1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
79 Free_list::init(off_t len, bool extend)
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
99 Free_list::remove(off_t start, off_t end)
103 gold_assert(start < end);
105 ++Free_list::num_removes;
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
111 for (; p != this->list_.end(); ++p)
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
131 Free_list_node newnode(p->start_, start);
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
136 this->last_remove_ = p;
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
160 return align_address(minoff, align);
162 ++Free_list::num_allocates;
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
176 else if (p->end_ <= end + 3)
180 Free_list_node newnode(p->start_, start);
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
191 // Dump the free list (for debugging).
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
202 // Print the statistics for the free lists.
204 Free_list::print_stats()
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
220 // Layout::Relaxation_debug_check methods.
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
231 for(Layout::Section_list::const_iterator p = sections.begin();
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
242 // Save information of SECTIONS for checking later.
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
248 for(Layout::Section_list::const_iterator p = sections.begin();
252 Output_section* os = *p;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
262 // Verify SECTIONS using previously recorded information.
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
269 for(Layout::Section_list::const_iterator p = sections.begin();
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278 if (i >= this->section_infos_.size())
280 gold_fatal("Section_info of %s missing.\n", os->name());
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
293 // Layout_task_runner methods.
295 // Lay out the sections. This is called after all the input objects
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 off_t file_size = this->layout_->finalize(this->input_objects_,
306 // Now we know the final size of the output file and we know where
307 // each piece of information goes.
309 if (this->mapfile_ != NULL)
311 this->mapfile_->print_discarded_sections(this->input_objects_);
312 this->layout_->print_to_mapfile(this->mapfile_);
316 if (this->layout_->incremental_base() == NULL)
318 of = new Output_file(parameters->options().output_file_name());
319 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
320 of->set_is_temporary();
325 of = this->layout_->incremental_base()->output_file();
326 of->resize(file_size);
329 // Queue up the final set of tasks.
330 gold::queue_final_tasks(this->options_, this->input_objects_,
331 this->symtab_, this->layout_, workqueue, of);
336 Layout::Layout(int number_of_input_files, Script_options* script_options)
337 : number_of_input_files_(number_of_input_files),
338 script_options_(script_options),
346 unattached_section_list_(),
347 special_output_list_(),
348 section_headers_(NULL),
350 relro_segment_(NULL),
352 symtab_section_(NULL),
353 symtab_xindex_(NULL),
354 dynsym_section_(NULL),
355 dynsym_xindex_(NULL),
356 dynamic_section_(NULL),
357 dynamic_symbol_(NULL),
359 eh_frame_section_(NULL),
360 eh_frame_data_(NULL),
361 added_eh_frame_data_(false),
362 eh_frame_hdr_section_(NULL),
363 build_id_note_(NULL),
367 output_file_size_(-1),
368 have_added_input_section_(false),
369 sections_are_attached_(false),
370 input_requires_executable_stack_(false),
371 input_with_gnu_stack_note_(false),
372 input_without_gnu_stack_note_(false),
373 has_static_tls_(false),
374 any_postprocessing_sections_(false),
375 resized_signatures_(false),
376 have_stabstr_section_(false),
377 incremental_inputs_(NULL),
378 record_output_section_data_from_script_(false),
379 script_output_section_data_list_(),
380 segment_states_(NULL),
381 relaxation_debug_check_(NULL),
382 incremental_base_(NULL),
385 // Make space for more than enough segments for a typical file.
386 // This is just for efficiency--it's OK if we wind up needing more.
387 this->segment_list_.reserve(12);
389 // We expect two unattached Output_data objects: the file header and
390 // the segment headers.
391 this->special_output_list_.reserve(2);
393 // Initialize structure needed for an incremental build.
394 if (parameters->incremental())
395 this->incremental_inputs_ = new Incremental_inputs;
397 // The section name pool is worth optimizing in all cases, because
398 // it is small, but there are often overlaps due to .rel sections.
399 this->namepool_.set_optimize();
402 // For incremental links, record the base file to be modified.
405 Layout::set_incremental_base(Incremental_binary* base)
407 this->incremental_base_ = base;
408 this->free_list_.init(base->output_file()->filesize(), true);
411 // Hash a key we use to look up an output section mapping.
414 Layout::Hash_key::operator()(const Layout::Key& k) const
416 return k.first + k.second.first + k.second.second;
419 // Returns whether the given section is in the list of
420 // debug-sections-used-by-some-version-of-gdb. Currently,
421 // we've checked versions of gdb up to and including 6.7.1.
423 static const char* gdb_sections[] =
425 // ".debug_aranges", // not used by gdb as of 6.7.1
432 // ".debug_pubnames", // not used by gdb as of 6.7.1
437 static const char* lines_only_debug_sections[] =
439 // ".debug_aranges", // not used by gdb as of 6.7.1
446 // ".debug_pubnames", // not used by gdb as of 6.7.1
452 is_gdb_debug_section(const char* str)
454 // We can do this faster: binary search or a hashtable. But why bother?
455 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
456 if (strcmp(str, gdb_sections[i]) == 0)
462 is_lines_only_debug_section(const char* str)
464 // We can do this faster: binary search or a hashtable. But why bother?
466 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
468 if (strcmp(str, lines_only_debug_sections[i]) == 0)
473 // Sometimes we compress sections. This is typically done for
474 // sections that are not part of normal program execution (such as
475 // .debug_* sections), and where the readers of these sections know
476 // how to deal with compressed sections. This routine doesn't say for
477 // certain whether we'll compress -- it depends on commandline options
478 // as well -- just whether this section is a candidate for compression.
479 // (The Output_compressed_section class decides whether to compress
480 // a given section, and picks the name of the compressed section.)
483 is_compressible_debug_section(const char* secname)
485 return (is_prefix_of(".debug", secname));
488 // We may see compressed debug sections in input files. Return TRUE
489 // if this is the name of a compressed debug section.
492 is_compressed_debug_section(const char* secname)
494 return (is_prefix_of(".zdebug", secname));
497 // Whether to include this section in the link.
499 template<int size, bool big_endian>
501 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
502 const elfcpp::Shdr<size, big_endian>& shdr)
504 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
507 switch (shdr.get_sh_type())
509 case elfcpp::SHT_NULL:
510 case elfcpp::SHT_SYMTAB:
511 case elfcpp::SHT_DYNSYM:
512 case elfcpp::SHT_HASH:
513 case elfcpp::SHT_DYNAMIC:
514 case elfcpp::SHT_SYMTAB_SHNDX:
517 case elfcpp::SHT_STRTAB:
518 // Discard the sections which have special meanings in the ELF
519 // ABI. Keep others (e.g., .stabstr). We could also do this by
520 // checking the sh_link fields of the appropriate sections.
521 return (strcmp(name, ".dynstr") != 0
522 && strcmp(name, ".strtab") != 0
523 && strcmp(name, ".shstrtab") != 0);
525 case elfcpp::SHT_RELA:
526 case elfcpp::SHT_REL:
527 case elfcpp::SHT_GROUP:
528 // If we are emitting relocations these should be handled
530 gold_assert(!parameters->options().relocatable()
531 && !parameters->options().emit_relocs());
534 case elfcpp::SHT_PROGBITS:
535 if (parameters->options().strip_debug()
536 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
538 if (is_debug_info_section(name))
541 if (parameters->options().strip_debug_non_line()
542 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
544 // Debugging sections can only be recognized by name.
545 if (is_prefix_of(".debug", name)
546 && !is_lines_only_debug_section(name))
549 if (parameters->options().strip_debug_gdb()
550 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
552 // Debugging sections can only be recognized by name.
553 if (is_prefix_of(".debug", name)
554 && !is_gdb_debug_section(name))
557 if (parameters->options().strip_lto_sections()
558 && !parameters->options().relocatable()
559 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
561 // Ignore LTO sections containing intermediate code.
562 if (is_prefix_of(".gnu.lto_", name))
565 // The GNU linker strips .gnu_debuglink sections, so we do too.
566 // This is a feature used to keep debugging information in
568 if (strcmp(name, ".gnu_debuglink") == 0)
577 // Return an output section named NAME, or NULL if there is none.
580 Layout::find_output_section(const char* name) const
582 for (Section_list::const_iterator p = this->section_list_.begin();
583 p != this->section_list_.end();
585 if (strcmp((*p)->name(), name) == 0)
590 // Return an output segment of type TYPE, with segment flags SET set
591 // and segment flags CLEAR clear. Return NULL if there is none.
594 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
595 elfcpp::Elf_Word clear) const
597 for (Segment_list::const_iterator p = this->segment_list_.begin();
598 p != this->segment_list_.end();
600 if (static_cast<elfcpp::PT>((*p)->type()) == type
601 && ((*p)->flags() & set) == set
602 && ((*p)->flags() & clear) == 0)
607 // Return the output section to use for section NAME with type TYPE
608 // and section flags FLAGS. NAME must be canonicalized in the string
609 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
610 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
611 // is used by the dynamic linker. IS_RELRO is true for a relro
612 // section. IS_LAST_RELRO is true for the last relro section.
613 // IS_FIRST_NON_RELRO is true for the first non-relro section.
