Fix handling of __ehdr_start when it cannot be defined.
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244  public:
245   Hash_task(const unsigned char* src,
246             size_t size,
247             unsigned char* dst,
248             Task_token* build_id_blocker,
249             Task_token* final_blocker)
250     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251       final_blocker_(final_blocker)
252   { }
253
254   void
255   run(Workqueue*)
256   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258   Task_token*
259   is_runnable();
260
261   // Unblock FINAL_BLOCKER_ when done.
262   void
263   locks(Task_locker* tl)
264   { tl->add(this, this->final_blocker_); }
265
266   std::string
267   get_name() const
268   { return "Hash_task"; }
269
270  private:
271   const unsigned char* const src_;
272   const size_t size_;
273   unsigned char* const dst_;
274   Task_token* const build_id_blocker_;
275   Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281   if (this->build_id_blocker_->is_blocked())
282     return this->build_id_blocker_;
283   return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     array_of_hashes_(NULL),
453     size_of_array_of_hashes_(0),
454     input_view_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     script_output_section_data_list_(),
473     segment_states_(NULL),
474     relaxation_debug_check_(NULL),
475     section_order_map_(),
476     section_segment_map_(),
477     input_section_position_(),
478     input_section_glob_(),
479     incremental_base_(NULL),
480     free_list_()
481 {
482   // Make space for more than enough segments for a typical file.
483   // This is just for efficiency--it's OK if we wind up needing more.
484   this->segment_list_.reserve(12);
485
486   // We expect two unattached Output_data objects: the file header and
487   // the segment headers.
488   this->special_output_list_.reserve(2);
489
490   // Initialize structure needed for an incremental build.
491   if (parameters->incremental())
492     this->incremental_inputs_ = new Incremental_inputs;
493
494   // The section name pool is worth optimizing in all cases, because
495   // it is small, but there are often overlaps due to .rel sections.
496   this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504   this->incremental_base_ = base;
505   this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513  return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523   "abbrev",
524   "addr",         // Fission extension
525   // "aranges",   // not used by gdb as of 7.4
526   "frame",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   "ranges",
536   "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543   "abbrev",
544   // "addr",      // Fission extension
545   // "aranges",   // not used by gdb as of 7.4
546   // "frame",
547   "info",
548   // "types",
549   "line",
550   // "loc",
551   // "macinfo",
552   // "macro",
553   // "pubnames",  // not used by gdb as of 7.4
554   // "pubtypes",  // not used by gdb as of 7.4
555   // "ranges",
556   "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564   "aranges",
565   "pubnames",
566   "pubtypes",
567 };
568
569 // Returns whether the given debug section is in the list of
570 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
571 // portion of the name following ".debug_" or ".zdebug_".
572
573 static inline bool
574 is_gdb_debug_section(const char* suffix)
575 {
576   // We can do this faster: binary search or a hashtable.  But why bother?
577   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
578     if (strcmp(suffix, gdb_sections[i]) == 0)
579       return true;
580   return false;
581 }
582
583 // Returns whether the given section is needed for lines-only debugging.
584
585 static inline bool
586 is_lines_only_debug_section(const char* suffix)
587 {
588   // We can do this faster: binary search or a hashtable.  But why bother?
589   for (size_t i = 0;
590        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
591        ++i)
592     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
593       return true;
594   return false;
595 }
596
597 // Returns whether the given section is a fast-lookup section that
598 // will not be needed when building a .gdb_index section.
599
600 static inline bool
601 is_gdb_fast_lookup_section(const char* suffix)
602 {
603   // We can do this faster: binary search or a hashtable.  But why bother?
604   for (size_t i = 0;
605        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
606        ++i)
607     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
608       return true;
609   return false;
610 }
611
612 // Sometimes we compress sections.  This is typically done for
613 // sections that are not part of normal program execution (such as
614 // .debug_* sections), and where the readers of these sections know
615 // how to deal with compressed sections.  This routine doesn't say for
616 // certain whether we'll compress -- it depends on commandline options
617 // as well -- just whether this section is a candidate for compression.
618 // (The Output_compressed_section class decides whether to compress
619 // a given section, and picks the name of the compressed section.)
620
621 static bool
622 is_compressible_debug_section(const char* secname)
623 {
624   return (is_prefix_of(".debug", secname));
625 }
626
627 // We may see compressed debug sections in input files.  Return TRUE
628 // if this is the name of a compressed debug section.
629
630 bool
631 is_compressed_debug_section(const char* secname)
632 {
633   return (is_prefix_of(".zdebug", secname));
634 }
635
636 // Whether to include this section in the link.
637
638 template<int size, bool big_endian>
639 bool
640 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
641                         const elfcpp::Shdr<size, big_endian>& shdr)
642 {
643   if (!parameters->options().relocatable()
644       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
645     return false;
646
647   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
648
649   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
650       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
651     return parameters->target().should_include_section(sh_type);
652
653   switch (sh_type)
654     {
655     case elfcpp::SHT_NULL:
656     case elfcpp::SHT_SYMTAB:
657     case elfcpp::SHT_DYNSYM:
658     case elfcpp::SHT_HASH:
659     case elfcpp::SHT_DYNAMIC:
660     case elfcpp::SHT_SYMTAB_SHNDX:
661       return false;
662
663     case elfcpp::SHT_STRTAB:
664       // Discard the sections which have special meanings in the ELF
665       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
666       // checking the sh_link fields of the appropriate sections.
667       return (strcmp(name, ".dynstr") != 0
668               && strcmp(name, ".strtab") != 0
669               && strcmp(name, ".shstrtab") != 0);
670
671     case elfcpp::SHT_RELA:
672     case elfcpp::SHT_REL:
673     case elfcpp::SHT_GROUP:
674       // If we are emitting relocations these should be handled
675       // elsewhere.
676       gold_assert(!parameters->options().relocatable());
677       return false;
678
679     case elfcpp::SHT_PROGBITS:
680       if (parameters->options().strip_debug()
681           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
682         {
683           if (is_debug_info_section(name))
684             return false;
685         }
686       if (parameters->options().strip_debug_non_line()
687           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
688         {
689           // Debugging sections can only be recognized by name.
690           if (is_prefix_of(".debug_", name)
691               && !is_lines_only_debug_section(name + 7))
692             return false;
693           if (is_prefix_of(".zdebug_", name)
694               && !is_lines_only_debug_section(name + 8))
695             return false;
696         }
697       if (parameters->options().strip_debug_gdb()
698           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
699         {
700           // Debugging sections can only be recognized by name.
701           if (is_prefix_of(".debug_", name)
702               && !is_gdb_debug_section(name + 7))
703             return false;
704           if (is_prefix_of(".zdebug_", name)
705               && !is_gdb_debug_section(name + 8))
706             return false;
707         }
708       if (parameters->options().gdb_index()
709           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
710         {
711           // When building .gdb_index, we can strip .debug_pubnames,
712           // .debug_pubtypes, and .debug_aranges sections.
713           if (is_prefix_of(".debug_", name)
714               && is_gdb_fast_lookup_section(name + 7))
715             return false;
716           if (is_prefix_of(".zdebug_", name)
717               && is_gdb_fast_lookup_section(name + 8))
718             return false;
719         }
720       if (parameters->options().strip_lto_sections()
721           && !parameters->options().relocatable()
722           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
723         {
724           // Ignore LTO sections containing intermediate code.
725           if (is_prefix_of(".gnu.lto_", name))
726             return false;
727         }
728       // The GNU linker strips .gnu_debuglink sections, so we do too.
729       // This is a feature used to keep debugging information in
730       // separate files.
731       if (strcmp(name, ".gnu_debuglink") == 0)
732         return false;
733       return true;
734
735     default:
736       return true;
737     }
738 }
739
740 // Return an output section named NAME, or NULL if there is none.
741
742 Output_section*
743 Layout::find_output_section(const char* name) const
744 {
745   for (Section_list::const_iterator p = this->section_list_.begin();
746        p != this->section_list_.end();
747        ++p)
748     if (strcmp((*p)->name(), name) == 0)
749       return *p;
750   return NULL;
751 }
752
753 // Return an output segment of type TYPE, with segment flags SET set
754 // and segment flags CLEAR clear.  Return NULL if there is none.
755
756 Output_segment*
757 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
758                             elfcpp::Elf_Word clear) const
759 {
760   for (Segment_list::const_iterator p = this->segment_list_.begin();
761        p != this->segment_list_.end();
762        ++p)
763     if (static_cast<elfcpp::PT>((*p)->type()) == type
764         && ((*p)->flags() & set) == set
765         && ((*p)->flags() & clear) == 0)
766       return *p;
767   return NULL;
768 }
769
770 // When we put a .ctors or .dtors section with more than one word into
771 // a .init_array or .fini_array section, we need to reverse the words
772 // in the .ctors/.dtors section.  This is because .init_array executes
773 // constructors front to back, where .ctors executes them back to
774 // front, and vice-versa for .fini_array/.dtors.  Although we do want
775 // to remap .ctors/.dtors into .init_array/.fini_array because it can
776 // be more efficient, we don't want to change the order in which
777 // constructors/destructors are run.  This set just keeps track of
778 // these sections which need to be reversed.  It is only changed by
779 // Layout::layout.  It should be a private member of Layout, but that
780 // would require layout.h to #include object.h to get the definition
781 // of Section_id.
782 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
783
784 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
785 // .init_array/.fini_array section.
786
787 bool
788 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
789 {
790   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
791           != ctors_sections_in_init_array.end());
792 }
793
794 // Return the output section to use for section NAME with type TYPE
795 // and section flags FLAGS.  NAME must be canonicalized in the string
796 // pool, and NAME_KEY is the key.  ORDER is where this should appear
797 // in the output sections.  IS_RELRO is true for a relro section.
798
799 Output_section*
800 Layout::get_output_section(const char* name, Stringpool::Key name_key,
801                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
802                            Output_section_order order, bool is_relro)
803 {
804   elfcpp::Elf_Word lookup_type = type;
805
806   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
807   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
808   // .init_array, .fini_array, and .preinit_array sections by name
809   // whatever their type in the input file.  We do this because the
810   // types are not always right in the input files.
811   if (lookup_type == elfcpp::SHT_INIT_ARRAY
812       || lookup_type == elfcpp::SHT_FINI_ARRAY
813       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
814     lookup_type = elfcpp::SHT_PROGBITS;
815
816   elfcpp::Elf_Xword lookup_flags = flags;
817
818   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
819   // read-write with read-only sections.  Some other ELF linkers do
820   // not do this.  FIXME: Perhaps there should be an option
821   // controlling this.
822   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
823
824   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
825   const std::pair<Key, Output_section*> v(key, NULL);
826   std::pair<Section_name_map::iterator, bool> ins(
827     this->section_name_map_.insert(v));
828
829   if (!ins.second)
830     return ins.first->second;
831   else
832     {
833       // This is the first time we've seen this name/type/flags
834       // combination.  For compatibility with the GNU linker, we
835       // combine sections with contents and zero flags with sections
836       // with non-zero flags.  This is a workaround for cases where
837       // assembler code forgets to set section flags.  FIXME: Perhaps
838       // there should be an option to control this.
839       Output_section* os = NULL;
840
841       if (lookup_type == elfcpp::SHT_PROGBITS)
842         {
843           if (flags == 0)
844             {
845               Output_section* same_name = this->find_output_section(name);
846               if (same_name != NULL
847                   && (same_name->type() == elfcpp::SHT_PROGBITS
848                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
849                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
850                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
851                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
852                 os = same_name;
853             }
854           else if ((flags & elfcpp::SHF_TLS) == 0)
855             {
856               elfcpp::Elf_Xword zero_flags = 0;
857               const Key zero_key(name_key, std::make_pair(lookup_type,
858                                                           zero_flags));
859               Section_name_map::iterator p =
860                   this->section_name_map_.find(zero_key);
861               if (p != this->section_name_map_.end())
862                 os = p->second;
863             }
864         }
865
866       if (os == NULL)
867         os = this->make_output_section(name, type, flags, order, is_relro);
868
869       ins.first->second = os;
870       return os;
871     }
872 }
873
874 // Returns TRUE iff NAME (an input section from RELOBJ) will
875 // be mapped to an output section that should be KEPT.
876
877 bool
878 Layout::keep_input_section(const Relobj* relobj, const char* name)
879 {
880   if (! this->script_options_->saw_sections_clause())
881     return false;
882
883   Script_sections* ss = this->script_options_->script_sections();
884   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
885   Output_section** output_section_slot;
886   Script_sections::Section_type script_section_type;
887   bool keep;
888
889   name = ss->output_section_name(file_name, name, &output_section_slot,
890                                  &script_section_type, &keep);
891   return name != NULL && keep;
892 }
893
894 // Clear the input section flags that should not be copied to the
895 // output section.
896
897 elfcpp::Elf_Xword
898 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
899 {
900   // Some flags in the input section should not be automatically
901   // copied to the output section.
902   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
903                             | elfcpp::SHF_GROUP
904                             | elfcpp::SHF_MERGE
905                             | elfcpp::SHF_STRINGS);
906
907   // We only clear the SHF_LINK_ORDER flag in for
908   // a non-relocatable link.
909   if (!parameters->options().relocatable())
910     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
911
912   return input_section_flags;
913 }
914
915 // Pick the output section to use for section NAME, in input file
916 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
917 // linker created section.  IS_INPUT_SECTION is true if we are
918 // choosing an output section for an input section found in a input
919 // file.  ORDER is where this section should appear in the output
920 // sections.  IS_RELRO is true for a relro section.  This will return
921 // NULL if the input section should be discarded.
922
923 Output_section*
924 Layout::choose_output_section(const Relobj* relobj, const char* name,
925                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
926                               bool is_input_section, Output_section_order order,
927                               bool is_relro)
928 {
929   // We should not see any input sections after we have attached
930   // sections to segments.
931   gold_assert(!is_input_section || !this->sections_are_attached_);
932
933   flags = this->get_output_section_flags(flags);
934
935   if (this->script_options_->saw_sections_clause())
936     {
937       // We are using a SECTIONS clause, so the output section is
938       // chosen based only on the name.
939
940       Script_sections* ss = this->script_options_->script_sections();
941       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
942       Output_section** output_section_slot;
943       Script_sections::Section_type script_section_type;
944       const char* orig_name = name;
945       bool keep;
946       name = ss->output_section_name(file_name, name, &output_section_slot,
947                                      &script_section_type, &keep);
948
949       if (name == NULL)
950         {
951           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
952                                      "because it is not allowed by the "
953                                      "SECTIONS clause of the linker script"),
954                      orig_name);
955           // The SECTIONS clause says to discard this input section.
956           return NULL;
957         }
958
959       // We can only handle script section types ST_NONE and ST_NOLOAD.
960       switch (script_section_type)
961         {
962         case Script_sections::ST_NONE:
963           break;
964         case Script_sections::ST_NOLOAD:
965           flags &= elfcpp::SHF_ALLOC;
966           break;
967         default:
968           gold_unreachable();
969         }
970
971       // If this is an orphan section--one not mentioned in the linker
972       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
973       // default processing below.
974
975       if (output_section_slot != NULL)
976         {
977           if (*output_section_slot != NULL)
978             {
979               (*output_section_slot)->update_flags_for_input_section(flags);
980               return *output_section_slot;
981             }
982
983           // We don't put sections found in the linker script into
984           // SECTION_NAME_MAP_.  That keeps us from getting confused
985           // if an orphan section is mapped to a section with the same
986           // name as one in the linker script.
987
988           name = this->namepool_.add(name, false, NULL);
989
990           Output_section* os = this->make_output_section(name, type, flags,
991                                                          order, is_relro);
992
993           os->set_found_in_sections_clause();
994
995           // Special handling for NOLOAD sections.
996           if (script_section_type == Script_sections::ST_NOLOAD)
997             {
998               os->set_is_noload();
999
1000               // The constructor of Output_section sets addresses of non-ALLOC
1001               // sections to 0 by default.  We don't want that for NOLOAD
1002               // sections even if they have no SHF_ALLOC flag.
1003               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1004                   && os->is_address_valid())
1005                 {
1006                   gold_assert(os->address() == 0
1007                               && !os->is_offset_valid()
1008                               && !os->is_data_size_valid());
1009                   os->reset_address_and_file_offset();
1010                 }
1011             }
1012
1013           *output_section_slot = os;
1014           return os;
1015         }
1016     }
1017
1018   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1019
1020   size_t len = strlen(name);
1021   char* uncompressed_name = NULL;
1022
1023   // Compressed debug sections should be mapped to the corresponding
1024   // uncompressed section.
1025   if (is_compressed_debug_section(name))
1026     {
1027       uncompressed_name = new char[len];
1028       uncompressed_name[0] = '.';
1029       gold_assert(name[0] == '.' && name[1] == 'z');
1030       strncpy(&uncompressed_name[1], &name[2], len - 2);
1031       uncompressed_name[len - 1] = '\0';
1032       len -= 1;
1033       name = uncompressed_name;
1034     }
1035
1036   // Turn NAME from the name of the input section into the name of the
1037   // output section.
1038   if (is_input_section
1039       && !this->script_options_->saw_sections_clause()
1040       && !parameters->options().relocatable())
1041     {
1042       const char *orig_name = name;
1043       name = parameters->target().output_section_name(relobj, name, &len);
1044       if (name == NULL)
1045         name = Layout::output_section_name(relobj, orig_name, &len);
1046     }
1047
1048   Stringpool::Key name_key;
1049   name = this->namepool_.add_with_length(name, len, true, &name_key);
1050
1051   if (uncompressed_name != NULL)
1052     delete[] uncompressed_name;
1053
1054   // Find or make the output section.  The output section is selected
1055   // based on the section name, type, and flags.
1056   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1057 }
1058
1059 // For incremental links, record the initial fixed layout of a section
1060 // from the base file, and return a pointer to the Output_section.
1061
1062 template<int size, bool big_endian>
1063 Output_section*
1064 Layout::init_fixed_output_section(const char* name,
1065                                   elfcpp::Shdr<size, big_endian>& shdr)
1066 {
1067   unsigned int sh_type = shdr.get_sh_type();
1068
1069   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1070   // PRE_INIT_ARRAY, and NOTE sections.
1071   // All others will be created from scratch and reallocated.
1072   if (!can_incremental_update(sh_type))
1073     return NULL;
1074
1075   // If we're generating a .gdb_index section, we need to regenerate
1076   // it from scratch.
1077   if (parameters->options().gdb_index()
1078       && sh_type == elfcpp::SHT_PROGBITS
1079       && strcmp(name, ".gdb_index") == 0)
1080     return NULL;
1081
1082   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1083   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1084   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1085   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1086   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1087       shdr.get_sh_addralign();
1088
1089   // Make the output section.
1090   Stringpool::Key name_key;
1091   name = this->namepool_.add(name, true, &name_key);
1092   Output_section* os = this->get_output_section(name, name_key, sh_type,
1093                                                 sh_flags, ORDER_INVALID, false);
1094   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1095   if (sh_type != elfcpp::SHT_NOBITS)
1096     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1097   return os;
1098 }
1099
1100 // Return the index by which an input section should be ordered.  This
1101 // is used to sort some .text sections, for compatibility with GNU ld.
1102
1103 int
1104 Layout::special_ordering_of_input_section(const char* name)
1105 {
1106   // The GNU linker has some special handling for some sections that
1107   // wind up in the .text section.  Sections that start with these
1108   // prefixes must appear first, and must appear in the order listed
1109   // here.
1110   static const char* const text_section_sort[] =
1111   {
1112     ".text.unlikely",
1113     ".text.exit",
1114     ".text.startup",
1115     ".text.hot"
1116   };
1117
1118   for (size_t i = 0;
1119        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1120        i++)
1121     if (is_prefix_of(text_section_sort[i], name))
1122       return i;
1123
1124   return -1;
1125 }
1126
1127 // Return the output section to use for input section SHNDX, with name
1128 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1129 // index of a relocation section which applies to this section, or 0
1130 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1131 // relocation section if there is one.  Set *OFF to the offset of this
1132 // input section without the output section.  Return NULL if the
1133 // section should be discarded.  Set *OFF to -1 if the section
1134 // contents should not be written directly to the output file, but
1135 // will instead receive special handling.
1136
1137 template<int size, bool big_endian>
1138 Output_section*
1139 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1140                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1141                unsigned int reloc_shndx, unsigned int, off_t* off)
1142 {
1143   *off = 0;
1144
1145   if (!this->include_section(object, name, shdr))
1146     return NULL;
1147
1148   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1149
1150   // In a relocatable link a grouped section must not be combined with
1151   // any other sections.
1152   Output_section* os;
1153   if (parameters->options().relocatable()
1154       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1155     {
1156       name = this->namepool_.add(name, true, NULL);
1157       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1158                                      ORDER_INVALID, false);
1159     }
1160   else
1161     {
1162       // Plugins can choose to place one or more subsets of sections in
1163       // unique segments and this is done by mapping these section subsets
1164       // to unique output sections.  Check if this section needs to be
1165       // remapped to a unique output section.
1166       Section_segment_map::iterator it
1167           = this->section_segment_map_.find(Const_section_id(object, shndx));
1168       if (it == this->section_segment_map_.end())
1169         {
1170           os = this->choose_output_section(object, name, sh_type,
1171                                            shdr.get_sh_flags(), true,
1172                                            ORDER_INVALID, false);
1173         }
1174       else
1175         {
1176           // We know the name of the output section, directly call
1177           // get_output_section here by-passing choose_output_section.
