Add an option for Stringpools to not copy strings.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Return whether PREFIX is a prefix of STR.
90
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
93 {
94   return strncmp(prefix, str, strlen(prefix)) == 0;
95 }
96
97 // Whether to include this section in the link.
98
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102                         const elfcpp::Shdr<size, big_endian>& shdr)
103 {
104   // Some section types are never linked.  Some are only linked when
105   // doing a relocateable link.
106   switch (shdr.get_sh_type())
107     {
108     case elfcpp::SHT_NULL:
109     case elfcpp::SHT_SYMTAB:
110     case elfcpp::SHT_DYNSYM:
111     case elfcpp::SHT_STRTAB:
112     case elfcpp::SHT_HASH:
113     case elfcpp::SHT_DYNAMIC:
114     case elfcpp::SHT_SYMTAB_SHNDX:
115       return false;
116
117     case elfcpp::SHT_RELA:
118     case elfcpp::SHT_REL:
119     case elfcpp::SHT_GROUP:
120       return parameters->output_is_object();
121
122     case elfcpp::SHT_PROGBITS:
123       if (parameters->strip_debug()
124           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
125         {
126           // Debugging sections can only be recognized by name.
127           if (is_prefix_of(".debug", name)
128               || is_prefix_of(".gnu.linkonce.wi.", name)
129               || is_prefix_of(".line", name)
130               || is_prefix_of(".stab", name))
131             return false;
132         }
133       return true;
134
135     default:
136       return true;
137     }
138 }
139
140 // Return an output section named NAME, or NULL if there is none.
141
142 Output_section*
143 Layout::find_output_section(const char* name) const
144 {
145   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146        p != this->section_name_map_.end();
147        ++p)
148     if (strcmp(p->second->name(), name) == 0)
149       return p->second;
150   return NULL;
151 }
152
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear.  Return NULL if there is none.
155
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158                             elfcpp::Elf_Word clear) const
159 {
160   for (Segment_list::const_iterator p = this->segment_list_.begin();
161        p != this->segment_list_.end();
162        ++p)
163     if (static_cast<elfcpp::PT>((*p)->type()) == type
164         && ((*p)->flags() & set) == set
165         && ((*p)->flags() & clear) == 0)
166       return *p;
167   return NULL;
168 }
169
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
172
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
176 {
177   // We should ignore some flags.
178   flags &= ~ (elfcpp::SHF_INFO_LINK
179               | elfcpp::SHF_LINK_ORDER
180               | elfcpp::SHF_GROUP
181               | elfcpp::SHF_MERGE
182               | elfcpp::SHF_STRINGS);
183
184   const Key key(name_key, std::make_pair(type, flags));
185   const std::pair<Key, Output_section*> v(key, NULL);
186   std::pair<Section_name_map::iterator, bool> ins(
187     this->section_name_map_.insert(v));
188
189   if (!ins.second)
190     return ins.first->second;
191   else
192     {
193       // This is the first time we've seen this name/type/flags
194       // combination.
195       Output_section* os = this->make_output_section(name, type, flags);
196       ins.first->second = os;
197       return os;
198     }
199 }
200
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
203 // offset of this input section without the output section.
204
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
209 {
210   if (!this->include_section(object, name, shdr))
211     return NULL;
212
213   // If we are not doing a relocateable link, choose the name to use
214   // for the output section.
215   size_t len = strlen(name);
216   if (!parameters->output_is_object())
217     name = Layout::output_section_name(name, &len);
218
219   // FIXME: Handle SHF_OS_NONCONFORMING here.
220
221   // Canonicalize the section name.
222   Stringpool::Key name_key;
223   name = this->namepool_.add_prefix(name, len, &name_key);
224
225   // Find the output section.  The output section is selected based on
226   // the section name, type, and flags.
227   Output_section* os = this->get_output_section(name, name_key,
228                                                 shdr.get_sh_type(),
229                                                 shdr.get_sh_flags());
230
231   // Special GNU handling of sections named .eh_frame.
232   if (!parameters->output_is_object()
233       && strcmp(name, ".eh_frame") == 0
234       && shdr.get_sh_size() > 0
235       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
237     {
238       this->layout_eh_frame(object, shndx, name, shdr, os, off);
239       return os;
240     }
241
242   // FIXME: Handle SHF_LINK_ORDER somewhere.
243
244   *off = os->add_input_section(object, shndx, name, shdr);
245
246   return os;
247 }
248
249 // Special GNU handling of sections named .eh_frame.  They will
250 // normally hold exception frame data.
251
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255                         unsigned int shndx,
256                         const char* name,
257                         const elfcpp::Shdr<size, big_endian>& shdr,
258                         Output_section* os, off_t* off)
259 {
260   if (this->eh_frame_section_ == NULL)
261     {
262       this->eh_frame_section_ = os;
263
264       if (this->options_.create_eh_frame_hdr())
265         {
266           Stringpool::Key hdr_name_key;
267           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268                                                      false,
269                                                      &hdr_name_key);
270           Output_section* hdr_os =
271             this->get_output_section(hdr_name, hdr_name_key,
272                                      elfcpp::SHT_PROGBITS,
273                                      elfcpp::SHF_ALLOC);
274
275           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
276           hdr_os->add_output_section_data(hdr_posd);
277
278           Output_segment* hdr_oseg =
279             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
280           this->segment_list_.push_back(hdr_oseg);
281           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
282         }
283     }
284
285   gold_assert(this->eh_frame_section_ == os);
286
287   *off = os->add_input_section(object, shndx, name, shdr);
288 }
289
290 // Add POSD to an output section using NAME, TYPE, and FLAGS.
291
292 void
293 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
294                                 elfcpp::Elf_Xword flags,
295                                 Output_section_data* posd)
296 {
297   // Canonicalize the name.
298   Stringpool::Key name_key;
299   name = this->namepool_.add(name, true, &name_key);
300
301   Output_section* os = this->get_output_section(name, name_key, type, flags);
302   os->add_output_section_data(posd);
303 }
304
305 // Map section flags to segment flags.