616 Layout::get_output_section(const char* name, Stringpool::Key name_key,
617 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
618 Output_section_order order, bool is_relro)
620 elfcpp::Elf_Xword lookup_flags = flags;
622 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
623 // read-write with read-only sections. Some other ELF linkers do
624 // not do this. FIXME: Perhaps there should be an option
626 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
628 const Key key(name_key, std::make_pair(type, lookup_flags));
629 const std::pair<Key, Output_section*> v(key, NULL);
630 std::pair<Section_name_map::iterator, bool> ins(
631 this->section_name_map_.insert(v));
634 return ins.first->second;
637 // This is the first time we've seen this name/type/flags
638 // combination. For compatibility with the GNU linker, we
639 // combine sections with contents and zero flags with sections
640 // with non-zero flags. This is a workaround for cases where
641 // assembler code forgets to set section flags. FIXME: Perhaps
642 // there should be an option to control this.
643 Output_section* os = NULL;
645 if (type == elfcpp::SHT_PROGBITS)
649 Output_section* same_name = this->find_output_section(name);
650 if (same_name != NULL
651 && same_name->type() == elfcpp::SHT_PROGBITS
652 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
655 else if ((flags & elfcpp::SHF_TLS) == 0)
657 elfcpp::Elf_Xword zero_flags = 0;
658 const Key zero_key(name_key, std::make_pair(type, zero_flags));
659 Section_name_map::iterator p =
660 this->section_name_map_.find(zero_key);
661 if (p != this->section_name_map_.end())
667 os = this->make_output_section(name, type, flags, order, is_relro);
669 ins.first->second = os;
674 // Pick the output section to use for section NAME, in input file
675 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
676 // linker created section. IS_INPUT_SECTION is true if we are
677 // choosing an output section for an input section found in a input
678 // file. IS_INTERP is true if this is the .interp section.
679 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
680 // dynamic linker. IS_RELRO is true for a relro section.
681 // IS_LAST_RELRO is true for the last relro section.
682 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
683 // will return NULL if the input section should be discarded.
686 Layout::choose_output_section(const Relobj* relobj, const char* name,
687 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
688 bool is_input_section, Output_section_order order,
691 // We should not see any input sections after we have attached
692 // sections to segments.
693 gold_assert(!is_input_section || !this->sections_are_attached_);
695 // Some flags in the input section should not be automatically
696 // copied to the output section.
697 flags &= ~ (elfcpp::SHF_INFO_LINK
700 | elfcpp::SHF_STRINGS);
702 // We only clear the SHF_LINK_ORDER flag in for
703 // a non-relocatable link.
704 if (!parameters->options().relocatable())
705 flags &= ~elfcpp::SHF_LINK_ORDER;
707 if (this->script_options_->saw_sections_clause())
709 // We are using a SECTIONS clause, so the output section is
710 // chosen based only on the name.
712 Script_sections* ss = this->script_options_->script_sections();
713 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
714 Output_section** output_section_slot;
715 Script_sections::Section_type script_section_type;
716 const char* orig_name = name;
717 name = ss->output_section_name(file_name, name, &output_section_slot,
718 &script_section_type);
721 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
722 "because it is not allowed by the "
723 "SECTIONS clause of the linker script"),
725 // The SECTIONS clause says to discard this input section.
729 // We can only handle script section types ST_NONE and ST_NOLOAD.
730 switch (script_section_type)
732 case Script_sections::ST_NONE:
734 case Script_sections::ST_NOLOAD:
735 flags &= elfcpp::SHF_ALLOC;
741 // If this is an orphan section--one not mentioned in the linker
742 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
743 // default processing below.
745 if (output_section_slot != NULL)
747 if (*output_section_slot != NULL)
749 (*output_section_slot)->update_flags_for_input_section(flags);
750 return *output_section_slot;
753 // We don't put sections found in the linker script into
754 // SECTION_NAME_MAP_. That keeps us from getting confused
755 // if an orphan section is mapped to a section with the same
756 // name as one in the linker script.
758 name = this->namepool_.add(name, false, NULL);
760 Output_section* os = this->make_output_section(name, type, flags,
763 os->set_found_in_sections_clause();
765 // Special handling for NOLOAD sections.
766 if (script_section_type == Script_sections::ST_NOLOAD)
770 // The constructor of Output_section sets addresses of non-ALLOC
771 // sections to 0 by default. We don't want that for NOLOAD
772 // sections even if they have no SHF_ALLOC flag.
773 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
774 && os->is_address_valid())
776 gold_assert(os->address() == 0
777 && !os->is_offset_valid()
778 && !os->is_data_size_valid());
779 os->reset_address_and_file_offset();
783 *output_section_slot = os;
788 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
790 size_t len = strlen(name);
791 char* uncompressed_name = NULL;
793 // Compressed debug sections should be mapped to the corresponding
794 // uncompressed section.
795 if (is_compressed_debug_section(name))
797 uncompressed_name = new char[len];
798 uncompressed_name[0] = '.';
799 gold_assert(name[0] == '.' && name[1] == 'z');
800 strncpy(&uncompressed_name[1], &name[2], len - 2);
801 uncompressed_name[len - 1] = '\0';
803 name = uncompressed_name;
806 // Turn NAME from the name of the input section into the name of the
809 && !this->script_options_->saw_sections_clause()
810 && !parameters->options().relocatable())
811 name = Layout::output_section_name(name, &len);
813 Stringpool::Key name_key;
814 name = this->namepool_.add_with_length(name, len, true, &name_key);
816 if (uncompressed_name != NULL)
817 delete[] uncompressed_name;
819 // Find or make the output section. The output section is selected
820 // based on the section name, type, and flags.
821 return this->get_output_section(name, name_key, type, flags, order, is_relro);
824 // For incremental links, record the initial fixed layout of a section
825 // from the base file, and return a pointer to the Output_section.
827 template<int size, bool big_endian>
829 Layout::init_fixed_output_section(const char* name,
830 elfcpp::Shdr<size, big_endian>& shdr)
832 unsigned int sh_type = shdr.get_sh_type();
834 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
835 // All others will be created from scratch and reallocated.
836 if (sh_type != elfcpp::SHT_PROGBITS
837 && sh_type != elfcpp::SHT_NOBITS
838 && sh_type != elfcpp::SHT_NOTE)
841 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
842 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
843 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
844 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
845 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
846 shdr.get_sh_addralign();
848 // Make the output section.
849 Stringpool::Key name_key;
850 name = this->namepool_.add(name, true, &name_key);
851 Output_section* os = this->get_output_section(name, name_key, sh_type,
852 sh_flags, ORDER_INVALID, false);
853 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
854 if (sh_type != elfcpp::SHT_NOBITS)
855 this->free_list_.remove(sh_offset, sh_offset + sh_size);
859 // Return the output section to use for input section SHNDX, with name
860 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
861 // index of a relocation section which applies to this section, or 0
862 // if none, or -1U if more than one. RELOC_TYPE is the type of the
863 // relocation section if there is one. Set *OFF to the offset of this
864 // input section without the output section. Return NULL if the
865 // section should be discarded. Set *OFF to -1 if the section
866 // contents should not be written directly to the output file, but
867 // will instead receive special handling.
869 template<int size, bool big_endian>
871 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
872 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
873 unsigned int reloc_shndx, unsigned int, off_t* off)
877 if (!this->include_section(object, name, shdr))
882 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
883 // correct section types. Force them here.
884 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
885 if (sh_type == elfcpp::SHT_PROGBITS)
887 static const char init_array_prefix[] = ".init_array";
888 static const char preinit_array_prefix[] = ".preinit_array";
889 static const char fini_array_prefix[] = ".fini_array";
890 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
891 static size_t preinit_array_prefix_size =
892 sizeof(preinit_array_prefix) - 1;
893 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
895 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
896 sh_type = elfcpp::SHT_INIT_ARRAY;
897 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
899 sh_type = elfcpp::SHT_PREINIT_ARRAY;
900 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
901 sh_type = elfcpp::SHT_FINI_ARRAY;
904 // In a relocatable link a grouped section must not be combined with
905 // any other sections.
906 if (parameters->options().relocatable()
907 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
909 name = this->namepool_.add(name, true, NULL);
910 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
911 ORDER_INVALID, false);
915 os = this->choose_output_section(object, name, sh_type,
916 shdr.get_sh_flags(), true,
917 ORDER_INVALID, false);
922 // By default the GNU linker sorts input sections whose names match
923 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
924 // are sorted by name. This is used to implement constructor
925 // priority ordering. We are compatible.
926 if (!this->script_options_->saw_sections_clause()
927 && (is_prefix_of(".ctors.", name)
928 || is_prefix_of(".dtors.", name)
929 || is_prefix_of(".init_array.", name)
930 || is_prefix_of(".fini_array.", name)))
931 os->set_must_sort_attached_input_sections();
933 // FIXME: Handle SHF_LINK_ORDER somewhere.
935 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
936 this->script_options_->saw_sections_clause());
937 this->have_added_input_section_ = true;
942 // Handle a relocation section when doing a relocatable link.
944 template<int size, bool big_endian>
946 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
948 const elfcpp::Shdr<size, big_endian>& shdr,
949 Output_section* data_section,
950 Relocatable_relocs* rr)
952 gold_assert(parameters->options().relocatable()
953 || parameters->options().emit_relocs());
955 int sh_type = shdr.get_sh_type();
958 if (sh_type == elfcpp::SHT_REL)
960 else if (sh_type == elfcpp::SHT_RELA)
964 name += data_section->name();
966 // In a relocatable link relocs for a grouped section must not be
967 // combined with other reloc sections.