1178           elfcpp::Elf_Xword flags
1179             = this->get_output_section_flags(shdr.get_sh_flags());
1180
1181           const char* os_name = it->second->name;
1182           Stringpool::Key name_key;
1183           os_name = this->namepool_.add(os_name, true, &name_key);
1184           os = this->get_output_section(os_name, name_key, sh_type, flags,
1185                                         ORDER_INVALID, false);
1186           if (!os->is_unique_segment())
1187             {
1188               os->set_is_unique_segment();
1189               os->set_extra_segment_flags(it->second->flags);
1190               os->set_segment_alignment(it->second->align);
1191             }
1192         }
1193       if (os == NULL)
1194         return NULL;
1195     }
1196
1197   // By default the GNU linker sorts input sections whose names match
1198   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1199   // sections are sorted by name.  This is used to implement
1200   // constructor priority ordering.  We are compatible.  When we put
1201   // .ctor sections in .init_array and .dtor sections in .fini_array,
1202   // we must also sort plain .ctor and .dtor sections.
1203   if (!this->script_options_->saw_sections_clause()
1204       && !parameters->options().relocatable()
1205       && (is_prefix_of(".ctors.", name)
1206           || is_prefix_of(".dtors.", name)
1207           || is_prefix_of(".init_array.", name)
1208           || is_prefix_of(".fini_array.", name)
1209           || (parameters->options().ctors_in_init_array()
1210               && (strcmp(name, ".ctors") == 0
1211                   || strcmp(name, ".dtors") == 0))))
1212     os->set_must_sort_attached_input_sections();
1213
1214   // By default the GNU linker sorts some special text sections ahead
1215   // of others.  We are compatible.
1216   if (parameters->options().text_reorder()
1217       && !this->script_options_->saw_sections_clause()
1218       && !this->is_section_ordering_specified()
1219       && !parameters->options().relocatable()
1220       && Layout::special_ordering_of_input_section(name) >= 0)
1221     os->set_must_sort_attached_input_sections();
1222
1223   // If this is a .ctors or .ctors.* section being mapped to a
1224   // .init_array section, or a .dtors or .dtors.* section being mapped
1225   // to a .fini_array section, we will need to reverse the words if
1226   // there is more than one.  Record this section for later.  See
1227   // ctors_sections_in_init_array above.
1228   if (!this->script_options_->saw_sections_clause()
1229       && !parameters->options().relocatable()
1230       && shdr.get_sh_size() > size / 8
1231       && (((strcmp(name, ".ctors") == 0
1232             || is_prefix_of(".ctors.", name))
1233            && strcmp(os->name(), ".init_array") == 0)
1234           || ((strcmp(name, ".dtors") == 0
1235                || is_prefix_of(".dtors.", name))
1236               && strcmp(os->name(), ".fini_array") == 0)))
1237     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1238
1239   // FIXME: Handle SHF_LINK_ORDER somewhere.
1240
1241   elfcpp::Elf_Xword orig_flags = os->flags();
1242
1243   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1244                                this->script_options_->saw_sections_clause());
1245
1246   // If the flags changed, we may have to change the order.
1247   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1248     {
1249       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1250       elfcpp::Elf_Xword new_flags =
1251         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1252       if (orig_flags != new_flags)
1253         os->set_order(this->default_section_order(os, false));
1254     }
1255
1256   this->have_added_input_section_ = true;
1257
1258   return os;
1259 }
1260
1261 // Maps section SECN to SEGMENT s.
1262 void
1263 Layout::insert_section_segment_map(Const_section_id secn,
1264                                    Unique_segment_info *s)
1265 {
1266   gold_assert(this->unique_segment_for_sections_specified_);
1267   this->section_segment_map_[secn] = s;
1268 }
1269
1270 // Handle a relocation section when doing a relocatable link.
1271
1272 template<int size, bool big_endian>
1273 Output_section*
1274 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1275                      unsigned int,
1276                      const elfcpp::Shdr<size, big_endian>& shdr,
1277                      Output_section* data_section,
1278                      Relocatable_relocs* rr)
1279 {
1280   gold_assert(parameters->options().relocatable()
1281               || parameters->options().emit_relocs());
1282
1283   int sh_type = shdr.get_sh_type();
1284
1285   std::string name;
1286   if (sh_type == elfcpp::SHT_REL)
1287     name = ".rel";
1288   else if (sh_type == elfcpp::SHT_RELA)
1289     name = ".rela";
1290   else
1291     gold_unreachable();
1292   name += data_section->name();
1293
1294   // In a relocatable link relocs for a grouped section must not be
1295   // combined with other reloc sections.
1296   Output_section* os;
1297   if (!parameters->options().relocatable()
1298       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1299     os = this->choose_output_section(object, name.c_str(), sh_type,
1300                                      shdr.get_sh_flags(), false,
1301                                      ORDER_INVALID, false);
1302   else
1303     {
1304       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1305       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1306                                      ORDER_INVALID, false);
1307     }
1308
1309   os->set_should_link_to_symtab();
1310   os->set_info_section(data_section);
1311
1312   Output_section_data* posd;
1313   if (sh_type == elfcpp::SHT_REL)
1314     {
1315       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1316       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1317                                            size,
1318                                            big_endian>(rr);
1319     }
1320   else if (sh_type == elfcpp::SHT_RELA)
1321     {
1322       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1323       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1324                                            size,
1325                                            big_endian>(rr);
1326     }
1327   else
1328     gold_unreachable();
1329
1330   os->add_output_section_data(posd);
1331   rr->set_output_data(posd);
1332
1333   return os;
1334 }
1335
1336 // Handle a group section when doing a relocatable link.
1337
1338 template<int size, bool big_endian>
1339 void
1340 Layout::layout_group(Symbol_table* symtab,
1341                      Sized_relobj_file<size, big_endian>* object,
1342                      unsigned int,
1343                      const char* group_section_name,
1344                      const char* signature,
1345                      const elfcpp::Shdr<size, big_endian>& shdr,
1346                      elfcpp::Elf_Word flags,
1347                      std::vector<unsigned int>* shndxes)
1348 {
1349   gold_assert(parameters->options().relocatable());
1350   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1351   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1352   Output_section* os = this->make_output_section(group_section_name,
1353                                                  elfcpp::SHT_GROUP,
1354                                                  shdr.get_sh_flags(),
1355                                                  ORDER_INVALID, false);
1356
1357   // We need to find a symbol with the signature in the symbol table.
1358   // If we don't find one now, we need to look again later.
1359   Symbol* sym = symtab->lookup(signature, NULL);
1360   if (sym != NULL)
1361     os->set_info_symndx(sym);
1362   else
1363     {
1364       // Reserve some space to minimize reallocations.
1365       if (this->group_signatures_.empty())
1366         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1367
1368       // We will wind up using a symbol whose name is the signature.
1369       // So just put the signature in the symbol name pool to save it.
1370       signature = symtab->canonicalize_name(signature);
1371       this->group_signatures_.push_back(Group_signature(os, signature));
1372     }
1373
1374   os->set_should_link_to_symtab();
1375   os->set_entsize(4);
1376
1377   section_size_type entry_count =
1378     convert_to_section_size_type(shdr.get_sh_size() / 4);
1379   Output_section_data* posd =
1380     new Output_data_group<size, big_endian>(object, entry_count, flags,
1381                                             shndxes);
1382   os->add_output_section_data(posd);
1383 }
1384
1385 // Special GNU handling of sections name .eh_frame.  They will
1386 // normally hold exception frame data as defined by the C++ ABI
1387 // (http://codesourcery.com/cxx-abi/).
1388
1389 template<int size, bool big_endian>
1390 Output_section*
1391 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1392                         const unsigned char* symbols,
1393                         off_t symbols_size,
1394                         const unsigned char* symbol_names,
1395                         off_t symbol_names_size,
1396                         unsigned int shndx,
1397                         const elfcpp::Shdr<size, big_endian>& shdr,
1398                         unsigned int reloc_shndx, unsigned int reloc_type,
1399                         off_t* off)
1400 {
1401   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1402               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1403   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1404
1405   Output_section* os = this->make_eh_frame_section(object);
1406   if (os == NULL)
1407     return NULL;
1408
1409   gold_assert(this->eh_frame_section_ == os);
1410
1411   elfcpp::Elf_Xword orig_flags = os->flags();
1412
1413   if (!parameters->incremental()
1414       && this->eh_frame_data_->add_ehframe_input_section(object,
1415                                                          symbols,
1416                                                          symbols_size,
1417                                                          symbol_names,
1418                                                          symbol_names_size,
1419                                                          shndx,
1420                                                          reloc_shndx,
1421                                                          reloc_type))
1422     {
1423       os->update_flags_for_input_section(shdr.get_sh_flags());
1424
1425       // A writable .eh_frame section is a RELRO section.
1426       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1427           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1428         {
1429           os->set_is_relro();
1430           os->set_order(ORDER_RELRO);
1431         }
1432
1433       // We found a .eh_frame section we are going to optimize, so now
1434       // we can add the set of optimized sections to the output
1435       // section.  We need to postpone adding this until we've found a
1436       // section we can optimize so that the .eh_frame section in
1437       // crtbegin.o winds up at the start of the output section.
1438       if (!this->added_eh_frame_data_)
1439         {
1440           os->add_output_section_data(this->eh_frame_data_);
1441           this->added_eh_frame_data_ = true;
1442         }
1443       *off = -1;
1444     }
1445   else
1446     {
1447       // We couldn't handle this .eh_frame section for some reason.
1448       // Add it as a normal section.
1449       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1450       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1451                                    reloc_shndx, saw_sections_clause);
1452       this->have_added_input_section_ = true;
1453
1454       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1455           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1456         os->set_order(this->default_section_order(os, false));
1457     }
1458
1459   return os;
1460 }
1461
1462 // Create and return the magic .eh_frame section.  Create
1463 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1464 // input .eh_frame section; it may be NULL.
1465
1466 Output_section*
1467 Layout::make_eh_frame_section(const Relobj* object)
1468 {
1469   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1470   // SHT_PROGBITS.
1471   Output_section* os = this->choose_output_section(object, ".eh_frame",
1472                                                    elfcpp::SHT_PROGBITS,
1473                                                    elfcpp::SHF_ALLOC, false,
1474                                                    ORDER_EHFRAME, false);
1475   if (os == NULL)
1476     return NULL;
1477
1478   if (this->eh_frame_section_ == NULL)
1479     {
1480       this->eh_frame_section_ = os;
1481       this->eh_frame_data_ = new Eh_frame();
1482
1483       // For incremental linking, we do not optimize .eh_frame sections
1484       // or create a .eh_frame_hdr section.
1485       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1486         {
1487           Output_section* hdr_os =
1488             this->choose_output_section(NULL, ".eh_frame_hdr",
1489                                         elfcpp::SHT_PROGBITS,
1490                                         elfcpp::SHF_ALLOC, false,
1491                                         ORDER_EHFRAME, false);
1492
1493           if (hdr_os != NULL)
1494             {
1495               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1496                                                         this->eh_frame_data_);
1497               hdr_os->add_output_section_data(hdr_posd);
1498
1499               hdr_os->set_after_input_sections();
1500
1501               if (!this->script_options_->saw_phdrs_clause())
1502                 {
1503                   Output_segment* hdr_oseg;
1504                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1505                                                        elfcpp::PF_R);
1506                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1507                                                           elfcpp::PF_R);
1508                 }
1509
1510               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1511             }
1512         }
1513     }
1514
1515   return os;
1516 }
1517
1518 // Add an exception frame for a PLT.  This is called from target code.
1519
1520 void
1521 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1522                              size_t cie_length, const unsigned char* fde_data,
1523                              size_t fde_length)
1524 {
1525   if (parameters->incremental())
1526     {
1527       // FIXME: Maybe this could work some day....
1528       return;
1529     }
1530   Output_section* os = this->make_eh_frame_section(NULL);
1531   if (os == NULL)
1532     return;
1533   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1534                                             fde_data, fde_length);
1535   if (!this->added_eh_frame_data_)
1536     {
1537       os->add_output_section_data(this->eh_frame_data_);
1538       this->added_eh_frame_data_ = true;
1539     }
1540 }
1541
1542 // Scan a .debug_info or .debug_types section, and add summary
1543 // information to the .gdb_index section.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Layout::add_to_gdb_index(bool is_type_unit,
1548                          Sized_relobj<size, big_endian>* object,
1549                          const unsigned char* symbols,
1550                          off_t symbols_size,
1551                          unsigned int shndx,
1552                          unsigned int reloc_shndx,
1553                          unsigned int reloc_type)
1554 {
1555   if (this->gdb_index_data_ == NULL)
1556     {
1557       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1558                                                        elfcpp::SHT_PROGBITS, 0,
1559                                                        false, ORDER_INVALID,
1560                                                        false);
1561       if (os == NULL)
1562         return;
1563
1564       this->gdb_index_data_ = new Gdb_index(os);
1565       os->add_output_section_data(this->gdb_index_data_);
1566       os->set_after_input_sections();
1567     }
1568
1569   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1570                                          symbols_size, shndx, reloc_shndx,
1571                                          reloc_type);
1572 }
1573
1574 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1575 // the output section.
1576
1577 Output_section*
1578 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1579                                 elfcpp::Elf_Xword flags,
1580                                 Output_section_data* posd,
1581                                 Output_section_order order, bool is_relro)
1582 {
1583   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1584                                                    false, order, is_relro);
1585   if (os != NULL)
1586     os->add_output_section_data(posd);
1587   return os;
1588 }
1589
1590 // Map section flags to segment flags.
1591
1592 elfcpp::Elf_Word
1593 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1594 {
1595   elfcpp::Elf_Word ret = elfcpp::PF_R;
1596   if ((flags & elfcpp::SHF_WRITE) != 0)
1597     ret |= elfcpp::PF_W;
1598   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1599     ret |= elfcpp::PF_X;
1600   return ret;
1601 }
1602
1603 // Make a new Output_section, and attach it to segments as
1604 // appropriate.  ORDER is the order in which this section should
1605 // appear in the output segment.  IS_RELRO is true if this is a relro
1606 // (read-only after relocations) section.
1607
1608 Output_section*
1609 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1610                             elfcpp::Elf_Xword flags,
1611                             Output_section_order order, bool is_relro)
1612 {
1613   Output_section* os;
1614   if ((flags & elfcpp::SHF_ALLOC) == 0
1615       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1616       && is_compressible_debug_section(name))
1617     os = new Output_compressed_section(&parameters->options(), name, type,
1618                                        flags);
1619   else if ((flags & elfcpp::SHF_ALLOC) == 0
1620            && parameters->options().strip_debug_non_line()
1621            && strcmp(".debug_abbrev", name) == 0)
1622     {
1623       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1624           name, type, flags);
1625       if (this->debug_info_)
1626         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627     }
1628   else if ((flags & elfcpp::SHF_ALLOC) == 0
1629            && parameters->options().strip_debug_non_line()
1630            && strcmp(".debug_info", name) == 0)
1631     {
1632       os = this->debug_info_ = new Output_reduced_debug_info_section(
1633           name, type, flags);
1634       if (this->debug_abbrev_)
1635         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1636     }
1637   else
1638     {
1639       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1640       // not have correct section types.  Force them here.
1641       if (type == elfcpp::SHT_PROGBITS)
1642         {
1643           if (is_prefix_of(".init_array", name))
1644             type = elfcpp::SHT_INIT_ARRAY;
1645           else if (is_prefix_of(".preinit_array", name))
1646             type = elfcpp::SHT_PREINIT_ARRAY;
1647           else if (is_prefix_of(".fini_array", name))
1648             type = elfcpp::SHT_FINI_ARRAY;
1649         }
1650
1651       // FIXME: const_cast is ugly.
1652       Target* target = const_cast<Target*>(&parameters->target());
1653       os = target->make_output_section(name, type, flags);
1654     }
1655
1656   // With -z relro, we have to recognize the special sections by name.
1657   // There is no other way.
1658   bool is_relro_local = false;
1659   if (!this->script_options_->saw_sections_clause()
1660       && parameters->options().relro()
1661       && (flags & elfcpp::SHF_ALLOC) != 0
1662       && (flags & elfcpp::SHF_WRITE) != 0)
1663     {
1664       if (type == elfcpp::SHT_PROGBITS)
1665         {
1666           if ((flags & elfcpp::SHF_TLS) != 0)
1667             is_relro = true;
1668           else if (strcmp(name, ".data.rel.ro") == 0)
1669             is_relro = true;
1670           else if (strcmp(name, ".data.rel.ro.local") == 0)
1671             {
1672               is_relro = true;
1673               is_relro_local = true;
1674             }
1675           else if (strcmp(name, ".ctors") == 0
1676                    || strcmp(name, ".dtors") == 0
1677                    || strcmp(name, ".jcr") == 0)
1678             is_relro = true;
1679         }
1680       else if (type == elfcpp::SHT_INIT_ARRAY
1681                || type == elfcpp::SHT_FINI_ARRAY
1682                || type == elfcpp::SHT_PREINIT_ARRAY)
1683         is_relro = true;
1684     }
1685
1686   if (is_relro)
1687     os->set_is_relro();
1688
1689   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1690     order = this->default_section_order(os, is_relro_local);
1691
1692   os->set_order(order);
1693
1694   parameters->target().new_output_section(os);
1695
1696   this->section_list_.push_back(os);
1697
1698   // The GNU linker by default sorts some sections by priority, so we
1699   // do the same.  We need to know that this might happen before we
1700   // attach any input sections.
1701   if (!this->script_options_->saw_sections_clause()
1702       && !parameters->options().relocatable()
1703       && (strcmp(name, ".init_array") == 0
1704           || strcmp(name, ".fini_array") == 0
1705           || (!parameters->options().ctors_in_init_array()
1706               && (strcmp(name, ".ctors") == 0
1707                   || strcmp(name, ".dtors") == 0))))
1708     os->set_may_sort_attached_input_sections();
1709
1710   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1711   // sections before other .text sections.  We are compatible.  We
1712   // need to know that this might happen before we attach any input
1713   // sections.
1714   if (parameters->options().text_reorder()
1715       && !this->script_options_->saw_sections_clause()
1716       && !this->is_section_ordering_specified()
1717       && !parameters->options().relocatable()
1718       && strcmp(name, ".text") == 0)
1719     os->set_may_sort_attached_input_sections();
1720
1721   // GNU linker sorts section by name with --sort-section=name.
1722   if (strcmp(parameters->options().sort_section(), "name") == 0)
1723       os->set_must_sort_attached_input_sections();
1724
1725   // Check for .stab*str sections, as .stab* sections need to link to
1726   // them.
1727   if (type == elfcpp::SHT_STRTAB
1728       && !this->have_stabstr_section_
1729       && strncmp(name, ".stab", 5) == 0
1730       && strcmp(name + strlen(name) - 3, "str") == 0)
1731     this->have_stabstr_section_ = true;
1732
1733   // During a full incremental link, we add patch space to most
1734   // PROGBITS and NOBITS sections.  Flag those that may be
1735   // arbitrarily padded.
1736   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1737       && order != ORDER_INTERP
1738       && order != ORDER_INIT
1739       && order != ORDER_PLT
1740       && order != ORDER_FINI
1741       && order != ORDER_RELRO_LAST
1742       && order != ORDER_NON_RELRO_FIRST
1743       && strcmp(name, ".eh_frame") != 0
1744       && strcmp(name, ".ctors") != 0
1745       && strcmp(name, ".dtors") != 0
1746       && strcmp(name, ".jcr") != 0)
1747     {
1748       os->set_is_patch_space_allowed();
1749
1750       // Certain sections require "holes" to be filled with
1751       // specific fill patterns.  These fill patterns may have
1752       // a minimum size, so we must prevent allocations from the
1753       // free list that leave a hole smaller than the minimum.
1754       if (strcmp(name, ".debug_info") == 0)
1755         os->set_free_space_fill(new Output_fill_debug_info(false));
1756       else if (strcmp(name, ".debug_types") == 0)
1757         os->set_free_space_fill(new Output_fill_debug_info(true));
1758       else if (strcmp(name, ".debug_line") == 0)
1759         os->set_free_space_fill(new Output_fill_debug_line());
1760     }
1761
1762   // If we have already attached the sections to segments, then we
1763   // need to attach this one now.  This happens for sections created
1764   // directly by the linker.
1765   if (this->sections_are_attached_)
1766     this->attach_section_to_segment(&parameters->target(), os);
1767
1768   return os;
1769 }
1770
1771 // Return the default order in which a section should be placed in an
1772 // output segment.  This function captures a lot of the ideas in
1773 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1774 // linker created section is normally set when the section is created;
1775 // this function is used for input sections.
1776
1777 Output_section_order
1778 Layout::default_section_order(Output_section* os, bool is_relro_local)
1779 {
1780   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1781   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1782   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1783   bool is_bss = false;
1784
1785   switch (os->type())
1786     {
1787     default:
1788     case elfcpp::SHT_PROGBITS:
1789       break;
1790     case elfcpp::SHT_NOBITS:
1791       is_bss = true;
1792       break;
1793     case elfcpp::SHT_RELA:
1794     case elfcpp::SHT_REL:
1795       if (!is_write)
1796         return ORDER_DYNAMIC_RELOCS;
1797       break;
1798     case elfcpp::SHT_HASH:
1799     case elfcpp::SHT_DYNAMIC:
1800     case elfcpp::SHT_SHLIB:
1801     case elfcpp::SHT_DYNSYM:
1802     case elfcpp::SHT_GNU_HASH:
1803     case elfcpp::SHT_GNU_verdef:
1804     case elfcpp::SHT_GNU_verneed:
1805     case elfcpp::SHT_GNU_versym:
1806       if (!is_write)
1807         return ORDER_DYNAMIC_LINKER;
1808       break;
1809     case elfcpp::SHT_NOTE:
1810       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1811     }
1812
1813   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1814     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1815
1816   if (!is_bss && !is_write)
1817     {
1818       if (is_execinstr)
1819         {
1820           if (strcmp(os->name(), ".init") == 0)
1821             return ORDER_INIT;
1822           else if (strcmp(os->name(), ".fini") == 0)
1823             return ORDER_FINI;
1824         }
1825       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1826     }
1827
1828   if (os->is_relro())
1829     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1830
1831   if (os->is_small_section())
1832     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1833   if (os->is_large_section())
1834     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1835
1836   return is_bss ? ORDER_BSS : ORDER_DATA;
1837 }
1838
1839 // Attach output sections to segments.  This is called after we have
1840 // seen all the input sections.
