Fix failure in exception_static_test.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244  public:
245   Hash_task(const unsigned char* src,
246             size_t size,
247             unsigned char* dst,
248             Task_token* build_id_blocker,
249             Task_token* final_blocker)
250     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251       final_blocker_(final_blocker)
252   { }
253
254   void
255   run(Workqueue*)
256   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258   Task_token*
259   is_runnable();
260
261   // Unblock FINAL_BLOCKER_ when done.
262   void
263   locks(Task_locker* tl)
264   { tl->add(this, this->final_blocker_); }
265
266   std::string
267   get_name() const
268   { return "Hash_task"; }
269
270  private:
271   const unsigned char* const src_;
272   const size_t size_;
273   unsigned char* const dst_;
274   Task_token* const build_id_blocker_;
275   Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281   if (this->build_id_blocker_->is_blocked())
282     return this->build_id_blocker_;
283   return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     array_of_hashes_(NULL),
453     size_of_array_of_hashes_(0),
454     input_view_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     script_output_section_data_list_(),
473     segment_states_(NULL),
474     relaxation_debug_check_(NULL),
475     section_order_map_(),
476     section_segment_map_(),
477     input_section_position_(),
478     input_section_glob_(),
479     incremental_base_(NULL),
480     free_list_()
481 {
482   // Make space for more than enough segments for a typical file.
483   // This is just for efficiency--it's OK if we wind up needing more.
484   this->segment_list_.reserve(12);
485
486   // We expect two unattached Output_data objects: the file header and
487   // the segment headers.
488   this->special_output_list_.reserve(2);
489
490   // Initialize structure needed for an incremental build.
491   if (parameters->incremental())
492     this->incremental_inputs_ = new Incremental_inputs;
493
494   // The section name pool is worth optimizing in all cases, because
495   // it is small, but there are often overlaps due to .rel sections.
496   this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504   this->incremental_base_ = base;
505   this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513  return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523   "abbrev",
524   "addr",         // Fission extension
525   // "aranges",   // not used by gdb as of 7.4
526   "frame",
527   "gdb_scripts",
528   "info",
529   "types",
530   "line",
531   "loc",
532   "macinfo",
533   "macro",
534   // "pubnames",  // not used by gdb as of 7.4
535   // "pubtypes",  // not used by gdb as of 7.4
536   // "gnu_pubnames",  // Fission extension
537   // "gnu_pubtypes",  // Fission extension
538   "ranges",
539   "str",
540   "str_offsets",
541 };
542
543 // This is the minimum set of sections needed for line numbers.
544
545 static const char* lines_only_debug_sections[] =
546 {
547   "abbrev",
548   // "addr",      // Fission extension
549   // "aranges",   // not used by gdb as of 7.4
550   // "frame",
551   // "gdb_scripts",
552   "info",
553   // "types",
554   "line",
555   // "loc",
556   // "macinfo",
557   // "macro",
558   // "pubnames",  // not used by gdb as of 7.4
559   // "pubtypes",  // not used by gdb as of 7.4
560   // "gnu_pubnames",  // Fission extension
561   // "gnu_pubtypes",  // Fission extension
562   // "ranges",
563   "str",
564   "str_offsets",  // Fission extension
565 };
566
567 // These sections are the DWARF fast-lookup tables, and are not needed
568 // when building a .gdb_index section.
569
570 static const char* gdb_fast_lookup_sections[] =
571 {
572   "aranges",
573   "pubnames",
574   "gnu_pubnames",
575   "pubtypes",
576   "gnu_pubtypes",
577 };
578
579 // Returns whether the given debug section is in the list of
580 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
581 // portion of the name following ".debug_" or ".zdebug_".
582
583 static inline bool
584 is_gdb_debug_section(const char* suffix)
585 {
586   // We can do this faster: binary search or a hashtable.  But why bother?
587   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
588     if (strcmp(suffix, gdb_sections[i]) == 0)
589       return true;
590   return false;
591 }
592
593 // Returns whether the given section is needed for lines-only debugging.
594
595 static inline bool
596 is_lines_only_debug_section(const char* suffix)
597 {
598   // We can do this faster: binary search or a hashtable.  But why bother?
599   for (size_t i = 0;
600        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
601        ++i)
602     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
603       return true;
604   return false;
605 }
606
607 // Returns whether the given section is a fast-lookup section that
608 // will not be needed when building a .gdb_index section.
609
610 static inline bool
611 is_gdb_fast_lookup_section(const char* suffix)
612 {
613   // We can do this faster: binary search or a hashtable.  But why bother?
614   for (size_t i = 0;
615        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
616        ++i)
617     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
618       return true;
619   return false;
620 }
621
622 // Sometimes we compress sections.  This is typically done for
623 // sections that are not part of normal program execution (such as
624 // .debug_* sections), and where the readers of these sections know
625 // how to deal with compressed sections.  This routine doesn't say for
626 // certain whether we'll compress -- it depends on commandline options
627 // as well -- just whether this section is a candidate for compression.
628 // (The Output_compressed_section class decides whether to compress
629 // a given section, and picks the name of the compressed section.)
630
631 static bool
632 is_compressible_debug_section(const char* secname)
633 {
634   return (is_prefix_of(".debug", secname));
635 }
636
637 // We may see compressed debug sections in input files.  Return TRUE
638 // if this is the name of a compressed debug section.
639
640 bool
641 is_compressed_debug_section(const char* secname)
642 {
643   return (is_prefix_of(".zdebug", secname));
644 }
645
646 // Whether to include this section in the link.
647
648 template<int size, bool big_endian>
649 bool
650 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
651                         const elfcpp::Shdr<size, big_endian>& shdr)
652 {
653   if (!parameters->options().relocatable()
654       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
655     return false;
656
657   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
658
659   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
660       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
661     return parameters->target().should_include_section(sh_type);
662
663   switch (sh_type)
664     {
665     case elfcpp::SHT_NULL:
666     case elfcpp::SHT_SYMTAB:
667     case elfcpp::SHT_DYNSYM:
668     case elfcpp::SHT_HASH:
669     case elfcpp::SHT_DYNAMIC:
670     case elfcpp::SHT_SYMTAB_SHNDX:
671       return false;
672
673     case elfcpp::SHT_STRTAB:
674       // Discard the sections which have special meanings in the ELF
675       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
676       // checking the sh_link fields of the appropriate sections.
677       return (strcmp(name, ".dynstr") != 0
678               && strcmp(name, ".strtab") != 0
679               && strcmp(name, ".shstrtab") != 0);
680
681     case elfcpp::SHT_RELA:
682     case elfcpp::SHT_REL:
683     case elfcpp::SHT_GROUP:
684       // If we are emitting relocations these should be handled
685       // elsewhere.
686       gold_assert(!parameters->options().relocatable());
687       return false;
688
689     case elfcpp::SHT_PROGBITS:
690       if (parameters->options().strip_debug()
691           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
692         {
693           if (is_debug_info_section(name))
694             return false;
695         }
696       if (parameters->options().strip_debug_non_line()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           // Debugging sections can only be recognized by name.
700           if (is_prefix_of(".debug_", name)
701               && !is_lines_only_debug_section(name + 7))
702             return false;
703           if (is_prefix_of(".zdebug_", name)
704               && !is_lines_only_debug_section(name + 8))
705             return false;
706         }
707       if (parameters->options().strip_debug_gdb()
708           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709         {
710           // Debugging sections can only be recognized by name.
711           if (is_prefix_of(".debug_", name)
712               && !is_gdb_debug_section(name + 7))
713             return false;
714           if (is_prefix_of(".zdebug_", name)
715               && !is_gdb_debug_section(name + 8))
716             return false;
717         }
718       if (parameters->options().gdb_index()
719           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720         {
721           // When building .gdb_index, we can strip .debug_pubnames,
722           // .debug_pubtypes, and .debug_aranges sections.
723           if (is_prefix_of(".debug_", name)
724               && is_gdb_fast_lookup_section(name + 7))
725             return false;
726           if (is_prefix_of(".zdebug_", name)
727               && is_gdb_fast_lookup_section(name + 8))
728             return false;
729         }
730       if (parameters->options().strip_lto_sections()
731           && !parameters->options().relocatable()
732           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733         {
734           // Ignore LTO sections containing intermediate code.
735           if (is_prefix_of(".gnu.lto_", name))
736             return false;
737         }
738       // The GNU linker strips .gnu_debuglink sections, so we do too.
739       // This is a feature used to keep debugging information in
740       // separate files.
741       if (strcmp(name, ".gnu_debuglink") == 0)
742         return false;
743       return true;
744
745     default:
746       return true;
747     }
748 }
749
750 // Return an output section named NAME, or NULL if there is none.
751
752 Output_section*
753 Layout::find_output_section(const char* name) const
754 {
755   for (Section_list::const_iterator p = this->section_list_.begin();
756        p != this->section_list_.end();
757        ++p)
758     if (strcmp((*p)->name(), name) == 0)
759       return *p;
760   return NULL;
761 }
762
763 // Return an output segment of type TYPE, with segment flags SET set
764 // and segment flags CLEAR clear.  Return NULL if there is none.
765
766 Output_segment*
767 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
768                             elfcpp::Elf_Word clear) const
769 {
770   for (Segment_list::const_iterator p = this->segment_list_.begin();
771        p != this->segment_list_.end();
772        ++p)
773     if (static_cast<elfcpp::PT>((*p)->type()) == type
774         && ((*p)->flags() & set) == set
775         && ((*p)->flags() & clear) == 0)
776       return *p;
777   return NULL;
778 }
779
780 // When we put a .ctors or .dtors section with more than one word into
781 // a .init_array or .fini_array section, we need to reverse the words
782 // in the .ctors/.dtors section.  This is because .init_array executes
783 // constructors front to back, where .ctors executes them back to
784 // front, and vice-versa for .fini_array/.dtors.  Although we do want
785 // to remap .ctors/.dtors into .init_array/.fini_array because it can
786 // be more efficient, we don't want to change the order in which
787 // constructors/destructors are run.  This set just keeps track of
788 // these sections which need to be reversed.  It is only changed by
789 // Layout::layout.  It should be a private member of Layout, but that
790 // would require layout.h to #include object.h to get the definition
791 // of Section_id.
792 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
793
794 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
795 // .init_array/.fini_array section.
796
797 bool
798 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
799 {
800   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
801           != ctors_sections_in_init_array.end());
802 }
803
804 // Return the output section to use for section NAME with type TYPE
805 // and section flags FLAGS.  NAME must be canonicalized in the string
806 // pool, and NAME_KEY is the key.  ORDER is where this should appear
807 // in the output sections.  IS_RELRO is true for a relro section.
808
809 Output_section*
810 Layout::get_output_section(const char* name, Stringpool::Key name_key,
811                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
812                            Output_section_order order, bool is_relro)
813 {
814   elfcpp::Elf_Word lookup_type = type;
815
816   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
817   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
818   // .init_array, .fini_array, and .preinit_array sections by name
819   // whatever their type in the input file.  We do this because the
820   // types are not always right in the input files.
821   if (lookup_type == elfcpp::SHT_INIT_ARRAY
822       || lookup_type == elfcpp::SHT_FINI_ARRAY
823       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
824     lookup_type = elfcpp::SHT_PROGBITS;
825
826   elfcpp::Elf_Xword lookup_flags = flags;
827
828   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
829   // read-write with read-only sections.  Some other ELF linkers do
830   // not do this.  FIXME: Perhaps there should be an option
831   // controlling this.
832   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
833
834   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
835   const std::pair<Key, Output_section*> v(key, NULL);
836   std::pair<Section_name_map::iterator, bool> ins(
837     this->section_name_map_.insert(v));
838
839   if (!ins.second)
840     return ins.first->second;
841   else
842     {
843       // This is the first time we've seen this name/type/flags
844       // combination.  For compatibility with the GNU linker, we
845       // combine sections with contents and zero flags with sections
846       // with non-zero flags.  This is a workaround for cases where
847       // assembler code forgets to set section flags.  FIXME: Perhaps
848       // there should be an option to control this.
849       Output_section* os = NULL;
850
851       if (lookup_type == elfcpp::SHT_PROGBITS)
852         {
853           if (flags == 0)
854             {
855               Output_section* same_name = this->find_output_section(name);
856               if (same_name != NULL
857                   && (same_name->type() == elfcpp::SHT_PROGBITS
858                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
859                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
860                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
861                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
862                 os = same_name;
863             }
864           else if ((flags & elfcpp::SHF_TLS) == 0)
865             {
866               elfcpp::Elf_Xword zero_flags = 0;
867               const Key zero_key(name_key, std::make_pair(lookup_type,
868                                                           zero_flags));
869               Section_name_map::iterator p =
870                   this->section_name_map_.find(zero_key);
871               if (p != this->section_name_map_.end())
872                 os = p->second;
873             }
874         }
875
876       if (os == NULL)
877         os = this->make_output_section(name, type, flags, order, is_relro);
878
879       ins.first->second = os;
880       return os;
881     }
882 }
883
884 // Returns TRUE iff NAME (an input section from RELOBJ) will
885 // be mapped to an output section that should be KEPT.
886
887 bool
888 Layout::keep_input_section(const Relobj* relobj, const char* name)
889 {
890   if (! this->script_options_->saw_sections_clause())
891     return false;
892
893   Script_sections* ss = this->script_options_->script_sections();
894   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
895   Output_section** output_section_slot;
896   Script_sections::Section_type script_section_type;
897   bool keep;
898
899   name = ss->output_section_name(file_name, name, &output_section_slot,
900                                  &script_section_type, &keep);
901   return name != NULL && keep;
902 }
903
904 // Clear the input section flags that should not be copied to the
905 // output section.
906
907 elfcpp::Elf_Xword
908 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
909 {
910   // Some flags in the input section should not be automatically
911   // copied to the output section.
912   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
913                             | elfcpp::SHF_GROUP
914                             | elfcpp::SHF_MERGE
915                             | elfcpp::SHF_STRINGS);
916
917   // We only clear the SHF_LINK_ORDER flag in for
918   // a non-relocatable link.
919   if (!parameters->options().relocatable())
920     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
921
922   return input_section_flags;
923 }
924
925 // Pick the output section to use for section NAME, in input file
926 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
927 // linker created section.  IS_INPUT_SECTION is true if we are
928 // choosing an output section for an input section found in a input
929 // file.  ORDER is where this section should appear in the output
930 // sections.  IS_RELRO is true for a relro section.  This will return
931 // NULL if the input section should be discarded.
932
933 Output_section*
934 Layout::choose_output_section(const Relobj* relobj, const char* name,
935                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
936                               bool is_input_section, Output_section_order order,
937                               bool is_relro)
938 {
939   // We should not see any input sections after we have attached
940   // sections to segments.
941   gold_assert(!is_input_section || !this->sections_are_attached_);
942
943   flags = this->get_output_section_flags(flags);
944
945   if (this->script_options_->saw_sections_clause())
946     {
947       // We are using a SECTIONS clause, so the output section is
948       // chosen based only on the name.
949
950       Script_sections* ss = this->script_options_->script_sections();
951       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
952       Output_section** output_section_slot;
953       Script_sections::Section_type script_section_type;
954       const char* orig_name = name;
955       bool keep;
956       name = ss->output_section_name(file_name, name, &output_section_slot,
957                                      &script_section_type, &keep);
958
959       if (name == NULL)
960         {
961           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
962                                      "because it is not allowed by the "
963                                      "SECTIONS clause of the linker script"),
964                      orig_name);
965           // The SECTIONS clause says to discard this input section.
966           return NULL;
967         }
968
969       // We can only handle script section types ST_NONE and ST_NOLOAD.
970       switch (script_section_type)
971         {
972         case Script_sections::ST_NONE:
973           break;
974         case Script_sections::ST_NOLOAD:
975           flags &= elfcpp::SHF_ALLOC;
976           break;
977         default:
978           gold_unreachable();
979         }
980
981       // If this is an orphan section--one not mentioned in the linker
982       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
983       // default processing below.
984
985       if (output_section_slot != NULL)
986         {
987           if (*output_section_slot != NULL)
988             {
989               (*output_section_slot)->update_flags_for_input_section(flags);
990               return *output_section_slot;
991             }
992
993           // We don't put sections found in the linker script into
994           // SECTION_NAME_MAP_.  That keeps us from getting confused
995           // if an orphan section is mapped to a section with the same
996           // name as one in the linker script.
997
998           name = this->namepool_.add(name, false, NULL);
999
1000           Output_section* os = this->make_output_section(name, type, flags,
1001                                                          order, is_relro);
1002
1003           os->set_found_in_sections_clause();
1004
1005           // Special handling for NOLOAD sections.
1006           if (script_section_type == Script_sections::ST_NOLOAD)
1007             {
1008               os->set_is_noload();
1009
1010               // The constructor of Output_section sets addresses of non-ALLOC
1011               // sections to 0 by default.  We don't want that for NOLOAD
1012               // sections even if they have no SHF_ALLOC flag.
1013               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1014                   && os->is_address_valid())
1015                 {
1016                   gold_assert(os->address() == 0
1017                               && !os->is_offset_valid()
1018                               && !os->is_data_size_valid());
1019                   os->reset_address_and_file_offset();
1020                 }
1021             }
1022
1023           *output_section_slot = os;
1024           return os;
1025         }
1026     }
1027
1028   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1029
1030   size_t len = strlen(name);
1031   char* uncompressed_name = NULL;
1032
1033   // Compressed debug sections should be mapped to the corresponding
1034   // uncompressed section.
1035   if (is_compressed_debug_section(name))
1036     {
1037       uncompressed_name = new char[len];
1038       uncompressed_name[0] = '.';
1039       gold_assert(name[0] == '.' && name[1] == 'z');
1040       strncpy(&uncompressed_name[1], &name[2], len - 2);
1041       uncompressed_name[len - 1] = '\0';
1042       len -= 1;
1043       name = uncompressed_name;
1044     }
1045
1046   // Turn NAME from the name of the input section into the name of the
1047   // output section.
1048   if (is_input_section
1049       && !this->script_options_->saw_sections_clause()
1050       && !parameters->options().relocatable())
1051     {
1052       const char *orig_name = name;
1053       name = parameters->target().output_section_name(relobj, name, &len);
1054       if (name == NULL)
1055         name = Layout::output_section_name(relobj, orig_name, &len);
1056     }
1057
1058   Stringpool::Key name_key;
1059   name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061   if (uncompressed_name != NULL)
1062     delete[] uncompressed_name;
1063
1064   // Find or make the output section.  The output section is selected
1065   // based on the section name, type, and flags.
1066   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1067 }
1068
1069 // For incremental links, record the initial fixed layout of a section
1070 // from the base file, and return a pointer to the Output_section.
1071
1072 template<int size, bool big_endian>
1073 Output_section*
1074 Layout::init_fixed_output_section(const char* name,
1075                                   elfcpp::Shdr<size, big_endian>& shdr)
1076 {
1077   unsigned int sh_type = shdr.get_sh_type();
1078
1079   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1080   // PRE_INIT_ARRAY, and NOTE sections.
1081   // All others will be created from scratch and reallocated.
1082   if (!can_incremental_update(sh_type))
1083     return NULL;
1084
1085   // If we're generating a .gdb_index section, we need to regenerate
1086   // it from scratch.
1087   if (parameters->options().gdb_index()
1088       && sh_type == elfcpp::SHT_PROGBITS
1089       && strcmp(name, ".gdb_index") == 0)
1090     return NULL;
1091
1092   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1093   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1094   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1095   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1096   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1097       shdr.get_sh_addralign();
1098
1099   // Make the output section.
1100   Stringpool::Key name_key;
1101   name = this->namepool_.add(name, true, &name_key);
1102   Output_section* os = this->get_output_section(name, name_key, sh_type,
1103                                                 sh_flags, ORDER_INVALID, false);
1104   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1105   if (sh_type != elfcpp::SHT_NOBITS)
1106     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1107   return os;
1108 }
1109
1110 // Return the index by which an input section should be ordered.  This
1111 // is used to sort some .text sections, for compatibility with GNU ld.
1112
1113 int
1114 Layout::special_ordering_of_input_section(const char* name)
1115 {
1116   // The GNU linker has some special handling for some sections that
1117   // wind up in the .text section.  Sections that start with these
1118   // prefixes must appear first, and must appear in the order listed
1119   // here.
1120   static const char* const text_section_sort[] =
1121   {
1122     ".text.unlikely",
1123     ".text.exit",
1124     ".text.startup",
1125     ".text.hot"
1126   };
1127
1128   for (size_t i = 0;
1129        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1130        i++)
1131     if (is_prefix_of(text_section_sort[i], name))
1132       return i;
1133
1134   return -1;
1135 }
1136
1137 // Return the output section to use for input section SHNDX, with name
1138 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1139 // index of a relocation section which applies to this section, or 0
1140 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1141 // relocation section if there is one.  Set *OFF to the offset of this
1142 // input section without the output section.  Return NULL if the
1143 // section should be discarded.  Set *OFF to -1 if the section
1144 // contents should not be written directly to the output file, but
1145 // will instead receive special handling.
1146
1147 template<int size, bool big_endian>
1148 Output_section*
1149 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1150                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1151                unsigned int reloc_shndx, unsigned int, off_t* off)
1152 {
1153   *off = 0;
1154
1155   if (!this->include_section(object, name, shdr))
1156     return NULL;
1157
1158   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1159
1160   // In a relocatable link a grouped section must not be combined with
1161   // any other sections.
1162   Output_section* os;
1163   if (parameters->options().relocatable()
1164       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1165     {
1166       name = this->namepool_.add(name, true, NULL);
1167       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1168                                      ORDER_INVALID, false);
1169     }
1170   else
1171     {
1172       // Plugins can choose to place one or more subsets of sections in
1173       // unique segments and this is done by mapping these section subsets
1174       // to unique output sections.  Check if this section needs to be
1175       // remapped to a unique output section.