969 if (!parameters->options().relocatable()
970 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
971 os = this->choose_output_section(object, name.c_str(), sh_type,
972 shdr.get_sh_flags(), false,
973 ORDER_INVALID, false);
976 const char* n = this->namepool_.add(name.c_str(), true, NULL);
977 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
978 ORDER_INVALID, false);
981 os->set_should_link_to_symtab();
982 os->set_info_section(data_section);
984 Output_section_data* posd;
985 if (sh_type == elfcpp::SHT_REL)
987 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
988 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
992 else if (sh_type == elfcpp::SHT_RELA)
994 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
995 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1002 os->add_output_section_data(posd);
1003 rr->set_output_data(posd);
1008 // Handle a group section when doing a relocatable link.
1010 template<int size, bool big_endian>
1012 Layout::layout_group(Symbol_table* symtab,
1013 Sized_relobj<size, big_endian>* object,
1015 const char* group_section_name,
1016 const char* signature,
1017 const elfcpp::Shdr<size, big_endian>& shdr,
1018 elfcpp::Elf_Word flags,
1019 std::vector<unsigned int>* shndxes)
1021 gold_assert(parameters->options().relocatable());
1022 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1023 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1024 Output_section* os = this->make_output_section(group_section_name,
1026 shdr.get_sh_flags(),
1027 ORDER_INVALID, false);
1029 // We need to find a symbol with the signature in the symbol table.
1030 // If we don't find one now, we need to look again later.
1031 Symbol* sym = symtab->lookup(signature, NULL);
1033 os->set_info_symndx(sym);
1036 // Reserve some space to minimize reallocations.
1037 if (this->group_signatures_.empty())
1038 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1040 // We will wind up using a symbol whose name is the signature.
1041 // So just put the signature in the symbol name pool to save it.
1042 signature = symtab->canonicalize_name(signature);
1043 this->group_signatures_.push_back(Group_signature(os, signature));
1046 os->set_should_link_to_symtab();
1049 section_size_type entry_count =
1050 convert_to_section_size_type(shdr.get_sh_size() / 4);
1051 Output_section_data* posd =
1052 new Output_data_group<size, big_endian>(object, entry_count, flags,
1054 os->add_output_section_data(posd);
1057 // Special GNU handling of sections name .eh_frame. They will
1058 // normally hold exception frame data as defined by the C++ ABI
1059 // (http://codesourcery.com/cxx-abi/).
1061 template<int size, bool big_endian>
1063 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
1064 const unsigned char* symbols,
1066 const unsigned char* symbol_names,
1067 off_t symbol_names_size,
1069 const elfcpp::Shdr<size, big_endian>& shdr,
1070 unsigned int reloc_shndx, unsigned int reloc_type,
1073 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1074 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1076 const char* const name = ".eh_frame";
1077 Output_section* os = this->choose_output_section(object, name,
1078 elfcpp::SHT_PROGBITS,
1079 elfcpp::SHF_ALLOC, false,
1080 ORDER_EHFRAME, false);
1084 if (this->eh_frame_section_ == NULL)
1086 this->eh_frame_section_ = os;
1087 this->eh_frame_data_ = new Eh_frame();
1089 // For incremental linking, we do not optimize .eh_frame sections
1090 // or create a .eh_frame_hdr section.
1091 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1093 Output_section* hdr_os =
1094 this->choose_output_section(NULL, ".eh_frame_hdr",
1095 elfcpp::SHT_PROGBITS,
1096 elfcpp::SHF_ALLOC, false,
1097 ORDER_EHFRAME, false);
1101 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1102 this->eh_frame_data_);
1103 hdr_os->add_output_section_data(hdr_posd);
1105 hdr_os->set_after_input_sections();
1107 if (!this->script_options_->saw_phdrs_clause())
1109 Output_segment* hdr_oseg;
1110 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1112 hdr_oseg->add_output_section_to_nonload(hdr_os,
1116 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1121 gold_assert(this->eh_frame_section_ == os);
1123 if (!parameters->incremental()
1124 && this->eh_frame_data_->add_ehframe_input_section(object,
1133 os->update_flags_for_input_section(shdr.get_sh_flags());
1135 // A writable .eh_frame section is a RELRO section.
1136 if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
1139 // We found a .eh_frame section we are going to optimize, so now
1140 // we can add the set of optimized sections to the output
1141 // section. We need to postpone adding this until we've found a
1142 // section we can optimize so that the .eh_frame section in
1143 // crtbegin.o winds up at the start of the output section.
1144 if (!this->added_eh_frame_data_)
1146 os->add_output_section_data(this->eh_frame_data_);
1147 this->added_eh_frame_data_ = true;
1153 // We couldn't handle this .eh_frame section for some reason.
1154 // Add it as a normal section.
1155 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1156 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1157 saw_sections_clause);
1158 this->have_added_input_section_ = true;
1164 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1165 // the output section.
1168 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1169 elfcpp::Elf_Xword flags,
1170 Output_section_data* posd,
1171 Output_section_order order, bool is_relro)
1173 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1174 false, order, is_relro);
1176 os->add_output_section_data(posd);
1180 // Map section flags to segment flags.
1183 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1185 elfcpp::Elf_Word ret = elfcpp::PF_R;
1186 if ((flags & elfcpp::SHF_WRITE) != 0)
1187 ret |= elfcpp::PF_W;
1188 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1189 ret |= elfcpp::PF_X;
1193 // Make a new Output_section, and attach it to segments as
1194 // appropriate. ORDER is the order in which this section should
1195 // appear in the output segment. IS_RELRO is true if this is a relro
1196 // (read-only after relocations) section.
1199 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1200 elfcpp::Elf_Xword flags,
1201 Output_section_order order, bool is_relro)
1204 if ((flags & elfcpp::SHF_ALLOC) == 0
1205 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1206 && is_compressible_debug_section(name))
1207 os = new Output_compressed_section(¶meters->options(), name, type,
1209 else if ((flags & elfcpp::SHF_ALLOC) == 0
1210 && parameters->options().strip_debug_non_line()
1211 && strcmp(".debug_abbrev", name) == 0)
1213 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1215 if (this->debug_info_)
1216 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1218 else if ((flags & elfcpp::SHF_ALLOC) == 0
1219 && parameters->options().strip_debug_non_line()
1220 && strcmp(".debug_info", name) == 0)
1222 os = this->debug_info_ = new Output_reduced_debug_info_section(
1224 if (this->debug_abbrev_)
1225 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1229 // FIXME: const_cast is ugly.
1230 Target* target = const_cast<Target*>(¶meters->target());
1231 os = target->make_output_section(name, type, flags);
1234 // With -z relro, we have to recognize the special sections by name.
1235 // There is no other way.
1236 bool is_relro_local = false;
1237 if (!this->script_options_->saw_sections_clause()
1238 && parameters->options().relro()
1239 && type == elfcpp::SHT_PROGBITS
1240 && (flags & elfcpp::SHF_ALLOC) != 0
1241 && (flags & elfcpp::SHF_WRITE) != 0)
1243 if (strcmp(name, ".data.rel.ro") == 0)
1245 else if (strcmp(name, ".data.rel.ro.local") == 0)
1248 is_relro_local = true;
1250 else if (type == elfcpp::SHT_INIT_ARRAY
1251 || type == elfcpp::SHT_FINI_ARRAY
1252 || type == elfcpp::SHT_PREINIT_ARRAY)
1254 else if (strcmp(name, ".ctors") == 0
1255 || strcmp(name, ".dtors") == 0
1256 || strcmp(name, ".jcr") == 0)
1263 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1264 order = this->default_section_order(os, is_relro_local);
1266 os->set_order(order);
1268 parameters->target().new_output_section(os);
1270 this->section_list_.push_back(os);
1272 // The GNU linker by default sorts some sections by priority, so we
1273 // do the same. We need to know that this might happen before we
1274 // attach any input sections.
1275 if (!this->script_options_->saw_sections_clause()
1276 && (strcmp(name, ".ctors") == 0
1277 || strcmp(name, ".dtors") == 0
1278 || strcmp(name, ".init_array") == 0
1279 || strcmp(name, ".fini_array") == 0))
1280 os->set_may_sort_attached_input_sections();
1282 // Check for .stab*str sections, as .stab* sections need to link to
1284 if (type == elfcpp::SHT_STRTAB
1285 && !this->have_stabstr_section_
1286 && strncmp(name, ".stab", 5) == 0
1287 && strcmp(name + strlen(name) - 3, "str") == 0)
1288 this->have_stabstr_section_ = true;
1290 // If we have already attached the sections to segments, then we
1291 // need to attach this one now. This happens for sections created
1292 // directly by the linker.
1293 if (this->sections_are_attached_)
1294 this->attach_section_to_segment(os);
1299 // Return the default order in which a section should be placed in an
1300 // output segment. This function captures a lot of the ideas in
1301 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1302 // linker created section is normally set when the section is created;
1303 // this function is used for input sections.
1305 Output_section_order
1306 Layout::default_section_order(Output_section* os, bool is_relro_local)
1308 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1309 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1310 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1311 bool is_bss = false;
1316 case elfcpp::SHT_PROGBITS:
1318 case elfcpp::SHT_NOBITS:
1321 case elfcpp::SHT_RELA:
1322 case elfcpp::SHT_REL:
1324 return ORDER_DYNAMIC_RELOCS;
1326 case elfcpp::SHT_HASH:
1327 case elfcpp::SHT_DYNAMIC:
1328 case elfcpp::SHT_SHLIB:
1329 case elfcpp::SHT_DYNSYM:
1330 case elfcpp::SHT_GNU_HASH:
1331 case elfcpp::SHT_GNU_verdef:
1332 case elfcpp::SHT_GNU_verneed:
1333 case elfcpp::SHT_GNU_versym:
1335 return ORDER_DYNAMIC_LINKER;
1337 case elfcpp::SHT_NOTE:
1338 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1341 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1342 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1344 if (!is_bss && !is_write)
1348 if (strcmp(os->name(), ".init") == 0)
1350 else if (strcmp(os->name(), ".fini") == 0)
1353 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1357 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1359 if (os->is_small_section())
1360 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1361 if (os->is_large_section())
1362 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1364 return is_bss ? ORDER_BSS : ORDER_DATA;
1367 // Attach output sections to segments. This is called after we have
1368 // seen all the input sections.