306
307 elfcpp::Elf_Word
308 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
309 {
310   elfcpp::Elf_Word ret = elfcpp::PF_R;
311   if ((flags & elfcpp::SHF_WRITE) != 0)
312     ret |= elfcpp::PF_W;
313   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
314     ret |= elfcpp::PF_X;
315   return ret;
316 }
317
318 // Make a new Output_section, and attach it to segments as
319 // appropriate.
320
321 Output_section*
322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
323                             elfcpp::Elf_Xword flags)
324 {
325   Output_section* os = new Output_section(name, type, flags);
326   this->section_list_.push_back(os);
327
328   if ((flags & elfcpp::SHF_ALLOC) == 0)
329     this->unattached_section_list_.push_back(os);
330   else
331     {
332       // This output section goes into a PT_LOAD segment.
333
334       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
335
336       // The only thing we really care about for PT_LOAD segments is
337       // whether or not they are writable, so that is how we search
338       // for them.  People who need segments sorted on some other
339       // basis will have to wait until we implement a mechanism for
340       // them to describe the segments they want.
341
342       Segment_list::const_iterator p;
343       for (p = this->segment_list_.begin();
344            p != this->segment_list_.end();
345            ++p)
346         {
347           if ((*p)->type() == elfcpp::PT_LOAD
348               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
349             {
350               (*p)->add_output_section(os, seg_flags);
351               break;
352             }
353         }
354
355       if (p == this->segment_list_.end())
356         {
357           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
358                                                     seg_flags);
359           this->segment_list_.push_back(oseg);
360           oseg->add_output_section(os, seg_flags);
361         }
362
363       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
364       // segment.
365       if (type == elfcpp::SHT_NOTE)
366         {
367           // See if we already have an equivalent PT_NOTE segment.
368           for (p = this->segment_list_.begin();
369                p != segment_list_.end();
370                ++p)
371             {
372               if ((*p)->type() == elfcpp::PT_NOTE
373                   && (((*p)->flags() & elfcpp::PF_W)
374                       == (seg_flags & elfcpp::PF_W)))
375                 {
376                   (*p)->add_output_section(os, seg_flags);
377                   break;
378                 }
379             }
380
381           if (p == this->segment_list_.end())
382             {
383               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
384                                                         seg_flags);
385               this->segment_list_.push_back(oseg);
386               oseg->add_output_section(os, seg_flags);
387             }
388         }
389
390       // If we see a loadable SHF_TLS section, we create a PT_TLS
391       // segment.  There can only be one such segment.
392       if ((flags & elfcpp::SHF_TLS) != 0)
393         {
394           if (this->tls_segment_ == NULL)
395             {
396               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
397                                                       seg_flags);
398               this->segment_list_.push_back(this->tls_segment_);
399             }
400           this->tls_segment_->add_output_section(os, seg_flags);
401         }
402     }
403
404   return os;
405 }
406
407 // Create the dynamic sections which are needed before we read the
408 // relocs.
409
410 void
411 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
412                                         Symbol_table* symtab)
413 {
414   if (!input_objects->any_dynamic())
415     return;
416
417   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
418   this->dynamic_section_ = this->make_output_section(dynamic_name,
419                                                      elfcpp::SHT_DYNAMIC,
420                                                      (elfcpp::SHF_ALLOC
421                                                       | elfcpp::SHF_WRITE));
422
423   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
424                                 this->dynamic_section_, 0, 0,
425                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
426                                 elfcpp::STV_HIDDEN, 0, false, false);
427
428   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
429
430   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
431 }
432
433 // For each output section whose name can be represented as C symbol,
434 // define __start and __stop symbols for the section.  This is a GNU
435 // extension.
436
437 void
438 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
439 {
440   for (Section_list::const_iterator p = this->section_list_.begin();
441        p != this->section_list_.end();
442        ++p)
443     {
444       const char* const name = (*p)->name();
445       if (name[strspn(name,
446                       ("0123456789"
447                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
448                        "abcdefghijklmnopqrstuvwxyz"
449                        "_"))]
450           == '\0')
451         {
452           const std::string name_string(name);
453           const std::string start_name("__start_" + name_string);
454           const std::string stop_name("__stop_" + name_string);
455
456           symtab->define_in_output_data(target,
457                                         start_name.c_str(),
458                                         NULL, // version
459                                         *p,
460                                         0, // value
461                                         0, // symsize
462                                         elfcpp::STT_NOTYPE,
463                                         elfcpp::STB_GLOBAL,
464                                         elfcpp::STV_DEFAULT,
465                                         0, // nonvis
466                                         false, // offset_is_from_end
467                                         false); // only_if_ref
468
469           symtab->define_in_output_data(target,
470                                         stop_name.c_str(),
471                                         NULL, // version
472                                         *p,
473                                         0, // value
474                                         0, // symsize
475                                         elfcpp::STT_NOTYPE,
476                                         elfcpp::STB_GLOBAL,
477                                         elfcpp::STV_DEFAULT,
478                                         0, // nonvis
479                                         true, // offset_is_from_end
480                                         false); // only_if_ref
481         }
482     }
483 }
484
485 // Find the first read-only PT_LOAD segment, creating one if
486 // necessary.
487
488 Output_segment*
489 Layout::find_first_load_seg()
490 {
491   for (Segment_list::const_iterator p = this->segment_list_.begin();
492        p != this->segment_list_.end();
493        ++p)
494     {
495       if ((*p)->type() == elfcpp::PT_LOAD
496           && ((*p)->flags() & elfcpp::PF_R) != 0
497           && ((*p)->flags() & elfcpp::PF_W) == 0)
498         return *p;
499     }
500
501   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
502   this->segment_list_.push_back(load_seg);
503   return load_seg;
504 }
505
506 // Finalize the layout.  When this is called, we have created all the
507 // output sections and all the output segments which are based on
508 // input sections.  We have several things to do, and we have to do
509 // them in the right order, so that we get the right results correctly
510 // and efficiently.
511
512 // 1) Finalize the list of output segments and create the segment
513 // table header.
514
515 // 2) Finalize the dynamic symbol table and associated sections.
516
517 // 3) Determine the final file offset of all the output segments.
518
519 // 4) Determine the final file offset of all the SHF_ALLOC output
520 // sections.
521
522 // 5) Create the symbol table sections and the section name table
523 // section.
