameters->target().get_size() == 32)
2151     {
2152       symsize = elfcpp::Elf_sizes<32>::sym_size;
2153       align = 4;
2154     }
2155   else if (parameters->target().get_size() == 64)
2156     {
2157       symsize = elfcpp::Elf_sizes<64>::sym_size;
2158       align = 8;
2159     }
2160   else
2161     gold_unreachable();
2162
2163   off_t off = *poff;
2164   off = align_address(off, align);
2165   off_t startoff = off;
2166
2167   // Save space for the dummy symbol at the start of the section.  We
2168   // never bother to write this out--it will just be left as zero.
2169   off += symsize;
2170   unsigned int local_symbol_index = 1;
2171
2172   // Add STT_SECTION symbols for each Output section which needs one.
2173   for (Section_list::iterator p = this->section_list_.begin();
2174        p != this->section_list_.end();
2175        ++p)
2176     {
2177       if (!(*p)->needs_symtab_index())
2178         (*p)->set_symtab_index(-1U);
2179       else
2180         {
2181           (*p)->set_symtab_index(local_symbol_index);
2182           ++local_symbol_index;
2183           off += symsize;
2184         }
2185     }
2186
2187   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2188        p != input_objects->relobj_end();
2189        ++p)
2190     {
2191       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2192                                                         off);
2193       off += (index - local_symbol_index) * symsize;
2194       local_symbol_index = index;
2195     }
2196
2197   unsigned int local_symcount = local_symbol_index;
2198   gold_assert(local_symcount * symsize == off - startoff);
2199
2200   off_t dynoff;
2201   size_t dyn_global_index;
2202   size_t dyncount;
2203   if (this->dynsym_section_ == NULL)
2204     {
2205       dynoff = 0;
2206       dyn_global_index = 0;
2207       dyncount = 0;
2208     }
2209   else
2210     {
2211       dyn_global_index = this->dynsym_section_->info();
2212       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2213       dynoff = this->dynsym_section_->offset() + locsize;
2214       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2215       gold_assert(static_cast<off_t>(dyncount * symsize)
2216                   == this->dynsym_section_->data_size() - locsize);
2217     }
2218
2219   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2220                          &this->sympool_, &local_symcount);
2221
2222   if (!parameters->options().strip_all())
2223     {
2224       this->sympool_.set_string_offsets();
2225
2226       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2227       Output_section* osymtab = this->make_output_section(symtab_name,
2228                                                           elfcpp::SHT_SYMTAB,
2229                                                           0);
2230       this->symtab_section_ = osymtab;
2231
2232       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2233                                                              align,
2234                                                              "** symtab");
2235       osymtab->add_output_section_data(pos);
2236
2237       // We generate a .symtab_shndx section if we have more than
2238       // SHN_LORESERVE sections.  Technically it is possible that we
2239       // don't need one, because it is possible that there are no
2240       // symbols in any of sections with indexes larger than
2241       // SHN_LORESERVE.  That is probably unusual, though, and it is
2242       // easier to always create one than to compute section indexes
2243       // twice (once here, once when writing out the symbols).
2244       if (shnum >= elfcpp::SHN_LORESERVE)
2245         {
2246           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2247                                                                false, NULL);
2248           Output_section* osymtab_xindex =
2249             this->make_output_section(symtab_xindex_name,
2250                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2251
2252           size_t symcount = (off - startoff) / symsize;
2253           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2254
2255           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2256
2257           osymtab_xindex->set_link_section(osymtab);
2258           osymtab_xindex->set_addralign(4);
2259           osymtab_xindex->set_entsize(4);
2260
2261           osymtab_xindex->set_after_input_sections();
2262
2263           // This tells the driver code to wait until the symbol table
2264           // has written out before writing out the postprocessing
2265           // sections, including the .symtab_shndx section.
2266           this->any_postprocessing_sections_ = true;
2267         }
2268
2269       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2270       Output_section* ostrtab = this->make_output_section(strtab_name,
2271                                                           elfcpp::SHT_STRTAB,
2272                                                           0);
2273
2274       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2275       ostrtab->add_output_section_data(pstr);
2276
2277       osymtab->set_file_offset(startoff);
2278       osymtab->finalize_data_size();
2279       osymtab->set_link_section(ostrtab);
2280       osymtab->set_info(local_symcount);
2281       osymtab->set_entsize(symsize);
2282
2283       *poff = off;
2284     }
2285 }
2286
2287 // Create the .shstrtab section, which holds the names of the
2288 // sections.  At the time this is called, we have created all the
2289 // output sections except .shstrtab itself.
2290
2291 Output_section*
2292 Layout::create_shstrtab()
2293 {
2294   // FIXME: We don't need to create a .shstrtab section if we are
2295   // stripping everything.
2296
2297   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2298
2299   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2300
2301   // We can't write out this section until we've set all the section
2302   // names, and we don't set the names of compressed output sections
2303   // until relocations are complete.
2304   os->set_after_input_sections();
2305
2306   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2307   os->add_output_section_data(posd);
2308
2309   return os;
2310 }
2311
2312 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2313 // offset.
2314
2315 void
2316 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2317 {
2318   Output_section_headers* oshdrs;
2319   oshdrs = new Output_section_headers(this,
2320                                       &this->segment_list_,
2321                                       &this->section_list_,
2322                                       &this->unattached_section_list_,
2323                                       &this->namepool_,
2324                                       shstrtab_section);
2325   off_t off = align_address(*poff, oshdrs->addralign());
2326   oshdrs->set_address_and_file_offset(0, off);
2327   off += oshdrs->data_size();
2328   *poff = off;
2329   this->section_headers_ = oshdrs;
2330 }
2331
2332 // Count the allocated sections.
