Fix extraneous warning about executable stack.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244  public:
245   Hash_task(const unsigned char* src,
246             size_t size,
247             unsigned char* dst,
248             Task_token* build_id_blocker,
249             Task_token* final_blocker)
250     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251       final_blocker_(final_blocker)
252   { }
253
254   void
255   run(Workqueue*)
256   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258   Task_token*
259   is_runnable();
260
261   // Unblock FINAL_BLOCKER_ when done.
262   void
263   locks(Task_locker* tl)
264   { tl->add(this, this->final_blocker_); }
265
266   std::string
267   get_name() const
268   { return "Hash_task"; }
269
270  private:
271   const unsigned char* const src_;
272   const size_t size_;
273   unsigned char* const dst_;
274   Task_token* const build_id_blocker_;
275   Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281   if (this->build_id_blocker_->is_blocked())
282     return this->build_id_blocker_;
283   return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     array_of_hashes_(NULL),
453     size_of_array_of_hashes_(0),
454     input_view_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     script_output_section_data_list_(),
473     segment_states_(NULL),
474     relaxation_debug_check_(NULL),
475     section_order_map_(),
476     section_segment_map_(),
477     input_section_position_(),
478     input_section_glob_(),
479     incremental_base_(NULL),
480     free_list_()
481 {
482   // Make space for more than enough segments for a typical file.
483   // This is just for efficiency--it's OK if we wind up needing more.
484   this->segment_list_.reserve(12);
485
486   // We expect two unattached Output_data objects: the file header and
487   // the segment headers.
488   this->special_output_list_.reserve(2);
489
490   // Initialize structure needed for an incremental build.
491   if (parameters->incremental())
492     this->incremental_inputs_ = new Incremental_inputs;
493
494   // The section name pool is worth optimizing in all cases, because
495   // it is small, but there are often overlaps due to .rel sections.
496   this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504   this->incremental_base_ = base;
505   this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513  return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523   "abbrev",
524   "addr",         // Fission extension
525   // "aranges",   // not used by gdb as of 7.4
526   "frame",
527   "gdb_scripts",
528   "info",
529   "types",
530   "line",
531   "loc",
532   "macinfo",
533   "macro",
534   // "pubnames",  // not used by gdb as of 7.4
535   // "pubtypes",  // not used by gdb as of 7.4
536   // "gnu_pubnames",  // Fission extension
537   // "gnu_pubtypes",  // Fission extension
538   "ranges",
539   "str",
540   "str_offsets",
541 };
542
543 // This is the minimum set of sections needed for line numbers.
544
545 static const char* lines_only_debug_sections[] =
546 {
547   "abbrev",
548   // "addr",      // Fission extension
549   // "aranges",   // not used by gdb as of 7.4
550   // "frame",
551   // "gdb_scripts",
552   "info",
553   // "types",
554   "line",
555   // "loc",
556   // "macinfo",
557   // "macro",
558   // "pubnames",  // not used by gdb as of 7.4
559   // "pubtypes",  // not used by gdb as of 7.4
560   // "gnu_pubnames",  // Fission extension
561   // "gnu_pubtypes",  // Fission extension
562   // "ranges",
563   "str",
564   "str_offsets",  // Fission extension
565 };
566
567 // These sections are the DWARF fast-lookup tables, and are not needed
568 // when building a .gdb_index section.
569
570 static const char* gdb_fast_lookup_sections[] =
571 {
572   "aranges",
573   "pubnames",
574   "gnu_pubnames",
575   "pubtypes",
576   "gnu_pubtypes",
577 };
578
579 // Returns whether the given debug section is in the list of
580 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
581 // portion of the name following ".debug_" or ".zdebug_".
582
583 static inline bool
584 is_gdb_debug_section(const char* suffix)
585 {
586   // We can do this faster: binary search or a hashtable.  But why bother?
587   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
588     if (strcmp(suffix, gdb_sections[i]) == 0)
589       return true;
590   return false;
591 }
592
593 // Returns whether the given section is needed for lines-only debugging.
594
595 static inline bool
596 is_lines_only_debug_section(const char* suffix)
597 {
598   // We can do this faster: binary search or a hashtable.  But why bother?
599   for (size_t i = 0;
600        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
601        ++i)
602     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
603       return true;
604   return false;
605 }
606
607 // Returns whether the given section is a fast-lookup section that
608 // will not be needed when building a .gdb_index section.
609
610 static inline bool
611 is_gdb_fast_lookup_section(const char* suffix)
612 {
613   // We can do this faster: binary search or a hashtable.  But why bother?
614   for (size_t i = 0;
615        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
616        ++i)
617     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
618       return true;
619   return false;
620 }
621
622 // Sometimes we compress sections.  This is typically done for
623 // sections that are not part of normal program execution (such as
624 // .debug_* sections), and where the readers of these sections know
625 // how to deal with compressed sections.  This routine doesn't say for
626 // certain whether we'll compress -- it depends on commandline options
627 // as well -- just whether this section is a candidate for compression.
628 // (The Output_compressed_section class decides whether to compress
629 // a given section, and picks the name of the compressed section.)
630
631 static bool
632 is_compressible_debug_section(const char* secname)
633 {
634   return (is_prefix_of(".debug", secname));
635 }
636
637 // We may see compressed debug sections in input files.  Return TRUE
638 // if this is the name of a compressed debug section.
639
640 bool
641 is_compressed_debug_section(const char* secname)
642 {
643   return (is_prefix_of(".zdebug", secname));
644 }
645
646 // Whether to include this section in the link.
647
648 template<int size, bool big_endian>
649 bool
650 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
651                         const elfcpp::Shdr<size, big_endian>& shdr)
652 {
653   if (!parameters->options().relocatable()
654       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
655     return false;
656
657   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
658
659   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
660       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
661     return parameters->target().should_include_section(sh_type);
662
663   switch (sh_type)
664     {
665     case elfcpp::SHT_NULL:
666     case elfcpp::SHT_SYMTAB:
667     case elfcpp::SHT_DYNSYM:
668     case elfcpp::SHT_HASH:
669     case elfcpp::SHT_DYNAMIC:
670     case elfcpp::SHT_SYMTAB_SHNDX:
671       return false;
672
673     case elfcpp::SHT_STRTAB:
674       // Discard the sections which have special meanings in the ELF
675       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
676       // checking the sh_link fields of the appropriate sections.
677       return (strcmp(name, ".dynstr") != 0
678               && strcmp(name, ".strtab") != 0
679               && strcmp(name, ".shstrtab") != 0);
680
681     case elfcpp::SHT_RELA:
682     case elfcpp::SHT_REL:
683     case elfcpp::SHT_GROUP:
684       // If we are emitting relocations these should be handled
685       // elsewhere.
686       gold_assert(!parameters->options().relocatable());
687       return false;
688
689     case elfcpp::SHT_PROGBITS:
690       if (parameters->options().strip_debug()
691           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
692         {
693           if (is_debug_info_section(name))
694             return false;
695         }
696       if (parameters->options().strip_debug_non_line()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           // Debugging sections can only be recognized by name.
700           if (is_prefix_of(".debug_", name)
701               && !is_lines_only_debug_section(name + 7))
702             return false;
703           if (is_prefix_of(".zdebug_", name)
704               && !is_lines_only_debug_section(name + 8))
705             return false;
706         }
707       if (parameters->options().strip_debug_gdb()
708           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709         {
710           // Debugging sections can only be recognized by name.
711           if (is_prefix_of(".debug_", name)
712               && !is_gdb_debug_section(name + 7))
713             return false;
714           if (is_prefix_of(".zdebug_", name)
715               && !is_gdb_debug_section(name + 8))
716             return false;
717         }
718       if (parameters->options().gdb_index()
719           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720         {
721           // When building .gdb_index, we can strip .debug_pubnames,
722           // .debug_pubtypes, and .debug_aranges sections.
723           if (is_prefix_of(".debug_", name)
724               && is_gdb_fast_lookup_section(name + 7))
725             return false;
726           if (is_prefix_of(".zdebug_", name)
727               && is_gdb_fast_lookup_section(name + 8))
728             return false;
729         }
730       if (parameters->options().strip_lto_sections()
731           && !parameters->options().relocatable()
732           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733         {
734           // Ignore LTO sections containing intermediate code.
735           if (is_prefix_of(".gnu.lto_", name))
736             return false;
737         }
738       // The GNU linker strips .gnu_debuglink sections, so we do too.
739       // This is a feature used to keep debugging information in
740       // separate files.
741       if (strcmp(name, ".gnu_debuglink") == 0)
742         return false;
743       return true;
744
745     default:
746       return true;
747     }
748 }
749
750 // Return an output section named NAME, or NULL if there is none.
751
752 Output_section*
753 Layout::find_output_section(const char* name) const
754 {
755   for (Section_list::const_iterator p = this->section_list_.begin();
756        p != this->section_list_.end();
757        ++p)
758     if (strcmp((*p)->name(), name) == 0)
759       return *p;
760   return NULL;
761 }
762
763 // Return an output segment of type TYPE, with segment flags SET set
764 // and segment flags CLEAR clear.  Return NULL if there is none.
765
766 Output_segment*
767 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
768                             elfcpp::Elf_Word clear) const
769 {
770   for (Segment_list::const_iterator p = this->segment_list_.begin();
771        p != this->segment_list_.end();
772        ++p)
773     if (static_cast<elfcpp::PT>((*p)->type()) == type
774         && ((*p)->flags() & set) == set
775         && ((*p)->flags() & clear) == 0)
776       return *p;
777   return NULL;
778 }
779
780 // When we put a .ctors or .dtors section with more than one word into
781 // a .init_array or .fini_array section, we need to reverse the words
782 // in the .ctors/.dtors section.  This is because .init_array executes
783 // constructors front to back, where .ctors executes them back to
784 // front, and vice-versa for .fini_array/.dtors.  Although we do want
785 // to remap .ctors/.dtors into .init_array/.fini_array because it can
786 // be more efficient, we don't want to change the order in which
787 // constructors/destructors are run.  This set just keeps track of
788 // these sections which need to be reversed.  It is only changed by
789 // Layout::layout.  It should be a private member of Layout, but that
790 // would require layout.h to #include object.h to get the definition
791 // of Section_id.
792 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
793
794 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
795 // .init_array/.fini_array section.
796
797 bool
798 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
799 {
800   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
801           != ctors_sections_in_init_array.end());
802 }
803
804 // Return the output section to use for section NAME with type TYPE
805 // and section flags FLAGS.  NAME must be canonicalized in the string
806 // pool, and NAME_KEY is the key.  ORDER is where this should appear
807 // in the output sections.  IS_RELRO is true for a relro section.
808
809 Output_section*
810 Layout::get_output_section(const char* name, Stringpool::Key name_key,
811                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
812                            Output_section_order order, bool is_relro)
813 {
814   elfcpp::Elf_Word lookup_type = type;
815
816   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
817   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
818   // .init_array, .fini_array, and .preinit_array sections by name
819   // whatever their type in the input file.  We do this because the
820   // types are not always right in the input files.
821   if (lookup_type == elfcpp::SHT_INIT_ARRAY
822       || lookup_type == elfcpp::SHT_FINI_ARRAY
823       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
824     lookup_type = elfcpp::SHT_PROGBITS;
825
826   elfcpp::Elf_Xword lookup_flags = flags;
827
828   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
829   // read-write with read-only sections.  Some other ELF linkers do
830   // not do this.  FIXME: Perhaps there should be an option
831   // controlling this.
832   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
833
834   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
835   const std::pair<Key, Output_section*> v(key, NULL);
836   std::pair<Section_name_map::iterator, bool> ins(
837     this->section_name_map_.insert(v));
838
839   if (!ins.second)
840     return ins.first->second;
841   else
842     {
843       // This is the first time we've seen this name/type/flags
844       // combination.  For compatibility with the GNU linker, we
845       // combine sections with contents and zero flags with sections
846       // with non-zero flags.  This is a workaround for cases where
847       // assembler code forgets to set section flags.  FIXME: Perhaps
848       // there should be an option to control this.
849       Output_section* os = NULL;
850
851       if (lookup_type == elfcpp::SHT_PROGBITS)
852         {
853           if (flags == 0)
854             {
855               Output_section* same_name = this->find_output_section(name);
856               if (same_name != NULL
857                   && (same_name->type() == elfcpp::SHT_PROGBITS
858                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
859                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
860                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
861                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
862                 os = same_name;
863             }
864           else if ((flags & elfcpp::SHF_TLS) == 0)
865             {
866               elfcpp::Elf_Xword zero_flags = 0;
867               const Key zero_key(name_key, std::make_pair(lookup_type,
868                                                           zero_flags));
869               Section_name_map::iterator p =
870                   this->section_name_map_.find(zero_key);
871               if (p != this->section_name_map_.end())
872                 os = p->second;
873             }
874         }
875
876       if (os == NULL)
877         os = this->make_output_section(name, type, flags, order, is_relro);
878
879       ins.first->second = os;
880       return os;
881     }
882 }
883
884 // Returns TRUE iff NAME (an input section from RELOBJ) will
885 // be mapped to an output section that should be KEPT.
886
887 bool
888 Layout::keep_input_section(const Relobj* relobj, const char* name)
889 {
890   if (! this->script_options_->saw_sections_clause())
891     return false;
892
893   Script_sections* ss = this->script_options_->script_sections();
894   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
895   Output_section** output_section_slot;
896   Script_sections::Section_type script_section_type;
897   bool keep;
898
899   name = ss->output_section_name(file_name, name, &output_section_slot,
900                                  &script_section_type, &keep);
901   return name != NULL && keep;
902 }
903
904 // Clear the input section flags that should not be copied to the
905 // output section.
906
907 elfcpp::Elf_Xword
908 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
909 {
910   // Some flags in the input section should not be automatically
911   // copied to the output section.
912   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
913                             | elfcpp::SHF_GROUP
914                             | elfcpp::SHF_MERGE
915                             | elfcpp::SHF_STRINGS);
916
917   // We only clear the SHF_LINK_ORDER flag in for
918   // a non-relocatable link.
919   if (!parameters->options().relocatable())
920     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
921
922   return input_section_flags;
923 }
924
925 // Pick the output section to use for section NAME, in input file
926 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
927 // linker created section.  IS_INPUT_SECTION is true if we are
928 // choosing an output section for an input section found in a input
929 // file.  ORDER is where this section should appear in the output
930 // sections.  IS_RELRO is true for a relro section.  This will return
931 // NULL if the input section should be discarded.
932
933 Output_section*
934 Layout::choose_output_section(const Relobj* relobj, const char* name,
935                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
936                               bool is_input_section, Output_section_order order,
937                               bool is_relro)
938 {
939   // We should not see any input sections after we have attached
940   // sections to segments.
941   gold_assert(!is_input_section || !this->sections_are_attached_);
942
943   flags = this->get_output_section_flags(flags);
944
945   if (this->script_options_->saw_sections_clause())
946     {
947       // We are using a SECTIONS clause, so the output section is
948       // chosen based only on the name.
949
950       Script_sections* ss = this->script_options_->script_sections();
951       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
952       Output_section** output_section_slot;
953       Script_sections::Section_type script_section_type;
954       const char* orig_name = name;
955       bool keep;
956       name = ss->output_section_name(file_name, name, &output_section_slot,
957                                      &script_section_type, &keep);
958
959       if (name == NULL)
960         {
961           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
962                                      "because it is not allowed by the "
963                                      "SECTIONS clause of the linker script"),
964                      orig_name);
965           // The SECTIONS clause says to discard this input section.
966           return NULL;
967         }
968
969       // We can only handle script section types ST_NONE and ST_NOLOAD.
970       switch (script_section_type)
971         {
972         case Script_sections::ST_NONE:
973           break;
974         case Script_sections::ST_NOLOAD:
975           flags &= elfcpp::SHF_ALLOC;
976           break;
977         default:
978           gold_unreachable();
979         }
980
981       // If this is an orphan section--one not mentioned in the linker
982       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
983       // default processing below.
984
985       if (output_section_slot != NULL)
986         {
987           if (*output_section_slot != NULL)
988             {
989               (*output_section_slot)->update_flags_for_input_section(flags);
990               return *output_section_slot;
991             }
992
993           // We don't put sections found in the linker script into
994           // SECTION_NAME_MAP_.  That keeps us from getting confused
995           // if an orphan section is mapped to a section with the same
996           // name as one in the linker script.
997
998           name = this->namepool_.add(name, false, NULL);
999
1000           Output_section* os = this->make_output_section(name, type, flags,
1001                                                          order, is_relro);
1002
1003           os->set_found_in_sections_clause();
1004
1005           // Special handling for NOLOAD sections.
1006           if (script_section_type == Script_sections::ST_NOLOAD)
1007             {
1008               os->set_is_noload();
1009
1010               // The constructor of Output_section sets addresses of non-ALLOC
1011               // sections to 0 by default.  We don't want that for NOLOAD
1012               // sections even if they have no SHF_ALLOC flag.
1013               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1014                   && os->is_address_valid())
1015                 {
1016                   gold_assert(os->address() == 0
1017                               && !os->is_offset_valid()
1018                               && !os->is_data_size_valid());
1019                   os->reset_address_and_file_offset();
1020                 }
1021             }
1022
1023           *output_section_slot = os;
1024           return os;
1025         }
1026     }
1027
1028   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1029
1030   size_t len = strlen(name);
1031   char* uncompressed_name = NULL;
1032
1033   // Compressed debug sections should be mapped to the corresponding
1034   // uncompressed section.
1035   if (is_compressed_debug_section(name))
1036     {
1037       uncompressed_name = new char[len];
1038       uncompressed_name[0] = '.';
1039       gold_assert(name[0] == '.' && name[1] == 'z');
1040       strncpy(&uncompressed_name[1], &name[2], len - 2);
1041       uncompressed_name[len - 1] = '\0';
1042       len -= 1;
1043       name = uncompressed_name;
1044     }
1045
1046   // Turn NAME from the name of the input section into the name of the
1047   // output section.
1048   if (is_input_section
1049       && !this->script_options_->saw_sections_clause()
1050       && !parameters->options().relocatable())
1051     {
1052       const char *orig_name = name;
1053       name = parameters->target().output_section_name(relobj, name, &len);
1054       if (name == NULL)
1055         name = Layout::output_section_name(relobj, orig_name, &len);
1056     }
1057
1058   Stringpool::Key name_key;
1059   name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061   if (uncompressed_name != NULL)
1062     delete[] uncompressed_name;
1063
1064   // Find or make the output section.  The output section is selected
1065   // based on the section name, type, and flags.
1066   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1067 }
1068
1069 // For incremental links, record the initial fixed layout of a section
1070 // from the base file, and return a pointer to the Output_section.
1071
1072 template<int size, bool big_endian>
1073 Output_section*
1074 Layout::init_fixed_output_section(const char* name,
1075                                   elfcpp::Shdr<size, big_endian>& shdr)
1076 {
1077   unsigned int sh_type = shdr.get_sh_type();
1078
1079   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1080   // PRE_INIT_ARRAY, and NOTE sections.
1081   // All others will be created from scratch and reallocated.
1082   if (!can_incremental_update(sh_type))
1083     return NULL;
1084
1085   // If we're generating a .gdb_index section, we need to regenerate
1086   // it from scratch.
1087   if (parameters->options().gdb_index()
1088       && sh_type == elfcpp::SHT_PROGBITS
1089       && strcmp(name, ".gdb_index") == 0)
1090     return NULL;
1091
1092   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1093   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1094   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1095   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1096   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1097       shdr.get_sh_addralign();
1098
1099   // Make the output section.
1100   Stringpool::Key name_key;
1101   name = this->namepool_.add(name, true, &name_key);
1102   Output_section* os = this->get_output_section(name, name_key, sh_type,
1103                                                 sh_flags, ORDER_INVALID, false);
1104   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1105   if (sh_type != elfcpp::SHT_NOBITS)
1106     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1107   return os;
1108 }
1109
1110 // Return the index by which an input section should be ordered.  This
1111 // is used to sort some .text sections, for compatibility with GNU ld.
1112
1113 int
1114 Layout::special_ordering_of_input_section(const char* name)
1115 {
1116   // The GNU linker has some special handling for some sections that
1117   // wind up in the .text section.  Sections that start with these
1118   // prefixes must appear first, and must appear in the order listed
1119   // here.
1120   static const char* const text_section_sort[] =
1121   {
1122     ".text.unlikely",
1123     ".text.exit",
1124     ".text.startup",
1125     ".text.hot"
1126   };
1127
1128   for (size_t i = 0;
1129        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1130        i++)
1131     if (is_prefix_of(text_section_sort[i], name))
1132       return i;
1133
1134   return -1;
1135 }
1136
1137 // Return the output section to use for input section SHNDX, with name
1138 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1139 // index of a relocation section which applies to this section, or 0
1140 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1141 // relocation section if there is one.  Set *OFF to the offset of this
1142 // input section without the output section.  Return NULL if the
1143 // section should be discarded.  Set *OFF to -1 if the section
1144 // contents should not be written directly to the output file, but
1145 // will instead receive special handling.
1146
1147 template<int size, bool big_endian>
1148 Output_section*
1149 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1150                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1151                unsigned int reloc_shndx, unsigned int, off_t* off)
1152 {
1153   *off = 0;
1154
1155   if (!this->include_section(object, name, shdr))
1156     return NULL;
1157
1158   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1159
1160   // In a relocatable link a grouped section must not be combined with
1161   // any other sections.
1162   Output_section* os;
1163   if (parameters->options().relocatable()
1164       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1165     {
1166       name = this->namepool_.add(name, true, NULL);
1167       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1168                                      ORDER_INVALID, false);
1169     }
1170   else
1171     {
1172       // Plugins can choose to place one or more subsets of sections in
1173       // unique segments and this is done by mapping these section subsets
1174       // to unique output sections.  Check if this section needs to be
1175       // remapped to a unique output section.