524
525 // 6) Finalize the symbol table: set symbol values to their final
526 // value and make a final determination of which symbols are going
527 // into the output symbol table.
528
529 // 7) Create the section table header.
530
531 // 8) Determine the final file offset of all the output sections which
532 // are not SHF_ALLOC, including the section table header.
533
534 // 9) Finalize the ELF file header.
535
536 // This function returns the size of the output file.
537
538 off_t
539 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
540 {
541   Target* const target = input_objects->target();
542
543   target->finalize_sections(this);
544
545   this->create_note_section();
546
547   Output_segment* phdr_seg = NULL;
548   if (input_objects->any_dynamic())
549     {
550       // There was a dynamic object in the link.  We need to create
551       // some information for the dynamic linker.
552
553       // Create the PT_PHDR segment which will hold the program
554       // headers.
555       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
556       this->segment_list_.push_back(phdr_seg);
557
558       // Create the dynamic symbol table, including the hash table.
559       Output_section* dynstr;
560       std::vector<Symbol*> dynamic_symbols;
561       unsigned int local_dynamic_count;
562       Versions versions;
563       this->create_dynamic_symtab(target, symtab, &dynstr,
564                                   &local_dynamic_count, &dynamic_symbols,
565                                   &versions);
566
567       // Create the .interp section to hold the name of the
568       // interpreter, and put it in a PT_INTERP segment.
569       this->create_interp(target);
570
571       // Finish the .dynamic section to hold the dynamic data, and put
572       // it in a PT_DYNAMIC segment.
573       this->finish_dynamic_section(input_objects, symtab);
574
575       // We should have added everything we need to the dynamic string
576       // table.
577       this->dynpool_.set_string_offsets();
578
579       // Create the version sections.  We can't do this until the
580       // dynamic string table is complete.
581       this->create_version_sections(&versions, local_dynamic_count,
582                                     dynamic_symbols, dynstr);
583     }
584
585   // FIXME: Handle PT_GNU_STACK.
586
587   Output_segment* load_seg = this->find_first_load_seg();
588
589   // Lay out the segment headers.
590   Output_segment_headers* segment_headers;
591   segment_headers = new Output_segment_headers(this->segment_list_);
592   load_seg->add_initial_output_data(segment_headers);
593   this->special_output_list_.push_back(segment_headers);
594   if (phdr_seg != NULL)
595     phdr_seg->add_initial_output_data(segment_headers);
596
597   // Lay out the file header.
598   Output_file_header* file_header;
599   file_header = new Output_file_header(target, symtab, segment_headers);
600   load_seg->add_initial_output_data(file_header);
601   this->special_output_list_.push_back(file_header);
602
603   // We set the output section indexes in set_segment_offsets and
604   // set_section_offsets.
605   unsigned int shndx = 1;
606
607   // Set the file offsets of all the segments, and all the sections
608   // they contain.
609   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
610
611   // Create the symbol table sections.
612   this->create_symtab_sections(input_objects, symtab, &off);
613
614   // Create the .shstrtab section.
615   Output_section* shstrtab_section = this->create_shstrtab();
616
617   // Set the file offsets of all the sections not associated with
618   // segments.
619   off = this->set_section_offsets(off, &shndx);
620
621   // Create the section table header.
622   Output_section_headers* oshdrs = this->create_shdrs(&off);
623
624   file_header->set_section_info(oshdrs, shstrtab_section);
625
626   // Now we know exactly where everything goes in the output file.
627   Output_data::layout_complete();
628
629   this->output_file_size_ = off;
630
631   return off;
632 }
633
634 // Create a .note section for an executable or shared library.  This
635 // records the version of gold used to create the binary.
636
637 void
638 Layout::create_note_section()
639 {
640   if (parameters->output_is_object())
641     return;
642
643   const int size = parameters->get_size();
644
645   // The contents of the .note section.
646   const char* name = "GNU";
647   std::string desc(std::string("gold ") + gold::get_version_string());
648   size_t namesz = strlen(name) + 1;
649   size_t aligned_namesz = align_address(namesz, size / 8);
650   size_t descsz = desc.length() + 1;
651   size_t aligned_descsz = align_address(descsz, size / 8);
652   const int note_type = 4;
653
654   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
655
656   unsigned char buffer[128];
657   gold_assert(sizeof buffer >= notesz);
658   memset(buffer, 0, notesz);
659
660   bool is_big_endian = parameters->is_big_endian();
661
662   if (size == 32)
663     {
664       if (!is_big_endian)
665         {
666           elfcpp::Swap<32, false>::writeval(buffer, namesz);
667           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
668           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
669         }
670       else
671         {
672           elfcpp::Swap<32, true>::writeval(buffer, namesz);
673           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
674           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
675         }
676     }
677   else if (size == 64)
678     {
679       if (!is_big_endian)
680         {
681           elfcpp::Swap<64, false>::writeval(buffer, namesz);
682           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
683           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
684         }
685       else
686         {
687           elfcpp::Swap<64, true>::writeval(buffer, namesz);
688           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
689           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
690         }
691     }
692   else
693     gold_unreachable();
694
695   memcpy(buffer + 3 * (size / 8), name, namesz);
696   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
697
698   const char* note_name = this->namepool_.add(".note", false, NULL);
699   Output_section* os = this->make_output_section(note_name,
700                                                  elfcpp::SHT_NOTE,
701                                                  0);
702   Output_section_data* posd = new Output_data_const(buffer, notesz,
703                                                     size / 8);
704   os->add_output_section_data(posd);
705 }
706
707 // Return whether SEG1 should be before SEG2 in the output file.  This
708 // is based entirely on the segment type and flags.  When this is
709 // called the segment addresses has normally not yet been set.
710
711 bool
712 Layout::segment_precedes(const Output_segment* seg1,
713                          const Output_segment* seg2)
714 {
715   elfcpp::Elf_Word type1 = seg1->type();
716   elfcpp::Elf_Word type2 = seg2->type();
717
718   // The single PT_PHDR segment is required to precede any loadable
719   // segment.  We simply make it always first.