2333
2334 size_t
2335 Layout::allocated_output_section_count() const
2336 {
2337   size_t section_count = 0;
2338   for (Segment_list::const_iterator p = this->segment_list_.begin();
2339        p != this->segment_list_.end();
2340        ++p)
2341     section_count += (*p)->output_section_count();
2342   return section_count;
2343 }
2344
2345 // Create the dynamic symbol table.
2346
2347 void
2348 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2349                               Symbol_table* symtab,
2350                               Output_section **pdynstr,
2351                               unsigned int* plocal_dynamic_count,
2352                               std::vector<Symbol*>* pdynamic_symbols,
2353                               Versions* pversions)
2354 {
2355   // Count all the symbols in the dynamic symbol table, and set the
2356   // dynamic symbol indexes.
2357
2358   // Skip symbol 0, which is always all zeroes.
2359   unsigned int index = 1;
2360
2361   // Add STT_SECTION symbols for each Output section which needs one.
2362   for (Section_list::iterator p = this->section_list_.begin();
2363        p != this->section_list_.end();
2364        ++p)
2365     {
2366       if (!(*p)->needs_dynsym_index())
2367         (*p)->set_dynsym_index(-1U);
2368       else
2369         {
2370           (*p)->set_dynsym_index(index);
2371           ++index;
2372         }
2373     }
2374
2375   // Count the local symbols that need to go in the dynamic symbol table,
2376   // and set the dynamic symbol indexes.
2377   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2378        p != input_objects->relobj_end();
2379        ++p)
2380     {
2381       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2382       index = new_index;
2383     }
2384
2385   unsigned int local_symcount = index;
2386   *plocal_dynamic_count = local_symcount;
2387
2388   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2389                                      &this->dynpool_, pversions);
2390
2391   int symsize;
2392   unsigned int align;
2393   const int size = parameters->target().get_size();
2394   if (size == 32)
2395     {
2396       symsize = elfcpp::Elf_sizes<32>::sym_size;
2397       align = 4;
2398     }
2399   else if (size == 64)
2400     {
2401       symsize = elfcpp::Elf_sizes<64>::sym_size;
2402       align = 8;
2403     }
2404   else
2405     gold_unreachable();
2406
2407   // Create the dynamic symbol table section.
2408
2409   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2410                                                        elfcpp::SHT_DYNSYM,
2411                                                        elfcpp::SHF_ALLOC,
2412                                                        false);
2413
2414   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2415                                                            align,
2416                                                            "** dynsym");
2417   dynsym->add_output_section_data(odata);
2418
2419   dynsym->set_info(local_symcount);
2420   dynsym->set_entsize(symsize);
2421   dynsym->set_addralign(align);
2422
2423   this->dynsym_section_ = dynsym;
2424
2425   Output_data_dynamic* const odyn = this->dynamic_data_;
2426   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2427   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2428
2429   // If there are more than SHN_LORESERVE allocated sections, we
2430   // create a .dynsym_shndx section.  It is possible that we don't
2431   // need one, because it is possible that there are no dynamic
2432   // symbols in any of the sections with indexes larger than
2433   // SHN_LORESERVE.  This is probably unusual, though, and at this
2434   // time we don't know the actual section indexes so it is
2435   // inconvenient to check.
2436   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2437     {
2438       Output_section* dynsym_xindex =
2439         this->choose_output_section(NULL, ".dynsym_shndx",
2440                                     elfcpp::SHT_SYMTAB_SHNDX,
2441                                     elfcpp::SHF_ALLOC,
2442                                     false);
2443
2444       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2445
2446       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2447
2448       dynsym_xindex->set_link_section(dynsym);
2449       dynsym_xindex->set_addralign(4);
2450       dynsym_xindex->set_entsize(4);
2451
2452       dynsym_xindex->set_after_input_sections();
2453
2454       // This tells the driver code to wait until the symbol table has
2455       // written out before writing out the postprocessing sections,
2456       // including the .dynsym_shndx section.
2457       this->any_postprocessing_sections_ = true;
2458     }
2459
2460   // Create the dynamic string table section.
2461
2462   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2463                                                        elfcpp::SHT_STRTAB,
2464                                                        elfcpp::SHF_ALLOC,
2465                                                        false);
2466
2467   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2468   dynstr->add_output_section_data(strdata);
2469
2470   dynsym->set_link_section(dynstr);
2471   this->dynamic_section_->set_link_section(dynstr);
2472
2473   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2474   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2475
2476   *pdynstr = dynstr;
2477
2478   // Create the hash tables.
2479
2480   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2481       || strcmp(parameters->options().hash_style(), "both") == 0)
2482     {
2483       unsigned char* phash;
2484       unsigned int hashlen;
2485       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2486                                     &phash, &hashlen);
2487
2488       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2489                                                             elfcpp::SHT_HASH,
2490                                                             elfcpp::SHF_ALLOC,
2491                                                             false);
2492
2493       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2494                                                                    hashlen,
2495                                                                    align,
2496                                                                    "** hash");
2497       hashsec->add_output_section_data(hashdata);
2498
2499       hashsec->set_link_section(dynsym);
2500       hashsec->set_entsize(4);
2501
2502       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2503     }
2504
2505   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2506       || strcmp(parameters->options().hash_style(), "both") == 0)
2507     {
2508       unsigned char* phash;
2509       unsigned int hashlen;
2510       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2511                                     &phash, &hashlen);
2512
2513       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2514                                                             elfcpp::SHT_GNU_HASH,
2515                                                             elfcpp::SHF_ALLOC,
2516                                                             false);
2517
2518       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2519                                                                    hashlen,
2520                                                                    align,
2521                                                                    "** hash");
2522       hashsec->add_output_section_data(hashdata);
2523
2524       hashsec->set_link_section(dynsym);
2525       hashsec->set_entsize(4);
2526
2527       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2528     }
2529 }
2530
2531 // Assign offsets to each local portion of the dynamic symbol table.