1176       Section_segment_map::iterator it
1177           = this->section_segment_map_.find(Const_section_id(object, shndx));
1178       if (it == this->section_segment_map_.end())
1179         {
1180           os = this->choose_output_section(object, name, sh_type,
1181                                            shdr.get_sh_flags(), true,
1182                                            ORDER_INVALID, false);
1183         }
1184       else
1185         {
1186           // We know the name of the output section, directly call
1187           // get_output_section here by-passing choose_output_section.
1188           elfcpp::Elf_Xword flags
1189             = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191           const char* os_name = it->second->name;
1192           Stringpool::Key name_key;
1193           os_name = this->namepool_.add(os_name, true, &name_key);
1194           os = this->get_output_section(os_name, name_key, sh_type, flags,
1195                                         ORDER_INVALID, false);
1196           if (!os->is_unique_segment())
1197             {
1198               os->set_is_unique_segment();
1199               os->set_extra_segment_flags(it->second->flags);
1200               os->set_segment_alignment(it->second->align);
1201             }
1202         }
1203       if (os == NULL)
1204         return NULL;
1205     }
1206
1207   // By default the GNU linker sorts input sections whose names match
1208   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1209   // sections are sorted by name.  This is used to implement
1210   // constructor priority ordering.  We are compatible.  When we put
1211   // .ctor sections in .init_array and .dtor sections in .fini_array,
1212   // we must also sort plain .ctor and .dtor sections.
1213   if (!this->script_options_->saw_sections_clause()
1214       && !parameters->options().relocatable()
1215       && (is_prefix_of(".ctors.", name)
1216           || is_prefix_of(".dtors.", name)
1217           || is_prefix_of(".init_array.", name)
1218           || is_prefix_of(".fini_array.", name)
1219           || (parameters->options().ctors_in_init_array()
1220               && (strcmp(name, ".ctors") == 0
1221                   || strcmp(name, ".dtors") == 0))))
1222     os->set_must_sort_attached_input_sections();
1223
1224   // By default the GNU linker sorts some special text sections ahead
1225   // of others.  We are compatible.
1226   if (parameters->options().text_reorder()
1227       && !this->script_options_->saw_sections_clause()
1228       && !this->is_section_ordering_specified()
1229       && !parameters->options().relocatable()
1230       && Layout::special_ordering_of_input_section(name) >= 0)
1231     os->set_must_sort_attached_input_sections();
1232
1233   // If this is a .ctors or .ctors.* section being mapped to a
1234   // .init_array section, or a .dtors or .dtors.* section being mapped
1235   // to a .fini_array section, we will need to reverse the words if
1236   // there is more than one.  Record this section for later.  See
1237   // ctors_sections_in_init_array above.
1238   if (!this->script_options_->saw_sections_clause()
1239       && !parameters->options().relocatable()
1240       && shdr.get_sh_size() > size / 8
1241       && (((strcmp(name, ".ctors") == 0
1242             || is_prefix_of(".ctors.", name))
1243            && strcmp(os->name(), ".init_array") == 0)
1244           || ((strcmp(name, ".dtors") == 0
1245                || is_prefix_of(".dtors.", name))
1246               && strcmp(os->name(), ".fini_array") == 0)))
1247     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1248
1249   // FIXME: Handle SHF_LINK_ORDER somewhere.
1250
1251   elfcpp::Elf_Xword orig_flags = os->flags();
1252
1253   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1254                                this->script_options_->saw_sections_clause());
1255
1256   // If the flags changed, we may have to change the order.
1257   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1258     {
1259       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1260       elfcpp::Elf_Xword new_flags =
1261         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1262       if (orig_flags != new_flags)
1263         os->set_order(this->default_section_order(os, false));
1264     }
1265
1266   this->have_added_input_section_ = true;
1267
1268   return os;
1269 }
1270
1271 // Maps section SECN to SEGMENT s.
1272 void
1273 Layout::insert_section_segment_map(Const_section_id secn,
1274                                    Unique_segment_info *s)
1275 {
1276   gold_assert(this->unique_segment_for_sections_specified_);
1277   this->section_segment_map_[secn] = s;
1278 }
1279
1280 // Handle a relocation section when doing a relocatable link.
1281
1282 template<int size, bool big_endian>
1283 Output_section*
1284 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1285                      unsigned int,
1286                      const elfcpp::Shdr<size, big_endian>& shdr,
1287                      Output_section* data_section,
1288                      Relocatable_relocs* rr)
1289 {
1290   gold_assert(parameters->options().relocatable()
1291               || parameters->options().emit_relocs());
1292
1293   int sh_type = shdr.get_sh_type();
1294
1295   std::string name;
1296   if (sh_type == elfcpp::SHT_REL)
1297     name = ".rel";
1298   else if (sh_type == elfcpp::SHT_RELA)
1299     name = ".rela";
1300   else
1301     gold_unreachable();
1302   name += data_section->name();
1303
1304   // In a relocatable link relocs for a grouped section must not be
1305   // combined with other reloc sections.
1306   Output_section* os;
1307   if (!parameters->options().relocatable()
1308       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1309     os = this->choose_output_section(object, name.c_str(), sh_type,
1310                                      shdr.get_sh_flags(), false,
1311                                      ORDER_INVALID, false);
1312   else
1313     {
1314       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1315       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1316                                      ORDER_INVALID, false);
1317     }
1318
1319   os->set_should_link_to_symtab();
1320   os->set_info_section(data_section);
1321
1322   Output_section_data* posd;
1323   if (sh_type == elfcpp::SHT_REL)
1324     {
1325       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1326       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1327                                            size,
1328                                            big_endian>(rr);
1329     }
1330   else if (sh_type == elfcpp::SHT_RELA)
1331     {
1332       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1333       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1334                                            size,
1335                                            big_endian>(rr);
1336     }
1337   else
1338     gold_unreachable();
1339
1340   os->add_output_section_data(posd);
1341   rr->set_output_data(posd);
1342
1343   return os;
1344 }
1345
1346 // Handle a group section when doing a relocatable link.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Layout::layout_group(Symbol_table* symtab,
1351                      Sized_relobj_file<size, big_endian>* object,
1352                      unsigned int,
1353                      const char* group_section_name,
1354                      const char* signature,
1355                      const elfcpp::Shdr<size, big_endian>& shdr,
1356                      elfcpp::Elf_Word flags,
1357                      std::vector<unsigned int>* shndxes)
1358 {
1359   gold_assert(parameters->options().relocatable());
1360   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1361   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1362   Output_section* os = this->make_output_section(group_section_name,
1363                                                  elfcpp::SHT_GROUP,
1364                                                  shdr.get_sh_flags(),
1365                                                  ORDER_INVALID, false);
1366
1367   // We need to find a symbol with the signature in the symbol table.
1368   // If we don't find one now, we need to look again later.
1369   Symbol* sym = symtab->lookup(signature, NULL);
1370   if (sym != NULL)
1371     os->set_info_symndx(sym);
1372   else
1373     {
1374       // Reserve some space to minimize reallocations.
1375       if (this->group_signatures_.empty())
1376         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1377
1378       // We will wind up using a symbol whose name is the signature.
1379       // So just put the signature in the symbol name pool to save it.
1380       signature = symtab->canonicalize_name(signature);
1381       this->group_signatures_.push_back(Group_signature(os, signature));
1382     }
1383
1384   os->set_should_link_to_symtab();
1385   os->set_entsize(4);
1386
1387   section_size_type entry_count =
1388     convert_to_section_size_type(shdr.get_sh_size() / 4);
1389   Output_section_data* posd =
1390     new Output_data_group<size, big_endian>(object, entry_count, flags,
1391                                             shndxes);
1392   os->add_output_section_data(posd);
1393 }
1394
1395 // Special GNU handling of sections name .eh_frame.  They will
1396 // normally hold exception frame data as defined by the C++ ABI
1397 // (http://codesourcery.com/cxx-abi/).
1398
1399 template<int size, bool big_endian>
1400 Output_section*
1401 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1402                         const unsigned char* symbols,
1403                         off_t symbols_size,
1404                         const unsigned char* symbol_names,
1405                         off_t symbol_names_size,
1406                         unsigned int shndx,
1407                         const elfcpp::Shdr<size, big_endian>& shdr,
1408                         unsigned int reloc_shndx, unsigned int reloc_type,
1409                         off_t* off)
1410 {
1411   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1412               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1413   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1414
1415   Output_section* os = this->make_eh_frame_section(object);
1416   if (os == NULL)
1417     return NULL;
1418
1419   gold_assert(this->eh_frame_section_ == os);
1420
1421   elfcpp::Elf_Xword orig_flags = os->flags();
1422
1423   if (!parameters->incremental()
1424       && this->eh_frame_data_->add_ehframe_input_section(object,
1425                                                          symbols,
1426                                                          symbols_size,
1427                                                          symbol_names,
1428                                                          symbol_names_size,
1429                                                          shndx,
1430                                                          reloc_shndx,
1431                                                          reloc_type))
1432     {
1433       os->update_flags_for_input_section(shdr.get_sh_flags());
1434
1435       // A writable .eh_frame section is a RELRO section.
1436       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1437           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1438         {
1439           os->set_is_relro();
1440           os->set_order(ORDER_RELRO);
1441         }
1442
1443       // We found a .eh_frame section we are going to optimize, so now
1444       // we can add the set of optimized sections to the output
1445       // section.  We need to postpone adding this until we've found a
1446       // section we can optimize so that the .eh_frame section in
1447       // crtbegin.o winds up at the start of the output section.
1448       if (!this->added_eh_frame_data_)
1449         {
1450           os->add_output_section_data(this->eh_frame_data_);
1451           this->added_eh_frame_data_ = true;
1452         }
1453       *off = -1;
1454     }
1455   else
1456     {
1457       // We couldn't handle this .eh_frame section for some reason.
1458       // Add it as a normal section.
1459       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1460       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1461                                    reloc_shndx, saw_sections_clause);
1462       this->have_added_input_section_ = true;
1463
1464       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1465           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1466         os->set_order(this->default_section_order(os, false));
1467     }
1468
1469   return os;
1470 }
1471
1472 // Create and return the magic .eh_frame section.  Create
1473 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1474 // input .eh_frame section; it may be NULL.
1475
1476 Output_section*
1477 Layout::make_eh_frame_section(const Relobj* object)
1478 {
1479   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1480   // SHT_PROGBITS.
1481   Output_section* os = this->choose_output_section(object, ".eh_frame",
1482                                                    elfcpp::SHT_PROGBITS,
1483                                                    elfcpp::SHF_ALLOC, false,
1484                                                    ORDER_EHFRAME, false);
1485   if (os == NULL)
1486     return NULL;
1487
1488   if (this->eh_frame_section_ == NULL)
1489     {
1490       this->eh_frame_section_ = os;
1491       this->eh_frame_data_ = new Eh_frame();
1492
1493       // For incremental linking, we do not optimize .eh_frame sections
1494       // or create a .eh_frame_hdr section.
1495       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1496         {
1497           Output_section* hdr_os =
1498             this->choose_output_section(NULL, ".eh_frame_hdr",
1499                                         elfcpp::SHT_PROGBITS,
1500                                         elfcpp::SHF_ALLOC, false,
1501                                         ORDER_EHFRAME, false);
1502
1503           if (hdr_os != NULL)
1504             {
1505               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1506                                                         this->eh_frame_data_);
1507               hdr_os->add_output_section_data(hdr_posd);
1508
1509               hdr_os->set_after_input_sections();
1510
1511               if (!this->script_options_->saw_phdrs_clause())
1512                 {
1513                   Output_segment* hdr_oseg;
1514                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1515                                                        elfcpp::PF_R);
1516                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1517                                                           elfcpp::PF_R);
1518                 }
1519
1520               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1521             }
1522         }
1523     }
1524
1525   return os;
1526 }
1527
1528 // Add an exception frame for a PLT.  This is called from target code.
1529
1530 void
1531 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1532                              size_t cie_length, const unsigned char* fde_data,
1533                              size_t fde_length)
1534 {
1535   if (parameters->incremental())
1536     {
1537       // FIXME: Maybe this could work some day....
1538       return;
1539     }
1540   Output_section* os = this->make_eh_frame_section(NULL);
1541   if (os == NULL)
1542     return;
1543   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1544                                             fde_data, fde_length);
1545   if (!this->added_eh_frame_data_)
1546     {
1547       os->add_output_section_data(this->eh_frame_data_);
1548       this->added_eh_frame_data_ = true;
1549     }
1550 }
1551
1552 // Scan a .debug_info or .debug_types section, and add summary
1553 // information to the .gdb_index section.
1554
1555 template<int size, bool big_endian>
1556 void
1557 Layout::add_to_gdb_index(bool is_type_unit,
1558                          Sized_relobj<size, big_endian>* object,
1559                          const unsigned char* symbols,
1560                          off_t symbols_size,
1561                          unsigned int shndx,
1562                          unsigned int reloc_shndx,
1563                          unsigned int reloc_type)
1564 {
1565   if (this->gdb_index_data_ == NULL)
1566     {
1567       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1568                                                        elfcpp::SHT_PROGBITS, 0,
1569                                                        false, ORDER_INVALID,
1570                                                        false);
1571       if (os == NULL)
1572         return;
1573
1574       this->gdb_index_data_ = new Gdb_index(os);
1575       os->add_output_section_data(this->gdb_index_data_);
1576       os->set_after_input_sections();
1577     }
1578
1579   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1580                                          symbols_size, shndx, reloc_shndx,
1581                                          reloc_type);
1582 }
1583
1584 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1585 // the output section.
1586
1587 Output_section*
1588 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1589                                 elfcpp::Elf_Xword flags,
1590                                 Output_section_data* posd,
1591                                 Output_section_order order, bool is_relro)
1592 {
1593   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1594                                                    false, order, is_relro);
1595   if (os != NULL)
1596     os->add_output_section_data(posd);
1597   return os;
1598 }
1599
1600 // Map section flags to segment flags.
1601
1602 elfcpp::Elf_Word
1603 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1604 {
1605   elfcpp::Elf_Word ret = elfcpp::PF_R;
1606   if ((flags & elfcpp::SHF_WRITE) != 0)
1607     ret |= elfcpp::PF_W;
1608   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1609     ret |= elfcpp::PF_X;
1610   return ret;
1611 }
1612
1613 // Make a new Output_section, and attach it to segments as
1614 // appropriate.  ORDER is the order in which this section should
1615 // appear in the output segment.  IS_RELRO is true if this is a relro
1616 // (read-only after relocations) section.
1617
1618 Output_section*
1619 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1620                             elfcpp::Elf_Xword flags,
1621                             Output_section_order order, bool is_relro)
1622 {
1623   Output_section* os;
1624   if ((flags & elfcpp::SHF_ALLOC) == 0
1625       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1626       && is_compressible_debug_section(name))
1627     os = new Output_compressed_section(&parameters->options(), name, type,
1628                                        flags);
1629   else if ((flags & elfcpp::SHF_ALLOC) == 0
1630            && parameters->options().strip_debug_non_line()
1631            && strcmp(".debug_abbrev", name) == 0)
1632     {
1633       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1634           name, type, flags);
1635       if (this->debug_info_)
1636         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1637     }
1638   else if ((flags & elfcpp::SHF_ALLOC) == 0
1639            && parameters->options().strip_debug_non_line()
1640            && strcmp(".debug_info", name) == 0)
1641     {
1642       os = this->debug_info_ = new Output_reduced_debug_info_section(
1643           name, type, flags);
1644       if (this->debug_abbrev_)
1645         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1646     }
1647   else
1648     {
1649       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1650       // not have correct section types.  Force them here.
1651       if (type == elfcpp::SHT_PROGBITS)
1652         {
1653           if (is_prefix_of(".init_array", name))
1654             type = elfcpp::SHT_INIT_ARRAY;
1655           else if (is_prefix_of(".preinit_array", name))
1656             type = elfcpp::SHT_PREINIT_ARRAY;
1657           else if (is_prefix_of(".fini_array", name))
1658             type = elfcpp::SHT_FINI_ARRAY;
1659         }
1660
1661       // FIXME: const_cast is ugly.
1662       Target* target = const_cast<Target*>(&parameters->target());
1663       os = target->make_output_section(name, type, flags);
1664     }
1665
1666   // With -z relro, we have to recognize the special sections by name.
1667   // There is no other way.
1668   bool is_relro_local = false;
1669   if (!this->script_options_->saw_sections_clause()
1670       && parameters->options().relro()
1671       && (flags & elfcpp::SHF_ALLOC) != 0
1672       && (flags & elfcpp::SHF_WRITE) != 0)
1673     {
1674       if (type == elfcpp::SHT_PROGBITS)
1675         {
1676           if ((flags & elfcpp::SHF_TLS) != 0)
1677             is_relro = true;
1678           else if (strcmp(name, ".data.rel.ro") == 0)
1679             is_relro = true;
1680           else if (strcmp(name, ".data.rel.ro.local") == 0)
1681             {
1682               is_relro = true;
1683               is_relro_local = true;
1684             }
1685           else if (strcmp(name, ".ctors") == 0
1686                    || strcmp(name, ".dtors") == 0
1687                    || strcmp(name, ".jcr") == 0)
1688             is_relro = true;
1689         }
1690       else if (type == elfcpp::SHT_INIT_ARRAY
1691                || type == elfcpp::SHT_FINI_ARRAY
1692                || type == elfcpp::SHT_PREINIT_ARRAY)
1693         is_relro = true;
1694     }
1695
1696   if (is_relro)
1697     os->set_is_relro();
1698
1699   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1700     order = this->default_section_order(os, is_relro_local);
1701
1702   os->set_order(order);
1703
1704   parameters->target().new_output_section(os);
1705
1706   this->section_list_.push_back(os);
1707
1708   // The GNU linker by default sorts some sections by priority, so we
1709   // do the same.  We need to know that this might happen before we
1710   // attach any input sections.
1711   if (!this->script_options_->saw_sections_clause()
1712       && !parameters->options().relocatable()
1713       && (strcmp(name, ".init_array") == 0
1714           || strcmp(name, ".fini_array") == 0
1715           || (!parameters->options().ctors_in_init_array()
1716               && (strcmp(name, ".ctors") == 0
1717                   || strcmp(name, ".dtors") == 0))))
1718     os->set_may_sort_attached_input_sections();
1719
1720   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1721   // sections before other .text sections.  We are compatible.  We
1722   // need to know that this might happen before we attach any input
1723   // sections.
1724   if (parameters->options().text_reorder()
1725       && !this->script_options_->saw_sections_clause()
1726       && !this->is_section_ordering_specified()
1727       && !parameters->options().relocatable()
1728       && strcmp(name, ".text") == 0)
1729     os->set_may_sort_attached_input_sections();
1730
1731   // GNU linker sorts section by name with --sort-section=name.
1732   if (strcmp(parameters->options().sort_section(), "name") == 0)
1733       os->set_must_sort_attached_input_sections();
1734
1735   // Check for .stab*str sections, as .stab* sections need to link to
1736   // them.
1737   if (type == elfcpp::SHT_STRTAB
1738       && !this->have_stabstr_section_
1739       && strncmp(name, ".stab", 5) == 0
1740       && strcmp(name + strlen(name) - 3, "str") == 0)
1741     this->have_stabstr_section_ = true;
1742
1743   // During a full incremental link, we add patch space to most
1744   // PROGBITS and NOBITS sections.  Flag those that may be
1745   // arbitrarily padded.
1746   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1747       && order != ORDER_INTERP
1748       && order != ORDER_INIT
1749       && order != ORDER_PLT
1750       && order != ORDER_FINI
1751       && order != ORDER_RELRO_LAST
1752       && order != ORDER_NON_RELRO_FIRST
1753       && strcmp(name, ".eh_frame") != 0
1754       && strcmp(name, ".ctors") != 0
1755       && strcmp(name, ".dtors") != 0
1756       && strcmp(name, ".jcr") != 0)
1757     {
1758       os->set_is_patch_space_allowed();
1759
1760       // Certain sections require "holes" to be filled with
1761       // specific fill patterns.  These fill patterns may have
1762       // a minimum size, so we must prevent allocations from the
1763       // free list that leave a hole smaller than the minimum.
1764       if (strcmp(name, ".debug_info") == 0)
1765         os->set_free_space_fill(new Output_fill_debug_info(false));
1766       else if (strcmp(name, ".debug_types") == 0)
1767         os->set_free_space_fill(new Output_fill_debug_info(true));
1768       else if (strcmp(name, ".debug_line") == 0)
1769         os->set_free_space_fill(new Output_fill_debug_line());
1770     }
1771
1772   // If we have already attached the sections to segments, then we
1773   // need to attach this one now.  This happens for sections created
1774   // directly by the linker.
1775   if (this->sections_are_attached_)
1776     this->attach_section_to_segment(&parameters->target(), os);
1777
1778   return os;
1779 }
1780
1781 // Return the default order in which a section should be placed in an
1782 // output segment.  This function captures a lot of the ideas in
1783 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1784 // linker created section is normally set when the section is created;
1785 // this function is used for input sections.
1786
1787 Output_section_order
1788 Layout::default_section_order(Output_section* os, bool is_relro_local)
1789 {
1790   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1791   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1792   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1793   bool is_bss = false;
1794
1795   switch (os->type())
1796     {
1797     default:
1798     case elfcpp::SHT_PROGBITS:
1799       break;
1800     case elfcpp::SHT_NOBITS:
1801       is_bss = true;
1802       break;
1803     case elfcpp::SHT_RELA:
1804     case elfcpp::SHT_REL:
1805       if (!is_write)
1806         return ORDER_DYNAMIC_RELOCS;
1807       break;
1808     case elfcpp::SHT_HASH:
1809     case elfcpp::SHT_DYNAMIC:
1810     case elfcpp::SHT_SHLIB:
1811     case elfcpp::SHT_DYNSYM:
1812     case elfcpp::SHT_GNU_HASH:
1813     case elfcpp::SHT_GNU_verdef:
1814     case elfcpp::SHT_GNU_verneed:
1815     case elfcpp::SHT_GNU_versym:
1816       if (!is_write)
1817         return ORDER_DYNAMIC_LINKER;
1818       break;
1819     case elfcpp::SHT_NOTE:
1820       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1821     }
1822
1823   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1824     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1825
1826   if (!is_bss && !is_write)
1827     {
1828       if (is_execinstr)
1829         {
1830           if (strcmp(os->name(), ".init") == 0)
1831             return ORDER_INIT;
1832           else if (strcmp(os->name(), ".fini") == 0)
1833             return ORDER_FINI;
1834         }
1835       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1836     }
1837
1838   if (os->is_relro())
1839     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1840
1841   if (os->is_small_section())
1842     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1843   if (os->is_large_section())
1844     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1845
1846   return is_bss ? ORDER_BSS : ORDER_DATA;
1847 }
1848
1849 // Attach output sections to segments.  This is called after we have
1850 // seen all the input sections.