720   if (type1 == elfcpp::PT_PHDR)
721     {
722       gold_assert(type2 != elfcpp::PT_PHDR);
723       return true;
724     }
725   if (type2 == elfcpp::PT_PHDR)
726     return false;
727
728   // The single PT_INTERP segment is required to precede any loadable
729   // segment.  We simply make it always second.
730   if (type1 == elfcpp::PT_INTERP)
731     {
732       gold_assert(type2 != elfcpp::PT_INTERP);
733       return true;
734     }
735   if (type2 == elfcpp::PT_INTERP)
736     return false;
737
738   // We then put PT_LOAD segments before any other segments.
739   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
740     return true;
741   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
742     return false;
743
744   // We put the PT_TLS segment last, because that is where the dynamic
745   // linker expects to find it (this is just for efficiency; other
746   // positions would also work correctly).
747   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
748     return false;
749   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
750     return true;
751
752   const elfcpp::Elf_Word flags1 = seg1->flags();
753   const elfcpp::Elf_Word flags2 = seg2->flags();
754
755   // The order of non-PT_LOAD segments is unimportant.  We simply sort
756   // by the numeric segment type and flags values.  There should not
757   // be more than one segment with the same type and flags.
758   if (type1 != elfcpp::PT_LOAD)
759     {
760       if (type1 != type2)
761         return type1 < type2;
762       gold_assert(flags1 != flags2);
763       return flags1 < flags2;
764     }
765
766   // We sort PT_LOAD segments based on the flags.  Readonly segments
767   // come before writable segments.  Then executable segments come
768   // before non-executable segments.  Then the unlikely case of a
769   // non-readable segment comes before the normal case of a readable
770   // segment.  If there are multiple segments with the same type and
771   // flags, we require that the address be set, and we sort by
772   // virtual address and then physical address.
773   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
774     return (flags1 & elfcpp::PF_W) == 0;
775   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
776     return (flags1 & elfcpp::PF_X) != 0;
777   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
778     return (flags1 & elfcpp::PF_R) == 0;
779
780   uint64_t vaddr1 = seg1->vaddr();
781   uint64_t vaddr2 = seg2->vaddr();
782   if (vaddr1 != vaddr2)
783     return vaddr1 < vaddr2;
784
785   uint64_t paddr1 = seg1->paddr();
786   uint64_t paddr2 = seg2->paddr();
787   gold_assert(paddr1 != paddr2);
788   return paddr1 < paddr2;
789 }
790
791 // Set the file offsets of all the segments, and all the sections they
792 // contain.  They have all been created.  LOAD_SEG must be be laid out
793 // first.  Return the offset of the data to follow.
794
795 off_t
796 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
797                             unsigned int *pshndx)
798 {
799   // Sort them into the final order.
800   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
801             Layout::Compare_segments());
802
803   // Find the PT_LOAD segments, and set their addresses and offsets
804   // and their section's addresses and offsets.
805   uint64_t addr = target->text_segment_address();
806   off_t off = 0;
807   bool was_readonly = false;
808   for (Segment_list::iterator p = this->segment_list_.begin();
809        p != this->segment_list_.end();
810        ++p)
811     {
812       if ((*p)->type() == elfcpp::PT_LOAD)
813         {
814           if (load_seg != NULL && load_seg != *p)
815             gold_unreachable();
816           load_seg = NULL;
817
818           // If the last segment was readonly, and this one is not,
819           // then skip the address forward one page, maintaining the
820           // same position within the page.  This lets us store both
821           // segments overlapping on a single page in the file, but
822           // the loader will put them on different pages in memory.
823
824           uint64_t orig_addr = addr;
825           uint64_t orig_off = off;
826
827           uint64_t aligned_addr = addr;
828           uint64_t abi_pagesize = target->abi_pagesize();
829
830           // FIXME: This should depend on the -n and -N options.
831           (*p)->set_minimum_addralign(target->common_pagesize());
832
833           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
834             {
835               uint64_t align = (*p)->addralign();
836
837               addr = align_address(addr, align);
838               aligned_addr = addr;
839               if ((addr & (abi_pagesize - 1)) != 0)
840                 addr = addr + abi_pagesize;
841             }
842
843           unsigned int shndx_hold = *pshndx;
844           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
845           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
846
847           // Now that we know the size of this segment, we may be able
848           // to save a page in memory, at the cost of wasting some
849           // file space, by instead aligning to the start of a new
850           // page.  Here we use the real machine page size rather than
851           // the ABI mandated page size.
852
853           if (aligned_addr != addr)
854             {
855               uint64_t common_pagesize = target->common_pagesize();
856               uint64_t first_off = (common_pagesize
857                                     - (aligned_addr
858                                        & (common_pagesize - 1)));
859               uint64_t last_off = new_addr & (common_pagesize - 1);
860               if (first_off > 0
861                   && last_off > 0
862                   && ((aligned_addr & ~ (common_pagesize - 1))
863                       != (new_addr & ~ (common_pagesize - 1)))
864                   && first_off + last_off <= common_pagesize)
865                 {
866                   *pshndx = shndx_hold;
867                   addr = align_address(aligned_addr, common_pagesize);
868                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
869                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
870                 }
871             }
872
873           addr = new_addr;
874
875           if (((*p)->flags() & elfcpp::PF_W) == 0)
876             was_readonly = true;
877         }
878     }
879
880   // Handle the non-PT_LOAD segments, setting their offsets from their
881   // section's offsets.
882   for (Segment_list::iterator p = this->segment_list_.begin();
883        p != this->segment_list_.end();
884        ++p)
885     {
886       if ((*p)->type() != elfcpp::PT_LOAD)
887         (*p)->set_offset();
888     }
889
890   return off;
891 }
892
893 // Set the file offset of all the sections not associated with a
894 // segment.
895
896 off_t
897 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
898 {
899   for (Section_list::iterator p = this->unattached_section_list_.begin();
900        p != this->unattached_section_list_.end();
901        ++p)
902     {
903       (*p)->set_out_shndx(*pshndx);
904       ++*pshndx;
905       if ((*p)->offset() != -1)
906         continue;
907       off = align_address(off, (*p)->addralign());
908       (*p)->set_address(0, off);
909       off += (*p)->data_size();
910     }
911   return off;
912 }
913
914 // Create the symbol table sections.  Here we also set the final
915 // values of the symbols.  At this point all the loadable sections are
916 // fully laid out.