1176       Section_segment_map::iterator it
1177           = this->section_segment_map_.find(Const_section_id(object, shndx));
1178       if (it == this->section_segment_map_.end())
1179         {
1180           os = this->choose_output_section(object, name, sh_type,
1181                                            shdr.get_sh_flags(), true,
1182                                            ORDER_INVALID, false);
1183         }
1184       else
1185         {
1186           // We know the name of the output section, directly call
1187           // get_output_section here by-passing choose_output_section.
1188           elfcpp::Elf_Xword flags
1189             = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191           const char* os_name = it->second->name;
1192           Stringpool::Key name_key;
1193           os_name = this->namepool_.add(os_name, true, &name_key);
1194           os = this->get_output_section(os_name, name_key, sh_type, flags,
1195                                         ORDER_INVALID, false);
1196           if (!os->is_unique_segment())
1197             {
1198               os->set_is_unique_segment();
1199               os->set_extra_segment_flags(it->second->flags);
1200               os->set_segment_alignment(it->second->align);
1201             }
1202         }
1203       if (os == NULL)
1204         return NULL;
1205     }
1206
1207   // By default the GNU linker sorts input sections whose names match
1208   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1209   // sections are sorted by name.  This is used to implement
1210   // constructor priority ordering.  We are compatible.  When we put
1211   // .ctor sections in .init_array and .dtor sections in .fini_array,
1212   // we must also sort plain .ctor and .dtor sections.
1213   if (!this->script_options_->saw_sections_clause()
1214       && !parameters->options().relocatable()
1215       && (is_prefix_of(".ctors.", name)
1216           || is_prefix_of(".dtors.", name)
1217           || is_prefix_of(".init_array.", name)
1218           || is_prefix_of(".fini_array.", name)
1219           || (parameters->options().ctors_in_init_array()
1220               && (strcmp(name, ".ctors") == 0
1221                   || strcmp(name, ".dtors") == 0))))
1222     os->set_must_sort_attached_input_sections();
1223
1224   // By default the GNU linker sorts some special text sections ahead
1225   // of others.  We are compatible.
1226   if (parameters->options().text_reorder()
1227       && !this->script_options_->saw_sections_clause()
1228       && !this->is_section_ordering_specified()
1229       && !parameters->options().relocatable()
1230       && Layout::special_ordering_of_input_section(name) >= 0)
1231     os->set_must_sort_attached_input_sections();
1232
1233   // If this is a .ctors or .ctors.* section being mapped to a
1234   // .init_array section, or a .dtors or .dtors.* section being mapped
1235   // to a .fini_array section, we will need to reverse the words if
1236   // there is more than one.  Record this section for later.  See
1237   // ctors_sections_in_init_array above.
1238   if (!this->script_options_->saw_sections_clause()
1239       && !parameters->options().relocatable()
1240       && shdr.get_sh_size() > size / 8
1241       && (((strcmp(name, ".ctors") == 0
1242             || is_prefix_of(".ctors.", name))
1243            && strcmp(os->name(), ".init_array") == 0)
1244           || ((strcmp(name, ".dtors") == 0
1245                || is_prefix_of(".dtors.", name))
1246               && strcmp(os->name(), ".fini_array") == 0)))
1247     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1248
1249   // FIXME: Handle SHF_LINK_ORDER somewhere.
1250
1251   elfcpp::Elf_Xword orig_flags = os->flags();
1252
1253   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1254                                this->script_options_->saw_sections_clause());
1255
1256   // If the flags changed, we may have to change the order.
1257   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1258     {
1259       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1260       elfcpp::Elf_Xword new_flags =
1261         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1262       if (orig_flags != new_flags)
1263         os->set_order(this->default_section_order(os, false));
1264     }
1265
1266   this->have_added_input_section_ = true;
1267
1268   return os;
1269 }
1270
1271 // Maps section SECN to SEGMENT s.
1272 void
1273 Layout::insert_section_segment_map(Const_section_id secn,
1274                                    Unique_segment_info *s)
1275 {
1276   gold_assert(this->unique_segment_for_sections_specified_);
1277   this->section_segment_map_[secn] = s;
1278 }
1279
1280 // Handle a relocation section when doing a relocatable link.
1281
1282 template<int size, bool big_endian>
1283 Output_section*
1284 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1285                      unsigned int,
1286                      const elfcpp::Shdr<size, big_endian>& shdr,
1287                      Output_section* data_section,
1288                      Relocatable_relocs* rr)
1289 {
1290   gold_assert(parameters->options().relocatable()
1291               || parameters->options().emit_relocs());
1292
1293   int sh_type = shdr.get_sh_type();
1294
1295   std::string name;
1296   if (sh_type == elfcpp::SHT_REL)
1297     name = ".rel";
1298   else if (sh_type == elfcpp::SHT_RELA)
1299     name = ".rela";
1300   else
1301     gold_unreachable();
1302   name += data_section->name();
1303
1304   // In a relocatable link relocs for a grouped section must not be
1305   // combined with other reloc sections.
1306   Output_section* os;
1307   if (!parameters->options().relocatable()
1308       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1309     os = this->choose_output_section(object, name.c_str(), sh_type,
1310                                      shdr.get_sh_flags(), false,
1311                                      ORDER_INVALID, false);
1312   else
1313     {
1314       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1315       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1316                                      ORDER_INVALID, false);
1317     }
1318
1319   os->set_should_link_to_symtab();
1320   os->set_info_section(data_section);
1321
1322   Output_section_data* posd;
1323   if (sh_type == elfcpp::SHT_REL)
1324     {
1325       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1326       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1327                                            size,
1328                                            big_endian>(rr);
1329     }
1330   else if (sh_type == elfcpp::SHT_RELA)
1331     {
1332       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1333       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1334                                            size,
1335                                            big_endian>(rr);
1336     }
1337   else
1338     gold_unreachable();
1339
1340   os->add_output_section_data(posd);
1341   rr->set_output_data(posd);
1342
1343   return os;
1344 }
1345
1346 // Handle a group section when doing a relocatable link.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Layout::layout_group(Symbol_table* symtab,
1351                      Sized_relobj_file<size, big_endian>* object,
1352                      unsigned int,
1353                      const char* group_section_name,
1354                      const char* signature,
1355                      const elfcpp::Shdr<size, big_endian>& shdr,
1356                      elfcpp::Elf_Word flags,
1357                      std::vector<unsigned int>* shndxes)
1358 {
1359   gold_assert(parameters->options().relocatable());
1360   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1361   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1362   Output_section* os = this->make_output_section(group_section_name,
1363                                                  elfcpp::SHT_GROUP,
1364                                                  shdr.get_sh_flags(),
1365                                                  ORDER_INVALID, false);
1366
1367   // We need to find a symbol with the signature in the symbol table.
1368   // If we don't find one now, we need to look again later.
1369   Symbol* sym = symtab->lookup(signature, NULL);
1370   if (sym != NULL)
1371     os->set_info_symndx(sym);
1372   else
1373     {
1374       // Reserve some space to minimize reallocations.
1375       if (this->group_signatures_.empty())
1376         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1377
1378       // We will wind up using a symbol whose name is the signature.
1379       // So just put the signature in the symbol name pool to save it.
1380       signature = symtab->canonicalize_name(signature);
1381       this->group_signatures_.push_back(Group_signature(os, signature));
1382     }
1383
1384   os->set_should_link_to_symtab();
1385   os->set_entsize(4);
1386
1387   section_size_type entry_count =
1388     convert_to_section_size_type(shdr.get_sh_size() / 4);
1389   Output_section_data* posd =
1390     new Output_data_group<size, big_endian>(object, entry_count, flags,
1391                                             shndxes);
1392   os->add_output_section_data(posd);
1393 }
1394
1395 // Special GNU handling of sections name .eh_frame.  They will
1396 // normally hold exception frame data as defined by the C++ ABI
1397 // (http://codesourcery.com/cxx-abi/).
1398
1399 template<int size, bool big_endian>
1400 Output_section*
1401 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1402                         const unsigned char* symbols,
1403                         off_t symbols_size,
1404                         const unsigned char* symbol_names,
1405                         off_t symbol_names_size,
1406                         unsigned int shndx,
1407                         const elfcpp::Shdr<size, big_endian>& shdr,
1408                         unsigned int reloc_shndx, unsigned int reloc_type,
1409                         off_t* off)
1410 {
1411   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1412               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1413   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1414
1415   Output_section* os = this->make_eh_frame_section(object);
1416   if (os == NULL)
1417     return NULL;
1418
1419   gold_assert(this->eh_frame_section_ == os);
1420
1421   elfcpp::Elf_Xword orig_flags = os->flags();
1422
1423   Eh_frame::Eh_frame_section_disposition disp =
1424       Eh_frame::EH_UNRECOGNIZED_SECTION;
1425   if (!parameters->incremental())
1426     {
1427       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1428                                                              symbols,
1429                                                              symbols_size,
1430                                                              symbol_names,
1431                                                              symbol_names_size,
1432                                                              shndx,
1433                                                              reloc_shndx,
1434                                                              reloc_type);
1435     }
1436
1437   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1438     {
1439       os->update_flags_for_input_section(shdr.get_sh_flags());
1440
1441       // A writable .eh_frame section is a RELRO section.
1442       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1443           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1444         {
1445           os->set_is_relro();
1446           os->set_order(ORDER_RELRO);
1447         }
1448
1449       *off = -1;
1450       return os;
1451     }
1452
1453   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1454     {
1455       // We found the end marker section, so now we can add the set of
1456       // optimized sections to the output section.  We need to postpone
1457       // adding this until we've found a section we can optimize so that
1458       // the .eh_frame section in crtbeginT.o winds up at the start of
1459       // the output section.
1460       os->add_output_section_data(this->eh_frame_data_);
1461       this->added_eh_frame_data_ = true;
1462      }
1463
1464   // We couldn't handle this .eh_frame section for some reason.
1465   // Add it as a normal section.
1466   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1467   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1468                                reloc_shndx, saw_sections_clause);
1469   this->have_added_input_section_ = true;
1470
1471   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1472       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1473     os->set_order(this->default_section_order(os, false));
1474
1475   return os;
1476 }
1477
1478 void
1479 Layout::finalize_eh_frame_section()
1480 {
1481   // If we never found an end marker section, we need to add the
1482   // optimized eh sections to the output section now.
1483   if (!parameters->incremental()
1484       && this->eh_frame_section_ != NULL
1485       && !this->added_eh_frame_data_)
1486     {
1487       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1488       this->added_eh_frame_data_ = true;
1489     }
1490 }
1491
1492 // Create and return the magic .eh_frame section.  Create
1493 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1494 // input .eh_frame section; it may be NULL.
1495
1496 Output_section*
1497 Layout::make_eh_frame_section(const Relobj* object)
1498 {
1499   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1500   // SHT_PROGBITS.
1501   Output_section* os = this->choose_output_section(object, ".eh_frame",
1502                                                    elfcpp::SHT_PROGBITS,
1503                                                    elfcpp::SHF_ALLOC, false,
1504                                                    ORDER_EHFRAME, false);
1505   if (os == NULL)
1506     return NULL;
1507
1508   if (this->eh_frame_section_ == NULL)
1509     {
1510       this->eh_frame_section_ = os;
1511       this->eh_frame_data_ = new Eh_frame();
1512
1513       // For incremental linking, we do not optimize .eh_frame sections
1514       // or create a .eh_frame_hdr section.
1515       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1516         {
1517           Output_section* hdr_os =
1518             this->choose_output_section(NULL, ".eh_frame_hdr",
1519                                         elfcpp::SHT_PROGBITS,
1520                                         elfcpp::SHF_ALLOC, false,
1521                                         ORDER_EHFRAME, false);
1522
1523           if (hdr_os != NULL)
1524             {
1525               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1526                                                         this->eh_frame_data_);
1527               hdr_os->add_output_section_data(hdr_posd);
1528
1529               hdr_os->set_after_input_sections();
1530
1531               if (!this->script_options_->saw_phdrs_clause())
1532                 {
1533                   Output_segment* hdr_oseg;
1534                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1535                                                        elfcpp::PF_R);
1536                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1537                                                           elfcpp::PF_R);
1538                 }
1539
1540               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1541             }
1542         }
1543     }
1544
1545   return os;
1546 }
1547
1548 // Add an exception frame for a PLT.  This is called from target code.
1549
1550 void
1551 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1552                              size_t cie_length, const unsigned char* fde_data,
1553                              size_t fde_length)
1554 {
1555   if (parameters->incremental())
1556     {
1557       // FIXME: Maybe this could work some day....
1558       return;
1559     }
1560   Output_section* os = this->make_eh_frame_section(NULL);
1561   if (os == NULL)
1562     return;
1563   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1564                                             fde_data, fde_length);
1565   if (!this->added_eh_frame_data_)
1566     {
1567       os->add_output_section_data(this->eh_frame_data_);
1568       this->added_eh_frame_data_ = true;
1569     }
1570 }
1571
1572 // Scan a .debug_info or .debug_types section, and add summary
1573 // information to the .gdb_index section.
1574
1575 template<int size, bool big_endian>
1576 void
1577 Layout::add_to_gdb_index(bool is_type_unit,
1578                          Sized_relobj<size, big_endian>* object,
1579                          const unsigned char* symbols,
1580                          off_t symbols_size,
1581                          unsigned int shndx,
1582                          unsigned int reloc_shndx,
1583                          unsigned int reloc_type)
1584 {
1585   if (this->gdb_index_data_ == NULL)
1586     {
1587       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1588                                                        elfcpp::SHT_PROGBITS, 0,
1589                                                        false, ORDER_INVALID,
1590                                                        false);
1591       if (os == NULL)
1592         return;
1593
1594       this->gdb_index_data_ = new Gdb_index(os);
1595       os->add_output_section_data(this->gdb_index_data_);
1596       os->set_after_input_sections();
1597     }
1598
1599   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1600                                          symbols_size, shndx, reloc_shndx,
1601                                          reloc_type);
1602 }
1603
1604 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1605 // the output section.
1606
1607 Output_section*
1608 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1609                                 elfcpp::Elf_Xword flags,
1610                                 Output_section_data* posd,
1611                                 Output_section_order order, bool is_relro)
1612 {
1613   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1614                                                    false, order, is_relro);
1615   if (os != NULL)
1616     os->add_output_section_data(posd);
1617   return os;
1618 }
1619
1620 // Map section flags to segment flags.
1621
1622 elfcpp::Elf_Word
1623 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1624 {
1625   elfcpp::Elf_Word ret = elfcpp::PF_R;
1626   if ((flags & elfcpp::SHF_WRITE) != 0)
1627     ret |= elfcpp::PF_W;
1628   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1629     ret |= elfcpp::PF_X;
1630   return ret;
1631 }
1632
1633 // Make a new Output_section, and attach it to segments as
1634 // appropriate.  ORDER is the order in which this section should
1635 // appear in the output segment.  IS_RELRO is true if this is a relro
1636 // (read-only after relocations) section.
1637
1638 Output_section*
1639 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1640                             elfcpp::Elf_Xword flags,
1641                             Output_section_order order, bool is_relro)
1642 {
1643   Output_section* os;
1644   if ((flags & elfcpp::SHF_ALLOC) == 0
1645       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1646       && is_compressible_debug_section(name))
1647     os = new Output_compressed_section(&parameters->options(), name, type,
1648                                        flags);
1649   else if ((flags & elfcpp::SHF_ALLOC) == 0
1650            && parameters->options().strip_debug_non_line()
1651            && strcmp(".debug_abbrev", name) == 0)
1652     {
1653       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1654           name, type, flags);
1655       if (this->debug_info_)
1656         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1657     }
1658   else if ((flags & elfcpp::SHF_ALLOC) == 0
1659            && parameters->options().strip_debug_non_line()
1660            && strcmp(".debug_info", name) == 0)
1661     {
1662       os = this->debug_info_ = new Output_reduced_debug_info_section(
1663           name, type, flags);
1664       if (this->debug_abbrev_)
1665         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1666     }
1667   else
1668     {
1669       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1670       // not have correct section types.  Force them here.
1671       if (type == elfcpp::SHT_PROGBITS)
1672         {
1673           if (is_prefix_of(".init_array", name))
1674             type = elfcpp::SHT_INIT_ARRAY;
1675           else if (is_prefix_of(".preinit_array", name))
1676             type = elfcpp::SHT_PREINIT_ARRAY;
1677           else if (is_prefix_of(".fini_array", name))
1678             type = elfcpp::SHT_FINI_ARRAY;
1679         }
1680
1681       // FIXME: const_cast is ugly.
1682       Target* target = const_cast<Target*>(&parameters->target());
1683       os = target->make_output_section(name, type, flags);
1684     }
1685
1686   // With -z relro, we have to recognize the special sections by name.
1687   // There is no other way.
1688   bool is_relro_local = false;
1689   if (!this->script_options_->saw_sections_clause()
1690       && parameters->options().relro()
1691       && (flags & elfcpp::SHF_ALLOC) != 0
1692       && (flags & elfcpp::SHF_WRITE) != 0)
1693     {
1694       if (type == elfcpp::SHT_PROGBITS)
1695         {
1696           if ((flags & elfcpp::SHF_TLS) != 0)
1697             is_relro = true;
1698           else if (strcmp(name, ".data.rel.ro") == 0)
1699             is_relro = true;
1700           else if (strcmp(name, ".data.rel.ro.local") == 0)
1701             {
1702               is_relro = true;
1703               is_relro_local = true;
1704             }
1705           else if (strcmp(name, ".ctors") == 0
1706                    || strcmp(name, ".dtors") == 0
1707                    || strcmp(name, ".jcr") == 0)
1708             is_relro = true;
1709         }
1710       else if (type == elfcpp::SHT_INIT_ARRAY
1711                || type == elfcpp::SHT_FINI_ARRAY
1712                || type == elfcpp::SHT_PREINIT_ARRAY)
1713         is_relro = true;
1714     }
1715
1716   if (is_relro)
1717     os->set_is_relro();
1718
1719   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1720     order = this->default_section_order(os, is_relro_local);
1721
1722   os->set_order(order);
1723
1724   parameters->target().new_output_section(os);
1725
1726   this->section_list_.push_back(os);
1727
1728   // The GNU linker by default sorts some sections by priority, so we
1729   // do the same.  We need to know that this might happen before we
1730   // attach any input sections.
1731   if (!this->script_options_->saw_sections_clause()
1732       && !parameters->options().relocatable()
1733       && (strcmp(name, ".init_array") == 0
1734           || strcmp(name, ".fini_array") == 0
1735           || (!parameters->options().ctors_in_init_array()
1736               && (strcmp(name, ".ctors") == 0
1737                   || strcmp(name, ".dtors") == 0))))
1738     os->set_may_sort_attached_input_sections();
1739
1740   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1741   // sections before other .text sections.  We are compatible.  We
1742   // need to know that this might happen before we attach any input
1743   // sections.
1744   if (parameters->options().text_reorder()
1745       && !this->script_options_->saw_sections_clause()
1746       && !this->is_section_ordering_specified()
1747       && !parameters->options().relocatable()
1748       && strcmp(name, ".text") == 0)
1749     os->set_may_sort_attached_input_sections();
1750
1751   // GNU linker sorts section by name with --sort-section=name.
1752   if (strcmp(parameters->options().sort_section(), "name") == 0)
1753       os->set_must_sort_attached_input_sections();
1754
1755   // Check for .stab*str sections, as .stab* sections need to link to
1756   // them.
1757   if (type == elfcpp::SHT_STRTAB
1758       && !this->have_stabstr_section_
1759       && strncmp(name, ".stab", 5) == 0
1760       && strcmp(name + strlen(name) - 3, "str") == 0)
1761     this->have_stabstr_section_ = true;
1762
1763   // During a full incremental link, we add patch space to most
1764   // PROGBITS and NOBITS sections.  Flag those that may be
1765   // arbitrarily padded.
1766   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1767       && order != ORDER_INTERP
1768       && order != ORDER_INIT
1769       && order != ORDER_PLT
1770       && order != ORDER_FINI
1771       && order != ORDER_RELRO_LAST
1772       && order != ORDER_NON_RELRO_FIRST
1773       && strcmp(name, ".eh_frame") != 0
1774       && strcmp(name, ".ctors") != 0
1775       && strcmp(name, ".dtors") != 0
1776       && strcmp(name, ".jcr") != 0)
1777     {
1778       os->set_is_patch_space_allowed();
1779
1780       // Certain sections require "holes" to be filled with
1781       // specific fill patterns.  These fill patterns may have
1782       // a minimum size, so we must prevent allocations from the
1783       // free list that leave a hole smaller than the minimum.
1784       if (strcmp(name, ".debug_info") == 0)
1785         os->set_free_space_fill(new Output_fill_debug_info(false));
1786       else if (strcmp(name, ".debug_types") == 0)
1787         os->set_free_space_fill(new Output_fill_debug_info(true));
1788       else if (strcmp(name, ".debug_line") == 0)
1789         os->set_free_space_fill(new Output_fill_debug_line());
1790     }
1791
1792   // If we have already attached the sections to segments, then we
1793   // need to attach this one now.  This happens for sections created
1794   // directly by the linker.
1795   if (this->sections_are_attached_)
1796     this->attach_section_to_segment(&parameters->target(), os);
1797
1798   return os;
1799 }
1800
1801 // Return the default order in which a section should be placed in an
1802 // output segment.  This function captures a lot of the ideas in
1803 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1804 // linker created section is normally set when the section is created;
1805 // this function is used for input sections.
