From Cary Coutant: Set offsets of sections with data before finalizing
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1),
71     input_requires_executable_stack_(false),
72     input_with_gnu_stack_note_(false),
73     input_without_gnu_stack_note_(false)
74 {
75   // Make space for more than enough segments for a typical file.
76   // This is just for efficiency--it's OK if we wind up needing more.
77   this->segment_list_.reserve(12);
78
79   // We expect three unattached Output_data objects: the file header,
80   // the segment headers, and the section headers.
81   this->special_output_list_.reserve(3);
82 }
83
84 // Hash a key we use to look up an output section mapping.
85
86 size_t
87 Layout::Hash_key::operator()(const Layout::Key& k) const
88 {
89  return k.first + k.second.first + k.second.second;
90 }
91
92 // Return whether PREFIX is a prefix of STR.
93
94 static inline bool
95 is_prefix_of(const char* prefix, const char* str)
96 {
97   return strncmp(prefix, str, strlen(prefix)) == 0;
98 }
99
100 // Whether to include this section in the link.
101
102 template<int size, bool big_endian>
103 bool
104 Layout::include_section(Object*, const char* name,
105                         const elfcpp::Shdr<size, big_endian>& shdr)
106 {
107   // Some section types are never linked.  Some are only linked when
108   // doing a relocateable link.
109   switch (shdr.get_sh_type())
110     {
111     case elfcpp::SHT_NULL:
112     case elfcpp::SHT_SYMTAB:
113     case elfcpp::SHT_DYNSYM:
114     case elfcpp::SHT_STRTAB:
115     case elfcpp::SHT_HASH:
116     case elfcpp::SHT_DYNAMIC:
117     case elfcpp::SHT_SYMTAB_SHNDX:
118       return false;
119
120     case elfcpp::SHT_RELA:
121     case elfcpp::SHT_REL:
122     case elfcpp::SHT_GROUP:
123       return parameters->output_is_object();
124
125     case elfcpp::SHT_PROGBITS:
126       if (parameters->strip_debug()
127           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
128         {
129           // Debugging sections can only be recognized by name.
130           if (is_prefix_of(".debug", name)
131               || is_prefix_of(".gnu.linkonce.wi.", name)
132               || is_prefix_of(".line", name)
133               || is_prefix_of(".stab", name))
134             return false;
135         }
136       return true;
137
138     default:
139       return true;
140     }
141 }
142
143 // Return an output section named NAME, or NULL if there is none.
144
145 Output_section*
146 Layout::find_output_section(const char* name) const
147 {
148   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149        p != this->section_name_map_.end();
150        ++p)
151     if (strcmp(p->second->name(), name) == 0)
152       return p->second;
153   return NULL;
154 }
155
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear.  Return NULL if there is none.
158
159 Output_segment*
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161                             elfcpp::Elf_Word clear) const
162 {
163   for (Segment_list::const_iterator p = this->segment_list_.begin();
164        p != this->segment_list_.end();
165        ++p)
166     if (static_cast<elfcpp::PT>((*p)->type()) == type
167         && ((*p)->flags() & set) == set
168         && ((*p)->flags() & clear) == 0)
169       return *p;
170   return NULL;
171 }
172
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
175
176 Output_section*
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
179 {
180   // We should ignore some flags.
181   flags &= ~ (elfcpp::SHF_INFO_LINK
182               | elfcpp::SHF_LINK_ORDER
183               | elfcpp::SHF_GROUP
184               | elfcpp::SHF_MERGE
185               | elfcpp::SHF_STRINGS);
186
187   const Key key(name_key, std::make_pair(type, flags));
188   const std::pair<Key, Output_section*> v(key, NULL);
189   std::pair<Section_name_map::iterator, bool> ins(
190     this->section_name_map_.insert(v));
191
192   if (!ins.second)
193     return ins.first->second;
194   else
195     {
196       // This is the first time we've seen this name/type/flags
197       // combination.
198       Output_section* os = this->make_output_section(name, type, flags);
199       ins.first->second = os;
200       return os;
201     }
202 }
203
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
206 // offset of this input section without the output section.
207
208 template<int size, bool big_endian>
209 Output_section*
210 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
211                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
212 {
213   if (!this->include_section(object, name, shdr))
214     return NULL;
215
216   // If we are not doing a relocateable link, choose the name to use
217   // for the output section.
218   size_t len = strlen(name);
219   if (!parameters->output_is_object())
220     name = Layout::output_section_name(name, &len);
221
222   // FIXME: Handle SHF_OS_NONCONFORMING here.
223
224   // Canonicalize the section name.
225   Stringpool::Key name_key;
226   name = this->namepool_.add_prefix(name, len, &name_key);
227
228   // Find the output section.  The output section is selected based on
229   // the section name, type, and flags.
230   Output_section* os = this->get_output_section(name, name_key,
231                                                 shdr.get_sh_type(),
232                                                 shdr.get_sh_flags());
233
234   // Special GNU handling of sections named .eh_frame.
235   if (!parameters->output_is_object()
236       && strcmp(name, ".eh_frame") == 0
237       && shdr.get_sh_size() > 0
238       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
239       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
240     {
241       this->layout_eh_frame(object, shndx, name, shdr, os, off);
242       return os;
243     }
244
245   // FIXME: Handle SHF_LINK_ORDER somewhere.
246
247   *off = os->add_input_section(object, shndx, name, shdr);
248
249   return os;
250 }
251
252 // Special GNU handling of sections named .eh_frame.  They will
253 // normally hold exception frame data.
254
255 template<int size, bool big_endian>
256 void
257 Layout::layout_eh_frame(Relobj* object,
258                         unsigned int shndx,
259                         const char* name,
260                         const elfcpp::Shdr<size, big_endian>& shdr,
261                         Output_section* os, off_t* off)
262 {
263   if (this->eh_frame_section_ == NULL)
264     {
265       this->eh_frame_section_ = os;
266
267       if (this->options_.create_eh_frame_hdr())
268         {
269           Stringpool::Key hdr_name_key;
270           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
271                                                      false,
272                                                      &hdr_name_key);
273           Output_section* hdr_os =
274             this->get_output_section(hdr_name, hdr_name_key,
275                                      elfcpp::SHT_PROGBITS,
276                                      elfcpp::SHF_ALLOC);
277
278           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
279           hdr_os->add_output_section_data(hdr_posd);
280
281           Output_segment* hdr_oseg =
282             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
283           this->segment_list_.push_back(hdr_oseg);
284           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
285         }
286     }
287
288   gold_assert(this->eh_frame_section_ == os);
289
290   *off = os->add_input_section(object, shndx, name, shdr);
291 }
292
293 // Add POSD to an output section using NAME, TYPE, and FLAGS.
294
295 void
296 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
297                                 elfcpp::Elf_Xword flags,
298                                 Output_section_data* posd)
299 {
300   // Canonicalize the name.