1371 Layout::attach_sections_to_segments()
1373 for (Section_list::iterator p = this->section_list_.begin();
1374 p != this->section_list_.end();
1376 this->attach_section_to_segment(*p);
1378 this->sections_are_attached_ = true;
1381 // Attach an output section to a segment.
1384 Layout::attach_section_to_segment(Output_section* os)
1386 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1387 this->unattached_section_list_.push_back(os);
1389 this->attach_allocated_section_to_segment(os);
1392 // Attach an allocated output section to a segment.
1395 Layout::attach_allocated_section_to_segment(Output_section* os)
1397 elfcpp::Elf_Xword flags = os->flags();
1398 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1400 if (parameters->options().relocatable())
1403 // If we have a SECTIONS clause, we can't handle the attachment to
1404 // segments until after we've seen all the sections.
1405 if (this->script_options_->saw_sections_clause())
1408 gold_assert(!this->script_options_->saw_phdrs_clause());
1410 // This output section goes into a PT_LOAD segment.
1412 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1414 // Check for --section-start.
1416 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1418 // In general the only thing we really care about for PT_LOAD
1419 // segments is whether or not they are writable or executable,
1420 // so that is how we search for them.
1421 // Large data sections also go into their own PT_LOAD segment.
1422 // People who need segments sorted on some other basis will
1423 // have to use a linker script.
1425 Segment_list::const_iterator p;
1426 for (p = this->segment_list_.begin();
1427 p != this->segment_list_.end();
1430 if ((*p)->type() != elfcpp::PT_LOAD)
1432 if (!parameters->options().omagic()
1433 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1435 if (parameters->options().rosegment()
1436 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1438 // If -Tbss was specified, we need to separate the data and BSS
1440 if (parameters->options().user_set_Tbss())
1442 if ((os->type() == elfcpp::SHT_NOBITS)
1443 == (*p)->has_any_data_sections())
1446 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1451 if ((*p)->are_addresses_set())
1454 (*p)->add_initial_output_data(os);
1455 (*p)->update_flags_for_output_section(seg_flags);
1456 (*p)->set_addresses(addr, addr);
1460 (*p)->add_output_section_to_load(this, os, seg_flags);
1464 if (p == this->segment_list_.end())
1466 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1468 if (os->is_large_data_section())
1469 oseg->set_is_large_data_segment();
1470 oseg->add_output_section_to_load(this, os, seg_flags);
1472 oseg->set_addresses(addr, addr);
1475 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1477 if (os->type() == elfcpp::SHT_NOTE)
1479 // See if we already have an equivalent PT_NOTE segment.
1480 for (p = this->segment_list_.begin();
1481 p != segment_list_.end();
1484 if ((*p)->type() == elfcpp::PT_NOTE
1485 && (((*p)->flags() & elfcpp::PF_W)
1486 == (seg_flags & elfcpp::PF_W)))
1488 (*p)->add_output_section_to_nonload(os, seg_flags);
1493 if (p == this->segment_list_.end())
1495 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1497 oseg->add_output_section_to_nonload(os, seg_flags);
1501 // If we see a loadable SHF_TLS section, we create a PT_TLS
1502 // segment. There can only be one such segment.
1503 if ((flags & elfcpp::SHF_TLS) != 0)
1505 if (this->tls_segment_ == NULL)
1506 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1507 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1510 // If -z relro is in effect, and we see a relro section, we create a
1511 // PT_GNU_RELRO segment. There can only be one such segment.
1512 if (os->is_relro() && parameters->options().relro())
1514 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1515 if (this->relro_segment_ == NULL)
1516 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1517 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1521 // Make an output section for a script.
1524 Layout::make_output_section_for_script(
1526 Script_sections::Section_type section_type)
1528 name = this->namepool_.add(name, false, NULL);
1529 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1530 if (section_type == Script_sections::ST_NOLOAD)
1532 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1533 sh_flags, ORDER_INVALID,
1535 os->set_found_in_sections_clause();
1536 if (section_type == Script_sections::ST_NOLOAD)
1537 os->set_is_noload();
1541 // Return the number of segments we expect to see.
1544 Layout::expected_segment_count() const
1546 size_t ret = this->segment_list_.size();
1548 // If we didn't see a SECTIONS clause in a linker script, we should
1549 // already have the complete list of segments. Otherwise we ask the
1550 // SECTIONS clause how many segments it expects, and add in the ones
1551 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1553 if (!this->script_options_->saw_sections_clause())
1557 const Script_sections* ss = this->script_options_->script_sections();
1558 return ret + ss->expected_segment_count(this);
1562 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1563 // is whether we saw a .note.GNU-stack section in the object file.
1564 // GNU_STACK_FLAGS is the section flags. The flags give the
1565 // protection required for stack memory. We record this in an
1566 // executable as a PT_GNU_STACK segment. If an object file does not
1567 // have a .note.GNU-stack segment, we must assume that it is an old
1568 // object. On some targets that will force an executable stack.
1571 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1574 if (!seen_gnu_stack)
1576 this->input_without_gnu_stack_note_ = true;
1577 if (parameters->options().warn_execstack()
1578 && parameters->target().is_default_stack_executable())
1579 gold_warning(_("%s: missing .note.GNU-stack section"
1580 " implies executable stack"),
1581 obj->name().c_str());
1585 this->input_with_gnu_stack_note_ = true;
1586 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1588 this->input_requires_executable_stack_ = true;
1589 if (parameters->options().warn_execstack()
1590 || parameters->options().is_stack_executable())
1591 gold_warning(_("%s: requires executable stack"),
1592 obj->name().c_str());
1597 // Create automatic note sections.
1600 Layout::create_notes()
1602 this->create_gold_note();
1603 this->create_executable_stack_info();
1604 this->create_build_id();
1607 // Create the dynamic sections which are needed before we read the
1611 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1613 if (parameters->doing_static_link())
1616 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1617 elfcpp::SHT_DYNAMIC,
1619 | elfcpp::SHF_WRITE),
1623 this->dynamic_symbol_ =
1624 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1625 this->dynamic_section_, 0, 0,
1626 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1627 elfcpp::STV_HIDDEN, 0, false, false);
1629 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1631 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1634 // For each output section whose name can be represented as C symbol,
1635 // define __start and __stop symbols for the section. This is a GNU
1639 Layout::define_section_symbols(Symbol_table* symtab)
1641 for (Section_list::const_iterator p = this->section_list_.begin();
1642 p != this->section_list_.end();
1645 const char* const name = (*p)->name();
1646 if (is_cident(name))
1648 const std::string name_string(name);
1649 const std::string start_name(cident_section_start_prefix
1651 const std::string stop_name(cident_section_stop_prefix
1654 symtab->define_in_output_data(start_name.c_str(),
1656 Symbol_table::PREDEFINED,
1662 elfcpp::STV_DEFAULT,
1664 false, // offset_is_from_end
1665 true); // only_if_ref
1667 symtab->define_in_output_data(stop_name.c_str(),
1669 Symbol_table::PREDEFINED,
1675 elfcpp::STV_DEFAULT,
1677 true, // offset_is_from_end
1678 true); // only_if_ref
1683 // Define symbols for group signatures.
1686 Layout::define_group_signatures(Symbol_table* symtab)
1688 for (Group_signatures::iterator p = this->group_signatures_.begin();
1689 p != this->group_signatures_.end();
1692 Symbol* sym = symtab->lookup(p->signature, NULL);
1694 p->section->set_info_symndx(sym);
1697 // Force the name of the group section to the group
1698 // signature, and use the group's section symbol as the
1699 // signature symbol.
1700 if (strcmp(p->section->name(), p->signature) != 0)
1702 const char* name = this->namepool_.add(p->signature,
1704 p->section->set_name(name);
1706 p->section->set_needs_symtab_index();
1707 p->section->set_info_section_symndx(p->section);
1711 this->group_signatures_.clear();
1714 // Find the first read-only PT_LOAD segment, creating one if
1718 Layout::find_first_load_seg()
1720 Output_segment* best = NULL;
1721 for (Segment_list::const_iterator p = this->segment_list_.begin();
1722 p != this->segment_list_.end();
1725 if ((*p)->type() == elfcpp::PT_LOAD
1726 && ((*p)->flags() & elfcpp::PF_R) != 0
1727 && (parameters->options().omagic()
1728 || ((*p)->flags() & elfcpp::PF_W) == 0))
1730 if (best == NULL || this->segment_precedes(*p, best))
1737 gold_assert(!this->script_options_->saw_phdrs_clause());
1739 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1744 // Save states of all current output segments. Store saved states
1745 // in SEGMENT_STATES.