917
918 void
919 Layout::create_symtab_sections(const Input_objects* input_objects,
920                                Symbol_table* symtab,
921                                off_t* poff)
922 {
923   int symsize;
924   unsigned int align;
925   if (parameters->get_size() == 32)
926     {
927       symsize = elfcpp::Elf_sizes<32>::sym_size;
928       align = 4;
929     }
930   else if (parameters->get_size() == 64)
931     {
932       symsize = elfcpp::Elf_sizes<64>::sym_size;
933       align = 8;
934     }
935   else
936     gold_unreachable();
937
938   off_t off = *poff;
939   off = align_address(off, align);
940   off_t startoff = off;
941
942   // Save space for the dummy symbol at the start of the section.  We
943   // never bother to write this out--it will just be left as zero.
944   off += symsize;
945   unsigned int local_symbol_index = 1;
946
947   // Add STT_SECTION symbols for each Output section which needs one.
948   for (Section_list::iterator p = this->section_list_.begin();
949        p != this->section_list_.end();
950        ++p)
951     {
952       if (!(*p)->needs_symtab_index())
953         (*p)->set_symtab_index(-1U);
954       else
955         {
956           (*p)->set_symtab_index(local_symbol_index);
957           ++local_symbol_index;
958           off += symsize;
959         }
960     }
961
962   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
963        p != input_objects->relobj_end();
964        ++p)
965     {
966       Task_lock_obj<Object> tlo(**p);
967       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
968                                                         off,
969                                                         &this->sympool_);
970       off += (index - local_symbol_index) * symsize;
971       local_symbol_index = index;
972     }
973
974   unsigned int local_symcount = local_symbol_index;
975   gold_assert(local_symcount * symsize == off - startoff);
976
977   off_t dynoff;
978   size_t dyn_global_index;
979   size_t dyncount;
980   if (this->dynsym_section_ == NULL)
981     {
982       dynoff = 0;
983       dyn_global_index = 0;
984       dyncount = 0;
985     }
986   else
987     {
988       dyn_global_index = this->dynsym_section_->info();
989       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
990       dynoff = this->dynsym_section_->offset() + locsize;
991       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
992       gold_assert(static_cast<off_t>(dyncount * symsize)
993                   == this->dynsym_section_->data_size() - locsize);
994     }
995
996   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
997                          dyncount, &this->sympool_);
998
999   if (!parameters->strip_all())
1000     {
1001       this->sympool_.set_string_offsets();
1002
1003       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1004       Output_section* osymtab = this->make_output_section(symtab_name,
1005                                                           elfcpp::SHT_SYMTAB,
1006                                                           0);
1007       this->symtab_section_ = osymtab;
1008
1009       Output_section_data* pos = new Output_data_space(off - startoff,
1010                                                        align);
1011       osymtab->add_output_section_data(pos);
1012
1013       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1014       Output_section* ostrtab = this->make_output_section(strtab_name,
1015                                                           elfcpp::SHT_STRTAB,
1016                                                           0);
1017
1018       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1019       ostrtab->add_output_section_data(pstr);
1020
1021       osymtab->set_address(0, startoff);
1022       osymtab->set_link_section(ostrtab);
1023       osymtab->set_info(local_symcount);
1024       osymtab->set_entsize(symsize);
1025
1026       *poff = off;
1027     }
1028 }
1029
1030 // Create the .shstrtab section, which holds the names of the
1031 // sections.  At the time this is called, we have created all the
1032 // output sections except .shstrtab itself.
1033
1034 Output_section*
1035 Layout::create_shstrtab()
1036 {
1037   // FIXME: We don't need to create a .shstrtab section if we are
1038   // stripping everything.
1039
1040   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1041
1042   this->namepool_.set_string_offsets();
1043
1044   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1045
1046   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1047   os->add_output_section_data(posd);
1048
1049   return os;
1050 }
1051
1052 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1053 // offset.
1054
1055 Output_section_headers*
1056 Layout::create_shdrs(off_t* poff)
1057 {
1058   Output_section_headers* oshdrs;
1059   oshdrs = new Output_section_headers(this,
1060                                       &this->segment_list_,
1061                                       &this->unattached_section_list_,
1062                                       &this->namepool_);
1063   off_t off = align_address(*poff, oshdrs->addralign());
1064   oshdrs->set_address(0, off);
1065   off += oshdrs->data_size();
1066   *poff = off;
1067   this->special_output_list_.push_back(oshdrs);
1068   return oshdrs;
1069 }
1070
1071 // Create the dynamic symbol table.
1072
1073 void
1074 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1075                               Output_section **pdynstr,
1076                               unsigned int* plocal_dynamic_count,
1077                               std::vector<Symbol*>* pdynamic_symbols,
1078                               Versions* pversions)
1079 {
1080   // Count all the symbols in the dynamic symbol table, and set the
1081   // dynamic symbol indexes.
1082
1083   // Skip symbol 0, which is always all zeroes.
1084   unsigned int index = 1;
1085
1086   // Add STT_SECTION symbols for each Output section which needs one.
1087   for (Section_list::iterator p = this->section_list_.begin();
1088        p != this->section_list_.end();
1089        ++p)
1090     {
1091       if (!(*p)->needs_dynsym_index())
1092         (*p)->set_dynsym_index(-1U);
1093       else
1094         {
1095           (*p)->set_dynsym_index(index);
1096           ++index;
1097         }
1098     }
1099
1100   // FIXME: Some targets apparently require local symbols in the
1101   // dynamic symbol table.  Here is where we will have to count them,
1102   // and set the dynamic symbol indexes, and add the names to
1103   // this->dynpool_.
1104
1105   unsigned int local_symcount = index;
1106   *plocal_dynamic_count = local_symcount;
1107
1108   // FIXME: We have to tell set_dynsym_indexes whether the
1109   // -E/--export-dynamic option was used.