301   Stringpool::Key name_key;
302   name = this->namepool_.add(name, true, &name_key);
303
304   Output_section* os = this->get_output_section(name, name_key, type, flags);
305   os->add_output_section_data(posd);
306 }
307
308 // Map section flags to segment flags.
309
310 elfcpp::Elf_Word
311 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
312 {
313   elfcpp::Elf_Word ret = elfcpp::PF_R;
314   if ((flags & elfcpp::SHF_WRITE) != 0)
315     ret |= elfcpp::PF_W;
316   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
317     ret |= elfcpp::PF_X;
318   return ret;
319 }
320
321 // Make a new Output_section, and attach it to segments as
322 // appropriate.
323
324 Output_section*
325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
326                             elfcpp::Elf_Xword flags)
327 {
328   Output_section* os = new Output_section(name, type, flags);
329   this->section_list_.push_back(os);
330
331   if ((flags & elfcpp::SHF_ALLOC) == 0)
332     this->unattached_section_list_.push_back(os);
333   else
334     {
335       // This output section goes into a PT_LOAD segment.
336
337       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
338
339       // The only thing we really care about for PT_LOAD segments is
340       // whether or not they are writable, so that is how we search
341       // for them.  People who need segments sorted on some other
342       // basis will have to wait until we implement a mechanism for
343       // them to describe the segments they want.
344
345       Segment_list::const_iterator p;
346       for (p = this->segment_list_.begin();
347            p != this->segment_list_.end();
348            ++p)
349         {
350           if ((*p)->type() == elfcpp::PT_LOAD
351               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
352             {
353               (*p)->add_output_section(os, seg_flags);
354               break;
355             }
356         }
357
358       if (p == this->segment_list_.end())
359         {
360           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
361                                                     seg_flags);
362           this->segment_list_.push_back(oseg);
363           oseg->add_output_section(os, seg_flags);
364         }
365
366       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
367       // segment.
368       if (type == elfcpp::SHT_NOTE)
369         {
370           // See if we already have an equivalent PT_NOTE segment.
371           for (p = this->segment_list_.begin();
372                p != segment_list_.end();
373                ++p)
374             {
375               if ((*p)->type() == elfcpp::PT_NOTE
376                   && (((*p)->flags() & elfcpp::PF_W)
377                       == (seg_flags & elfcpp::PF_W)))
378                 {
379                   (*p)->add_output_section(os, seg_flags);
380                   break;
381                 }
382             }
383
384           if (p == this->segment_list_.end())
385             {
386               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
387                                                         seg_flags);
388               this->segment_list_.push_back(oseg);
389               oseg->add_output_section(os, seg_flags);
390             }
391         }
392
393       // If we see a loadable SHF_TLS section, we create a PT_TLS
394       // segment.  There can only be one such segment.
395       if ((flags & elfcpp::SHF_TLS) != 0)
396         {
397           if (this->tls_segment_ == NULL)
398             {
399               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
400                                                       seg_flags);
401               this->segment_list_.push_back(this->tls_segment_);
402             }
403           this->tls_segment_->add_output_section(os, seg_flags);
404         }
405     }
406
407   return os;
408 }
409
410 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
411 // is whether we saw a .note.GNU-stack section in the object file.
412 // GNU_STACK_FLAGS is the section flags.  The flags give the
413 // protection required for stack memory.  We record this in an
414 // executable as a PT_GNU_STACK segment.  If an object file does not
415 // have a .note.GNU-stack segment, we must assume that it is an old
416 // object.  On some targets that will force an executable stack.
417
418 void
419 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
420 {
421   if (!seen_gnu_stack)
422     this->input_without_gnu_stack_note_ = true;
423   else
424     {
425       this->input_with_gnu_stack_note_ = true;
426       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
427         this->input_requires_executable_stack_ = true;
428     }
429 }
430
431 // Create the dynamic sections which are needed before we read the
432 // relocs.
433
434 void
435 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
436                                         Symbol_table* symtab)
437 {
438   if (parameters->doing_static_link())
439     return;
440
441   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
442   this->dynamic_section_ = this->make_output_section(dynamic_name,
443                                                      elfcpp::SHT_DYNAMIC,
444                                                      (elfcpp::SHF_ALLOC
445                                                       | elfcpp::SHF_WRITE));
446
447   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
448                                 this->dynamic_section_, 0, 0,
449                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
450                                 elfcpp::STV_HIDDEN, 0, false, false);
451
452   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
453
454   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
455 }
456
457 // For each output section whose name can be represented as C symbol,
458 // define __start and __stop symbols for the section.  This is a GNU
459 // extension.
460
461 void
462 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
463 {
464   for (Section_list::const_iterator p = this->section_list_.begin();
465        p != this->section_list_.end();
466        ++p)
467     {
468       const char* const name = (*p)->name();
469       if (name[strspn(name,
470                       ("0123456789"
471                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
472                        "abcdefghijklmnopqrstuvwxyz"
473                        "_"))]
474           == '\0')
475         {
476           const std::string name_string(name);
477           const std::string start_name("__start_" + name_string);
478           const std::string stop_name("__stop_" + name_string);
479
480           symtab->define_in_output_data(target,
481                                         start_name.c_str(),
482                                         NULL, // version
483                                         *p,
484                                         0, // value
485                                         0, // symsize
486                                         elfcpp::STT_NOTYPE,
487                                         elfcpp::STB_GLOBAL,
488                                         elfcpp::STV_DEFAULT,
489                                         0, // nonvis
490                                         false, // offset_is_from_end
491                                         false); // only_if_ref
492
493           symtab->define_in_output_data(target,
494                                         stop_name.c_str(),
495                                         NULL, // version
496                                         *p,
497                                         0, // value
498                                         0, // symsize
499                                         elfcpp::STT_NOTYPE,
500                                         elfcpp::STB_GLOBAL,
501                                         elfcpp::STV_DEFAULT,
502                                         0, // nonvis
503                                         true, // offset_is_from_end
504                                         false); // only_if_ref
505         }
506     }
507 }
508
509 // Find the first read-only PT_LOAD segment, creating one if
510 // necessary.
511
512 Output_segment*
513 Layout::find_first_load_seg()
514 {
515   for (Segment_list::const_iterator p = this->segment_list_.begin();
516        p != this->segment_list_.end();
517        ++p)
518     {
519       if ((*p)->type() == elfcpp::PT_LOAD
520           && ((*p)->flags() & elfcpp::PF_R) != 0
521           && ((*p)->flags() & elfcpp::PF_W) == 0)
522         return *p;
523     }
524
525   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
526   this->segment_list_.push_back(load_seg);
527   return load_seg;
528 }
529
530 // Finalize the layout.  When this is called, we have created all the
531 // output sections and all the output segments which are based on
532 // input sections.  We have several things to do, and we have to do
533 // them in the right order, so that we get the right results correctly
534 // and efficiently.