1841
1842 void
1843 Layout::attach_sections_to_segments(const Target* target)
1844 {
1845   for (Section_list::iterator p = this->section_list_.begin();
1846        p != this->section_list_.end();
1847        ++p)
1848     this->attach_section_to_segment(target, *p);
1849
1850   this->sections_are_attached_ = true;
1851 }
1852
1853 // Attach an output section to a segment.
1854
1855 void
1856 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1857 {
1858   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1859     this->unattached_section_list_.push_back(os);
1860   else
1861     this->attach_allocated_section_to_segment(target, os);
1862 }
1863
1864 // Attach an allocated output section to a segment.
1865
1866 void
1867 Layout::attach_allocated_section_to_segment(const Target* target,
1868                                             Output_section* os)
1869 {
1870   elfcpp::Elf_Xword flags = os->flags();
1871   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1872
1873   if (parameters->options().relocatable())
1874     return;
1875
1876   // If we have a SECTIONS clause, we can't handle the attachment to
1877   // segments until after we've seen all the sections.
1878   if (this->script_options_->saw_sections_clause())
1879     return;
1880
1881   gold_assert(!this->script_options_->saw_phdrs_clause());
1882
1883   // This output section goes into a PT_LOAD segment.
1884
1885   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1886
1887   // If this output section's segment has extra flags that need to be set,
1888   // coming from a linker plugin, do that.
1889   seg_flags |= os->extra_segment_flags();
1890
1891   // Check for --section-start.
1892   uint64_t addr;
1893   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1894
1895   // In general the only thing we really care about for PT_LOAD
1896   // segments is whether or not they are writable or executable,
1897   // so that is how we search for them.
1898   // Large data sections also go into their own PT_LOAD segment.
1899   // People who need segments sorted on some other basis will
1900   // have to use a linker script.
1901
1902   Segment_list::const_iterator p;
1903   if (!os->is_unique_segment())
1904     {
1905       for (p = this->segment_list_.begin();
1906            p != this->segment_list_.end();
1907            ++p)
1908         {
1909           if ((*p)->type() != elfcpp::PT_LOAD)
1910             continue;
1911           if ((*p)->is_unique_segment())
1912             continue;
1913           if (!parameters->options().omagic()
1914               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1915             continue;
1916           if ((target->isolate_execinstr() || parameters->options().rosegment())
1917               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1918             continue;
1919           // If -Tbss was specified, we need to separate the data and BSS
1920           // segments.
1921           if (parameters->options().user_set_Tbss())
1922             {
1923               if ((os->type() == elfcpp::SHT_NOBITS)
1924                   == (*p)->has_any_data_sections())
1925                 continue;
1926             }
1927           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1928             continue;
1929
1930           if (is_address_set)
1931             {
1932               if ((*p)->are_addresses_set())
1933                 continue;
1934
1935               (*p)->add_initial_output_data(os);
1936               (*p)->update_flags_for_output_section(seg_flags);
1937               (*p)->set_addresses(addr, addr);
1938               break;
1939             }
1940
1941           (*p)->add_output_section_to_load(this, os, seg_flags);
1942           break;
1943         }
1944     }
1945
1946   if (p == this->segment_list_.end()
1947       || os->is_unique_segment())
1948     {
1949       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1950                                                        seg_flags);
1951       if (os->is_large_data_section())
1952         oseg->set_is_large_data_segment();
1953       oseg->add_output_section_to_load(this, os, seg_flags);
1954       if (is_address_set)
1955         oseg->set_addresses(addr, addr);
1956       // Check if segment should be marked unique.  For segments marked
1957       // unique by linker plugins, set the new alignment if specified.
1958       if (os->is_unique_segment())
1959         {
1960           oseg->set_is_unique_segment();
1961           if (os->segment_alignment() != 0)
1962             oseg->set_minimum_p_align(os->segment_alignment());
1963         }
1964     }
1965
1966   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1967   // segment.
1968   if (os->type() == elfcpp::SHT_NOTE)
1969     {
1970       // See if we already have an equivalent PT_NOTE segment.
1971       for (p = this->segment_list_.begin();
1972            p != segment_list_.end();
1973            ++p)
1974         {
1975           if ((*p)->type() == elfcpp::PT_NOTE
1976               && (((*p)->flags() & elfcpp::PF_W)
1977                   == (seg_flags & elfcpp::PF_W)))
1978             {
1979               (*p)->add_output_section_to_nonload(os, seg_flags);
1980               break;
1981             }
1982         }
1983
1984       if (p == this->segment_list_.end())
1985         {
1986           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1987                                                            seg_flags);
1988           oseg->add_output_section_to_nonload(os, seg_flags);
1989         }
1990     }
1991
1992   // If we see a loadable SHF_TLS section, we create a PT_TLS
1993   // segment.  There can only be one such segment.
1994   if ((flags & elfcpp::SHF_TLS) != 0)
1995     {
1996       if (this->tls_segment_ == NULL)
1997         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1998       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1999     }
2000
2001   // If -z relro is in effect, and we see a relro section, we create a
2002   // PT_GNU_RELRO segment.  There can only be one such segment.
2003   if (os->is_relro() && parameters->options().relro())
2004     {
2005       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2006       if (this->relro_segment_ == NULL)
2007         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2008       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2009     }
2010
2011   // If we see a section named .interp, put it into a PT_INTERP
2012   // segment.  This seems broken to me, but this is what GNU ld does,
2013   // and glibc expects it.
2014   if (strcmp(os->name(), ".interp") == 0
2015       && !this->script_options_->saw_phdrs_clause())
2016     {
2017       if (this->interp_segment_ == NULL)
2018         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2019       else
2020         gold_warning(_("multiple '.interp' sections in input files "
2021                        "may cause confusing PT_INTERP segment"));
2022       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2023     }
2024 }
2025
2026 // Make an output section for a script.
2027
2028 Output_section*
2029 Layout::make_output_section_for_script(
2030     const char* name,
2031     Script_sections::Section_type section_type)
2032 {
2033   name = this->namepool_.add(name, false, NULL);
2034   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2035   if (section_type == Script_sections::ST_NOLOAD)
2036     sh_flags = 0;
2037   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2038                                                  sh_flags, ORDER_INVALID,
2039                                                  false);
2040   os->set_found_in_sections_clause();
2041   if (section_type == Script_sections::ST_NOLOAD)
2042     os->set_is_noload();
2043   return os;
2044 }
2045
2046 // Return the number of segments we expect to see.
2047
2048 size_t
2049 Layout::expected_segment_count() const
2050 {
2051   size_t ret = this->segment_list_.size();
2052
2053   // If we didn't see a SECTIONS clause in a linker script, we should
2054   // already have the complete list of segments.  Otherwise we ask the
2055   // SECTIONS clause how many segments it expects, and add in the ones
2056   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2057
2058   if (!this->script_options_->saw_sections_clause())
2059     return ret;
2060   else
2061     {
2062       const Script_sections* ss = this->script_options_->script_sections();
2063       return ret + ss->expected_segment_count(this);
2064     }
2065 }
2066
2067 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2068 // is whether we saw a .note.GNU-stack section in the object file.
2069 // GNU_STACK_FLAGS is the section flags.  The flags give the
2070 // protection required for stack memory.  We record this in an
2071 // executable as a PT_GNU_STACK segment.  If an object file does not
2072 // have a .note.GNU-stack segment, we must assume that it is an old
2073 // object.  On some targets that will force an executable stack.
2074
2075 void
2076 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2077                          const Object* obj)
2078 {
2079   if (!seen_gnu_stack)
2080     {
2081       this->input_without_gnu_stack_note_ = true;
2082       if (parameters->options().warn_execstack()
2083           && parameters->target().is_default_stack_executable())
2084         gold_warning(_("%s: missing .note.GNU-stack section"
2085                        " implies executable stack"),
2086                      obj->name().c_str());
2087     }
2088   else
2089     {
2090       this->input_with_gnu_stack_note_ = true;
2091       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2092         {
2093           this->input_requires_executable_stack_ = true;
2094           if (parameters->options().warn_execstack()
2095               || parameters->options().is_stack_executable())
2096             gold_warning(_("%s: requires executable stack"),
2097                          obj->name().c_str());
2098         }
2099     }
2100 }
2101
2102 // Create automatic note sections.
2103
2104 void
2105 Layout::create_notes()
2106 {
2107   this->create_gold_note();
2108   this->create_executable_stack_info();
2109   this->create_build_id();
2110 }
2111
2112 // Create the dynamic sections which are needed before we read the
2113 // relocs.
2114
2115 void
2116 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2117 {
2118   if (parameters->doing_static_link())
2119     return;
2120
2121   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2122                                                        elfcpp::SHT_DYNAMIC,
2123                                                        (elfcpp::SHF_ALLOC
2124                                                         | elfcpp::SHF_WRITE),
2125                                                        false, ORDER_RELRO,
2126                                                        true);
2127
2128   // A linker script may discard .dynamic, so check for NULL.
2129   if (this->dynamic_section_ != NULL)
2130     {
2131       this->dynamic_symbol_ =
2132         symtab->define_in_output_data("_DYNAMIC", NULL,
2133                                       Symbol_table::PREDEFINED,
2134                                       this->dynamic_section_, 0, 0,
2135                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2136                                       elfcpp::STV_HIDDEN, 0, false, false);
2137
2138       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2139
2140       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2141     }
2142 }
2143
2144 // For each output section whose name can be represented as C symbol,
2145 // define __start and __stop symbols for the section.  This is a GNU
2146 // extension.
2147
2148 void
2149 Layout::define_section_symbols(Symbol_table* symtab)
2150 {
2151   for (Section_list::const_iterator p = this->section_list_.begin();
2152        p != this->section_list_.end();
2153        ++p)
2154     {
2155       const char* const name = (*p)->name();
2156       if (is_cident(name))
2157         {
2158           const std::string name_string(name);
2159           const std::string start_name(cident_section_start_prefix
2160                                        + name_string);
2161           const std::string stop_name(cident_section_stop_prefix
2162                                       + name_string);
2163
2164           symtab->define_in_output_data(start_name.c_str(),
2165                                         NULL, // version
2166                                         Symbol_table::PREDEFINED,
2167                                         *p,
2168                                         0, // value
2169                                         0, // symsize
2170                                         elfcpp::STT_NOTYPE,
2171                                         elfcpp::STB_GLOBAL,
2172                                         elfcpp::STV_DEFAULT,
2173                                         0, // nonvis
2174                                         false, // offset_is_from_end
2175                                         true); // only_if_ref
2176
2177           symtab->define_in_output_data(stop_name.c_str(),
2178                                         NULL, // version
2179                                         Symbol_table::PREDEFINED,
2180                                         *p,
2181                                         0, // value
2182                                         0, // symsize
2183                                         elfcpp::STT_NOTYPE,
2184                                         elfcpp::STB_GLOBAL,
2185                                         elfcpp::STV_DEFAULT,
2186                                         0, // nonvis
2187                                         true, // offset_is_from_end
2188                                         true); // only_if_ref
2189         }
2190     }
2191 }
2192
2193 // Define symbols for group signatures.
2194
2195 void
2196 Layout::define_group_signatures(Symbol_table* symtab)
2197 {
2198   for (Group_signatures::iterator p = this->group_signatures_.begin();
2199        p != this->group_signatures_.end();
2200        ++p)
2201     {
2202       Symbol* sym = symtab->lookup(p->signature, NULL);
2203       if (sym != NULL)
2204         p->section->set_info_symndx(sym);
2205       else
2206         {
2207           // Force the name of the group section to the group
2208           // signature, and use the group's section symbol as the
2209           // signature symbol.
2210           if (strcmp(p->section->name(), p->signature) != 0)
2211             {
2212               const char* name = this->namepool_.add(p->signature,
2213                                                      true, NULL);
2214               p->section->set_name(name);
2215             }
2216           p->section->set_needs_symtab_index();
2217           p->section->set_info_section_symndx(p->section);
2218         }
2219     }
2220
2221   this->group_signatures_.clear();
2222 }
2223
2224 // Find the first read-only PT_LOAD segment, creating one if
2225 // necessary.
2226
2227 Output_segment*
2228 Layout::find_first_load_seg(const Target* target)
2229 {
2230   Output_segment* best = NULL;
2231   for (Segment_list::const_iterator p = this->segment_list_.begin();
2232        p != this->segment_list_.end();
2233        ++p)
2234     {
2235       if ((*p)->type() == elfcpp::PT_LOAD
2236           && ((*p)->flags() & elfcpp::PF_R) != 0
2237           && (parameters->options().omagic()
2238               || ((*p)->flags() & elfcpp::PF_W) == 0)
2239           && (!target->isolate_execinstr()
2240               || ((*p)->flags() & elfcpp::PF_X) == 0))
2241         {
2242           if (best == NULL || this->segment_precedes(*p, best))
2243             best = *p;
2244         }
2245     }
2246   if (best != NULL)
2247     return best;
2248
2249   gold_assert(!this->script_options_->saw_phdrs_clause());
2250
2251   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2252                                                        elfcpp::PF_R);
2253   return load_seg;
2254 }
2255
2256 // Save states of all current output segments.  Store saved states
2257 // in SEGMENT_STATES.
2258
2259 void
2260 Layout::save_segments(Segment_states* segment_states)
2261 {
2262   for (Segment_list::const_iterator p = this->segment_list_.begin();
2263        p != this->segment_list_.end();
2264        ++p)
2265     {
2266       Output_segment* segment = *p;
2267       // Shallow copy.
2268       Output_segment* copy = new Output_segment(*segment);
2269       (*segment_states)[segment] = copy;
2270     }
2271 }
2272
2273 // Restore states of output segments and delete any segment not found in
2274 // SEGMENT_STATES.
2275
2276 void
2277 Layout::restore_segments(const Segment_states* segment_states)
2278 {
2279   // Go through the segment list and remove any segment added in the
2280   // relaxation loop.
2281   this->tls_segment_ = NULL;
2282   this->relro_segment_ = NULL;
2283   Segment_list::iterator list_iter = this->segment_list_.begin();
2284   while (list_iter != this->segment_list_.end())
2285     {
2286       Output_segment* segment = *list_iter;
2287       Segment_states::const_iterator states_iter =
2288           segment_states->find(segment);
2289       if (states_iter != segment_states->end())
2290         {
2291           const Output_segment* copy = states_iter->second;
2292           // Shallow copy to restore states.
2293           *segment = *copy;
2294
2295           // Also fix up TLS and RELRO segment pointers as appropriate.
2296           if (segment->type() == elfcpp::PT_TLS)
2297             this->tls_segment_ = segment;
2298           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2299             this->relro_segment_ = segment;
2300
2301           ++list_iter;
2302         }
2303       else
2304         {
2305           list_iter = this->segment_list_.erase(list_iter);
2306           // This is a segment created during section layout.  It should be
2307           // safe to remove it since we should have removed all pointers to it.
2308           delete segment;
2309         }
2310     }
2311 }
2312
2313 // Clean up after relaxation so that sections can be laid out again.
2314
2315 void
2316 Layout::clean_up_after_relaxation()
2317 {
2318   // Restore the segments to point state just prior to the relaxation loop.
2319   Script_sections* script_section = this->script_options_->script_sections();
2320   script_section->release_segments();
2321   this->restore_segments(this->segment_states_);
2322
2323   // Reset section addresses and file offsets
2324   for (Section_list::iterator p = this->section_list_.begin();
2325        p != this->section_list_.end();
2326        ++p)
2327     {
2328       (*p)->restore_states();
2329
2330       // If an input section changes size because of relaxation,
2331       // we need to adjust the section offsets of all input sections.
2332       // after such a section.
2333       if ((*p)->section_offsets_need_adjustment())
2334         (*p)->adjust_section_offsets();
2335
2336       (*p)->reset_address_and_file_offset();
2337     }
2338
2339   // Reset special output object address and file offsets.
2340   for (Data_list::iterator p = this->special_output_list_.begin();
2341        p != this->special_output_list_.end();
2342        ++p)
2343     (*p)->reset_address_and_file_offset();
2344
2345   // A linker script may have created some output section data objects.
2346   // They are useless now.
2347   for (Output_section_data_list::const_iterator p =
2348          this->script_output_section_data_list_.begin();
2349        p != this->script_output_section_data_list_.end();
2350        ++p)
2351     delete *p;
2352   this->script_output_section_data_list_.clear();
2353
2354   // Special-case fill output objects are recreated each time through
2355   // the relaxation loop.
2356   this->reset_relax_output();
2357 }
2358
2359 void
2360 Layout::reset_relax_output()
2361 {
2362   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2363        p != this->relax_output_list_.end();
2364        ++p)
2365     delete *p;
2366   this->relax_output_list_.clear();
2367 }
2368
2369 // Prepare for relaxation.
2370
2371 void
2372 Layout::prepare_for_relaxation()
2373 {
2374   // Create an relaxation debug check if in debugging mode.
2375   if (is_debugging_enabled(DEBUG_RELAXATION))
2376     this->relaxation_debug_check_ = new Relaxation_debug_check();
2377
2378   // Save segment states.
2379   this->segment_states_ = new Segment_states();
2380   this->save_segments(this->segment_states_);
2381
2382   for(Section_list::const_iterator p = this->section_list_.begin();
2383       p != this->section_list_.end();
2384       ++p)
2385     (*p)->save_states();
2386
2387   if (is_debugging_enabled(DEBUG_RELAXATION))
2388     this->relaxation_debug_check_->check_output_data_for_reset_values(
2389         this->section_list_, this->special_output_list_,
2390         this->relax_output_list_);
2391
2392   // Also enable recording of output section data from scripts.
2393   this->record_output_section_data_from_script_ = true;
2394 }
2395
2396 // If the user set the address of the text segment, that may not be
2397 // compatible with putting the segment headers and file headers into
2398 // that segment.  For isolate_execinstr() targets, it's the rodata
2399 // segment rather than text where we might put the headers.
2400 static inline bool
2401 load_seg_unusable_for_headers(const Target* target)
2402 {
2403   const General_options& options = parameters->options();
2404   if (target->isolate_execinstr())
2405     return (options.user_set_Trodata_segment()
2406             && options.Trodata_segment() % target->abi_pagesize() != 0);
2407   else
2408     return (options.user_set_Ttext()
2409             && options.Ttext() % target->abi_pagesize() != 0);
2410 }
2411
2412 // Relaxation loop body:  If target has no relaxation, this runs only once
2413 // Otherwise, the target relaxation hook is called at the end of
2414 // each iteration.  If the hook returns true, it means re-layout of
2415 // section is required.
2416 //
2417 // The number of segments created by a linking script without a PHDRS
2418 // clause may be affected by section sizes and alignments.  There is
2419 // a remote chance that relaxation causes different number of PT_LOAD
2420 // segments are created and sections are attached to different segments.
2421 // Therefore, we always throw away all segments created during section
2422 // layout.  In order to be able to restart the section layout, we keep
2423 // a copy of the segment list right before the relaxation loop and use
2424 // that to restore the segments.
2425 //
2426 // PASS is the current relaxation pass number.
2427 // SYMTAB is a symbol table.
2428 // PLOAD_SEG is the address of a pointer for the load segment.
2429 // PHDR_SEG is a pointer to the PHDR segment.
2430 // SEGMENT_HEADERS points to the output segment header.
2431 // FILE_HEADER points to the output file header.
2432 // PSHNDX is the address to store the output section index.
2433
2434 off_t inline
2435 Layout::relaxation_loop_body(
2436     int pass,
2437     Target* target,
2438     Symbol_table* symtab,
2439     Output_segment** pload_seg,
2440     Output_segment* phdr_seg,
2441     Output_segment_headers* segment_headers,
2442     Output_file_header* file_header,
2443     unsigned int* pshndx)
2444 {
2445   // If this is not the first iteration, we need to clean up after
2446   // relaxation so that we can lay out the sections again.
2447   if (pass != 0)
2448     this->clean_up_after_relaxation();
2449
2450   // If there is a SECTIONS clause, put all the input sections into
2451   // the required order.
2452   Output_segment* load_seg;
2453   if (this->script_options_->saw_sections_clause())
2454     load_seg = this->set_section_addresses_from_script(symtab);
2455   else if (parameters->options().relocatable())
2456     load_seg = NULL;
2457   else
2458     load_seg = this->find_first_load_seg(target);
2459
2460   if (parameters->options().oformat_enum()
2461       != General_options::OBJECT_FORMAT_ELF)
2462     load_seg = NULL;
2463
2464   if (load_seg_unusable_for_headers(target))
2465     {
2466       load_seg = NULL;
2467       phdr_seg = NULL;
2468     }
2469
2470   gold_assert(phdr_seg == NULL
2471               || load_seg != NULL
2472               || this->script_options_->saw_sections_clause());
2473
2474   // If the address of the load segment we found has been set by
2475   // --section-start rather than by a script, then adjust the VMA and
2476   // LMA downward if possible to include the file and section headers.
2477   uint64_t header_gap = 0;
2478   if (load_seg != NULL
2479       && load_seg->are_addresses_set()
2480       && !this->script_options_->saw_sections_clause()
2481       && !parameters->options().relocatable())
2482     {
2483       file_header->finalize_data_size();
2484       segment_headers->finalize_data_size();
2485       size_t sizeof_headers = (file_header->data_size()
2486                                + segment_headers->data_size());
2487       const uint64_t abi_pagesize = target->abi_pagesize();
2488       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2489       hdr_paddr &= ~(abi_pagesize - 1);
2490       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2491       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2492         load_seg = NULL;
2493       else
2494         {
2495           load_seg->set_addresses(load_seg->vaddr() - subtract,
2496                                   load_seg->paddr() - subtract);
2497           header_gap = subtract - sizeof_headers;
2498         }
2499     }
2500
2501   // Lay out the segment headers.