1806
1807 Output_section_order
1808 Layout::default_section_order(Output_section* os, bool is_relro_local)
1809 {
1810   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1811   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1812   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1813   bool is_bss = false;
1814
1815   switch (os->type())
1816     {
1817     default:
1818     case elfcpp::SHT_PROGBITS:
1819       break;
1820     case elfcpp::SHT_NOBITS:
1821       is_bss = true;
1822       break;
1823     case elfcpp::SHT_RELA:
1824     case elfcpp::SHT_REL:
1825       if (!is_write)
1826         return ORDER_DYNAMIC_RELOCS;
1827       break;
1828     case elfcpp::SHT_HASH:
1829     case elfcpp::SHT_DYNAMIC:
1830     case elfcpp::SHT_SHLIB:
1831     case elfcpp::SHT_DYNSYM:
1832     case elfcpp::SHT_GNU_HASH:
1833     case elfcpp::SHT_GNU_verdef:
1834     case elfcpp::SHT_GNU_verneed:
1835     case elfcpp::SHT_GNU_versym:
1836       if (!is_write)
1837         return ORDER_DYNAMIC_LINKER;
1838       break;
1839     case elfcpp::SHT_NOTE:
1840       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1841     }
1842
1843   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1844     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1845
1846   if (!is_bss && !is_write)
1847     {
1848       if (is_execinstr)
1849         {
1850           if (strcmp(os->name(), ".init") == 0)
1851             return ORDER_INIT;
1852           else if (strcmp(os->name(), ".fini") == 0)
1853             return ORDER_FINI;
1854         }
1855       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1856     }
1857
1858   if (os->is_relro())
1859     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1860
1861   if (os->is_small_section())
1862     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1863   if (os->is_large_section())
1864     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1865
1866   return is_bss ? ORDER_BSS : ORDER_DATA;
1867 }
1868
1869 // Attach output sections to segments.  This is called after we have
1870 // seen all the input sections.
1871
1872 void
1873 Layout::attach_sections_to_segments(const Target* target)
1874 {
1875   for (Section_list::iterator p = this->section_list_.begin();
1876        p != this->section_list_.end();
1877        ++p)
1878     this->attach_section_to_segment(target, *p);
1879
1880   this->sections_are_attached_ = true;
1881 }
1882
1883 // Attach an output section to a segment.
1884
1885 void
1886 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1887 {
1888   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1889     this->unattached_section_list_.push_back(os);
1890   else
1891     this->attach_allocated_section_to_segment(target, os);
1892 }
1893
1894 // Attach an allocated output section to a segment.
1895
1896 void
1897 Layout::attach_allocated_section_to_segment(const Target* target,
1898                                             Output_section* os)
1899 {
1900   elfcpp::Elf_Xword flags = os->flags();
1901   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1902
1903   if (parameters->options().relocatable())
1904     return;
1905
1906   // If we have a SECTIONS clause, we can't handle the attachment to
1907   // segments until after we've seen all the sections.
1908   if (this->script_options_->saw_sections_clause())
1909     return;
1910
1911   gold_assert(!this->script_options_->saw_phdrs_clause());
1912
1913   // This output section goes into a PT_LOAD segment.
1914
1915   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1916
1917   // If this output section's segment has extra flags that need to be set,
1918   // coming from a linker plugin, do that.
1919   seg_flags |= os->extra_segment_flags();
1920
1921   // Check for --section-start.
1922   uint64_t addr;
1923   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1924
1925   // In general the only thing we really care about for PT_LOAD
1926   // segments is whether or not they are writable or executable,
1927   // so that is how we search for them.
1928   // Large data sections also go into their own PT_LOAD segment.
1929   // People who need segments sorted on some other basis will
1930   // have to use a linker script.
1931
1932   Segment_list::const_iterator p;
1933   if (!os->is_unique_segment())
1934     {
1935       for (p = this->segment_list_.begin();
1936            p != this->segment_list_.end();
1937            ++p)
1938         {
1939           if ((*p)->type() != elfcpp::PT_LOAD)
1940             continue;
1941           if ((*p)->is_unique_segment())
1942             continue;
1943           if (!parameters->options().omagic()
1944               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1945             continue;
1946           if ((target->isolate_execinstr() || parameters->options().rosegment())
1947               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1948             continue;
1949           // If -Tbss was specified, we need to separate the data and BSS
1950           // segments.
1951           if (parameters->options().user_set_Tbss())
1952             {
1953               if ((os->type() == elfcpp::SHT_NOBITS)
1954                   == (*p)->has_any_data_sections())
1955                 continue;
1956             }
1957           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1958             continue;
1959
1960           if (is_address_set)
1961             {
1962               if ((*p)->are_addresses_set())
1963                 continue;
1964
1965               (*p)->add_initial_output_data(os);
1966               (*p)->update_flags_for_output_section(seg_flags);
1967               (*p)->set_addresses(addr, addr);
1968               break;
1969             }
1970
1971           (*p)->add_output_section_to_load(this, os, seg_flags);
1972           break;
1973         }
1974     }
1975
1976   if (p == this->segment_list_.end()
1977       || os->is_unique_segment())
1978     {
1979       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1980                                                        seg_flags);
1981       if (os->is_large_data_section())
1982         oseg->set_is_large_data_segment();
1983       oseg->add_output_section_to_load(this, os, seg_flags);
1984       if (is_address_set)
1985         oseg->set_addresses(addr, addr);
1986       // Check if segment should be marked unique.  For segments marked
1987       // unique by linker plugins, set the new alignment if specified.
1988       if (os->is_unique_segment())
1989         {
1990           oseg->set_is_unique_segment();
1991           if (os->segment_alignment() != 0)
1992             oseg->set_minimum_p_align(os->segment_alignment());
1993         }
1994     }
1995
1996   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1997   // segment.
1998   if (os->type() == elfcpp::SHT_NOTE)
1999     {
2000       // See if we already have an equivalent PT_NOTE segment.
2001       for (p = this->segment_list_.begin();
2002            p != segment_list_.end();
2003            ++p)
2004         {
2005           if ((*p)->type() == elfcpp::PT_NOTE
2006               && (((*p)->flags() & elfcpp::PF_W)
2007                   == (seg_flags & elfcpp::PF_W)))
2008             {
2009               (*p)->add_output_section_to_nonload(os, seg_flags);
2010               break;
2011             }
2012         }
2013
2014       if (p == this->segment_list_.end())
2015         {
2016           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2017                                                            seg_flags);
2018           oseg->add_output_section_to_nonload(os, seg_flags);
2019         }
2020     }
2021
2022   // If we see a loadable SHF_TLS section, we create a PT_TLS
2023   // segment.  There can only be one such segment.
2024   if ((flags & elfcpp::SHF_TLS) != 0)
2025     {
2026       if (this->tls_segment_ == NULL)
2027         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2028       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2029     }
2030
2031   // If -z relro is in effect, and we see a relro section, we create a
2032   // PT_GNU_RELRO segment.  There can only be one such segment.
2033   if (os->is_relro() && parameters->options().relro())
2034     {
2035       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2036       if (this->relro_segment_ == NULL)
2037         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2038       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2039     }
2040
2041   // If we see a section named .interp, put it into a PT_INTERP
2042   // segment.  This seems broken to me, but this is what GNU ld does,
2043   // and glibc expects it.
2044   if (strcmp(os->name(), ".interp") == 0
2045       && !this->script_options_->saw_phdrs_clause())
2046     {
2047       if (this->interp_segment_ == NULL)
2048         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2049       else
2050         gold_warning(_("multiple '.interp' sections in input files "
2051                        "may cause confusing PT_INTERP segment"));
2052       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2053     }
2054 }
2055
2056 // Make an output section for a script.
2057
2058 Output_section*
2059 Layout::make_output_section_for_script(
2060     const char* name,
2061     Script_sections::Section_type section_type)
2062 {
2063   name = this->namepool_.add(name, false, NULL);
2064   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2065   if (section_type == Script_sections::ST_NOLOAD)
2066     sh_flags = 0;
2067   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2068                                                  sh_flags, ORDER_INVALID,
2069                                                  false);
2070   os->set_found_in_sections_clause();
2071   if (section_type == Script_sections::ST_NOLOAD)
2072     os->set_is_noload();
2073   return os;
2074 }
2075
2076 // Return the number of segments we expect to see.
2077
2078 size_t
2079 Layout::expected_segment_count() const
2080 {
2081   size_t ret = this->segment_list_.size();
2082
2083   // If we didn't see a SECTIONS clause in a linker script, we should
2084   // already have the complete list of segments.  Otherwise we ask the
2085   // SECTIONS clause how many segments it expects, and add in the ones
2086   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2087
2088   if (!this->script_options_->saw_sections_clause())
2089     return ret;
2090   else
2091     {
2092       const Script_sections* ss = this->script_options_->script_sections();
2093       return ret + ss->expected_segment_count(this);
2094     }
2095 }
2096
2097 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2098 // is whether we saw a .note.GNU-stack section in the object file.
2099 // GNU_STACK_FLAGS is the section flags.  The flags give the
2100 // protection required for stack memory.  We record this in an
2101 // executable as a PT_GNU_STACK segment.  If an object file does not
2102 // have a .note.GNU-stack segment, we must assume that it is an old
2103 // object.  On some targets that will force an executable stack.
2104
2105 void
2106 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2107                          const Object* obj)
2108 {
2109   if (!seen_gnu_stack)
2110     {
2111       this->input_without_gnu_stack_note_ = true;
2112       if (parameters->options().warn_execstack()
2113           && parameters->target().is_default_stack_executable())
2114         gold_warning(_("%s: missing .note.GNU-stack section"
2115                        " implies executable stack"),
2116                      obj->name().c_str());
2117     }
2118   else
2119     {
2120       this->input_with_gnu_stack_note_ = true;
2121       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2122         {
2123           this->input_requires_executable_stack_ = true;
2124           if (parameters->options().warn_execstack())
2125             gold_warning(_("%s: requires executable stack"),
2126                          obj->name().c_str());
2127         }
2128     }
2129 }
2130
2131 // Create automatic note sections.
2132
2133 void
2134 Layout::create_notes()
2135 {
2136   this->create_gold_note();
2137   this->create_executable_stack_info();
2138   this->create_build_id();
2139 }
2140
2141 // Create the dynamic sections which are needed before we read the
2142 // relocs.
2143
2144 void
2145 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2146 {
2147   if (parameters->doing_static_link())
2148     return;
2149
2150   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2151                                                        elfcpp::SHT_DYNAMIC,
2152                                                        (elfcpp::SHF_ALLOC
2153                                                         | elfcpp::SHF_WRITE),
2154                                                        false, ORDER_RELRO,
2155                                                        true);
2156
2157   // A linker script may discard .dynamic, so check for NULL.
2158   if (this->dynamic_section_ != NULL)
2159     {
2160       this->dynamic_symbol_ =
2161         symtab->define_in_output_data("_DYNAMIC", NULL,
2162                                       Symbol_table::PREDEFINED,
2163                                       this->dynamic_section_, 0, 0,
2164                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2165                                       elfcpp::STV_HIDDEN, 0, false, false);
2166
2167       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2168
2169       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2170     }
2171 }
2172
2173 // For each output section whose name can be represented as C symbol,
2174 // define __start and __stop symbols for the section.  This is a GNU
2175 // extension.
2176
2177 void
2178 Layout::define_section_symbols(Symbol_table* symtab)
2179 {
2180   for (Section_list::const_iterator p = this->section_list_.begin();
2181        p != this->section_list_.end();
2182        ++p)
2183     {
2184       const char* const name = (*p)->name();
2185       if (is_cident(name))
2186         {
2187           const std::string name_string(name);
2188           const std::string start_name(cident_section_start_prefix
2189                                        + name_string);
2190           const std::string stop_name(cident_section_stop_prefix
2191                                       + name_string);
2192
2193           symtab->define_in_output_data(start_name.c_str(),
2194                                         NULL, // version
2195                                         Symbol_table::PREDEFINED,
2196                                         *p,
2197                                         0, // value
2198                                         0, // symsize
2199                                         elfcpp::STT_NOTYPE,
2200                                         elfcpp::STB_GLOBAL,
2201                                         elfcpp::STV_DEFAULT,
2202                                         0, // nonvis
2203                                         false, // offset_is_from_end
2204                                         true); // only_if_ref
2205
2206           symtab->define_in_output_data(stop_name.c_str(),
2207                                         NULL, // version
2208                                         Symbol_table::PREDEFINED,
2209                                         *p,
2210                                         0, // value
2211                                         0, // symsize
2212                                         elfcpp::STT_NOTYPE,
2213                                         elfcpp::STB_GLOBAL,
2214                                         elfcpp::STV_DEFAULT,
2215                                         0, // nonvis
2216                                         true, // offset_is_from_end
2217                                         true); // only_if_ref
2218         }
2219     }
2220 }
2221
2222 // Define symbols for group signatures.
2223
2224 void
2225 Layout::define_group_signatures(Symbol_table* symtab)
2226 {
2227   for (Group_signatures::iterator p = this->group_signatures_.begin();
2228        p != this->group_signatures_.end();
2229        ++p)
2230     {
2231       Symbol* sym = symtab->lookup(p->signature, NULL);
2232       if (sym != NULL)
2233         p->section->set_info_symndx(sym);
2234       else
2235         {
2236           // Force the name of the group section to the group
2237           // signature, and use the group's section symbol as the
2238           // signature symbol.
2239           if (strcmp(p->section->name(), p->signature) != 0)
2240             {
2241               const char* name = this->namepool_.add(p->signature,
2242                                                      true, NULL);
2243               p->section->set_name(name);
2244             }
2245           p->section->set_needs_symtab_index();
2246           p->section->set_info_section_symndx(p->section);
2247         }
2248     }
2249
2250   this->group_signatures_.clear();
2251 }
2252
2253 // Find the first read-only PT_LOAD segment, creating one if
2254 // necessary.
2255
2256 Output_segment*
2257 Layout::find_first_load_seg(const Target* target)
2258 {
2259   Output_segment* best = NULL;
2260   for (Segment_list::const_iterator p = this->segment_list_.begin();
2261        p != this->segment_list_.end();
2262        ++p)
2263     {
2264       if ((*p)->type() == elfcpp::PT_LOAD
2265           && ((*p)->flags() & elfcpp::PF_R) != 0
2266           && (parameters->options().omagic()
2267               || ((*p)->flags() & elfcpp::PF_W) == 0)
2268           && (!target->isolate_execinstr()
2269               || ((*p)->flags() & elfcpp::PF_X) == 0))
2270         {
2271           if (best == NULL || this->segment_precedes(*p, best))
2272             best = *p;
2273         }
2274     }
2275   if (best != NULL)
2276     return best;
2277
2278   gold_assert(!this->script_options_->saw_phdrs_clause());
2279
2280   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2281                                                        elfcpp::PF_R);
2282   return load_seg;
2283 }
2284
2285 // Save states of all current output segments.  Store saved states
2286 // in SEGMENT_STATES.
2287
2288 void
2289 Layout::save_segments(Segment_states* segment_states)
2290 {
2291   for (Segment_list::const_iterator p = this->segment_list_.begin();
2292        p != this->segment_list_.end();
2293        ++p)
2294     {
2295       Output_segment* segment = *p;
2296       // Shallow copy.
2297       Output_segment* copy = new Output_segment(*segment);
2298       (*segment_states)[segment] = copy;
2299     }
2300 }
2301
2302 // Restore states of output segments and delete any segment not found in
2303 // SEGMENT_STATES.
2304
2305 void
2306 Layout::restore_segments(const Segment_states* segment_states)
2307 {
2308   // Go through the segment list and remove any segment added in the
2309   // relaxation loop.
2310   this->tls_segment_ = NULL;
2311   this->relro_segment_ = NULL;
2312   Segment_list::iterator list_iter = this->segment_list_.begin();
2313   while (list_iter != this->segment_list_.end())
2314     {
2315       Output_segment* segment = *list_iter;
2316       Segment_states::const_iterator states_iter =
2317           segment_states->find(segment);
2318       if (states_iter != segment_states->end())
2319         {
2320           const Output_segment* copy = states_iter->second;
2321           // Shallow copy to restore states.
2322           *segment = *copy;
2323
2324           // Also fix up TLS and RELRO segment pointers as appropriate.
2325           if (segment->type() == elfcpp::PT_TLS)
2326             this->tls_segment_ = segment;
2327           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2328             this->relro_segment_ = segment;
2329
2330           ++list_iter;
2331         }
2332       else
2333         {
2334           list_iter = this->segment_list_.erase(list_iter);
2335           // This is a segment created during section layout.  It should be
2336           // safe to remove it since we should have removed all pointers to it.
2337           delete segment;
2338         }
2339     }
2340 }
2341
2342 // Clean up after relaxation so that sections can be laid out again.
2343
2344 void
2345 Layout::clean_up_after_relaxation()
2346 {
2347   // Restore the segments to point state just prior to the relaxation loop.
2348   Script_sections* script_section = this->script_options_->script_sections();
2349   script_section->release_segments();
2350   this->restore_segments(this->segment_states_);
2351
2352   // Reset section addresses and file offsets
2353   for (Section_list::iterator p = this->section_list_.begin();
2354        p != this->section_list_.end();
2355        ++p)
2356     {
2357       (*p)->restore_states();
2358
2359       // If an input section changes size because of relaxation,
2360       // we need to adjust the section offsets of all input sections.
2361       // after such a section.
2362       if ((*p)->section_offsets_need_adjustment())
2363         (*p)->adjust_section_offsets();
2364
2365       (*p)->reset_address_and_file_offset();
2366     }
2367
2368   // Reset special output object address and file offsets.
2369   for (Data_list::iterator p = this->special_output_list_.begin();
2370        p != this->special_output_list_.end();
2371        ++p)
2372     (*p)->reset_address_and_file_offset();
2373
2374   // A linker script may have created some output section data objects.
2375   // They are useless now.
2376   for (Output_section_data_list::const_iterator p =
2377          this->script_output_section_data_list_.begin();
2378        p != this->script_output_section_data_list_.end();
2379        ++p)
2380     delete *p;
2381   this->script_output_section_data_list_.clear();
2382
2383   // Special-case fill output objects are recreated each time through
2384   // the relaxation loop.
2385   this->reset_relax_output();
2386 }
2387
2388 void
2389 Layout::reset_relax_output()
2390 {
2391   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2392        p != this->relax_output_list_.end();
2393        ++p)
2394     delete *p;
2395   this->relax_output_list_.clear();
2396 }
2397
2398 // Prepare for relaxation.
2399
2400 void
2401 Layout::prepare_for_relaxation()
2402 {
2403   // Create an relaxation debug check if in debugging mode.
2404   if (is_debugging_enabled(DEBUG_RELAXATION))
2405     this->relaxation_debug_check_ = new Relaxation_debug_check();
2406
2407   // Save segment states.
2408   this->segment_states_ = new Segment_states();
2409   this->save_segments(this->segment_states_);
2410
2411   for(Section_list::const_iterator p = this->section_list_.begin();
2412       p != this->section_list_.end();
2413       ++p)
2414     (*p)->save_states();
2415
2416   if (is_debugging_enabled(DEBUG_RELAXATION))
2417     this->relaxation_debug_check_->check_output_data_for_reset_values(
2418         this->section_list_, this->special_output_list_,
2419         this->relax_output_list_);
2420
2421   // Also enable recording of output section data from scripts.
2422   this->record_output_section_data_from_script_ = true;
2423 }
2424
2425 // If the user set the address of the text segment, that may not be
2426 // compatible with putting the segment headers and file headers into
2427 // that segment.  For isolate_execinstr() targets, it's the rodata
2428 // segment rather than text where we might put the headers.
2429 static inline bool
2430 load_seg_unusable_for_headers(const Target* target)
2431 {
2432   const General_options& options = parameters->options();
2433   if (target->isolate_execinstr())
2434     return (options.user_set_Trodata_segment()
2435             && options.Trodata_segment() % target->abi_pagesize() != 0);
2436   else
2437     return (options.user_set_Ttext()
2438             && options.Ttext() % target->abi_pagesize() != 0);
2439 }
2440
2441 // Relaxation loop body:  If target has no relaxation, this runs only once
2442 // Otherwise, the target relaxation hook is called at the end of
2443 // each iteration.  If the hook returns true, it means re-layout of
2444 // section is required.
2445 //
2446 // The number of segments created by a linking script without a PHDRS
2447 // clause may be affected by section sizes and alignments.  There is
2448 // a remote chance that relaxation causes different number of PT_LOAD
2449 // segments are created and sections are attached to different segments.
2450 // Therefore, we always throw away all segments created during section
2451 // layout.  In order to be able to restart the section layout, we keep
2452 // a copy of the segment list right before the relaxation loop and use
2453 // that to restore the segments.
2454 //
2455 // PASS is the current relaxation pass number.
2456 // SYMTAB is a symbol table.
2457 // PLOAD_SEG is the address of a pointer for the load segment.
2458 // PHDR_SEG is a pointer to the PHDR segment.
2459 // SEGMENT_HEADERS points to the output segment header.
2460 // FILE_HEADER points to the output file header.
2461 // PSHNDX is the address to store the output section index.
2462
2463 off_t inline
2464 Layout::relaxation_loop_body(
2465     int pass,
2466     Target* target,
2467     Symbol_table* symtab,
2468     Output_segment** pload_seg,
2469     Output_segment* phdr_seg,
2470     Output_segment_headers* segment_headers,
2471     Output_file_header* file_header,
2472     unsigned int* pshndx)
2473 {
2474   // If this is not the first iteration, we need to clean up after
2475   // relaxation so that we can lay out the sections again.
2476   if (pass != 0)
2477     this->clean_up_after_relaxation();
2478
2479   // If there is a SECTIONS clause, put all the input sections into
2480   // the required order.
2481   Output_segment* load_seg;
2482   if (this->script_options_->saw_sections_clause())
2483     load_seg = this->set_section_addresses_from_script(symtab);
2484   else if (parameters->options().relocatable())
2485     load_seg = NULL;
2486   else
2487     load_seg = this->find_first_load_seg(target);
2488
2489   if (parameters->options().oformat_enum()
2490       != General_options::OBJECT_FORMAT_ELF)
2491     load_seg = NULL;
2492
2493   if (load_seg_unusable_for_headers(target))
2494     {
2495       load_seg = NULL;
2496       phdr_seg = NULL;
2497     }
2498
2499   gold_assert(phdr_seg == NULL
2500               || load_seg != NULL
2501               || this->script_options_->saw_sections_clause());
2502
2503   // If the address of the load segment we found has been set by
2504   // --section-start rather than by a script, then adjust the VMA and
2505   // LMA downward if possible to include the file and section headers.