535
536 // 1) Finalize the list of output segments and create the segment
537 // table header.
538
539 // 2) Finalize the dynamic symbol table and associated sections.
540
541 // 3) Determine the final file offset of all the output segments.
542
543 // 4) Determine the final file offset of all the SHF_ALLOC output
544 // sections.
545
546 // 5) Create the symbol table sections and the section name table
547 // section.
548
549 // 6) Finalize the symbol table: set symbol values to their final
550 // value and make a final determination of which symbols are going
551 // into the output symbol table.
552
553 // 7) Create the section table header.
554
555 // 8) Determine the final file offset of all the output sections which
556 // are not SHF_ALLOC, including the section table header.
557
558 // 9) Finalize the ELF file header.
559
560 // This function returns the size of the output file.
561
562 off_t
563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
564 {
565   Target* const target = input_objects->target();
566
567   target->finalize_sections(this);
568
569   this->create_gold_note();
570   this->create_executable_stack_info(target);
571
572   Output_segment* phdr_seg = NULL;
573   if (!parameters->doing_static_link())
574     {
575       // There was a dynamic object in the link.  We need to create
576       // some information for the dynamic linker.
577
578       // Create the PT_PHDR segment which will hold the program
579       // headers.
580       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
581       this->segment_list_.push_back(phdr_seg);
582
583       // Create the dynamic symbol table, including the hash table.
584       Output_section* dynstr;
585       std::vector<Symbol*> dynamic_symbols;
586       unsigned int local_dynamic_count;
587       Versions versions;
588       this->create_dynamic_symtab(target, symtab, &dynstr,
589                                   &local_dynamic_count, &dynamic_symbols,
590                                   &versions);
591
592       // Create the .interp section to hold the name of the
593       // interpreter, and put it in a PT_INTERP segment.
594       this->create_interp(target);
595
596       // Finish the .dynamic section to hold the dynamic data, and put
597       // it in a PT_DYNAMIC segment.
598       this->finish_dynamic_section(input_objects, symtab);
599
600       // We should have added everything we need to the dynamic string
601       // table.
602       this->dynpool_.set_string_offsets();
603
604       // Create the version sections.  We can't do this until the
605       // dynamic string table is complete.
606       this->create_version_sections(&versions, symtab, local_dynamic_count,
607                                     dynamic_symbols, dynstr);
608     }
609
610   // FIXME: Handle PT_GNU_STACK.
611
612   Output_segment* load_seg = this->find_first_load_seg();
613
614   // Lay out the segment headers.
615   Output_segment_headers* segment_headers;
616   segment_headers = new Output_segment_headers(this->segment_list_);
617   load_seg->add_initial_output_data(segment_headers);
618   this->special_output_list_.push_back(segment_headers);
619   if (phdr_seg != NULL)
620     phdr_seg->add_initial_output_data(segment_headers);
621
622   // Lay out the file header.
623   Output_file_header* file_header;
624   file_header = new Output_file_header(target, symtab, segment_headers);
625   load_seg->add_initial_output_data(file_header);
626   this->special_output_list_.push_back(file_header);
627
628   // We set the output section indexes in set_segment_offsets and
629   // set_section_offsets.
630   unsigned int shndx = 1;
631
632   // Set the file offsets of all the segments, and all the sections
633   // they contain.
634   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
635
636   // Set the file offsets of all the data sections not associated with
637   // segments. This makes sure that debug sections have their offsets
638   // before symbols are finalized.
639   off = this->set_section_offsets(off, &shndx, true);
640
641   // Create the symbol table sections.
642   this->create_symtab_sections(input_objects, symtab, &off);
643
644   // Create the .shstrtab section.
645   Output_section* shstrtab_section = this->create_shstrtab();
646
647   // Set the file offsets of all the non-data sections not associated with
648   // segments.
649   off = this->set_section_offsets(off, &shndx, false);
650
651   // Create the section table header.
652   Output_section_headers* oshdrs = this->create_shdrs(&off);
653
654   file_header->set_section_info(oshdrs, shstrtab_section);
655
656   // Now we know exactly where everything goes in the output file.
657   Output_data::layout_complete();
658
659   this->output_file_size_ = off;
660
661   return off;
662 }
663
664 // Create a .note section for an executable or shared library.  This
665 // records the version of gold used to create the binary.
666
667 void
668 Layout::create_gold_note()
669 {
670   if (parameters->output_is_object())
671     return;
672
673   // Authorities all agree that the values in a .note field should
674   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
675   // they differ on what the alignment is for 64-bit binaries.
676   // The GABI says unambiguously they take 8-byte alignment:
677   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
678   // Other documentation says alignment should always be 4 bytes:
679   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
680   // GNU ld and GNU readelf both support the latter (at least as of
681   // version 2.16.91), and glibc always generates the latter for
682   // .note.ABI-tag (as of version 1.6), so that's the one we go with
683   // here.
684 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
685   const int size = parameters->get_size();
686 #else
687   const int size = 32;
688 #endif
689
690   // The contents of the .note section.
691   const char* name = "GNU";
692   std::string desc(std::string("gold ") + gold::get_version_string());
693   size_t namesz = strlen(name) + 1;
694   size_t aligned_namesz = align_address(namesz, size / 8);
695   size_t descsz = desc.length() + 1;
696   size_t aligned_descsz = align_address(descsz, size / 8);
697   const int note_type = 4;
698
699   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
700
701   unsigned char buffer[128];
702   gold_assert(sizeof buffer >= notesz);
703   memset(buffer, 0, notesz);
704
705   bool is_big_endian = parameters->is_big_endian();
706
707   if (size == 32)
708     {
709       if (!is_big_endian)
710         {
711           elfcpp::Swap<32, false>::writeval(buffer, namesz);
712           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
713           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
714         }
715       else
716         {
717           elfcpp::Swap<32, true>::writeval(buffer, namesz);
718           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
719           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
720         }
721     }
722   else if (size == 64)
723     {
724       if (!is_big_endian)
725         {
726           elfcpp::Swap<64, false>::writeval(buffer, namesz);
727           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
728           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
729         }
730       else
731         {
732           elfcpp::Swap<64, true>::writeval(buffer, namesz);
733           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
734           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
735         }
736     }
737   else
738     gold_unreachable();
739
740   memcpy(buffer + 3 * (size / 8), name, namesz);
741   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
742
743   const char* note_name = this->namepool_.add(".note", false, NULL);
744   Output_section* os = this->make_output_section(note_name,
745                                                  elfcpp::SHT_NOTE,
746                                                  0);
747   Output_section_data* posd = new Output_data_const(buffer, notesz,
748                                                     size / 8);
749   os->add_output_section_data(posd);
750 }
751
752 // Record whether the stack should be executable.  This can be set
753 // from the command line using the -z execstack or -z noexecstack
754 // options.  Otherwise, if any input file has a .note.GNU-stack
755 // section with the SHF_EXECINSTR flag set, the stack should be
756 // executable.  Otherwise, if at least one input file a
757 // .note.GNU-stack section, and some input file has no .note.GNU-stack
758 // section, we use the target default for whether the stack should be
759 // executable.  Otherwise, we don't generate a stack note.  When
760 // generating a object file, we create a .note.GNU-stack section with
761 // the appropriate marking.  When generating an executable or shared
762 // library, we create a PT_GNU_STACK segment.