1851
1852 void
1853 Layout::attach_sections_to_segments(const Target* target)
1854 {
1855   for (Section_list::iterator p = this->section_list_.begin();
1856        p != this->section_list_.end();
1857        ++p)
1858     this->attach_section_to_segment(target, *p);
1859
1860   this->sections_are_attached_ = true;
1861 }
1862
1863 // Attach an output section to a segment.
1864
1865 void
1866 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1867 {
1868   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1869     this->unattached_section_list_.push_back(os);
1870   else
1871     this->attach_allocated_section_to_segment(target, os);
1872 }
1873
1874 // Attach an allocated output section to a segment.
1875
1876 void
1877 Layout::attach_allocated_section_to_segment(const Target* target,
1878                                             Output_section* os)
1879 {
1880   elfcpp::Elf_Xword flags = os->flags();
1881   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1882
1883   if (parameters->options().relocatable())
1884     return;
1885
1886   // If we have a SECTIONS clause, we can't handle the attachment to
1887   // segments until after we've seen all the sections.
1888   if (this->script_options_->saw_sections_clause())
1889     return;
1890
1891   gold_assert(!this->script_options_->saw_phdrs_clause());
1892
1893   // This output section goes into a PT_LOAD segment.
1894
1895   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1896
1897   // If this output section's segment has extra flags that need to be set,
1898   // coming from a linker plugin, do that.
1899   seg_flags |= os->extra_segment_flags();
1900
1901   // Check for --section-start.
1902   uint64_t addr;
1903   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1904
1905   // In general the only thing we really care about for PT_LOAD
1906   // segments is whether or not they are writable or executable,
1907   // so that is how we search for them.
1908   // Large data sections also go into their own PT_LOAD segment.
1909   // People who need segments sorted on some other basis will
1910   // have to use a linker script.
1911
1912   Segment_list::const_iterator p;
1913   if (!os->is_unique_segment())
1914     {
1915       for (p = this->segment_list_.begin();
1916            p != this->segment_list_.end();
1917            ++p)
1918         {
1919           if ((*p)->type() != elfcpp::PT_LOAD)
1920             continue;
1921           if ((*p)->is_unique_segment())
1922             continue;
1923           if (!parameters->options().omagic()
1924               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1925             continue;
1926           if ((target->isolate_execinstr() || parameters->options().rosegment())
1927               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1928             continue;
1929           // If -Tbss was specified, we need to separate the data and BSS
1930           // segments.
1931           if (parameters->options().user_set_Tbss())
1932             {
1933               if ((os->type() == elfcpp::SHT_NOBITS)
1934                   == (*p)->has_any_data_sections())
1935                 continue;
1936             }
1937           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1938             continue;
1939
1940           if (is_address_set)
1941             {
1942               if ((*p)->are_addresses_set())
1943                 continue;
1944
1945               (*p)->add_initial_output_data(os);
1946               (*p)->update_flags_for_output_section(seg_flags);
1947               (*p)->set_addresses(addr, addr);
1948               break;
1949             }
1950
1951           (*p)->add_output_section_to_load(this, os, seg_flags);
1952           break;
1953         }
1954     }
1955
1956   if (p == this->segment_list_.end()
1957       || os->is_unique_segment())
1958     {
1959       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1960                                                        seg_flags);
1961       if (os->is_large_data_section())
1962         oseg->set_is_large_data_segment();
1963       oseg->add_output_section_to_load(this, os, seg_flags);
1964       if (is_address_set)
1965         oseg->set_addresses(addr, addr);
1966       // Check if segment should be marked unique.  For segments marked
1967       // unique by linker plugins, set the new alignment if specified.
1968       if (os->is_unique_segment())
1969         {
1970           oseg->set_is_unique_segment();
1971           if (os->segment_alignment() != 0)
1972             oseg->set_minimum_p_align(os->segment_alignment());
1973         }
1974     }
1975
1976   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1977   // segment.
1978   if (os->type() == elfcpp::SHT_NOTE)
1979     {
1980       // See if we already have an equivalent PT_NOTE segment.
1981       for (p = this->segment_list_.begin();
1982            p != segment_list_.end();
1983            ++p)
1984         {
1985           if ((*p)->type() == elfcpp::PT_NOTE
1986               && (((*p)->flags() & elfcpp::PF_W)
1987                   == (seg_flags & elfcpp::PF_W)))
1988             {
1989               (*p)->add_output_section_to_nonload(os, seg_flags);
1990               break;
1991             }
1992         }
1993
1994       if (p == this->segment_list_.end())
1995         {
1996           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1997                                                            seg_flags);
1998           oseg->add_output_section_to_nonload(os, seg_flags);
1999         }
2000     }
2001
2002   // If we see a loadable SHF_TLS section, we create a PT_TLS
2003   // segment.  There can only be one such segment.
2004   if ((flags & elfcpp::SHF_TLS) != 0)
2005     {
2006       if (this->tls_segment_ == NULL)
2007         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2008       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2009     }
2010
2011   // If -z relro is in effect, and we see a relro section, we create a
2012   // PT_GNU_RELRO segment.  There can only be one such segment.
2013   if (os->is_relro() && parameters->options().relro())
2014     {
2015       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2016       if (this->relro_segment_ == NULL)
2017         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2018       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2019     }
2020
2021   // If we see a section named .interp, put it into a PT_INTERP
2022   // segment.  This seems broken to me, but this is what GNU ld does,
2023   // and glibc expects it.
2024   if (strcmp(os->name(), ".interp") == 0
2025       && !this->script_options_->saw_phdrs_clause())
2026     {
2027       if (this->interp_segment_ == NULL)
2028         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2029       else
2030         gold_warning(_("multiple '.interp' sections in input files "
2031                        "may cause confusing PT_INTERP segment"));
2032       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2033     }
2034 }
2035
2036 // Make an output section for a script.
2037
2038 Output_section*
2039 Layout::make_output_section_for_script(
2040     const char* name,
2041     Script_sections::Section_type section_type)
2042 {
2043   name = this->namepool_.add(name, false, NULL);
2044   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2045   if (section_type == Script_sections::ST_NOLOAD)
2046     sh_flags = 0;
2047   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2048                                                  sh_flags, ORDER_INVALID,
2049                                                  false);
2050   os->set_found_in_sections_clause();
2051   if (section_type == Script_sections::ST_NOLOAD)
2052     os->set_is_noload();
2053   return os;
2054 }
2055
2056 // Return the number of segments we expect to see.
2057
2058 size_t
2059 Layout::expected_segment_count() const
2060 {
2061   size_t ret = this->segment_list_.size();
2062
2063   // If we didn't see a SECTIONS clause in a linker script, we should
2064   // already have the complete list of segments.  Otherwise we ask the
2065   // SECTIONS clause how many segments it expects, and add in the ones
2066   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2067
2068   if (!this->script_options_->saw_sections_clause())
2069     return ret;
2070   else
2071     {
2072       const Script_sections* ss = this->script_options_->script_sections();
2073       return ret + ss->expected_segment_count(this);
2074     }
2075 }
2076
2077 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2078 // is whether we saw a .note.GNU-stack section in the object file.
2079 // GNU_STACK_FLAGS is the section flags.  The flags give the
2080 // protection required for stack memory.  We record this in an
2081 // executable as a PT_GNU_STACK segment.  If an object file does not
2082 // have a .note.GNU-stack segment, we must assume that it is an old
2083 // object.  On some targets that will force an executable stack.
2084
2085 void
2086 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2087                          const Object* obj)
2088 {
2089   if (!seen_gnu_stack)
2090     {
2091       this->input_without_gnu_stack_note_ = true;
2092       if (parameters->options().warn_execstack()
2093           && parameters->target().is_default_stack_executable())
2094         gold_warning(_("%s: missing .note.GNU-stack section"
2095                        " implies executable stack"),
2096                      obj->name().c_str());
2097     }
2098   else
2099     {
2100       this->input_with_gnu_stack_note_ = true;
2101       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2102         {
2103           this->input_requires_executable_stack_ = true;
2104           if (parameters->options().warn_execstack())
2105             gold_warning(_("%s: requires executable stack"),
2106                          obj->name().c_str());
2107         }
2108     }
2109 }
2110
2111 // Create automatic note sections.
2112
2113 void
2114 Layout::create_notes()
2115 {
2116   this->create_gold_note();
2117   this->create_executable_stack_info();
2118   this->create_build_id();
2119 }
2120
2121 // Create the dynamic sections which are needed before we read the
2122 // relocs.
2123
2124 void
2125 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2126 {
2127   if (parameters->doing_static_link())
2128     return;
2129
2130   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2131                                                        elfcpp::SHT_DYNAMIC,
2132                                                        (elfcpp::SHF_ALLOC
2133                                                         | elfcpp::SHF_WRITE),
2134                                                        false, ORDER_RELRO,
2135                                                        true);
2136
2137   // A linker script may discard .dynamic, so check for NULL.
2138   if (this->dynamic_section_ != NULL)
2139     {
2140       this->dynamic_symbol_ =
2141         symtab->define_in_output_data("_DYNAMIC", NULL,
2142                                       Symbol_table::PREDEFINED,
2143                                       this->dynamic_section_, 0, 0,
2144                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2145                                       elfcpp::STV_HIDDEN, 0, false, false);
2146
2147       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2148
2149       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2150     }
2151 }
2152
2153 // For each output section whose name can be represented as C symbol,
2154 // define __start and __stop symbols for the section.  This is a GNU
2155 // extension.
2156
2157 void
2158 Layout::define_section_symbols(Symbol_table* symtab)
2159 {
2160   for (Section_list::const_iterator p = this->section_list_.begin();
2161        p != this->section_list_.end();
2162        ++p)
2163     {
2164       const char* const name = (*p)->name();
2165       if (is_cident(name))
2166         {
2167           const std::string name_string(name);
2168           const std::string start_name(cident_section_start_prefix
2169                                        + name_string);
2170           const std::string stop_name(cident_section_stop_prefix
2171                                       + name_string);
2172
2173           symtab->define_in_output_data(start_name.c_str(),
2174                                         NULL, // version
2175                                         Symbol_table::PREDEFINED,
2176                                         *p,
2177                                         0, // value
2178                                         0, // symsize
2179                                         elfcpp::STT_NOTYPE,
2180                                         elfcpp::STB_GLOBAL,
2181                                         elfcpp::STV_DEFAULT,
2182                                         0, // nonvis
2183                                         false, // offset_is_from_end
2184                                         true); // only_if_ref
2185
2186           symtab->define_in_output_data(stop_name.c_str(),
2187                                         NULL, // version
2188                                         Symbol_table::PREDEFINED,
2189                                         *p,
2190                                         0, // value
2191                                         0, // symsize
2192                                         elfcpp::STT_NOTYPE,
2193                                         elfcpp::STB_GLOBAL,
2194                                         elfcpp::STV_DEFAULT,
2195                                         0, // nonvis
2196                                         true, // offset_is_from_end
2197                                         true); // only_if_ref
2198         }
2199     }
2200 }
2201
2202 // Define symbols for group signatures.
2203
2204 void
2205 Layout::define_group_signatures(Symbol_table* symtab)
2206 {
2207   for (Group_signatures::iterator p = this->group_signatures_.begin();
2208        p != this->group_signatures_.end();
2209        ++p)
2210     {
2211       Symbol* sym = symtab->lookup(p->signature, NULL);
2212       if (sym != NULL)
2213         p->section->set_info_symndx(sym);
2214       else
2215         {
2216           // Force the name of the group section to the group
2217           // signature, and use the group's section symbol as the
2218           // signature symbol.
2219           if (strcmp(p->section->name(), p->signature) != 0)
2220             {
2221               const char* name = this->namepool_.add(p->signature,
2222                                                      true, NULL);
2223               p->section->set_name(name);
2224             }
2225           p->section->set_needs_symtab_index();
2226           p->section->set_info_section_symndx(p->section);
2227         }
2228     }
2229
2230   this->group_signatures_.clear();
2231 }
2232
2233 // Find the first read-only PT_LOAD segment, creating one if
2234 // necessary.
2235
2236 Output_segment*
2237 Layout::find_first_load_seg(const Target* target)
2238 {
2239   Output_segment* best = NULL;
2240   for (Segment_list::const_iterator p = this->segment_list_.begin();
2241        p != this->segment_list_.end();
2242        ++p)
2243     {
2244       if ((*p)->type() == elfcpp::PT_LOAD
2245           && ((*p)->flags() & elfcpp::PF_R) != 0
2246           && (parameters->options().omagic()
2247               || ((*p)->flags() & elfcpp::PF_W) == 0)
2248           && (!target->isolate_execinstr()
2249               || ((*p)->flags() & elfcpp::PF_X) == 0))
2250         {
2251           if (best == NULL || this->segment_precedes(*p, best))
2252             best = *p;
2253         }
2254     }
2255   if (best != NULL)
2256     return best;
2257
2258   gold_assert(!this->script_options_->saw_phdrs_clause());
2259
2260   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2261                                                        elfcpp::PF_R);
2262   return load_seg;
2263 }
2264
2265 // Save states of all current output segments.  Store saved states
2266 // in SEGMENT_STATES.
2267
2268 void
2269 Layout::save_segments(Segment_states* segment_states)
2270 {
2271   for (Segment_list::const_iterator p = this->segment_list_.begin();
2272        p != this->segment_list_.end();
2273        ++p)
2274     {
2275       Output_segment* segment = *p;
2276       // Shallow copy.
2277       Output_segment* copy = new Output_segment(*segment);
2278       (*segment_states)[segment] = copy;
2279     }
2280 }
2281
2282 // Restore states of output segments and delete any segment not found in
2283 // SEGMENT_STATES.
2284
2285 void
2286 Layout::restore_segments(const Segment_states* segment_states)
2287 {
2288   // Go through the segment list and remove any segment added in the
2289   // relaxation loop.
2290   this->tls_segment_ = NULL;
2291   this->relro_segment_ = NULL;
2292   Segment_list::iterator list_iter = this->segment_list_.begin();
2293   while (list_iter != this->segment_list_.end())
2294     {
2295       Output_segment* segment = *list_iter;
2296       Segment_states::const_iterator states_iter =
2297           segment_states->find(segment);
2298       if (states_iter != segment_states->end())
2299         {
2300           const Output_segment* copy = states_iter->second;
2301           // Shallow copy to restore states.
2302           *segment = *copy;
2303
2304           // Also fix up TLS and RELRO segment pointers as appropriate.
2305           if (segment->type() == elfcpp::PT_TLS)
2306             this->tls_segment_ = segment;
2307           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2308             this->relro_segment_ = segment;
2309
2310           ++list_iter;
2311         }
2312       else
2313         {
2314           list_iter = this->segment_list_.erase(list_iter);
2315           // This is a segment created during section layout.  It should be
2316           // safe to remove it since we should have removed all pointers to it.
2317           delete segment;
2318         }
2319     }
2320 }
2321
2322 // Clean up after relaxation so that sections can be laid out again.
2323
2324 void
2325 Layout::clean_up_after_relaxation()
2326 {
2327   // Restore the segments to point state just prior to the relaxation loop.
2328   Script_sections* script_section = this->script_options_->script_sections();
2329   script_section->release_segments();
2330   this->restore_segments(this->segment_states_);
2331
2332   // Reset section addresses and file offsets
2333   for (Section_list::iterator p = this->section_list_.begin();
2334        p != this->section_list_.end();
2335        ++p)
2336     {
2337       (*p)->restore_states();
2338
2339       // If an input section changes size because of relaxation,
2340       // we need to adjust the section offsets of all input sections.
2341       // after such a section.
2342       if ((*p)->section_offsets_need_adjustment())
2343         (*p)->adjust_section_offsets();
2344
2345       (*p)->reset_address_and_file_offset();
2346     }
2347
2348   // Reset special output object address and file offsets.
2349   for (Data_list::iterator p = this->special_output_list_.begin();
2350        p != this->special_output_list_.end();
2351        ++p)
2352     (*p)->reset_address_and_file_offset();
2353
2354   // A linker script may have created some output section data objects.
2355   // They are useless now.
2356   for (Output_section_data_list::const_iterator p =
2357          this->script_output_section_data_list_.begin();
2358        p != this->script_output_section_data_list_.end();
2359        ++p)
2360     delete *p;
2361   this->script_output_section_data_list_.clear();
2362
2363   // Special-case fill output objects are recreated each time through
2364   // the relaxation loop.
2365   this->reset_relax_output();
2366 }
2367
2368 void
2369 Layout::reset_relax_output()
2370 {
2371   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2372        p != this->relax_output_list_.end();
2373        ++p)
2374     delete *p;
2375   this->relax_output_list_.clear();
2376 }
2377
2378 // Prepare for relaxation.
2379
2380 void
2381 Layout::prepare_for_relaxation()
2382 {
2383   // Create an relaxation debug check if in debugging mode.
2384   if (is_debugging_enabled(DEBUG_RELAXATION))
2385     this->relaxation_debug_check_ = new Relaxation_debug_check();
2386
2387   // Save segment states.
2388   this->segment_states_ = new Segment_states();
2389   this->save_segments(this->segment_states_);
2390
2391   for(Section_list::const_iterator p = this->section_list_.begin();
2392       p != this->section_list_.end();
2393       ++p)
2394     (*p)->save_states();
2395
2396   if (is_debugging_enabled(DEBUG_RELAXATION))
2397     this->relaxation_debug_check_->check_output_data_for_reset_values(
2398         this->section_list_, this->special_output_list_,
2399         this->relax_output_list_);
2400
2401   // Also enable recording of output section data from scripts.
2402   this->record_output_section_data_from_script_ = true;
2403 }
2404
2405 // If the user set the address of the text segment, that may not be
2406 // compatible with putting the segment headers and file headers into
2407 // that segment.  For isolate_execinstr() targets, it's the rodata
2408 // segment rather than text where we might put the headers.
2409 static inline bool
2410 load_seg_unusable_for_headers(const Target* target)
2411 {
2412   const General_options& options = parameters->options();
2413   if (target->isolate_execinstr())
2414     return (options.user_set_Trodata_segment()
2415             && options.Trodata_segment() % target->abi_pagesize() != 0);
2416   else
2417     return (options.user_set_Ttext()
2418             && options.Ttext() % target->abi_pagesize() != 0);
2419 }
2420
2421 // Relaxation loop body:  If target has no relaxation, this runs only once
2422 // Otherwise, the target relaxation hook is called at the end of
2423 // each iteration.  If the hook returns true, it means re-layout of
2424 // section is required.
2425 //
2426 // The number of segments created by a linking script without a PHDRS
2427 // clause may be affected by section sizes and alignments.  There is
2428 // a remote chance that relaxation causes different number of PT_LOAD
2429 // segments are created and sections are attached to different segments.
2430 // Therefore, we always throw away all segments created during section
2431 // layout.  In order to be able to restart the section layout, we keep
2432 // a copy of the segment list right before the relaxation loop and use
2433 // that to restore the segments.
2434 //
2435 // PASS is the current relaxation pass number.
2436 // SYMTAB is a symbol table.
2437 // PLOAD_SEG is the address of a pointer for the load segment.
2438 // PHDR_SEG is a pointer to the PHDR segment.
2439 // SEGMENT_HEADERS points to the output segment header.
2440 // FILE_HEADER points to the output file header.
2441 // PSHNDX is the address to store the output section index.
2442
2443 off_t inline
2444 Layout::relaxation_loop_body(
2445     int pass,
2446     Target* target,
2447     Symbol_table* symtab,
2448     Output_segment** pload_seg,
2449     Output_segment* phdr_seg,
2450     Output_segment_headers* segment_headers,
2451     Output_file_header* file_header,
2452     unsigned int* pshndx)
2453 {
2454   // If this is not the first iteration, we need to clean up after
2455   // relaxation so that we can lay out the sections again.
2456   if (pass != 0)
2457     this->clean_up_after_relaxation();
2458
2459   // If there is a SECTIONS clause, put all the input sections into
2460   // the required order.
2461   Output_segment* load_seg;
2462   if (this->script_options_->saw_sections_clause())
2463     load_seg = this->set_section_addresses_from_script(symtab);
2464   else if (parameters->options().relocatable())
2465     load_seg = NULL;
2466   else
2467     load_seg = this->find_first_load_seg(target);
2468
2469   if (parameters->options().oformat_enum()
2470       != General_options::OBJECT_FORMAT_ELF)
2471     load_seg = NULL;
2472
2473   if (load_seg_unusable_for_headers(target))
2474     {
2475       load_seg = NULL;
2476       phdr_seg = NULL;
2477     }
2478
2479   gold_assert(phdr_seg == NULL
2480               || load_seg != NULL
2481               || this->script_options_->saw_sections_clause());
2482
2483   // If the address of the load segment we found has been set by
2484   // --section-start rather than by a script, then adjust the VMA and
2485   // LMA downward if possible to include the file and section headers.