2532
2533 void
2534 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2535 {
2536   Output_section* dynsym = this->dynsym_section_;
2537   gold_assert(dynsym != NULL);
2538
2539   off_t off = dynsym->offset();
2540
2541   // Skip the dummy symbol at the start of the section.
2542   off += dynsym->entsize();
2543
2544   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2545        p != input_objects->relobj_end();
2546        ++p)
2547     {
2548       unsigned int count = (*p)->set_local_dynsym_offset(off);
2549       off += count * dynsym->entsize();
2550     }
2551 }
2552
2553 // Create the version sections.
2554
2555 void
2556 Layout::create_version_sections(const Versions* versions,
2557                                 const Symbol_table* symtab,
2558                                 unsigned int local_symcount,
2559                                 const std::vector<Symbol*>& dynamic_symbols,
2560                                 const Output_section* dynstr)
2561 {
2562   if (!versions->any_defs() && !versions->any_needs())
2563     return;
2564
2565   switch (parameters->size_and_endianness())
2566     {
2567 #ifdef HAVE_TARGET_32_LITTLE
2568     case Parameters::TARGET_32_LITTLE:
2569       this->sized_create_version_sections<32, false>(versions, symtab,
2570                                                      local_symcount,
2571                                                      dynamic_symbols, dynstr);
2572       break;
2573 #endif
2574 #ifdef HAVE_TARGET_32_BIG
2575     case Parameters::TARGET_32_BIG:
2576       this->sized_create_version_sections<32, true>(versions, symtab,
2577                                                     local_symcount,
2578                                                     dynamic_symbols, dynstr);
2579       break;
2580 #endif
2581 #ifdef HAVE_TARGET_64_LITTLE
2582     case Parameters::TARGET_64_LITTLE:
2583       this->sized_create_version_sections<64, false>(versions, symtab,
2584                                                      local_symcount,
2585                                                      dynamic_symbols, dynstr);
2586       break;
2587 #endif
2588 #ifdef HAVE_TARGET_64_BIG
2589     case Parameters::TARGET_64_BIG:
2590       this->sized_create_version_sections<64, true>(versions, symtab,
2591                                                     local_symcount,
2592                                                     dynamic_symbols, dynstr);
2593       break;
2594 #endif
2595     default:
2596       gold_unreachable();
2597     }
2598 }
2599
2600 // Create the version sections, sized version.
2601
2602 template<int size, bool big_endian>
2603 void
2604 Layout::sized_create_version_sections(
2605     const Versions* versions,
2606     const Symbol_table* symtab,
2607     unsigned int local_symcount,
2608     const std::vector<Symbol*>& dynamic_symbols,
2609     const Output_section* dynstr)
2610 {
2611   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2612                                                      elfcpp::SHT_GNU_versym,
2613                                                      elfcpp::SHF_ALLOC,
2614                                                      false);
2615
2616   unsigned char* vbuf;
2617   unsigned int vsize;
2618   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2619                                                       local_symcount,
2620                                                       dynamic_symbols,
2621                                                       &vbuf, &vsize);
2622
2623   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2624                                                             "** versions");
2625
2626   vsec->add_output_section_data(vdata);
2627   vsec->set_entsize(2);
2628   vsec->set_link_section(this->dynsym_section_);
2629
2630   Output_data_dynamic* const odyn = this->dynamic_data_;
2631   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2632
2633   if (versions->any_defs())
2634     {
2635       Output_section* vdsec;
2636       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2637                                          elfcpp::SHT_GNU_verdef,
2638                                          elfcpp::SHF_ALLOC,
2639                                          false);
2640
2641       unsigned char* vdbuf;
2642       unsigned int vdsize;
2643       unsigned int vdentries;
2644       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2645                                                        &vdsize, &vdentries);
2646
2647       Output_section_data* vddata =
2648         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2649
2650       vdsec->add_output_section_data(vddata);
2651       vdsec->set_link_section(dynstr);
2652       vdsec->set_info(vdentries);
2653
2654       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2655       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2656     }
2657
2658   if (versions->any_needs())
2659     {
2660       Output_section* vnsec;
2661       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2662                                           elfcpp::SHT_GNU_verneed,
2663                                           elfcpp::SHF_ALLOC,
2664                                           false);
2665
2666       unsigned char* vnbuf;
2667       unsigned int vnsize;
2668       unsigned int vnentries;
2669       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2670                                                         &vnbuf, &vnsize,
2671                                                         &vnentries);
2672
2673       Output_section_data* vndata =
2674         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2675
2676       vnsec->add_output_section_data(vndata);
2677       vnsec->set_link_section(dynstr);
2678       vnsec->set_info(vnentries);
2679
2680       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2681       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2682     }
2683 }
2684
2685 // Create the .interp section and PT_INTERP segment.
2686
2687 void
2688 Layout::create_interp(const Target* target)
2689 {
2690   const char* interp = parameters->options().dynamic_linker();
2691   if (interp == NULL)
2692     {
2693       interp = target->dynamic_linker();
2694       gold_assert(interp != NULL);
2695     }
2696
2697   size_t len = strlen(interp) + 1;
2698
2699   Output_section_data* odata = new Output_data_const(interp, len, 1);
2700
2701   Output_section* osec = this->choose_output_section(NULL, ".interp",
2702                                                      elfcpp::SHT_PROGBITS,
2703                                                      elfcpp::SHF_ALLOC,
2704                                                      false);
2705   osec->add_output_section_data(odata);
2706
2707   if (!this->script_options_->saw_phdrs_clause())
2708     {
2709       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2710                                                        elfcpp::PF_R);
2711       oseg->add_output_section(osec, elfcpp::PF_R);
2712     }
2713 }
2714
2715 // Finish the .dynamic section and PT_DYNAMIC segment.