763
764 void
765 Layout::create_executable_stack_info(const Target* target)
766 {
767   bool is_stack_executable;
768   if (this->options_.is_execstack_set())
769     is_stack_executable = this->options_.is_stack_executable();
770   else if (!this->input_with_gnu_stack_note_)
771     return;
772   else
773     {
774       if (this->input_requires_executable_stack_)
775         is_stack_executable = true;
776       else if (this->input_without_gnu_stack_note_)
777         is_stack_executable = target->is_default_stack_executable();
778       else
779         is_stack_executable = false;
780     }
781
782   if (parameters->output_is_object())
783     {
784       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
785       elfcpp::Elf_Xword flags = 0;
786       if (is_stack_executable)
787         flags |= elfcpp::SHF_EXECINSTR;
788       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
789     }
790   else
791     {
792       int flags = elfcpp::PF_R | elfcpp::PF_W;
793       if (is_stack_executable)
794         flags |= elfcpp::PF_X;
795       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
796       this->segment_list_.push_back(oseg);
797     }
798 }
799
800 // Return whether SEG1 should be before SEG2 in the output file.  This
801 // is based entirely on the segment type and flags.  When this is
802 // called the segment addresses has normally not yet been set.
803
804 bool
805 Layout::segment_precedes(const Output_segment* seg1,
806                          const Output_segment* seg2)
807 {
808   elfcpp::Elf_Word type1 = seg1->type();
809   elfcpp::Elf_Word type2 = seg2->type();
810
811   // The single PT_PHDR segment is required to precede any loadable
812   // segment.  We simply make it always first.
813   if (type1 == elfcpp::PT_PHDR)
814     {
815       gold_assert(type2 != elfcpp::PT_PHDR);
816       return true;
817     }
818   if (type2 == elfcpp::PT_PHDR)
819     return false;
820
821   // The single PT_INTERP segment is required to precede any loadable
822   // segment.  We simply make it always second.
823   if (type1 == elfcpp::PT_INTERP)
824     {
825       gold_assert(type2 != elfcpp::PT_INTERP);
826       return true;
827     }
828   if (type2 == elfcpp::PT_INTERP)
829     return false;
830
831   // We then put PT_LOAD segments before any other segments.
832   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
833     return true;
834   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
835     return false;
836
837   // We put the PT_TLS segment last, because that is where the dynamic
838   // linker expects to find it (this is just for efficiency; other
839   // positions would also work correctly).
840   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
841     return false;
842   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
843     return true;
844
845   const elfcpp::Elf_Word flags1 = seg1->flags();
846   const elfcpp::Elf_Word flags2 = seg2->flags();
847
848   // The order of non-PT_LOAD segments is unimportant.  We simply sort
849   // by the numeric segment type and flags values.  There should not
850   // be more than one segment with the same type and flags.
851   if (type1 != elfcpp::PT_LOAD)
852     {
853       if (type1 != type2)
854         return type1 < type2;
855       gold_assert(flags1 != flags2);
856       return flags1 < flags2;
857     }
858
859   // We sort PT_LOAD segments based on the flags.  Readonly segments
860   // come before writable segments.  Then executable segments come
861   // before non-executable segments.  Then the unlikely case of a
862   // non-readable segment comes before the normal case of a readable
863   // segment.  If there are multiple segments with the same type and
864   // flags, we require that the address be set, and we sort by
865   // virtual address and then physical address.
866   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
867     return (flags1 & elfcpp::PF_W) == 0;
868   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
869     return (flags1 & elfcpp::PF_X) != 0;
870   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
871     return (flags1 & elfcpp::PF_R) == 0;
872
873   uint64_t vaddr1 = seg1->vaddr();
874   uint64_t vaddr2 = seg2->vaddr();
875   if (vaddr1 != vaddr2)
876     return vaddr1 < vaddr2;
877
878   uint64_t paddr1 = seg1->paddr();
879   uint64_t paddr2 = seg2->paddr();
880   gold_assert(paddr1 != paddr2);
881   return paddr1 < paddr2;
882 }
883
884 // Set the file offsets of all the segments, and all the sections they
885 // contain.  They have all been created.  LOAD_SEG must be be laid out
886 // first.  Return the offset of the data to follow.
887
888 off_t
889 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
890                             unsigned int *pshndx)
891 {
892   // Sort them into the final order.
893   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
894             Layout::Compare_segments());
895
896   // Find the PT_LOAD segments, and set their addresses and offsets
897   // and their section's addresses and offsets.
898   uint64_t addr;
899   if (options_.user_set_text_segment_address())
900     addr = options_.text_segment_address();
901   else
902     addr = target->default_text_segment_address();
903   off_t off = 0;
904   bool was_readonly = false;
905   for (Segment_list::iterator p = this->segment_list_.begin();
906        p != this->segment_list_.end();
907        ++p)
908     {
909       if ((*p)->type() == elfcpp::PT_LOAD)
910         {
911           if (load_seg != NULL && load_seg != *p)
912             gold_unreachable();
913           load_seg = NULL;
914
915           // If the last segment was readonly, and this one is not,
916           // then skip the address forward one page, maintaining the
917           // same position within the page.  This lets us store both
918           // segments overlapping on a single page in the file, but
919           // the loader will put them on different pages in memory.
920
921           uint64_t orig_addr = addr;
922           uint64_t orig_off = off;
923
924           uint64_t aligned_addr = addr;
925           uint64_t abi_pagesize = target->abi_pagesize();
926
927           // FIXME: This should depend on the -n and -N options.
928           (*p)->set_minimum_addralign(target->common_pagesize());
929
930           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
931             {
932               uint64_t align = (*p)->addralign();
933
934               addr = align_address(addr, align);
935               aligned_addr = addr;
936               if ((addr & (abi_pagesize - 1)) != 0)
937                 addr = addr + abi_pagesize;
938             }
939
940           unsigned int shndx_hold = *pshndx;
941           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
942           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
943
944           // Now that we know the size of this segment, we may be able
945           // to save a page in memory, at the cost of wasting some
946           // file space, by instead aligning to the start of a new
947           // page.  Here we use the real machine page size rather than
948           // the ABI mandated page size.