2486   uint64_t header_gap = 0;
2487   if (load_seg != NULL
2488       && load_seg->are_addresses_set()
2489       && !this->script_options_->saw_sections_clause()
2490       && !parameters->options().relocatable())
2491     {
2492       file_header->finalize_data_size();
2493       segment_headers->finalize_data_size();
2494       size_t sizeof_headers = (file_header->data_size()
2495                                + segment_headers->data_size());
2496       const uint64_t abi_pagesize = target->abi_pagesize();
2497       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2498       hdr_paddr &= ~(abi_pagesize - 1);
2499       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2500       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2501         load_seg = NULL;
2502       else
2503         {
2504           load_seg->set_addresses(load_seg->vaddr() - subtract,
2505                                   load_seg->paddr() - subtract);
2506           header_gap = subtract - sizeof_headers;
2507         }
2508     }
2509
2510   // Lay out the segment headers.
2511   if (!parameters->options().relocatable())
2512     {
2513       gold_assert(segment_headers != NULL);
2514       if (header_gap != 0 && load_seg != NULL)
2515         {
2516           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2517           load_seg->add_initial_output_data(z);
2518         }
2519       if (load_seg != NULL)
2520         load_seg->add_initial_output_data(segment_headers);
2521       if (phdr_seg != NULL)
2522         phdr_seg->add_initial_output_data(segment_headers);
2523     }
2524
2525   // Lay out the file header.
2526   if (load_seg != NULL)
2527     load_seg->add_initial_output_data(file_header);
2528
2529   if (this->script_options_->saw_phdrs_clause()
2530       && !parameters->options().relocatable())
2531     {
2532       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2533       // clause in a linker script.
2534       Script_sections* ss = this->script_options_->script_sections();
2535       ss->put_headers_in_phdrs(file_header, segment_headers);
2536     }
2537
2538   // We set the output section indexes in set_segment_offsets and
2539   // set_section_indexes.
2540   *pshndx = 1;
2541
2542   // Set the file offsets of all the segments, and all the sections
2543   // they contain.
2544   off_t off;
2545   if (!parameters->options().relocatable())
2546     off = this->set_segment_offsets(target, load_seg, pshndx);
2547   else
2548     off = this->set_relocatable_section_offsets(file_header, pshndx);
2549
2550    // Verify that the dummy relaxation does not change anything.
2551   if (is_debugging_enabled(DEBUG_RELAXATION))
2552     {
2553       if (pass == 0)
2554         this->relaxation_debug_check_->read_sections(this->section_list_);
2555       else
2556         this->relaxation_debug_check_->verify_sections(this->section_list_);
2557     }
2558
2559   *pload_seg = load_seg;
2560   return off;
2561 }
2562
2563 // Search the list of patterns and find the postion of the given section
2564 // name in the output section.  If the section name matches a glob
2565 // pattern and a non-glob name, then the non-glob position takes
2566 // precedence.  Return 0 if no match is found.
2567
2568 unsigned int
2569 Layout::find_section_order_index(const std::string& section_name)
2570 {
2571   Unordered_map<std::string, unsigned int>::iterator map_it;
2572   map_it = this->input_section_position_.find(section_name);
2573   if (map_it != this->input_section_position_.end())
2574     return map_it->second;
2575
2576   // Absolute match failed.  Linear search the glob patterns.
2577   std::vector<std::string>::iterator it;
2578   for (it = this->input_section_glob_.begin();
2579        it != this->input_section_glob_.end();
2580        ++it)
2581     {
2582        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2583          {
2584            map_it = this->input_section_position_.find(*it);
2585            gold_assert(map_it != this->input_section_position_.end());
2586            return map_it->second;
2587          }
2588     }
2589   return 0;
2590 }
2591
2592 // Read the sequence of input sections from the file specified with
2593 // option --section-ordering-file.
2594
2595 void
2596 Layout::read_layout_from_file()
2597 {
2598   const char* filename = parameters->options().section_ordering_file();
2599   std::ifstream in;
2600   std::string line;
2601
2602   in.open(filename);
2603   if (!in)
2604     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2605                filename, strerror(errno));
2606
2607   std::getline(in, line);   // this chops off the trailing \n, if any
2608   unsigned int position = 1;
2609   this->set_section_ordering_specified();
2610
2611   while (in)
2612     {
2613       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2614         line.resize(line.length() - 1);
2615       // Ignore comments, beginning with '#'
2616       if (line[0] == '#')
2617         {
2618           std::getline(in, line);
2619           continue;
2620         }
2621       this->input_section_position_[line] = position;
2622       // Store all glob patterns in a vector.
2623       if (is_wildcard_string(line.c_str()))
2624         this->input_section_glob_.push_back(line);
2625       position++;
2626       std::getline(in, line);
2627     }
2628 }
2629
2630 // Finalize the layout.  When this is called, we have created all the
2631 // output sections and all the output segments which are based on
2632 // input sections.  We have several things to do, and we have to do
2633 // them in the right order, so that we get the right results correctly
2634 // and efficiently.
2635
2636 // 1) Finalize the list of output segments and create the segment
2637 // table header.
2638
2639 // 2) Finalize the dynamic symbol table and associated sections.
2640
2641 // 3) Determine the final file offset of all the output segments.
2642
2643 // 4) Determine the final file offset of all the SHF_ALLOC output
2644 // sections.
2645
2646 // 5) Create the symbol table sections and the section name table
2647 // section.
2648
2649 // 6) Finalize the symbol table: set symbol values to their final
2650 // value and make a final determination of which symbols are going
2651 // into the output symbol table.
2652
2653 // 7) Create the section table header.
2654
2655 // 8) Determine the final file offset of all the output sections which
2656 // are not SHF_ALLOC, including the section table header.
2657
2658 // 9) Finalize the ELF file header.
2659
2660 // This function returns the size of the output file.
2661
2662 off_t
2663 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2664                  Target* target, const Task* task)
2665 {
2666   target->finalize_sections(this, input_objects, symtab);
2667
2668   this->count_local_symbols(task, input_objects);
2669
2670   this->link_stabs_sections();
2671
2672   Output_segment* phdr_seg = NULL;
2673   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2674     {
2675       // There was a dynamic object in the link.  We need to create
2676       // some information for the dynamic linker.
2677
2678       // Create the PT_PHDR segment which will hold the program
2679       // headers.
2680       if (!this->script_options_->saw_phdrs_clause())
2681         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2682
2683       // Create the dynamic symbol table, including the hash table.
2684       Output_section* dynstr;
2685       std::vector<Symbol*> dynamic_symbols;
2686       unsigned int local_dynamic_count;
2687       Versions versions(*this->script_options()->version_script_info(),
2688                         &this->dynpool_);
2689       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2690                                   &local_dynamic_count, &dynamic_symbols,
2691                                   &versions);
2692
2693       // Create the .interp section to hold the name of the
2694       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2695       // if we saw a .interp section in an input file.
2696       if ((!parameters->options().shared()
2697            || parameters->options().dynamic_linker() != NULL)
2698           && this->interp_segment_ == NULL)
2699         this->create_interp(target);
2700
2701       // Finish the .dynamic section to hold the dynamic data, and put
2702       // it in a PT_DYNAMIC segment.
2703       this->finish_dynamic_section(input_objects, symtab);
2704
2705       // We should have added everything we need to the dynamic string
2706       // table.
2707       this->dynpool_.set_string_offsets();
2708
2709       // Create the version sections.  We can't do this until the
2710       // dynamic string table is complete.
2711       this->create_version_sections(&versions, symtab, local_dynamic_count,
2712                                     dynamic_symbols, dynstr);
2713
2714       // Set the size of the _DYNAMIC symbol.  We can't do this until
2715       // after we call create_version_sections.
2716       this->set_dynamic_symbol_size(symtab);
2717     }
2718
2719   // Create segment headers.
2720   Output_segment_headers* segment_headers =
2721     (parameters->options().relocatable()
2722      ? NULL
2723      : new Output_segment_headers(this->segment_list_));
2724
2725   // Lay out the file header.
2726   Output_file_header* file_header = new Output_file_header(target, symtab,
2727                                                            segment_headers);
2728
2729   this->special_output_list_.push_back(file_header);
2730   if (segment_headers != NULL)
2731     this->special_output_list_.push_back(segment_headers);
2732
2733   // Find approriate places for orphan output sections if we are using
2734   // a linker script.
2735   if (this->script_options_->saw_sections_clause())
2736     this->place_orphan_sections_in_script();
2737
2738   Output_segment* load_seg;
2739   off_t off;
2740   unsigned int shndx;
2741   int pass = 0;
2742
2743   // Take a snapshot of the section layout as needed.
2744   if (target->may_relax())
2745     this->prepare_for_relaxation();
2746
2747   // Run the relaxation loop to lay out sections.
2748   do
2749     {
2750       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2751                                        phdr_seg, segment_headers, file_header,
2752                                        &shndx);
2753       pass++;
2754     }
2755   while (target->may_relax()
2756          && target->relax(pass, input_objects, symtab, this, task));
2757
2758   // If there is a load segment that contains the file and program headers,
2759   // provide a symbol __ehdr_start pointing there.
2760   // A program can use this to examine itself robustly.
2761   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2762   if (ehdr_start != NULL && ehdr_start->is_predefined())
2763     {
2764       if (load_seg != NULL)
2765         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2766       else
2767         ehdr_start->set_undefined();
2768     }
2769
2770   // Set the file offsets of all the non-data sections we've seen so
2771   // far which don't have to wait for the input sections.  We need
2772   // this in order to finalize local symbols in non-allocated
2773   // sections.
2774   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2775
2776   // Set the section indexes of all unallocated sections seen so far,
2777   // in case any of them are somehow referenced by a symbol.
2778   shndx = this->set_section_indexes(shndx);
2779
2780   // Create the symbol table sections.
2781   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2782   if (!parameters->doing_static_link())
2783     this->assign_local_dynsym_offsets(input_objects);
2784
2785   // Process any symbol assignments from a linker script.  This must
2786   // be called after the symbol table has been finalized.
2787   this->script_options_->finalize_symbols(symtab, this);
2788
2789   // Create the incremental inputs sections.
2790   if (this->incremental_inputs_)
2791     {
2792       this->incremental_inputs_->finalize();
2793       this->create_incremental_info_sections(symtab);
2794     }
2795
2796   // Create the .shstrtab section.
2797   Output_section* shstrtab_section = this->create_shstrtab();
2798
2799   // Set the file offsets of the rest of the non-data sections which
2800   // don't have to wait for the input sections.
2801   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2802
2803   // Now that all sections have been created, set the section indexes
2804   // for any sections which haven't been done yet.
2805   shndx = this->set_section_indexes(shndx);
2806
2807   // Create the section table header.
2808   this->create_shdrs(shstrtab_section, &off);
2809
2810   // If there are no sections which require postprocessing, we can
2811   // handle the section names now, and avoid a resize later.
2812   if (!this->any_postprocessing_sections_)
2813     {
2814       off = this->set_section_offsets(off,
2815                                       POSTPROCESSING_SECTIONS_PASS);
2816       off =
2817           this->set_section_offsets(off,
2818                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2819     }
2820
2821   file_header->set_section_info(this->section_headers_, shstrtab_section);
2822
2823   // Now we know exactly where everything goes in the output file
2824   // (except for non-allocated sections which require postprocessing).
2825   Output_data::layout_complete();
2826
2827   this->output_file_size_ = off;
2828
2829   return off;
2830 }
2831
2832 // Create a note header following the format defined in the ELF ABI.
2833 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2834 // of the section to create, DESCSZ is the size of the descriptor.
2835 // ALLOCATE is true if the section should be allocated in memory.
2836 // This returns the new note section.  It sets *TRAILING_PADDING to
2837 // the number of trailing zero bytes required.
2838
2839 Output_section*
2840 Layout::create_note(const char* name, int note_type,
2841                     const char* section_name, size_t descsz,
2842                     bool allocate, size_t* trailing_padding)
2843 {
2844   // Authorities all agree that the values in a .note field should
2845   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2846   // they differ on what the alignment is for 64-bit binaries.
2847   // The GABI says unambiguously they take 8-byte alignment:
2848   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2849   // Other documentation says alignment should always be 4 bytes:
2850   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2851   // GNU ld and GNU readelf both support the latter (at least as of
2852   // version 2.16.91), and glibc always generates the latter for
2853   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2854   // here.
2855 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2856   const int size = parameters->target().get_size();
2857 #else
2858   const int size = 32;
2859 #endif
2860
2861   // The contents of the .note section.
2862   size_t namesz = strlen(name) + 1;
2863   size_t aligned_namesz = align_address(namesz, size / 8);
2864   size_t aligned_descsz = align_address(descsz, size / 8);
2865
2866   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2867
2868   unsigned char* buffer = new unsigned char[notehdrsz];
2869   memset(buffer, 0, notehdrsz);
2870
2871   bool is_big_endian = parameters->target().is_big_endian();
2872
2873   if (size == 32)
2874     {
2875       if (!is_big_endian)
2876         {
2877           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2878           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2879           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2880         }
2881       else
2882         {
2883           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2884           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2885           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2886         }
2887     }
2888   else if (size == 64)
2889     {
2890       if (!is_big_endian)
2891         {
2892           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2893           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2894           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2895         }
2896       else
2897         {
2898           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2899           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2900           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2901         }
2902     }
2903   else
2904     gold_unreachable();
2905
2906   memcpy(buffer + 3 * (size / 8), name, namesz);
2907
2908   elfcpp::Elf_Xword flags = 0;
2909   Output_section_order order = ORDER_INVALID;
2910   if (allocate)
2911     {
2912       flags = elfcpp::SHF_ALLOC;
2913       order = ORDER_RO_NOTE;
2914     }
2915   Output_section* os = this->choose_output_section(NULL, section_name,
2916                                                    elfcpp::SHT_NOTE,
2917                                                    flags, false, order, false);
2918   if (os == NULL)
2919     return NULL;
2920
2921   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2922                                                            size / 8,
2923                                                            "** note header");
2924   os->add_output_section_data(posd);
2925
2926   *trailing_padding = aligned_descsz - descsz;
2927
2928   return os;
2929 }
2930
2931 // For an executable or shared library, create a note to record the
2932 // version of gold used to create the binary.
2933
2934 void
2935 Layout::create_gold_note()
2936 {
2937   if (parameters->options().relocatable()
2938       || parameters->incremental_update())
2939     return;
2940
2941   std::string desc = std::string("gold ") + gold::get_version_string();
2942
2943   size_t trailing_padding;
2944   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2945                                          ".note.gnu.gold-version", desc.size(),
2946                                          false, &trailing_padding);
2947   if (os == NULL)
2948     return;
2949
2950   Output_section_data* posd = new Output_data_const(desc, 4);
2951   os->add_output_section_data(posd);
2952
2953   if (trailing_padding > 0)
2954     {
2955       posd = new Output_data_zero_fill(trailing_padding, 0);
2956       os->add_output_section_data(posd);
2957     }
2958 }
2959
2960 // Record whether the stack should be executable.  This can be set
2961 // from the command line using the -z execstack or -z noexecstack
2962 // options.  Otherwise, if any input file has a .note.GNU-stack
2963 // section with the SHF_EXECINSTR flag set, the stack should be
2964 // executable.  Otherwise, if at least one input file a
2965 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2966 // section, we use the target default for whether the stack should be
2967 // executable.  Otherwise, we don't generate a stack note.  When
2968 // generating a object file, we create a .note.GNU-stack section with
2969 // the appropriate marking.  When generating an executable or shared
2970 // library, we create a PT_GNU_STACK segment.
2971
2972 void
2973 Layout::create_executable_stack_info()
2974 {
2975   bool is_stack_executable;
2976   if (parameters->options().is_execstack_set())
2977     {
2978       is_stack_executable = parameters->options().is_stack_executable();
2979       if (!is_stack_executable
2980           && this->input_requires_executable_stack_
2981           && parameters->options().warn_execstack())
2982         gold_warning(_("one or more inputs require executable stack, "
2983                        "but -z noexecstack was given"));
2984     }
2985   else if (!this->input_with_gnu_stack_note_)
2986     return;
2987   else
2988     {
2989       if (this->input_requires_executable_stack_)
2990         is_stack_executable = true;
2991       else if (this->input_without_gnu_stack_note_)
2992         is_stack_executable =
2993           parameters->target().is_default_stack_executable();
2994       else
2995         is_stack_executable = false;
2996     }
2997
2998   if (parameters->options().relocatable())
2999     {
3000       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3001       elfcpp::Elf_Xword flags = 0;
3002       if (is_stack_executable)
3003         flags |= elfcpp::SHF_EXECINSTR;
3004       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3005                                 ORDER_INVALID, false);
3006     }
3007   else
3008     {
3009       if (this->script_options_->saw_phdrs_clause())
3010         return;
3011       int flags = elfcpp::PF_R | elfcpp::PF_W;
3012       if (is_stack_executable)
3013         flags |= elfcpp::PF_X;
3014       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3015     }
3016 }
3017
3018 // If --build-id was used, set up the build ID note.
3019
3020 void
3021 Layout::create_build_id()
3022 {
3023   if (!parameters->options().user_set_build_id())
3024     return;
3025
3026   const char* style = parameters->options().build_id();
3027   if (strcmp(style, "none") == 0)
3028     return;
3029
3030   // Set DESCSZ to the size of the note descriptor.  When possible,
3031   // set DESC to the note descriptor contents.
3032   size_t descsz;
3033   std::string desc;
3034   if (strcmp(style, "md5") == 0)
3035     descsz = 128 / 8;
3036   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3037     descsz = 160 / 8;
3038   else if (strcmp(style, "uuid") == 0)
3039     {
3040       const size_t uuidsz = 128 / 8;
3041
3042       char buffer[uuidsz];
3043       memset(buffer, 0, uuidsz);
3044
3045       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3046       if (descriptor < 0)
3047         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3048                    strerror(errno));
3049       else
3050         {
3051           ssize_t got = ::read(descriptor, buffer, uuidsz);
3052           release_descriptor(descriptor, true);
3053           if (got < 0)
3054             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3055           else if (static_cast<size_t>(got) != uuidsz)
3056             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3057                        uuidsz, got);
3058         }
3059
3060       desc.assign(buffer, uuidsz);
3061       descsz = uuidsz;
3062     }
3063   else if (strncmp(style, "0x", 2) == 0)
3064     {
3065       hex_init();
3066       const char* p = style + 2;
3067       while (*p != '\0')
3068         {
3069           if (hex_p(p[0]) && hex_p(p[1]))
3070             {
3071               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3072               desc += c;
3073               p += 2;
3074             }
3075           else if (*p == '-' || *p == ':')
3076             ++p;
3077           else
3078             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3079                        style);
3080         }
3081       descsz = desc.size();
3082     }
3083   else
3084     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3085
3086   // Create the note.
3087   size_t trailing_padding;
3088   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3089                                          ".note.gnu.build-id", descsz, true,
3090                                          &trailing_padding);
3091   if (os == NULL)
3092     return;
3093
3094   if (!desc.empty())
3095     {
3096       // We know the value already, so we fill it in now.
3097       gold_assert(desc.size() == descsz);
3098
3099       Output_section_data* posd = new Output_data_const(desc, 4);
3100       os->add_output_section_data(posd);
3101
3102       if (trailing_padding != 0)
3103         {
3104           posd = new Output_data_zero_fill(trailing_padding, 0);
3105           os->add_output_section_data(posd);
3106         }
3107     }
3108   else
3109     {
3110       // We need to compute a checksum after we have completed the
3111       // link.
3112       gold_assert(trailing_padding == 0);
3113       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3114       os->add_output_section_data(this->build_id_note_);
3115     }
3116 }
3117
3118 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3119 // field of the former should point to the latter.  I'm not sure who
3120 // started this, but the GNU linker does it, and some tools depend
3121 // upon it.
3122
3123 void
3124 Layout::link_stabs_sections()
3125 {
3126   if (!this->have_stabstr_section_)
3127     return;
3128
3129   for (Section_list::iterator p = this->section_list_.begin();
3130        p != this->section_list_.end();
3131        ++p)
3132     {
3133       if ((*p)->type() != elfcpp::SHT_STRTAB)
3134         continue;
3135
3136       const char* name = (*p)->name();
3137       if (strncmp(name, ".stab", 5) != 0)
3138         continue;
3139
3140       size_t len = strlen(name);
3141       if (strcmp(name + len - 3, "str") != 0)
3142         continue;
3143
3144       std::string stab_name(name, len - 3);
3145       Output_section* stab_sec;
3146       stab_sec = this->find_output_section(stab_name.c_str());
3147       if (stab_sec != NULL)
3148         stab_sec->set_link_section(*p);
3149     }
3150 }
3151
3152 // Create .gnu_incremental_inputs and related sections needed
3153 // for the next run of incremental linking to check what has changed.
3154
3155 void
3156 Layout::create_incremental_info_sections(Symbol_table* symtab)
3157 {
3158   Incremental_inputs* incr = this->incremental_inputs_;
3159
3160   gold_assert(incr != NULL);
3161
3162   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3163   incr->create_data_sections(symtab);
3164
3165   // Add the .gnu_incremental_inputs section.
3166   const char* incremental_inputs_name =
3167     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3168   Output_section* incremental_inputs_os =
3169     this->make_output_section(incremental_inputs_name,
3170                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3171                               ORDER_INVALID, false);
3172   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3173
3174   // Add the .gnu_incremental_symtab section.
3175   const char* incremental_symtab_name =
3176     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3177   Output_section* incremental_symtab_os =
3178     this->make_output_section(incremental_symtab_name,
3179                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3180                               ORDER_INVALID, false);
3181   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3182   incremental_symtab_os->set_entsize(4);
3183
3184   // Add the .gnu_incremental_relocs section.
3185   const char* incremental_relocs_name =
3186     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3187   Output_section* incremental_relocs_os =
3188     this->make_output_section(incremental_relocs_name,
3189                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3190                               ORDER_INVALID, false);
3191   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3192   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3193
3194   // Add the .gnu_incremental_got_plt section.
3195   const char* incremental_got_plt_name =
3196     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3197   Output_section* incremental_got_plt_os =
3198     this->make_output_section(incremental_got_plt_name,
3199                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3200                               ORDER_INVALID, false);
3201   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3202
3203   // Add the .gnu_incremental_strtab section.