1748 Layout::save_segments(Segment_states* segment_states)
1750 for (Segment_list::const_iterator p = this->segment_list_.begin();
1751 p != this->segment_list_.end();
1754 Output_segment* segment = *p;
1756 Output_segment* copy = new Output_segment(*segment);
1757 (*segment_states)[segment] = copy;
1761 // Restore states of output segments and delete any segment not found in
1765 Layout::restore_segments(const Segment_states* segment_states)
1767 // Go through the segment list and remove any segment added in the
1769 this->tls_segment_ = NULL;
1770 this->relro_segment_ = NULL;
1771 Segment_list::iterator list_iter = this->segment_list_.begin();
1772 while (list_iter != this->segment_list_.end())
1774 Output_segment* segment = *list_iter;
1775 Segment_states::const_iterator states_iter =
1776 segment_states->find(segment);
1777 if (states_iter != segment_states->end())
1779 const Output_segment* copy = states_iter->second;
1780 // Shallow copy to restore states.
1783 // Also fix up TLS and RELRO segment pointers as appropriate.
1784 if (segment->type() == elfcpp::PT_TLS)
1785 this->tls_segment_ = segment;
1786 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1787 this->relro_segment_ = segment;
1793 list_iter = this->segment_list_.erase(list_iter);
1794 // This is a segment created during section layout. It should be
1795 // safe to remove it since we should have removed all pointers to it.
1801 // Clean up after relaxation so that sections can be laid out again.
1804 Layout::clean_up_after_relaxation()
1806 // Restore the segments to point state just prior to the relaxation loop.
1807 Script_sections* script_section = this->script_options_->script_sections();
1808 script_section->release_segments();
1809 this->restore_segments(this->segment_states_);
1811 // Reset section addresses and file offsets
1812 for (Section_list::iterator p = this->section_list_.begin();
1813 p != this->section_list_.end();
1816 (*p)->restore_states();
1818 // If an input section changes size because of relaxation,
1819 // we need to adjust the section offsets of all input sections.
1820 // after such a section.
1821 if ((*p)->section_offsets_need_adjustment())
1822 (*p)->adjust_section_offsets();
1824 (*p)->reset_address_and_file_offset();
1827 // Reset special output object address and file offsets.
1828 for (Data_list::iterator p = this->special_output_list_.begin();
1829 p != this->special_output_list_.end();
1831 (*p)->reset_address_and_file_offset();
1833 // A linker script may have created some output section data objects.
1834 // They are useless now.
1835 for (Output_section_data_list::const_iterator p =
1836 this->script_output_section_data_list_.begin();
1837 p != this->script_output_section_data_list_.end();
1840 this->script_output_section_data_list_.clear();
1843 // Prepare for relaxation.
1846 Layout::prepare_for_relaxation()
1848 // Create an relaxation debug check if in debugging mode.
1849 if (is_debugging_enabled(DEBUG_RELAXATION))
1850 this->relaxation_debug_check_ = new Relaxation_debug_check();
1852 // Save segment states.
1853 this->segment_states_ = new Segment_states();
1854 this->save_segments(this->segment_states_);
1856 for(Section_list::const_iterator p = this->section_list_.begin();
1857 p != this->section_list_.end();
1859 (*p)->save_states();
1861 if (is_debugging_enabled(DEBUG_RELAXATION))
1862 this->relaxation_debug_check_->check_output_data_for_reset_values(
1863 this->section_list_, this->special_output_list_);
1865 // Also enable recording of output section data from scripts.
1866 this->record_output_section_data_from_script_ = true;
1869 // Relaxation loop body: If target has no relaxation, this runs only once
1870 // Otherwise, the target relaxation hook is called at the end of
1871 // each iteration. If the hook returns true, it means re-layout of
1872 // section is required.
1874 // The number of segments created by a linking script without a PHDRS
1875 // clause may be affected by section sizes and alignments. There is
1876 // a remote chance that relaxation causes different number of PT_LOAD
1877 // segments are created and sections are attached to different segments.
1878 // Therefore, we always throw away all segments created during section
1879 // layout. In order to be able to restart the section layout, we keep
1880 // a copy of the segment list right before the relaxation loop and use
1881 // that to restore the segments.
1883 // PASS is the current relaxation pass number.
1884 // SYMTAB is a symbol table.
1885 // PLOAD_SEG is the address of a pointer for the load segment.
1886 // PHDR_SEG is a pointer to the PHDR segment.
1887 // SEGMENT_HEADERS points to the output segment header.
1888 // FILE_HEADER points to the output file header.
1889 // PSHNDX is the address to store the output section index.
1892 Layout::relaxation_loop_body(
1895 Symbol_table* symtab,
1896 Output_segment** pload_seg,
1897 Output_segment* phdr_seg,
1898 Output_segment_headers* segment_headers,
1899 Output_file_header* file_header,
1900 unsigned int* pshndx)
1902 // If this is not the first iteration, we need to clean up after
1903 // relaxation so that we can lay out the sections again.
1905 this->clean_up_after_relaxation();
1907 // If there is a SECTIONS clause, put all the input sections into
1908 // the required order.
1909 Output_segment* load_seg;
1910 if (this->script_options_->saw_sections_clause())
1911 load_seg = this->set_section_addresses_from_script(symtab);
1912 else if (parameters->options().relocatable())
1915 load_seg = this->find_first_load_seg();
1917 if (parameters->options().oformat_enum()
1918 != General_options::OBJECT_FORMAT_ELF)
1921 // If the user set the address of the text segment, that may not be
1922 // compatible with putting the segment headers and file headers into
1924 if (parameters->options().user_set_Ttext())
1927 gold_assert(phdr_seg == NULL
1929 || this->script_options_->saw_sections_clause());
1931 // If the address of the load segment we found has been set by
1932 // --section-start rather than by a script, then adjust the VMA and
1933 // LMA downward if possible to include the file and section headers.
1934 uint64_t header_gap = 0;
1935 if (load_seg != NULL
1936 && load_seg->are_addresses_set()
1937 && !this->script_options_->saw_sections_clause()
1938 && !parameters->options().relocatable())
1940 file_header->finalize_data_size();
1941 segment_headers->finalize_data_size();
1942 size_t sizeof_headers = (file_header->data_size()
1943 + segment_headers->data_size());
1944 const uint64_t abi_pagesize = target->abi_pagesize();
1945 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1946 hdr_paddr &= ~(abi_pagesize - 1);
1947 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1948 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1952 load_seg->set_addresses(load_seg->vaddr() - subtract,
1953 load_seg->paddr() - subtract);
1954 header_gap = subtract - sizeof_headers;
1958 // Lay out the segment headers.
1959 if (!parameters->options().relocatable())
1961 gold_assert(segment_headers != NULL);
1962 if (header_gap != 0 && load_seg != NULL)
1964 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1965 load_seg->add_initial_output_data(z);
1967 if (load_seg != NULL)
1968 load_seg->add_initial_output_data(segment_headers);
1969 if (phdr_seg != NULL)
1970 phdr_seg->add_initial_output_data(segment_headers);
1973 // Lay out the file header.
1974 if (load_seg != NULL)
1975 load_seg->add_initial_output_data(file_header);
1977 if (this->script_options_->saw_phdrs_clause()
1978 && !parameters->options().relocatable())
1980 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1981 // clause in a linker script.
1982 Script_sections* ss = this->script_options_->script_sections();
1983 ss->put_headers_in_phdrs(file_header, segment_headers);
1986 // We set the output section indexes in set_segment_offsets and
1987 // set_section_indexes.
1990 // Set the file offsets of all the segments, and all the sections
1993 if (!parameters->options().relocatable())
1994 off = this->set_segment_offsets(target, load_seg, pshndx);
1996 off = this->set_relocatable_section_offsets(file_header, pshndx);
1998 // Verify that the dummy relaxation does not change anything.
1999 if (is_debugging_enabled(DEBUG_RELAXATION))
2002 this->relaxation_debug_check_->read_sections(this->section_list_);
2004 this->relaxation_debug_check_->verify_sections(this->section_list_);
2007 *pload_seg = load_seg;
2011 // Search the list of patterns and find the postion of the given section
2012 // name in the output section. If the section name matches a glob
2013 // pattern and a non-glob name, then the non-glob position takes
2014 // precedence. Return 0 if no match is found.
2017 Layout::find_section_order_index(const std::string& section_name)
2019 Unordered_map<std::string, unsigned int>::iterator map_it;
2020 map_it = this->input_section_position_.find(section_name);
2021 if (map_it != this->input_section_position_.end())
2022 return map_it->second;
2024 // Absolute match failed. Linear search the glob patterns.
2025 std::vector<std::string>::iterator it;
2026 for (it = this->input_section_glob_.begin();
2027 it != this->input_section_glob_.end();
2030 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2032 map_it = this->input_section_position_.find(*it);
2033 gold_assert(map_it != this->input_section_position_.end());
2034 return map_it->second;
2040 // Read the sequence of input sections from the file specified with
2041 // --section-ordering-file.
2044 Layout::read_layout_from_file()
2046 const char* filename = parameters->options().section_ordering_file();
2052 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2053 filename, strerror(errno));
2055 std::getline(in, line); // this chops off the trailing \n, if any
2056 unsigned int position = 1;
2060 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2061 line.resize(line.length() - 1);
2062 // Ignore comments, beginning with '#'
2065 std::getline(in, line);
2068 this->input_section_position_[line] = position;
2069 // Store all glob patterns in a vector.
2070 if (is_wildcard_string(line.c_str()))
2071 this->input_section_glob_.push_back(line);
2073 std::getline(in, line);
2077 // Finalize the layout. When this is called, we have created all the
2078 // output sections and all the output segments which are based on
2079 // input sections. We have several things to do, and we have to do
2080 // them in the right order, so that we get the right results correctly
2083 // 1) Finalize the list of output segments and create the segment
2086 // 2) Finalize the dynamic symbol table and associated sections.