949
950           if (aligned_addr != addr)
951             {
952               uint64_t common_pagesize = target->common_pagesize();
953               uint64_t first_off = (common_pagesize
954                                     - (aligned_addr
955                                        & (common_pagesize - 1)));
956               uint64_t last_off = new_addr & (common_pagesize - 1);
957               if (first_off > 0
958                   && last_off > 0
959                   && ((aligned_addr & ~ (common_pagesize - 1))
960                       != (new_addr & ~ (common_pagesize - 1)))
961                   && first_off + last_off <= common_pagesize)
962                 {
963                   *pshndx = shndx_hold;
964                   addr = align_address(aligned_addr, common_pagesize);
965                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
966                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
967                 }
968             }
969
970           addr = new_addr;
971
972           if (((*p)->flags() & elfcpp::PF_W) == 0)
973             was_readonly = true;
974         }
975     }
976
977   // Handle the non-PT_LOAD segments, setting their offsets from their
978   // section's offsets.
979   for (Segment_list::iterator p = this->segment_list_.begin();
980        p != this->segment_list_.end();
981        ++p)
982     {
983       if ((*p)->type() != elfcpp::PT_LOAD)
984         (*p)->set_offset();
985     }
986
987   return off;
988 }
989
990 // Set the file offset of all the sections not associated with a
991 // segment.
992
993 off_t
994 Layout::set_section_offsets(off_t off,
995                             unsigned int* pshndx,
996                             bool do_bits_sections)
997 {
998   for (Section_list::iterator p = this->unattached_section_list_.begin();
999        p != this->unattached_section_list_.end();
1000        ++p)
1001     {
1002       bool is_bits_section = ((*p)->type() == elfcpp::SHT_PROGBITS
1003                               || (*p)->type() == elfcpp::SHT_NOBITS);
1004       if (is_bits_section != do_bits_sections)
1005         continue;
1006       (*p)->set_out_shndx(*pshndx);
1007       ++*pshndx;
1008       if ((*p)->offset() != -1)
1009         continue;
1010       off = align_address(off, (*p)->addralign());
1011       (*p)->set_address(0, off);
1012       off += (*p)->data_size();
1013     }
1014   return off;
1015 }
1016
1017 // Create the symbol table sections.  Here we also set the final
1018 // values of the symbols.  At this point all the loadable sections are
1019 // fully laid out.
1020
1021 void
1022 Layout::create_symtab_sections(const Input_objects* input_objects,
1023                                Symbol_table* symtab,
1024                                off_t* poff)
1025 {
1026   int symsize;
1027   unsigned int align;
1028   if (parameters->get_size() == 32)
1029     {
1030       symsize = elfcpp::Elf_sizes<32>::sym_size;
1031       align = 4;
1032     }
1033   else if (parameters->get_size() == 64)
1034     {
1035       symsize = elfcpp::Elf_sizes<64>::sym_size;
1036       align = 8;
1037     }
1038   else
1039     gold_unreachable();
1040
1041   off_t off = *poff;
1042   off = align_address(off, align);
1043   off_t startoff = off;
1044
1045   // Save space for the dummy symbol at the start of the section.  We
1046   // never bother to write this out--it will just be left as zero.
1047   off += symsize;
1048   unsigned int local_symbol_index = 1;
1049
1050   // Add STT_SECTION symbols for each Output section which needs one.
1051   for (Section_list::iterator p = this->section_list_.begin();
1052        p != this->section_list_.end();
1053        ++p)
1054     {
1055       if (!(*p)->needs_symtab_index())
1056         (*p)->set_symtab_index(-1U);
1057       else
1058         {
1059           (*p)->set_symtab_index(local_symbol_index);
1060           ++local_symbol_index;
1061           off += symsize;
1062         }
1063     }
1064
1065   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1066        p != input_objects->relobj_end();
1067        ++p)
1068     {
1069       Task_lock_obj<Object> tlo(**p);
1070       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1071                                                         off,
1072                                                         &this->sympool_);
1073       off += (index - local_symbol_index) * symsize;
1074       local_symbol_index = index;
1075     }
1076
1077   unsigned int local_symcount = local_symbol_index;
1078   gold_assert(local_symcount * symsize == off - startoff);
1079
1080   off_t dynoff;
1081   size_t dyn_global_index;
1082   size_t dyncount;
1083   if (this->dynsym_section_ == NULL)
1084     {
1085       dynoff = 0;
1086       dyn_global_index = 0;
1087       dyncount = 0;
1088     }
1089   else
1090     {
1091       dyn_global_index = this->dynsym_section_->info();
1092       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1093       dynoff = this->dynsym_section_->offset() + locsize;
1094       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1095       gold_assert(static_cast<off_t>(dyncount * symsize)
1096                   == this->dynsym_section_->data_size() - locsize);
1097     }
1098
1099   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1100                          dyncount, &this->sympool_);
1101
1102   if (!parameters->strip_all())
1103     {
1104       this->sympool_.set_string_offsets();
1105
1106       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1107       Output_section* osymtab = this->make_output_section(symtab_name,
1108                                                           elfcpp::SHT_SYMTAB,
1109                                                           0);
1110       this->symtab_section_ = osymtab;
1111
1112       Output_section_data* pos = new Output_data_space(off - startoff,
1113                                                        align);
1114       osymtab->add_output_section_data(pos);
1115
1116       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1117       Output_section* ostrtab = this->make_output_section(strtab_name,
1118                                                           elfcpp::SHT_STRTAB,
1119                                                           0);
1120
1121       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1122       ostrtab->add_output_section_data(pstr);
1123
1124       osymtab->set_address(0, startoff);
1125       osymtab->set_link_section(ostrtab);
1126       osymtab->set_info(local_symcount);
1127       osymtab->set_entsize(symsize);
1128
1129       *poff = off;
1130     }
1131 }
1132
1133 // Create the .shstrtab section, which holds the names of the
1134 // sections.  At the time this is called, we have created all the
1135 // output sections except .shstrtab itself.
1136
1137 Output_section*
1138 Layout::create_shstrtab()
1139 {
1140   // FIXME: We don't need to create a .shstrtab section if we are
1141   // stripping everything.
1142
1143   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1144
1145   this->namepool_.set_string_offsets();
1146
1147   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1148
1149   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1150   os->add_output_section_data(posd);
1151
1152   return os;
1153 }
1154
1155 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1156 // offset.
1157
1158 Output_section_headers*
1159 Layout::create_shdrs(off_t* poff)
1160 {
1161   Output_section_headers* oshdrs;
1162   oshdrs = new Output_section_headers(this,
1163                                       &this->segment_list_,
1164                                       &this->unattached_section_list_,
1165                                       &this->namepool_);
1166   off_t off = align_address(*poff, oshdrs->addralign());
1167   oshdrs->set_address(0, off);
1168   off += oshdrs->data_size();
1169   *poff = off;
1170   this->special_output_list_.push_back(oshdrs);
1171   return oshdrs;
1172 }
1173
1174 // Create the dynamic symbol table.
1175
1176 void
1177 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1178                               Output_section **pdynstr,
1179                               unsigned int* plocal_dynamic_count,
1180                               std::vector<Symbol*>* pdynamic_symbols,
1181                               Versions* pversions)
1182 {
1183   // Count all the symbols in the dynamic symbol table, and set the
1184   // dynamic symbol indexes.