1110   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1111                                      pdynamic_symbols, &this->dynpool_,
1112                                      pversions);
1113
1114   int symsize;
1115   unsigned int align;
1116   const int size = parameters->get_size();
1117   if (size == 32)
1118     {
1119       symsize = elfcpp::Elf_sizes<32>::sym_size;
1120       align = 4;
1121     }
1122   else if (size == 64)
1123     {
1124       symsize = elfcpp::Elf_sizes<64>::sym_size;
1125       align = 8;
1126     }
1127   else
1128     gold_unreachable();
1129
1130   // Create the dynamic symbol table section.
1131
1132   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1133   Output_section* dynsym = this->make_output_section(dynsym_name,
1134                                                      elfcpp::SHT_DYNSYM,
1135                                                      elfcpp::SHF_ALLOC);
1136
1137   Output_section_data* odata = new Output_data_space(index * symsize,
1138                                                      align);
1139   dynsym->add_output_section_data(odata);
1140
1141   dynsym->set_info(local_symcount);
1142   dynsym->set_entsize(symsize);
1143   dynsym->set_addralign(align);
1144
1145   this->dynsym_section_ = dynsym;
1146
1147   Output_data_dynamic* const odyn = this->dynamic_data_;
1148   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1149   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1150
1151   // Create the dynamic string table section.
1152
1153   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1154   Output_section* dynstr = this->make_output_section(dynstr_name,
1155                                                      elfcpp::SHT_STRTAB,
1156                                                      elfcpp::SHF_ALLOC);
1157
1158   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1159   dynstr->add_output_section_data(strdata);
1160
1161   dynsym->set_link_section(dynstr);
1162   this->dynamic_section_->set_link_section(dynstr);
1163
1164   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1165   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1166
1167   *pdynstr = dynstr;
1168
1169   // Create the hash tables.
1170
1171   // FIXME: We need an option to create a GNU hash table.
1172
1173   unsigned char* phash;
1174   unsigned int hashlen;
1175   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1176                                 &phash, &hashlen);
1177
1178   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1179   Output_section* hashsec = this->make_output_section(hash_name,
1180                                                       elfcpp::SHT_HASH,
1181                                                       elfcpp::SHF_ALLOC);
1182
1183   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1184                                                                hashlen,
1185                                                                align);
1186   hashsec->add_output_section_data(hashdata);
1187
1188   hashsec->set_link_section(dynsym);
1189   hashsec->set_entsize(4);
1190
1191   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1192 }
1193
1194 // Create the version sections.
1195
1196 void
1197 Layout::create_version_sections(const Versions* versions,
1198                                 unsigned int local_symcount,
1199                                 const std::vector<Symbol*>& dynamic_symbols,
1200                                 const Output_section* dynstr)
1201 {
1202   if (!versions->any_defs() && !versions->any_needs())
1203     return;
1204
1205   if (parameters->get_size() == 32)
1206     {
1207       if (parameters->is_big_endian())
1208         {
1209 #ifdef HAVE_TARGET_32_BIG
1210           this->sized_create_version_sections
1211               SELECT_SIZE_ENDIAN_NAME(32, true)(
1212                   versions, local_symcount, dynamic_symbols, dynstr
1213                   SELECT_SIZE_ENDIAN(32, true));
1214 #else
1215           gold_unreachable();
1216 #endif
1217         }
1218       else
1219         {
1220 #ifdef HAVE_TARGET_32_LITTLE
1221           this->sized_create_version_sections
1222               SELECT_SIZE_ENDIAN_NAME(32, false)(
1223                   versions, local_symcount, dynamic_symbols, dynstr
1224                   SELECT_SIZE_ENDIAN(32, false));
1225 #else
1226           gold_unreachable();
1227 #endif
1228         }
1229     }
1230   else if (parameters->get_size() == 64)
1231     {
1232       if (parameters->is_big_endian())
1233         {
1234 #ifdef HAVE_TARGET_64_BIG
1235           this->sized_create_version_sections
1236               SELECT_SIZE_ENDIAN_NAME(64, true)(
1237                   versions, local_symcount, dynamic_symbols, dynstr
1238                   SELECT_SIZE_ENDIAN(64, true));
1239 #else
1240           gold_unreachable();
1241 #endif
1242         }
1243       else
1244         {
1245 #ifdef HAVE_TARGET_64_LITTLE
1246           this->sized_create_version_sections
1247               SELECT_SIZE_ENDIAN_NAME(64, false)(
1248                   versions, local_symcount, dynamic_symbols, dynstr
1249                   SELECT_SIZE_ENDIAN(64, false));
1250 #else
1251           gold_unreachable();
1252 #endif
1253         }
1254     }
1255   else
1256     gold_unreachable();
1257 }
1258
1259 // Create the version sections, sized version.
1260
1261 template<int size, bool big_endian>
1262 void
1263 Layout::sized_create_version_sections(
1264     const Versions* versions,
1265     unsigned int local_symcount,
1266     const std::vector<Symbol*>& dynamic_symbols,
1267     const Output_section* dynstr
1268     ACCEPT_SIZE_ENDIAN)
1269 {
1270   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1271   Output_section* vsec = this->make_output_section(vname,
1272                                                    elfcpp::SHT_GNU_versym,
1273                                                    elfcpp::SHF_ALLOC);
1274
1275   unsigned char* vbuf;
1276   unsigned int vsize;
1277   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1278       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1279       SELECT_SIZE_ENDIAN(size, big_endian));
1280
1281   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1282
1283   vsec->add_output_section_data(vdata);
1284   vsec->set_entsize(2);
1285   vsec->set_link_section(this->dynsym_section_);
1286
1287   Output_data_dynamic* const odyn = this->dynamic_data_;
1288   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1289
1290   if (versions->any_defs())
1291     {
1292       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1293       Output_section *vdsec;
1294       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1295                                         elfcpp::SHF_ALLOC);
1296
1297       unsigned char* vdbuf;
1298       unsigned int vdsize;
1299       unsigned int vdentries;
1300       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1301           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1302           SELECT_SIZE_ENDIAN(size, big_endian));
1303
1304       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1305                                                                  vdsize,
1306                                                                  4);
1307
1308       vdsec->add_output_section_data(vddata);
1309       vdsec->set_link_section(dynstr);
1310       vdsec->set_info(vdentries);
1311
1312       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1313       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1314     }
1315
1316   if (versions->any_needs())
1317     {
1318       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1319       Output_section* vnsec;
1320       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1321                                         elfcpp::SHF_ALLOC);
1322
1323       unsigned char* vnbuf;
1324       unsigned int vnsize;
1325       unsigned int vnentries;
1326       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1327         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1328          SELECT_SIZE_ENDIAN(size, big_endian));
1329
1330       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1331                                                                  vnsize,
1332                                                                  4);
1333
1334       vnsec->add_output_section_data(vndata);
1335       vnsec->set_link_section(dynstr);
1336       vnsec->set_info(vnentries);
1337
1338       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1339       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1340     }
1341 }
1342
1343 // Create the .interp section and PT_INTERP segment.