2716
2717 void
2718 Layout::finish_dynamic_section(const Input_objects* input_objects,
2719                                const Symbol_table* symtab)
2720 {
2721   if (!this->script_options_->saw_phdrs_clause())
2722     {
2723       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2724                                                        (elfcpp::PF_R
2725                                                         | elfcpp::PF_W));
2726       oseg->add_output_section(this->dynamic_section_,
2727                                elfcpp::PF_R | elfcpp::PF_W);
2728     }
2729
2730   Output_data_dynamic* const odyn = this->dynamic_data_;
2731
2732   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2733        p != input_objects->dynobj_end();
2734        ++p)
2735     {
2736       // FIXME: Handle --as-needed.
2737       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2738     }
2739
2740   if (parameters->options().shared())
2741     {
2742       const char* soname = parameters->options().soname();
2743       if (soname != NULL)
2744         odyn->add_string(elfcpp::DT_SONAME, soname);
2745     }
2746
2747   // FIXME: Support --init and --fini.
2748   Symbol* sym = symtab->lookup("_init");
2749   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2750     odyn->add_symbol(elfcpp::DT_INIT, sym);
2751
2752   sym = symtab->lookup("_fini");
2753   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2754     odyn->add_symbol(elfcpp::DT_FINI, sym);
2755
2756   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2757
2758   // Add a DT_RPATH entry if needed.
2759   const General_options::Dir_list& rpath(parameters->options().rpath());
2760   if (!rpath.empty())
2761     {
2762       std::string rpath_val;
2763       for (General_options::Dir_list::const_iterator p = rpath.begin();
2764            p != rpath.end();
2765            ++p)
2766         {
2767           if (rpath_val.empty())
2768             rpath_val = p->name();
2769           else
2770             {
2771               // Eliminate duplicates.
2772               General_options::Dir_list::const_iterator q;
2773               for (q = rpath.begin(); q != p; ++q)
2774                 if (q->name() == p->name())
2775                   break;
2776               if (q == p)
2777                 {
2778                   rpath_val += ':';
2779                   rpath_val += p->name();
2780                 }
2781             }
2782         }
2783
2784       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2785       if (parameters->options().enable_new_dtags())
2786         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2787     }
2788
2789   // Look for text segments that have dynamic relocations.
2790   bool have_textrel = false;
2791   if (!this->script_options_->saw_sections_clause())
2792     {
2793       for (Segment_list::const_iterator p = this->segment_list_.begin();
2794            p != this->segment_list_.end();
2795            ++p)
2796         {
2797           if (((*p)->flags() & elfcpp::PF_W) == 0
2798               && (*p)->dynamic_reloc_count() > 0)
2799             {
2800               have_textrel = true;
2801               break;
2802             }
2803         }
2804     }
2805   else
2806     {
2807       // We don't know the section -> segment mapping, so we are
2808       // conservative and just look for readonly sections with
2809       // relocations.  If those sections wind up in writable segments,
2810       // then we have created an unnecessary DT_TEXTREL entry.
2811       for (Section_list::const_iterator p = this->section_list_.begin();
2812            p != this->section_list_.end();
2813            ++p)
2814         {
2815           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2816               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2817               && ((*p)->dynamic_reloc_count() > 0))
2818             {
2819               have_textrel = true;
2820               break;
2821             }
2822         }
2823     }
2824
2825   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2826   // post-link tools can easily modify these flags if desired.
2827   unsigned int flags = 0;
2828   if (have_textrel)
2829     {
2830       // Add a DT_TEXTREL for compatibility with older loaders.
2831       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2832       flags |= elfcpp::DF_TEXTREL;
2833     }
2834   if (parameters->options().shared() && this->has_static_tls())
2835     flags |= elfcpp::DF_STATIC_TLS;
2836   if (parameters->options().origin())
2837     flags |= elfcpp::DF_ORIGIN;
2838   if (parameters->options().now())
2839     flags |= elfcpp::DF_BIND_NOW;
2840   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2841
2842   flags = 0;
2843   if (parameters->options().initfirst())
2844     flags |= elfcpp::DF_1_INITFIRST;
2845   if (parameters->options().interpose())
2846     flags |= elfcpp::DF_1_INTERPOSE;
2847   if (parameters->options().loadfltr())
2848     flags |= elfcpp::DF_1_LOADFLTR;
2849   if (parameters->options().nodefaultlib())
2850     flags |= elfcpp::DF_1_NODEFLIB;
2851   if (parameters->options().nodelete())
2852     flags |= elfcpp::DF_1_NODELETE;
2853   if (parameters->options().nodlopen())
2854     flags |= elfcpp::DF_1_NOOPEN;
2855   if (parameters->options().nodump())
2856     flags |= elfcpp::DF_1_NODUMP;
2857   if (!parameters->options().shared())
2858     flags &= ~(elfcpp::DF_1_INITFIRST
2859                | elfcpp::DF_1_NODELETE
2860                | elfcpp::DF_1_NOOPEN);
2861   if (parameters->options().origin())
2862     flags |= elfcpp::DF_1_ORIGIN;
2863   if (parameters->options().now())
2864     flags |= elfcpp::DF_1_NOW;
2865   if (flags)
2866     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2867 }
2868
2869 // The mapping of input section name prefixes to output section names.
2870 // In some cases one prefix is itself a prefix of another prefix; in
2871 // such a case the longer prefix must come first.  These prefixes are
2872 // based on the GNU linker default ELF linker script.