1185
1186   // Skip symbol 0, which is always all zeroes.
1187   unsigned int index = 1;
1188
1189   // Add STT_SECTION symbols for each Output section which needs one.
1190   for (Section_list::iterator p = this->section_list_.begin();
1191        p != this->section_list_.end();
1192        ++p)
1193     {
1194       if (!(*p)->needs_dynsym_index())
1195         (*p)->set_dynsym_index(-1U);
1196       else
1197         {
1198           (*p)->set_dynsym_index(index);
1199           ++index;
1200         }
1201     }
1202
1203   // FIXME: Some targets apparently require local symbols in the
1204   // dynamic symbol table.  Here is where we will have to count them,
1205   // and set the dynamic symbol indexes, and add the names to
1206   // this->dynpool_.
1207
1208   unsigned int local_symcount = index;
1209   *plocal_dynamic_count = local_symcount;
1210
1211   // FIXME: We have to tell set_dynsym_indexes whether the
1212   // -E/--export-dynamic option was used.
1213   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1214                                      &this->dynpool_, pversions);
1215
1216   int symsize;
1217   unsigned int align;
1218   const int size = parameters->get_size();
1219   if (size == 32)
1220     {
1221       symsize = elfcpp::Elf_sizes<32>::sym_size;
1222       align = 4;
1223     }
1224   else if (size == 64)
1225     {
1226       symsize = elfcpp::Elf_sizes<64>::sym_size;
1227       align = 8;
1228     }
1229   else
1230     gold_unreachable();
1231
1232   // Create the dynamic symbol table section.
1233
1234   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1235   Output_section* dynsym = this->make_output_section(dynsym_name,
1236                                                      elfcpp::SHT_DYNSYM,
1237                                                      elfcpp::SHF_ALLOC);
1238
1239   Output_section_data* odata = new Output_data_space(index * symsize,
1240                                                      align);
1241   dynsym->add_output_section_data(odata);
1242
1243   dynsym->set_info(local_symcount);
1244   dynsym->set_entsize(symsize);
1245   dynsym->set_addralign(align);
1246
1247   this->dynsym_section_ = dynsym;
1248
1249   Output_data_dynamic* const odyn = this->dynamic_data_;
1250   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1251   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1252
1253   // Create the dynamic string table section.
1254
1255   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1256   Output_section* dynstr = this->make_output_section(dynstr_name,
1257                                                      elfcpp::SHT_STRTAB,
1258                                                      elfcpp::SHF_ALLOC);
1259
1260   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1261   dynstr->add_output_section_data(strdata);
1262
1263   dynsym->set_link_section(dynstr);
1264   this->dynamic_section_->set_link_section(dynstr);
1265
1266   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1267   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1268
1269   *pdynstr = dynstr;
1270
1271   // Create the hash tables.
1272
1273   // FIXME: We need an option to create a GNU hash table.
1274
1275   unsigned char* phash;
1276   unsigned int hashlen;
1277   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1278                                 &phash, &hashlen);
1279
1280   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1281   Output_section* hashsec = this->make_output_section(hash_name,
1282                                                       elfcpp::SHT_HASH,
1283                                                       elfcpp::SHF_ALLOC);
1284
1285   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1286                                                                hashlen,
1287                                                                align);
1288   hashsec->add_output_section_data(hashdata);
1289
1290   hashsec->set_link_section(dynsym);
1291   hashsec->set_entsize(4);
1292
1293   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1294 }
1295
1296 // Create the version sections.
1297
1298 void
1299 Layout::create_version_sections(const Versions* versions,
1300                                 const Symbol_table* symtab,
1301                                 unsigned int local_symcount,
1302                                 const std::vector<Symbol*>& dynamic_symbols,
1303                                 const Output_section* dynstr)
1304 {
1305   if (!versions->any_defs() && !versions->any_needs())
1306     return;
1307
1308   if (parameters->get_size() == 32)
1309     {
1310       if (parameters->is_big_endian())
1311         {
1312 #ifdef HAVE_TARGET_32_BIG
1313           this->sized_create_version_sections
1314               SELECT_SIZE_ENDIAN_NAME(32, true)(
1315                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1316                   SELECT_SIZE_ENDIAN(32, true));
1317 #else
1318           gold_unreachable();
1319 #endif
1320         }
1321       else
1322         {
1323 #ifdef HAVE_TARGET_32_LITTLE
1324           this->sized_create_version_sections
1325               SELECT_SIZE_ENDIAN_NAME(32, false)(
1326                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1327                   SELECT_SIZE_ENDIAN(32, false));
1328 #else
1329           gold_unreachable();
1330 #endif
1331         }
1332     }
1333   else if (parameters->get_size() == 64)
1334     {
1335       if (parameters->is_big_endian())
1336         {
1337 #ifdef HAVE_TARGET_64_BIG
1338           this->sized_create_version_sections
1339               SELECT_SIZE_ENDIAN_NAME(64, true)(
1340                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1341                   SELECT_SIZE_ENDIAN(64, true));
1342 #else
1343           gold_unreachable();
1344 #endif
1345         }
1346       else
1347         {
1348 #ifdef HAVE_TARGET_64_LITTLE
1349           this->sized_create_version_sections
1350               SELECT_SIZE_ENDIAN_NAME(64, false)(
1351                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1352                   SELECT_SIZE_ENDIAN(64, false));
1353 #else
1354           gold_unreachable();
1355 #endif
1356         }
1357     }
1358   else
1359     gold_unreachable();
1360 }
1361
1362 // Create the version sections, sized version.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Layout::sized_create_version_sections(
1367     const Versions* versions,
1368     const Symbol_table* symtab,
1369     unsigned int local_symcount,
1370     const std::vector<Symbol*>& dynamic_symbols,
1371     const Output_section* dynstr
1372     ACCEPT_SIZE_ENDIAN)
1373 {
1374   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1375   Output_section* vsec = this->make_output_section(vname,
1376                                                    elfcpp::SHT_GNU_versym,
1377                                                    elfcpp::SHF_ALLOC);
1378
1379   unsigned char* vbuf;
1380   unsigned int vsize;
1381   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1382       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1383       SELECT_SIZE_ENDIAN(size, big_endian));
1384
1385   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1386
1387   vsec->add_output_section_data(vdata);
1388   vsec->set_entsize(2);
1389   vsec->set_link_section(this->dynsym_section_);
1390
1391   Output_data_dynamic* const odyn = this->dynamic_data_;
1392   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1393
1394   if (versions->any_defs())
1395     {
1396       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1397       Output_section *vdsec;
1398       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1399                                         elfcpp::SHF_ALLOC);
1400
1401       unsigned char* vdbuf;
1402       unsigned int vdsize;
1403       unsigned int vdentries;
1404       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1405           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1406           SELECT_SIZE_ENDIAN(size, big_endian));
1407
1408       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1409                                                                  vdsize,
1410                                                                  4);
1411
1412       vdsec->add_output_section_data(vddata);
1413       vdsec->set_link_section(dynstr);
1414       vdsec->set_info(vdentries);
1415
1416       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1417       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1418     }
1419
1420   if (versions->any_needs())
1421     {
1422       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1423       Output_section* vnsec;
1424       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1425                                         elfcpp::SHF_ALLOC);
1426
1427       unsigned char* vnbuf;
1428       unsigned int vnsize;
1429       unsigned int vnentries;
1430       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1431         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1432          SELECT_SIZE_ENDIAN(size, big_endian));
1433
1434       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1435                                                                  vnsize,
1436                                                                  4);
1437
1438       vnsec->add_output_section_data(vndata);
1439       vnsec->set_link_section(dynstr);
1440       vnsec->set_info(vnentries);
1441
1442       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1443       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1444     }
1445 }
1446
1447 // Create the .interp section and PT_INTERP segment.