2502   if (!parameters->options().relocatable())
2503     {
2504       gold_assert(segment_headers != NULL);
2505       if (header_gap != 0 && load_seg != NULL)
2506         {
2507           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2508           load_seg->add_initial_output_data(z);
2509         }
2510       if (load_seg != NULL)
2511         load_seg->add_initial_output_data(segment_headers);
2512       if (phdr_seg != NULL)
2513         phdr_seg->add_initial_output_data(segment_headers);
2514     }
2515
2516   // Lay out the file header.
2517   if (load_seg != NULL)
2518     load_seg->add_initial_output_data(file_header);
2519
2520   if (this->script_options_->saw_phdrs_clause()
2521       && !parameters->options().relocatable())
2522     {
2523       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2524       // clause in a linker script.
2525       Script_sections* ss = this->script_options_->script_sections();
2526       ss->put_headers_in_phdrs(file_header, segment_headers);
2527     }
2528
2529   // We set the output section indexes in set_segment_offsets and
2530   // set_section_indexes.
2531   *pshndx = 1;
2532
2533   // Set the file offsets of all the segments, and all the sections
2534   // they contain.
2535   off_t off;
2536   if (!parameters->options().relocatable())
2537     off = this->set_segment_offsets(target, load_seg, pshndx);
2538   else
2539     off = this->set_relocatable_section_offsets(file_header, pshndx);
2540
2541    // Verify that the dummy relaxation does not change anything.
2542   if (is_debugging_enabled(DEBUG_RELAXATION))
2543     {
2544       if (pass == 0)
2545         this->relaxation_debug_check_->read_sections(this->section_list_);
2546       else
2547         this->relaxation_debug_check_->verify_sections(this->section_list_);
2548     }
2549
2550   *pload_seg = load_seg;
2551   return off;
2552 }
2553
2554 // Search the list of patterns and find the postion of the given section
2555 // name in the output section.  If the section name matches a glob
2556 // pattern and a non-glob name, then the non-glob position takes
2557 // precedence.  Return 0 if no match is found.
2558
2559 unsigned int
2560 Layout::find_section_order_index(const std::string& section_name)
2561 {
2562   Unordered_map<std::string, unsigned int>::iterator map_it;
2563   map_it = this->input_section_position_.find(section_name);
2564   if (map_it != this->input_section_position_.end())
2565     return map_it->second;
2566
2567   // Absolute match failed.  Linear search the glob patterns.
2568   std::vector<std::string>::iterator it;
2569   for (it = this->input_section_glob_.begin();
2570        it != this->input_section_glob_.end();
2571        ++it)
2572     {
2573        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2574          {
2575            map_it = this->input_section_position_.find(*it);
2576            gold_assert(map_it != this->input_section_position_.end());
2577            return map_it->second;
2578          }
2579     }
2580   return 0;
2581 }
2582
2583 // Read the sequence of input sections from the file specified with
2584 // option --section-ordering-file.
2585
2586 void
2587 Layout::read_layout_from_file()
2588 {
2589   const char* filename = parameters->options().section_ordering_file();
2590   std::ifstream in;
2591   std::string line;
2592
2593   in.open(filename);
2594   if (!in)
2595     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2596                filename, strerror(errno));
2597
2598   std::getline(in, line);   // this chops off the trailing \n, if any
2599   unsigned int position = 1;
2600   this->set_section_ordering_specified();
2601
2602   while (in)
2603     {
2604       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2605         line.resize(line.length() - 1);
2606       // Ignore comments, beginning with '#'
2607       if (line[0] == '#')
2608         {
2609           std::getline(in, line);
2610           continue;
2611         }
2612       this->input_section_position_[line] = position;
2613       // Store all glob patterns in a vector.
2614       if (is_wildcard_string(line.c_str()))
2615         this->input_section_glob_.push_back(line);
2616       position++;
2617       std::getline(in, line);
2618     }
2619 }
2620
2621 // Finalize the layout.  When this is called, we have created all the
2622 // output sections and all the output segments which are based on
2623 // input sections.  We have several things to do, and we have to do
2624 // them in the right order, so that we get the right results correctly
2625 // and efficiently.
2626
2627 // 1) Finalize the list of output segments and create the segment
2628 // table header.
2629
2630 // 2) Finalize the dynamic symbol table and associated sections.
2631
2632 // 3) Determine the final file offset of all the output segments.
2633
2634 // 4) Determine the final file offset of all the SHF_ALLOC output
2635 // sections.
2636
2637 // 5) Create the symbol table sections and the section name table
2638 // section.
2639
2640 // 6) Finalize the symbol table: set symbol values to their final
2641 // value and make a final determination of which symbols are going
2642 // into the output symbol table.
2643
2644 // 7) Create the section table header.
2645
2646 // 8) Determine the final file offset of all the output sections which
2647 // are not SHF_ALLOC, including the section table header.
2648
2649 // 9) Finalize the ELF file header.
2650
2651 // This function returns the size of the output file.
2652
2653 off_t
2654 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2655                  Target* target, const Task* task)
2656 {
2657   target->finalize_sections(this, input_objects, symtab);
2658
2659   this->count_local_symbols(task, input_objects);
2660
2661   this->link_stabs_sections();
2662
2663   Output_segment* phdr_seg = NULL;
2664   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2665     {
2666       // There was a dynamic object in the link.  We need to create
2667       // some information for the dynamic linker.
2668
2669       // Create the PT_PHDR segment which will hold the program
2670       // headers.
2671       if (!this->script_options_->saw_phdrs_clause())
2672         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2673
2674       // Create the dynamic symbol table, including the hash table.
2675       Output_section* dynstr;
2676       std::vector<Symbol*> dynamic_symbols;
2677       unsigned int local_dynamic_count;
2678       Versions versions(*this->script_options()->version_script_info(),
2679                         &this->dynpool_);
2680       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2681                                   &local_dynamic_count, &dynamic_symbols,
2682                                   &versions);
2683
2684       // Create the .interp section to hold the name of the
2685       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2686       // if we saw a .interp section in an input file.
2687       if ((!parameters->options().shared()
2688            || parameters->options().dynamic_linker() != NULL)
2689           && this->interp_segment_ == NULL)
2690         this->create_interp(target);
2691
2692       // Finish the .dynamic section to hold the dynamic data, and put
2693       // it in a PT_DYNAMIC segment.
2694       this->finish_dynamic_section(input_objects, symtab);
2695
2696       // We should have added everything we need to the dynamic string
2697       // table.
2698       this->dynpool_.set_string_offsets();
2699
2700       // Create the version sections.  We can't do this until the
2701       // dynamic string table is complete.
2702       this->create_version_sections(&versions, symtab, local_dynamic_count,
2703                                     dynamic_symbols, dynstr);
2704
2705       // Set the size of the _DYNAMIC symbol.  We can't do this until
2706       // after we call create_version_sections.
2707       this->set_dynamic_symbol_size(symtab);
2708     }
2709
2710   // Create segment headers.
2711   Output_segment_headers* segment_headers =
2712     (parameters->options().relocatable()
2713      ? NULL
2714      : new Output_segment_headers(this->segment_list_));
2715
2716   // Lay out the file header.
2717   Output_file_header* file_header = new Output_file_header(target, symtab,
2718                                                            segment_headers);
2719
2720   this->special_output_list_.push_back(file_header);
2721   if (segment_headers != NULL)
2722     this->special_output_list_.push_back(segment_headers);
2723
2724   // Find approriate places for orphan output sections if we are using
2725   // a linker script.
2726   if (this->script_options_->saw_sections_clause())
2727     this->place_orphan_sections_in_script();
2728
2729   Output_segment* load_seg;
2730   off_t off;
2731   unsigned int shndx;
2732   int pass = 0;
2733
2734   // Take a snapshot of the section layout as needed.
2735   if (target->may_relax())
2736     this->prepare_for_relaxation();
2737
2738   // Run the relaxation loop to lay out sections.
2739   do
2740     {
2741       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2742                                        phdr_seg, segment_headers, file_header,
2743                                        &shndx);
2744       pass++;
2745     }
2746   while (target->may_relax()
2747          && target->relax(pass, input_objects, symtab, this, task));
2748
2749   // If there is a load segment that contains the file and program headers,
2750   // provide a symbol __ehdr_start pointing there.
2751   // A program can use this to examine itself robustly.
2752   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2753   if (ehdr_start != NULL && ehdr_start->is_predefined())
2754     {
2755       if (load_seg != NULL)
2756         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2757       else
2758         ehdr_start->set_undefined();
2759     }
2760
2761   // Set the file offsets of all the non-data sections we've seen so
2762   // far which don't have to wait for the input sections.  We need
2763   // this in order to finalize local symbols in non-allocated
2764   // sections.
2765   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2766
2767   // Set the section indexes of all unallocated sections seen so far,
2768   // in case any of them are somehow referenced by a symbol.
2769   shndx = this->set_section_indexes(shndx);
2770
2771   // Create the symbol table sections.
2772   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2773   if (!parameters->doing_static_link())
2774     this->assign_local_dynsym_offsets(input_objects);
2775
2776   // Process any symbol assignments from a linker script.  This must
2777   // be called after the symbol table has been finalized.
2778   this->script_options_->finalize_symbols(symtab, this);
2779
2780   // Create the incremental inputs sections.
2781   if (this->incremental_inputs_)
2782     {
2783       this->incremental_inputs_->finalize();
2784       this->create_incremental_info_sections(symtab);
2785     }
2786
2787   // Create the .shstrtab section.
2788   Output_section* shstrtab_section = this->create_shstrtab();
2789
2790   // Set the file offsets of the rest of the non-data sections which
2791   // don't have to wait for the input sections.
2792   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2793
2794   // Now that all sections have been created, set the section indexes
2795   // for any sections which haven't been done yet.
2796   shndx = this->set_section_indexes(shndx);
2797
2798   // Create the section table header.
2799   this->create_shdrs(shstrtab_section, &off);
2800
2801   // If there are no sections which require postprocessing, we can
2802   // handle the section names now, and avoid a resize later.
2803   if (!this->any_postprocessing_sections_)
2804     {
2805       off = this->set_section_offsets(off,
2806                                       POSTPROCESSING_SECTIONS_PASS);
2807       off =
2808           this->set_section_offsets(off,
2809                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2810     }
2811
2812   file_header->set_section_info(this->section_headers_, shstrtab_section);
2813
2814   // Now we know exactly where everything goes in the output file
2815   // (except for non-allocated sections which require postprocessing).
2816   Output_data::layout_complete();
2817
2818   this->output_file_size_ = off;
2819
2820   return off;
2821 }
2822
2823 // Create a note header following the format defined in the ELF ABI.
2824 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2825 // of the section to create, DESCSZ is the size of the descriptor.
2826 // ALLOCATE is true if the section should be allocated in memory.
2827 // This returns the new note section.  It sets *TRAILING_PADDING to
2828 // the number of trailing zero bytes required.
2829
2830 Output_section*
2831 Layout::create_note(const char* name, int note_type,
2832                     const char* section_name, size_t descsz,
2833                     bool allocate, size_t* trailing_padding)
2834 {
2835   // Authorities all agree that the values in a .note field should
2836   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2837   // they differ on what the alignment is for 64-bit binaries.
2838   // The GABI says unambiguously they take 8-byte alignment:
2839   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2840   // Other documentation says alignment should always be 4 bytes:
2841   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2842   // GNU ld and GNU readelf both support the latter (at least as of
2843   // version 2.16.91), and glibc always generates the latter for
2844   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2845   // here.
2846 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2847   const int size = parameters->target().get_size();
2848 #else
2849   const int size = 32;
2850 #endif
2851
2852   // The contents of the .note section.
2853   size_t namesz = strlen(name) + 1;
2854   size_t aligned_namesz = align_address(namesz, size / 8);
2855   size_t aligned_descsz = align_address(descsz, size / 8);
2856
2857   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2858
2859   unsigned char* buffer = new unsigned char[notehdrsz];
2860   memset(buffer, 0, notehdrsz);
2861
2862   bool is_big_endian = parameters->target().is_big_endian();
2863
2864   if (size == 32)
2865     {
2866       if (!is_big_endian)
2867         {
2868           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2869           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2870           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2871         }
2872       else
2873         {
2874           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2875           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2876           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2877         }
2878     }
2879   else if (size == 64)
2880     {
2881       if (!is_big_endian)
2882         {
2883           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2884           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2885           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2886         }
2887       else
2888         {
2889           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2890           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2891           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2892         }
2893     }
2894   else
2895     gold_unreachable();
2896
2897   memcpy(buffer + 3 * (size / 8), name, namesz);
2898
2899   elfcpp::Elf_Xword flags = 0;
2900   Output_section_order order = ORDER_INVALID;
2901   if (allocate)
2902     {
2903       flags = elfcpp::SHF_ALLOC;
2904       order = ORDER_RO_NOTE;
2905     }
2906   Output_section* os = this->choose_output_section(NULL, section_name,
2907                                                    elfcpp::SHT_NOTE,
2908                                                    flags, false, order, false);
2909   if (os == NULL)
2910     return NULL;
2911
2912   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2913                                                            size / 8,
2914                                                            "** note header");
2915   os->add_output_section_data(posd);
2916
2917   *trailing_padding = aligned_descsz - descsz;
2918
2919   return os;
2920 }
2921
2922 // For an executable or shared library, create a note to record the
2923 // version of gold used to create the binary.
2924
2925 void
2926 Layout::create_gold_note()
2927 {
2928   if (parameters->options().relocatable()
2929       || parameters->incremental_update())
2930     return;
2931
2932   std::string desc = std::string("gold ") + gold::get_version_string();
2933
2934   size_t trailing_padding;
2935   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2936                                          ".note.gnu.gold-version", desc.size(),
2937                                          false, &trailing_padding);
2938   if (os == NULL)
2939     return;
2940
2941   Output_section_data* posd = new Output_data_const(desc, 4);
2942   os->add_output_section_data(posd);
2943
2944   if (trailing_padding > 0)
2945     {
2946       posd = new Output_data_zero_fill(trailing_padding, 0);
2947       os->add_output_section_data(posd);
2948     }
2949 }
2950
2951 // Record whether the stack should be executable.  This can be set
2952 // from the command line using the -z execstack or -z noexecstack
2953 // options.  Otherwise, if any input file has a .note.GNU-stack
2954 // section with the SHF_EXECINSTR flag set, the stack should be
2955 // executable.  Otherwise, if at least one input file a
2956 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2957 // section, we use the target default for whether the stack should be
2958 // executable.  Otherwise, we don't generate a stack note.  When
2959 // generating a object file, we create a .note.GNU-stack section with
2960 // the appropriate marking.  When generating an executable or shared
2961 // library, we create a PT_GNU_STACK segment.
2962
2963 void
2964 Layout::create_executable_stack_info()
2965 {
2966   bool is_stack_executable;
2967   if (parameters->options().is_execstack_set())
2968     is_stack_executable = parameters->options().is_stack_executable();
2969   else if (!this->input_with_gnu_stack_note_)
2970     return;
2971   else
2972     {
2973       if (this->input_requires_executable_stack_)
2974         is_stack_executable = true;
2975       else if (this->input_without_gnu_stack_note_)
2976         is_stack_executable =
2977           parameters->target().is_default_stack_executable();
2978       else
2979         is_stack_executable = false;
2980     }
2981
2982   if (parameters->options().relocatable())
2983     {
2984       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2985       elfcpp::Elf_Xword flags = 0;
2986       if (is_stack_executable)
2987         flags |= elfcpp::SHF_EXECINSTR;
2988       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2989                                 ORDER_INVALID, false);
2990     }
2991   else
2992     {
2993       if (this->script_options_->saw_phdrs_clause())
2994         return;
2995       int flags = elfcpp::PF_R | elfcpp::PF_W;
2996       if (is_stack_executable)
2997         flags |= elfcpp::PF_X;
2998       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2999     }
3000 }
3001
3002 // If --build-id was used, set up the build ID note.
3003
3004 void
3005 Layout::create_build_id()
3006 {
3007   if (!parameters->options().user_set_build_id())
3008     return;
3009
3010   const char* style = parameters->options().build_id();
3011   if (strcmp(style, "none") == 0)
3012     return;
3013
3014   // Set DESCSZ to the size of the note descriptor.  When possible,
3015   // set DESC to the note descriptor contents.
3016   size_t descsz;
3017   std::string desc;
3018   if (strcmp(style, "md5") == 0)
3019     descsz = 128 / 8;
3020   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3021     descsz = 160 / 8;
3022   else if (strcmp(style, "uuid") == 0)
3023     {
3024       const size_t uuidsz = 128 / 8;
3025
3026       char buffer[uuidsz];
3027       memset(buffer, 0, uuidsz);
3028
3029       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3030       if (descriptor < 0)
3031         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3032                    strerror(errno));
3033       else
3034         {
3035           ssize_t got = ::read(descriptor, buffer, uuidsz);
3036           release_descriptor(descriptor, true);
3037           if (got < 0)
3038             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3039           else if (static_cast<size_t>(got) != uuidsz)
3040             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3041                        uuidsz, got);
3042         }
3043
3044       desc.assign(buffer, uuidsz);
3045       descsz = uuidsz;
3046     }
3047   else if (strncmp(style, "0x", 2) == 0)
3048     {
3049       hex_init();
3050       const char* p = style + 2;
3051       while (*p != '\0')
3052         {
3053           if (hex_p(p[0]) && hex_p(p[1]))
3054             {
3055               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3056               desc += c;
3057               p += 2;
3058             }
3059           else if (*p == '-' || *p == ':')
3060             ++p;
3061           else
3062             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3063                        style);
3064         }
3065       descsz = desc.size();
3066     }
3067   else
3068     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3069
3070   // Create the note.
3071   size_t trailing_padding;
3072   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3073                                          ".note.gnu.build-id", descsz, true,
3074                                          &trailing_padding);
3075   if (os == NULL)
3076     return;
3077
3078   if (!desc.empty())
3079     {
3080       // We know the value already, so we fill it in now.
3081       gold_assert(desc.size() == descsz);
3082
3083       Output_section_data* posd = new Output_data_const(desc, 4);
3084       os->add_output_section_data(posd);
3085
3086       if (trailing_padding != 0)
3087         {
3088           posd = new Output_data_zero_fill(trailing_padding, 0);
3089           os->add_output_section_data(posd);
3090         }
3091     }
3092   else
3093     {
3094       // We need to compute a checksum after we have completed the
3095       // link.
3096       gold_assert(trailing_padding == 0);
3097       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3098       os->add_output_section_data(this->build_id_note_);
3099     }
3100 }
3101
3102 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3103 // field of the former should point to the latter.  I'm not sure who
3104 // started this, but the GNU linker does it, and some tools depend
3105 // upon it.
3106
3107 void
3108 Layout::link_stabs_sections()
3109 {
3110   if (!this->have_stabstr_section_)
3111     return;
3112
3113   for (Section_list::iterator p = this->section_list_.begin();
3114        p != this->section_list_.end();
3115        ++p)
3116     {
3117       if ((*p)->type() != elfcpp::SHT_STRTAB)
3118         continue;
3119
3120       const char* name = (*p)->name();
3121       if (strncmp(name, ".stab", 5) != 0)
3122         continue;
3123
3124       size_t len = strlen(name);
3125       if (strcmp(name + len - 3, "str") != 0)
3126         continue;
3127
3128       std::string stab_name(name, len - 3);
3129       Output_section* stab_sec;
3130       stab_sec = this->find_output_section(stab_name.c_str());
3131       if (stab_sec != NULL)
3132         stab_sec->set_link_section(*p);
3133     }
3134 }
3135
3136 // Create .gnu_incremental_inputs and related sections needed
3137 // for the next run of incremental linking to check what has changed.
3138
3139 void
3140 Layout::create_incremental_info_sections(Symbol_table* symtab)
3141 {
3142   Incremental_inputs* incr = this->incremental_inputs_;
3143
3144   gold_assert(incr != NULL);
3145
3146   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3147   incr->create_data_sections(symtab);
3148
3149   // Add the .gnu_incremental_inputs section.
3150   const char* incremental_inputs_name =
3151     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3152   Output_section* incremental_inputs_os =
3153     this->make_output_section(incremental_inputs_name,
3154                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3155                               ORDER_INVALID, false);
3156   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3157
3158   // Add the .gnu_incremental_symtab section.
3159   const char* incremental_symtab_name =
3160     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3161   Output_section* incremental_symtab_os =
3162     this->make_output_section(incremental_symtab_name,
3163                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3164                               ORDER_INVALID, false);
3165   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3166   incremental_symtab_os->set_entsize(4);
3167
3168   // Add the .gnu_incremental_relocs section.
3169   const char* incremental_relocs_name =
3170     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3171   Output_section* incremental_relocs_os =
3172     this->make_output_section(incremental_relocs_name,
3173                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3174                               ORDER_INVALID, false);
3175   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3176   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3177
3178   // Add the .gnu_incremental_got_plt section.
3179   const char* incremental_got_plt_name =
3180     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3181   Output_section* incremental_got_plt_os =
3182     this->make_output_section(incremental_got_plt_name,
3183                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3184                               ORDER_INVALID, false);
3185   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3186
3187   // Add the .gnu_incremental_strtab section.