2873
2874 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2875 const Layout::Section_name_mapping Layout::section_name_mapping[] =
2876 {
2877   MAPPING_INIT(".text.", ".text"),
2878   MAPPING_INIT(".ctors.", ".ctors"),
2879   MAPPING_INIT(".dtors.", ".dtors"),
2880   MAPPING_INIT(".rodata.", ".rodata"),
2881   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2882   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2883   MAPPING_INIT(".data.", ".data"),
2884   MAPPING_INIT(".bss.", ".bss"),
2885   MAPPING_INIT(".tdata.", ".tdata"),
2886   MAPPING_INIT(".tbss.", ".tbss"),
2887   MAPPING_INIT(".init_array.", ".init_array"),
2888   MAPPING_INIT(".fini_array.", ".fini_array"),
2889   MAPPING_INIT(".sdata.", ".sdata"),
2890   MAPPING_INIT(".sbss.", ".sbss"),
2891   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2892   // differently depending on whether it is creating a shared library.
2893   MAPPING_INIT(".sdata2.", ".sdata"),
2894   MAPPING_INIT(".sbss2.", ".sbss"),
2895   MAPPING_INIT(".lrodata.", ".lrodata"),
2896   MAPPING_INIT(".ldata.", ".ldata"),
2897   MAPPING_INIT(".lbss.", ".lbss"),
2898   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2899   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2900   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2901   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2902   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2903   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2904   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2905   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2906   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2907   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2908   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2909   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2910   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2911   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2912   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2913   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2914   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2915   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2916   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2917   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2918   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2919 };
2920 #undef MAPPING_INIT
2921
2922 const int Layout::section_name_mapping_count =
2923   (sizeof(Layout::section_name_mapping)
2924    / sizeof(Layout::section_name_mapping[0]));
2925
2926 // Choose the output section name to use given an input section name.
2927 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2928 // length of NAME.
2929
2930 const char*
2931 Layout::output_section_name(const char* name, size_t* plen)
2932 {
2933   // gcc 4.3 generates the following sorts of section names when it
2934   // needs a section name specific to a function:
2935   //   .text.FN
2936   //   .rodata.FN
2937   //   .sdata2.FN
2938   //   .data.FN
2939   //   .data.rel.FN
2940   //   .data.rel.local.FN
2941   //   .data.rel.ro.FN
2942   //   .data.rel.ro.local.FN
2943   //   .sdata.FN
2944   //   .bss.FN
2945   //   .sbss.FN
2946   //   .tdata.FN
2947   //   .tbss.FN
2948
2949   // The GNU linker maps all of those to the part before the .FN,
2950   // except that .data.rel.local.FN is mapped to .data, and
2951   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2952   // beginning with .data.rel.ro.local are grouped together.
2953
2954   // For an anonymous namespace, the string FN can contain a '.'.
2955
2956   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2957   // GNU linker maps to .rodata.
2958
2959   // The .data.rel.ro sections are used with -z relro.  The sections
2960   // are recognized by name.  We use the same names that the GNU
2961   // linker does for these sections.
2962
2963   // It is hard to handle this in a principled way, so we don't even
2964   // try.  We use a table of mappings.  If the input section name is
2965   // not found in the table, we simply use it as the output section
2966   // name.
2967
2968   const Section_name_mapping* psnm = section_name_mapping;
2969   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
2970     {
2971       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
2972         {
2973           *plen = psnm->tolen;
2974           return psnm->to;
2975         }
2976     }
2977
2978   return name;
2979 }
2980
2981 // Check if a comdat group or .gnu.linkonce section with the given
2982 // NAME is selected for the link.  If there is already a section,
2983 // *KEPT_SECTION is set to point to the signature and the function
2984 // returns false.  Otherwise, the CANDIDATE signature is recorded for
2985 // this NAME in the layout object, *KEPT_SECTION is set to the
2986 // internal copy and the function return false.  In some cases, with
2987 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2988 // CANDIDATE.
2989
2990 bool
2991 Layout::find_or_add_kept_section(const std::string& name,
2992                                  Kept_section* candidate,
2993                                  Kept_section** kept_section)
2994 {
2995   // It's normal to see a couple of entries here, for the x86 thunk
2996   // sections.  If we see more than a few, we're linking a C++
2997   // program, and we resize to get more space to minimize rehashing.
2998   if (this->signatures_.size() > 4
2999       && !this->resized_signatures_)
3000     {
3001       reserve_unordered_map(&this->signatures_,
3002                             this->number_of_input_files_ * 64);
3003       this->resized_signatures_ = true;
3004     }
3005
3006   std::pair<Signatures::iterator, bool> ins(
3007     this->signatures_.insert(std::make_pair(name, *candidate)));
3008
3009   if (kept_section)
3010     *kept_section = &ins.first->second;
3011   if (ins.second)
3012     {
3013       // This is the first time we've seen this signature.
3014       return true;
3015     }
3016
3017   if (ins.first->second.is_group)
3018     {
3019       // We've already seen a real section group with this signature.
3020       // If the kept group is from a plugin object, and we're in
3021       // the replacement phase, accept the new one as a replacement.
3022       if (ins.first->second.object == NULL
3023           && parameters->options().plugins()->in_replacement_phase())
3024         {
3025           ins.first->second = *candidate;
3026           return true;
3027         }
3028       return false;
3029     }
3030   else if (candidate->is_group)
3031     {
3032       // This is a real section group, and we've already seen a
3033       // linkonce section with this signature.  Record that we've seen
3034       // a section group, and don't include this section group.
3035       ins.first->second.is_group = true;
3036       return false;
3037     }
3038   else
3039     {
3040       // We've already seen a linkonce section and this is a linkonce
3041       // section.  These don't block each other--this may be the same
3042       // symbol name with different section types.
3043       *kept_section = candidate;
3044       return true;
3045     }
3046 }
3047
3048 // Find the given comdat signature, and return the object and section
3049 // index of the kept group.
3050 Relobj*
3051 Layout::find_kept_object(const std::string& signature,
3052                          unsigned int* pshndx) const
3053 {
3054   Signatures::const_iterator p = this->signatures_.find(signature);
3055   if (p == this->signatures_.end())
3056     return NULL;
3057   if (pshndx != NULL)
3058     *pshndx = p->second.shndx;
3059   return p->second.object;
3060 }
3061
3062 // Store the allocated sections into the section list.