2088 // 3) Determine the final file offset of all the output segments.
2090 // 4) Determine the final file offset of all the SHF_ALLOC output
2093 // 5) Create the symbol table sections and the section name table
2096 // 6) Finalize the symbol table: set symbol values to their final
2097 // value and make a final determination of which symbols are going
2098 // into the output symbol table.
2100 // 7) Create the section table header.
2102 // 8) Determine the final file offset of all the output sections which
2103 // are not SHF_ALLOC, including the section table header.
2105 // 9) Finalize the ELF file header.
2107 // This function returns the size of the output file.
2110 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2111 Target* target, const Task* task)
2113 target->finalize_sections(this, input_objects, symtab);
2115 this->count_local_symbols(task, input_objects);
2117 this->link_stabs_sections();
2119 Output_segment* phdr_seg = NULL;
2120 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2122 // There was a dynamic object in the link. We need to create
2123 // some information for the dynamic linker.
2125 // Create the PT_PHDR segment which will hold the program
2127 if (!this->script_options_->saw_phdrs_clause())
2128 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2130 // Create the dynamic symbol table, including the hash table.
2131 Output_section* dynstr;
2132 std::vector<Symbol*> dynamic_symbols;
2133 unsigned int local_dynamic_count;
2134 Versions versions(*this->script_options()->version_script_info(),
2136 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2137 &local_dynamic_count, &dynamic_symbols,
2140 // Create the .interp section to hold the name of the
2141 // interpreter, and put it in a PT_INTERP segment.
2142 if (!parameters->options().shared())
2143 this->create_interp(target);
2145 // Finish the .dynamic section to hold the dynamic data, and put
2146 // it in a PT_DYNAMIC segment.
2147 this->finish_dynamic_section(input_objects, symtab);
2149 // We should have added everything we need to the dynamic string
2151 this->dynpool_.set_string_offsets();
2153 // Create the version sections. We can't do this until the
2154 // dynamic string table is complete.
2155 this->create_version_sections(&versions, symtab, local_dynamic_count,
2156 dynamic_symbols, dynstr);
2158 // Set the size of the _DYNAMIC symbol. We can't do this until
2159 // after we call create_version_sections.
2160 this->set_dynamic_symbol_size(symtab);
2163 // Create segment headers.
2164 Output_segment_headers* segment_headers =
2165 (parameters->options().relocatable()
2167 : new Output_segment_headers(this->segment_list_));
2169 // Lay out the file header.
2170 Output_file_header* file_header
2171 = new Output_file_header(target, symtab, segment_headers,
2172 parameters->options().entry());
2174 this->special_output_list_.push_back(file_header);
2175 if (segment_headers != NULL)
2176 this->special_output_list_.push_back(segment_headers);
2178 // Find approriate places for orphan output sections if we are using
2180 if (this->script_options_->saw_sections_clause())
2181 this->place_orphan_sections_in_script();
2183 Output_segment* load_seg;
2188 // Take a snapshot of the section layout as needed.
2189 if (target->may_relax())
2190 this->prepare_for_relaxation();
2192 // Run the relaxation loop to lay out sections.
2195 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2196 phdr_seg, segment_headers, file_header,
2200 while (target->may_relax()
2201 && target->relax(pass, input_objects, symtab, this, task));
2203 // Set the file offsets of all the non-data sections we've seen so
2204 // far which don't have to wait for the input sections. We need
2205 // this in order to finalize local symbols in non-allocated
2207 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2209 // Set the section indexes of all unallocated sections seen so far,
2210 // in case any of them are somehow referenced by a symbol.
2211 shndx = this->set_section_indexes(shndx);
2213 // Create the symbol table sections.
2214 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2215 if (!parameters->doing_static_link())
2216 this->assign_local_dynsym_offsets(input_objects);
2218 // Process any symbol assignments from a linker script. This must
2219 // be called after the symbol table has been finalized.
2220 this->script_options_->finalize_symbols(symtab, this);
2222 // Create the incremental inputs sections.
2223 if (this->incremental_inputs_)
2225 this->incremental_inputs_->finalize();
2226 this->create_incremental_info_sections(symtab);
2229 // Create the .shstrtab section.
2230 Output_section* shstrtab_section = this->create_shstrtab();
2232 // Set the file offsets of the rest of the non-data sections which
2233 // don't have to wait for the input sections.
2234 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2236 // Now that all sections have been created, set the section indexes
2237 // for any sections which haven't been done yet.
2238 shndx = this->set_section_indexes(shndx);
2240 // Create the section table header.
2241 this->create_shdrs(shstrtab_section, &off);
2243 // If there are no sections which require postprocessing, we can
2244 // handle the section names now, and avoid a resize later.
2245 if (!this->any_postprocessing_sections_)
2247 off = this->set_section_offsets(off,
2248 POSTPROCESSING_SECTIONS_PASS);
2250 this->set_section_offsets(off,
2251 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2254 file_header->set_section_info(this->section_headers_, shstrtab_section);
2256 // Now we know exactly where everything goes in the output file
2257 // (except for non-allocated sections which require postprocessing).
2258 Output_data::layout_complete();
2260 this->output_file_size_ = off;
2265 // Create a note header following the format defined in the ELF ABI.
2266 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2267 // of the section to create, DESCSZ is the size of the descriptor.
2268 // ALLOCATE is true if the section should be allocated in memory.
2269 // This returns the new note section. It sets *TRAILING_PADDING to
2270 // the number of trailing zero bytes required.
2273 Layout::create_note(const char* name, int note_type,
2274 const char* section_name, size_t descsz,
2275 bool allocate, size_t* trailing_padding)
2277 // Authorities all agree that the values in a .note field should
2278 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2279 // they differ on what the alignment is for 64-bit binaries.
2280 // The GABI says unambiguously they take 8-byte alignment:
2281 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2282 // Other documentation says alignment should always be 4 bytes:
2283 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2284 // GNU ld and GNU readelf both support the latter (at least as of
2285 // version 2.16.91), and glibc always generates the latter for
2286 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2288 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2289 const int size = parameters->target().get_size();
2291 const int size = 32;
2294 // The contents of the .note section.
2295 size_t namesz = strlen(name) + 1;
2296 size_t aligned_namesz = align_address(namesz, size / 8);
2297 size_t aligned_descsz = align_address(descsz, size / 8);
2299 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2301 unsigned char* buffer = new unsigned char[notehdrsz];
2302 memset(buffer, 0, notehdrsz);
2304 bool is_big_endian = parameters->target().is_big_endian();
2310 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2311 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2312 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2316 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2317 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2318 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2321 else if (size == 64)
2325 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2326 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2327 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2331 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2332 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2333 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2339 memcpy(buffer + 3 * (size / 8), name, namesz);
2341 elfcpp::Elf_Xword flags = 0;
2342 Output_section_order order = ORDER_INVALID;
2345 flags = elfcpp::SHF_ALLOC;
2346 order = ORDER_RO_NOTE;
2348 Output_section* os = this->choose_output_section(NULL, section_name,
2350 flags, false, order, false);
2354 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2357 os->add_output_section_data(posd);
2359 *trailing_padding = aligned_descsz - descsz;
2364 // For an executable or shared library, create a note to record the
2365 // version of gold used to create the binary.
2368 Layout::create_gold_note()
2370 if (parameters->options().relocatable()
2371 || parameters->incremental_update())
2374 std::string desc = std::string("gold ") + gold::get_version_string();
2376 size_t trailing_padding;
2377 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2378 ".note.gnu.gold-version", desc.size(),
2379 false, &trailing_padding);
2383 Output_section_data* posd = new Output_data_const(desc, 4);
2384 os->add_output_section_data(posd);
2386 if (trailing_padding > 0)
2388 posd = new Output_data_zero_fill(trailing_padding, 0);
2389 os->add_output_section_data(posd);
2393 // Record whether the stack should be executable. This can be set
2394 // from the command line using the -z execstack or -z noexecstack
2395 // options. Otherwise, if any input file has a .note.GNU-stack
2396 // section with the SHF_EXECINSTR flag set, the stack should be
2397 // executable. Otherwise, if at least one input file a
2398 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2399 // section, we use the target default for whether the stack should be
2400 // executable. Otherwise, we don't generate a stack note. When
2401 // generating a object file, we create a .note.GNU-stack section with
2402 // the appropriate marking. When generating an executable or shared
2403 // library, we create a PT_GNU_STACK segment.
2406 Layout::create_executable_stack_info()
2408 bool is_stack_executable;
2409 if (parameters->options().is_execstack_set())
2410 is_stack_executable = parameters->options().is_stack_executable();
2411 else if (!this->input_with_gnu_stack_note_)
2415 if (this->input_requires_executable_stack_)
2416 is_stack_executable = true;
2417 else if (this->input_without_gnu_stack_note_)
2418 is_stack_executable =
2419 parameters->target().is_default_stack_executable();
2421 is_stack_executable = false;
2424 if (parameters->options().relocatable())
2426 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2427 elfcpp::Elf_Xword flags = 0;
2428 if (is_stack_executable)
2429 flags |= elfcpp::SHF_EXECINSTR;
2430 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2431 ORDER_INVALID, false);
2435 if (this->script_options_->saw_phdrs_clause())
2437 int flags = elfcpp::PF_R | elfcpp::PF_W;
2438 if (is_stack_executable)
2439 flags |= elfcpp::PF_X;
2440 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2444 // If --build-id was used, set up the build ID note.