3188   const char* incremental_strtab_name =
3189     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3190   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3191                                                         elfcpp::SHT_STRTAB, 0,
3192                                                         ORDER_INVALID, false);
3193   Output_data_strtab* strtab_data =
3194       new Output_data_strtab(incr->get_stringpool());
3195   incremental_strtab_os->add_output_section_data(strtab_data);
3196
3197   incremental_inputs_os->set_after_input_sections();
3198   incremental_symtab_os->set_after_input_sections();
3199   incremental_relocs_os->set_after_input_sections();
3200   incremental_got_plt_os->set_after_input_sections();
3201
3202   incremental_inputs_os->set_link_section(incremental_strtab_os);
3203   incremental_symtab_os->set_link_section(incremental_inputs_os);
3204   incremental_relocs_os->set_link_section(incremental_inputs_os);
3205   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3206 }
3207
3208 // Return whether SEG1 should be before SEG2 in the output file.  This
3209 // is based entirely on the segment type and flags.  When this is
3210 // called the segment addresses have normally not yet been set.
3211
3212 bool
3213 Layout::segment_precedes(const Output_segment* seg1,
3214                          const Output_segment* seg2)
3215 {
3216   elfcpp::Elf_Word type1 = seg1->type();
3217   elfcpp::Elf_Word type2 = seg2->type();
3218
3219   // The single PT_PHDR segment is required to precede any loadable
3220   // segment.  We simply make it always first.
3221   if (type1 == elfcpp::PT_PHDR)
3222     {
3223       gold_assert(type2 != elfcpp::PT_PHDR);
3224       return true;
3225     }
3226   if (type2 == elfcpp::PT_PHDR)
3227     return false;
3228
3229   // The single PT_INTERP segment is required to precede any loadable
3230   // segment.  We simply make it always second.
3231   if (type1 == elfcpp::PT_INTERP)
3232     {
3233       gold_assert(type2 != elfcpp::PT_INTERP);
3234       return true;
3235     }
3236   if (type2 == elfcpp::PT_INTERP)
3237     return false;
3238
3239   // We then put PT_LOAD segments before any other segments.
3240   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3241     return true;
3242   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3243     return false;
3244
3245   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3246   // segment, because that is where the dynamic linker expects to find
3247   // it (this is just for efficiency; other positions would also work
3248   // correctly).
3249   if (type1 == elfcpp::PT_TLS
3250       && type2 != elfcpp::PT_TLS
3251       && type2 != elfcpp::PT_GNU_RELRO)
3252     return false;
3253   if (type2 == elfcpp::PT_TLS
3254       && type1 != elfcpp::PT_TLS
3255       && type1 != elfcpp::PT_GNU_RELRO)
3256     return true;
3257
3258   // We put the PT_GNU_RELRO segment last, because that is where the
3259   // dynamic linker expects to find it (as with PT_TLS, this is just
3260   // for efficiency).
3261   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3262     return false;
3263   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3264     return true;
3265
3266   const elfcpp::Elf_Word flags1 = seg1->flags();
3267   const elfcpp::Elf_Word flags2 = seg2->flags();
3268
3269   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3270   // by the numeric segment type and flags values.  There should not
3271   // be more than one segment with the same type and flags, except
3272   // when a linker script specifies such.
3273   if (type1 != elfcpp::PT_LOAD)
3274     {
3275       if (type1 != type2)
3276         return type1 < type2;
3277       gold_assert(flags1 != flags2
3278                   || this->script_options_->saw_phdrs_clause());
3279       return flags1 < flags2;
3280     }
3281
3282   // If the addresses are set already, sort by load address.
3283   if (seg1->are_addresses_set())
3284     {
3285       if (!seg2->are_addresses_set())
3286         return true;
3287
3288       unsigned int section_count1 = seg1->output_section_count();
3289       unsigned int section_count2 = seg2->output_section_count();
3290       if (section_count1 == 0 && section_count2 > 0)
3291         return true;
3292       if (section_count1 > 0 && section_count2 == 0)
3293         return false;
3294
3295       uint64_t paddr1 = (seg1->are_addresses_set()
3296                          ? seg1->paddr()
3297                          : seg1->first_section_load_address());
3298       uint64_t paddr2 = (seg2->are_addresses_set()
3299                          ? seg2->paddr()
3300                          : seg2->first_section_load_address());
3301
3302       if (paddr1 != paddr2)
3303         return paddr1 < paddr2;
3304     }
3305   else if (seg2->are_addresses_set())
3306     return false;
3307
3308   // A segment which holds large data comes after a segment which does
3309   // not hold large data.
3310   if (seg1->is_large_data_segment())
3311     {
3312       if (!seg2->is_large_data_segment())
3313         return false;
3314     }
3315   else if (seg2->is_large_data_segment())
3316     return true;
3317
3318   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3319   // segments come before writable segments.  Then writable segments
3320   // with data come before writable segments without data.  Then
3321   // executable segments come before non-executable segments.  Then
3322   // the unlikely case of a non-readable segment comes before the
3323   // normal case of a readable segment.  If there are multiple
3324   // segments with the same type and flags, we require that the
3325   // address be set, and we sort by virtual address and then physical
3326   // address.
3327   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3328     return (flags1 & elfcpp::PF_W) == 0;
3329   if ((flags1 & elfcpp::PF_W) != 0
3330       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3331     return seg1->has_any_data_sections();
3332   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3333     return (flags1 & elfcpp::PF_X) != 0;
3334   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3335     return (flags1 & elfcpp::PF_R) == 0;
3336
3337   // We shouldn't get here--we shouldn't create segments which we
3338   // can't distinguish.  Unless of course we are using a weird linker
3339   // script or overlapping --section-start options.  We could also get
3340   // here if plugins want unique segments for subsets of sections.
3341   gold_assert(this->script_options_->saw_phdrs_clause()
3342               || parameters->options().any_section_start()
3343               || this->is_unique_segment_for_sections_specified());
3344   return false;
3345 }
3346
3347 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3348
3349 static off_t
3350 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3351 {
3352   uint64_t unsigned_off = off;
3353   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3354                           | (addr & (abi_pagesize - 1)));
3355   if (aligned_off < unsigned_off)
3356     aligned_off += abi_pagesize;
3357   return aligned_off;
3358 }
3359
3360 // On targets where the text segment contains only executable code,
3361 // a non-executable segment is never the text segment.
3362
3363 static inline bool
3364 is_text_segment(const Target* target, const Output_segment* seg)
3365 {
3366   elfcpp::Elf_Xword flags = seg->flags();
3367   if ((flags & elfcpp::PF_W) != 0)
3368     return false;
3369   if ((flags & elfcpp::PF_X) == 0)
3370     return !target->isolate_execinstr();
3371   return true;
3372 }
3373
3374 // Set the file offsets of all the segments, and all the sections they
3375 // contain.  They have all been created.  LOAD_SEG must be be laid out
3376 // first.  Return the offset of the data to follow.
3377
3378 off_t
3379 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3380                             unsigned int* pshndx)
3381 {
3382   // Sort them into the final order.  We use a stable sort so that we
3383   // don't randomize the order of indistinguishable segments created
3384   // by linker scripts.
3385   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3386                    Layout::Compare_segments(this));
3387
3388   // Find the PT_LOAD segments, and set their addresses and offsets
3389   // and their section's addresses and offsets.
3390   uint64_t start_addr;
3391   if (parameters->options().user_set_Ttext())
3392     start_addr = parameters->options().Ttext();
3393   else if (parameters->options().output_is_position_independent())
3394     start_addr = 0;
3395   else
3396     start_addr = target->default_text_segment_address();
3397
3398   uint64_t addr = start_addr;
3399   off_t off = 0;
3400
3401   // If LOAD_SEG is NULL, then the file header and segment headers
3402   // will not be loadable.  But they still need to be at offset 0 in
3403   // the file.  Set their offsets now.
3404   if (load_seg == NULL)
3405     {
3406       for (Data_list::iterator p = this->special_output_list_.begin();
3407            p != this->special_output_list_.end();
3408            ++p)
3409         {
3410           off = align_address(off, (*p)->addralign());
3411           (*p)->set_address_and_file_offset(0, off);
3412           off += (*p)->data_size();
3413         }
3414     }
3415
3416   unsigned int increase_relro = this->increase_relro_;
3417   if (this->script_options_->saw_sections_clause())
3418     increase_relro = 0;
3419
3420   const bool check_sections = parameters->options().check_sections();
3421   Output_segment* last_load_segment = NULL;
3422
3423   unsigned int shndx_begin = *pshndx;
3424   unsigned int shndx_load_seg = *pshndx;
3425
3426   for (Segment_list::iterator p = this->segment_list_.begin();
3427        p != this->segment_list_.end();
3428        ++p)
3429     {
3430       if ((*p)->type() == elfcpp::PT_LOAD)
3431         {
3432           if (target->isolate_execinstr())
3433             {
3434               // When we hit the segment that should contain the
3435               // file headers, reset the file offset so we place
3436               // it and subsequent segments appropriately.
3437               // We'll fix up the preceding segments below.
3438               if (load_seg == *p)
3439                 {
3440                   if (off == 0)
3441                     load_seg = NULL;
3442                   else
3443                     {
3444                       off = 0;
3445                       shndx_load_seg = *pshndx;
3446                     }
3447                 }
3448             }
3449           else
3450             {
3451               // Verify that the file headers fall into the first segment.
3452               if (load_seg != NULL && load_seg != *p)
3453                 gold_unreachable();
3454               load_seg = NULL;
3455             }
3456
3457           bool are_addresses_set = (*p)->are_addresses_set();
3458           if (are_addresses_set)
3459             {
3460               // When it comes to setting file offsets, we care about
3461               // the physical address.
3462               addr = (*p)->paddr();
3463             }
3464           else if (parameters->options().user_set_Ttext()
3465                    && (parameters->options().omagic()
3466                        || is_text_segment(target, *p)))
3467             {
3468               are_addresses_set = true;
3469             }
3470           else if (parameters->options().user_set_Trodata_segment()
3471                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3472             {
3473               addr = parameters->options().Trodata_segment();
3474               are_addresses_set = true;
3475             }
3476           else if (parameters->options().user_set_Tdata()
3477                    && ((*p)->flags() & elfcpp::PF_W) != 0
3478                    && (!parameters->options().user_set_Tbss()
3479                        || (*p)->has_any_data_sections()))
3480             {
3481               addr = parameters->options().Tdata();
3482               are_addresses_set = true;
3483             }
3484           else if (parameters->options().user_set_Tbss()
3485                    && ((*p)->flags() & elfcpp::PF_W) != 0
3486                    && !(*p)->has_any_data_sections())
3487             {
3488               addr = parameters->options().Tbss();
3489               are_addresses_set = true;
3490             }
3491
3492           uint64_t orig_addr = addr;
3493           uint64_t orig_off = off;
3494
3495           uint64_t aligned_addr = 0;
3496           uint64_t abi_pagesize = target->abi_pagesize();
3497           uint64_t common_pagesize = target->common_pagesize();
3498
3499           if (!parameters->options().nmagic()
3500               && !parameters->options().omagic())
3501             (*p)->set_minimum_p_align(abi_pagesize);
3502
3503           if (!are_addresses_set)
3504             {
3505               // Skip the address forward one page, maintaining the same
3506               // position within the page.  This lets us store both segments
3507               // overlapping on a single page in the file, but the loader will
3508               // put them on different pages in memory. We will revisit this
3509               // decision once we know the size of the segment.
3510
3511               addr = align_address(addr, (*p)->maximum_alignment());
3512               aligned_addr = addr;
3513
3514               if (load_seg == *p)
3515                 {
3516                   // This is the segment that will contain the file
3517                   // headers, so its offset will have to be exactly zero.
3518                   gold_assert(orig_off == 0);
3519
3520                   // If the target wants a fixed minimum distance from the
3521                   // text segment to the read-only segment, move up now.
3522                   uint64_t min_addr =
3523                     start_addr + (parameters->options().user_set_rosegment_gap()
3524                                   ? parameters->options().rosegment_gap()
3525                                   : target->rosegment_gap());
3526                   if (addr < min_addr)
3527                     addr = min_addr;
3528
3529                   // But this is not the first segment!  To make its
3530                   // address congruent with its offset, that address better
3531                   // be aligned to the ABI-mandated page size.
3532                   addr = align_address(addr, abi_pagesize);
3533                   aligned_addr = addr;
3534                 }
3535               else
3536                 {
3537                   if ((addr & (abi_pagesize - 1)) != 0)
3538                     addr = addr + abi_pagesize;
3539
3540                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3541                 }
3542             }
3543
3544           if (!parameters->options().nmagic()
3545               && !parameters->options().omagic())
3546             {
3547               // Here we are also taking care of the case when
3548               // the maximum segment alignment is larger than the page size.
3549               off = align_file_offset(off, addr,
3550                                       std::max(abi_pagesize,
3551                                                (*p)->maximum_alignment()));
3552             }
3553           else
3554             {
3555               // This is -N or -n with a section script which prevents
3556               // us from using a load segment.  We need to ensure that
3557               // the file offset is aligned to the alignment of the
3558               // segment.  This is because the linker script
3559               // implicitly assumed a zero offset.  If we don't align
3560               // here, then the alignment of the sections in the
3561               // linker script may not match the alignment of the
3562               // sections in the set_section_addresses call below,
3563               // causing an error about dot moving backward.
3564               off = align_address(off, (*p)->maximum_alignment());
3565             }
3566
3567           unsigned int shndx_hold = *pshndx;
3568           bool has_relro = false;
3569           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3570                                                           false, addr,
3571                                                           &increase_relro,
3572                                                           &has_relro,
3573                                                           &off, pshndx);
3574
3575           // Now that we know the size of this segment, we may be able
3576           // to save a page in memory, at the cost of wasting some
3577           // file space, by instead aligning to the start of a new
3578           // page.  Here we use the real machine page size rather than
3579           // the ABI mandated page size.  If the segment has been
3580           // aligned so that the relro data ends at a page boundary,
3581           // we do not try to realign it.
3582
3583           if (!are_addresses_set
3584               && !has_relro
3585               && aligned_addr != addr
3586               && !parameters->incremental())
3587             {
3588               uint64_t first_off = (common_pagesize
3589                                     - (aligned_addr
3590                                        & (common_pagesize - 1)));
3591               uint64_t last_off = new_addr & (common_pagesize - 1);
3592               if (first_off > 0
3593                   && last_off > 0
3594                   && ((aligned_addr & ~ (common_pagesize - 1))
3595                       != (new_addr & ~ (common_pagesize - 1)))
3596                   && first_off + last_off <= common_pagesize)
3597                 {
3598                   *pshndx = shndx_hold;
3599                   addr = align_address(aligned_addr, common_pagesize);
3600                   addr = align_address(addr, (*p)->maximum_alignment());
3601                   if ((addr & (abi_pagesize - 1)) != 0)
3602                     addr = addr + abi_pagesize;
3603                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3604                   off = align_file_offset(off, addr, abi_pagesize);
3605
3606                   increase_relro = this->increase_relro_;
3607                   if (this->script_options_->saw_sections_clause())
3608                     increase_relro = 0;
3609                   has_relro = false;
3610
3611                   new_addr = (*p)->set_section_addresses(target, this,
3612                                                          true, addr,
3613                                                          &increase_relro,
3614                                                          &has_relro,
3615                                                          &off, pshndx);
3616                 }
3617             }
3618
3619           addr = new_addr;
3620
3621           // Implement --check-sections.  We know that the segments
3622           // are sorted by LMA.
3623           if (check_sections && last_load_segment != NULL)
3624             {
3625               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3626               if (last_load_segment->paddr() + last_load_segment->memsz()
3627                   > (*p)->paddr())
3628                 {
3629                   unsigned long long lb1 = last_load_segment->paddr();
3630                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3631                   unsigned long long lb2 = (*p)->paddr();
3632                   unsigned long long le2 = lb2 + (*p)->memsz();
3633                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3634                                "[0x%llx -> 0x%llx]"),
3635                              lb1, le1, lb2, le2);
3636                 }
3637             }
3638           last_load_segment = *p;
3639         }
3640     }
3641
3642   if (load_seg != NULL && target->isolate_execinstr())
3643     {
3644       // Process the early segments again, setting their file offsets
3645       // so they land after the segments starting at LOAD_SEG.
3646       off = align_file_offset(off, 0, target->abi_pagesize());
3647
3648       this->reset_relax_output();
3649
3650       for (Segment_list::iterator p = this->segment_list_.begin();
3651            *p != load_seg;
3652            ++p)
3653         {
3654           if ((*p)->type() == elfcpp::PT_LOAD)
3655             {
3656               // We repeat the whole job of assigning addresses and
3657               // offsets, but we really only want to change the offsets and
3658               // must ensure that the addresses all come out the same as
3659               // they did the first time through.
3660               bool has_relro = false;
3661               const uint64_t old_addr = (*p)->vaddr();
3662               const uint64_t old_end = old_addr + (*p)->memsz();
3663               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3664                                                               true, old_addr,
3665                                                               &increase_relro,
3666                                                               &has_relro,
3667                                                               &off,
3668                                                               &shndx_begin);
3669               gold_assert(new_addr == old_end);
3670             }
3671         }
3672
3673       gold_assert(shndx_begin == shndx_load_seg);
3674     }
3675
3676   // Handle the non-PT_LOAD segments, setting their offsets from their
3677   // section's offsets.
3678   for (Segment_list::iterator p = this->segment_list_.begin();
3679        p != this->segment_list_.end();
3680        ++p)
3681     {
3682       if ((*p)->type() != elfcpp::PT_LOAD)
3683         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3684                          ? increase_relro
3685                          : 0);
3686     }
3687
3688   // Set the TLS offsets for each section in the PT_TLS segment.
3689   if (this->tls_segment_ != NULL)
3690     this->tls_segment_->set_tls_offsets();
3691
3692   return off;
3693 }
3694
3695 // Set the offsets of all the allocated sections when doing a
3696 // relocatable link.  This does the same jobs as set_segment_offsets,
3697 // only for a relocatable link.
3698
3699 off_t
3700 Layout::set_relocatable_section_offsets(Output_data* file_header,
3701                                         unsigned int* pshndx)
3702 {
3703   off_t off = 0;
3704
3705   file_header->set_address_and_file_offset(0, 0);
3706   off += file_header->data_size();
3707
3708   for (Section_list::iterator p = this->section_list_.begin();
3709        p != this->section_list_.end();
3710        ++p)
3711     {
3712       // We skip unallocated sections here, except that group sections
3713       // have to come first.
3714       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3715           && (*p)->type() != elfcpp::SHT_GROUP)
3716         continue;
3717
3718       off = align_address(off, (*p)->addralign());
3719
3720       // The linker script might have set the address.
3721       if (!(*p)->is_address_valid())
3722         (*p)->set_address(0);
3723       (*p)->set_file_offset(off);
3724       (*p)->finalize_data_size();
3725       if ((*p)->type() != elfcpp::SHT_NOBITS)
3726         off += (*p)->data_size();
3727
3728       (*p)->set_out_shndx(*pshndx);
3729       ++*pshndx;
3730     }
3731
3732   return off;
3733 }
3734
3735 // Set the file offset of all the sections not associated with a
3736 // segment.
3737
3738 off_t
3739 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3740 {
3741   off_t startoff = off;
3742   off_t maxoff = off;
3743
3744   for (Section_list::iterator p = this->unattached_section_list_.begin();
3745        p != this->unattached_section_list_.end();
3746        ++p)
3747     {
3748       // The symtab section is handled in create_symtab_sections.
3749       if (*p == this->symtab_section_)
3750         continue;
3751
3752       // If we've already set the data size, don't set it again.
3753       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3754         continue;
3755
3756       if (pass == BEFORE_INPUT_SECTIONS_PASS
3757           && (*p)->requires_postprocessing())
3758         {
3759           (*p)->create_postprocessing_buffer();
3760           this->any_postprocessing_sections_ = true;
3761         }
3762
3763       if (pass == BEFORE_INPUT_SECTIONS_PASS
3764           && (*p)->after_input_sections())
3765         continue;
3766       else if (pass == POSTPROCESSING_SECTIONS_PASS
3767                && (!(*p)->after_input_sections()
3768                    || (*p)->type() == elfcpp::SHT_STRTAB))
3769         continue;
3770       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3771                && (!(*p)->after_input_sections()
3772                    || (*p)->type() != elfcpp::SHT_STRTAB))
3773         continue;
3774
3775       if (!parameters->incremental_update())
3776         {
3777           off = align_address(off, (*p)->addralign());
3778           (*p)->set_file_offset(off);
3779           (*p)->finalize_data_size();
3780         }
3781       else
3782         {
3783           // Incremental update: allocate file space from free list.
3784           (*p)->pre_finalize_data_size();
3785           off_t current_size = (*p)->current_data_size();
3786           off = this->allocate(current_size, (*p)->addralign(), startoff);
3787           if (off == -1)
3788             {
3789               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3790                 this->free_list_.dump();
3791               gold_assert((*p)->output_section() != NULL);
3792               gold_fallback(_("out of patch space for section %s; "
3793                               "relink with --incremental-full"),
3794                             (*p)->output_section()->name());
3795             }
3796           (*p)->set_file_offset(off);
3797           (*p)->finalize_data_size();
3798           if ((*p)->data_size() > current_size)
3799             {
3800               gold_assert((*p)->output_section() != NULL);
3801               gold_fallback(_("%s: section changed size; "
3802                               "relink with --incremental-full"),
3803                             (*p)->output_section()->name());
3804             }
3805           gold_debug(DEBUG_INCREMENTAL,
3806                      "set_section_offsets: %08lx %08lx %s",
3807                      static_cast<long>(off),
3808                      static_cast<long>((*p)->data_size()),
3809                      ((*p)->output_section() != NULL
3810                       ? (*p)->output_section()->name() : "(special)"));
3811         }
3812
3813       off += (*p)->data_size();
3814       if (off > maxoff)
3815         maxoff = off;
3816
3817       // At this point the name must be set.