3063
3064 void
3065 Layout::get_allocated_sections(Section_list* section_list) const
3066 {
3067   for (Section_list::const_iterator p = this->section_list_.begin();
3068        p != this->section_list_.end();
3069        ++p)
3070     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3071       section_list->push_back(*p);
3072 }
3073
3074 // Create an output segment.
3075
3076 Output_segment*
3077 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3078 {
3079   gold_assert(!parameters->options().relocatable());
3080   Output_segment* oseg = new Output_segment(type, flags);
3081   this->segment_list_.push_back(oseg);
3082
3083   if (type == elfcpp::PT_TLS)
3084     this->tls_segment_ = oseg;
3085   else if (type == elfcpp::PT_GNU_RELRO)
3086     this->relro_segment_ = oseg;
3087
3088   return oseg;
3089 }
3090
3091 // Write out the Output_sections.  Most won't have anything to write,
3092 // since most of the data will come from input sections which are
3093 // handled elsewhere.  But some Output_sections do have Output_data.
3094
3095 void
3096 Layout::write_output_sections(Output_file* of) const
3097 {
3098   for (Section_list::const_iterator p = this->section_list_.begin();
3099        p != this->section_list_.end();
3100        ++p)
3101     {
3102       if (!(*p)->after_input_sections())
3103         (*p)->write(of);
3104     }
3105 }
3106
3107 // Write out data not associated with a section or the symbol table.
3108
3109 void
3110 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3111 {
3112   if (!parameters->options().strip_all())
3113     {
3114       const Output_section* symtab_section = this->symtab_section_;
3115       for (Section_list::const_iterator p = this->section_list_.begin();
3116            p != this->section_list_.end();
3117            ++p)
3118         {
3119           if ((*p)->needs_symtab_index())
3120             {
3121               gold_assert(symtab_section != NULL);
3122               unsigned int index = (*p)->symtab_index();
3123               gold_assert(index > 0 && index != -1U);
3124               off_t off = (symtab_section->offset()
3125                            + index * symtab_section->entsize());
3126               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3127             }
3128         }
3129     }
3130
3131   const Output_section* dynsym_section = this->dynsym_section_;
3132   for (Section_list::const_iterator p = this->section_list_.begin();
3133        p != this->section_list_.end();
3134        ++p)
3135     {
3136       if ((*p)->needs_dynsym_index())
3137         {
3138           gold_assert(dynsym_section != NULL);
3139           unsigned int index = (*p)->dynsym_index();
3140           gold_assert(index > 0 && index != -1U);
3141           off_t off = (dynsym_section->offset()
3142                        + index * dynsym_section->entsize());
3143           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3144         }
3145     }
3146
3147   // Write out the Output_data which are not in an Output_section.
3148   for (Data_list::const_iterator p = this->special_output_list_.begin();
3149        p != this->special_output_list_.end();
3150        ++p)
3151     (*p)->write(of);
3152 }
3153
3154 // Write out the Output_sections which can only be written after the
3155 // input sections are complete.
3156
3157 void
3158 Layout::write_sections_after_input_sections(Output_file* of)
3159 {
3160   // Determine the final section offsets, and thus the final output
3161   // file size.  Note we finalize the .shstrab last, to allow the
3162   // after_input_section sections to modify their section-names before
3163   // writing.
3164   if (this->any_postprocessing_sections_)
3165     {
3166       off_t off = this->output_file_size_;
3167       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3168
3169       // Now that we've finalized the names, we can finalize the shstrab.
3170       off =
3171         this->set_section_offsets(off,
3172                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3173
3174       if (off > this->output_file_size_)
3175         {
3176           of->resize(off);
3177           this->output_file_size_ = off;
3178         }
3179     }
3180
3181   for (Section_list::const_iterator p = this->section_list_.begin();
3182        p != this->section_list_.end();
3183        ++p)
3184     {
3185       if ((*p)->after_input_sections())
3186         (*p)->write(of);
3187     }
3188
3189   this->section_headers_->write(of);
3190 }
3191
3192 // If the build ID requires computing a checksum, do so here, and
3193 // write it out.  We compute a checksum over the entire file because
3194 // that is simplest.
3195
3196 void
3197 Layout::write_build_id(Output_file* of) const
3198 {
3199   if (this->build_id_note_ == NULL)
3200     return;
3201
3202   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3203
3204   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3205                                           this->build_id_note_->data_size());
3206
3207   const char* style = parameters->options().build_id();
3208   if (strcmp(style, "sha1") == 0)
3209     {
3210       sha1_ctx ctx;
3211       sha1_init_ctx(&ctx);
3212       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3213       sha1_finish_ctx(&ctx, ov);
3214     }
3215   else if (strcmp(style, "md5") == 0)
3216     {
3217       md5_ctx ctx;
3218       md5_init_ctx(&ctx);
3219       md5_process_bytes(iv, this->output_file_size_, &ctx);
3220       md5_finish_ctx(&ctx, ov);
3221     }
3222   else
3223     gold_unreachable();
3224
3225   of->write_output_view(this->build_id_note_->offset(),
3226                         this->build_id_note_->data_size(),
3227                         ov);
3228
3229   of->free_input_view(0, this->output_file_size_, iv);
3230 }
3231
3232 // Write out a binary file.  This is called after the link is
3233 // complete.  IN is the temporary output file we used to generate the
3234 // ELF code.  We simply walk through the segments, read them from
3235 // their file offset in IN, and write them to their load address in
3236 // the output file.  FIXME: with a bit more work, we could support
3237 // S-records and/or Intel hex format here.
3238
3239 void
3240 Layout::write_binary(Output_file* in) const
3241 {
3242   gold_assert(parameters->options().oformat_enum()
3243               == General_options::OBJECT_FORMAT_BINARY);
3244
3245   // Get the size of the binary file.