1448
1449 void
1450 Layout::create_interp(const Target* target)
1451 {
1452   const char* interp = this->options_.dynamic_linker();
1453   if (interp == NULL)
1454     {
1455       interp = target->dynamic_linker();
1456       gold_assert(interp != NULL);
1457     }
1458
1459   size_t len = strlen(interp) + 1;
1460
1461   Output_section_data* odata = new Output_data_const(interp, len, 1);
1462
1463   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1464   Output_section* osec = this->make_output_section(interp_name,
1465                                                    elfcpp::SHT_PROGBITS,
1466                                                    elfcpp::SHF_ALLOC);
1467   osec->add_output_section_data(odata);
1468
1469   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1470   this->segment_list_.push_back(oseg);
1471   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1472 }
1473
1474 // Finish the .dynamic section and PT_DYNAMIC segment.
1475
1476 void
1477 Layout::finish_dynamic_section(const Input_objects* input_objects,
1478                                const Symbol_table* symtab)
1479 {
1480   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1481                                             elfcpp::PF_R | elfcpp::PF_W);
1482   this->segment_list_.push_back(oseg);
1483   oseg->add_initial_output_section(this->dynamic_section_,
1484                                    elfcpp::PF_R | elfcpp::PF_W);
1485
1486   Output_data_dynamic* const odyn = this->dynamic_data_;
1487
1488   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1489        p != input_objects->dynobj_end();
1490        ++p)
1491     {
1492       // FIXME: Handle --as-needed.
1493       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1494     }
1495
1496   // FIXME: Support --init and --fini.
1497   Symbol* sym = symtab->lookup("_init");
1498   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1499     odyn->add_symbol(elfcpp::DT_INIT, sym);
1500
1501   sym = symtab->lookup("_fini");
1502   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1503     odyn->add_symbol(elfcpp::DT_FINI, sym);
1504
1505   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1506
1507   // Add a DT_RPATH entry if needed.
1508   const General_options::Dir_list& rpath(this->options_.rpath());
1509   if (!rpath.empty())
1510     {
1511       std::string rpath_val;
1512       for (General_options::Dir_list::const_iterator p = rpath.begin();
1513            p != rpath.end();
1514            ++p)
1515         {
1516           if (rpath_val.empty())
1517             rpath_val = p->name();
1518           else
1519             {
1520               // Eliminate duplicates.
1521               General_options::Dir_list::const_iterator q;
1522               for (q = rpath.begin(); q != p; ++q)
1523                 if (q->name() == p->name())
1524                   break;
1525               if (q == p)
1526                 {
1527                   rpath_val += ':';
1528                   rpath_val += p->name();
1529                 }
1530             }
1531         }
1532
1533       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1534     }
1535 }
1536
1537 // The mapping of .gnu.linkonce section names to real section names.
1538
1539 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1540 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1541 {
1542   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1543   MAPPING_INIT("t", ".text"),
1544   MAPPING_INIT("r", ".rodata"),
1545   MAPPING_INIT("d", ".data"),
1546   MAPPING_INIT("b", ".bss"),
1547   MAPPING_INIT("s", ".sdata"),
1548   MAPPING_INIT("sb", ".sbss"),
1549   MAPPING_INIT("s2", ".sdata2"),
1550   MAPPING_INIT("sb2", ".sbss2"),
1551   MAPPING_INIT("wi", ".debug_info"),
1552   MAPPING_INIT("td", ".tdata"),
1553   MAPPING_INIT("tb", ".tbss"),
1554   MAPPING_INIT("lr", ".lrodata"),
1555   MAPPING_INIT("l", ".ldata"),
1556   MAPPING_INIT("lb", ".lbss"),
1557 };
1558 #undef MAPPING_INIT
1559
1560 const int Layout::linkonce_mapping_count =
1561   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1562
1563 // Return the name of the output section to use for a .gnu.linkonce
1564 // section.  This is based on the default ELF linker script of the old
1565 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1566 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1567 // initialized to the length of NAME.
1568
1569 const char*
1570 Layout::linkonce_output_name(const char* name, size_t *plen)
1571 {
1572   const char* s = name + sizeof(".gnu.linkonce") - 1;
1573   if (*s != '.')
1574     return name;
1575   ++s;
1576   const Linkonce_mapping* plm = linkonce_mapping;
1577   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1578     {
1579       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1580         {
1581           *plen = plm->tolen;
1582           return plm->to;
1583         }
1584     }
1585   return name;
1586 }
1587
1588 // Choose the output section name to use given an input section name.
1589 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1590 // length of NAME.
1591
1592 const char*
1593 Layout::output_section_name(const char* name, size_t* plen)
1594 {
1595   if (Layout::is_linkonce(name))
1596     {
1597       // .gnu.linkonce sections are laid out as though they were named
1598       // for the sections are placed into.
1599       return Layout::linkonce_output_name(name, plen);
1600     }
1601
1602   // gcc 4.3 generates the following sorts of section names when it
1603   // needs a section name specific to a function:
1604   //   .text.FN
1605   //   .rodata.FN
1606   //   .sdata2.FN
1607   //   .data.FN
1608   //   .data.rel.FN
1609   //   .data.rel.local.FN
1610   //   .data.rel.ro.FN
1611   //   .data.rel.ro.local.FN
1612   //   .sdata.FN
1613   //   .bss.FN
1614   //   .sbss.FN
1615   //   .tdata.FN
1616   //   .tbss.FN
1617
1618   // The GNU linker maps all of those to the part before the .FN,
1619   // except that .data.rel.local.FN is mapped to .data, and
1620   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1621   // beginning with .data.rel.ro.local are grouped together.
1622
1623   // For an anonymous namespace, the string FN can contain a '.'.
1624
1625   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1626   // GNU linker maps to .rodata.