2506   uint64_t header_gap = 0;
2507   if (load_seg != NULL
2508       && load_seg->are_addresses_set()
2509       && !this->script_options_->saw_sections_clause()
2510       && !parameters->options().relocatable())
2511     {
2512       file_header->finalize_data_size();
2513       segment_headers->finalize_data_size();
2514       size_t sizeof_headers = (file_header->data_size()
2515                                + segment_headers->data_size());
2516       const uint64_t abi_pagesize = target->abi_pagesize();
2517       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2518       hdr_paddr &= ~(abi_pagesize - 1);
2519       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2520       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2521         load_seg = NULL;
2522       else
2523         {
2524           load_seg->set_addresses(load_seg->vaddr() - subtract,
2525                                   load_seg->paddr() - subtract);
2526           header_gap = subtract - sizeof_headers;
2527         }
2528     }
2529
2530   // Lay out the segment headers.
2531   if (!parameters->options().relocatable())
2532     {
2533       gold_assert(segment_headers != NULL);
2534       if (header_gap != 0 && load_seg != NULL)
2535         {
2536           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2537           load_seg->add_initial_output_data(z);
2538         }
2539       if (load_seg != NULL)
2540         load_seg->add_initial_output_data(segment_headers);
2541       if (phdr_seg != NULL)
2542         phdr_seg->add_initial_output_data(segment_headers);
2543     }
2544
2545   // Lay out the file header.
2546   if (load_seg != NULL)
2547     load_seg->add_initial_output_data(file_header);
2548
2549   if (this->script_options_->saw_phdrs_clause()
2550       && !parameters->options().relocatable())
2551     {
2552       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2553       // clause in a linker script.
2554       Script_sections* ss = this->script_options_->script_sections();
2555       ss->put_headers_in_phdrs(file_header, segment_headers);
2556     }
2557
2558   // We set the output section indexes in set_segment_offsets and
2559   // set_section_indexes.
2560   *pshndx = 1;
2561
2562   // Set the file offsets of all the segments, and all the sections
2563   // they contain.
2564   off_t off;
2565   if (!parameters->options().relocatable())
2566     off = this->set_segment_offsets(target, load_seg, pshndx);
2567   else
2568     off = this->set_relocatable_section_offsets(file_header, pshndx);
2569
2570    // Verify that the dummy relaxation does not change anything.
2571   if (is_debugging_enabled(DEBUG_RELAXATION))
2572     {
2573       if (pass == 0)
2574         this->relaxation_debug_check_->read_sections(this->section_list_);
2575       else
2576         this->relaxation_debug_check_->verify_sections(this->section_list_);
2577     }
2578
2579   *pload_seg = load_seg;
2580   return off;
2581 }
2582
2583 // Search the list of patterns and find the postion of the given section
2584 // name in the output section.  If the section name matches a glob
2585 // pattern and a non-glob name, then the non-glob position takes
2586 // precedence.  Return 0 if no match is found.
2587
2588 unsigned int
2589 Layout::find_section_order_index(const std::string& section_name)
2590 {
2591   Unordered_map<std::string, unsigned int>::iterator map_it;
2592   map_it = this->input_section_position_.find(section_name);
2593   if (map_it != this->input_section_position_.end())
2594     return map_it->second;
2595
2596   // Absolute match failed.  Linear search the glob patterns.
2597   std::vector<std::string>::iterator it;
2598   for (it = this->input_section_glob_.begin();
2599        it != this->input_section_glob_.end();
2600        ++it)
2601     {
2602        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2603          {
2604            map_it = this->input_section_position_.find(*it);
2605            gold_assert(map_it != this->input_section_position_.end());
2606            return map_it->second;
2607          }
2608     }
2609   return 0;
2610 }
2611
2612 // Read the sequence of input sections from the file specified with
2613 // option --section-ordering-file.
2614
2615 void
2616 Layout::read_layout_from_file()
2617 {
2618   const char* filename = parameters->options().section_ordering_file();
2619   std::ifstream in;
2620   std::string line;
2621
2622   in.open(filename);
2623   if (!in)
2624     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2625                filename, strerror(errno));
2626
2627   std::getline(in, line);   // this chops off the trailing \n, if any
2628   unsigned int position = 1;
2629   this->set_section_ordering_specified();
2630
2631   while (in)
2632     {
2633       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2634         line.resize(line.length() - 1);
2635       // Ignore comments, beginning with '#'
2636       if (line[0] == '#')
2637         {
2638           std::getline(in, line);
2639           continue;
2640         }
2641       this->input_section_position_[line] = position;
2642       // Store all glob patterns in a vector.
2643       if (is_wildcard_string(line.c_str()))
2644         this->input_section_glob_.push_back(line);
2645       position++;
2646       std::getline(in, line);
2647     }
2648 }
2649
2650 // Finalize the layout.  When this is called, we have created all the
2651 // output sections and all the output segments which are based on
2652 // input sections.  We have several things to do, and we have to do
2653 // them in the right order, so that we get the right results correctly
2654 // and efficiently.
2655
2656 // 1) Finalize the list of output segments and create the segment
2657 // table header.
2658
2659 // 2) Finalize the dynamic symbol table and associated sections.
2660
2661 // 3) Determine the final file offset of all the output segments.
2662
2663 // 4) Determine the final file offset of all the SHF_ALLOC output
2664 // sections.
2665
2666 // 5) Create the symbol table sections and the section name table
2667 // section.
2668
2669 // 6) Finalize the symbol table: set symbol values to their final
2670 // value and make a final determination of which symbols are going
2671 // into the output symbol table.
2672
2673 // 7) Create the section table header.
2674
2675 // 8) Determine the final file offset of all the output sections which
2676 // are not SHF_ALLOC, including the section table header.
2677
2678 // 9) Finalize the ELF file header.
2679
2680 // This function returns the size of the output file.
2681
2682 off_t
2683 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2684                  Target* target, const Task* task)
2685 {
2686   target->finalize_sections(this, input_objects, symtab);
2687
2688   this->count_local_symbols(task, input_objects);
2689
2690   this->link_stabs_sections();
2691
2692   Output_segment* phdr_seg = NULL;
2693   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2694     {
2695       // There was a dynamic object in the link.  We need to create
2696       // some information for the dynamic linker.
2697
2698       // Create the PT_PHDR segment which will hold the program
2699       // headers.
2700       if (!this->script_options_->saw_phdrs_clause())
2701         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2702
2703       // Create the dynamic symbol table, including the hash table.
2704       Output_section* dynstr;
2705       std::vector<Symbol*> dynamic_symbols;
2706       unsigned int local_dynamic_count;
2707       Versions versions(*this->script_options()->version_script_info(),
2708                         &this->dynpool_);
2709       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2710                                   &local_dynamic_count, &dynamic_symbols,
2711                                   &versions);
2712
2713       // Create the .interp section to hold the name of the
2714       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2715       // if we saw a .interp section in an input file.
2716       if ((!parameters->options().shared()
2717            || parameters->options().dynamic_linker() != NULL)
2718           && this->interp_segment_ == NULL)
2719         this->create_interp(target);
2720
2721       // Finish the .dynamic section to hold the dynamic data, and put
2722       // it in a PT_DYNAMIC segment.
2723       this->finish_dynamic_section(input_objects, symtab);
2724
2725       // We should have added everything we need to the dynamic string
2726       // table.
2727       this->dynpool_.set_string_offsets();
2728
2729       // Create the version sections.  We can't do this until the
2730       // dynamic string table is complete.
2731       this->create_version_sections(&versions, symtab, local_dynamic_count,
2732                                     dynamic_symbols, dynstr);
2733
2734       // Set the size of the _DYNAMIC symbol.  We can't do this until
2735       // after we call create_version_sections.
2736       this->set_dynamic_symbol_size(symtab);
2737     }
2738
2739   // Create segment headers.
2740   Output_segment_headers* segment_headers =
2741     (parameters->options().relocatable()
2742      ? NULL
2743      : new Output_segment_headers(this->segment_list_));
2744
2745   // Lay out the file header.
2746   Output_file_header* file_header = new Output_file_header(target, symtab,
2747                                                            segment_headers);
2748
2749   this->special_output_list_.push_back(file_header);
2750   if (segment_headers != NULL)
2751     this->special_output_list_.push_back(segment_headers);
2752
2753   // Find approriate places for orphan output sections if we are using
2754   // a linker script.
2755   if (this->script_options_->saw_sections_clause())
2756     this->place_orphan_sections_in_script();
2757
2758   Output_segment* load_seg;
2759   off_t off;
2760   unsigned int shndx;
2761   int pass = 0;
2762
2763   // Take a snapshot of the section layout as needed.
2764   if (target->may_relax())
2765     this->prepare_for_relaxation();
2766
2767   // Run the relaxation loop to lay out sections.
2768   do
2769     {
2770       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2771                                        phdr_seg, segment_headers, file_header,
2772                                        &shndx);
2773       pass++;
2774     }
2775   while (target->may_relax()
2776          && target->relax(pass, input_objects, symtab, this, task));
2777
2778   // If there is a load segment that contains the file and program headers,
2779   // provide a symbol __ehdr_start pointing there.
2780   // A program can use this to examine itself robustly.
2781   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2782   if (ehdr_start != NULL && ehdr_start->is_predefined())
2783     {
2784       if (load_seg != NULL)
2785         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2786       else
2787         ehdr_start->set_undefined();
2788     }
2789
2790   // Set the file offsets of all the non-data sections we've seen so
2791   // far which don't have to wait for the input sections.  We need
2792   // this in order to finalize local symbols in non-allocated
2793   // sections.
2794   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2795
2796   // Set the section indexes of all unallocated sections seen so far,
2797   // in case any of them are somehow referenced by a symbol.
2798   shndx = this->set_section_indexes(shndx);
2799
2800   // Create the symbol table sections.
2801   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2802   if (!parameters->doing_static_link())
2803     this->assign_local_dynsym_offsets(input_objects);
2804
2805   // Process any symbol assignments from a linker script.  This must
2806   // be called after the symbol table has been finalized.
2807   this->script_options_->finalize_symbols(symtab, this);
2808
2809   // Create the incremental inputs sections.
2810   if (this->incremental_inputs_)
2811     {
2812       this->incremental_inputs_->finalize();
2813       this->create_incremental_info_sections(symtab);
2814     }
2815
2816   // Create the .shstrtab section.
2817   Output_section* shstrtab_section = this->create_shstrtab();
2818
2819   // Set the file offsets of the rest of the non-data sections which
2820   // don't have to wait for the input sections.
2821   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2822
2823   // Now that all sections have been created, set the section indexes
2824   // for any sections which haven't been done yet.
2825   shndx = this->set_section_indexes(shndx);
2826
2827   // Create the section table header.
2828   this->create_shdrs(shstrtab_section, &off);
2829
2830   // If there are no sections which require postprocessing, we can
2831   // handle the section names now, and avoid a resize later.
2832   if (!this->any_postprocessing_sections_)
2833     {
2834       off = this->set_section_offsets(off,
2835                                       POSTPROCESSING_SECTIONS_PASS);
2836       off =
2837           this->set_section_offsets(off,
2838                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2839     }
2840
2841   file_header->set_section_info(this->section_headers_, shstrtab_section);
2842
2843   // Now we know exactly where everything goes in the output file
2844   // (except for non-allocated sections which require postprocessing).
2845   Output_data::layout_complete();
2846
2847   this->output_file_size_ = off;
2848
2849   return off;
2850 }
2851
2852 // Create a note header following the format defined in the ELF ABI.
2853 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2854 // of the section to create, DESCSZ is the size of the descriptor.
2855 // ALLOCATE is true if the section should be allocated in memory.
2856 // This returns the new note section.  It sets *TRAILING_PADDING to
2857 // the number of trailing zero bytes required.
2858
2859 Output_section*
2860 Layout::create_note(const char* name, int note_type,
2861                     const char* section_name, size_t descsz,
2862                     bool allocate, size_t* trailing_padding)
2863 {
2864   // Authorities all agree that the values in a .note field should
2865   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2866   // they differ on what the alignment is for 64-bit binaries.
2867   // The GABI says unambiguously they take 8-byte alignment:
2868   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2869   // Other documentation says alignment should always be 4 bytes:
2870   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2871   // GNU ld and GNU readelf both support the latter (at least as of
2872   // version 2.16.91), and glibc always generates the latter for
2873   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2874   // here.
2875 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2876   const int size = parameters->target().get_size();
2877 #else
2878   const int size = 32;
2879 #endif
2880
2881   // The contents of the .note section.
2882   size_t namesz = strlen(name) + 1;
2883   size_t aligned_namesz = align_address(namesz, size / 8);
2884   size_t aligned_descsz = align_address(descsz, size / 8);
2885
2886   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2887
2888   unsigned char* buffer = new unsigned char[notehdrsz];
2889   memset(buffer, 0, notehdrsz);
2890
2891   bool is_big_endian = parameters->target().is_big_endian();
2892
2893   if (size == 32)
2894     {
2895       if (!is_big_endian)
2896         {
2897           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2898           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2899           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2900         }
2901       else
2902         {
2903           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2904           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2905           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2906         }
2907     }
2908   else if (size == 64)
2909     {
2910       if (!is_big_endian)
2911         {
2912           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2913           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2914           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2915         }
2916       else
2917         {
2918           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2919           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2920           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2921         }
2922     }
2923   else
2924     gold_unreachable();
2925
2926   memcpy(buffer + 3 * (size / 8), name, namesz);
2927
2928   elfcpp::Elf_Xword flags = 0;
2929   Output_section_order order = ORDER_INVALID;
2930   if (allocate)
2931     {
2932       flags = elfcpp::SHF_ALLOC;
2933       order = ORDER_RO_NOTE;
2934     }
2935   Output_section* os = this->choose_output_section(NULL, section_name,
2936                                                    elfcpp::SHT_NOTE,
2937                                                    flags, false, order, false);
2938   if (os == NULL)
2939     return NULL;
2940
2941   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2942                                                            size / 8,
2943                                                            "** note header");
2944   os->add_output_section_data(posd);
2945
2946   *trailing_padding = aligned_descsz - descsz;
2947
2948   return os;
2949 }
2950
2951 // For an executable or shared library, create a note to record the
2952 // version of gold used to create the binary.
2953
2954 void
2955 Layout::create_gold_note()
2956 {
2957   if (parameters->options().relocatable()
2958       || parameters->incremental_update())
2959     return;
2960
2961   std::string desc = std::string("gold ") + gold::get_version_string();
2962
2963   size_t trailing_padding;
2964   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2965                                          ".note.gnu.gold-version", desc.size(),
2966                                          false, &trailing_padding);
2967   if (os == NULL)
2968     return;
2969
2970   Output_section_data* posd = new Output_data_const(desc, 4);
2971   os->add_output_section_data(posd);
2972
2973   if (trailing_padding > 0)
2974     {
2975       posd = new Output_data_zero_fill(trailing_padding, 0);
2976       os->add_output_section_data(posd);
2977     }
2978 }
2979
2980 // Record whether the stack should be executable.  This can be set
2981 // from the command line using the -z execstack or -z noexecstack
2982 // options.  Otherwise, if any input file has a .note.GNU-stack
2983 // section with the SHF_EXECINSTR flag set, the stack should be
2984 // executable.  Otherwise, if at least one input file a
2985 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2986 // section, we use the target default for whether the stack should be
2987 // executable.  Otherwise, we don't generate a stack note.  When
2988 // generating a object file, we create a .note.GNU-stack section with
2989 // the appropriate marking.  When generating an executable or shared
2990 // library, we create a PT_GNU_STACK segment.
2991
2992 void
2993 Layout::create_executable_stack_info()
2994 {
2995   bool is_stack_executable;
2996   if (parameters->options().is_execstack_set())
2997     {
2998       is_stack_executable = parameters->options().is_stack_executable();
2999       if (!is_stack_executable
3000           && this->input_requires_executable_stack_
3001           && parameters->options().warn_execstack())
3002         gold_warning(_("one or more inputs require executable stack, "
3003                        "but -z noexecstack was given"));
3004     }
3005   else if (!this->input_with_gnu_stack_note_)
3006     return;
3007   else
3008     {
3009       if (this->input_requires_executable_stack_)
3010         is_stack_executable = true;
3011       else if (this->input_without_gnu_stack_note_)
3012         is_stack_executable =
3013           parameters->target().is_default_stack_executable();
3014       else
3015         is_stack_executable = false;
3016     }
3017
3018   if (parameters->options().relocatable())
3019     {
3020       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3021       elfcpp::Elf_Xword flags = 0;
3022       if (is_stack_executable)
3023         flags |= elfcpp::SHF_EXECINSTR;
3024       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3025                                 ORDER_INVALID, false);
3026     }
3027   else
3028     {
3029       if (this->script_options_->saw_phdrs_clause())
3030         return;
3031       int flags = elfcpp::PF_R | elfcpp::PF_W;
3032       if (is_stack_executable)
3033         flags |= elfcpp::PF_X;
3034       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3035     }
3036 }
3037
3038 // If --build-id was used, set up the build ID note.
3039
3040 void
3041 Layout::create_build_id()
3042 {
3043   if (!parameters->options().user_set_build_id())
3044     return;
3045
3046   const char* style = parameters->options().build_id();
3047   if (strcmp(style, "none") == 0)
3048     return;
3049
3050   // Set DESCSZ to the size of the note descriptor.  When possible,
3051   // set DESC to the note descriptor contents.
3052   size_t descsz;
3053   std::string desc;
3054   if (strcmp(style, "md5") == 0)
3055     descsz = 128 / 8;
3056   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3057     descsz = 160 / 8;
3058   else if (strcmp(style, "uuid") == 0)
3059     {
3060       const size_t uuidsz = 128 / 8;
3061
3062       char buffer[uuidsz];
3063       memset(buffer, 0, uuidsz);
3064
3065       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3066       if (descriptor < 0)
3067         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3068                    strerror(errno));
3069       else
3070         {
3071           ssize_t got = ::read(descriptor, buffer, uuidsz);
3072           release_descriptor(descriptor, true);
3073           if (got < 0)
3074             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3075           else if (static_cast<size_t>(got) != uuidsz)
3076             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3077                        uuidsz, got);
3078         }
3079
3080       desc.assign(buffer, uuidsz);
3081       descsz = uuidsz;
3082     }
3083   else if (strncmp(style, "0x", 2) == 0)
3084     {
3085       hex_init();
3086       const char* p = style + 2;
3087       while (*p != '\0')
3088         {
3089           if (hex_p(p[0]) && hex_p(p[1]))
3090             {
3091               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3092               desc += c;
3093               p += 2;
3094             }
3095           else if (*p == '-' || *p == ':')
3096             ++p;
3097           else
3098             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3099                        style);
3100         }
3101       descsz = desc.size();
3102     }
3103   else
3104     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3105
3106   // Create the note.
3107   size_t trailing_padding;
3108   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3109                                          ".note.gnu.build-id", descsz, true,
3110                                          &trailing_padding);
3111   if (os == NULL)
3112     return;
3113
3114   if (!desc.empty())
3115     {
3116       // We know the value already, so we fill it in now.
3117       gold_assert(desc.size() == descsz);
3118
3119       Output_section_data* posd = new Output_data_const(desc, 4);
3120       os->add_output_section_data(posd);
3121
3122       if (trailing_padding != 0)
3123         {
3124           posd = new Output_data_zero_fill(trailing_padding, 0);
3125           os->add_output_section_data(posd);
3126         }
3127     }
3128   else
3129     {
3130       // We need to compute a checksum after we have completed the
3131       // link.
3132       gold_assert(trailing_padding == 0);
3133       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3134       os->add_output_section_data(this->build_id_note_);
3135     }
3136 }
3137
3138 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3139 // field of the former should point to the latter.  I'm not sure who
3140 // started this, but the GNU linker does it, and some tools depend
3141 // upon it.
3142
3143 void
3144 Layout::link_stabs_sections()
3145 {
3146   if (!this->have_stabstr_section_)
3147     return;
3148
3149   for (Section_list::iterator p = this->section_list_.begin();
3150        p != this->section_list_.end();
3151        ++p)
3152     {
3153       if ((*p)->type() != elfcpp::SHT_STRTAB)
3154         continue;
3155
3156       const char* name = (*p)->name();
3157       if (strncmp(name, ".stab", 5) != 0)
3158         continue;
3159
3160       size_t len = strlen(name);
3161       if (strcmp(name + len - 3, "str") != 0)
3162         continue;
3163
3164       std::string stab_name(name, len - 3);
3165       Output_section* stab_sec;
3166       stab_sec = this->find_output_section(stab_name.c_str());
3167       if (stab_sec != NULL)
3168         stab_sec->set_link_section(*p);
3169     }
3170 }
3171
3172 // Create .gnu_incremental_inputs and related sections needed
3173 // for the next run of incremental linking to check what has changed.
3174
3175 void
3176 Layout::create_incremental_info_sections(Symbol_table* symtab)
3177 {
3178   Incremental_inputs* incr = this->incremental_inputs_;
3179
3180   gold_assert(incr != NULL);
3181
3182   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3183   incr->create_data_sections(symtab);
3184
3185   // Add the .gnu_incremental_inputs section.
3186   const char* incremental_inputs_name =
3187     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3188   Output_section* incremental_inputs_os =
3189     this->make_output_section(incremental_inputs_name,
3190                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3191                               ORDER_INVALID, false);
3192   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3193
3194   // Add the .gnu_incremental_symtab section.
3195   const char* incremental_symtab_name =
3196     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3197   Output_section* incremental_symtab_os =
3198     this->make_output_section(incremental_symtab_name,
3199                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3200                               ORDER_INVALID, false);
3201   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3202   incremental_symtab_os->set_entsize(4);
3203
3204   // Add the .gnu_incremental_relocs section.
3205   const char* incremental_relocs_name =
3206     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3207   Output_section* incremental_relocs_os =
3208     this->make_output_section(incremental_relocs_name,
3209                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3210                               ORDER_INVALID, false);
3211   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3212   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3213
3214   // Add the .gnu_incremental_got_plt section.