3204   const char* incremental_strtab_name =
3205     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3206   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3207                                                         elfcpp::SHT_STRTAB, 0,
3208                                                         ORDER_INVALID, false);
3209   Output_data_strtab* strtab_data =
3210       new Output_data_strtab(incr->get_stringpool());
3211   incremental_strtab_os->add_output_section_data(strtab_data);
3212
3213   incremental_inputs_os->set_after_input_sections();
3214   incremental_symtab_os->set_after_input_sections();
3215   incremental_relocs_os->set_after_input_sections();
3216   incremental_got_plt_os->set_after_input_sections();
3217
3218   incremental_inputs_os->set_link_section(incremental_strtab_os);
3219   incremental_symtab_os->set_link_section(incremental_inputs_os);
3220   incremental_relocs_os->set_link_section(incremental_inputs_os);
3221   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3222 }
3223
3224 // Return whether SEG1 should be before SEG2 in the output file.  This
3225 // is based entirely on the segment type and flags.  When this is
3226 // called the segment addresses have normally not yet been set.
3227
3228 bool
3229 Layout::segment_precedes(const Output_segment* seg1,
3230                          const Output_segment* seg2)
3231 {
3232   elfcpp::Elf_Word type1 = seg1->type();
3233   elfcpp::Elf_Word type2 = seg2->type();
3234
3235   // The single PT_PHDR segment is required to precede any loadable
3236   // segment.  We simply make it always first.
3237   if (type1 == elfcpp::PT_PHDR)
3238     {
3239       gold_assert(type2 != elfcpp::PT_PHDR);
3240       return true;
3241     }
3242   if (type2 == elfcpp::PT_PHDR)
3243     return false;
3244
3245   // The single PT_INTERP segment is required to precede any loadable
3246   // segment.  We simply make it always second.
3247   if (type1 == elfcpp::PT_INTERP)
3248     {
3249       gold_assert(type2 != elfcpp::PT_INTERP);
3250       return true;
3251     }
3252   if (type2 == elfcpp::PT_INTERP)
3253     return false;
3254
3255   // We then put PT_LOAD segments before any other segments.
3256   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3257     return true;
3258   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3259     return false;
3260
3261   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3262   // segment, because that is where the dynamic linker expects to find
3263   // it (this is just for efficiency; other positions would also work
3264   // correctly).
3265   if (type1 == elfcpp::PT_TLS
3266       && type2 != elfcpp::PT_TLS
3267       && type2 != elfcpp::PT_GNU_RELRO)
3268     return false;
3269   if (type2 == elfcpp::PT_TLS
3270       && type1 != elfcpp::PT_TLS
3271       && type1 != elfcpp::PT_GNU_RELRO)
3272     return true;
3273
3274   // We put the PT_GNU_RELRO segment last, because that is where the
3275   // dynamic linker expects to find it (as with PT_TLS, this is just
3276   // for efficiency).
3277   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3278     return false;
3279   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3280     return true;
3281
3282   const elfcpp::Elf_Word flags1 = seg1->flags();
3283   const elfcpp::Elf_Word flags2 = seg2->flags();
3284
3285   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3286   // by the numeric segment type and flags values.  There should not
3287   // be more than one segment with the same type and flags, except
3288   // when a linker script specifies such.
3289   if (type1 != elfcpp::PT_LOAD)
3290     {
3291       if (type1 != type2)
3292         return type1 < type2;
3293       gold_assert(flags1 != flags2
3294                   || this->script_options_->saw_phdrs_clause());
3295       return flags1 < flags2;
3296     }
3297
3298   // If the addresses are set already, sort by load address.
3299   if (seg1->are_addresses_set())
3300     {
3301       if (!seg2->are_addresses_set())
3302         return true;
3303
3304       unsigned int section_count1 = seg1->output_section_count();
3305       unsigned int section_count2 = seg2->output_section_count();
3306       if (section_count1 == 0 && section_count2 > 0)
3307         return true;
3308       if (section_count1 > 0 && section_count2 == 0)
3309         return false;
3310
3311       uint64_t paddr1 = (seg1->are_addresses_set()
3312                          ? seg1->paddr()
3313                          : seg1->first_section_load_address());
3314       uint64_t paddr2 = (seg2->are_addresses_set()
3315                          ? seg2->paddr()
3316                          : seg2->first_section_load_address());
3317
3318       if (paddr1 != paddr2)
3319         return paddr1 < paddr2;
3320     }
3321   else if (seg2->are_addresses_set())
3322     return false;
3323
3324   // A segment which holds large data comes after a segment which does
3325   // not hold large data.
3326   if (seg1->is_large_data_segment())
3327     {
3328       if (!seg2->is_large_data_segment())
3329         return false;
3330     }
3331   else if (seg2->is_large_data_segment())
3332     return true;
3333
3334   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3335   // segments come before writable segments.  Then writable segments
3336   // with data come before writable segments without data.  Then
3337   // executable segments come before non-executable segments.  Then
3338   // the unlikely case of a non-readable segment comes before the
3339   // normal case of a readable segment.  If there are multiple
3340   // segments with the same type and flags, we require that the
3341   // address be set, and we sort by virtual address and then physical
3342   // address.
3343   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3344     return (flags1 & elfcpp::PF_W) == 0;
3345   if ((flags1 & elfcpp::PF_W) != 0
3346       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3347     return seg1->has_any_data_sections();
3348   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3349     return (flags1 & elfcpp::PF_X) != 0;
3350   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3351     return (flags1 & elfcpp::PF_R) == 0;
3352
3353   // We shouldn't get here--we shouldn't create segments which we
3354   // can't distinguish.  Unless of course we are using a weird linker
3355   // script or overlapping --section-start options.  We could also get
3356   // here if plugins want unique segments for subsets of sections.
3357   gold_assert(this->script_options_->saw_phdrs_clause()
3358               || parameters->options().any_section_start()
3359               || this->is_unique_segment_for_sections_specified());
3360   return false;
3361 }
3362
3363 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3364
3365 static off_t
3366 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3367 {
3368   uint64_t unsigned_off = off;
3369   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3370                           | (addr & (abi_pagesize - 1)));
3371   if (aligned_off < unsigned_off)
3372     aligned_off += abi_pagesize;
3373   return aligned_off;
3374 }
3375
3376 // On targets where the text segment contains only executable code,
3377 // a non-executable segment is never the text segment.
3378
3379 static inline bool
3380 is_text_segment(const Target* target, const Output_segment* seg)
3381 {
3382   elfcpp::Elf_Xword flags = seg->flags();
3383   if ((flags & elfcpp::PF_W) != 0)
3384     return false;
3385   if ((flags & elfcpp::PF_X) == 0)
3386     return !target->isolate_execinstr();
3387   return true;
3388 }
3389
3390 // Set the file offsets of all the segments, and all the sections they
3391 // contain.  They have all been created.  LOAD_SEG must be be laid out
3392 // first.  Return the offset of the data to follow.
3393
3394 off_t
3395 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3396                             unsigned int* pshndx)
3397 {
3398   // Sort them into the final order.  We use a stable sort so that we
3399   // don't randomize the order of indistinguishable segments created
3400   // by linker scripts.
3401   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3402                    Layout::Compare_segments(this));
3403
3404   // Find the PT_LOAD segments, and set their addresses and offsets
3405   // and their section's addresses and offsets.
3406   uint64_t start_addr;
3407   if (parameters->options().user_set_Ttext())
3408     start_addr = parameters->options().Ttext();
3409   else if (parameters->options().output_is_position_independent())
3410     start_addr = 0;
3411   else
3412     start_addr = target->default_text_segment_address();
3413
3414   uint64_t addr = start_addr;
3415   off_t off = 0;
3416
3417   // If LOAD_SEG is NULL, then the file header and segment headers
3418   // will not be loadable.  But they still need to be at offset 0 in
3419   // the file.  Set their offsets now.
3420   if (load_seg == NULL)
3421     {
3422       for (Data_list::iterator p = this->special_output_list_.begin();
3423            p != this->special_output_list_.end();
3424            ++p)
3425         {
3426           off = align_address(off, (*p)->addralign());
3427           (*p)->set_address_and_file_offset(0, off);
3428           off += (*p)->data_size();
3429         }
3430     }
3431
3432   unsigned int increase_relro = this->increase_relro_;
3433   if (this->script_options_->saw_sections_clause())
3434     increase_relro = 0;
3435
3436   const bool check_sections = parameters->options().check_sections();
3437   Output_segment* last_load_segment = NULL;
3438
3439   unsigned int shndx_begin = *pshndx;
3440   unsigned int shndx_load_seg = *pshndx;
3441
3442   for (Segment_list::iterator p = this->segment_list_.begin();
3443        p != this->segment_list_.end();
3444        ++p)
3445     {
3446       if ((*p)->type() == elfcpp::PT_LOAD)
3447         {
3448           if (target->isolate_execinstr())
3449             {
3450               // When we hit the segment that should contain the
3451               // file headers, reset the file offset so we place
3452               // it and subsequent segments appropriately.
3453               // We'll fix up the preceding segments below.
3454               if (load_seg == *p)
3455                 {
3456                   if (off == 0)
3457                     load_seg = NULL;
3458                   else
3459                     {
3460                       off = 0;
3461                       shndx_load_seg = *pshndx;
3462                     }
3463                 }
3464             }
3465           else
3466             {
3467               // Verify that the file headers fall into the first segment.
3468               if (load_seg != NULL && load_seg != *p)
3469                 gold_unreachable();
3470               load_seg = NULL;
3471             }
3472
3473           bool are_addresses_set = (*p)->are_addresses_set();
3474           if (are_addresses_set)
3475             {
3476               // When it comes to setting file offsets, we care about
3477               // the physical address.
3478               addr = (*p)->paddr();
3479             }
3480           else if (parameters->options().user_set_Ttext()
3481                    && (parameters->options().omagic()
3482                        || is_text_segment(target, *p)))
3483             {
3484               are_addresses_set = true;
3485             }
3486           else if (parameters->options().user_set_Trodata_segment()
3487                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3488             {
3489               addr = parameters->options().Trodata_segment();
3490               are_addresses_set = true;
3491             }
3492           else if (parameters->options().user_set_Tdata()
3493                    && ((*p)->flags() & elfcpp::PF_W) != 0
3494                    && (!parameters->options().user_set_Tbss()
3495                        || (*p)->has_any_data_sections()))
3496             {
3497               addr = parameters->options().Tdata();
3498               are_addresses_set = true;
3499             }
3500           else if (parameters->options().user_set_Tbss()
3501                    && ((*p)->flags() & elfcpp::PF_W) != 0
3502                    && !(*p)->has_any_data_sections())
3503             {
3504               addr = parameters->options().Tbss();
3505               are_addresses_set = true;
3506             }
3507
3508           uint64_t orig_addr = addr;
3509           uint64_t orig_off = off;
3510
3511           uint64_t aligned_addr = 0;
3512           uint64_t abi_pagesize = target->abi_pagesize();
3513           uint64_t common_pagesize = target->common_pagesize();
3514
3515           if (!parameters->options().nmagic()
3516               && !parameters->options().omagic())
3517             (*p)->set_minimum_p_align(abi_pagesize);
3518
3519           if (!are_addresses_set)
3520             {
3521               // Skip the address forward one page, maintaining the same
3522               // position within the page.  This lets us store both segments
3523               // overlapping on a single page in the file, but the loader will
3524               // put them on different pages in memory. We will revisit this
3525               // decision once we know the size of the segment.
3526
3527               addr = align_address(addr, (*p)->maximum_alignment());
3528               aligned_addr = addr;
3529
3530               if (load_seg == *p)
3531                 {
3532                   // This is the segment that will contain the file
3533                   // headers, so its offset will have to be exactly zero.
3534                   gold_assert(orig_off == 0);
3535
3536                   // If the target wants a fixed minimum distance from the
3537                   // text segment to the read-only segment, move up now.
3538                   uint64_t min_addr =
3539                     start_addr + (parameters->options().user_set_rosegment_gap()
3540                                   ? parameters->options().rosegment_gap()
3541                                   : target->rosegment_gap());
3542                   if (addr < min_addr)
3543                     addr = min_addr;
3544
3545                   // But this is not the first segment!  To make its
3546                   // address congruent with its offset, that address better
3547                   // be aligned to the ABI-mandated page size.
3548                   addr = align_address(addr, abi_pagesize);
3549                   aligned_addr = addr;
3550                 }
3551               else
3552                 {
3553                   if ((addr & (abi_pagesize - 1)) != 0)
3554                     addr = addr + abi_pagesize;
3555
3556                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3557                 }
3558             }
3559
3560           if (!parameters->options().nmagic()
3561               && !parameters->options().omagic())
3562             {
3563               // Here we are also taking care of the case when
3564               // the maximum segment alignment is larger than the page size.
3565               off = align_file_offset(off, addr,
3566                                       std::max(abi_pagesize,
3567                                                (*p)->maximum_alignment()));
3568             }
3569           else
3570             {
3571               // This is -N or -n with a section script which prevents
3572               // us from using a load segment.  We need to ensure that
3573               // the file offset is aligned to the alignment of the
3574               // segment.  This is because the linker script
3575               // implicitly assumed a zero offset.  If we don't align
3576               // here, then the alignment of the sections in the
3577               // linker script may not match the alignment of the
3578               // sections in the set_section_addresses call below,
3579               // causing an error about dot moving backward.
3580               off = align_address(off, (*p)->maximum_alignment());
3581             }
3582
3583           unsigned int shndx_hold = *pshndx;
3584           bool has_relro = false;
3585           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3586                                                           false, addr,
3587                                                           &increase_relro,
3588                                                           &has_relro,
3589                                                           &off, pshndx);
3590
3591           // Now that we know the size of this segment, we may be able
3592           // to save a page in memory, at the cost of wasting some
3593           // file space, by instead aligning to the start of a new
3594           // page.  Here we use the real machine page size rather than
3595           // the ABI mandated page size.  If the segment has been
3596           // aligned so that the relro data ends at a page boundary,
3597           // we do not try to realign it.
3598
3599           if (!are_addresses_set
3600               && !has_relro
3601               && aligned_addr != addr
3602               && !parameters->incremental())
3603             {
3604               uint64_t first_off = (common_pagesize
3605                                     - (aligned_addr
3606                                        & (common_pagesize - 1)));
3607               uint64_t last_off = new_addr & (common_pagesize - 1);
3608               if (first_off > 0
3609                   && last_off > 0
3610                   && ((aligned_addr & ~ (common_pagesize - 1))
3611                       != (new_addr & ~ (common_pagesize - 1)))
3612                   && first_off + last_off <= common_pagesize)
3613                 {
3614                   *pshndx = shndx_hold;
3615                   addr = align_address(aligned_addr, common_pagesize);
3616                   addr = align_address(addr, (*p)->maximum_alignment());
3617                   if ((addr & (abi_pagesize - 1)) != 0)
3618                     addr = addr + abi_pagesize;
3619                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3620                   off = align_file_offset(off, addr, abi_pagesize);
3621
3622                   increase_relro = this->increase_relro_;
3623                   if (this->script_options_->saw_sections_clause())
3624                     increase_relro = 0;
3625                   has_relro = false;
3626
3627                   new_addr = (*p)->set_section_addresses(target, this,
3628                                                          true, addr,
3629                                                          &increase_relro,
3630                                                          &has_relro,
3631                                                          &off, pshndx);
3632                 }
3633             }
3634
3635           addr = new_addr;
3636
3637           // Implement --check-sections.  We know that the segments
3638           // are sorted by LMA.
3639           if (check_sections && last_load_segment != NULL)
3640             {
3641               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3642               if (last_load_segment->paddr() + last_load_segment->memsz()
3643                   > (*p)->paddr())
3644                 {
3645                   unsigned long long lb1 = last_load_segment->paddr();
3646                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3647                   unsigned long long lb2 = (*p)->paddr();
3648                   unsigned long long le2 = lb2 + (*p)->memsz();
3649                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3650                                "[0x%llx -> 0x%llx]"),
3651                              lb1, le1, lb2, le2);
3652                 }
3653             }
3654           last_load_segment = *p;
3655         }
3656     }
3657
3658   if (load_seg != NULL && target->isolate_execinstr())
3659     {
3660       // Process the early segments again, setting their file offsets
3661       // so they land after the segments starting at LOAD_SEG.
3662       off = align_file_offset(off, 0, target->abi_pagesize());
3663
3664       this->reset_relax_output();
3665
3666       for (Segment_list::iterator p = this->segment_list_.begin();
3667            *p != load_seg;
3668            ++p)
3669         {
3670           if ((*p)->type() == elfcpp::PT_LOAD)
3671             {
3672               // We repeat the whole job of assigning addresses and
3673               // offsets, but we really only want to change the offsets and
3674               // must ensure that the addresses all come out the same as
3675               // they did the first time through.
3676               bool has_relro = false;
3677               const uint64_t old_addr = (*p)->vaddr();
3678               const uint64_t old_end = old_addr + (*p)->memsz();
3679               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3680                                                               true, old_addr,
3681                                                               &increase_relro,
3682                                                               &has_relro,
3683                                                               &off,
3684                                                               &shndx_begin);
3685               gold_assert(new_addr == old_end);
3686             }
3687         }
3688
3689       gold_assert(shndx_begin == shndx_load_seg);
3690     }
3691
3692   // Handle the non-PT_LOAD segments, setting their offsets from their
3693   // section's offsets.
3694   for (Segment_list::iterator p = this->segment_list_.begin();
3695        p != this->segment_list_.end();
3696        ++p)
3697     {
3698       if ((*p)->type() != elfcpp::PT_LOAD)
3699         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3700                          ? increase_relro
3701                          : 0);
3702     }
3703
3704   // Set the TLS offsets for each section in the PT_TLS segment.
3705   if (this->tls_segment_ != NULL)
3706     this->tls_segment_->set_tls_offsets();
3707
3708   return off;
3709 }
3710
3711 // Set the offsets of all the allocated sections when doing a
3712 // relocatable link.  This does the same jobs as set_segment_offsets,
3713 // only for a relocatable link.
3714
3715 off_t
3716 Layout::set_relocatable_section_offsets(Output_data* file_header,
3717                                         unsigned int* pshndx)
3718 {
3719   off_t off = 0;
3720
3721   file_header->set_address_and_file_offset(0, 0);
3722   off += file_header->data_size();
3723
3724   for (Section_list::iterator p = this->section_list_.begin();
3725        p != this->section_list_.end();
3726        ++p)
3727     {
3728       // We skip unallocated sections here, except that group sections
3729       // have to come first.
3730       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3731           && (*p)->type() != elfcpp::SHT_GROUP)
3732         continue;
3733
3734       off = align_address(off, (*p)->addralign());
3735
3736       // The linker script might have set the address.
3737       if (!(*p)->is_address_valid())
3738         (*p)->set_address(0);
3739       (*p)->set_file_offset(off);
3740       (*p)->finalize_data_size();
3741       if ((*p)->type() != elfcpp::SHT_NOBITS)
3742         off += (*p)->data_size();
3743
3744       (*p)->set_out_shndx(*pshndx);
3745       ++*pshndx;
3746     }
3747
3748   return off;
3749 }
3750
3751 // Set the file offset of all the sections not associated with a
3752 // segment.
3753
3754 off_t
3755 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3756 {
3757   off_t startoff = off;
3758   off_t maxoff = off;
3759
3760   for (Section_list::iterator p = this->unattached_section_list_.begin();
3761        p != this->unattached_section_list_.end();
3762        ++p)
3763     {
3764       // The symtab section is handled in create_symtab_sections.
3765       if (*p == this->symtab_section_)
3766         continue;
3767
3768       // If we've already set the data size, don't set it again.
3769       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3770         continue;
3771
3772       if (pass == BEFORE_INPUT_SECTIONS_PASS
3773           && (*p)->requires_postprocessing())
3774         {
3775           (*p)->create_postprocessing_buffer();
3776           this->any_postprocessing_sections_ = true;
3777         }
3778
3779       if (pass == BEFORE_INPUT_SECTIONS_PASS
3780           && (*p)->after_input_sections())
3781         continue;
3782       else if (pass == POSTPROCESSING_SECTIONS_PASS
3783                && (!(*p)->after_input_sections()
3784                    || (*p)->type() == elfcpp::SHT_STRTAB))
3785         continue;
3786       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3787                && (!(*p)->after_input_sections()
3788                    || (*p)->type() != elfcpp::SHT_STRTAB))
3789         continue;
3790
3791       if (!parameters->incremental_update())
3792         {
3793           off = align_address(off, (*p)->addralign());
3794           (*p)->set_file_offset(off);
3795           (*p)->finalize_data_size();
3796         }
3797       else
3798         {
3799           // Incremental update: allocate file space from free list.
3800           (*p)->pre_finalize_data_size();
3801           off_t current_size = (*p)->current_data_size();
3802           off = this->allocate(current_size, (*p)->addralign(), startoff);
3803           if (off == -1)
3804             {
3805               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3806                 this->free_list_.dump();
3807               gold_assert((*p)->output_section() != NULL);
3808               gold_fallback(_("out of patch space for section %s; "
3809                               "relink with --incremental-full"),
3810                             (*p)->output_section()->name());
3811             }
3812           (*p)->set_file_offset(off);
3813           (*p)->finalize_data_size();
3814           if ((*p)->data_size() > current_size)
3815             {
3816               gold_assert((*p)->output_section() != NULL);
3817               gold_fallback(_("%s: section changed size; "
3818                               "relink with --incremental-full"),
3819                             (*p)->output_section()->name());
3820             }
3821           gold_debug(DEBUG_INCREMENTAL,
3822                      "set_section_offsets: %08lx %08lx %s",
3823                      static_cast<long>(off),
3824                      static_cast<long>((*p)->data_size()),
3825                      ((*p)->output_section() != NULL
3826                       ? (*p)->output_section()->name() : "(special)"));
3827         }
3828
3829       off += (*p)->data_size();
3830       if (off > maxoff)
3831         maxoff = off;
3832
3833       // At this point the name must be set.