1627
1628   // The .data.rel.ro sections enable a security feature triggered by
1629   // the -z relro option.  Section which need to be relocated at
1630   // program startup time but which may be readonly after startup are
1631   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1632   // segment.  The dynamic linker will make that segment writable,
1633   // perform relocations, and then make it read-only.  FIXME: We do
1634   // not yet implement this optimization.
1635
1636   // It is hard to handle this in a principled way.
1637
1638   // These are the rules we follow:
1639
1640   // If the section name has no initial '.', or no dot other than an
1641   // initial '.', we use the name unchanged (i.e., "mysection" and
1642   // ".text" are unchanged).
1643
1644   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1645
1646   // Otherwise, we drop the second '.' and everything that comes after
1647   // it (i.e., ".text.XXX" becomes ".text").
1648
1649   const char* s = name;
1650   if (*s != '.')
1651     return name;
1652   ++s;
1653   const char* sdot = strchr(s, '.');
1654   if (sdot == NULL)
1655     return name;
1656
1657   const char* const data_rel_ro = ".data.rel.ro";
1658   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1659     {
1660       *plen = strlen(data_rel_ro);
1661       return data_rel_ro;
1662     }
1663
1664   *plen = sdot - name;
1665   return name;
1666 }
1667
1668 // Record the signature of a comdat section, and return whether to
1669 // include it in the link.  If GROUP is true, this is a regular
1670 // section group.  If GROUP is false, this is a group signature
1671 // derived from the name of a linkonce section.  We want linkonce
1672 // signatures and group signatures to block each other, but we don't
1673 // want a linkonce signature to block another linkonce signature.
1674
1675 bool
1676 Layout::add_comdat(const char* signature, bool group)
1677 {
1678   std::string sig(signature);
1679   std::pair<Signatures::iterator, bool> ins(
1680     this->signatures_.insert(std::make_pair(sig, group)));
1681
1682   if (ins.second)
1683     {
1684       // This is the first time we've seen this signature.
1685       return true;
1686     }
1687
1688   if (ins.first->second)
1689     {
1690       // We've already seen a real section group with this signature.
1691       return false;
1692     }
1693   else if (group)
1694     {
1695       // This is a real section group, and we've already seen a
1696       // linkonce section with this signature.  Record that we've seen
1697       // a section group, and don't include this section group.
1698       ins.first->second = true;
1699       return false;
1700     }
1701   else
1702     {
1703       // We've already seen a linkonce section and this is a linkonce
1704       // section.  These don't block each other--this may be the same
1705       // symbol name with different section types.
1706       return true;
1707     }
1708 }
1709
1710 // Write out data not associated with a section or the symbol table.
1711
1712 void
1713 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1714 {
1715   if (!parameters->strip_all())
1716     {
1717       const Output_section* symtab_section = this->symtab_section_;
1718       for (Section_list::const_iterator p = this->section_list_.begin();
1719            p != this->section_list_.end();
1720            ++p)
1721         {
1722           if ((*p)->needs_symtab_index())
1723             {
1724               gold_assert(symtab_section != NULL);
1725               unsigned int index = (*p)->symtab_index();
1726               gold_assert(index > 0 && index != -1U);
1727               off_t off = (symtab_section->offset()
1728                            + index * symtab_section->entsize());
1729               symtab->write_section_symbol(*p, of, off);
1730             }
1731         }
1732     }
1733
1734   const Output_section* dynsym_section = this->dynsym_section_;
1735   for (Section_list::const_iterator p = this->section_list_.begin();
1736        p != this->section_list_.end();
1737        ++p)
1738     {
1739       if ((*p)->needs_dynsym_index())
1740         {
1741           gold_assert(dynsym_section != NULL);
1742           unsigned int index = (*p)->dynsym_index();
1743           gold_assert(index > 0 && index != -1U);
1744           off_t off = (dynsym_section->offset()
1745                        + index * dynsym_section->entsize());
1746           symtab->write_section_symbol(*p, of, off);
1747         }
1748     }
1749
1750   // Write out the Output_sections.  Most won't have anything to
1751   // write, since most of the data will come from input sections which
1752   // are handled elsewhere.  But some Output_sections do have
1753   // Output_data.
1754   for (Section_list::const_iterator p = this->section_list_.begin();
1755        p != this->section_list_.end();
1756        ++p)
1757     (*p)->write(of);
1758
1759   // Write out the Output_data which are not in an Output_section.
1760   for (Data_list::const_iterator p = this->special_output_list_.begin();
1761        p != this->special_output_list_.end();
1762        ++p)
1763     (*p)->write(of);
1764 }
1765
1766 // Write_data_task methods.
1767
1768 // We can always run this task.
1769
1770 Task::Is_runnable_type
1771 Write_data_task::is_runnable(Workqueue*)
1772 {
1773   return IS_RUNNABLE;
1774 }
1775
1776 // We need to unlock FINAL_BLOCKER when finished.
1777
1778 Task_locker*
1779 Write_data_task::locks(Workqueue* workqueue)
1780 {
1781   return new Task_locker_block(*this->final_blocker_, workqueue);
1782 }
1783
1784 // Run the task--write out the data.
1785
1786 void
1787 Write_data_task::run(Workqueue*)
1788 {
1789   this->layout_->write_data(this->symtab_, this->of_);
1790 }
1791
1792 // Write_symbols_task methods.
1793
1794 // We can always run this task.
1795
1796 Task::Is_runnable_type
1797 Write_symbols_task::is_runnable(Workqueue*)
1798 {
1799   return IS_RUNNABLE;
1800 }
1801
1802 // We need to unlock FINAL_BLOCKER when finished.
1803
1804 Task_locker*
1805 Write_symbols_task::locks(Workqueue* workqueue)
1806 {
1807   return new Task_locker_block(*this->final_blocker_, workqueue);
1808 }
1809
1810 // Run the task--write out the symbols.
1811
1812 void
1813 Write_symbols_task::run(Workqueue*)
1814 {
1815   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1816                                this->of_);
1817 }
1818
1819 // Close_task_runner methods.
1820
1821 // Run the task--close the file.
1822
1823 void
1824 Close_task_runner::run(Workqueue*)
1825 {
1826   this->of_->close();
1827 }
1828
1829 // Instantiate the templates we need.  We could use the configure
1830 // script to restrict this to only the ones for implemented targets.
1831
1832 #ifdef HAVE_TARGET_32_LITTLE
1833 template
1834 Output_section*
1835 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1836                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1837 #endif
1838
1839 #ifdef HAVE_TARGET_32_BIG
1840 template
1841 Output_section*
1842 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1843                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1844 #endif
1845
1846 #ifdef HAVE_TARGET_64_LITTLE
1847 template
1848 Output_section*
1849 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1850                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1851 #endif
1852
1853 #ifdef HAVE_TARGET_64_BIG
1854 template
1855 Output_section*
1856 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1857                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1858 #endif
1859
1860
1861 } // End namespace gold.