3215   const char* incremental_got_plt_name =
3216     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3217   Output_section* incremental_got_plt_os =
3218     this->make_output_section(incremental_got_plt_name,
3219                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3220                               ORDER_INVALID, false);
3221   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3222
3223   // Add the .gnu_incremental_strtab section.
3224   const char* incremental_strtab_name =
3225     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3226   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3227                                                         elfcpp::SHT_STRTAB, 0,
3228                                                         ORDER_INVALID, false);
3229   Output_data_strtab* strtab_data =
3230       new Output_data_strtab(incr->get_stringpool());
3231   incremental_strtab_os->add_output_section_data(strtab_data);
3232
3233   incremental_inputs_os->set_after_input_sections();
3234   incremental_symtab_os->set_after_input_sections();
3235   incremental_relocs_os->set_after_input_sections();
3236   incremental_got_plt_os->set_after_input_sections();
3237
3238   incremental_inputs_os->set_link_section(incremental_strtab_os);
3239   incremental_symtab_os->set_link_section(incremental_inputs_os);
3240   incremental_relocs_os->set_link_section(incremental_inputs_os);
3241   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3242 }
3243
3244 // Return whether SEG1 should be before SEG2 in the output file.  This
3245 // is based entirely on the segment type and flags.  When this is
3246 // called the segment addresses have normally not yet been set.
3247
3248 bool
3249 Layout::segment_precedes(const Output_segment* seg1,
3250                          const Output_segment* seg2)
3251 {
3252   elfcpp::Elf_Word type1 = seg1->type();
3253   elfcpp::Elf_Word type2 = seg2->type();
3254
3255   // The single PT_PHDR segment is required to precede any loadable
3256   // segment.  We simply make it always first.
3257   if (type1 == elfcpp::PT_PHDR)
3258     {
3259       gold_assert(type2 != elfcpp::PT_PHDR);
3260       return true;
3261     }
3262   if (type2 == elfcpp::PT_PHDR)
3263     return false;
3264
3265   // The single PT_INTERP segment is required to precede any loadable
3266   // segment.  We simply make it always second.
3267   if (type1 == elfcpp::PT_INTERP)
3268     {
3269       gold_assert(type2 != elfcpp::PT_INTERP);
3270       return true;
3271     }
3272   if (type2 == elfcpp::PT_INTERP)
3273     return false;
3274
3275   // We then put PT_LOAD segments before any other segments.
3276   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3277     return true;
3278   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3279     return false;
3280
3281   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3282   // segment, because that is where the dynamic linker expects to find
3283   // it (this is just for efficiency; other positions would also work
3284   // correctly).
3285   if (type1 == elfcpp::PT_TLS
3286       && type2 != elfcpp::PT_TLS
3287       && type2 != elfcpp::PT_GNU_RELRO)
3288     return false;
3289   if (type2 == elfcpp::PT_TLS
3290       && type1 != elfcpp::PT_TLS
3291       && type1 != elfcpp::PT_GNU_RELRO)
3292     return true;
3293
3294   // We put the PT_GNU_RELRO segment last, because that is where the
3295   // dynamic linker expects to find it (as with PT_TLS, this is just
3296   // for efficiency).
3297   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3298     return false;
3299   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3300     return true;
3301
3302   const elfcpp::Elf_Word flags1 = seg1->flags();
3303   const elfcpp::Elf_Word flags2 = seg2->flags();
3304
3305   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3306   // by the numeric segment type and flags values.  There should not
3307   // be more than one segment with the same type and flags, except
3308   // when a linker script specifies such.
3309   if (type1 != elfcpp::PT_LOAD)
3310     {
3311       if (type1 != type2)
3312         return type1 < type2;
3313       gold_assert(flags1 != flags2
3314                   || this->script_options_->saw_phdrs_clause());
3315       return flags1 < flags2;
3316     }
3317
3318   // If the addresses are set already, sort by load address.
3319   if (seg1->are_addresses_set())
3320     {
3321       if (!seg2->are_addresses_set())
3322         return true;
3323
3324       unsigned int section_count1 = seg1->output_section_count();
3325       unsigned int section_count2 = seg2->output_section_count();
3326       if (section_count1 == 0 && section_count2 > 0)
3327         return true;
3328       if (section_count1 > 0 && section_count2 == 0)
3329         return false;
3330
3331       uint64_t paddr1 = (seg1->are_addresses_set()
3332                          ? seg1->paddr()
3333                          : seg1->first_section_load_address());
3334       uint64_t paddr2 = (seg2->are_addresses_set()
3335                          ? seg2->paddr()
3336                          : seg2->first_section_load_address());
3337
3338       if (paddr1 != paddr2)
3339         return paddr1 < paddr2;
3340     }
3341   else if (seg2->are_addresses_set())
3342     return false;
3343
3344   // A segment which holds large data comes after a segment which does
3345   // not hold large data.
3346   if (seg1->is_large_data_segment())
3347     {
3348       if (!seg2->is_large_data_segment())
3349         return false;
3350     }
3351   else if (seg2->is_large_data_segment())
3352     return true;
3353
3354   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3355   // segments come before writable segments.  Then writable segments
3356   // with data come before writable segments without data.  Then
3357   // executable segments come before non-executable segments.  Then
3358   // the unlikely case of a non-readable segment comes before the
3359   // normal case of a readable segment.  If there are multiple
3360   // segments with the same type and flags, we require that the
3361   // address be set, and we sort by virtual address and then physical
3362   // address.
3363   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3364     return (flags1 & elfcpp::PF_W) == 0;
3365   if ((flags1 & elfcpp::PF_W) != 0
3366       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3367     return seg1->has_any_data_sections();
3368   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3369     return (flags1 & elfcpp::PF_X) != 0;
3370   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3371     return (flags1 & elfcpp::PF_R) == 0;
3372
3373   // We shouldn't get here--we shouldn't create segments which we
3374   // can't distinguish.  Unless of course we are using a weird linker
3375   // script or overlapping --section-start options.  We could also get
3376   // here if plugins want unique segments for subsets of sections.
3377   gold_assert(this->script_options_->saw_phdrs_clause()
3378               || parameters->options().any_section_start()
3379               || this->is_unique_segment_for_sections_specified());
3380   return false;
3381 }
3382
3383 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3384
3385 static off_t
3386 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3387 {
3388   uint64_t unsigned_off = off;
3389   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3390                           | (addr & (abi_pagesize - 1)));
3391   if (aligned_off < unsigned_off)
3392     aligned_off += abi_pagesize;
3393   return aligned_off;
3394 }
3395
3396 // On targets where the text segment contains only executable code,
3397 // a non-executable segment is never the text segment.
3398
3399 static inline bool
3400 is_text_segment(const Target* target, const Output_segment* seg)
3401 {
3402   elfcpp::Elf_Xword flags = seg->flags();
3403   if ((flags & elfcpp::PF_W) != 0)
3404     return false;
3405   if ((flags & elfcpp::PF_X) == 0)
3406     return !target->isolate_execinstr();
3407   return true;
3408 }
3409
3410 // Set the file offsets of all the segments, and all the sections they
3411 // contain.  They have all been created.  LOAD_SEG must be be laid out
3412 // first.  Return the offset of the data to follow.
3413
3414 off_t
3415 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3416                             unsigned int* pshndx)
3417 {
3418   // Sort them into the final order.  We use a stable sort so that we
3419   // don't randomize the order of indistinguishable segments created
3420   // by linker scripts.
3421   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3422                    Layout::Compare_segments(this));
3423
3424   // Find the PT_LOAD segments, and set their addresses and offsets
3425   // and their section's addresses and offsets.
3426   uint64_t start_addr;
3427   if (parameters->options().user_set_Ttext())
3428     start_addr = parameters->options().Ttext();
3429   else if (parameters->options().output_is_position_independent())
3430     start_addr = 0;
3431   else
3432     start_addr = target->default_text_segment_address();
3433
3434   uint64_t addr = start_addr;
3435   off_t off = 0;
3436
3437   // If LOAD_SEG is NULL, then the file header and segment headers
3438   // will not be loadable.  But they still need to be at offset 0 in
3439   // the file.  Set their offsets now.
3440   if (load_seg == NULL)
3441     {
3442       for (Data_list::iterator p = this->special_output_list_.begin();
3443            p != this->special_output_list_.end();
3444            ++p)
3445         {
3446           off = align_address(off, (*p)->addralign());
3447           (*p)->set_address_and_file_offset(0, off);
3448           off += (*p)->data_size();
3449         }
3450     }
3451
3452   unsigned int increase_relro = this->increase_relro_;
3453   if (this->script_options_->saw_sections_clause())
3454     increase_relro = 0;
3455
3456   const bool check_sections = parameters->options().check_sections();
3457   Output_segment* last_load_segment = NULL;
3458
3459   unsigned int shndx_begin = *pshndx;
3460   unsigned int shndx_load_seg = *pshndx;
3461
3462   for (Segment_list::iterator p = this->segment_list_.begin();
3463        p != this->segment_list_.end();
3464        ++p)
3465     {
3466       if ((*p)->type() == elfcpp::PT_LOAD)
3467         {
3468           if (target->isolate_execinstr())
3469             {
3470               // When we hit the segment that should contain the
3471               // file headers, reset the file offset so we place
3472               // it and subsequent segments appropriately.
3473               // We'll fix up the preceding segments below.
3474               if (load_seg == *p)
3475                 {
3476                   if (off == 0)
3477                     load_seg = NULL;
3478                   else
3479                     {
3480                       off = 0;
3481                       shndx_load_seg = *pshndx;
3482                     }
3483                 }
3484             }
3485           else
3486             {
3487               // Verify that the file headers fall into the first segment.
3488               if (load_seg != NULL && load_seg != *p)
3489                 gold_unreachable();
3490               load_seg = NULL;
3491             }
3492
3493           bool are_addresses_set = (*p)->are_addresses_set();
3494           if (are_addresses_set)
3495             {
3496               // When it comes to setting file offsets, we care about
3497               // the physical address.
3498               addr = (*p)->paddr();
3499             }
3500           else if (parameters->options().user_set_Ttext()
3501                    && (parameters->options().omagic()
3502                        || is_text_segment(target, *p)))
3503             {
3504               are_addresses_set = true;
3505             }
3506           else if (parameters->options().user_set_Trodata_segment()
3507                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3508             {
3509               addr = parameters->options().Trodata_segment();
3510               are_addresses_set = true;
3511             }
3512           else if (parameters->options().user_set_Tdata()
3513                    && ((*p)->flags() & elfcpp::PF_W) != 0
3514                    && (!parameters->options().user_set_Tbss()
3515                        || (*p)->has_any_data_sections()))
3516             {
3517               addr = parameters->options().Tdata();
3518               are_addresses_set = true;
3519             }
3520           else if (parameters->options().user_set_Tbss()
3521                    && ((*p)->flags() & elfcpp::PF_W) != 0
3522                    && !(*p)->has_any_data_sections())
3523             {
3524               addr = parameters->options().Tbss();
3525               are_addresses_set = true;
3526             }
3527
3528           uint64_t orig_addr = addr;
3529           uint64_t orig_off = off;
3530
3531           uint64_t aligned_addr = 0;
3532           uint64_t abi_pagesize = target->abi_pagesize();
3533           uint64_t common_pagesize = target->common_pagesize();
3534
3535           if (!parameters->options().nmagic()
3536               && !parameters->options().omagic())
3537             (*p)->set_minimum_p_align(abi_pagesize);
3538
3539           if (!are_addresses_set)
3540             {
3541               // Skip the address forward one page, maintaining the same
3542               // position within the page.  This lets us store both segments
3543               // overlapping on a single page in the file, but the loader will
3544               // put them on different pages in memory. We will revisit this
3545               // decision once we know the size of the segment.
3546
3547               uint64_t max_align = (*p)->maximum_alignment();
3548               if (max_align > abi_pagesize)
3549                 addr = align_address(addr, max_align);
3550               aligned_addr = addr;
3551
3552               if (load_seg == *p)
3553                 {
3554                   // This is the segment that will contain the file
3555                   // headers, so its offset will have to be exactly zero.
3556                   gold_assert(orig_off == 0);
3557
3558                   // If the target wants a fixed minimum distance from the
3559                   // text segment to the read-only segment, move up now.
3560                   uint64_t min_addr =
3561                     start_addr + (parameters->options().user_set_rosegment_gap()
3562                                   ? parameters->options().rosegment_gap()
3563                                   : target->rosegment_gap());
3564                   if (addr < min_addr)
3565                     addr = min_addr;
3566
3567                   // But this is not the first segment!  To make its
3568                   // address congruent with its offset, that address better
3569                   // be aligned to the ABI-mandated page size.
3570                   addr = align_address(addr, abi_pagesize);
3571                   aligned_addr = addr;
3572                 }
3573               else
3574                 {
3575                   if ((addr & (abi_pagesize - 1)) != 0)
3576                     addr = addr + abi_pagesize;
3577
3578                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3579                 }
3580             }
3581
3582           if (!parameters->options().nmagic()
3583               && !parameters->options().omagic())
3584             {
3585               // Here we are also taking care of the case when
3586               // the maximum segment alignment is larger than the page size.
3587               off = align_file_offset(off, addr,
3588                                       std::max(abi_pagesize,
3589                                                (*p)->maximum_alignment()));
3590             }
3591           else
3592             {
3593               // This is -N or -n with a section script which prevents
3594               // us from using a load segment.  We need to ensure that
3595               // the file offset is aligned to the alignment of the
3596               // segment.  This is because the linker script
3597               // implicitly assumed a zero offset.  If we don't align
3598               // here, then the alignment of the sections in the
3599               // linker script may not match the alignment of the
3600               // sections in the set_section_addresses call below,
3601               // causing an error about dot moving backward.
3602               off = align_address(off, (*p)->maximum_alignment());
3603             }
3604
3605           unsigned int shndx_hold = *pshndx;
3606           bool has_relro = false;
3607           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3608                                                           false, addr,
3609                                                           &increase_relro,
3610                                                           &has_relro,
3611                                                           &off, pshndx);
3612
3613           // Now that we know the size of this segment, we may be able
3614           // to save a page in memory, at the cost of wasting some
3615           // file space, by instead aligning to the start of a new
3616           // page.  Here we use the real machine page size rather than
3617           // the ABI mandated page size.  If the segment has been
3618           // aligned so that the relro data ends at a page boundary,
3619           // we do not try to realign it.
3620
3621           if (!are_addresses_set
3622               && !has_relro
3623               && aligned_addr != addr
3624               && !parameters->incremental())
3625             {
3626               uint64_t first_off = (common_pagesize
3627                                     - (aligned_addr
3628                                        & (common_pagesize - 1)));
3629               uint64_t last_off = new_addr & (common_pagesize - 1);
3630               if (first_off > 0
3631                   && last_off > 0
3632                   && ((aligned_addr & ~ (common_pagesize - 1))
3633                       != (new_addr & ~ (common_pagesize - 1)))
3634                   && first_off + last_off <= common_pagesize)
3635                 {
3636                   *pshndx = shndx_hold;
3637                   addr = align_address(aligned_addr, common_pagesize);
3638                   addr = align_address(addr, (*p)->maximum_alignment());
3639                   if ((addr & (abi_pagesize - 1)) != 0)
3640                     addr = addr + abi_pagesize;
3641                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3642                   off = align_file_offset(off, addr, abi_pagesize);
3643
3644                   increase_relro = this->increase_relro_;
3645                   if (this->script_options_->saw_sections_clause())
3646                     increase_relro = 0;
3647                   has_relro = false;
3648
3649                   new_addr = (*p)->set_section_addresses(target, this,
3650                                                          true, addr,
3651                                                          &increase_relro,
3652                                                          &has_relro,
3653                                                          &off, pshndx);
3654                 }
3655             }
3656
3657           addr = new_addr;
3658
3659           // Implement --check-sections.  We know that the segments
3660           // are sorted by LMA.
3661           if (check_sections && last_load_segment != NULL)
3662             {
3663               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3664               if (last_load_segment->paddr() + last_load_segment->memsz()
3665                   > (*p)->paddr())
3666                 {
3667                   unsigned long long lb1 = last_load_segment->paddr();
3668                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3669                   unsigned long long lb2 = (*p)->paddr();
3670                   unsigned long long le2 = lb2 + (*p)->memsz();
3671                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3672                                "[0x%llx -> 0x%llx]"),
3673                              lb1, le1, lb2, le2);
3674                 }
3675             }
3676           last_load_segment = *p;
3677         }
3678     }
3679
3680   if (load_seg != NULL && target->isolate_execinstr())
3681     {
3682       // Process the early segments again, setting their file offsets
3683       // so they land after the segments starting at LOAD_SEG.
3684       off = align_file_offset(off, 0, target->abi_pagesize());
3685
3686       this->reset_relax_output();
3687
3688       for (Segment_list::iterator p = this->segment_list_.begin();
3689            *p != load_seg;
3690            ++p)
3691         {
3692           if ((*p)->type() == elfcpp::PT_LOAD)
3693             {
3694               // We repeat the whole job of assigning addresses and
3695               // offsets, but we really only want to change the offsets and
3696               // must ensure that the addresses all come out the same as
3697               // they did the first time through.
3698               bool has_relro = false;
3699               const uint64_t old_addr = (*p)->vaddr();
3700               const uint64_t old_end = old_addr + (*p)->memsz();
3701               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3702                                                               true, old_addr,
3703                                                               &increase_relro,
3704                                                               &has_relro,
3705                                                               &off,
3706                                                               &shndx_begin);
3707               gold_assert(new_addr == old_end);
3708             }
3709         }
3710
3711       gold_assert(shndx_begin == shndx_load_seg);
3712     }
3713
3714   // Handle the non-PT_LOAD segments, setting their offsets from their
3715   // section's offsets.
3716   for (Segment_list::iterator p = this->segment_list_.begin();
3717        p != this->segment_list_.end();
3718        ++p)
3719     {
3720       if ((*p)->type() != elfcpp::PT_LOAD)
3721         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3722                          ? increase_relro
3723                          : 0);
3724     }
3725
3726   // Set the TLS offsets for each section in the PT_TLS segment.
3727   if (this->tls_segment_ != NULL)
3728     this->tls_segment_->set_tls_offsets();
3729
3730   return off;
3731 }
3732
3733 // Set the offsets of all the allocated sections when doing a
3734 // relocatable link.  This does the same jobs as set_segment_offsets,
3735 // only for a relocatable link.
3736
3737 off_t
3738 Layout::set_relocatable_section_offsets(Output_data* file_header,
3739                                         unsigned int* pshndx)
3740 {
3741   off_t off = 0;
3742
3743   file_header->set_address_and_file_offset(0, 0);
3744   off += file_header->data_size();
3745
3746   for (Section_list::iterator p = this->section_list_.begin();
3747        p != this->section_list_.end();
3748        ++p)
3749     {
3750       // We skip unallocated sections here, except that group sections
3751       // have to come first.
3752       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3753           && (*p)->type() != elfcpp::SHT_GROUP)
3754         continue;
3755
3756       off = align_address(off, (*p)->addralign());
3757
3758       // The linker script might have set the address.
3759       if (!(*p)->is_address_valid())
3760         (*p)->set_address(0);
3761       (*p)->set_file_offset(off);
3762       (*p)->finalize_data_size();
3763       if ((*p)->type() != elfcpp::SHT_NOBITS)
3764         off += (*p)->data_size();
3765
3766       (*p)->set_out_shndx(*pshndx);
3767       ++*pshndx;
3768     }
3769
3770   return off;
3771 }
3772
3773 // Set the file offset of all the sections not associated with a
3774 // segment.
3775
3776 off_t
3777 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3778 {
3779   off_t startoff = off;
3780   off_t maxoff = off;
3781
3782   for (Section_list::iterator p = this->unattached_section_list_.begin();
3783        p != this->unattached_section_list_.end();
3784        ++p)
3785     {
3786       // The symtab section is handled in create_symtab_sections.
3787       if (*p == this->symtab_section_)
3788         continue;
3789
3790       // If we've already set the data size, don't set it again.
3791       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3792         continue;
3793
3794       if (pass == BEFORE_INPUT_SECTIONS_PASS
3795           && (*p)->requires_postprocessing())
3796         {
3797           (*p)->create_postprocessing_buffer();
3798           this->any_postprocessing_sections_ = true;
3799         }
3800
3801       if (pass == BEFORE_INPUT_SECTIONS_PASS
3802           && (*p)->after_input_sections())
3803         continue;
3804       else if (pass == POSTPROCESSING_SECTIONS_PASS
3805                && (!(*p)->after_input_sections()
3806                    || (*p)->type() == elfcpp::SHT_STRTAB))
3807         continue;
3808       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3809                && (!(*p)->after_input_sections()
3810                    || (*p)->type() != elfcpp::SHT_STRTAB))
3811         continue;
3812
3813       if (!parameters->incremental_update())
3814         {
3815           off = align_address(off, (*p)->addralign());
3816           (*p)->set_file_offset(off);
3817           (*p)->finalize_data_size();
3818         }
3819       else
3820         {
3821           // Incremental update: allocate file space from free list.
3822           (*p)->pre_finalize_data_size();
3823           off_t current_size = (*p)->current_data_size();
3824           off = this->allocate(current_size, (*p)->addralign(), startoff);
3825           if (off == -1)
3826             {
3827               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3828                 this->free_list_.dump();
3829               gold_assert((*p)->output_section() != NULL);
3830               gold_fallback(_("out of patch space for section %s; "
3831                               "relink with --incremental-full"),
3832                             (*p)->output_section()->name());
3833             }
3834           (*p)->set_file_offset(off);
3835           (*p)->finalize_data_size();
3836           if ((*p)->data_size() > current_size)
3837             {
3838               gold_assert((*p)->output_section() != NULL);
3839               gold_fallback(_("%s: section changed size; "
3840                               "relink with --incremental-full"),
3841                             (*p)->output_section()->name());
3842             }
3843           gold_debug(DEBUG_INCREMENTAL,
3844                      "set_section_offsets: %08lx %08lx %s",
3845                      static_cast<long>(off),
3846                      static_cast<long>((*p)->data_size()),
3847                      ((*p)->output_section() != NULL
3848                       ? (*p)->output_section()->name() : "(special)"));
3849         }
3850
3851       off += (*p)->data_size();
3852       if (off > maxoff)
3853         maxoff = off;
3854
3855       // At this point the name must be set.