3246   uint64_t max_load_address = 0;
3247   for (Segment_list::const_iterator p = this->segment_list_.begin();
3248        p != this->segment_list_.end();
3249        ++p)
3250     {
3251       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3252         {
3253           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3254           if (max_paddr > max_load_address)
3255             max_load_address = max_paddr;
3256         }
3257     }
3258
3259   Output_file out(parameters->options().output_file_name());
3260   out.open(max_load_address);
3261
3262   for (Segment_list::const_iterator p = this->segment_list_.begin();
3263        p != this->segment_list_.end();
3264        ++p)
3265     {
3266       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3267         {
3268           const unsigned char* vin = in->get_input_view((*p)->offset(),
3269                                                         (*p)->filesz());
3270           unsigned char* vout = out.get_output_view((*p)->paddr(),
3271                                                     (*p)->filesz());
3272           memcpy(vout, vin, (*p)->filesz());
3273           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3274           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3275         }
3276     }
3277
3278   out.close();
3279 }
3280
3281 // Print the output sections to the map file.
3282
3283 void
3284 Layout::print_to_mapfile(Mapfile* mapfile) const
3285 {
3286   for (Segment_list::const_iterator p = this->segment_list_.begin();
3287        p != this->segment_list_.end();
3288        ++p)
3289     (*p)->print_sections_to_mapfile(mapfile);
3290 }
3291
3292 // Print statistical information to stderr.  This is used for --stats.
3293
3294 void
3295 Layout::print_stats() const
3296 {
3297   this->namepool_.print_stats("section name pool");
3298   this->sympool_.print_stats("output symbol name pool");
3299   this->dynpool_.print_stats("dynamic name pool");
3300
3301   for (Section_list::const_iterator p = this->section_list_.begin();
3302        p != this->section_list_.end();
3303        ++p)
3304     (*p)->print_merge_stats();
3305 }
3306
3307 // Write_sections_task methods.
3308
3309 // We can always run this task.
3310
3311 Task_token*
3312 Write_sections_task::is_runnable()
3313 {
3314   return NULL;
3315 }
3316
3317 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3318 // when finished.
3319
3320 void
3321 Write_sections_task::locks(Task_locker* tl)
3322 {
3323   tl->add(this, this->output_sections_blocker_);
3324   tl->add(this, this->final_blocker_);
3325 }
3326
3327 // Run the task--write out the data.
3328
3329 void
3330 Write_sections_task::run(Workqueue*)
3331 {
3332   this->layout_->write_output_sections(this->of_);
3333 }
3334
3335 // Write_data_task methods.
3336
3337 // We can always run this task.
3338
3339 Task_token*
3340 Write_data_task::is_runnable()
3341 {
3342   return NULL;
3343 }
3344
3345 // We need to unlock FINAL_BLOCKER when finished.
3346
3347 void
3348 Write_data_task::locks(Task_locker* tl)
3349 {
3350   tl->add(this, this->final_blocker_);
3351 }
3352
3353 // Run the task--write out the data.
3354
3355 void
3356 Write_data_task::run(Workqueue*)
3357 {
3358   this->layout_->write_data(this->symtab_, this->of_);
3359 }
3360
3361 // Write_symbols_task methods.
3362
3363 // We can always run this task.
3364
3365 Task_token*
3366 Write_symbols_task::is_runnable()
3367 {
3368   return NULL;
3369 }
3370
3371 // We need to unlock FINAL_BLOCKER when finished.
3372
3373 void
3374 Write_symbols_task::locks(Task_locker* tl)
3375 {
3376   tl->add(this, this->final_blocker_);
3377 }
3378
3379 // Run the task--write out the symbols.
3380
3381 void
3382 Write_symbols_task::run(Workqueue*)
3383 {
3384   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3385                                this->layout_->symtab_xindex(),
3386                                this->layout_->dynsym_xindex(), this->of_);
3387 }
3388
3389 // Write_after_input_sections_task methods.
3390
3391 // We can only run this task after the input sections have completed.
3392
3393 Task_token*
3394 Write_after_input_sections_task::is_runnable()
3395 {
3396   if (this->input_sections_blocker_->is_blocked())
3397     return this->input_sections_blocker_;
3398   return NULL;
3399 }
3400
3401 // We need to unlock FINAL_BLOCKER when finished.
3402
3403 void
3404 Write_after_input_sections_task::locks(Task_locker* tl)
3405 {
3406   tl->add(this, this->final_blocker_);
3407 }
3408
3409 // Run the task.
3410
3411 void
3412 Write_after_input_sections_task::run(Workqueue*)
3413 {
3414   this->layout_->write_sections_after_input_sections(this->of_);
3415 }
3416
3417 // Close_task_runner methods.
3418
3419 // Run the task--close the file.
3420
3421 void
3422 Close_task_runner::run(Workqueue*, const Task*)
3423 {
3424   // If we need to compute a checksum for the BUILD if, we do so here.
3425   this->layout_->write_build_id(this->of_);
3426
3427   // If we've been asked to create a binary file, we do so here.
3428   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3429     this->layout_->write_binary(this->of_);
3430
3431   this->of_->close();
3432 }
3433
3434 // Instantiate the templates we need.  We could use the configure
3435 // script to restrict this to only the ones for implemented targets.