3818       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3819         this->namepool_.add((*p)->name(), false, NULL);
3820     }
3821   return maxoff;
3822 }
3823
3824 // Set the section indexes of all the sections not associated with a
3825 // segment.
3826
3827 unsigned int
3828 Layout::set_section_indexes(unsigned int shndx)
3829 {
3830   for (Section_list::iterator p = this->unattached_section_list_.begin();
3831        p != this->unattached_section_list_.end();
3832        ++p)
3833     {
3834       if (!(*p)->has_out_shndx())
3835         {
3836           (*p)->set_out_shndx(shndx);
3837           ++shndx;
3838         }
3839     }
3840   return shndx;
3841 }
3842
3843 // Set the section addresses according to the linker script.  This is
3844 // only called when we see a SECTIONS clause.  This returns the
3845 // program segment which should hold the file header and segment
3846 // headers, if any.  It will return NULL if they should not be in a
3847 // segment.
3848
3849 Output_segment*
3850 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3851 {
3852   Script_sections* ss = this->script_options_->script_sections();
3853   gold_assert(ss->saw_sections_clause());
3854   return this->script_options_->set_section_addresses(symtab, this);
3855 }
3856
3857 // Place the orphan sections in the linker script.
3858
3859 void
3860 Layout::place_orphan_sections_in_script()
3861 {
3862   Script_sections* ss = this->script_options_->script_sections();
3863   gold_assert(ss->saw_sections_clause());
3864
3865   // Place each orphaned output section in the script.
3866   for (Section_list::iterator p = this->section_list_.begin();
3867        p != this->section_list_.end();
3868        ++p)
3869     {
3870       if (!(*p)->found_in_sections_clause())
3871         ss->place_orphan(*p);
3872     }
3873 }
3874
3875 // Count the local symbols in the regular symbol table and the dynamic
3876 // symbol table, and build the respective string pools.
3877
3878 void
3879 Layout::count_local_symbols(const Task* task,
3880                             const Input_objects* input_objects)
3881 {
3882   // First, figure out an upper bound on the number of symbols we'll
3883   // be inserting into each pool.  This helps us create the pools with
3884   // the right size, to avoid unnecessary hashtable resizing.
3885   unsigned int symbol_count = 0;
3886   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3887        p != input_objects->relobj_end();
3888        ++p)
3889     symbol_count += (*p)->local_symbol_count();
3890
3891   // Go from "upper bound" to "estimate."  We overcount for two
3892   // reasons: we double-count symbols that occur in more than one
3893   // object file, and we count symbols that are dropped from the
3894   // output.  Add it all together and assume we overcount by 100%.
3895   symbol_count /= 2;
3896
3897   // We assume all symbols will go into both the sympool and dynpool.
3898   this->sympool_.reserve(symbol_count);
3899   this->dynpool_.reserve(symbol_count);
3900
3901   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3902        p != input_objects->relobj_end();
3903        ++p)
3904     {
3905       Task_lock_obj<Object> tlo(task, *p);
3906       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3907     }
3908 }
3909
3910 // Create the symbol table sections.  Here we also set the final
3911 // values of the symbols.  At this point all the loadable sections are
3912 // fully laid out.  SHNUM is the number of sections so far.
3913
3914 void
3915 Layout::create_symtab_sections(const Input_objects* input_objects,
3916                                Symbol_table* symtab,
3917                                unsigned int shnum,
3918                                off_t* poff)
3919 {
3920   int symsize;
3921   unsigned int align;
3922   if (parameters->target().get_size() == 32)
3923     {
3924       symsize = elfcpp::Elf_sizes<32>::sym_size;
3925       align = 4;
3926     }
3927   else if (parameters->target().get_size() == 64)
3928     {
3929       symsize = elfcpp::Elf_sizes<64>::sym_size;
3930       align = 8;
3931     }
3932   else
3933     gold_unreachable();
3934
3935   // Compute file offsets relative to the start of the symtab section.
3936   off_t off = 0;
3937
3938   // Save space for the dummy symbol at the start of the section.  We
3939   // never bother to write this out--it will just be left as zero.
3940   off += symsize;
3941   unsigned int local_symbol_index = 1;
3942
3943   // Add STT_SECTION symbols for each Output section which needs one.
3944   for (Section_list::iterator p = this->section_list_.begin();
3945        p != this->section_list_.end();
3946        ++p)
3947     {
3948       if (!(*p)->needs_symtab_index())
3949         (*p)->set_symtab_index(-1U);
3950       else
3951         {
3952           (*p)->set_symtab_index(local_symbol_index);
3953           ++local_symbol_index;
3954           off += symsize;
3955         }
3956     }
3957
3958   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3959        p != input_objects->relobj_end();
3960        ++p)
3961     {
3962       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3963                                                         off, symtab);
3964       off += (index - local_symbol_index) * symsize;
3965       local_symbol_index = index;
3966     }
3967
3968   unsigned int local_symcount = local_symbol_index;
3969   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3970
3971   off_t dynoff;
3972   size_t dyn_global_index;
3973   size_t dyncount;
3974   if (this->dynsym_section_ == NULL)
3975     {
3976       dynoff = 0;
3977       dyn_global_index = 0;
3978       dyncount = 0;
3979     }
3980   else
3981     {
3982       dyn_global_index = this->dynsym_section_->info();
3983       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3984       dynoff = this->dynsym_section_->offset() + locsize;
3985       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3986       gold_assert(static_cast<off_t>(dyncount * symsize)
3987                   == this->dynsym_section_->data_size() - locsize);
3988     }
3989
3990   off_t global_off = off;
3991   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3992                          &this->sympool_, &local_symcount);
3993
3994   if (!parameters->options().strip_all())
3995     {
3996       this->sympool_.set_string_offsets();
3997
3998       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3999       Output_section* osymtab = this->make_output_section(symtab_name,
4000                                                           elfcpp::SHT_SYMTAB,
4001                                                           0, ORDER_INVALID,
4002                                                           false);
4003       this->symtab_section_ = osymtab;
4004
4005       Output_section_data* pos = new Output_data_fixed_space(off, align,
4006                                                              "** symtab");
4007       osymtab->add_output_section_data(pos);
4008
4009       // We generate a .symtab_shndx section if we have more than
4010       // SHN_LORESERVE sections.  Technically it is possible that we
4011       // don't need one, because it is possible that there are no
4012       // symbols in any of sections with indexes larger than
4013       // SHN_LORESERVE.  That is probably unusual, though, and it is
4014       // easier to always create one than to compute section indexes
4015       // twice (once here, once when writing out the symbols).
4016       if (shnum >= elfcpp::SHN_LORESERVE)
4017         {
4018           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4019                                                                false, NULL);
4020           Output_section* osymtab_xindex =
4021             this->make_output_section(symtab_xindex_name,
4022                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4023                                       ORDER_INVALID, false);
4024
4025           size_t symcount = off / symsize;
4026           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4027
4028           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4029
4030           osymtab_xindex->set_link_section(osymtab);
4031           osymtab_xindex->set_addralign(4);
4032           osymtab_xindex->set_entsize(4);
4033
4034           osymtab_xindex->set_after_input_sections();
4035
4036           // This tells the driver code to wait until the symbol table
4037           // has written out before writing out the postprocessing
4038           // sections, including the .symtab_shndx section.
4039           this->any_postprocessing_sections_ = true;
4040         }
4041
4042       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4043       Output_section* ostrtab = this->make_output_section(strtab_name,
4044                                                           elfcpp::SHT_STRTAB,
4045                                                           0, ORDER_INVALID,
4046                                                           false);
4047
4048       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4049       ostrtab->add_output_section_data(pstr);
4050
4051       off_t symtab_off;
4052       if (!parameters->incremental_update())
4053         symtab_off = align_address(*poff, align);
4054       else
4055         {
4056           symtab_off = this->allocate(off, align, *poff);
4057           if (off == -1)
4058             gold_fallback(_("out of patch space for symbol table; "
4059                             "relink with --incremental-full"));
4060           gold_debug(DEBUG_INCREMENTAL,
4061                      "create_symtab_sections: %08lx %08lx .symtab",
4062                      static_cast<long>(symtab_off),
4063                      static_cast<long>(off));
4064         }
4065
4066       symtab->set_file_offset(symtab_off + global_off);
4067       osymtab->set_file_offset(symtab_off);
4068       osymtab->finalize_data_size();
4069       osymtab->set_link_section(ostrtab);
4070       osymtab->set_info(local_symcount);
4071       osymtab->set_entsize(symsize);
4072
4073       if (symtab_off + off > *poff)
4074         *poff = symtab_off + off;
4075     }
4076 }
4077
4078 // Create the .shstrtab section, which holds the names of the
4079 // sections.  At the time this is called, we have created all the
4080 // output sections except .shstrtab itself.
4081
4082 Output_section*
4083 Layout::create_shstrtab()
4084 {
4085   // FIXME: We don't need to create a .shstrtab section if we are
4086   // stripping everything.
4087
4088   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4089
4090   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4091                                                  ORDER_INVALID, false);
4092
4093   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4094     {
4095       // We can't write out this section until we've set all the
4096       // section names, and we don't set the names of compressed
4097       // output sections until relocations are complete.  FIXME: With
4098       // the current names we use, this is unnecessary.
4099       os->set_after_input_sections();
4100     }
4101
4102   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4103   os->add_output_section_data(posd);
4104
4105   return os;
4106 }
4107
4108 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4109 // offset.
4110
4111 void
4112 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4113 {
4114   Output_section_headers* oshdrs;
4115   oshdrs = new Output_section_headers(this,
4116                                       &this->segment_list_,
4117                                       &this->section_list_,
4118                                       &this->unattached_section_list_,
4119                                       &this->namepool_,
4120                                       shstrtab_section);
4121   off_t off;
4122   if (!parameters->incremental_update())
4123     off = align_address(*poff, oshdrs->addralign());
4124   else
4125     {
4126       oshdrs->pre_finalize_data_size();
4127       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4128       if (off == -1)
4129           gold_fallback(_("out of patch space for section header table; "
4130                           "relink with --incremental-full"));
4131       gold_debug(DEBUG_INCREMENTAL,
4132                  "create_shdrs: %08lx %08lx (section header table)",
4133                  static_cast<long>(off),
4134                  static_cast<long>(off + oshdrs->data_size()));
4135     }
4136   oshdrs->set_address_and_file_offset(0, off);
4137   off += oshdrs->data_size();
4138   if (off > *poff)
4139     *poff = off;
4140   this->section_headers_ = oshdrs;
4141 }
4142
4143 // Count the allocated sections.
4144
4145 size_t
4146 Layout::allocated_output_section_count() const
4147 {
4148   size_t section_count = 0;
4149   for (Segment_list::const_iterator p = this->segment_list_.begin();
4150        p != this->segment_list_.end();
4151        ++p)
4152     section_count += (*p)->output_section_count();
4153   return section_count;
4154 }
4155
4156 // Create the dynamic symbol table.
4157
4158 void
4159 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4160                               Symbol_table* symtab,
4161                               Output_section** pdynstr,
4162                               unsigned int* plocal_dynamic_count,
4163                               std::vector<Symbol*>* pdynamic_symbols,
4164                               Versions* pversions)
4165 {
4166   // Count all the symbols in the dynamic symbol table, and set the
4167   // dynamic symbol indexes.
4168
4169   // Skip symbol 0, which is always all zeroes.
4170   unsigned int index = 1;
4171
4172   // Add STT_SECTION symbols for each Output section which needs one.
4173   for (Section_list::iterator p = this->section_list_.begin();
4174        p != this->section_list_.end();
4175        ++p)
4176     {
4177       if (!(*p)->needs_dynsym_index())
4178         (*p)->set_dynsym_index(-1U);
4179       else
4180         {
4181           (*p)->set_dynsym_index(index);
4182           ++index;
4183         }
4184     }
4185
4186   // Count the local symbols that need to go in the dynamic symbol table,
4187   // and set the dynamic symbol indexes.
4188   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4189        p != input_objects->relobj_end();
4190        ++p)
4191     {
4192       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4193       index = new_index;
4194     }
4195
4196   unsigned int local_symcount = index;
4197   *plocal_dynamic_count = local_symcount;
4198
4199   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4200                                      &this->dynpool_, pversions);
4201
4202   int symsize;
4203   unsigned int align;
4204   const int size = parameters->target().get_size();
4205   if (size == 32)
4206     {
4207       symsize = elfcpp::Elf_sizes<32>::sym_size;
4208       align = 4;
4209     }
4210   else if (size == 64)
4211     {
4212       symsize = elfcpp::Elf_sizes<64>::sym_size;
4213       align = 8;
4214     }
4215   else
4216     gold_unreachable();
4217
4218   // Create the dynamic symbol table section.
4219
4220   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4221                                                        elfcpp::SHT_DYNSYM,
4222                                                        elfcpp::SHF_ALLOC,
4223                                                        false,
4224                                                        ORDER_DYNAMIC_LINKER,
4225                                                        false);
4226
4227   // Check for NULL as a linker script may discard .dynsym.
4228   if (dynsym != NULL)
4229     {
4230       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4231                                                                align,
4232                                                                "** dynsym");
4233       dynsym->add_output_section_data(odata);
4234
4235       dynsym->set_info(local_symcount);
4236       dynsym->set_entsize(symsize);
4237       dynsym->set_addralign(align);
4238
4239       this->dynsym_section_ = dynsym;
4240     }
4241
4242   Output_data_dynamic* const odyn = this->dynamic_data_;
4243   if (odyn != NULL)
4244     {
4245       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4246       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4247     }
4248
4249   // If there are more than SHN_LORESERVE allocated sections, we
4250   // create a .dynsym_shndx section.  It is possible that we don't
4251   // need one, because it is possible that there are no dynamic
4252   // symbols in any of the sections with indexes larger than
4253   // SHN_LORESERVE.  This is probably unusual, though, and at this
4254   // time we don't know the actual section indexes so it is
4255   // inconvenient to check.
4256   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4257     {
4258       Output_section* dynsym_xindex =
4259         this->choose_output_section(NULL, ".dynsym_shndx",
4260                                     elfcpp::SHT_SYMTAB_SHNDX,
4261                                     elfcpp::SHF_ALLOC,
4262                                     false, ORDER_DYNAMIC_LINKER, false);
4263
4264       if (dynsym_xindex != NULL)
4265         {
4266           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4267
4268           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4269
4270           dynsym_xindex->set_link_section(dynsym);
4271           dynsym_xindex->set_addralign(4);
4272           dynsym_xindex->set_entsize(4);
4273
4274           dynsym_xindex->set_after_input_sections();
4275
4276           // This tells the driver code to wait until the symbol table
4277           // has written out before writing out the postprocessing
4278           // sections, including the .dynsym_shndx section.
4279           this->any_postprocessing_sections_ = true;
4280         }
4281     }
4282
4283   // Create the dynamic string table section.
4284
4285   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4286                                                        elfcpp::SHT_STRTAB,
4287                                                        elfcpp::SHF_ALLOC,
4288                                                        false,
4289                                                        ORDER_DYNAMIC_LINKER,
4290                                                        false);
4291   *pdynstr = dynstr;
4292   if (dynstr != NULL)
4293     {
4294       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4295       dynstr->add_output_section_data(strdata);
4296
4297       if (dynsym != NULL)
4298         dynsym->set_link_section(dynstr);
4299       if (this->dynamic_section_ != NULL)
4300         this->dynamic_section_->set_link_section(dynstr);
4301
4302       if (odyn != NULL)
4303         {
4304           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4305           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4306         }
4307     }
4308
4309   // Create the hash tables.
4310
4311   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4312       || strcmp(parameters->options().hash_style(), "both") == 0)
4313     {
4314       unsigned char* phash;
4315       unsigned int hashlen;
4316       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4317                                     &phash, &hashlen);
4318
4319       Output_section* hashsec =
4320         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4321                                     elfcpp::SHF_ALLOC, false,
4322                                     ORDER_DYNAMIC_LINKER, false);
4323
4324       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4325                                                                    hashlen,
4326                                                                    align,
4327                                                                    "** hash");
4328       if (hashsec != NULL && hashdata != NULL)
4329         hashsec->add_output_section_data(hashdata);
4330
4331       if (hashsec != NULL)
4332         {
4333           if (dynsym != NULL)
4334             hashsec->set_link_section(dynsym);
4335           hashsec->set_entsize(4);
4336         }
4337
4338       if (odyn != NULL)
4339         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4340     }
4341
4342   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4343       || strcmp(parameters->options().hash_style(), "both") == 0)
4344     {
4345       unsigned char* phash;
4346       unsigned int hashlen;
4347       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4348                                     &phash, &hashlen);
4349
4350       Output_section* hashsec =
4351         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4352                                     elfcpp::SHF_ALLOC, false,
4353                                     ORDER_DYNAMIC_LINKER, false);
4354
4355       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4356                                                                    hashlen,
4357                                                                    align,
4358                                                                    "** hash");
4359       if (hashsec != NULL && hashdata != NULL)
4360         hashsec->add_output_section_data(hashdata);
4361
4362       if (hashsec != NULL)
4363         {
4364           if (dynsym != NULL)
4365             hashsec->set_link_section(dynsym);
4366
4367           // For a 64-bit target, the entries in .gnu.hash do not have
4368           // a uniform size, so we only set the entry size for a
4369           // 32-bit target.
4370           if (parameters->target().get_size() == 32)
4371             hashsec->set_entsize(4);
4372
4373           if (odyn != NULL)
4374             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4375         }
4376     }
4377 }
4378
4379 // Assign offsets to each local portion of the dynamic symbol table.
4380
4381 void
4382 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4383 {
4384   Output_section* dynsym = this->dynsym_section_;
4385   if (dynsym == NULL)
4386     return;
4387
4388   off_t off = dynsym->offset();
4389
4390   // Skip the dummy symbol at the start of the section.
4391   off += dynsym->entsize();
4392
4393   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4394        p != input_objects->relobj_end();
4395        ++p)
4396     {
4397       unsigned int count = (*p)->set_local_dynsym_offset(off);
4398       off += count * dynsym->entsize();
4399     }
4400 }
4401
4402 // Create the version sections.
4403
4404 void
4405 Layout::create_version_sections(const Versions* versions,
4406                                 const Symbol_table* symtab,
4407                                 unsigned int local_symcount,
4408                                 const std::vector<Symbol*>& dynamic_symbols,
4409                                 const Output_section* dynstr)
4410 {
4411   if (!versions->any_defs() && !versions->any_needs())
4412     return;
4413
4414   switch (parameters->size_and_endianness())
4415     {
4416 #ifdef HAVE_TARGET_32_LITTLE
4417     case Parameters::TARGET_32_LITTLE:
4418       this->sized_create_version_sections<32, false>(versions, symtab,
4419                                                      local_symcount,
4420                                                      dynamic_symbols, dynstr);
4421       break;
4422 #endif
4423 #ifdef HAVE_TARGET_32_BIG
4424     case Parameters::TARGET_32_BIG:
4425       this->sized_create_version_sections<32, true>(versions, symtab,
4426                                                     local_symcount,
4427                                                     dynamic_symbols, dynstr);
4428       break;
4429 #endif
4430 #ifdef HAVE_TARGET_64_LITTLE
4431     case Parameters::TARGET_64_LITTLE:
4432       this->sized_create_version_sections<64, false>(versions, symtab,
4433                                                      local_symcount,
4434                                                      dynamic_symbols, dynstr);
4435       break;
4436 #endif
4437 #ifdef HAVE_TARGET_64_BIG
4438     case Parameters::TARGET_64_BIG:
4439       this->sized_create_version_sections<64, true>(versions, symtab,
4440                                                     local_symcount,
4441                                                     dynamic_symbols, dynstr);
4442       break;
4443 #endif
4444     default:
4445       gold_unreachable();
4446     }
4447 }
4448
4449 // Create the version sections, sized version.
4450
4451 template<int size, bool big_endian>
4452 void
4453 Layout::sized_create_version_sections(
4454     const Versions* versions,
4455     const Symbol_table* symtab,
4456     unsigned int local_symcount,
4457     const std::vector<Symbol*>& dynamic_symbols,
4458     const Output_section* dynstr)
4459 {
4460   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4461                                                      elfcpp::SHT_GNU_versym,
4462                                                      elfcpp::SHF_ALLOC,
4463                                                      false,
4464                                                      ORDER_DYNAMIC_LINKER,
4465                                                      false);
4466
4467   // Check for NULL since a linker script may discard this section.
4468   if (vsec != NULL)
4469     {
4470       unsigned char* vbuf;
4471       unsigned int vsize;
4472       versions->symbol_section_contents<size, big_endian>(symtab,
4473                                                           &this->dynpool_,
4474                                                           local_symcount,
4475                                                           dynamic_symbols,
4476                                                           &vbuf, &vsize);
4477
4478       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4479                                                                 "** versions");
4480
4481       vsec->add_output_section_data(vdata);
4482       vsec->set_entsize(2);
4483       vsec->set_link_section(this->dynsym_section_);
4484     }
4485
4486   Output_data_dynamic* const odyn = this->dynamic_data_;
4487   if (odyn != NULL && vsec != NULL)
4488     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4489
4490   if (versions->any_defs())
4491     {
4492       Output_section* vdsec;
4493       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4494                                           elfcpp::SHT_GNU_verdef,
4495                                           elfcpp::SHF_ALLOC,
4496                                           false, ORDER_DYNAMIC_LINKER, false);
4497
4498       if (vdsec != NULL)
4499         {
4500           unsigned char* vdbuf;
4501           unsigned int vdsize;
4502           unsigned int vdentries;
4503           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4504                                                            &vdbuf, &vdsize,
4505                                                            &vdentries);
4506
4507           Output_section_data* vddata =
4508             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4509
4510           vdsec->add_output_section_data(vddata);
4511           vdsec->set_link_section(dynstr);
4512           vdsec->set_info(vdentries);
4513
4514           if (odyn != NULL)
4515             {
4516               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4517               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4518             }
4519         }
4520     }
4521
4522   if (versions->any_needs())
4523     {
4524       Output_section* vnsec;
4525       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4526                                           elfcpp::SHT_GNU_verneed,
4527                                           elfcpp::SHF_ALLOC,
4528                                           false, ORDER_DYNAMIC_LINKER, false);
4529
4530       if (vnsec != NULL)
4531         {
4532           unsigned char* vnbuf;
4533           unsigned int vnsize;
4534           unsigned int vnentries;
4535           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4536                                                             &vnbuf, &vnsize,
4537                                                             &vnentries);
4538
4539           Output_section_data* vndata =
4540             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4541
4542           vnsec->add_output_section_data(vndata);
4543           vnsec->set_link_section(dynstr);
4544           vnsec->set_info(vnentries);
4545
4546           if (odyn != NULL)
4547             {
4548               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4549               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4550             }
4551         }
4552     }
4553 }
4554
4555 // Create the .interp section and PT_INTERP segment.