3856       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3857         this->namepool_.add((*p)->name(), false, NULL);
3858     }
3859   return maxoff;
3860 }
3861
3862 // Set the section indexes of all the sections not associated with a
3863 // segment.
3864
3865 unsigned int
3866 Layout::set_section_indexes(unsigned int shndx)
3867 {
3868   for (Section_list::iterator p = this->unattached_section_list_.begin();
3869        p != this->unattached_section_list_.end();
3870        ++p)
3871     {
3872       if (!(*p)->has_out_shndx())
3873         {
3874           (*p)->set_out_shndx(shndx);
3875           ++shndx;
3876         }
3877     }
3878   return shndx;
3879 }
3880
3881 // Set the section addresses according to the linker script.  This is
3882 // only called when we see a SECTIONS clause.  This returns the
3883 // program segment which should hold the file header and segment
3884 // headers, if any.  It will return NULL if they should not be in a
3885 // segment.
3886
3887 Output_segment*
3888 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3889 {
3890   Script_sections* ss = this->script_options_->script_sections();
3891   gold_assert(ss->saw_sections_clause());
3892   return this->script_options_->set_section_addresses(symtab, this);
3893 }
3894
3895 // Place the orphan sections in the linker script.
3896
3897 void
3898 Layout::place_orphan_sections_in_script()
3899 {
3900   Script_sections* ss = this->script_options_->script_sections();
3901   gold_assert(ss->saw_sections_clause());
3902
3903   // Place each orphaned output section in the script.
3904   for (Section_list::iterator p = this->section_list_.begin();
3905        p != this->section_list_.end();
3906        ++p)
3907     {
3908       if (!(*p)->found_in_sections_clause())
3909         ss->place_orphan(*p);
3910     }
3911 }
3912
3913 // Count the local symbols in the regular symbol table and the dynamic
3914 // symbol table, and build the respective string pools.
3915
3916 void
3917 Layout::count_local_symbols(const Task* task,
3918                             const Input_objects* input_objects)
3919 {
3920   // First, figure out an upper bound on the number of symbols we'll
3921   // be inserting into each pool.  This helps us create the pools with
3922   // the right size, to avoid unnecessary hashtable resizing.
3923   unsigned int symbol_count = 0;
3924   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3925        p != input_objects->relobj_end();
3926        ++p)
3927     symbol_count += (*p)->local_symbol_count();
3928
3929   // Go from "upper bound" to "estimate."  We overcount for two
3930   // reasons: we double-count symbols that occur in more than one
3931   // object file, and we count symbols that are dropped from the
3932   // output.  Add it all together and assume we overcount by 100%.
3933   symbol_count /= 2;
3934
3935   // We assume all symbols will go into both the sympool and dynpool.
3936   this->sympool_.reserve(symbol_count);
3937   this->dynpool_.reserve(symbol_count);
3938
3939   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3940        p != input_objects->relobj_end();
3941        ++p)
3942     {
3943       Task_lock_obj<Object> tlo(task, *p);
3944       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3945     }
3946 }
3947
3948 // Create the symbol table sections.  Here we also set the final
3949 // values of the symbols.  At this point all the loadable sections are
3950 // fully laid out.  SHNUM is the number of sections so far.
3951
3952 void
3953 Layout::create_symtab_sections(const Input_objects* input_objects,
3954                                Symbol_table* symtab,
3955                                unsigned int shnum,
3956                                off_t* poff)
3957 {
3958   int symsize;
3959   unsigned int align;
3960   if (parameters->target().get_size() == 32)
3961     {
3962       symsize = elfcpp::Elf_sizes<32>::sym_size;
3963       align = 4;
3964     }
3965   else if (parameters->target().get_size() == 64)
3966     {
3967       symsize = elfcpp::Elf_sizes<64>::sym_size;
3968       align = 8;
3969     }
3970   else
3971     gold_unreachable();
3972
3973   // Compute file offsets relative to the start of the symtab section.
3974   off_t off = 0;
3975
3976   // Save space for the dummy symbol at the start of the section.  We
3977   // never bother to write this out--it will just be left as zero.
3978   off += symsize;
3979   unsigned int local_symbol_index = 1;
3980
3981   // Add STT_SECTION symbols for each Output section which needs one.
3982   for (Section_list::iterator p = this->section_list_.begin();
3983        p != this->section_list_.end();
3984        ++p)
3985     {
3986       if (!(*p)->needs_symtab_index())
3987         (*p)->set_symtab_index(-1U);
3988       else
3989         {
3990           (*p)->set_symtab_index(local_symbol_index);
3991           ++local_symbol_index;
3992           off += symsize;
3993         }
3994     }
3995
3996   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3997        p != input_objects->relobj_end();
3998        ++p)
3999     {
4000       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4001                                                         off, symtab);
4002       off += (index - local_symbol_index) * symsize;
4003       local_symbol_index = index;
4004     }
4005
4006   unsigned int local_symcount = local_symbol_index;
4007   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4008
4009   off_t dynoff;
4010   size_t dyn_global_index;
4011   size_t dyncount;
4012   if (this->dynsym_section_ == NULL)
4013     {
4014       dynoff = 0;
4015       dyn_global_index = 0;
4016       dyncount = 0;
4017     }
4018   else
4019     {
4020       dyn_global_index = this->dynsym_section_->info();
4021       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4022       dynoff = this->dynsym_section_->offset() + locsize;
4023       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4024       gold_assert(static_cast<off_t>(dyncount * symsize)
4025                   == this->dynsym_section_->data_size() - locsize);
4026     }
4027
4028   off_t global_off = off;
4029   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4030                          &this->sympool_, &local_symcount);
4031
4032   if (!parameters->options().strip_all())
4033     {
4034       this->sympool_.set_string_offsets();
4035
4036       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4037       Output_section* osymtab = this->make_output_section(symtab_name,
4038                                                           elfcpp::SHT_SYMTAB,
4039                                                           0, ORDER_INVALID,
4040                                                           false);
4041       this->symtab_section_ = osymtab;
4042
4043       Output_section_data* pos = new Output_data_fixed_space(off, align,
4044                                                              "** symtab");
4045       osymtab->add_output_section_data(pos);
4046
4047       // We generate a .symtab_shndx section if we have more than
4048       // SHN_LORESERVE sections.  Technically it is possible that we
4049       // don't need one, because it is possible that there are no
4050       // symbols in any of sections with indexes larger than
4051       // SHN_LORESERVE.  That is probably unusual, though, and it is
4052       // easier to always create one than to compute section indexes
4053       // twice (once here, once when writing out the symbols).
4054       if (shnum >= elfcpp::SHN_LORESERVE)
4055         {
4056           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4057                                                                false, NULL);
4058           Output_section* osymtab_xindex =
4059             this->make_output_section(symtab_xindex_name,
4060                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4061                                       ORDER_INVALID, false);
4062
4063           size_t symcount = off / symsize;
4064           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4065
4066           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4067
4068           osymtab_xindex->set_link_section(osymtab);
4069           osymtab_xindex->set_addralign(4);
4070           osymtab_xindex->set_entsize(4);
4071
4072           osymtab_xindex->set_after_input_sections();
4073
4074           // This tells the driver code to wait until the symbol table
4075           // has written out before writing out the postprocessing
4076           // sections, including the .symtab_shndx section.
4077           this->any_postprocessing_sections_ = true;
4078         }
4079
4080       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4081       Output_section* ostrtab = this->make_output_section(strtab_name,
4082                                                           elfcpp::SHT_STRTAB,
4083                                                           0, ORDER_INVALID,
4084                                                           false);
4085
4086       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4087       ostrtab->add_output_section_data(pstr);
4088
4089       off_t symtab_off;
4090       if (!parameters->incremental_update())
4091         symtab_off = align_address(*poff, align);
4092       else
4093         {
4094           symtab_off = this->allocate(off, align, *poff);
4095           if (off == -1)
4096             gold_fallback(_("out of patch space for symbol table; "
4097                             "relink with --incremental-full"));
4098           gold_debug(DEBUG_INCREMENTAL,
4099                      "create_symtab_sections: %08lx %08lx .symtab",
4100                      static_cast<long>(symtab_off),
4101                      static_cast<long>(off));
4102         }
4103
4104       symtab->set_file_offset(symtab_off + global_off);
4105       osymtab->set_file_offset(symtab_off);
4106       osymtab->finalize_data_size();
4107       osymtab->set_link_section(ostrtab);
4108       osymtab->set_info(local_symcount);
4109       osymtab->set_entsize(symsize);
4110
4111       if (symtab_off + off > *poff)
4112         *poff = symtab_off + off;
4113     }
4114 }
4115
4116 // Create the .shstrtab section, which holds the names of the
4117 // sections.  At the time this is called, we have created all the
4118 // output sections except .shstrtab itself.
4119
4120 Output_section*
4121 Layout::create_shstrtab()
4122 {
4123   // FIXME: We don't need to create a .shstrtab section if we are
4124   // stripping everything.
4125
4126   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4127
4128   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4129                                                  ORDER_INVALID, false);
4130
4131   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4132     {
4133       // We can't write out this section until we've set all the
4134       // section names, and we don't set the names of compressed
4135       // output sections until relocations are complete.  FIXME: With
4136       // the current names we use, this is unnecessary.
4137       os->set_after_input_sections();
4138     }
4139
4140   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4141   os->add_output_section_data(posd);
4142
4143   return os;
4144 }
4145
4146 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4147 // offset.
4148
4149 void
4150 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4151 {
4152   Output_section_headers* oshdrs;
4153   oshdrs = new Output_section_headers(this,
4154                                       &this->segment_list_,
4155                                       &this->section_list_,
4156                                       &this->unattached_section_list_,
4157                                       &this->namepool_,
4158                                       shstrtab_section);
4159   off_t off;
4160   if (!parameters->incremental_update())
4161     off = align_address(*poff, oshdrs->addralign());
4162   else
4163     {
4164       oshdrs->pre_finalize_data_size();
4165       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4166       if (off == -1)
4167           gold_fallback(_("out of patch space for section header table; "
4168                           "relink with --incremental-full"));
4169       gold_debug(DEBUG_INCREMENTAL,
4170                  "create_shdrs: %08lx %08lx (section header table)",
4171                  static_cast<long>(off),
4172                  static_cast<long>(off + oshdrs->data_size()));
4173     }
4174   oshdrs->set_address_and_file_offset(0, off);
4175   off += oshdrs->data_size();
4176   if (off > *poff)
4177     *poff = off;
4178   this->section_headers_ = oshdrs;
4179 }
4180
4181 // Count the allocated sections.
4182
4183 size_t
4184 Layout::allocated_output_section_count() const
4185 {
4186   size_t section_count = 0;
4187   for (Segment_list::const_iterator p = this->segment_list_.begin();
4188        p != this->segment_list_.end();
4189        ++p)
4190     section_count += (*p)->output_section_count();
4191   return section_count;
4192 }
4193
4194 // Create the dynamic symbol table.
4195
4196 void
4197 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4198                               Symbol_table* symtab,
4199                               Output_section** pdynstr,
4200                               unsigned int* plocal_dynamic_count,
4201                               std::vector<Symbol*>* pdynamic_symbols,
4202                               Versions* pversions)
4203 {
4204   // Count all the symbols in the dynamic symbol table, and set the
4205   // dynamic symbol indexes.
4206
4207   // Skip symbol 0, which is always all zeroes.
4208   unsigned int index = 1;
4209
4210   // Add STT_SECTION symbols for each Output section which needs one.
4211   for (Section_list::iterator p = this->section_list_.begin();
4212        p != this->section_list_.end();
4213        ++p)
4214     {
4215       if (!(*p)->needs_dynsym_index())
4216         (*p)->set_dynsym_index(-1U);
4217       else
4218         {
4219           (*p)->set_dynsym_index(index);
4220           ++index;
4221         }
4222     }
4223
4224   // Count the local symbols that need to go in the dynamic symbol table,
4225   // and set the dynamic symbol indexes.
4226   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4227        p != input_objects->relobj_end();
4228        ++p)
4229     {
4230       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4231       index = new_index;
4232     }
4233
4234   unsigned int local_symcount = index;
4235   *plocal_dynamic_count = local_symcount;
4236
4237   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4238                                      &this->dynpool_, pversions);
4239
4240   int symsize;
4241   unsigned int align;
4242   const int size = parameters->target().get_size();
4243   if (size == 32)
4244     {
4245       symsize = elfcpp::Elf_sizes<32>::sym_size;
4246       align = 4;
4247     }
4248   else if (size == 64)
4249     {
4250       symsize = elfcpp::Elf_sizes<64>::sym_size;
4251       align = 8;
4252     }
4253   else
4254     gold_unreachable();
4255
4256   // Create the dynamic symbol table section.
4257
4258   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4259                                                        elfcpp::SHT_DYNSYM,
4260                                                        elfcpp::SHF_ALLOC,
4261                                                        false,
4262                                                        ORDER_DYNAMIC_LINKER,
4263                                                        false);
4264
4265   // Check for NULL as a linker script may discard .dynsym.
4266   if (dynsym != NULL)
4267     {
4268       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4269                                                                align,
4270                                                                "** dynsym");
4271       dynsym->add_output_section_data(odata);
4272
4273       dynsym->set_info(local_symcount);
4274       dynsym->set_entsize(symsize);
4275       dynsym->set_addralign(align);
4276
4277       this->dynsym_section_ = dynsym;
4278     }
4279
4280   Output_data_dynamic* const odyn = this->dynamic_data_;
4281   if (odyn != NULL)
4282     {
4283       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4284       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4285     }
4286
4287   // If there are more than SHN_LORESERVE allocated sections, we
4288   // create a .dynsym_shndx section.  It is possible that we don't
4289   // need one, because it is possible that there are no dynamic
4290   // symbols in any of the sections with indexes larger than
4291   // SHN_LORESERVE.  This is probably unusual, though, and at this
4292   // time we don't know the actual section indexes so it is
4293   // inconvenient to check.
4294   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4295     {
4296       Output_section* dynsym_xindex =
4297         this->choose_output_section(NULL, ".dynsym_shndx",
4298                                     elfcpp::SHT_SYMTAB_SHNDX,
4299                                     elfcpp::SHF_ALLOC,
4300                                     false, ORDER_DYNAMIC_LINKER, false);
4301
4302       if (dynsym_xindex != NULL)
4303         {
4304           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4305
4306           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4307
4308           dynsym_xindex->set_link_section(dynsym);
4309           dynsym_xindex->set_addralign(4);
4310           dynsym_xindex->set_entsize(4);
4311
4312           dynsym_xindex->set_after_input_sections();
4313
4314           // This tells the driver code to wait until the symbol table
4315           // has written out before writing out the postprocessing
4316           // sections, including the .dynsym_shndx section.
4317           this->any_postprocessing_sections_ = true;
4318         }
4319     }
4320
4321   // Create the dynamic string table section.
4322
4323   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4324                                                        elfcpp::SHT_STRTAB,
4325                                                        elfcpp::SHF_ALLOC,
4326                                                        false,
4327                                                        ORDER_DYNAMIC_LINKER,
4328                                                        false);
4329   *pdynstr = dynstr;
4330   if (dynstr != NULL)
4331     {
4332       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4333       dynstr->add_output_section_data(strdata);
4334
4335       if (dynsym != NULL)
4336         dynsym->set_link_section(dynstr);
4337       if (this->dynamic_section_ != NULL)
4338         this->dynamic_section_->set_link_section(dynstr);
4339
4340       if (odyn != NULL)
4341         {
4342           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4343           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4344         }
4345     }
4346
4347   // Create the hash tables.  The Gnu-style hash table must be
4348   // built first, because it changes the order of the symbols
4349   // in the dynamic symbol table.
4350
4351   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4352       || strcmp(parameters->options().hash_style(), "both") == 0)
4353     {
4354       unsigned char* phash;
4355       unsigned int hashlen;
4356       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4357                                     &phash, &hashlen);
4358
4359       Output_section* hashsec =
4360         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4361                                     elfcpp::SHF_ALLOC, false,
4362                                     ORDER_DYNAMIC_LINKER, false);
4363
4364       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4365                                                                    hashlen,
4366                                                                    align,
4367                                                                    "** hash");
4368       if (hashsec != NULL && hashdata != NULL)
4369         hashsec->add_output_section_data(hashdata);
4370
4371       if (hashsec != NULL)
4372         {
4373           if (dynsym != NULL)
4374             hashsec->set_link_section(dynsym);
4375
4376           // For a 64-bit target, the entries in .gnu.hash do not have
4377           // a uniform size, so we only set the entry size for a
4378           // 32-bit target.
4379           if (parameters->target().get_size() == 32)
4380             hashsec->set_entsize(4);
4381
4382           if (odyn != NULL)
4383             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4384         }
4385     }
4386
4387   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4388       || strcmp(parameters->options().hash_style(), "both") == 0)
4389     {
4390       unsigned char* phash;
4391       unsigned int hashlen;
4392       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4393                                     &phash, &hashlen);
4394
4395       Output_section* hashsec =
4396         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4397                                     elfcpp::SHF_ALLOC, false,
4398                                     ORDER_DYNAMIC_LINKER, false);
4399
4400       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4401                                                                    hashlen,
4402                                                                    align,
4403                                                                    "** hash");
4404       if (hashsec != NULL && hashdata != NULL)
4405         hashsec->add_output_section_data(hashdata);
4406
4407       if (hashsec != NULL)
4408         {
4409           if (dynsym != NULL)
4410             hashsec->set_link_section(dynsym);
4411           hashsec->set_entsize(4);
4412         }
4413
4414       if (odyn != NULL)
4415         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4416     }
4417 }
4418
4419 // Assign offsets to each local portion of the dynamic symbol table.
4420
4421 void
4422 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4423 {
4424   Output_section* dynsym = this->dynsym_section_;
4425   if (dynsym == NULL)
4426     return;
4427
4428   off_t off = dynsym->offset();
4429
4430   // Skip the dummy symbol at the start of the section.
4431   off += dynsym->entsize();
4432
4433   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4434        p != input_objects->relobj_end();
4435        ++p)
4436     {
4437       unsigned int count = (*p)->set_local_dynsym_offset(off);
4438       off += count * dynsym->entsize();
4439     }
4440 }
4441
4442 // Create the version sections.
4443
4444 void
4445 Layout::create_version_sections(const Versions* versions,
4446                                 const Symbol_table* symtab,
4447                                 unsigned int local_symcount,
4448                                 const std::vector<Symbol*>& dynamic_symbols,
4449                                 const Output_section* dynstr)
4450 {
4451   if (!versions->any_defs() && !versions->any_needs())
4452     return;
4453
4454   switch (parameters->size_and_endianness())
4455     {
4456 #ifdef HAVE_TARGET_32_LITTLE
4457     case Parameters::TARGET_32_LITTLE:
4458       this->sized_create_version_sections<32, false>(versions, symtab,
4459                                                      local_symcount,
4460                                                      dynamic_symbols, dynstr);
4461       break;
4462 #endif
4463 #ifdef HAVE_TARGET_32_BIG
4464     case Parameters::TARGET_32_BIG:
4465       this->sized_create_version_sections<32, true>(versions, symtab,
4466                                                     local_symcount,
4467                                                     dynamic_symbols, dynstr);
4468       break;
4469 #endif
4470 #ifdef HAVE_TARGET_64_LITTLE
4471     case Parameters::TARGET_64_LITTLE:
4472       this->sized_create_version_sections<64, false>(versions, symtab,
4473                                                      local_symcount,
4474                                                      dynamic_symbols, dynstr);
4475       break;
4476 #endif
4477 #ifdef HAVE_TARGET_64_BIG
4478     case Parameters::TARGET_64_BIG:
4479       this->sized_create_version_sections<64, true>(versions, symtab,
4480                                                     local_symcount,
4481                                                     dynamic_symbols, dynstr);
4482       break;
4483 #endif
4484     default:
4485       gold_unreachable();
4486     }
4487 }
4488
4489 // Create the version sections, sized version.
4490
4491 template<int size, bool big_endian>
4492 void
4493 Layout::sized_create_version_sections(
4494     const Versions* versions,
4495     const Symbol_table* symtab,
4496     unsigned int local_symcount,
4497     const std::vector<Symbol*>& dynamic_symbols,
4498     const Output_section* dynstr)
4499 {
4500   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4501                                                      elfcpp::SHT_GNU_versym,
4502                                                      elfcpp::SHF_ALLOC,
4503                                                      false,
4504                                                      ORDER_DYNAMIC_LINKER,
4505                                                      false);
4506
4507   // Check for NULL since a linker script may discard this section.
4508   if (vsec != NULL)
4509     {
4510       unsigned char* vbuf;
4511       unsigned int vsize;
4512       versions->symbol_section_contents<size, big_endian>(symtab,
4513                                                           &this->dynpool_,
4514                                                           local_symcount,
4515                                                           dynamic_symbols,
4516                                                           &vbuf, &vsize);
4517
4518       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4519                                                                 "** versions");
4520
4521       vsec->add_output_section_data(vdata);
4522       vsec->set_entsize(2);
4523       vsec->set_link_section(this->dynsym_section_);
4524     }
4525
4526   Output_data_dynamic* const odyn = this->dynamic_data_;
4527   if (odyn != NULL && vsec != NULL)
4528     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4529
4530   if (versions->any_defs())
4531     {
4532       Output_section* vdsec;
4533       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4534                                           elfcpp::SHT_GNU_verdef,
4535                                           elfcpp::SHF_ALLOC,
4536                                           false, ORDER_DYNAMIC_LINKER, false);
4537
4538       if (vdsec != NULL)
4539         {
4540           unsigned char* vdbuf;
4541           unsigned int vdsize;
4542           unsigned int vdentries;
4543           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4544                                                            &vdbuf, &vdsize,
4545                                                            &vdentries);
4546
4547           Output_section_data* vddata =
4548             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4549
4550           vdsec->add_output_section_data(vddata);
4551           vdsec->set_link_section(dynstr);
4552           vdsec->set_info(vdentries);
4553
4554           if (odyn != NULL)
4555             {
4556               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4557               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4558             }
4559         }
4560     }
4561
4562   if (versions->any_needs())
4563     {
4564       Output_section* vnsec;
4565       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4566                                           elfcpp::SHT_GNU_verneed,
4567                                           elfcpp::SHF_ALLOC,
4568                                           false, ORDER_DYNAMIC_LINKER, false);
4569
4570       if (vnsec != NULL)
4571         {
4572           unsigned char* vnbuf;
4573           unsigned int vnsize;
4574           unsigned int vnentries;
4575           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4576                                                             &vnbuf, &vnsize,
4577                                                             &vnentries);
4578
4579           Output_section_data* vndata =
4580             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4581
4582           vnsec->add_output_section_data(vndata);
4583           vnsec->set_link_section(dynstr);
4584           vnsec->set_info(vnentries);
4585
4586           if (odyn != NULL)
4587             {
4588               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4589               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4590             }
4591         }
4592     }
4593 }
4594
4595 // Create the .interp section and PT_INTERP segment.