3436
3437 #ifdef HAVE_TARGET_32_LITTLE
3438 template
3439 Output_section*
3440 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3441                           const char* name,
3442                           const elfcpp::Shdr<32, false>& shdr,
3443                           unsigned int, unsigned int, off_t*);
3444 #endif
3445
3446 #ifdef HAVE_TARGET_32_BIG
3447 template
3448 Output_section*
3449 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3450                          const char* name,
3451                          const elfcpp::Shdr<32, true>& shdr,
3452                          unsigned int, unsigned int, off_t*);
3453 #endif
3454
3455 #ifdef HAVE_TARGET_64_LITTLE
3456 template
3457 Output_section*
3458 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3459                           const char* name,
3460                           const elfcpp::Shdr<64, false>& shdr,
3461                           unsigned int, unsigned int, off_t*);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_64_BIG
3465 template
3466 Output_section*
3467 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3468                          const char* name,
3469                          const elfcpp::Shdr<64, true>& shdr,
3470                          unsigned int, unsigned int, off_t*);
3471 #endif
3472
3473 #ifdef HAVE_TARGET_32_LITTLE
3474 template
3475 Output_section*
3476 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3477                                 unsigned int reloc_shndx,
3478                                 const elfcpp::Shdr<32, false>& shdr,
3479                                 Output_section* data_section,
3480                                 Relocatable_relocs* rr);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_32_BIG
3484 template
3485 Output_section*
3486 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3487                                unsigned int reloc_shndx,
3488                                const elfcpp::Shdr<32, true>& shdr,
3489                                Output_section* data_section,
3490                                Relocatable_relocs* rr);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_64_LITTLE
3494 template
3495 Output_section*
3496 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3497                                 unsigned int reloc_shndx,
3498                                 const elfcpp::Shdr<64, false>& shdr,
3499                                 Output_section* data_section,
3500                                 Relocatable_relocs* rr);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_64_BIG
3504 template
3505 Output_section*
3506 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3507                                unsigned int reloc_shndx,
3508                                const elfcpp::Shdr<64, true>& shdr,
3509                                Output_section* data_section,
3510                                Relocatable_relocs* rr);
3511 #endif
3512
3513 #ifdef HAVE_TARGET_32_LITTLE
3514 template
3515 void
3516 Layout::layout_group<32, false>(Symbol_table* symtab,
3517                                 Sized_relobj<32, false>* object,
3518                                 unsigned int,
3519                                 const char* group_section_name,
3520                                 const char* signature,
3521                                 const elfcpp::Shdr<32, false>& shdr,
3522                                 elfcpp::Elf_Word flags,
3523                                 std::vector<unsigned int>* shndxes);
3524 #endif
3525
3526 #ifdef HAVE_TARGET_32_BIG
3527 template
3528 void
3529 Layout::layout_group<32, true>(Symbol_table* symtab,
3530                                Sized_relobj<32, true>* object,
3531                                unsigned int,
3532                                const char* group_section_name,
3533                                const char* signature,
3534                                const elfcpp::Shdr<32, true>& shdr,
3535                                elfcpp::Elf_Word flags,
3536                                std::vector<unsigned int>* shndxes);
3537 #endif
3538
3539 #ifdef HAVE_TARGET_64_LITTLE
3540 template
3541 void
3542 Layout::layout_group<64, false>(Symbol_table* symtab,
3543                                 Sized_relobj<64, false>* object,
3544                                 unsigned int,
3545                                 const char* group_section_name,
3546                                 const char* signature,
3547                                 const elfcpp::Shdr<64, false>& shdr,
3548                                 elfcpp::Elf_Word flags,
3549                                 std::vector<unsigned int>* shndxes);
3550 #endif
3551
3552 #ifdef HAVE_TARGET_64_BIG
3553 template
3554 void
3555 Layout::layout_group<64, true>(Symbol_table* symtab,
3556                                Sized_relobj<64, true>* object,
3557                                unsigned int,
3558                                const char* group_section_name,
3559                                const char* signature,
3560                                const elfcpp::Shdr<64, true>& shdr,
3561                                elfcpp::Elf_Word flags,
3562                                std::vector<unsigned int>* shndxes);
3563 #endif
3564
3565 #ifdef HAVE_TARGET_32_LITTLE
3566 template
3567 Output_section*
3568 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3569                                    const unsigned char* symbols,
3570                                    off_t symbols_size,
3571                                    const unsigned char* symbol_names,
3572                                    off_t symbol_names_size,
3573                                    unsigned int shndx,
3574                                    const elfcpp::Shdr<32, false>& shdr,
3575                                    unsigned int reloc_shndx,
3576                                    unsigned int reloc_type,
3577                                    off_t* off);
3578 #endif
3579
3580 #ifdef HAVE_TARGET_32_BIG
3581 template
3582 Output_section*
3583 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3584                                    const unsigned char* symbols,
3585                                    off_t symbols_size,
3586                                   const unsigned char* symbol_names,
3587                                   off_t symbol_names_size,
3588                                   unsigned int shndx,
3589                                   const elfcpp::Shdr<32, true>& shdr,
3590                                   unsigned int reloc_shndx,
3591                                   unsigned int reloc_type,
3592                                   off_t* off);
3593 #endif
3594
3595 #ifdef HAVE_TARGET_64_LITTLE
3596 template
3597 Output_section*
3598 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3599                                    const unsigned char* symbols,
3600                                    off_t symbols_size,
3601                                    const unsigned char* symbol_names,
3602                                    off_t symbol_names_size,
3603                                    unsigned int shndx,
3604                                    const elfcpp::Shdr<64, false>& shdr,
3605                                    unsigned int reloc_shndx,
3606                                    unsigned int reloc_type,
3607                                    off_t* off);
3608 #endif
3609
3610 #ifdef HAVE_TARGET_64_BIG
3611 template
3612 Output_section*
3613 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3614                                    const unsigned char* symbols,
3615                                    off_t symbols_size,
3616                                   const unsigned char* symbol_names,
3617                                   off_t symbol_names_size,
3618                                   unsigned int shndx,
3619                                   const elfcpp::Shdr<64, true>& shdr,
3620                                   unsigned int reloc_shndx,
3621                                   unsigned int reloc_type,
3622                                   off_t* off);
3623 #endif
3624
3625 } // End namespace gold.