1344
1345 void
1346 Layout::create_interp(const Target* target)
1347 {
1348   const char* interp = this->options_.dynamic_linker();
1349   if (interp == NULL)
1350     {
1351       interp = target->dynamic_linker();
1352       gold_assert(interp != NULL);
1353     }
1354
1355   size_t len = strlen(interp) + 1;
1356
1357   Output_section_data* odata = new Output_data_const(interp, len, 1);
1358
1359   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1360   Output_section* osec = this->make_output_section(interp_name,
1361                                                    elfcpp::SHT_PROGBITS,
1362                                                    elfcpp::SHF_ALLOC);
1363   osec->add_output_section_data(odata);
1364
1365   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1366   this->segment_list_.push_back(oseg);
1367   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1368 }
1369
1370 // Finish the .dynamic section and PT_DYNAMIC segment.
1371
1372 void
1373 Layout::finish_dynamic_section(const Input_objects* input_objects,
1374                                const Symbol_table* symtab)
1375 {
1376   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1377                                             elfcpp::PF_R | elfcpp::PF_W);
1378   this->segment_list_.push_back(oseg);
1379   oseg->add_initial_output_section(this->dynamic_section_,
1380                                    elfcpp::PF_R | elfcpp::PF_W);
1381
1382   Output_data_dynamic* const odyn = this->dynamic_data_;
1383
1384   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1385        p != input_objects->dynobj_end();
1386        ++p)
1387     {
1388       // FIXME: Handle --as-needed.
1389       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1390     }
1391
1392   // FIXME: Support --init and --fini.
1393   Symbol* sym = symtab->lookup("_init");
1394   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1395     odyn->add_symbol(elfcpp::DT_INIT, sym);
1396
1397   sym = symtab->lookup("_fini");
1398   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1399     odyn->add_symbol(elfcpp::DT_FINI, sym);
1400
1401   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1402
1403   // Add a DT_RPATH entry if needed.
1404   const General_options::Dir_list& rpath(this->options_.rpath());
1405   if (!rpath.empty())
1406     {
1407       std::string rpath_val;
1408       for (General_options::Dir_list::const_iterator p = rpath.begin();
1409            p != rpath.end();
1410            ++p)
1411         {
1412           if (rpath_val.empty())
1413             rpath_val = p->name();
1414           else
1415             {
1416               // Eliminate duplicates.
1417               General_options::Dir_list::const_iterator q;
1418               for (q = rpath.begin(); q != p; ++q)
1419                 if (q->name() == p->name())
1420                   break;
1421               if (q == p)
1422                 {
1423                   rpath_val += ':';
1424                   rpath_val += p->name();
1425                 }
1426             }
1427         }
1428
1429       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1430     }
1431 }
1432
1433 // The mapping of .gnu.linkonce section names to real section names.
1434
1435 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1436 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1437 {
1438   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1439   MAPPING_INIT("t", ".text"),
1440   MAPPING_INIT("r", ".rodata"),
1441   MAPPING_INIT("d", ".data"),
1442   MAPPING_INIT("b", ".bss"),
1443   MAPPING_INIT("s", ".sdata"),
1444   MAPPING_INIT("sb", ".sbss"),
1445   MAPPING_INIT("s2", ".sdata2"),
1446   MAPPING_INIT("sb2", ".sbss2"),
1447   MAPPING_INIT("wi", ".debug_info"),
1448   MAPPING_INIT("td", ".tdata"),
1449   MAPPING_INIT("tb", ".tbss"),
1450   MAPPING_INIT("lr", ".lrodata"),
1451   MAPPING_INIT("l", ".ldata"),
1452   MAPPING_INIT("lb", ".lbss"),
1453 };
1454 #undef MAPPING_INIT
1455
1456 const int Layout::linkonce_mapping_count =
1457   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1458
1459 // Return the name of the output section to use for a .gnu.linkonce
1460 // section.  This is based on the default ELF linker script of the old
1461 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1462 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1463 // initialized to the length of NAME.
1464
1465 const char*
1466 Layout::linkonce_output_name(const char* name, size_t *plen)
1467 {
1468   const char* s = name + sizeof(".gnu.linkonce") - 1;
1469   if (*s != '.')
1470     return name;
1471   ++s;
1472   const Linkonce_mapping* plm = linkonce_mapping;
1473   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1474     {
1475       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1476         {
1477           *plen = plm->tolen;
1478           return plm->to;
1479         }
1480     }
1481   return name;
1482 }
1483
1484 // Choose the output section name to use given an input section name.
1485 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1486 // length of NAME.
1487
1488 const char*
1489 Layout::output_section_name(const char* name, size_t* plen)
1490 {
1491   if (Layout::is_linkonce(name))
1492     {
1493       // .gnu.linkonce sections are laid out as though they were named
1494       // for the sections are placed into.
1495       return Layout::linkonce_output_name(name, plen);
1496     }
1497
1498   // If the section name has no '.', or only an initial '.', we use
1499   // the name unchanged (i.e., ".text" is unchanged).
1500
1501   // Otherwise, if the section name does not include ".rel", we drop
1502   // the last '.'  and everything that follows (i.e., ".text.XXX"
1503   // becomes ".text").
1504
1505   // Otherwise, if the section name has zero or one '.' after the
1506   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1507   // unchanged).
1508
1509   // Otherwise, we drop the last '.' and everything that follows
1510   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1511
1512   const char* s = name;
1513   if (*s == '.')