3834       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3835         this->namepool_.add((*p)->name(), false, NULL);
3836     }
3837   return maxoff;
3838 }
3839
3840 // Set the section indexes of all the sections not associated with a
3841 // segment.
3842
3843 unsigned int
3844 Layout::set_section_indexes(unsigned int shndx)
3845 {
3846   for (Section_list::iterator p = this->unattached_section_list_.begin();
3847        p != this->unattached_section_list_.end();
3848        ++p)
3849     {
3850       if (!(*p)->has_out_shndx())
3851         {
3852           (*p)->set_out_shndx(shndx);
3853           ++shndx;
3854         }
3855     }
3856   return shndx;
3857 }
3858
3859 // Set the section addresses according to the linker script.  This is
3860 // only called when we see a SECTIONS clause.  This returns the
3861 // program segment which should hold the file header and segment
3862 // headers, if any.  It will return NULL if they should not be in a
3863 // segment.
3864
3865 Output_segment*
3866 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3867 {
3868   Script_sections* ss = this->script_options_->script_sections();
3869   gold_assert(ss->saw_sections_clause());
3870   return this->script_options_->set_section_addresses(symtab, this);
3871 }
3872
3873 // Place the orphan sections in the linker script.
3874
3875 void
3876 Layout::place_orphan_sections_in_script()
3877 {
3878   Script_sections* ss = this->script_options_->script_sections();
3879   gold_assert(ss->saw_sections_clause());
3880
3881   // Place each orphaned output section in the script.
3882   for (Section_list::iterator p = this->section_list_.begin();
3883        p != this->section_list_.end();
3884        ++p)
3885     {
3886       if (!(*p)->found_in_sections_clause())
3887         ss->place_orphan(*p);
3888     }
3889 }
3890
3891 // Count the local symbols in the regular symbol table and the dynamic
3892 // symbol table, and build the respective string pools.
3893
3894 void
3895 Layout::count_local_symbols(const Task* task,
3896                             const Input_objects* input_objects)
3897 {
3898   // First, figure out an upper bound on the number of symbols we'll
3899   // be inserting into each pool.  This helps us create the pools with
3900   // the right size, to avoid unnecessary hashtable resizing.
3901   unsigned int symbol_count = 0;
3902   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3903        p != input_objects->relobj_end();
3904        ++p)
3905     symbol_count += (*p)->local_symbol_count();
3906
3907   // Go from "upper bound" to "estimate."  We overcount for two
3908   // reasons: we double-count symbols that occur in more than one
3909   // object file, and we count symbols that are dropped from the
3910   // output.  Add it all together and assume we overcount by 100%.
3911   symbol_count /= 2;
3912
3913   // We assume all symbols will go into both the sympool and dynpool.
3914   this->sympool_.reserve(symbol_count);
3915   this->dynpool_.reserve(symbol_count);
3916
3917   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3918        p != input_objects->relobj_end();
3919        ++p)
3920     {
3921       Task_lock_obj<Object> tlo(task, *p);
3922       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3923     }
3924 }
3925
3926 // Create the symbol table sections.  Here we also set the final
3927 // values of the symbols.  At this point all the loadable sections are
3928 // fully laid out.  SHNUM is the number of sections so far.
3929
3930 void
3931 Layout::create_symtab_sections(const Input_objects* input_objects,
3932                                Symbol_table* symtab,
3933                                unsigned int shnum,
3934                                off_t* poff)
3935 {
3936   int symsize;
3937   unsigned int align;
3938   if (parameters->target().get_size() == 32)
3939     {
3940       symsize = elfcpp::Elf_sizes<32>::sym_size;
3941       align = 4;
3942     }
3943   else if (parameters->target().get_size() == 64)
3944     {
3945       symsize = elfcpp::Elf_sizes<64>::sym_size;
3946       align = 8;
3947     }
3948   else
3949     gold_unreachable();
3950
3951   // Compute file offsets relative to the start of the symtab section.
3952   off_t off = 0;
3953
3954   // Save space for the dummy symbol at the start of the section.  We
3955   // never bother to write this out--it will just be left as zero.
3956   off += symsize;
3957   unsigned int local_symbol_index = 1;
3958
3959   // Add STT_SECTION symbols for each Output section which needs one.
3960   for (Section_list::iterator p = this->section_list_.begin();
3961        p != this->section_list_.end();
3962        ++p)
3963     {
3964       if (!(*p)->needs_symtab_index())
3965         (*p)->set_symtab_index(-1U);
3966       else
3967         {
3968           (*p)->set_symtab_index(local_symbol_index);
3969           ++local_symbol_index;
3970           off += symsize;
3971         }
3972     }
3973
3974   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3975        p != input_objects->relobj_end();
3976        ++p)
3977     {
3978       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3979                                                         off, symtab);
3980       off += (index - local_symbol_index) * symsize;
3981       local_symbol_index = index;
3982     }
3983
3984   unsigned int local_symcount = local_symbol_index;
3985   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3986
3987   off_t dynoff;
3988   size_t dyn_global_index;
3989   size_t dyncount;
3990   if (this->dynsym_section_ == NULL)
3991     {
3992       dynoff = 0;
3993       dyn_global_index = 0;
3994       dyncount = 0;
3995     }
3996   else
3997     {
3998       dyn_global_index = this->dynsym_section_->info();
3999       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4000       dynoff = this->dynsym_section_->offset() + locsize;
4001       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4002       gold_assert(static_cast<off_t>(dyncount * symsize)
4003                   == this->dynsym_section_->data_size() - locsize);
4004     }
4005
4006   off_t global_off = off;
4007   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4008                          &this->sympool_, &local_symcount);
4009
4010   if (!parameters->options().strip_all())
4011     {
4012       this->sympool_.set_string_offsets();
4013
4014       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4015       Output_section* osymtab = this->make_output_section(symtab_name,
4016                                                           elfcpp::SHT_SYMTAB,
4017                                                           0, ORDER_INVALID,
4018                                                           false);
4019       this->symtab_section_ = osymtab;
4020
4021       Output_section_data* pos = new Output_data_fixed_space(off, align,
4022                                                              "** symtab");
4023       osymtab->add_output_section_data(pos);
4024
4025       // We generate a .symtab_shndx section if we have more than
4026       // SHN_LORESERVE sections.  Technically it is possible that we
4027       // don't need one, because it is possible that there are no
4028       // symbols in any of sections with indexes larger than
4029       // SHN_LORESERVE.  That is probably unusual, though, and it is
4030       // easier to always create one than to compute section indexes
4031       // twice (once here, once when writing out the symbols).
4032       if (shnum >= elfcpp::SHN_LORESERVE)
4033         {
4034           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4035                                                                false, NULL);
4036           Output_section* osymtab_xindex =
4037             this->make_output_section(symtab_xindex_name,
4038                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4039                                       ORDER_INVALID, false);
4040
4041           size_t symcount = off / symsize;
4042           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4043
4044           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4045
4046           osymtab_xindex->set_link_section(osymtab);
4047           osymtab_xindex->set_addralign(4);
4048           osymtab_xindex->set_entsize(4);
4049
4050           osymtab_xindex->set_after_input_sections();
4051
4052           // This tells the driver code to wait until the symbol table
4053           // has written out before writing out the postprocessing
4054           // sections, including the .symtab_shndx section.
4055           this->any_postprocessing_sections_ = true;
4056         }
4057
4058       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4059       Output_section* ostrtab = this->make_output_section(strtab_name,
4060                                                           elfcpp::SHT_STRTAB,
4061                                                           0, ORDER_INVALID,
4062                                                           false);
4063
4064       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4065       ostrtab->add_output_section_data(pstr);
4066
4067       off_t symtab_off;
4068       if (!parameters->incremental_update())
4069         symtab_off = align_address(*poff, align);
4070       else
4071         {
4072           symtab_off = this->allocate(off, align, *poff);
4073           if (off == -1)
4074             gold_fallback(_("out of patch space for symbol table; "
4075                             "relink with --incremental-full"));
4076           gold_debug(DEBUG_INCREMENTAL,
4077                      "create_symtab_sections: %08lx %08lx .symtab",
4078                      static_cast<long>(symtab_off),
4079                      static_cast<long>(off));
4080         }
4081
4082       symtab->set_file_offset(symtab_off + global_off);
4083       osymtab->set_file_offset(symtab_off);
4084       osymtab->finalize_data_size();
4085       osymtab->set_link_section(ostrtab);
4086       osymtab->set_info(local_symcount);
4087       osymtab->set_entsize(symsize);
4088
4089       if (symtab_off + off > *poff)
4090         *poff = symtab_off + off;
4091     }
4092 }
4093
4094 // Create the .shstrtab section, which holds the names of the
4095 // sections.  At the time this is called, we have created all the
4096 // output sections except .shstrtab itself.
4097
4098 Output_section*
4099 Layout::create_shstrtab()
4100 {
4101   // FIXME: We don't need to create a .shstrtab section if we are
4102   // stripping everything.
4103
4104   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4105
4106   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4107                                                  ORDER_INVALID, false);
4108
4109   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4110     {
4111       // We can't write out this section until we've set all the
4112       // section names, and we don't set the names of compressed
4113       // output sections until relocations are complete.  FIXME: With
4114       // the current names we use, this is unnecessary.
4115       os->set_after_input_sections();
4116     }
4117
4118   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4119   os->add_output_section_data(posd);
4120
4121   return os;
4122 }
4123
4124 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4125 // offset.
4126
4127 void
4128 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4129 {
4130   Output_section_headers* oshdrs;
4131   oshdrs = new Output_section_headers(this,
4132                                       &this->segment_list_,
4133                                       &this->section_list_,
4134                                       &this->unattached_section_list_,
4135                                       &this->namepool_,
4136                                       shstrtab_section);
4137   off_t off;
4138   if (!parameters->incremental_update())
4139     off = align_address(*poff, oshdrs->addralign());
4140   else
4141     {
4142       oshdrs->pre_finalize_data_size();
4143       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4144       if (off == -1)
4145           gold_fallback(_("out of patch space for section header table; "
4146                           "relink with --incremental-full"));
4147       gold_debug(DEBUG_INCREMENTAL,
4148                  "create_shdrs: %08lx %08lx (section header table)",
4149                  static_cast<long>(off),
4150                  static_cast<long>(off + oshdrs->data_size()));
4151     }
4152   oshdrs->set_address_and_file_offset(0, off);
4153   off += oshdrs->data_size();
4154   if (off > *poff)
4155     *poff = off;
4156   this->section_headers_ = oshdrs;
4157 }
4158
4159 // Count the allocated sections.
4160
4161 size_t
4162 Layout::allocated_output_section_count() const
4163 {
4164   size_t section_count = 0;
4165   for (Segment_list::const_iterator p = this->segment_list_.begin();
4166        p != this->segment_list_.end();
4167        ++p)
4168     section_count += (*p)->output_section_count();
4169   return section_count;
4170 }
4171
4172 // Create the dynamic symbol table.
4173
4174 void
4175 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4176                               Symbol_table* symtab,
4177                               Output_section** pdynstr,
4178                               unsigned int* plocal_dynamic_count,
4179                               std::vector<Symbol*>* pdynamic_symbols,
4180                               Versions* pversions)
4181 {
4182   // Count all the symbols in the dynamic symbol table, and set the
4183   // dynamic symbol indexes.
4184
4185   // Skip symbol 0, which is always all zeroes.
4186   unsigned int index = 1;
4187
4188   // Add STT_SECTION symbols for each Output section which needs one.
4189   for (Section_list::iterator p = this->section_list_.begin();
4190        p != this->section_list_.end();
4191        ++p)
4192     {
4193       if (!(*p)->needs_dynsym_index())
4194         (*p)->set_dynsym_index(-1U);
4195       else
4196         {
4197           (*p)->set_dynsym_index(index);
4198           ++index;
4199         }
4200     }
4201
4202   // Count the local symbols that need to go in the dynamic symbol table,
4203   // and set the dynamic symbol indexes.
4204   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4205        p != input_objects->relobj_end();
4206        ++p)
4207     {
4208       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4209       index = new_index;
4210     }
4211
4212   unsigned int local_symcount = index;
4213   *plocal_dynamic_count = local_symcount;
4214
4215   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4216                                      &this->dynpool_, pversions);
4217
4218   int symsize;
4219   unsigned int align;
4220   const int size = parameters->target().get_size();
4221   if (size == 32)
4222     {
4223       symsize = elfcpp::Elf_sizes<32>::sym_size;
4224       align = 4;
4225     }
4226   else if (size == 64)
4227     {
4228       symsize = elfcpp::Elf_sizes<64>::sym_size;
4229       align = 8;
4230     }
4231   else
4232     gold_unreachable();
4233
4234   // Create the dynamic symbol table section.
4235
4236   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4237                                                        elfcpp::SHT_DYNSYM,
4238                                                        elfcpp::SHF_ALLOC,
4239                                                        false,
4240                                                        ORDER_DYNAMIC_LINKER,
4241                                                        false);
4242
4243   // Check for NULL as a linker script may discard .dynsym.
4244   if (dynsym != NULL)
4245     {
4246       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4247                                                                align,
4248                                                                "** dynsym");
4249       dynsym->add_output_section_data(odata);
4250
4251       dynsym->set_info(local_symcount);
4252       dynsym->set_entsize(symsize);
4253       dynsym->set_addralign(align);
4254
4255       this->dynsym_section_ = dynsym;
4256     }
4257
4258   Output_data_dynamic* const odyn = this->dynamic_data_;
4259   if (odyn != NULL)
4260     {
4261       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4262       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4263     }
4264
4265   // If there are more than SHN_LORESERVE allocated sections, we
4266   // create a .dynsym_shndx section.  It is possible that we don't
4267   // need one, because it is possible that there are no dynamic
4268   // symbols in any of the sections with indexes larger than
4269   // SHN_LORESERVE.  This is probably unusual, though, and at this
4270   // time we don't know the actual section indexes so it is
4271   // inconvenient to check.
4272   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4273     {
4274       Output_section* dynsym_xindex =
4275         this->choose_output_section(NULL, ".dynsym_shndx",
4276                                     elfcpp::SHT_SYMTAB_SHNDX,
4277                                     elfcpp::SHF_ALLOC,
4278                                     false, ORDER_DYNAMIC_LINKER, false);
4279
4280       if (dynsym_xindex != NULL)
4281         {
4282           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4283
4284           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4285
4286           dynsym_xindex->set_link_section(dynsym);
4287           dynsym_xindex->set_addralign(4);
4288           dynsym_xindex->set_entsize(4);
4289
4290           dynsym_xindex->set_after_input_sections();
4291
4292           // This tells the driver code to wait until the symbol table
4293           // has written out before writing out the postprocessing
4294           // sections, including the .dynsym_shndx section.
4295           this->any_postprocessing_sections_ = true;
4296         }
4297     }
4298
4299   // Create the dynamic string table section.
4300
4301   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4302                                                        elfcpp::SHT_STRTAB,
4303                                                        elfcpp::SHF_ALLOC,
4304                                                        false,
4305                                                        ORDER_DYNAMIC_LINKER,
4306                                                        false);
4307   *pdynstr = dynstr;
4308   if (dynstr != NULL)
4309     {
4310       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4311       dynstr->add_output_section_data(strdata);
4312
4313       if (dynsym != NULL)
4314         dynsym->set_link_section(dynstr);
4315       if (this->dynamic_section_ != NULL)
4316         this->dynamic_section_->set_link_section(dynstr);
4317
4318       if (odyn != NULL)
4319         {
4320           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4321           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4322         }
4323     }
4324
4325   // Create the hash tables.  The Gnu-style hash table must be
4326   // built first, because it changes the order of the symbols
4327   // in the dynamic symbol table.
4328
4329   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4330       || strcmp(parameters->options().hash_style(), "both") == 0)
4331     {
4332       unsigned char* phash;
4333       unsigned int hashlen;
4334       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4335                                     &phash, &hashlen);
4336
4337       Output_section* hashsec =
4338         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4339                                     elfcpp::SHF_ALLOC, false,
4340                                     ORDER_DYNAMIC_LINKER, false);
4341
4342       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4343                                                                    hashlen,
4344                                                                    align,
4345                                                                    "** hash");
4346       if (hashsec != NULL && hashdata != NULL)
4347         hashsec->add_output_section_data(hashdata);
4348
4349       if (hashsec != NULL)
4350         {
4351           if (dynsym != NULL)
4352             hashsec->set_link_section(dynsym);
4353
4354           // For a 64-bit target, the entries in .gnu.hash do not have
4355           // a uniform size, so we only set the entry size for a
4356           // 32-bit target.
4357           if (parameters->target().get_size() == 32)
4358             hashsec->set_entsize(4);
4359
4360           if (odyn != NULL)
4361             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4362         }
4363     }
4364
4365   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4366       || strcmp(parameters->options().hash_style(), "both") == 0)
4367     {
4368       unsigned char* phash;
4369       unsigned int hashlen;
4370       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4371                                     &phash, &hashlen);
4372
4373       Output_section* hashsec =
4374         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4375                                     elfcpp::SHF_ALLOC, false,
4376                                     ORDER_DYNAMIC_LINKER, false);
4377
4378       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4379                                                                    hashlen,
4380                                                                    align,
4381                                                                    "** hash");
4382       if (hashsec != NULL && hashdata != NULL)
4383         hashsec->add_output_section_data(hashdata);
4384
4385       if (hashsec != NULL)
4386         {
4387           if (dynsym != NULL)
4388             hashsec->set_link_section(dynsym);
4389           hashsec->set_entsize(4);
4390         }
4391
4392       if (odyn != NULL)
4393         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4394     }
4395 }
4396
4397 // Assign offsets to each local portion of the dynamic symbol table.
4398
4399 void
4400 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4401 {
4402   Output_section* dynsym = this->dynsym_section_;
4403   if (dynsym == NULL)
4404     return;
4405
4406   off_t off = dynsym->offset();
4407
4408   // Skip the dummy symbol at the start of the section.
4409   off += dynsym->entsize();
4410
4411   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4412        p != input_objects->relobj_end();
4413        ++p)
4414     {
4415       unsigned int count = (*p)->set_local_dynsym_offset(off);
4416       off += count * dynsym->entsize();
4417     }
4418 }
4419
4420 // Create the version sections.
4421
4422 void
4423 Layout::create_version_sections(const Versions* versions,
4424                                 const Symbol_table* symtab,
4425                                 unsigned int local_symcount,
4426                                 const std::vector<Symbol*>& dynamic_symbols,
4427                                 const Output_section* dynstr)
4428 {
4429   if (!versions->any_defs() && !versions->any_needs())
4430     return;
4431
4432   switch (parameters->size_and_endianness())
4433     {
4434 #ifdef HAVE_TARGET_32_LITTLE
4435     case Parameters::TARGET_32_LITTLE:
4436       this->sized_create_version_sections<32, false>(versions, symtab,
4437                                                      local_symcount,
4438                                                      dynamic_symbols, dynstr);
4439       break;
4440 #endif
4441 #ifdef HAVE_TARGET_32_BIG
4442     case Parameters::TARGET_32_BIG:
4443       this->sized_create_version_sections<32, true>(versions, symtab,
4444                                                     local_symcount,
4445                                                     dynamic_symbols, dynstr);
4446       break;
4447 #endif
4448 #ifdef HAVE_TARGET_64_LITTLE
4449     case Parameters::TARGET_64_LITTLE:
4450       this->sized_create_version_sections<64, false>(versions, symtab,
4451                                                      local_symcount,
4452                                                      dynamic_symbols, dynstr);
4453       break;
4454 #endif
4455 #ifdef HAVE_TARGET_64_BIG
4456     case Parameters::TARGET_64_BIG:
4457       this->sized_create_version_sections<64, true>(versions, symtab,
4458                                                     local_symcount,
4459                                                     dynamic_symbols, dynstr);
4460       break;
4461 #endif
4462     default:
4463       gold_unreachable();
4464     }
4465 }
4466
4467 // Create the version sections, sized version.
4468
4469 template<int size, bool big_endian>
4470 void
4471 Layout::sized_create_version_sections(
4472     const Versions* versions,
4473     const Symbol_table* symtab,
4474     unsigned int local_symcount,
4475     const std::vector<Symbol*>& dynamic_symbols,
4476     const Output_section* dynstr)
4477 {
4478   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4479                                                      elfcpp::SHT_GNU_versym,
4480                                                      elfcpp::SHF_ALLOC,
4481                                                      false,
4482                                                      ORDER_DYNAMIC_LINKER,
4483                                                      false);
4484
4485   // Check for NULL since a linker script may discard this section.
4486   if (vsec != NULL)
4487     {
4488       unsigned char* vbuf;
4489       unsigned int vsize;
4490       versions->symbol_section_contents<size, big_endian>(symtab,
4491                                                           &this->dynpool_,
4492                                                           local_symcount,
4493                                                           dynamic_symbols,
4494                                                           &vbuf, &vsize);
4495
4496       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4497                                                                 "** versions");
4498
4499       vsec->add_output_section_data(vdata);
4500       vsec->set_entsize(2);
4501       vsec->set_link_section(this->dynsym_section_);
4502     }
4503
4504   Output_data_dynamic* const odyn = this->dynamic_data_;
4505   if (odyn != NULL && vsec != NULL)
4506     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4507
4508   if (versions->any_defs())
4509     {
4510       Output_section* vdsec;
4511       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4512                                           elfcpp::SHT_GNU_verdef,
4513                                           elfcpp::SHF_ALLOC,
4514                                           false, ORDER_DYNAMIC_LINKER, false);
4515
4516       if (vdsec != NULL)
4517         {
4518           unsigned char* vdbuf;
4519           unsigned int vdsize;
4520           unsigned int vdentries;
4521           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4522                                                            &vdbuf, &vdsize,
4523                                                            &vdentries);
4524
4525           Output_section_data* vddata =
4526             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4527
4528           vdsec->add_output_section_data(vddata);
4529           vdsec->set_link_section(dynstr);
4530           vdsec->set_info(vdentries);
4531
4532           if (odyn != NULL)
4533             {
4534               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4535               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4536             }
4537         }
4538     }
4539
4540   if (versions->any_needs())
4541     {
4542       Output_section* vnsec;
4543       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4544                                           elfcpp::SHT_GNU_verneed,
4545                                           elfcpp::SHF_ALLOC,
4546                                           false, ORDER_DYNAMIC_LINKER, false);
4547
4548       if (vnsec != NULL)
4549         {
4550           unsigned char* vnbuf;
4551           unsigned int vnsize;
4552           unsigned int vnentries;
4553           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4554                                                             &vnbuf, &vnsize,
4555                                                             &vnentries);
4556
4557           Output_section_data* vndata =
4558             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4559
4560           vnsec->add_output_section_data(vndata);
4561           vnsec->set_link_section(dynstr);
4562           vnsec->set_info(vnentries);
4563
4564           if (odyn != NULL)
4565             {
4566               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4567               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4568             }
4569         }
4570     }
4571 }
4572
4573 // Create the .interp section and PT_INTERP segment.