4556
4557 void
4558 Layout::create_interp(const Target* target)
4559 {
4560   gold_assert(this->interp_segment_ == NULL);
4561
4562   const char* interp = parameters->options().dynamic_linker();
4563   if (interp == NULL)
4564     {
4565       interp = target->dynamic_linker();
4566       gold_assert(interp != NULL);
4567     }
4568
4569   size_t len = strlen(interp) + 1;
4570
4571   Output_section_data* odata = new Output_data_const(interp, len, 1);
4572
4573   Output_section* osec = this->choose_output_section(NULL, ".interp",
4574                                                      elfcpp::SHT_PROGBITS,
4575                                                      elfcpp::SHF_ALLOC,
4576                                                      false, ORDER_INTERP,
4577                                                      false);
4578   if (osec != NULL)
4579     osec->add_output_section_data(odata);
4580 }
4581
4582 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4583 // called by the target-specific code.  This does nothing if not doing
4584 // a dynamic link.
4585
4586 // USE_REL is true for REL relocs rather than RELA relocs.
4587
4588 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4589
4590 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4591 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4592 // some targets have multiple reloc sections in PLT_REL.
4593
4594 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4595 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4596 // section.
4597
4598 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4599 // executable.
4600
4601 void
4602 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4603                                 const Output_data* plt_rel,
4604                                 const Output_data_reloc_generic* dyn_rel,
4605                                 bool add_debug, bool dynrel_includes_plt)
4606 {
4607   Output_data_dynamic* odyn = this->dynamic_data_;
4608   if (odyn == NULL)
4609     return;
4610
4611   if (plt_got != NULL && plt_got->output_section() != NULL)
4612     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4613
4614   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4615     {
4616       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4617       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4618       odyn->add_constant(elfcpp::DT_PLTREL,
4619                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4620     }
4621
4622   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4623       || (dynrel_includes_plt
4624           && plt_rel != NULL
4625           && plt_rel->output_section() != NULL))
4626     {
4627       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4628       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4629       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4630                                 (have_dyn_rel
4631                                  ? dyn_rel->output_section()
4632                                  : plt_rel->output_section()));
4633       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4634       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4635         odyn->add_section_size(size_tag,
4636                                dyn_rel->output_section(),
4637                                plt_rel->output_section());
4638       else if (have_dyn_rel)
4639         odyn->add_section_size(size_tag, dyn_rel->output_section());
4640       else
4641         odyn->add_section_size(size_tag, plt_rel->output_section());
4642       const int size = parameters->target().get_size();
4643       elfcpp::DT rel_tag;
4644       int rel_size;
4645       if (use_rel)
4646         {
4647           rel_tag = elfcpp::DT_RELENT;
4648           if (size == 32)
4649             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4650           else if (size == 64)
4651             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4652           else
4653             gold_unreachable();
4654         }
4655       else
4656         {
4657           rel_tag = elfcpp::DT_RELAENT;
4658           if (size == 32)
4659             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4660           else if (size == 64)
4661             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4662           else
4663             gold_unreachable();
4664         }
4665       odyn->add_constant(rel_tag, rel_size);
4666
4667       if (parameters->options().combreloc() && have_dyn_rel)
4668         {
4669           size_t c = dyn_rel->relative_reloc_count();
4670           if (c > 0)
4671             odyn->add_constant((use_rel
4672                                 ? elfcpp::DT_RELCOUNT
4673                                 : elfcpp::DT_RELACOUNT),
4674                                c);
4675         }
4676     }
4677
4678   if (add_debug && !parameters->options().shared())
4679     {
4680       // The value of the DT_DEBUG tag is filled in by the dynamic
4681       // linker at run time, and used by the debugger.
4682       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4683     }
4684 }
4685
4686 // Finish the .dynamic section and PT_DYNAMIC segment.
4687
4688 void
4689 Layout::finish_dynamic_section(const Input_objects* input_objects,
4690                                const Symbol_table* symtab)
4691 {
4692   if (!this->script_options_->saw_phdrs_clause()
4693       && this->dynamic_section_ != NULL)
4694     {
4695       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4696                                                        (elfcpp::PF_R
4697                                                         | elfcpp::PF_W));
4698       oseg->add_output_section_to_nonload(this->dynamic_section_,
4699                                           elfcpp::PF_R | elfcpp::PF_W);
4700     }
4701
4702   Output_data_dynamic* const odyn = this->dynamic_data_;
4703   if (odyn == NULL)
4704     return;
4705
4706   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4707        p != input_objects->dynobj_end();
4708        ++p)
4709     {
4710       if (!(*p)->is_needed() && (*p)->as_needed())
4711         {
4712           // This dynamic object was linked with --as-needed, but it
4713           // is not needed.
4714           continue;
4715         }
4716
4717       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4718     }
4719
4720   if (parameters->options().shared())
4721     {
4722       const char* soname = parameters->options().soname();
4723       if (soname != NULL)
4724         odyn->add_string(elfcpp::DT_SONAME, soname);
4725     }
4726
4727   Symbol* sym = symtab->lookup(parameters->options().init());
4728   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4729     odyn->add_symbol(elfcpp::DT_INIT, sym);
4730
4731   sym = symtab->lookup(parameters->options().fini());
4732   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4733     odyn->add_symbol(elfcpp::DT_FINI, sym);
4734
4735   // Look for .init_array, .preinit_array and .fini_array by checking
4736   // section types.
4737   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4738       p != this->section_list_.end();
4739       ++p)
4740     switch((*p)->type())
4741       {
4742       case elfcpp::SHT_FINI_ARRAY:
4743         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4744         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4745         break;
4746       case elfcpp::SHT_INIT_ARRAY:
4747         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4748         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4749         break;
4750       case elfcpp::SHT_PREINIT_ARRAY:
4751         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4752         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4753         break;
4754       default:
4755         break;
4756       }
4757
4758   // Add a DT_RPATH entry if needed.
4759   const General_options::Dir_list& rpath(parameters->options().rpath());
4760   if (!rpath.empty())
4761     {
4762       std::string rpath_val;
4763       for (General_options::Dir_list::const_iterator p = rpath.begin();
4764            p != rpath.end();
4765            ++p)
4766         {
4767           if (rpath_val.empty())
4768             rpath_val = p->name();
4769           else
4770             {
4771               // Eliminate duplicates.
4772               General_options::Dir_list::const_iterator q;
4773               for (q = rpath.begin(); q != p; ++q)
4774                 if (q->name() == p->name())
4775                   break;
4776               if (q == p)
4777                 {
4778                   rpath_val += ':';
4779                   rpath_val += p->name();
4780                 }
4781             }
4782         }
4783
4784       if (!parameters->options().enable_new_dtags())
4785         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4786       else
4787         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4788     }
4789
4790   // Look for text segments that have dynamic relocations.
4791   bool have_textrel = false;
4792   if (!this->script_options_->saw_sections_clause())
4793     {
4794       for (Segment_list::const_iterator p = this->segment_list_.begin();
4795            p != this->segment_list_.end();
4796            ++p)
4797         {
4798           if ((*p)->type() == elfcpp::PT_LOAD
4799               && ((*p)->flags() & elfcpp::PF_W) == 0
4800               && (*p)->has_dynamic_reloc())
4801             {
4802               have_textrel = true;
4803               break;
4804             }
4805         }
4806     }
4807   else
4808     {
4809       // We don't know the section -> segment mapping, so we are
4810       // conservative and just look for readonly sections with
4811       // relocations.  If those sections wind up in writable segments,
4812       // then we have created an unnecessary DT_TEXTREL entry.
4813       for (Section_list::const_iterator p = this->section_list_.begin();
4814            p != this->section_list_.end();
4815            ++p)
4816         {
4817           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4818               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4819               && (*p)->has_dynamic_reloc())
4820             {
4821               have_textrel = true;
4822               break;
4823             }
4824         }
4825     }
4826
4827   if (parameters->options().filter() != NULL)
4828     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4829   if (parameters->options().any_auxiliary())
4830     {
4831       for (options::String_set::const_iterator p =
4832              parameters->options().auxiliary_begin();
4833            p != parameters->options().auxiliary_end();
4834            ++p)
4835         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4836     }
4837
4838   // Add a DT_FLAGS entry if necessary.
4839   unsigned int flags = 0;
4840   if (have_textrel)
4841     {
4842       // Add a DT_TEXTREL for compatibility with older loaders.
4843       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4844       flags |= elfcpp::DF_TEXTREL;
4845
4846       if (parameters->options().text())
4847         gold_error(_("read-only segment has dynamic relocations"));
4848       else if (parameters->options().warn_shared_textrel()
4849                && parameters->options().shared())
4850         gold_warning(_("shared library text segment is not shareable"));
4851     }
4852   if (parameters->options().shared() && this->has_static_tls())
4853     flags |= elfcpp::DF_STATIC_TLS;
4854   if (parameters->options().origin())
4855     flags |= elfcpp::DF_ORIGIN;
4856   if (parameters->options().Bsymbolic())
4857     {
4858       flags |= elfcpp::DF_SYMBOLIC;
4859       // Add DT_SYMBOLIC for compatibility with older loaders.
4860       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4861     }
4862   if (parameters->options().now())
4863     flags |= elfcpp::DF_BIND_NOW;
4864   if (flags != 0)
4865     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4866
4867   flags = 0;
4868   if (parameters->options().initfirst())
4869     flags |= elfcpp::DF_1_INITFIRST;
4870   if (parameters->options().interpose())
4871     flags |= elfcpp::DF_1_INTERPOSE;
4872   if (parameters->options().loadfltr())
4873     flags |= elfcpp::DF_1_LOADFLTR;
4874   if (parameters->options().nodefaultlib())
4875     flags |= elfcpp::DF_1_NODEFLIB;
4876   if (parameters->options().nodelete())
4877     flags |= elfcpp::DF_1_NODELETE;
4878   if (parameters->options().nodlopen())
4879     flags |= elfcpp::DF_1_NOOPEN;
4880   if (parameters->options().nodump())
4881     flags |= elfcpp::DF_1_NODUMP;
4882   if (!parameters->options().shared())
4883     flags &= ~(elfcpp::DF_1_INITFIRST
4884                | elfcpp::DF_1_NODELETE
4885                | elfcpp::DF_1_NOOPEN);
4886   if (parameters->options().origin())
4887     flags |= elfcpp::DF_1_ORIGIN;
4888   if (parameters->options().now())
4889     flags |= elfcpp::DF_1_NOW;
4890   if (parameters->options().Bgroup())
4891     flags |= elfcpp::DF_1_GROUP;
4892   if (flags != 0)
4893     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4894 }
4895
4896 // Set the size of the _DYNAMIC symbol table to be the size of the
4897 // dynamic data.
4898
4899 void
4900 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4901 {
4902   Output_data_dynamic* const odyn = this->dynamic_data_;
4903   if (odyn == NULL)
4904     return;
4905   odyn->finalize_data_size();
4906   if (this->dynamic_symbol_ == NULL)
4907     return;
4908   off_t data_size = odyn->data_size();
4909   const int size = parameters->target().get_size();
4910   if (size == 32)
4911     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4912   else if (size == 64)
4913     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4914   else
4915     gold_unreachable();
4916 }
4917
4918 // The mapping of input section name prefixes to output section names.
4919 // In some cases one prefix is itself a prefix of another prefix; in
4920 // such a case the longer prefix must come first.  These prefixes are
4921 // based on the GNU linker default ELF linker script.
4922
4923 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4924 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4925 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4926 {
4927   MAPPING_INIT(".text.", ".text"),
4928   MAPPING_INIT(".rodata.", ".rodata"),
4929   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4930   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4931   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4932   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4933   MAPPING_INIT(".data.", ".data"),
4934   MAPPING_INIT(".bss.", ".bss"),
4935   MAPPING_INIT(".tdata.", ".tdata"),
4936   MAPPING_INIT(".tbss.", ".tbss"),
4937   MAPPING_INIT(".init_array.", ".init_array"),
4938   MAPPING_INIT(".fini_array.", ".fini_array"),
4939   MAPPING_INIT(".sdata.", ".sdata"),
4940   MAPPING_INIT(".sbss.", ".sbss"),
4941   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4942   // differently depending on whether it is creating a shared library.
4943   MAPPING_INIT(".sdata2.", ".sdata"),
4944   MAPPING_INIT(".sbss2.", ".sbss"),
4945   MAPPING_INIT(".lrodata.", ".lrodata"),
4946   MAPPING_INIT(".ldata.", ".ldata"),
4947   MAPPING_INIT(".lbss.", ".lbss"),
4948   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4949   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4950   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4951   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4952   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4953   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4954   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4955   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4956   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4957   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4958   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4959   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4960   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4961   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4962   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4963   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4964   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4965   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4966   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4967   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4968   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4969 };
4970 #undef MAPPING_INIT
4971 #undef MAPPING_INIT_EXACT
4972
4973 const int Layout::section_name_mapping_count =
4974   (sizeof(Layout::section_name_mapping)
4975    / sizeof(Layout::section_name_mapping[0]));
4976
4977 // Choose the output section name to use given an input section name.
4978 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4979 // length of NAME.
4980
4981 const char*
4982 Layout::output_section_name(const Relobj* relobj, const char* name,
4983                             size_t* plen)
4984 {
4985   // gcc 4.3 generates the following sorts of section names when it
4986   // needs a section name specific to a function:
4987   //   .text.FN
4988   //   .rodata.FN
4989   //   .sdata2.FN
4990   //   .data.FN
4991   //   .data.rel.FN
4992   //   .data.rel.local.FN
4993   //   .data.rel.ro.FN
4994   //   .data.rel.ro.local.FN
4995   //   .sdata.FN
4996   //   .bss.FN
4997   //   .sbss.FN
4998   //   .tdata.FN
4999   //   .tbss.FN
5000
5001   // The GNU linker maps all of those to the part before the .FN,
5002   // except that .data.rel.local.FN is mapped to .data, and
5003   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5004   // beginning with .data.rel.ro.local are grouped together.
5005
5006   // For an anonymous namespace, the string FN can contain a '.'.
5007
5008   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5009   // GNU linker maps to .rodata.
5010
5011   // The .data.rel.ro sections are used with -z relro.  The sections
5012   // are recognized by name.  We use the same names that the GNU
5013   // linker does for these sections.
5014
5015   // It is hard to handle this in a principled way, so we don't even
5016   // try.  We use a table of mappings.  If the input section name is
5017   // not found in the table, we simply use it as the output section
5018   // name.
5019
5020   const Section_name_mapping* psnm = section_name_mapping;
5021   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5022     {
5023       if (psnm->fromlen > 0)
5024         {
5025           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5026             {
5027               *plen = psnm->tolen;
5028               return psnm->to;
5029             }
5030         }
5031       else
5032         {
5033           if (strcmp(name, psnm->from) == 0)
5034             {
5035               *plen = psnm->tolen;
5036               return psnm->to;
5037             }
5038         }
5039     }
5040
5041   // As an additional complication, .ctors sections are output in
5042   // either .ctors or .init_array sections, and .dtors sections are
5043   // output in either .dtors or .fini_array sections.
5044   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5045     {
5046       if (parameters->options().ctors_in_init_array())
5047         {
5048           *plen = 11;
5049           return name[1] == 'c' ? ".init_array" : ".fini_array";
5050         }
5051       else
5052         {
5053           *plen = 6;
5054           return name[1] == 'c' ? ".ctors" : ".dtors";
5055         }
5056     }
5057   if (parameters->options().ctors_in_init_array()
5058       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5059     {
5060       // To make .init_array/.fini_array work with gcc we must exclude
5061       // .ctors and .dtors sections from the crtbegin and crtend
5062       // files.
5063       if (relobj == NULL
5064           || (!Layout::match_file_name(relobj, "crtbegin")
5065               && !Layout::match_file_name(relobj, "crtend")))
5066         {
5067           *plen = 11;
5068           return name[1] == 'c' ? ".init_array" : ".fini_array";
5069         }
5070     }
5071
5072   return name;
5073 }
5074
5075 // Return true if RELOBJ is an input file whose base name matches
5076 // FILE_NAME.  The base name must have an extension of ".o", and must
5077 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5078 // to match crtbegin.o as well as crtbeginS.o without getting confused
5079 // by other possibilities.  Overall matching the file name this way is
5080 // a dreadful hack, but the GNU linker does it in order to better
5081 // support gcc, and we need to be compatible.
5082
5083 bool
5084 Layout::match_file_name(const Relobj* relobj, const char* match)
5085 {
5086   const std::string& file_name(relobj->name());
5087   const char* base_name = lbasename(file_name.c_str());
5088   size_t match_len = strlen(match);
5089   if (strncmp(base_name, match, match_len) != 0)
5090     return false;
5091   size_t base_len = strlen(base_name);
5092   if (base_len != match_len + 2 && base_len != match_len + 3)
5093     return false;
5094   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5095 }
5096
5097 // Check if a comdat group or .gnu.linkonce section with the given
5098 // NAME is selected for the link.  If there is already a section,
5099 // *KEPT_SECTION is set to point to the existing section and the
5100 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5101 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5102 // *KEPT_SECTION is set to the internal copy and the function returns
5103 // true.
5104
5105 bool
5106 Layout::find_or_add_kept_section(const std::string& name,
5107                                  Relobj* object,
5108                                  unsigned int shndx,
5109                                  bool is_comdat,
5110                                  bool is_group_name,
5111                                  Kept_section** kept_section)
5112 {
5113   // It's normal to see a couple of entries here, for the x86 thunk
5114   // sections.  If we see more than a few, we're linking a C++
5115   // program, and we resize to get more space to minimize rehashing.
5116   if (this->signatures_.size() > 4
5117       && !this->resized_signatures_)
5118     {
5119       reserve_unordered_map(&this->signatures_,
5120                             this->number_of_input_files_ * 64);
5121       this->resized_signatures_ = true;
5122     }
5123
5124   Kept_section candidate;
5125   std::pair<Signatures::iterator, bool> ins =
5126     this->signatures_.insert(std::make_pair(name, candidate));
5127
5128   if (kept_section != NULL)
5129     *kept_section = &ins.first->second;
5130   if (ins.second)
5131     {
5132       // This is the first time we've seen this signature.
5133       ins.first->second.set_object(object);
5134       ins.first->second.set_shndx(shndx);
5135       if (is_comdat)
5136         ins.first->second.set_is_comdat();
5137       if (is_group_name)
5138         ins.first->second.set_is_group_name();
5139       return true;
5140     }
5141
5142   // We have already seen this signature.
5143
5144   if (ins.first->second.is_group_name())
5145     {
5146       // We've already seen a real section group with this signature.
5147       // If the kept group is from a plugin object, and we're in the
5148       // replacement phase, accept the new one as a replacement.
5149       if (ins.first->second.object() == NULL
5150           && parameters->options().plugins()->in_replacement_phase())
5151         {
5152           ins.first->second.set_object(object);
5153           ins.first->second.set_shndx(shndx);
5154           return true;
5155         }
5156       return false;
5157     }
5158   else if (is_group_name)
5159     {
5160       // This is a real section group, and we've already seen a
5161       // linkonce section with this signature.  Record that we've seen
5162       // a section group, and don't include this section group.
5163       ins.first->second.set_is_group_name();
5164       return false;
5165     }
5166   else
5167     {
5168       // We've already seen a linkonce section and this is a linkonce
5169       // section.  These don't block each other--this may be the same
5170       // symbol name with different section types.
5171       return true;
5172     }
5173 }
5174
5175 // Store the allocated sections into the section list.
5176
5177 void
5178 Layout::get_allocated_sections(Section_list* section_list) const
5179 {
5180   for (Section_list::const_iterator p = this->section_list_.begin();
5181        p != this->section_list_.end();
5182        ++p)
5183     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5184       section_list->push_back(*p);
5185 }
5186
5187 // Store the executable sections into the section list.
5188
5189 void
5190 Layout::get_executable_sections(Section_list* section_list) const
5191 {
5192   for (Section_list::const_iterator p = this->section_list_.begin();
5193        p != this->section_list_.end();
5194        ++p)
5195     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5196         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5197       section_list->push_back(*p);
5198 }
5199
5200 // Create an output segment.
5201
5202 Output_segment*
5203 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5204 {
5205   gold_assert(!parameters->options().relocatable());
5206   Output_segment* oseg = new Output_segment(type, flags);
5207   this->segment_list_.push_back(oseg);
5208
5209   if (type == elfcpp::PT_TLS)
5210     this->tls_segment_ = oseg;
5211   else if (type == elfcpp::PT_GNU_RELRO)
5212     this->relro_segment_ = oseg;
5213   else if (type == elfcpp::PT_INTERP)
5214     this->interp_segment_ = oseg;
5215
5216   return oseg;
5217 }
5218
5219 // Return the file offset of the normal symbol table.