4596
4597 void
4598 Layout::create_interp(const Target* target)
4599 {
4600   gold_assert(this->interp_segment_ == NULL);
4601
4602   const char* interp = parameters->options().dynamic_linker();
4603   if (interp == NULL)
4604     {
4605       interp = target->dynamic_linker();
4606       gold_assert(interp != NULL);
4607     }
4608
4609   size_t len = strlen(interp) + 1;
4610
4611   Output_section_data* odata = new Output_data_const(interp, len, 1);
4612
4613   Output_section* osec = this->choose_output_section(NULL, ".interp",
4614                                                      elfcpp::SHT_PROGBITS,
4615                                                      elfcpp::SHF_ALLOC,
4616                                                      false, ORDER_INTERP,
4617                                                      false);
4618   if (osec != NULL)
4619     osec->add_output_section_data(odata);
4620 }
4621
4622 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4623 // called by the target-specific code.  This does nothing if not doing
4624 // a dynamic link.
4625
4626 // USE_REL is true for REL relocs rather than RELA relocs.
4627
4628 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4629
4630 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4631 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4632 // some targets have multiple reloc sections in PLT_REL.
4633
4634 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4635 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4636 // section.
4637
4638 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4639 // executable.
4640
4641 void
4642 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4643                                 const Output_data* plt_rel,
4644                                 const Output_data_reloc_generic* dyn_rel,
4645                                 bool add_debug, bool dynrel_includes_plt)
4646 {
4647   Output_data_dynamic* odyn = this->dynamic_data_;
4648   if (odyn == NULL)
4649     return;
4650
4651   if (plt_got != NULL && plt_got->output_section() != NULL)
4652     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4653
4654   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4655     {
4656       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4657       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4658       odyn->add_constant(elfcpp::DT_PLTREL,
4659                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4660     }
4661
4662   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4663       || (dynrel_includes_plt
4664           && plt_rel != NULL
4665           && plt_rel->output_section() != NULL))
4666     {
4667       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4668       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4669       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4670                                 (have_dyn_rel
4671                                  ? dyn_rel->output_section()
4672                                  : plt_rel->output_section()));
4673       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4674       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4675         odyn->add_section_size(size_tag,
4676                                dyn_rel->output_section(),
4677                                plt_rel->output_section());
4678       else if (have_dyn_rel)
4679         odyn->add_section_size(size_tag, dyn_rel->output_section());
4680       else
4681         odyn->add_section_size(size_tag, plt_rel->output_section());
4682       const int size = parameters->target().get_size();
4683       elfcpp::DT rel_tag;
4684       int rel_size;
4685       if (use_rel)
4686         {
4687           rel_tag = elfcpp::DT_RELENT;
4688           if (size == 32)
4689             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4690           else if (size == 64)
4691             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4692           else
4693             gold_unreachable();
4694         }
4695       else
4696         {
4697           rel_tag = elfcpp::DT_RELAENT;
4698           if (size == 32)
4699             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4700           else if (size == 64)
4701             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4702           else
4703             gold_unreachable();
4704         }
4705       odyn->add_constant(rel_tag, rel_size);
4706
4707       if (parameters->options().combreloc() && have_dyn_rel)
4708         {
4709           size_t c = dyn_rel->relative_reloc_count();
4710           if (c > 0)
4711             odyn->add_constant((use_rel
4712                                 ? elfcpp::DT_RELCOUNT
4713                                 : elfcpp::DT_RELACOUNT),
4714                                c);
4715         }
4716     }
4717
4718   if (add_debug && !parameters->options().shared())
4719     {
4720       // The value of the DT_DEBUG tag is filled in by the dynamic
4721       // linker at run time, and used by the debugger.
4722       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4723     }
4724 }
4725
4726 // Finish the .dynamic section and PT_DYNAMIC segment.
4727
4728 void
4729 Layout::finish_dynamic_section(const Input_objects* input_objects,
4730                                const Symbol_table* symtab)
4731 {
4732   if (!this->script_options_->saw_phdrs_clause()
4733       && this->dynamic_section_ != NULL)
4734     {
4735       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4736                                                        (elfcpp::PF_R
4737                                                         | elfcpp::PF_W));
4738       oseg->add_output_section_to_nonload(this->dynamic_section_,
4739                                           elfcpp::PF_R | elfcpp::PF_W);
4740     }
4741
4742   Output_data_dynamic* const odyn = this->dynamic_data_;
4743   if (odyn == NULL)
4744     return;
4745
4746   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4747        p != input_objects->dynobj_end();
4748        ++p)
4749     {
4750       if (!(*p)->is_needed() && (*p)->as_needed())
4751         {
4752           // This dynamic object was linked with --as-needed, but it
4753           // is not needed.
4754           continue;
4755         }
4756
4757       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4758     }
4759
4760   if (parameters->options().shared())
4761     {
4762       const char* soname = parameters->options().soname();
4763       if (soname != NULL)
4764         odyn->add_string(elfcpp::DT_SONAME, soname);
4765     }
4766
4767   Symbol* sym = symtab->lookup(parameters->options().init());
4768   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4769     odyn->add_symbol(elfcpp::DT_INIT, sym);
4770
4771   sym = symtab->lookup(parameters->options().fini());
4772   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4773     odyn->add_symbol(elfcpp::DT_FINI, sym);
4774
4775   // Look for .init_array, .preinit_array and .fini_array by checking
4776   // section types.
4777   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4778       p != this->section_list_.end();
4779       ++p)
4780     switch((*p)->type())
4781       {
4782       case elfcpp::SHT_FINI_ARRAY:
4783         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4784         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4785         break;
4786       case elfcpp::SHT_INIT_ARRAY:
4787         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4788         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4789         break;
4790       case elfcpp::SHT_PREINIT_ARRAY:
4791         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4792         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4793         break;
4794       default:
4795         break;
4796       }
4797
4798   // Add a DT_RPATH entry if needed.
4799   const General_options::Dir_list& rpath(parameters->options().rpath());
4800   if (!rpath.empty())
4801     {
4802       std::string rpath_val;
4803       for (General_options::Dir_list::const_iterator p = rpath.begin();
4804            p != rpath.end();
4805            ++p)
4806         {
4807           if (rpath_val.empty())
4808             rpath_val = p->name();
4809           else
4810             {
4811               // Eliminate duplicates.
4812               General_options::Dir_list::const_iterator q;
4813               for (q = rpath.begin(); q != p; ++q)
4814                 if (q->name() == p->name())
4815                   break;
4816               if (q == p)
4817                 {
4818                   rpath_val += ':';
4819                   rpath_val += p->name();
4820                 }
4821             }
4822         }
4823
4824       if (!parameters->options().enable_new_dtags())
4825         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4826       else
4827         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4828     }
4829
4830   // Look for text segments that have dynamic relocations.
4831   bool have_textrel = false;
4832   if (!this->script_options_->saw_sections_clause())
4833     {
4834       for (Segment_list::const_iterator p = this->segment_list_.begin();
4835            p != this->segment_list_.end();
4836            ++p)
4837         {
4838           if ((*p)->type() == elfcpp::PT_LOAD
4839               && ((*p)->flags() & elfcpp::PF_W) == 0
4840               && (*p)->has_dynamic_reloc())
4841             {
4842               have_textrel = true;
4843               break;
4844             }
4845         }
4846     }
4847   else
4848     {
4849       // We don't know the section -> segment mapping, so we are
4850       // conservative and just look for readonly sections with
4851       // relocations.  If those sections wind up in writable segments,
4852       // then we have created an unnecessary DT_TEXTREL entry.
4853       for (Section_list::const_iterator p = this->section_list_.begin();
4854            p != this->section_list_.end();
4855            ++p)
4856         {
4857           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4858               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4859               && (*p)->has_dynamic_reloc())
4860             {
4861               have_textrel = true;
4862               break;
4863             }
4864         }
4865     }
4866
4867   if (parameters->options().filter() != NULL)
4868     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4869   if (parameters->options().any_auxiliary())
4870     {
4871       for (options::String_set::const_iterator p =
4872              parameters->options().auxiliary_begin();
4873            p != parameters->options().auxiliary_end();
4874            ++p)
4875         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4876     }
4877
4878   // Add a DT_FLAGS entry if necessary.
4879   unsigned int flags = 0;
4880   if (have_textrel)
4881     {
4882       // Add a DT_TEXTREL for compatibility with older loaders.
4883       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4884       flags |= elfcpp::DF_TEXTREL;
4885
4886       if (parameters->options().text())
4887         gold_error(_("read-only segment has dynamic relocations"));
4888       else if (parameters->options().warn_shared_textrel()
4889                && parameters->options().shared())
4890         gold_warning(_("shared library text segment is not shareable"));
4891     }
4892   if (parameters->options().shared() && this->has_static_tls())
4893     flags |= elfcpp::DF_STATIC_TLS;
4894   if (parameters->options().origin())
4895     flags |= elfcpp::DF_ORIGIN;
4896   if (parameters->options().Bsymbolic()
4897       && !parameters->options().have_dynamic_list())
4898     {
4899       flags |= elfcpp::DF_SYMBOLIC;
4900       // Add DT_SYMBOLIC for compatibility with older loaders.
4901       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4902     }
4903   if (parameters->options().now())
4904     flags |= elfcpp::DF_BIND_NOW;
4905   if (flags != 0)
4906     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4907
4908   flags = 0;
4909   if (parameters->options().global())
4910     flags |= elfcpp::DF_1_GLOBAL;
4911   if (parameters->options().initfirst())
4912     flags |= elfcpp::DF_1_INITFIRST;
4913   if (parameters->options().interpose())
4914     flags |= elfcpp::DF_1_INTERPOSE;
4915   if (parameters->options().loadfltr())
4916     flags |= elfcpp::DF_1_LOADFLTR;
4917   if (parameters->options().nodefaultlib())
4918     flags |= elfcpp::DF_1_NODEFLIB;
4919   if (parameters->options().nodelete())
4920     flags |= elfcpp::DF_1_NODELETE;
4921   if (parameters->options().nodlopen())
4922     flags |= elfcpp::DF_1_NOOPEN;
4923   if (parameters->options().nodump())
4924     flags |= elfcpp::DF_1_NODUMP;
4925   if (!parameters->options().shared())
4926     flags &= ~(elfcpp::DF_1_INITFIRST
4927                | elfcpp::DF_1_NODELETE
4928                | elfcpp::DF_1_NOOPEN);
4929   if (parameters->options().origin())
4930     flags |= elfcpp::DF_1_ORIGIN;
4931   if (parameters->options().now())
4932     flags |= elfcpp::DF_1_NOW;
4933   if (parameters->options().Bgroup())
4934     flags |= elfcpp::DF_1_GROUP;
4935   if (flags != 0)
4936     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4937 }
4938
4939 // Set the size of the _DYNAMIC symbol table to be the size of the
4940 // dynamic data.
4941
4942 void
4943 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4944 {
4945   Output_data_dynamic* const odyn = this->dynamic_data_;
4946   if (odyn == NULL)
4947     return;
4948   odyn->finalize_data_size();
4949   if (this->dynamic_symbol_ == NULL)
4950     return;
4951   off_t data_size = odyn->data_size();
4952   const int size = parameters->target().get_size();
4953   if (size == 32)
4954     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4955   else if (size == 64)
4956     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4957   else
4958     gold_unreachable();
4959 }
4960
4961 // The mapping of input section name prefixes to output section names.
4962 // In some cases one prefix is itself a prefix of another prefix; in
4963 // such a case the longer prefix must come first.  These prefixes are
4964 // based on the GNU linker default ELF linker script.
4965
4966 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4967 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4968 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4969 {
4970   MAPPING_INIT(".text.", ".text"),
4971   MAPPING_INIT(".rodata.", ".rodata"),
4972   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4973   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4974   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4975   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4976   MAPPING_INIT(".data.", ".data"),
4977   MAPPING_INIT(".bss.", ".bss"),
4978   MAPPING_INIT(".tdata.", ".tdata"),
4979   MAPPING_INIT(".tbss.", ".tbss"),
4980   MAPPING_INIT(".init_array.", ".init_array"),
4981   MAPPING_INIT(".fini_array.", ".fini_array"),
4982   MAPPING_INIT(".sdata.", ".sdata"),
4983   MAPPING_INIT(".sbss.", ".sbss"),
4984   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4985   // differently depending on whether it is creating a shared library.
4986   MAPPING_INIT(".sdata2.", ".sdata"),
4987   MAPPING_INIT(".sbss2.", ".sbss"),
4988   MAPPING_INIT(".lrodata.", ".lrodata"),
4989   MAPPING_INIT(".ldata.", ".ldata"),
4990   MAPPING_INIT(".lbss.", ".lbss"),
4991   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4992   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4993   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4994   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4995   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4996   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4997   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4998   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4999   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5000   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5001   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5002   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5003   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5004   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5005   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5006   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5007   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5008   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5009   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5010   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5011   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5012 };
5013 #undef MAPPING_INIT
5014 #undef MAPPING_INIT_EXACT
5015
5016 const int Layout::section_name_mapping_count =
5017   (sizeof(Layout::section_name_mapping)
5018    / sizeof(Layout::section_name_mapping[0]));
5019
5020 // Choose the output section name to use given an input section name.
5021 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5022 // length of NAME.
5023
5024 const char*
5025 Layout::output_section_name(const Relobj* relobj, const char* name,
5026                             size_t* plen)
5027 {
5028   // gcc 4.3 generates the following sorts of section names when it
5029   // needs a section name specific to a function:
5030   //   .text.FN
5031   //   .rodata.FN
5032   //   .sdata2.FN
5033   //   .data.FN
5034   //   .data.rel.FN
5035   //   .data.rel.local.FN
5036   //   .data.rel.ro.FN
5037   //   .data.rel.ro.local.FN
5038   //   .sdata.FN
5039   //   .bss.FN
5040   //   .sbss.FN
5041   //   .tdata.FN
5042   //   .tbss.FN
5043
5044   // The GNU linker maps all of those to the part before the .FN,
5045   // except that .data.rel.local.FN is mapped to .data, and
5046   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5047   // beginning with .data.rel.ro.local are grouped together.
5048
5049   // For an anonymous namespace, the string FN can contain a '.'.
5050
5051   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5052   // GNU linker maps to .rodata.
5053
5054   // The .data.rel.ro sections are used with -z relro.  The sections
5055   // are recognized by name.  We use the same names that the GNU
5056   // linker does for these sections.
5057
5058   // It is hard to handle this in a principled way, so we don't even
5059   // try.  We use a table of mappings.  If the input section name is
5060   // not found in the table, we simply use it as the output section
5061   // name.
5062
5063   const Section_name_mapping* psnm = section_name_mapping;
5064   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5065     {
5066       if (psnm->fromlen > 0)
5067         {
5068           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5069             {
5070               *plen = psnm->tolen;
5071               return psnm->to;
5072             }
5073         }
5074       else
5075         {
5076           if (strcmp(name, psnm->from) == 0)
5077             {
5078               *plen = psnm->tolen;
5079               return psnm->to;
5080             }
5081         }
5082     }
5083
5084   // As an additional complication, .ctors sections are output in
5085   // either .ctors or .init_array sections, and .dtors sections are
5086   // output in either .dtors or .fini_array sections.
5087   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5088     {
5089       if (parameters->options().ctors_in_init_array())
5090         {
5091           *plen = 11;
5092           return name[1] == 'c' ? ".init_array" : ".fini_array";
5093         }
5094       else
5095         {
5096           *plen = 6;
5097           return name[1] == 'c' ? ".ctors" : ".dtors";
5098         }
5099     }
5100   if (parameters->options().ctors_in_init_array()
5101       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5102     {
5103       // To make .init_array/.fini_array work with gcc we must exclude
5104       // .ctors and .dtors sections from the crtbegin and crtend
5105       // files.
5106       if (relobj == NULL
5107           || (!Layout::match_file_name(relobj, "crtbegin")
5108               && !Layout::match_file_name(relobj, "crtend")))
5109         {
5110           *plen = 11;
5111           return name[1] == 'c' ? ".init_array" : ".fini_array";
5112         }
5113     }
5114
5115   return name;
5116 }
5117
5118 // Return true if RELOBJ is an input file whose base name matches
5119 // FILE_NAME.  The base name must have an extension of ".o", and must
5120 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5121 // to match crtbegin.o as well as crtbeginS.o without getting confused
5122 // by other possibilities.  Overall matching the file name this way is
5123 // a dreadful hack, but the GNU linker does it in order to better
5124 // support gcc, and we need to be compatible.
5125
5126 bool
5127 Layout::match_file_name(const Relobj* relobj, const char* match)
5128 {
5129   const std::string& file_name(relobj->name());
5130   const char* base_name = lbasename(file_name.c_str());
5131   size_t match_len = strlen(match);
5132   if (strncmp(base_name, match, match_len) != 0)
5133     return false;
5134   size_t base_len = strlen(base_name);
5135   if (base_len != match_len + 2 && base_len != match_len + 3)
5136     return false;
5137   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5138 }
5139
5140 // Check if a comdat group or .gnu.linkonce section with the given
5141 // NAME is selected for the link.  If there is already a section,
5142 // *KEPT_SECTION is set to point to the existing section and the
5143 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5144 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5145 // *KEPT_SECTION is set to the internal copy and the function returns
5146 // true.
5147
5148 bool
5149 Layout::find_or_add_kept_section(const std::string& name,
5150                                  Relobj* object,
5151                                  unsigned int shndx,
5152                                  bool is_comdat,
5153                                  bool is_group_name,
5154                                  Kept_section** kept_section)
5155 {
5156   // It's normal to see a couple of entries here, for the x86 thunk
5157   // sections.  If we see more than a few, we're linking a C++
5158   // program, and we resize to get more space to minimize rehashing.
5159   if (this->signatures_.size() > 4
5160       && !this->resized_signatures_)
5161     {
5162       reserve_unordered_map(&this->signatures_,
5163                             this->number_of_input_files_ * 64);
5164       this->resized_signatures_ = true;
5165     }
5166
5167   Kept_section candidate;
5168   std::pair<Signatures::iterator, bool> ins =
5169     this->signatures_.insert(std::make_pair(name, candidate));
5170
5171   if (kept_section != NULL)
5172     *kept_section = &ins.first->second;
5173   if (ins.second)
5174     {
5175       // This is the first time we've seen this signature.
5176       ins.first->second.set_object(object);
5177       ins.first->second.set_shndx(shndx);
5178       if (is_comdat)
5179         ins.first->second.set_is_comdat();
5180       if (is_group_name)
5181         ins.first->second.set_is_group_name();
5182       return true;
5183     }
5184
5185   // We have already seen this signature.
5186
5187   if (ins.first->second.is_group_name())
5188     {
5189       // We've already seen a real section group with this signature.
5190       // If the kept group is from a plugin object, and we're in the
5191       // replacement phase, accept the new one as a replacement.
5192       if (ins.first->second.object() == NULL
5193           && parameters->options().plugins()->in_replacement_phase())
5194         {
5195           ins.first->second.set_object(object);
5196           ins.first->second.set_shndx(shndx);
5197           return true;
5198         }
5199       return false;
5200     }
5201   else if (is_group_name)
5202     {
5203       // This is a real section group, and we've already seen a
5204       // linkonce section with this signature.  Record that we've seen
5205       // a section group, and don't include this section group.
5206       ins.first->second.set_is_group_name();
5207       return false;
5208     }
5209   else
5210     {
5211       // We've already seen a linkonce section and this is a linkonce
5212       // section.  These don't block each other--this may be the same
5213       // symbol name with different section types.
5214       return true;
5215     }
5216 }
5217
5218 // Store the allocated sections into the section list.
5219
5220 void
5221 Layout::get_allocated_sections(Section_list* section_list) const
5222 {
5223   for (Section_list::const_iterator p = this->section_list_.begin();
5224        p != this->section_list_.end();
5225        ++p)
5226     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5227       section_list->push_back(*p);
5228 }
5229
5230 // Store the executable sections into the section list.
5231
5232 void
5233 Layout::get_executable_sections(Section_list* section_list) const
5234 {
5235   for (Section_list::const_iterator p = this->section_list_.begin();
5236        p != this->section_list_.end();
5237        ++p)
5238     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5239         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5240       section_list->push_back(*p);
5241 }
5242
5243 // Create an output segment.
5244
5245 Output_segment*
5246 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5247 {
5248   gold_assert(!parameters->options().relocatable());
5249   Output_segment* oseg = new Output_segment(type, flags);
5250   this->segment_list_.push_back(oseg);
5251
5252   if (type == elfcpp::PT_TLS)
5253     this->tls_segment_ = oseg;
5254   else if (type == elfcpp::PT_GNU_RELRO)
5255     this->relro_segment_ = oseg;
5256   else if (type == elfcpp::PT_INTERP)
5257     this->interp_segment_ = oseg;
5258
5259   return oseg;
5260 }
5261
5262 // Return the file offset of the normal symbol table.