1514     ++s;
1515   const char* sdot = strchr(s, '.');
1516   if (sdot == NULL)
1517     return name;
1518
1519   const char* srel = strstr(s, ".rel");
1520   if (srel == NULL)
1521     {
1522       *plen = sdot - name;
1523       return name;
1524     }
1525
1526   sdot = strchr(srel + 1, '.');
1527   if (sdot == NULL)
1528     return name;
1529   sdot = strchr(sdot + 1, '.');
1530   if (sdot == NULL)
1531     return name;
1532
1533   *plen = sdot - name;
1534   return name;
1535 }
1536
1537 // Record the signature of a comdat section, and return whether to
1538 // include it in the link.  If GROUP is true, this is a regular
1539 // section group.  If GROUP is false, this is a group signature
1540 // derived from the name of a linkonce section.  We want linkonce
1541 // signatures and group signatures to block each other, but we don't
1542 // want a linkonce signature to block another linkonce signature.
1543
1544 bool
1545 Layout::add_comdat(const char* signature, bool group)
1546 {
1547   std::string sig(signature);
1548   std::pair<Signatures::iterator, bool> ins(
1549     this->signatures_.insert(std::make_pair(sig, group)));
1550
1551   if (ins.second)
1552     {
1553       // This is the first time we've seen this signature.
1554       return true;
1555     }
1556
1557   if (ins.first->second)
1558     {
1559       // We've already seen a real section group with this signature.
1560       return false;
1561     }
1562   else if (group)
1563     {
1564       // This is a real section group, and we've already seen a
1565       // linkonce section with this signature.  Record that we've seen
1566       // a section group, and don't include this section group.
1567       ins.first->second = true;
1568       return false;
1569     }
1570   else
1571     {
1572       // We've already seen a linkonce section and this is a linkonce
1573       // section.  These don't block each other--this may be the same
1574       // symbol name with different section types.
1575       return true;
1576     }
1577 }
1578
1579 // Write out data not associated with a section or the symbol table.
1580
1581 void
1582 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1583 {
1584   if (!parameters->strip_all())
1585     {
1586       const Output_section* symtab_section = this->symtab_section_;
1587       for (Section_list::const_iterator p = this->section_list_.begin();
1588            p != this->section_list_.end();
1589            ++p)
1590         {
1591           if ((*p)->needs_symtab_index())
1592             {
1593               gold_assert(symtab_section != NULL);
1594               unsigned int index = (*p)->symtab_index();
1595               gold_assert(index > 0 && index != -1U);
1596               off_t off = (symtab_section->offset()
1597                            + index * symtab_section->entsize());
1598               symtab->write_section_symbol(*p, of, off);
1599             }
1600         }
1601     }
1602
1603   const Output_section* dynsym_section = this->dynsym_section_;
1604   for (Section_list::const_iterator p = this->section_list_.begin();
1605        p != this->section_list_.end();
1606        ++p)
1607     {
1608       if ((*p)->needs_dynsym_index())
1609         {
1610           gold_assert(dynsym_section != NULL);
1611           unsigned int index = (*p)->dynsym_index();
1612           gold_assert(index > 0 && index != -1U);
1613           off_t off = (dynsym_section->offset()
1614                        + index * dynsym_section->entsize());
1615           symtab->write_section_symbol(*p, of, off);
1616         }
1617     }
1618
1619   // Write out the Output_sections.  Most won't have anything to
1620   // write, since most of the data will come from input sections which
1621   // are handled elsewhere.  But some Output_sections do have
1622   // Output_data.
1623   for (Section_list::const_iterator p = this->section_list_.begin();
1624        p != this->section_list_.end();
1625        ++p)
1626     (*p)->write(of);
1627
1628   // Write out the Output_data which are not in an Output_section.
1629   for (Data_list::const_iterator p = this->special_output_list_.begin();
1630        p != this->special_output_list_.end();
1631        ++p)
1632     (*p)->write(of);
1633 }
1634
1635 // Write_data_task methods.
1636
1637 // We can always run this task.
1638
1639 Task::Is_runnable_type
1640 Write_data_task::is_runnable(Workqueue*)
1641 {
1642   return IS_RUNNABLE;
1643 }
1644
1645 // We need to unlock FINAL_BLOCKER when finished.
1646
1647 Task_locker*
1648 Write_data_task::locks(Workqueue* workqueue)
1649 {
1650   return new Task_locker_block(*this->final_blocker_, workqueue);
1651 }
1652
1653 // Run the task--write out the data.
1654
1655 void
1656 Write_data_task::run(Workqueue*)
1657 {
1658   this->layout_->write_data(this->symtab_, this->of_);
1659 }
1660
1661 // Write_symbols_task methods.
1662
1663 // We can always run this task.
1664
1665 Task::Is_runnable_type
1666 Write_symbols_task::is_runnable(Workqueue*)
1667 {
1668   return IS_RUNNABLE;
1669 }
1670
1671 // We need to unlock FINAL_BLOCKER when finished.
1672
1673 Task_locker*
1674 Write_symbols_task::locks(Workqueue* workqueue)
1675 {
1676   return new Task_locker_block(*this->final_blocker_, workqueue);
1677 }
1678
1679 // Run the task--write out the symbols.
1680
1681 void
1682 Write_symbols_task::run(Workqueue*)
1683 {
1684   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1685                                this->of_);
1686 }
1687
1688 // Close_task_runner methods.
1689
1690 // Run the task--close the file.
1691
1692 void
1693 Close_task_runner::run(Workqueue*)
1694 {
1695   this->of_->close();
1696 }
1697
1698 // Instantiate the templates we need.  We could use the configure
1699 // script to restrict this to only the ones for implemented targets.
1700
1701 #ifdef HAVE_TARGET_32_LITTLE
1702 template
1703 Output_section*
1704 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1705                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1706 #endif
1707
1708 #ifdef HAVE_TARGET_32_BIG
1709 template
1710 Output_section*
1711 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1712                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1713 #endif
1714
1715 #ifdef HAVE_TARGET_64_LITTLE
1716 template
1717 Output_section*
1718 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1719                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1720 #endif
1721
1722 #ifdef HAVE_TARGET_64_BIG
1723 template
1724 Output_section*
1725 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1726                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1727 #endif
1728
1729
1730 } // End namespace gold.