4574
4575 void
4576 Layout::create_interp(const Target* target)
4577 {
4578   gold_assert(this->interp_segment_ == NULL);
4579
4580   const char* interp = parameters->options().dynamic_linker();
4581   if (interp == NULL)
4582     {
4583       interp = target->dynamic_linker();
4584       gold_assert(interp != NULL);
4585     }
4586
4587   size_t len = strlen(interp) + 1;
4588
4589   Output_section_data* odata = new Output_data_const(interp, len, 1);
4590
4591   Output_section* osec = this->choose_output_section(NULL, ".interp",
4592                                                      elfcpp::SHT_PROGBITS,
4593                                                      elfcpp::SHF_ALLOC,
4594                                                      false, ORDER_INTERP,
4595                                                      false);
4596   if (osec != NULL)
4597     osec->add_output_section_data(odata);
4598 }
4599
4600 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4601 // called by the target-specific code.  This does nothing if not doing
4602 // a dynamic link.
4603
4604 // USE_REL is true for REL relocs rather than RELA relocs.
4605
4606 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4607
4608 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4609 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4610 // some targets have multiple reloc sections in PLT_REL.
4611
4612 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4613 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4614 // section.
4615
4616 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4617 // executable.
4618
4619 void
4620 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4621                                 const Output_data* plt_rel,
4622                                 const Output_data_reloc_generic* dyn_rel,
4623                                 bool add_debug, bool dynrel_includes_plt)
4624 {
4625   Output_data_dynamic* odyn = this->dynamic_data_;
4626   if (odyn == NULL)
4627     return;
4628
4629   if (plt_got != NULL && plt_got->output_section() != NULL)
4630     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4631
4632   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4633     {
4634       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4635       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4636       odyn->add_constant(elfcpp::DT_PLTREL,
4637                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4638     }
4639
4640   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4641       || (dynrel_includes_plt
4642           && plt_rel != NULL
4643           && plt_rel->output_section() != NULL))
4644     {
4645       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4646       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4647       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4648                                 (have_dyn_rel
4649                                  ? dyn_rel->output_section()
4650                                  : plt_rel->output_section()));
4651       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4652       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4653         odyn->add_section_size(size_tag,
4654                                dyn_rel->output_section(),
4655                                plt_rel->output_section());
4656       else if (have_dyn_rel)
4657         odyn->add_section_size(size_tag, dyn_rel->output_section());
4658       else
4659         odyn->add_section_size(size_tag, plt_rel->output_section());
4660       const int size = parameters->target().get_size();
4661       elfcpp::DT rel_tag;
4662       int rel_size;
4663       if (use_rel)
4664         {
4665           rel_tag = elfcpp::DT_RELENT;
4666           if (size == 32)
4667             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4668           else if (size == 64)
4669             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4670           else
4671             gold_unreachable();
4672         }
4673       else
4674         {
4675           rel_tag = elfcpp::DT_RELAENT;
4676           if (size == 32)
4677             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4678           else if (size == 64)
4679             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4680           else
4681             gold_unreachable();
4682         }
4683       odyn->add_constant(rel_tag, rel_size);
4684
4685       if (parameters->options().combreloc() && have_dyn_rel)
4686         {
4687           size_t c = dyn_rel->relative_reloc_count();
4688           if (c > 0)
4689             odyn->add_constant((use_rel
4690                                 ? elfcpp::DT_RELCOUNT
4691                                 : elfcpp::DT_RELACOUNT),
4692                                c);
4693         }
4694     }
4695
4696   if (add_debug && !parameters->options().shared())
4697     {
4698       // The value of the DT_DEBUG tag is filled in by the dynamic
4699       // linker at run time, and used by the debugger.
4700       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4701     }
4702 }
4703
4704 // Finish the .dynamic section and PT_DYNAMIC segment.
4705
4706 void
4707 Layout::finish_dynamic_section(const Input_objects* input_objects,
4708                                const Symbol_table* symtab)
4709 {
4710   if (!this->script_options_->saw_phdrs_clause()
4711       && this->dynamic_section_ != NULL)
4712     {
4713       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4714                                                        (elfcpp::PF_R
4715                                                         | elfcpp::PF_W));
4716       oseg->add_output_section_to_nonload(this->dynamic_section_,
4717                                           elfcpp::PF_R | elfcpp::PF_W);
4718     }
4719
4720   Output_data_dynamic* const odyn = this->dynamic_data_;
4721   if (odyn == NULL)
4722     return;
4723
4724   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4725        p != input_objects->dynobj_end();
4726        ++p)
4727     {
4728       if (!(*p)->is_needed() && (*p)->as_needed())
4729         {
4730           // This dynamic object was linked with --as-needed, but it
4731           // is not needed.
4732           continue;
4733         }
4734
4735       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4736     }
4737
4738   if (parameters->options().shared())
4739     {
4740       const char* soname = parameters->options().soname();
4741       if (soname != NULL)
4742         odyn->add_string(elfcpp::DT_SONAME, soname);
4743     }
4744
4745   Symbol* sym = symtab->lookup(parameters->options().init());
4746   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4747     odyn->add_symbol(elfcpp::DT_INIT, sym);
4748
4749   sym = symtab->lookup(parameters->options().fini());
4750   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4751     odyn->add_symbol(elfcpp::DT_FINI, sym);
4752
4753   // Look for .init_array, .preinit_array and .fini_array by checking
4754   // section types.
4755   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4756       p != this->section_list_.end();
4757       ++p)
4758     switch((*p)->type())
4759       {
4760       case elfcpp::SHT_FINI_ARRAY:
4761         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4762         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4763         break;
4764       case elfcpp::SHT_INIT_ARRAY:
4765         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4766         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4767         break;
4768       case elfcpp::SHT_PREINIT_ARRAY:
4769         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4770         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4771         break;
4772       default:
4773         break;
4774       }
4775
4776   // Add a DT_RPATH entry if needed.
4777   const General_options::Dir_list& rpath(parameters->options().rpath());
4778   if (!rpath.empty())
4779     {
4780       std::string rpath_val;
4781       for (General_options::Dir_list::const_iterator p = rpath.begin();
4782            p != rpath.end();
4783            ++p)
4784         {
4785           if (rpath_val.empty())
4786             rpath_val = p->name();
4787           else
4788             {
4789               // Eliminate duplicates.
4790               General_options::Dir_list::const_iterator q;
4791               for (q = rpath.begin(); q != p; ++q)
4792                 if (q->name() == p->name())
4793                   break;
4794               if (q == p)
4795                 {
4796                   rpath_val += ':';
4797                   rpath_val += p->name();
4798                 }
4799             }
4800         }
4801
4802       if (!parameters->options().enable_new_dtags())
4803         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4804       else
4805         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4806     }
4807
4808   // Look for text segments that have dynamic relocations.
4809   bool have_textrel = false;
4810   if (!this->script_options_->saw_sections_clause())
4811     {
4812       for (Segment_list::const_iterator p = this->segment_list_.begin();
4813            p != this->segment_list_.end();
4814            ++p)
4815         {
4816           if ((*p)->type() == elfcpp::PT_LOAD
4817               && ((*p)->flags() & elfcpp::PF_W) == 0
4818               && (*p)->has_dynamic_reloc())
4819             {
4820               have_textrel = true;
4821               break;
4822             }
4823         }
4824     }
4825   else
4826     {
4827       // We don't know the section -> segment mapping, so we are
4828       // conservative and just look for readonly sections with
4829       // relocations.  If those sections wind up in writable segments,
4830       // then we have created an unnecessary DT_TEXTREL entry.
4831       for (Section_list::const_iterator p = this->section_list_.begin();
4832            p != this->section_list_.end();
4833            ++p)
4834         {
4835           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4836               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4837               && (*p)->has_dynamic_reloc())
4838             {
4839               have_textrel = true;
4840               break;
4841             }
4842         }
4843     }
4844
4845   if (parameters->options().filter() != NULL)
4846     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4847   if (parameters->options().any_auxiliary())
4848     {
4849       for (options::String_set::const_iterator p =
4850              parameters->options().auxiliary_begin();
4851            p != parameters->options().auxiliary_end();
4852            ++p)
4853         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4854     }
4855
4856   // Add a DT_FLAGS entry if necessary.
4857   unsigned int flags = 0;
4858   if (have_textrel)
4859     {
4860       // Add a DT_TEXTREL for compatibility with older loaders.
4861       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4862       flags |= elfcpp::DF_TEXTREL;
4863
4864       if (parameters->options().text())
4865         gold_error(_("read-only segment has dynamic relocations"));
4866       else if (parameters->options().warn_shared_textrel()
4867                && parameters->options().shared())
4868         gold_warning(_("shared library text segment is not shareable"));
4869     }
4870   if (parameters->options().shared() && this->has_static_tls())
4871     flags |= elfcpp::DF_STATIC_TLS;
4872   if (parameters->options().origin())
4873     flags |= elfcpp::DF_ORIGIN;
4874   if (parameters->options().Bsymbolic())
4875     {
4876       flags |= elfcpp::DF_SYMBOLIC;
4877       // Add DT_SYMBOLIC for compatibility with older loaders.
4878       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4879     }
4880   if (parameters->options().now())
4881     flags |= elfcpp::DF_BIND_NOW;
4882   if (flags != 0)
4883     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4884
4885   flags = 0;
4886   if (parameters->options().initfirst())
4887     flags |= elfcpp::DF_1_INITFIRST;
4888   if (parameters->options().interpose())
4889     flags |= elfcpp::DF_1_INTERPOSE;
4890   if (parameters->options().loadfltr())
4891     flags |= elfcpp::DF_1_LOADFLTR;
4892   if (parameters->options().nodefaultlib())
4893     flags |= elfcpp::DF_1_NODEFLIB;
4894   if (parameters->options().nodelete())
4895     flags |= elfcpp::DF_1_NODELETE;
4896   if (parameters->options().nodlopen())
4897     flags |= elfcpp::DF_1_NOOPEN;
4898   if (parameters->options().nodump())
4899     flags |= elfcpp::DF_1_NODUMP;
4900   if (!parameters->options().shared())
4901     flags &= ~(elfcpp::DF_1_INITFIRST
4902                | elfcpp::DF_1_NODELETE
4903                | elfcpp::DF_1_NOOPEN);
4904   if (parameters->options().origin())
4905     flags |= elfcpp::DF_1_ORIGIN;
4906   if (parameters->options().now())
4907     flags |= elfcpp::DF_1_NOW;
4908   if (parameters->options().Bgroup())
4909     flags |= elfcpp::DF_1_GROUP;
4910   if (flags != 0)
4911     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4912 }
4913
4914 // Set the size of the _DYNAMIC symbol table to be the size of the
4915 // dynamic data.
4916
4917 void
4918 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4919 {
4920   Output_data_dynamic* const odyn = this->dynamic_data_;
4921   if (odyn == NULL)
4922     return;
4923   odyn->finalize_data_size();
4924   if (this->dynamic_symbol_ == NULL)
4925     return;
4926   off_t data_size = odyn->data_size();
4927   const int size = parameters->target().get_size();
4928   if (size == 32)
4929     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4930   else if (size == 64)
4931     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4932   else
4933     gold_unreachable();
4934 }
4935
4936 // The mapping of input section name prefixes to output section names.
4937 // In some cases one prefix is itself a prefix of another prefix; in
4938 // such a case the longer prefix must come first.  These prefixes are
4939 // based on the GNU linker default ELF linker script.
4940
4941 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4942 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4943 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4944 {
4945   MAPPING_INIT(".text.", ".text"),
4946   MAPPING_INIT(".rodata.", ".rodata"),
4947   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4948   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4949   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4950   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4951   MAPPING_INIT(".data.", ".data"),
4952   MAPPING_INIT(".bss.", ".bss"),
4953   MAPPING_INIT(".tdata.", ".tdata"),
4954   MAPPING_INIT(".tbss.", ".tbss"),
4955   MAPPING_INIT(".init_array.", ".init_array"),
4956   MAPPING_INIT(".fini_array.", ".fini_array"),
4957   MAPPING_INIT(".sdata.", ".sdata"),
4958   MAPPING_INIT(".sbss.", ".sbss"),
4959   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4960   // differently depending on whether it is creating a shared library.
4961   MAPPING_INIT(".sdata2.", ".sdata"),
4962   MAPPING_INIT(".sbss2.", ".sbss"),
4963   MAPPING_INIT(".lrodata.", ".lrodata"),
4964   MAPPING_INIT(".ldata.", ".ldata"),
4965   MAPPING_INIT(".lbss.", ".lbss"),
4966   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4967   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4968   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4969   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4970   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4971   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4972   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4973   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4974   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4975   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4976   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4977   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4978   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4979   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4980   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4981   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4982   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4983   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4984   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4985   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4986   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4987 };
4988 #undef MAPPING_INIT
4989 #undef MAPPING_INIT_EXACT
4990
4991 const int Layout::section_name_mapping_count =
4992   (sizeof(Layout::section_name_mapping)
4993    / sizeof(Layout::section_name_mapping[0]));
4994
4995 // Choose the output section name to use given an input section name.
4996 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4997 // length of NAME.
4998
4999 const char*
5000 Layout::output_section_name(const Relobj* relobj, const char* name,
5001                             size_t* plen)
5002 {
5003   // gcc 4.3 generates the following sorts of section names when it
5004   // needs a section name specific to a function:
5005   //   .text.FN
5006   //   .rodata.FN
5007   //   .sdata2.FN
5008   //   .data.FN
5009   //   .data.rel.FN
5010   //   .data.rel.local.FN
5011   //   .data.rel.ro.FN
5012   //   .data.rel.ro.local.FN
5013   //   .sdata.FN
5014   //   .bss.FN
5015   //   .sbss.FN
5016   //   .tdata.FN
5017   //   .tbss.FN
5018
5019   // The GNU linker maps all of those to the part before the .FN,
5020   // except that .data.rel.local.FN is mapped to .data, and
5021   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5022   // beginning with .data.rel.ro.local are grouped together.
5023
5024   // For an anonymous namespace, the string FN can contain a '.'.
5025
5026   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5027   // GNU linker maps to .rodata.
5028
5029   // The .data.rel.ro sections are used with -z relro.  The sections
5030   // are recognized by name.  We use the same names that the GNU
5031   // linker does for these sections.
5032
5033   // It is hard to handle this in a principled way, so we don't even
5034   // try.  We use a table of mappings.  If the input section name is
5035   // not found in the table, we simply use it as the output section
5036   // name.
5037
5038   const Section_name_mapping* psnm = section_name_mapping;
5039   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5040     {
5041       if (psnm->fromlen > 0)
5042         {
5043           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5044             {
5045               *plen = psnm->tolen;
5046               return psnm->to;
5047             }
5048         }
5049       else
5050         {
5051           if (strcmp(name, psnm->from) == 0)
5052             {
5053               *plen = psnm->tolen;
5054               return psnm->to;
5055             }
5056         }
5057     }
5058
5059   // As an additional complication, .ctors sections are output in
5060   // either .ctors or .init_array sections, and .dtors sections are
5061   // output in either .dtors or .fini_array sections.
5062   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5063     {
5064       if (parameters->options().ctors_in_init_array())
5065         {
5066           *plen = 11;
5067           return name[1] == 'c' ? ".init_array" : ".fini_array";
5068         }
5069       else
5070         {
5071           *plen = 6;
5072           return name[1] == 'c' ? ".ctors" : ".dtors";
5073         }
5074     }
5075   if (parameters->options().ctors_in_init_array()
5076       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5077     {
5078       // To make .init_array/.fini_array work with gcc we must exclude
5079       // .ctors and .dtors sections from the crtbegin and crtend
5080       // files.
5081       if (relobj == NULL
5082           || (!Layout::match_file_name(relobj, "crtbegin")
5083               && !Layout::match_file_name(relobj, "crtend")))
5084         {
5085           *plen = 11;
5086           return name[1] == 'c' ? ".init_array" : ".fini_array";
5087         }
5088     }
5089
5090   return name;
5091 }
5092
5093 // Return true if RELOBJ is an input file whose base name matches
5094 // FILE_NAME.  The base name must have an extension of ".o", and must
5095 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5096 // to match crtbegin.o as well as crtbeginS.o without getting confused
5097 // by other possibilities.  Overall matching the file name this way is
5098 // a dreadful hack, but the GNU linker does it in order to better
5099 // support gcc, and we need to be compatible.
5100
5101 bool
5102 Layout::match_file_name(const Relobj* relobj, const char* match)
5103 {
5104   const std::string& file_name(relobj->name());
5105   const char* base_name = lbasename(file_name.c_str());
5106   size_t match_len = strlen(match);
5107   if (strncmp(base_name, match, match_len) != 0)
5108     return false;
5109   size_t base_len = strlen(base_name);
5110   if (base_len != match_len + 2 && base_len != match_len + 3)
5111     return false;
5112   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5113 }
5114
5115 // Check if a comdat group or .gnu.linkonce section with the given
5116 // NAME is selected for the link.  If there is already a section,
5117 // *KEPT_SECTION is set to point to the existing section and the
5118 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5119 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5120 // *KEPT_SECTION is set to the internal copy and the function returns
5121 // true.
5122
5123 bool
5124 Layout::find_or_add_kept_section(const std::string& name,
5125                                  Relobj* object,
5126                                  unsigned int shndx,
5127                                  bool is_comdat,
5128                                  bool is_group_name,
5129                                  Kept_section** kept_section)
5130 {
5131   // It's normal to see a couple of entries here, for the x86 thunk
5132   // sections.  If we see more than a few, we're linking a C++
5133   // program, and we resize to get more space to minimize rehashing.
5134   if (this->signatures_.size() > 4
5135       && !this->resized_signatures_)
5136     {
5137       reserve_unordered_map(&this->signatures_,
5138                             this->number_of_input_files_ * 64);
5139       this->resized_signatures_ = true;
5140     }
5141
5142   Kept_section candidate;
5143   std::pair<Signatures::iterator, bool> ins =
5144     this->signatures_.insert(std::make_pair(name, candidate));
5145
5146   if (kept_section != NULL)
5147     *kept_section = &ins.first->second;
5148   if (ins.second)
5149     {
5150       // This is the first time we've seen this signature.
5151       ins.first->second.set_object(object);
5152       ins.first->second.set_shndx(shndx);
5153       if (is_comdat)
5154         ins.first->second.set_is_comdat();
5155       if (is_group_name)
5156         ins.first->second.set_is_group_name();
5157       return true;
5158     }
5159
5160   // We have already seen this signature.
5161
5162   if (ins.first->second.is_group_name())
5163     {
5164       // We've already seen a real section group with this signature.
5165       // If the kept group is from a plugin object, and we're in the
5166       // replacement phase, accept the new one as a replacement.
5167       if (ins.first->second.object() == NULL
5168           && parameters->options().plugins()->in_replacement_phase())
5169         {
5170           ins.first->second.set_object(object);
5171           ins.first->second.set_shndx(shndx);
5172           return true;
5173         }
5174       return false;
5175     }
5176   else if (is_group_name)
5177     {
5178       // This is a real section group, and we've already seen a
5179       // linkonce section with this signature.  Record that we've seen
5180       // a section group, and don't include this section group.
5181       ins.first->second.set_is_group_name();
5182       return false;
5183     }
5184   else
5185     {
5186       // We've already seen a linkonce section and this is a linkonce
5187       // section.  These don't block each other--this may be the same
5188       // symbol name with different section types.
5189       return true;
5190     }
5191 }
5192
5193 // Store the allocated sections into the section list.
5194
5195 void
5196 Layout::get_allocated_sections(Section_list* section_list) const
5197 {
5198   for (Section_list::const_iterator p = this->section_list_.begin();
5199        p != this->section_list_.end();
5200        ++p)
5201     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5202       section_list->push_back(*p);
5203 }
5204
5205 // Store the executable sections into the section list.
5206
5207 void
5208 Layout::get_executable_sections(Section_list* section_list) const
5209 {
5210   for (Section_list::const_iterator p = this->section_list_.begin();
5211        p != this->section_list_.end();
5212        ++p)
5213     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5214         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5215       section_list->push_back(*p);
5216 }
5217
5218 // Create an output segment.
5219
5220 Output_segment*
5221 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5222 {
5223   gold_assert(!parameters->options().relocatable());
5224   Output_segment* oseg = new Output_segment(type, flags);
5225   this->segment_list_.push_back(oseg);
5226
5227   if (type == elfcpp::PT_TLS)
5228     this->tls_segment_ = oseg;
5229   else if (type == elfcpp::PT_GNU_RELRO)
5230     this->relro_segment_ = oseg;
5231   else if (type == elfcpp::PT_INTERP)
5232     this->interp_segment_ = oseg;
5233
5234   return oseg;
5235 }
5236
5237 // Return the file offset of the normal symbol table.