5263
5264 off_t
5265 Layout::symtab_section_offset() const
5266 {
5267   if (this->symtab_section_ != NULL)
5268     return this->symtab_section_->offset();
5269   return 0;
5270 }
5271
5272 // Return the section index of the normal symbol table.  It may have
5273 // been stripped by the -s/--strip-all option.
5274
5275 unsigned int
5276 Layout::symtab_section_shndx() const
5277 {
5278   if (this->symtab_section_ != NULL)
5279     return this->symtab_section_->out_shndx();
5280   return 0;
5281 }
5282
5283 // Write out the Output_sections.  Most won't have anything to write,
5284 // since most of the data will come from input sections which are
5285 // handled elsewhere.  But some Output_sections do have Output_data.
5286
5287 void
5288 Layout::write_output_sections(Output_file* of) const
5289 {
5290   for (Section_list::const_iterator p = this->section_list_.begin();
5291        p != this->section_list_.end();
5292        ++p)
5293     {
5294       if (!(*p)->after_input_sections())
5295         (*p)->write(of);
5296     }
5297 }
5298
5299 // Write out data not associated with a section or the symbol table.
5300
5301 void
5302 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5303 {
5304   if (!parameters->options().strip_all())
5305     {
5306       const Output_section* symtab_section = this->symtab_section_;
5307       for (Section_list::const_iterator p = this->section_list_.begin();
5308            p != this->section_list_.end();
5309            ++p)
5310         {
5311           if ((*p)->needs_symtab_index())
5312             {
5313               gold_assert(symtab_section != NULL);
5314               unsigned int index = (*p)->symtab_index();
5315               gold_assert(index > 0 && index != -1U);
5316               off_t off = (symtab_section->offset()
5317                            + index * symtab_section->entsize());
5318               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5319             }
5320         }
5321     }
5322
5323   const Output_section* dynsym_section = this->dynsym_section_;
5324   for (Section_list::const_iterator p = this->section_list_.begin();
5325        p != this->section_list_.end();
5326        ++p)
5327     {
5328       if ((*p)->needs_dynsym_index())
5329         {
5330           gold_assert(dynsym_section != NULL);
5331           unsigned int index = (*p)->dynsym_index();
5332           gold_assert(index > 0 && index != -1U);
5333           off_t off = (dynsym_section->offset()
5334                        + index * dynsym_section->entsize());
5335           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5336         }
5337     }
5338
5339   // Write out the Output_data which are not in an Output_section.
5340   for (Data_list::const_iterator p = this->special_output_list_.begin();
5341        p != this->special_output_list_.end();
5342        ++p)
5343     (*p)->write(of);
5344
5345   // Write out the Output_data which are not in an Output_section
5346   // and are regenerated in each iteration of relaxation.
5347   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5348        p != this->relax_output_list_.end();
5349        ++p)
5350     (*p)->write(of);
5351 }
5352
5353 // Write out the Output_sections which can only be written after the
5354 // input sections are complete.
5355
5356 void
5357 Layout::write_sections_after_input_sections(Output_file* of)
5358 {
5359   // Determine the final section offsets, and thus the final output
5360   // file size.  Note we finalize the .shstrab last, to allow the
5361   // after_input_section sections to modify their section-names before
5362   // writing.
5363   if (this->any_postprocessing_sections_)
5364     {
5365       off_t off = this->output_file_size_;
5366       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5367
5368       // Now that we've finalized the names, we can finalize the shstrab.
5369       off =
5370         this->set_section_offsets(off,
5371                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5372
5373       if (off > this->output_file_size_)
5374         {
5375           of->resize(off);
5376           this->output_file_size_ = off;
5377         }
5378     }
5379
5380   for (Section_list::const_iterator p = this->section_list_.begin();
5381        p != this->section_list_.end();
5382        ++p)
5383     {
5384       if ((*p)->after_input_sections())
5385         (*p)->write(of);
5386     }
5387
5388   this->section_headers_->write(of);
5389 }
5390
5391 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5392 // or as a "tree" where each chunk of the string is hashed and then those
5393 // hashes are put into a (much smaller) string which is hashed with sha1.
5394 // We compute a checksum over the entire file because that is simplest.
5395
5396 Task_token*
5397 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5398                              Output_file* of)
5399 {
5400   const size_t filesize = (this->output_file_size() <= 0 ? 0
5401                            : static_cast<size_t>(this->output_file_size()));
5402   if (this->build_id_note_ != NULL
5403       && strcmp(parameters->options().build_id(), "tree") == 0
5404       && parameters->options().build_id_chunk_size_for_treehash() > 0
5405       && filesize > 0
5406       && (filesize >=
5407           parameters->options().build_id_min_file_size_for_treehash()))
5408     {
5409       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5410       const size_t chunk_size =
5411           parameters->options().build_id_chunk_size_for_treehash();
5412       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5413       Task_token* post_hash_tasks_blocker = new Task_token(true);
5414       post_hash_tasks_blocker->add_blockers(num_hashes);
5415       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5416       const unsigned char* src = of->get_input_view(0, filesize);
5417       this->input_view_ = src;
5418       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5419       this->array_of_hashes_ = dst;
5420       for (size_t i = 0, src_offset = 0; i < num_hashes;
5421            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5422         {
5423           size_t size = std::min(chunk_size, filesize - src_offset);
5424           workqueue->queue(new Hash_task(src + src_offset,
5425                                          size,
5426                                          dst,
5427                                          build_id_blocker,
5428                                          post_hash_tasks_blocker));
5429         }
5430       return post_hash_tasks_blocker;
5431     }
5432   return build_id_blocker;
5433 }
5434
5435 // If a tree-style build ID was requested, the parallel part of that computation
5436 // is already done, and the final hash-of-hashes is computed here.  For other
5437 // types of build IDs, all the work is done here.
5438
5439 void
5440 Layout::write_build_id(Output_file* of) const
5441 {
5442   if (this->build_id_note_ == NULL)
5443     return;
5444
5445   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5446                                           this->build_id_note_->data_size());
5447
5448   if (this->array_of_hashes_ == NULL)
5449     {
5450       const size_t output_file_size = this->output_file_size();
5451       const unsigned char* iv = of->get_input_view(0, output_file_size);
5452       const char* style = parameters->options().build_id();
5453
5454       // If we get here with style == "tree" then the output must be
5455       // too small for chunking, and we use SHA-1 in that case.
5456       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5457         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5458       else if (strcmp(style, "md5") == 0)
5459         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5460       else
5461         gold_unreachable();
5462
5463       of->free_input_view(0, output_file_size, iv);
5464     }
5465   else
5466     {
5467       // Non-overlapping substrings of the output file have been hashed.
5468       // Compute SHA-1 hash of the hashes.
5469       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5470                   this->size_of_array_of_hashes_, ov);
5471       delete[] this->array_of_hashes_;
5472       of->free_input_view(0, this->output_file_size(), this->input_view_);
5473     }
5474
5475   of->write_output_view(this->build_id_note_->offset(),
5476                         this->build_id_note_->data_size(),
5477                         ov);
5478 }
5479
5480 // Write out a binary file.  This is called after the link is
5481 // complete.  IN is the temporary output file we used to generate the
5482 // ELF code.  We simply walk through the segments, read them from
5483 // their file offset in IN, and write them to their load address in
5484 // the output file.  FIXME: with a bit more work, we could support
5485 // S-records and/or Intel hex format here.
5486
5487 void
5488 Layout::write_binary(Output_file* in) const
5489 {
5490   gold_assert(parameters->options().oformat_enum()
5491               == General_options::OBJECT_FORMAT_BINARY);
5492
5493   // Get the size of the binary file.
5494   uint64_t max_load_address = 0;
5495   for (Segment_list::const_iterator p = this->segment_list_.begin();
5496        p != this->segment_list_.end();
5497        ++p)
5498     {
5499       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5500         {
5501           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5502           if (max_paddr > max_load_address)
5503             max_load_address = max_paddr;
5504         }
5505     }
5506
5507   Output_file out(parameters->options().output_file_name());
5508   out.open(max_load_address);
5509
5510   for (Segment_list::const_iterator p = this->segment_list_.begin();
5511        p != this->segment_list_.end();
5512        ++p)
5513     {
5514       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5515         {
5516           const unsigned char* vin = in->get_input_view((*p)->offset(),
5517                                                         (*p)->filesz());
5518           unsigned char* vout = out.get_output_view((*p)->paddr(),
5519                                                     (*p)->filesz());
5520           memcpy(vout, vin, (*p)->filesz());
5521           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5522           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5523         }
5524     }
5525
5526   out.close();
5527 }
5528
5529 // Print the output sections to the map file.
5530
5531 void
5532 Layout::print_to_mapfile(Mapfile* mapfile) const
5533 {
5534   for (Segment_list::const_iterator p = this->segment_list_.begin();
5535        p != this->segment_list_.end();
5536        ++p)
5537     (*p)->print_sections_to_mapfile(mapfile);
5538   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5539        p != this->unattached_section_list_.end();
5540        ++p)
5541     (*p)->print_to_mapfile(mapfile);
5542 }
5543
5544 // Print statistical information to stderr.  This is used for --stats.
5545
5546 void
5547 Layout::print_stats() const
5548 {
5549   this->namepool_.print_stats("section name pool");
5550   this->sympool_.print_stats("output symbol name pool");
5551   this->dynpool_.print_stats("dynamic name pool");
5552
5553   for (Section_list::const_iterator p = this->section_list_.begin();
5554        p != this->section_list_.end();
5555        ++p)
5556     (*p)->print_merge_stats();
5557 }
5558
5559 // Write_sections_task methods.
5560
5561 // We can always run this task.
5562
5563 Task_token*
5564 Write_sections_task::is_runnable()
5565 {
5566   return NULL;
5567 }
5568
5569 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5570 // when finished.
5571
5572 void
5573 Write_sections_task::locks(Task_locker* tl)
5574 {
5575   tl->add(this, this->output_sections_blocker_);
5576   if (this->input_sections_blocker_ != NULL)
5577     tl->add(this, this->input_sections_blocker_);
5578   tl->add(this, this->final_blocker_);
5579 }
5580
5581 // Run the task--write out the data.
5582
5583 void
5584 Write_sections_task::run(Workqueue*)
5585 {
5586   this->layout_->write_output_sections(this->of_);
5587 }
5588
5589 // Write_data_task methods.
5590
5591 // We can always run this task.
5592
5593 Task_token*
5594 Write_data_task::is_runnable()
5595 {
5596   return NULL;
5597 }
5598
5599 // We need to unlock FINAL_BLOCKER when finished.
5600
5601 void
5602 Write_data_task::locks(Task_locker* tl)
5603 {
5604   tl->add(this, this->final_blocker_);
5605 }
5606
5607 // Run the task--write out the data.
5608
5609 void
5610 Write_data_task::run(Workqueue*)
5611 {
5612   this->layout_->write_data(this->symtab_, this->of_);
5613 }
5614
5615 // Write_symbols_task methods.
5616
5617 // We can always run this task.
5618
5619 Task_token*
5620 Write_symbols_task::is_runnable()
5621 {
5622   return NULL;
5623 }
5624
5625 // We need to unlock FINAL_BLOCKER when finished.
5626
5627 void
5628 Write_symbols_task::locks(Task_locker* tl)
5629 {
5630   tl->add(this, this->final_blocker_);
5631 }
5632
5633 // Run the task--write out the symbols.
5634
5635 void
5636 Write_symbols_task::run(Workqueue*)
5637 {
5638   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5639                                this->layout_->symtab_xindex(),
5640                                this->layout_->dynsym_xindex(), this->of_);
5641 }
5642
5643 // Write_after_input_sections_task methods.
5644
5645 // We can only run this task after the input sections have completed.
5646
5647 Task_token*
5648 Write_after_input_sections_task::is_runnable()
5649 {
5650   if (this->input_sections_blocker_->is_blocked())
5651     return this->input_sections_blocker_;
5652   return NULL;
5653 }
5654
5655 // We need to unlock FINAL_BLOCKER when finished.
5656
5657 void
5658 Write_after_input_sections_task::locks(Task_locker* tl)
5659 {
5660   tl->add(this, this->final_blocker_);
5661 }
5662
5663 // Run the task.
5664
5665 void
5666 Write_after_input_sections_task::run(Workqueue*)
5667 {
5668   this->layout_->write_sections_after_input_sections(this->of_);
5669 }
5670
5671 // Close_task_runner methods.
5672
5673 // Finish up the build ID computation, if necessary, and write a binary file,
5674 // if necessary.  Then close the output file.
5675
5676 void
5677 Close_task_runner::run(Workqueue*, const Task*)
5678 {
5679   // At this point the multi-threaded part of the build ID computation,
5680   // if any, is done.  See queue_build_id_tasks().
5681   this->layout_->write_build_id(this->of_);
5682
5683   // If we've been asked to create a binary file, we do so here.
5684   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5685     this->layout_->write_binary(this->of_);
5686
5687   this->of_->close();
5688 }
5689
5690 // Instantiate the templates we need.  We could use the configure
5691 // script to restrict this to only the ones for implemented targets.
5692
5693 #ifdef HAVE_TARGET_32_LITTLE
5694 template
5695 Output_section*
5696 Layout::init_fixed_output_section<32, false>(
5697     const char* name,
5698     elfcpp::Shdr<32, false>& shdr);
5699 #endif
5700
5701 #ifdef HAVE_TARGET_32_BIG
5702 template
5703 Output_section*
5704 Layout::init_fixed_output_section<32, true>(
5705     const char* name,
5706     elfcpp::Shdr<32, true>& shdr);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_64_LITTLE
5710 template
5711 Output_section*
5712 Layout::init_fixed_output_section<64, false>(
5713     const char* name,
5714     elfcpp::Shdr<64, false>& shdr);
5715 #endif
5716
5717 #ifdef HAVE_TARGET_64_BIG
5718 template
5719 Output_section*
5720 Layout::init_fixed_output_section<64, true>(
5721     const char* name,
5722     elfcpp::Shdr<64, true>& shdr);
5723 #endif
5724
5725 #ifdef HAVE_TARGET_32_LITTLE
5726 template
5727 Output_section*
5728 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5729                           unsigned int shndx,
5730                           const char* name,
5731                           const elfcpp::Shdr<32, false>& shdr,
5732                           unsigned int, unsigned int, off_t*);
5733 #endif
5734
5735 #ifdef HAVE_TARGET_32_BIG
5736 template
5737 Output_section*
5738 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5739                          unsigned int shndx,
5740                          const char* name,
5741                          const elfcpp::Shdr<32, true>& shdr,
5742                          unsigned int, unsigned int, off_t*);
5743 #endif
5744
5745 #ifdef HAVE_TARGET_64_LITTLE
5746 template
5747 Output_section*
5748 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5749                           unsigned int shndx,
5750                           const char* name,
5751                           const elfcpp::Shdr<64, false>& shdr,
5752                           unsigned int, unsigned int, off_t*);
5753 #endif
5754
5755 #ifdef HAVE_TARGET_64_BIG
5756 template
5757 Output_section*
5758 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5759                          unsigned int shndx,
5760                          const char* name,
5761                          const elfcpp::Shdr<64, true>& shdr,
5762                          unsigned int, unsigned int, off_t*);
5763 #endif
5764
5765 #ifdef HAVE_TARGET_32_LITTLE
5766 template
5767 Output_section*
5768 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5769                                 unsigned int reloc_shndx,
5770                                 const elfcpp::Shdr<32, false>& shdr,
5771                                 Output_section* data_section,
5772                                 Relocatable_relocs* rr);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_32_BIG
5776 template
5777 Output_section*
5778 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5779                                unsigned int reloc_shndx,
5780                                const elfcpp::Shdr<32, true>& shdr,
5781                                Output_section* data_section,
5782                                Relocatable_relocs* rr);
5783 #endif
5784
5785 #ifdef HAVE_TARGET_64_LITTLE
5786 template
5787 Output_section*
5788 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5789                                 unsigned int reloc_shndx,
5790                                 const elfcpp::Shdr<64, false>& shdr,
5791                                 Output_section* data_section,
5792                                 Relocatable_relocs* rr);
5793 #endif
5794
5795 #ifdef HAVE_TARGET_64_BIG
5796 template
5797 Output_section*
5798 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5799                                unsigned int reloc_shndx,
5800                                const elfcpp::Shdr<64, true>& shdr,
5801                                Output_section* data_section,
5802                                Relocatable_relocs* rr);
5803 #endif
5804
5805 #ifdef HAVE_TARGET_32_LITTLE
5806 template
5807 void
5808 Layout::layout_group<32, false>(Symbol_table* symtab,
5809                                 Sized_relobj_file<32, false>* object,
5810                                 unsigned int,
5811                                 const char* group_section_name,
5812                                 const char* signature,
5813                                 const elfcpp::Shdr<32, false>& shdr,
5814                                 elfcpp::Elf_Word flags,
5815                                 std::vector<unsigned int>* shndxes);
5816 #endif
5817
5818 #ifdef HAVE_TARGET_32_BIG
5819 template
5820 void
5821 Layout::layout_group<32, true>(Symbol_table* symtab,
5822                                Sized_relobj_file<32, true>* object,
5823                                unsigned int,
5824                                const char* group_section_name,
5825                                const char* signature,
5826                                const elfcpp::Shdr<32, true>& shdr,
5827                                elfcpp::Elf_Word flags,
5828                                std::vector<unsigned int>* shndxes);
5829 #endif
5830
5831 #ifdef HAVE_TARGET_64_LITTLE
5832 template
5833 void
5834 Layout::layout_group<64, false>(Symbol_table* symtab,
5835                                 Sized_relobj_file<64, false>* object,
5836                                 unsigned int,
5837                                 const char* group_section_name,
5838                                 const char* signature,
5839                                 const elfcpp::Shdr<64, false>& shdr,
5840                                 elfcpp::Elf_Word flags,
5841                                 std::vector<unsigned int>* shndxes);
5842 #endif
5843
5844 #ifdef HAVE_TARGET_64_BIG
5845 template
5846 void
5847 Layout::layout_group<64, true>(Symbol_table* symtab,
5848                                Sized_relobj_file<64, true>* object,
5849                                unsigned int,
5850                                const char* group_section_name,
5851                                const char* signature,
5852                                const elfcpp::Shdr<64, true>& shdr,
5853                                elfcpp::Elf_Word flags,
5854                                std::vector<unsigned int>* shndxes);
5855 #endif
5856
5857 #ifdef HAVE_TARGET_32_LITTLE
5858 template
5859 Output_section*
5860 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5861                                    const unsigned char* symbols,
5862                                    off_t symbols_size,
5863                                    const unsigned char* symbol_names,
5864                                    off_t symbol_names_size,
5865                                    unsigned int shndx,
5866                                    const elfcpp::Shdr<32, false>& shdr,
5867                                    unsigned int reloc_shndx,
5868                                    unsigned int reloc_type,
5869                                    off_t* off);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_BIG
5873 template
5874 Output_section*
5875 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5876                                   const unsigned char* symbols,
5877                                   off_t symbols_size,
5878                                   const unsigned char* symbol_names,
5879                                   off_t symbol_names_size,
5880                                   unsigned int shndx,
5881                                   const elfcpp::Shdr<32, true>& shdr,
5882                                   unsigned int reloc_shndx,
5883                                   unsigned int reloc_type,
5884                                   off_t* off);
5885 #endif
5886
5887 #ifdef HAVE_TARGET_64_LITTLE
5888 template
5889 Output_section*
5890 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5891                                    const unsigned char* symbols,
5892                                    off_t symbols_size,
5893                                    const unsigned char* symbol_names,
5894                                    off_t symbol_names_size,
5895                                    unsigned int shndx,
5896                                    const elfcpp::Shdr<64, false>& shdr,
5897                                    unsigned int reloc_shndx,
5898                                    unsigned int reloc_type,
5899                                    off_t* off);
5900 #endif
5901
5902 #ifdef HAVE_TARGET_64_BIG
5903 template
5904 Output_section*
5905 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5906                                   const unsigned char* symbols,
5907                                   off_t symbols_size,
5908                                   const unsigned char* symbol_names,
5909                                   off_t symbol_names_size,
5910                                   unsigned int shndx,
5911                                   const elfcpp::Shdr<64, true>& shdr,
5912                                   unsigned int reloc_shndx,
5913                                   unsigned int reloc_type,
5914                                   off_t* off);
5915 #endif
5916
5917 #ifdef HAVE_TARGET_32_LITTLE
5918 template
5919 void
5920 Layout::add_to_gdb_index(bool is_type_unit,
5921                          Sized_relobj<32, false>* object,
5922                          const unsigned char* symbols,
5923                          off_t symbols_size,
5924                          unsigned int shndx,
5925                          unsigned int reloc_shndx,
5926                          unsigned int reloc_type);
5927 #endif
5928
5929 #ifdef HAVE_TARGET_32_BIG
5930 template
5931 void
5932 Layout::add_to_gdb_index(bool is_type_unit,
5933                          Sized_relobj<32, true>* object,
5934                          const unsigned char* symbols,
5935                          off_t symbols_size,
5936                          unsigned int shndx,
5937                          unsigned int reloc_shndx,
5938                          unsigned int reloc_type);
5939 #endif
5940
5941 #ifdef HAVE_TARGET_64_LITTLE
5942 template
5943 void
5944 Layout::add_to_gdb_index(bool is_type_unit,
5945                          Sized_relobj<64, false>* object,
5946                          const unsigned char* symbols,
5947                          off_t symbols_size,
5948                          unsigned int shndx,
5949                          unsigned int reloc_shndx,
5950                          unsigned int reloc_type);
5951 #endif
5952
5953 #ifdef HAVE_TARGET_64_BIG
5954 template
5955 void
5956 Layout::add_to_gdb_index(bool is_type_unit,
5957                          Sized_relobj<64, true>* object,
5958                          const unsigned char* symbols,
5959                          off_t symbols_size,
5960                          unsigned int shndx,
5961                          unsigned int reloc_shndx,
5962                          unsigned int reloc_type);
5963 #endif
5964
5965 } // End namespace gold.