5220
5221 off_t
5222 Layout::symtab_section_offset() const
5223 {
5224   if (this->symtab_section_ != NULL)
5225     return this->symtab_section_->offset();
5226   return 0;
5227 }
5228
5229 // Return the section index of the normal symbol table.  It may have
5230 // been stripped by the -s/--strip-all option.
5231
5232 unsigned int
5233 Layout::symtab_section_shndx() const
5234 {
5235   if (this->symtab_section_ != NULL)
5236     return this->symtab_section_->out_shndx();
5237   return 0;
5238 }
5239
5240 // Write out the Output_sections.  Most won't have anything to write,
5241 // since most of the data will come from input sections which are
5242 // handled elsewhere.  But some Output_sections do have Output_data.
5243
5244 void
5245 Layout::write_output_sections(Output_file* of) const
5246 {
5247   for (Section_list::const_iterator p = this->section_list_.begin();
5248        p != this->section_list_.end();
5249        ++p)
5250     {
5251       if (!(*p)->after_input_sections())
5252         (*p)->write(of);
5253     }
5254 }
5255
5256 // Write out data not associated with a section or the symbol table.
5257
5258 void
5259 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5260 {
5261   if (!parameters->options().strip_all())
5262     {
5263       const Output_section* symtab_section = this->symtab_section_;
5264       for (Section_list::const_iterator p = this->section_list_.begin();
5265            p != this->section_list_.end();
5266            ++p)
5267         {
5268           if ((*p)->needs_symtab_index())
5269             {
5270               gold_assert(symtab_section != NULL);
5271               unsigned int index = (*p)->symtab_index();
5272               gold_assert(index > 0 && index != -1U);
5273               off_t off = (symtab_section->offset()
5274                            + index * symtab_section->entsize());
5275               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5276             }
5277         }
5278     }
5279
5280   const Output_section* dynsym_section = this->dynsym_section_;
5281   for (Section_list::const_iterator p = this->section_list_.begin();
5282        p != this->section_list_.end();
5283        ++p)
5284     {
5285       if ((*p)->needs_dynsym_index())
5286         {
5287           gold_assert(dynsym_section != NULL);
5288           unsigned int index = (*p)->dynsym_index();
5289           gold_assert(index > 0 && index != -1U);
5290           off_t off = (dynsym_section->offset()
5291                        + index * dynsym_section->entsize());
5292           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5293         }
5294     }
5295
5296   // Write out the Output_data which are not in an Output_section.
5297   for (Data_list::const_iterator p = this->special_output_list_.begin();
5298        p != this->special_output_list_.end();
5299        ++p)
5300     (*p)->write(of);
5301
5302   // Write out the Output_data which are not in an Output_section
5303   // and are regenerated in each iteration of relaxation.
5304   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5305        p != this->relax_output_list_.end();
5306        ++p)
5307     (*p)->write(of);
5308 }
5309
5310 // Write out the Output_sections which can only be written after the
5311 // input sections are complete.
5312
5313 void
5314 Layout::write_sections_after_input_sections(Output_file* of)
5315 {
5316   // Determine the final section offsets, and thus the final output
5317   // file size.  Note we finalize the .shstrab last, to allow the
5318   // after_input_section sections to modify their section-names before
5319   // writing.
5320   if (this->any_postprocessing_sections_)
5321     {
5322       off_t off = this->output_file_size_;
5323       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5324
5325       // Now that we've finalized the names, we can finalize the shstrab.
5326       off =
5327         this->set_section_offsets(off,
5328                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5329
5330       if (off > this->output_file_size_)
5331         {
5332           of->resize(off);
5333           this->output_file_size_ = off;
5334         }
5335     }
5336
5337   for (Section_list::const_iterator p = this->section_list_.begin();
5338        p != this->section_list_.end();
5339        ++p)
5340     {
5341       if ((*p)->after_input_sections())
5342         (*p)->write(of);
5343     }
5344
5345   this->section_headers_->write(of);
5346 }
5347
5348 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5349 // or as a "tree" where each chunk of the string is hashed and then those
5350 // hashes are put into a (much smaller) string which is hashed with sha1.
5351 // We compute a checksum over the entire file because that is simplest.
5352
5353 Task_token*
5354 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5355                              Output_file* of)
5356 {
5357   const size_t filesize = (this->output_file_size() <= 0 ? 0
5358                            : static_cast<size_t>(this->output_file_size()));
5359   if (this->build_id_note_ != NULL
5360       && strcmp(parameters->options().build_id(), "tree") == 0
5361       && parameters->options().build_id_chunk_size_for_treehash() > 0
5362       && filesize > 0
5363       && (filesize >=
5364           parameters->options().build_id_min_file_size_for_treehash()))
5365     {
5366       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5367       const size_t chunk_size =
5368           parameters->options().build_id_chunk_size_for_treehash();
5369       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5370       Task_token* post_hash_tasks_blocker = new Task_token(true);
5371       post_hash_tasks_blocker->add_blockers(num_hashes);
5372       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5373       const unsigned char* src = of->get_input_view(0, filesize);
5374       this->input_view_ = src;
5375       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5376       this->array_of_hashes_ = dst;
5377       for (size_t i = 0, src_offset = 0; i < num_hashes;
5378            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5379         {
5380           size_t size = std::min(chunk_size, filesize - src_offset);
5381           workqueue->queue(new Hash_task(src + src_offset,
5382                                          size,
5383                                          dst,
5384                                          build_id_blocker,
5385                                          post_hash_tasks_blocker));
5386         }
5387       return post_hash_tasks_blocker;
5388     }
5389   return build_id_blocker;
5390 }
5391
5392 // If a tree-style build ID was requested, the parallel part of that computation
5393 // is already done, and the final hash-of-hashes is computed here.  For other
5394 // types of build IDs, all the work is done here.
5395
5396 void
5397 Layout::write_build_id(Output_file* of) const
5398 {
5399   if (this->build_id_note_ == NULL)
5400     return;
5401
5402   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5403                                           this->build_id_note_->data_size());
5404
5405   if (this->array_of_hashes_ == NULL)
5406     {
5407       const size_t output_file_size = this->output_file_size();
5408       const unsigned char* iv = of->get_input_view(0, output_file_size);
5409       const char* style = parameters->options().build_id();
5410
5411       // If we get here with style == "tree" then the output must be
5412       // too small for chunking, and we use SHA-1 in that case.
5413       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5414         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5415       else if (strcmp(style, "md5") == 0)
5416         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5417       else
5418         gold_unreachable();
5419
5420       of->free_input_view(0, output_file_size, iv);
5421     }
5422   else
5423     {
5424       // Non-overlapping substrings of the output file have been hashed.
5425       // Compute SHA-1 hash of the hashes.
5426       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5427                   this->size_of_array_of_hashes_, ov);
5428       delete[] this->array_of_hashes_;
5429       of->free_input_view(0, this->output_file_size(), this->input_view_);
5430     }
5431
5432   of->write_output_view(this->build_id_note_->offset(),
5433                         this->build_id_note_->data_size(),
5434                         ov);
5435 }
5436
5437 // Write out a binary file.  This is called after the link is
5438 // complete.  IN is the temporary output file we used to generate the
5439 // ELF code.  We simply walk through the segments, read them from
5440 // their file offset in IN, and write them to their load address in
5441 // the output file.  FIXME: with a bit more work, we could support
5442 // S-records and/or Intel hex format here.
5443
5444 void
5445 Layout::write_binary(Output_file* in) const
5446 {
5447   gold_assert(parameters->options().oformat_enum()
5448               == General_options::OBJECT_FORMAT_BINARY);
5449
5450   // Get the size of the binary file.
5451   uint64_t max_load_address = 0;
5452   for (Segment_list::const_iterator p = this->segment_list_.begin();
5453        p != this->segment_list_.end();
5454        ++p)
5455     {
5456       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5457         {
5458           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5459           if (max_paddr > max_load_address)
5460             max_load_address = max_paddr;
5461         }
5462     }
5463
5464   Output_file out(parameters->options().output_file_name());
5465   out.open(max_load_address);
5466
5467   for (Segment_list::const_iterator p = this->segment_list_.begin();
5468        p != this->segment_list_.end();
5469        ++p)
5470     {
5471       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5472         {
5473           const unsigned char* vin = in->get_input_view((*p)->offset(),
5474                                                         (*p)->filesz());
5475           unsigned char* vout = out.get_output_view((*p)->paddr(),
5476                                                     (*p)->filesz());
5477           memcpy(vout, vin, (*p)->filesz());
5478           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5479           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5480         }
5481     }
5482
5483   out.close();
5484 }
5485
5486 // Print the output sections to the map file.
5487
5488 void
5489 Layout::print_to_mapfile(Mapfile* mapfile) const
5490 {
5491   for (Segment_list::const_iterator p = this->segment_list_.begin();
5492        p != this->segment_list_.end();
5493        ++p)
5494     (*p)->print_sections_to_mapfile(mapfile);
5495 }
5496
5497 // Print statistical information to stderr.  This is used for --stats.
5498
5499 void
5500 Layout::print_stats() const
5501 {
5502   this->namepool_.print_stats("section name pool");
5503   this->sympool_.print_stats("output symbol name pool");
5504   this->dynpool_.print_stats("dynamic name pool");
5505
5506   for (Section_list::const_iterator p = this->section_list_.begin();
5507        p != this->section_list_.end();
5508        ++p)
5509     (*p)->print_merge_stats();
5510 }
5511
5512 // Write_sections_task methods.
5513
5514 // We can always run this task.
5515
5516 Task_token*
5517 Write_sections_task::is_runnable()
5518 {
5519   return NULL;
5520 }
5521
5522 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5523 // when finished.
5524
5525 void
5526 Write_sections_task::locks(Task_locker* tl)
5527 {
5528   tl->add(this, this->output_sections_blocker_);
5529   tl->add(this, this->final_blocker_);
5530 }
5531
5532 // Run the task--write out the data.
5533
5534 void
5535 Write_sections_task::run(Workqueue*)
5536 {
5537   this->layout_->write_output_sections(this->of_);
5538 }
5539
5540 // Write_data_task methods.
5541
5542 // We can always run this task.
5543
5544 Task_token*
5545 Write_data_task::is_runnable()
5546 {
5547   return NULL;
5548 }
5549
5550 // We need to unlock FINAL_BLOCKER when finished.
5551
5552 void
5553 Write_data_task::locks(Task_locker* tl)
5554 {
5555   tl->add(this, this->final_blocker_);
5556 }
5557
5558 // Run the task--write out the data.
5559
5560 void
5561 Write_data_task::run(Workqueue*)
5562 {
5563   this->layout_->write_data(this->symtab_, this->of_);
5564 }
5565
5566 // Write_symbols_task methods.
5567
5568 // We can always run this task.
5569
5570 Task_token*
5571 Write_symbols_task::is_runnable()
5572 {
5573   return NULL;
5574 }
5575
5576 // We need to unlock FINAL_BLOCKER when finished.
5577
5578 void
5579 Write_symbols_task::locks(Task_locker* tl)
5580 {
5581   tl->add(this, this->final_blocker_);
5582 }
5583
5584 // Run the task--write out the symbols.
5585
5586 void
5587 Write_symbols_task::run(Workqueue*)
5588 {
5589   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5590                                this->layout_->symtab_xindex(),
5591                                this->layout_->dynsym_xindex(), this->of_);
5592 }
5593
5594 // Write_after_input_sections_task methods.
5595
5596 // We can only run this task after the input sections have completed.
5597
5598 Task_token*
5599 Write_after_input_sections_task::is_runnable()
5600 {
5601   if (this->input_sections_blocker_->is_blocked())
5602     return this->input_sections_blocker_;
5603   return NULL;
5604 }
5605
5606 // We need to unlock FINAL_BLOCKER when finished.
5607
5608 void
5609 Write_after_input_sections_task::locks(Task_locker* tl)
5610 {
5611   tl->add(this, this->final_blocker_);
5612 }
5613
5614 // Run the task.
5615
5616 void
5617 Write_after_input_sections_task::run(Workqueue*)
5618 {
5619   this->layout_->write_sections_after_input_sections(this->of_);
5620 }
5621
5622 // Close_task_runner methods.
5623
5624 // Finish up the build ID computation, if necessary, and write a binary file,
5625 // if necessary.  Then close the output file.
5626
5627 void
5628 Close_task_runner::run(Workqueue*, const Task*)
5629 {
5630   // At this point the multi-threaded part of the build ID computation,
5631   // if any, is done.  See queue_build_id_tasks().
5632   this->layout_->write_build_id(this->of_);
5633
5634   // If we've been asked to create a binary file, we do so here.
5635   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5636     this->layout_->write_binary(this->of_);
5637
5638   this->of_->close();
5639 }
5640
5641 // Instantiate the templates we need.  We could use the configure
5642 // script to restrict this to only the ones for implemented targets.
5643
5644 #ifdef HAVE_TARGET_32_LITTLE
5645 template
5646 Output_section*
5647 Layout::init_fixed_output_section<32, false>(
5648     const char* name,
5649     elfcpp::Shdr<32, false>& shdr);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_32_BIG
5653 template
5654 Output_section*
5655 Layout::init_fixed_output_section<32, true>(
5656     const char* name,
5657     elfcpp::Shdr<32, true>& shdr);
5658 #endif
5659
5660 #ifdef HAVE_TARGET_64_LITTLE
5661 template
5662 Output_section*
5663 Layout::init_fixed_output_section<64, false>(
5664     const char* name,
5665     elfcpp::Shdr<64, false>& shdr);
5666 #endif
5667
5668 #ifdef HAVE_TARGET_64_BIG
5669 template
5670 Output_section*
5671 Layout::init_fixed_output_section<64, true>(
5672     const char* name,
5673     elfcpp::Shdr<64, true>& shdr);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_LITTLE
5677 template
5678 Output_section*
5679 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5680                           unsigned int shndx,
5681                           const char* name,
5682                           const elfcpp::Shdr<32, false>& shdr,
5683                           unsigned int, unsigned int, off_t*);
5684 #endif
5685
5686 #ifdef HAVE_TARGET_32_BIG
5687 template
5688 Output_section*
5689 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5690                          unsigned int shndx,
5691                          const char* name,
5692                          const elfcpp::Shdr<32, true>& shdr,
5693                          unsigned int, unsigned int, off_t*);
5694 #endif
5695
5696 #ifdef HAVE_TARGET_64_LITTLE
5697 template
5698 Output_section*
5699 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5700                           unsigned int shndx,
5701                           const char* name,
5702                           const elfcpp::Shdr<64, false>& shdr,
5703                           unsigned int, unsigned int, off_t*);
5704 #endif
5705
5706 #ifdef HAVE_TARGET_64_BIG
5707 template
5708 Output_section*
5709 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5710                          unsigned int shndx,
5711                          const char* name,
5712                          const elfcpp::Shdr<64, true>& shdr,
5713                          unsigned int, unsigned int, off_t*);
5714 #endif
5715
5716 #ifdef HAVE_TARGET_32_LITTLE
5717 template
5718 Output_section*
5719 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5720                                 unsigned int reloc_shndx,
5721                                 const elfcpp::Shdr<32, false>& shdr,
5722                                 Output_section* data_section,
5723                                 Relocatable_relocs* rr);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_32_BIG
5727 template
5728 Output_section*
5729 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5730                                unsigned int reloc_shndx,
5731                                const elfcpp::Shdr<32, true>& shdr,
5732                                Output_section* data_section,
5733                                Relocatable_relocs* rr);
5734 #endif
5735
5736 #ifdef HAVE_TARGET_64_LITTLE
5737 template
5738 Output_section*
5739 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5740                                 unsigned int reloc_shndx,
5741                                 const elfcpp::Shdr<64, false>& shdr,
5742                                 Output_section* data_section,
5743                                 Relocatable_relocs* rr);
5744 #endif
5745
5746 #ifdef HAVE_TARGET_64_BIG
5747 template
5748 Output_section*
5749 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5750                                unsigned int reloc_shndx,
5751                                const elfcpp::Shdr<64, true>& shdr,
5752                                Output_section* data_section,
5753                                Relocatable_relocs* rr);
5754 #endif
5755
5756 #ifdef HAVE_TARGET_32_LITTLE
5757 template
5758 void
5759 Layout::layout_group<32, false>(Symbol_table* symtab,
5760                                 Sized_relobj_file<32, false>* object,
5761                                 unsigned int,
5762                                 const char* group_section_name,
5763                                 const char* signature,
5764                                 const elfcpp::Shdr<32, false>& shdr,
5765                                 elfcpp::Elf_Word flags,
5766                                 std::vector<unsigned int>* shndxes);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_32_BIG
5770 template
5771 void
5772 Layout::layout_group<32, true>(Symbol_table* symtab,
5773                                Sized_relobj_file<32, true>* object,
5774                                unsigned int,
5775                                const char* group_section_name,
5776                                const char* signature,
5777                                const elfcpp::Shdr<32, true>& shdr,
5778                                elfcpp::Elf_Word flags,
5779                                std::vector<unsigned int>* shndxes);
5780 #endif
5781
5782 #ifdef HAVE_TARGET_64_LITTLE
5783 template
5784 void
5785 Layout::layout_group<64, false>(Symbol_table* symtab,
5786                                 Sized_relobj_file<64, false>* object,
5787                                 unsigned int,
5788                                 const char* group_section_name,
5789                                 const char* signature,
5790                                 const elfcpp::Shdr<64, false>& shdr,
5791                                 elfcpp::Elf_Word flags,
5792                                 std::vector<unsigned int>* shndxes);
5793 #endif
5794
5795 #ifdef HAVE_TARGET_64_BIG
5796 template
5797 void
5798 Layout::layout_group<64, true>(Symbol_table* symtab,
5799                                Sized_relobj_file<64, true>* object,
5800                                unsigned int,
5801                                const char* group_section_name,
5802                                const char* signature,
5803                                const elfcpp::Shdr<64, true>& shdr,
5804                                elfcpp::Elf_Word flags,
5805                                std::vector<unsigned int>* shndxes);
5806 #endif
5807
5808 #ifdef HAVE_TARGET_32_LITTLE
5809 template
5810 Output_section*
5811 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5812                                    const unsigned char* symbols,
5813                                    off_t symbols_size,
5814                                    const unsigned char* symbol_names,
5815                                    off_t symbol_names_size,
5816                                    unsigned int shndx,
5817                                    const elfcpp::Shdr<32, false>& shdr,
5818                                    unsigned int reloc_shndx,
5819                                    unsigned int reloc_type,
5820                                    off_t* off);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_32_BIG
5824 template
5825 Output_section*
5826 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5827                                   const unsigned char* symbols,
5828                                   off_t symbols_size,
5829                                   const unsigned char* symbol_names,
5830                                   off_t symbol_names_size,
5831                                   unsigned int shndx,
5832                                   const elfcpp::Shdr<32, true>& shdr,
5833                                   unsigned int reloc_shndx,
5834                                   unsigned int reloc_type,
5835                                   off_t* off);
5836 #endif
5837
5838 #ifdef HAVE_TARGET_64_LITTLE
5839 template
5840 Output_section*
5841 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5842                                    const unsigned char* symbols,
5843                                    off_t symbols_size,
5844                                    const unsigned char* symbol_names,
5845                                    off_t symbol_names_size,
5846                                    unsigned int shndx,
5847                                    const elfcpp::Shdr<64, false>& shdr,
5848                                    unsigned int reloc_shndx,
5849                                    unsigned int reloc_type,
5850                                    off_t* off);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_BIG
5854 template
5855 Output_section*
5856 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5857                                   const unsigned char* symbols,
5858                                   off_t symbols_size,
5859                                   const unsigned char* symbol_names,
5860                                   off_t symbol_names_size,
5861                                   unsigned int shndx,
5862                                   const elfcpp::Shdr<64, true>& shdr,
5863                                   unsigned int reloc_shndx,
5864                                   unsigned int reloc_type,
5865                                   off_t* off);
5866 #endif
5867
5868 #ifdef HAVE_TARGET_32_LITTLE
5869 template
5870 void
5871 Layout::add_to_gdb_index(bool is_type_unit,
5872                          Sized_relobj<32, false>* object,
5873                          const unsigned char* symbols,
5874                          off_t symbols_size,
5875                          unsigned int shndx,
5876                          unsigned int reloc_shndx,
5877                          unsigned int reloc_type);
5878 #endif
5879
5880 #ifdef HAVE_TARGET_32_BIG
5881 template
5882 void
5883 Layout::add_to_gdb_index(bool is_type_unit,
5884                          Sized_relobj<32, true>* object,
5885                          const unsigned char* symbols,
5886                          off_t symbols_size,
5887                          unsigned int shndx,
5888                          unsigned int reloc_shndx,
5889                          unsigned int reloc_type);
5890 #endif
5891
5892 #ifdef HAVE_TARGET_64_LITTLE
5893 template
5894 void
5895 Layout::add_to_gdb_index(bool is_type_unit,
5896                          Sized_relobj<64, false>* object,
5897                          const unsigned char* symbols,
5898                          off_t symbols_size,
5899                          unsigned int shndx,
5900                          unsigned int reloc_shndx,
5901                          unsigned int reloc_type);
5902 #endif
5903
5904 #ifdef HAVE_TARGET_64_BIG
5905 template
5906 void
5907 Layout::add_to_gdb_index(bool is_type_unit,
5908                          Sized_relobj<64, true>* object,
5909                          const unsigned char* symbols,
5910                          off_t symbols_size,
5911                          unsigned int shndx,
5912                          unsigned int reloc_shndx,
5913                          unsigned int reloc_type);
5914 #endif
5915
5916 } // End namespace gold.