2447 Layout::create_build_id()
2449 if (!parameters->options().user_set_build_id())
2452 const char* style = parameters->options().build_id();
2453 if (strcmp(style, "none") == 0)
2456 // Set DESCSZ to the size of the note descriptor. When possible,
2457 // set DESC to the note descriptor contents.
2460 if (strcmp(style, "md5") == 0)
2462 else if (strcmp(style, "sha1") == 0)
2464 else if (strcmp(style, "uuid") == 0)
2466 const size_t uuidsz = 128 / 8;
2468 char buffer[uuidsz];
2469 memset(buffer, 0, uuidsz);
2471 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2473 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2477 ssize_t got = ::read(descriptor, buffer, uuidsz);
2478 release_descriptor(descriptor, true);
2480 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2481 else if (static_cast<size_t>(got) != uuidsz)
2482 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2486 desc.assign(buffer, uuidsz);
2489 else if (strncmp(style, "0x", 2) == 0)
2492 const char* p = style + 2;
2495 if (hex_p(p[0]) && hex_p(p[1]))
2497 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2501 else if (*p == '-' || *p == ':')
2504 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2507 descsz = desc.size();
2510 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2513 size_t trailing_padding;
2514 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2515 ".note.gnu.build-id", descsz, true,
2522 // We know the value already, so we fill it in now.
2523 gold_assert(desc.size() == descsz);
2525 Output_section_data* posd = new Output_data_const(desc, 4);
2526 os->add_output_section_data(posd);
2528 if (trailing_padding != 0)
2530 posd = new Output_data_zero_fill(trailing_padding, 0);
2531 os->add_output_section_data(posd);
2536 // We need to compute a checksum after we have completed the
2538 gold_assert(trailing_padding == 0);
2539 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2540 os->add_output_section_data(this->build_id_note_);
2544 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2545 // field of the former should point to the latter. I'm not sure who
2546 // started this, but the GNU linker does it, and some tools depend
2550 Layout::link_stabs_sections()
2552 if (!this->have_stabstr_section_)
2555 for (Section_list::iterator p = this->section_list_.begin();
2556 p != this->section_list_.end();
2559 if ((*p)->type() != elfcpp::SHT_STRTAB)
2562 const char* name = (*p)->name();
2563 if (strncmp(name, ".stab", 5) != 0)
2566 size_t len = strlen(name);
2567 if (strcmp(name + len - 3, "str") != 0)
2570 std::string stab_name(name, len - 3);
2571 Output_section* stab_sec;
2572 stab_sec = this->find_output_section(stab_name.c_str());
2573 if (stab_sec != NULL)
2574 stab_sec->set_link_section(*p);
2578 // Create .gnu_incremental_inputs and related sections needed
2579 // for the next run of incremental linking to check what has changed.
2582 Layout::create_incremental_info_sections(Symbol_table* symtab)
2584 Incremental_inputs* incr = this->incremental_inputs_;
2586 gold_assert(incr != NULL);
2588 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2589 incr->create_data_sections(symtab);
2591 // Add the .gnu_incremental_inputs section.
2592 const char* incremental_inputs_name =
2593 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2594 Output_section* incremental_inputs_os =
2595 this->make_output_section(incremental_inputs_name,
2596 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2597 ORDER_INVALID, false);
2598 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2600 // Add the .gnu_incremental_symtab section.
2601 const char* incremental_symtab_name =
2602 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2603 Output_section* incremental_symtab_os =
2604 this->make_output_section(incremental_symtab_name,
2605 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2606 ORDER_INVALID, false);
2607 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2608 incremental_symtab_os->set_entsize(4);
2610 // Add the .gnu_incremental_relocs section.
2611 const char* incremental_relocs_name =
2612 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2613 Output_section* incremental_relocs_os =
2614 this->make_output_section(incremental_relocs_name,
2615 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2616 ORDER_INVALID, false);
2617 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2618 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2620 // Add the .gnu_incremental_got_plt section.
2621 const char* incremental_got_plt_name =
2622 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2623 Output_section* incremental_got_plt_os =
2624 this->make_output_section(incremental_got_plt_name,
2625 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2626 ORDER_INVALID, false);
2627 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2629 // Add the .gnu_incremental_strtab section.
2630 const char* incremental_strtab_name =
2631 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2632 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2633 elfcpp::SHT_STRTAB, 0,
2634 ORDER_INVALID, false);
2635 Output_data_strtab* strtab_data =
2636 new Output_data_strtab(incr->get_stringpool());
2637 incremental_strtab_os->add_output_section_data(strtab_data);
2639 incremental_inputs_os->set_after_input_sections();
2640 incremental_symtab_os->set_after_input_sections();
2641 incremental_relocs_os->set_after_input_sections();
2642 incremental_got_plt_os->set_after_input_sections();
2644 incremental_inputs_os->set_link_section(incremental_strtab_os);
2645 incremental_symtab_os->set_link_section(incremental_inputs_os);
2646 incremental_relocs_os->set_link_section(incremental_inputs_os);
2647 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2650 // Return whether SEG1 should be before SEG2 in the output file. This
2651 // is based entirely on the segment type and flags. When this is
2652 // called the segment addresses has normally not yet been set.
2655 Layout::segment_precedes(const Output_segment* seg1,
2656 const Output_segment* seg2)
2658 elfcpp::Elf_Word type1 = seg1->type();
2659 elfcpp::Elf_Word type2 = seg2->type();
2661 // The single PT_PHDR segment is required to precede any loadable
2662 // segment. We simply make it always first.
2663 if (type1 == elfcpp::PT_PHDR)
2665 gold_assert(type2 != elfcpp::PT_PHDR);
2668 if (type2 == elfcpp::PT_PHDR)
2671 // The single PT_INTERP segment is required to precede any loadable
2672 // segment. We simply make it always second.
2673 if (type1 == elfcpp::PT_INTERP)
2675 gold_assert(type2 != elfcpp::PT_INTERP);
2678 if (type2 == elfcpp::PT_INTERP)
2681 // We then put PT_LOAD segments before any other segments.
2682 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2684 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2687 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2688 // segment, because that is where the dynamic linker expects to find
2689 // it (this is just for efficiency; other positions would also work
2691 if (type1 == elfcpp::PT_TLS
2692 && type2 != elfcpp::PT_TLS
2693 && type2 != elfcpp::PT_GNU_RELRO)
2695 if (type2 == elfcpp::PT_TLS
2696 && type1 != elfcpp::PT_TLS
2697 && type1 != elfcpp::PT_GNU_RELRO)
2700 // We put the PT_GNU_RELRO segment last, because that is where the
2701 // dynamic linker expects to find it (as with PT_TLS, this is just
2703 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2705 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2708 const elfcpp::Elf_Word flags1 = seg1->flags();
2709 const elfcpp::Elf_Word flags2 = seg2->flags();
2711 // The order of non-PT_LOAD segments is unimportant. We simply sort
2712 // by the numeric segment type and flags values. There should not
2713 // be more than one segment with the same type and flags.
2714 if (type1 != elfcpp::PT_LOAD)
2717 return type1 < type2;
2718 gold_assert(flags1 != flags2);
2719 return flags1 < flags2;
2722 // If the addresses are set already, sort by load address.
2723 if (seg1->are_addresses_set())
2725 if (!seg2->are_addresses_set())
2728 unsigned int section_count1 = seg1->output_section_count();
2729 unsigned int section_count2 = seg2->output_section_count();
2730 if (section_count1 == 0 && section_count2 > 0)
2732 if (section_count1 > 0 && section_count2 == 0)
2735 uint64_t paddr1 = (seg1->are_addresses_set()
2737 : seg1->first_section_load_address());
2738 uint64_t paddr2 = (seg2->are_addresses_set()
2740 : seg2->first_section_load_address());
2742 if (paddr1 != paddr2)
2743 return paddr1 < paddr2;
2745 else if (seg2->are_addresses_set())
2748 // A segment which holds large data comes after a segment which does
2749 // not hold large data.
2750 if (seg1->is_large_data_segment())
2752 if (!seg2->is_large_data_segment())
2755 else if (seg2->is_large_data_segment())
2758 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2759 // segments come before writable segments. Then writable segments
2760 // with data come before writable segments without data. Then
2761 // executable segments come before non-executable segments. Then
2762 // the unlikely case of a non-readable segment comes before the
2763 // normal case of a readable segment. If there are multiple
2764 // segments with the same type and flags, we require that the
2765 // address be set, and we sort by virtual address and then physical
2767 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2768 return (flags1 & elfcpp::PF_W) == 0;
2769 if ((flags1 & elfcpp::PF_W) != 0
2770 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2771 return seg1->has_any_data_sections();
2772 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2773 return (flags1 & elfcpp::PF_X) != 0;
2774 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2775 return (flags1 & elfcpp::PF_R) == 0;
2777 // We shouldn't get here--we shouldn't create segments which we
2778 // can't distinguish.
2782 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2785 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2787 uint64_t unsigned_off = off;
2788 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2789 | (addr & (abi_pagesize - 1)));
2790 if (aligned_off < unsigned_off)
2791 aligned_off += abi_pagesize;
2795 // Set the file offsets of all the segments, and all the sections they
2796 // contain. They have all been created. LOAD_SEG must be be laid out
2797 // first. Return the offset of the data to follow.
2800 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2801 unsigned int* pshndx)
2803 // Sort them into the final order.
2804 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2805 Layout::Compare_segments());
2807 // Find the PT_LOAD segments, and set their addresses and offsets
2808 // and their section's addresses and offsets.