5238
5239 off_t
5240 Layout::symtab_section_offset() const
5241 {
5242   if (this->symtab_section_ != NULL)
5243     return this->symtab_section_->offset();
5244   return 0;
5245 }
5246
5247 // Return the section index of the normal symbol table.  It may have
5248 // been stripped by the -s/--strip-all option.
5249
5250 unsigned int
5251 Layout::symtab_section_shndx() const
5252 {
5253   if (this->symtab_section_ != NULL)
5254     return this->symtab_section_->out_shndx();
5255   return 0;
5256 }
5257
5258 // Write out the Output_sections.  Most won't have anything to write,
5259 // since most of the data will come from input sections which are
5260 // handled elsewhere.  But some Output_sections do have Output_data.
5261
5262 void
5263 Layout::write_output_sections(Output_file* of) const
5264 {
5265   for (Section_list::const_iterator p = this->section_list_.begin();
5266        p != this->section_list_.end();
5267        ++p)
5268     {
5269       if (!(*p)->after_input_sections())
5270         (*p)->write(of);
5271     }
5272 }
5273
5274 // Write out data not associated with a section or the symbol table.
5275
5276 void
5277 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5278 {
5279   if (!parameters->options().strip_all())
5280     {
5281       const Output_section* symtab_section = this->symtab_section_;
5282       for (Section_list::const_iterator p = this->section_list_.begin();
5283            p != this->section_list_.end();
5284            ++p)
5285         {
5286           if ((*p)->needs_symtab_index())
5287             {
5288               gold_assert(symtab_section != NULL);
5289               unsigned int index = (*p)->symtab_index();
5290               gold_assert(index > 0 && index != -1U);
5291               off_t off = (symtab_section->offset()
5292                            + index * symtab_section->entsize());
5293               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5294             }
5295         }
5296     }
5297
5298   const Output_section* dynsym_section = this->dynsym_section_;
5299   for (Section_list::const_iterator p = this->section_list_.begin();
5300        p != this->section_list_.end();
5301        ++p)
5302     {
5303       if ((*p)->needs_dynsym_index())
5304         {
5305           gold_assert(dynsym_section != NULL);
5306           unsigned int index = (*p)->dynsym_index();
5307           gold_assert(index > 0 && index != -1U);
5308           off_t off = (dynsym_section->offset()
5309                        + index * dynsym_section->entsize());
5310           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5311         }
5312     }
5313
5314   // Write out the Output_data which are not in an Output_section.
5315   for (Data_list::const_iterator p = this->special_output_list_.begin();
5316        p != this->special_output_list_.end();
5317        ++p)
5318     (*p)->write(of);
5319
5320   // Write out the Output_data which are not in an Output_section
5321   // and are regenerated in each iteration of relaxation.
5322   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5323        p != this->relax_output_list_.end();
5324        ++p)
5325     (*p)->write(of);
5326 }
5327
5328 // Write out the Output_sections which can only be written after the
5329 // input sections are complete.
5330
5331 void
5332 Layout::write_sections_after_input_sections(Output_file* of)
5333 {
5334   // Determine the final section offsets, and thus the final output
5335   // file size.  Note we finalize the .shstrab last, to allow the
5336   // after_input_section sections to modify their section-names before
5337   // writing.
5338   if (this->any_postprocessing_sections_)
5339     {
5340       off_t off = this->output_file_size_;
5341       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5342
5343       // Now that we've finalized the names, we can finalize the shstrab.
5344       off =
5345         this->set_section_offsets(off,
5346                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5347
5348       if (off > this->output_file_size_)
5349         {
5350           of->resize(off);
5351           this->output_file_size_ = off;
5352         }
5353     }
5354
5355   for (Section_list::const_iterator p = this->section_list_.begin();
5356        p != this->section_list_.end();
5357        ++p)
5358     {
5359       if ((*p)->after_input_sections())
5360         (*p)->write(of);
5361     }
5362
5363   this->section_headers_->write(of);
5364 }
5365
5366 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5367 // or as a "tree" where each chunk of the string is hashed and then those
5368 // hashes are put into a (much smaller) string which is hashed with sha1.
5369 // We compute a checksum over the entire file because that is simplest.
5370
5371 Task_token*
5372 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5373                              Output_file* of)
5374 {
5375   const size_t filesize = (this->output_file_size() <= 0 ? 0
5376                            : static_cast<size_t>(this->output_file_size()));
5377   if (this->build_id_note_ != NULL
5378       && strcmp(parameters->options().build_id(), "tree") == 0
5379       && parameters->options().build_id_chunk_size_for_treehash() > 0
5380       && filesize > 0
5381       && (filesize >=
5382           parameters->options().build_id_min_file_size_for_treehash()))
5383     {
5384       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5385       const size_t chunk_size =
5386           parameters->options().build_id_chunk_size_for_treehash();
5387       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5388       Task_token* post_hash_tasks_blocker = new Task_token(true);
5389       post_hash_tasks_blocker->add_blockers(num_hashes);
5390       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5391       const unsigned char* src = of->get_input_view(0, filesize);
5392       this->input_view_ = src;
5393       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5394       this->array_of_hashes_ = dst;
5395       for (size_t i = 0, src_offset = 0; i < num_hashes;
5396            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5397         {
5398           size_t size = std::min(chunk_size, filesize - src_offset);
5399           workqueue->queue(new Hash_task(src + src_offset,
5400                                          size,
5401                                          dst,
5402                                          build_id_blocker,
5403                                          post_hash_tasks_blocker));
5404         }
5405       return post_hash_tasks_blocker;
5406     }
5407   return build_id_blocker;
5408 }
5409
5410 // If a tree-style build ID was requested, the parallel part of that computation
5411 // is already done, and the final hash-of-hashes is computed here.  For other
5412 // types of build IDs, all the work is done here.
5413
5414 void
5415 Layout::write_build_id(Output_file* of) const
5416 {
5417   if (this->build_id_note_ == NULL)
5418     return;
5419
5420   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5421                                           this->build_id_note_->data_size());
5422
5423   if (this->array_of_hashes_ == NULL)
5424     {
5425       const size_t output_file_size = this->output_file_size();
5426       const unsigned char* iv = of->get_input_view(0, output_file_size);
5427       const char* style = parameters->options().build_id();
5428
5429       // If we get here with style == "tree" then the output must be
5430       // too small for chunking, and we use SHA-1 in that case.
5431       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5432         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5433       else if (strcmp(style, "md5") == 0)
5434         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5435       else
5436         gold_unreachable();
5437
5438       of->free_input_view(0, output_file_size, iv);
5439     }
5440   else
5441     {
5442       // Non-overlapping substrings of the output file have been hashed.
5443       // Compute SHA-1 hash of the hashes.
5444       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5445                   this->size_of_array_of_hashes_, ov);
5446       delete[] this->array_of_hashes_;
5447       of->free_input_view(0, this->output_file_size(), this->input_view_);
5448     }
5449
5450   of->write_output_view(this->build_id_note_->offset(),
5451                         this->build_id_note_->data_size(),
5452                         ov);
5453 }
5454
5455 // Write out a binary file.  This is called after the link is
5456 // complete.  IN is the temporary output file we used to generate the
5457 // ELF code.  We simply walk through the segments, read them from
5458 // their file offset in IN, and write them to their load address in
5459 // the output file.  FIXME: with a bit more work, we could support
5460 // S-records and/or Intel hex format here.
5461
5462 void
5463 Layout::write_binary(Output_file* in) const
5464 {
5465   gold_assert(parameters->options().oformat_enum()
5466               == General_options::OBJECT_FORMAT_BINARY);
5467
5468   // Get the size of the binary file.
5469   uint64_t max_load_address = 0;
5470   for (Segment_list::const_iterator p = this->segment_list_.begin();
5471        p != this->segment_list_.end();
5472        ++p)
5473     {
5474       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5475         {
5476           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5477           if (max_paddr > max_load_address)
5478             max_load_address = max_paddr;
5479         }
5480     }
5481
5482   Output_file out(parameters->options().output_file_name());
5483   out.open(max_load_address);
5484
5485   for (Segment_list::const_iterator p = this->segment_list_.begin();
5486        p != this->segment_list_.end();
5487        ++p)
5488     {
5489       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5490         {
5491           const unsigned char* vin = in->get_input_view((*p)->offset(),
5492                                                         (*p)->filesz());
5493           unsigned char* vout = out.get_output_view((*p)->paddr(),
5494                                                     (*p)->filesz());
5495           memcpy(vout, vin, (*p)->filesz());
5496           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5497           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5498         }
5499     }
5500
5501   out.close();
5502 }
5503
5504 // Print the output sections to the map file.
5505
5506 void
5507 Layout::print_to_mapfile(Mapfile* mapfile) const
5508 {
5509   for (Segment_list::const_iterator p = this->segment_list_.begin();
5510        p != this->segment_list_.end();
5511        ++p)
5512     (*p)->print_sections_to_mapfile(mapfile);
5513   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5514        p != this->unattached_section_list_.end();
5515        ++p)
5516     (*p)->print_to_mapfile(mapfile);
5517 }
5518
5519 // Print statistical information to stderr.  This is used for --stats.
5520
5521 void
5522 Layout::print_stats() const
5523 {
5524   this->namepool_.print_stats("section name pool");
5525   this->sympool_.print_stats("output symbol name pool");
5526   this->dynpool_.print_stats("dynamic name pool");
5527
5528   for (Section_list::const_iterator p = this->section_list_.begin();
5529        p != this->section_list_.end();
5530        ++p)
5531     (*p)->print_merge_stats();
5532 }
5533
5534 // Write_sections_task methods.
5535
5536 // We can always run this task.
5537
5538 Task_token*
5539 Write_sections_task::is_runnable()
5540 {
5541   return NULL;
5542 }
5543
5544 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5545 // when finished.
5546
5547 void
5548 Write_sections_task::locks(Task_locker* tl)
5549 {
5550   tl->add(this, this->output_sections_blocker_);
5551   if (this->input_sections_blocker_ != NULL)
5552     tl->add(this, this->input_sections_blocker_);
5553   tl->add(this, this->final_blocker_);
5554 }
5555
5556 // Run the task--write out the data.
5557
5558 void
5559 Write_sections_task::run(Workqueue*)
5560 {
5561   this->layout_->write_output_sections(this->of_);
5562 }
5563
5564 // Write_data_task methods.
5565
5566 // We can always run this task.
5567
5568 Task_token*
5569 Write_data_task::is_runnable()
5570 {
5571   return NULL;
5572 }
5573
5574 // We need to unlock FINAL_BLOCKER when finished.
5575
5576 void
5577 Write_data_task::locks(Task_locker* tl)
5578 {
5579   tl->add(this, this->final_blocker_);
5580 }
5581
5582 // Run the task--write out the data.
5583
5584 void
5585 Write_data_task::run(Workqueue*)
5586 {
5587   this->layout_->write_data(this->symtab_, this->of_);
5588 }
5589
5590 // Write_symbols_task methods.
5591
5592 // We can always run this task.
5593
5594 Task_token*
5595 Write_symbols_task::is_runnable()
5596 {
5597   return NULL;
5598 }
5599
5600 // We need to unlock FINAL_BLOCKER when finished.
5601
5602 void
5603 Write_symbols_task::locks(Task_locker* tl)
5604 {
5605   tl->add(this, this->final_blocker_);
5606 }
5607
5608 // Run the task--write out the symbols.
5609
5610 void
5611 Write_symbols_task::run(Workqueue*)
5612 {
5613   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5614                                this->layout_->symtab_xindex(),
5615                                this->layout_->dynsym_xindex(), this->of_);
5616 }
5617
5618 // Write_after_input_sections_task methods.
5619
5620 // We can only run this task after the input sections have completed.
5621
5622 Task_token*
5623 Write_after_input_sections_task::is_runnable()
5624 {
5625   if (this->input_sections_blocker_->is_blocked())
5626     return this->input_sections_blocker_;
5627   return NULL;
5628 }
5629
5630 // We need to unlock FINAL_BLOCKER when finished.
5631
5632 void
5633 Write_after_input_sections_task::locks(Task_locker* tl)
5634 {
5635   tl->add(this, this->final_blocker_);
5636 }
5637
5638 // Run the task.
5639
5640 void
5641 Write_after_input_sections_task::run(Workqueue*)
5642 {
5643   this->layout_->write_sections_after_input_sections(this->of_);
5644 }
5645
5646 // Close_task_runner methods.
5647
5648 // Finish up the build ID computation, if necessary, and write a binary file,
5649 // if necessary.  Then close the output file.
5650
5651 void
5652 Close_task_runner::run(Workqueue*, const Task*)
5653 {
5654   // At this point the multi-threaded part of the build ID computation,
5655   // if any, is done.  See queue_build_id_tasks().
5656   this->layout_->write_build_id(this->of_);
5657
5658   // If we've been asked to create a binary file, we do so here.
5659   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5660     this->layout_->write_binary(this->of_);
5661
5662   this->of_->close();
5663 }
5664
5665 // Instantiate the templates we need.  We could use the configure
5666 // script to restrict this to only the ones for implemented targets.
5667
5668 #ifdef HAVE_TARGET_32_LITTLE
5669 template
5670 Output_section*
5671 Layout::init_fixed_output_section<32, false>(
5672     const char* name,
5673     elfcpp::Shdr<32, false>& shdr);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_BIG
5677 template
5678 Output_section*
5679 Layout::init_fixed_output_section<32, true>(
5680     const char* name,
5681     elfcpp::Shdr<32, true>& shdr);
5682 #endif
5683
5684 #ifdef HAVE_TARGET_64_LITTLE
5685 template
5686 Output_section*
5687 Layout::init_fixed_output_section<64, false>(
5688     const char* name,
5689     elfcpp::Shdr<64, false>& shdr);
5690 #endif
5691
5692 #ifdef HAVE_TARGET_64_BIG
5693 template
5694 Output_section*
5695 Layout::init_fixed_output_section<64, true>(
5696     const char* name,
5697     elfcpp::Shdr<64, true>& shdr);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_32_LITTLE
5701 template
5702 Output_section*
5703 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5704                           unsigned int shndx,
5705                           const char* name,
5706                           const elfcpp::Shdr<32, false>& shdr,
5707                           unsigned int, unsigned int, off_t*);
5708 #endif
5709
5710 #ifdef HAVE_TARGET_32_BIG
5711 template
5712 Output_section*
5713 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5714                          unsigned int shndx,
5715                          const char* name,
5716                          const elfcpp::Shdr<32, true>& shdr,
5717                          unsigned int, unsigned int, off_t*);
5718 #endif
5719
5720 #ifdef HAVE_TARGET_64_LITTLE
5721 template
5722 Output_section*
5723 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5724                           unsigned int shndx,
5725                           const char* name,
5726                           const elfcpp::Shdr<64, false>& shdr,
5727                           unsigned int, unsigned int, off_t*);
5728 #endif
5729
5730 #ifdef HAVE_TARGET_64_BIG
5731 template
5732 Output_section*
5733 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5734                          unsigned int shndx,
5735                          const char* name,
5736                          const elfcpp::Shdr<64, true>& shdr,
5737                          unsigned int, unsigned int, off_t*);
5738 #endif
5739
5740 #ifdef HAVE_TARGET_32_LITTLE
5741 template
5742 Output_section*
5743 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5744                                 unsigned int reloc_shndx,
5745                                 const elfcpp::Shdr<32, false>& shdr,
5746                                 Output_section* data_section,
5747                                 Relocatable_relocs* rr);
5748 #endif
5749
5750 #ifdef HAVE_TARGET_32_BIG
5751 template
5752 Output_section*
5753 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5754                                unsigned int reloc_shndx,
5755                                const elfcpp::Shdr<32, true>& shdr,
5756                                Output_section* data_section,
5757                                Relocatable_relocs* rr);
5758 #endif
5759
5760 #ifdef HAVE_TARGET_64_LITTLE
5761 template
5762 Output_section*
5763 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5764                                 unsigned int reloc_shndx,
5765                                 const elfcpp::Shdr<64, false>& shdr,
5766                                 Output_section* data_section,
5767                                 Relocatable_relocs* rr);
5768 #endif
5769
5770 #ifdef HAVE_TARGET_64_BIG
5771 template
5772 Output_section*
5773 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5774                                unsigned int reloc_shndx,
5775                                const elfcpp::Shdr<64, true>& shdr,
5776                                Output_section* data_section,
5777                                Relocatable_relocs* rr);
5778 #endif
5779
5780 #ifdef HAVE_TARGET_32_LITTLE
5781 template
5782 void
5783 Layout::layout_group<32, false>(Symbol_table* symtab,
5784                                 Sized_relobj_file<32, false>* object,
5785                                 unsigned int,
5786                                 const char* group_section_name,
5787                                 const char* signature,
5788                                 const elfcpp::Shdr<32, false>& shdr,
5789                                 elfcpp::Elf_Word flags,
5790                                 std::vector<unsigned int>* shndxes);
5791 #endif
5792
5793 #ifdef HAVE_TARGET_32_BIG
5794 template
5795 void
5796 Layout::layout_group<32, true>(Symbol_table* symtab,
5797                                Sized_relobj_file<32, true>* object,
5798                                unsigned int,
5799                                const char* group_section_name,
5800                                const char* signature,
5801                                const elfcpp::Shdr<32, true>& shdr,
5802                                elfcpp::Elf_Word flags,
5803                                std::vector<unsigned int>* shndxes);
5804 #endif
5805
5806 #ifdef HAVE_TARGET_64_LITTLE
5807 template
5808 void
5809 Layout::layout_group<64, false>(Symbol_table* symtab,
5810                                 Sized_relobj_file<64, false>* object,
5811                                 unsigned int,
5812                                 const char* group_section_name,
5813                                 const char* signature,
5814                                 const elfcpp::Shdr<64, false>& shdr,
5815                                 elfcpp::Elf_Word flags,
5816                                 std::vector<unsigned int>* shndxes);
5817 #endif
5818
5819 #ifdef HAVE_TARGET_64_BIG
5820 template
5821 void
5822 Layout::layout_group<64, true>(Symbol_table* symtab,
5823                                Sized_relobj_file<64, true>* object,
5824                                unsigned int,
5825                                const char* group_section_name,
5826                                const char* signature,
5827                                const elfcpp::Shdr<64, true>& shdr,
5828                                elfcpp::Elf_Word flags,
5829                                std::vector<unsigned int>* shndxes);
5830 #endif
5831
5832 #ifdef HAVE_TARGET_32_LITTLE
5833 template
5834 Output_section*
5835 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5836                                    const unsigned char* symbols,
5837                                    off_t symbols_size,
5838                                    const unsigned char* symbol_names,
5839                                    off_t symbol_names_size,
5840                                    unsigned int shndx,
5841                                    const elfcpp::Shdr<32, false>& shdr,
5842                                    unsigned int reloc_shndx,
5843                                    unsigned int reloc_type,
5844                                    off_t* off);
5845 #endif
5846
5847 #ifdef HAVE_TARGET_32_BIG
5848 template
5849 Output_section*
5850 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5851                                   const unsigned char* symbols,
5852                                   off_t symbols_size,
5853                                   const unsigned char* symbol_names,
5854                                   off_t symbol_names_size,
5855                                   unsigned int shndx,
5856                                   const elfcpp::Shdr<32, true>& shdr,
5857                                   unsigned int reloc_shndx,
5858                                   unsigned int reloc_type,
5859                                   off_t* off);
5860 #endif
5861
5862 #ifdef HAVE_TARGET_64_LITTLE
5863 template
5864 Output_section*
5865 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5866                                    const unsigned char* symbols,
5867                                    off_t symbols_size,
5868                                    const unsigned char* symbol_names,
5869                                    off_t symbol_names_size,
5870                                    unsigned int shndx,
5871                                    const elfcpp::Shdr<64, false>& shdr,
5872                                    unsigned int reloc_shndx,
5873                                    unsigned int reloc_type,
5874                                    off_t* off);
5875 #endif
5876
5877 #ifdef HAVE_TARGET_64_BIG
5878 template
5879 Output_section*
5880 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5881                                   const unsigned char* symbols,
5882                                   off_t symbols_size,
5883                                   const unsigned char* symbol_names,
5884                                   off_t symbol_names_size,
5885                                   unsigned int shndx,
5886                                   const elfcpp::Shdr<64, true>& shdr,
5887                                   unsigned int reloc_shndx,
5888                                   unsigned int reloc_type,
5889                                   off_t* off);
5890 #endif
5891
5892 #ifdef HAVE_TARGET_32_LITTLE
5893 template
5894 void
5895 Layout::add_to_gdb_index(bool is_type_unit,
5896                          Sized_relobj<32, false>* object,
5897                          const unsigned char* symbols,
5898                          off_t symbols_size,
5899                          unsigned int shndx,
5900                          unsigned int reloc_shndx,
5901                          unsigned int reloc_type);
5902 #endif
5903
5904 #ifdef HAVE_TARGET_32_BIG
5905 template
5906 void
5907 Layout::add_to_gdb_index(bool is_type_unit,
5908                          Sized_relobj<32, true>* object,
5909                          const unsigned char* symbols,
5910                          off_t symbols_size,
5911                          unsigned int shndx,
5912                          unsigned int reloc_shndx,
5913                          unsigned int reloc_type);
5914 #endif
5915
5916 #ifdef HAVE_TARGET_64_LITTLE
5917 template
5918 void
5919 Layout::add_to_gdb_index(bool is_type_unit,
5920                          Sized_relobj<64, false>* object,
5921                          const unsigned char* symbols,
5922                          off_t symbols_size,
5923                          unsigned int shndx,
5924                          unsigned int reloc_shndx,
5925                          unsigned int reloc_type);
5926 #endif
5927
5928 #ifdef HAVE_TARGET_64_BIG
5929 template
5930 void
5931 Layout::add_to_gdb_index(bool is_type_unit,
5932                          Sized_relobj<64, true>* object,
5933                          const unsigned char* symbols,
5934                          off_t symbols_size,
5935                          unsigned int shndx,
5936                          unsigned int reloc_shndx,
5937                          unsigned int reloc_type);
5938 #endif
5939
5940 } // End namespace gold.