2810 if (parameters->options().user_set_Ttext())
2811 addr = parameters->options().Ttext();
2812 else if (parameters->options().output_is_position_independent())
2815 addr = target->default_text_segment_address();
2818 // If LOAD_SEG is NULL, then the file header and segment headers
2819 // will not be loadable. But they still need to be at offset 0 in
2820 // the file. Set their offsets now.
2821 if (load_seg == NULL)
2823 for (Data_list::iterator p = this->special_output_list_.begin();
2824 p != this->special_output_list_.end();
2827 off = align_address(off, (*p)->addralign());
2828 (*p)->set_address_and_file_offset(0, off);
2829 off += (*p)->data_size();
2833 unsigned int increase_relro = this->increase_relro_;
2834 if (this->script_options_->saw_sections_clause())
2837 const bool check_sections = parameters->options().check_sections();
2838 Output_segment* last_load_segment = NULL;
2840 for (Segment_list::iterator p = this->segment_list_.begin();
2841 p != this->segment_list_.end();
2844 if ((*p)->type() == elfcpp::PT_LOAD)
2846 if (load_seg != NULL && load_seg != *p)
2850 bool are_addresses_set = (*p)->are_addresses_set();
2851 if (are_addresses_set)
2853 // When it comes to setting file offsets, we care about
2854 // the physical address.
2855 addr = (*p)->paddr();
2857 else if (parameters->options().user_set_Tdata()
2858 && ((*p)->flags() & elfcpp::PF_W) != 0
2859 && (!parameters->options().user_set_Tbss()
2860 || (*p)->has_any_data_sections()))
2862 addr = parameters->options().Tdata();
2863 are_addresses_set = true;
2865 else if (parameters->options().user_set_Tbss()
2866 && ((*p)->flags() & elfcpp::PF_W) != 0
2867 && !(*p)->has_any_data_sections())
2869 addr = parameters->options().Tbss();
2870 are_addresses_set = true;
2873 uint64_t orig_addr = addr;
2874 uint64_t orig_off = off;
2876 uint64_t aligned_addr = 0;
2877 uint64_t abi_pagesize = target->abi_pagesize();
2878 uint64_t common_pagesize = target->common_pagesize();
2880 if (!parameters->options().nmagic()
2881 && !parameters->options().omagic())
2882 (*p)->set_minimum_p_align(common_pagesize);
2884 if (!are_addresses_set)
2886 // Skip the address forward one page, maintaining the same
2887 // position within the page. This lets us store both segments
2888 // overlapping on a single page in the file, but the loader will
2889 // put them on different pages in memory. We will revisit this
2890 // decision once we know the size of the segment.
2892 addr = align_address(addr, (*p)->maximum_alignment());
2893 aligned_addr = addr;
2895 if ((addr & (abi_pagesize - 1)) != 0)
2896 addr = addr + abi_pagesize;
2898 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2901 if (!parameters->options().nmagic()
2902 && !parameters->options().omagic())
2903 off = align_file_offset(off, addr, abi_pagesize);
2904 else if (load_seg == NULL)
2906 // This is -N or -n with a section script which prevents
2907 // us from using a load segment. We need to ensure that
2908 // the file offset is aligned to the alignment of the
2909 // segment. This is because the linker script
2910 // implicitly assumed a zero offset. If we don't align
2911 // here, then the alignment of the sections in the
2912 // linker script may not match the alignment of the
2913 // sections in the set_section_addresses call below,
2914 // causing an error about dot moving backward.
2915 off = align_address(off, (*p)->maximum_alignment());
2918 unsigned int shndx_hold = *pshndx;
2919 bool has_relro = false;
2920 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2925 // Now that we know the size of this segment, we may be able
2926 // to save a page in memory, at the cost of wasting some
2927 // file space, by instead aligning to the start of a new
2928 // page. Here we use the real machine page size rather than
2929 // the ABI mandated page size. If the segment has been
2930 // aligned so that the relro data ends at a page boundary,
2931 // we do not try to realign it.
2933 if (!are_addresses_set
2935 && aligned_addr != addr
2936 && !parameters->incremental_update())
2938 uint64_t first_off = (common_pagesize
2940 & (common_pagesize - 1)));
2941 uint64_t last_off = new_addr & (common_pagesize - 1);
2944 && ((aligned_addr & ~ (common_pagesize - 1))
2945 != (new_addr & ~ (common_pagesize - 1)))
2946 && first_off + last_off <= common_pagesize)
2948 *pshndx = shndx_hold;
2949 addr = align_address(aligned_addr, common_pagesize);
2950 addr = align_address(addr, (*p)->maximum_alignment());
2951 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2952 off = align_file_offset(off, addr, abi_pagesize);
2954 increase_relro = this->increase_relro_;
2955 if (this->script_options_->saw_sections_clause())
2959 new_addr = (*p)->set_section_addresses(this, true, addr,
2968 // Implement --check-sections. We know that the segments
2969 // are sorted by LMA.
2970 if (check_sections && last_load_segment != NULL)
2972 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2973 if (last_load_segment->paddr() + last_load_segment->memsz()
2976 unsigned long long lb1 = last_load_segment->paddr();
2977 unsigned long long le1 = lb1 + last_load_segment->memsz();
2978 unsigned long long lb2 = (*p)->paddr();
2979 unsigned long long le2 = lb2 + (*p)->memsz();
2980 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2981 "[0x%llx -> 0x%llx]"),
2982 lb1, le1, lb2, le2);
2985 last_load_segment = *p;
2989 // Handle the non-PT_LOAD segments, setting their offsets from their
2990 // section's offsets.
2991 for (Segment_list::iterator p = this->segment_list_.begin();
2992 p != this->segment_list_.end();
2995 if ((*p)->type() != elfcpp::PT_LOAD)
2996 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3001 // Set the TLS offsets for each section in the PT_TLS segment.
3002 if (this->tls_segment_ != NULL)
3003 this->tls_segment_->set_tls_offsets();
3008 // Set the offsets of all the allocated sections when doing a
3009 // relocatable link. This does the same jobs as set_segment_offsets,
3010 // only for a relocatable link.
3013 Layout::set_relocatable_section_offsets(Output_data* file_header,
3014 unsigned int* pshndx)
3018 file_header->set_address_and_file_offset(0, 0);
3019 off += file_header->data_size();
3021 for (Section_list::iterator p = this->section_list_.begin();
3022 p != this->section_list_.end();
3025 // We skip unallocated sections here, except that group sections
3026 // have to come first.
3027 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3028 && (*p)->type() != elfcpp::SHT_GROUP)
3031 off = align_address(off, (*p)->addralign());
3033 // The linker script might have set the address.
3034 if (!(*p)->is_address_valid())
3035 (*p)->set_address(0);
3036 (*p)->set_file_offset(off);
3037 (*p)->finalize_data_size();
3038 off += (*p)->data_size();
3040 (*p)->set_out_shndx(*pshndx);
3047 // Set the file offset of all the sections not associated with a
3051 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3053 off_t startoff = off;
3056 for (Section_list::iterator p = this->unattached_section_list_.begin();
3057 p != this->unattached_section_list_.end();
3060 // The symtab section is handled in create_symtab_sections.
3061 if (*p == this->symtab_section_)
3064 // If we've already set the data size, don't set it again.
3065 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3068 if (pass == BEFORE_INPUT_SECTIONS_PASS
3069 && (*p)->requires_postprocessing())
3071 (*p)->create_postprocessing_buffer();
3072 this->any_postprocessing_sections_ = true;
3075 if (pass == BEFORE_INPUT_SECTIONS_PASS
3076 && (*p)->after_input_sections())
3078 else if (pass == POSTPROCESSING_SECTIONS_PASS
3079 && (!(*p)->after_input_sections()
3080 || (*p)->type() == elfcpp::SHT_STRTAB))
3082 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3083 && (!(*p)->after_input_sections()
3084 || (*p)->type() != elfcpp::SHT_STRTAB))
3087 if (!parameters->incremental_update())
3089 off = align_address(off, (*p)->addralign());
3090 (*p)->set_file_offset(off);
3091 (*p)->finalize_data_size();
3095 // Incremental update: allocate file space from free list.
3096 (*p)->pre_finalize_data_size();
3097 off_t current_size = (*p)->current_data_size();
3098 off = this->allocate(current_size, (*p)->addralign(), startoff);
3101 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3102 this->free_list_.dump();
3103 gold_assert((*p)->output_section() != NULL);
3104 gold_fatal(_("out of patch space for section %s; "
3105 "relink with --incremental-full"),
3106 (*p)->output_section()->name());
3108 (*p)->set_file_offset(off);
3109 (*p)->finalize_data_size();
3110 if ((*p)->data_size() > current_size)
3112 gold_assert((*p)->output_section() != NULL);
3113 gold_fatal(_("%s: section changed size; "
3114 "relink with --incremental-full"),
3115 (*p)->output_section()->name());
3117 gold_debug(DEBUG_INCREMENTAL,
3118 "set_section_offsets: %08lx %08lx %s",
3119 static_cast<long>(off),
3120 static_cast<long>((*p)->data_size()),
3121 ((*p)->output_section() != NULL
3122 ? (*p)->output_section()->name() : "(special)"));
3125 off += (*p)->data_size();
3129 // At this point the name must be set.
3130 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3131 this->namepool_.add((*p)->name(), false, NULL);
3136 // Set the section indexes of all the sections not associated with a
3140 Layout::set_section_indexes(unsigned int shndx)
3142 for (Section_list::iterator p = this->unattached_section_list_.begin();
3143 p != this->unattached_section_list_.end();
3146 if (!(*p)->has_out_shndx())
3148 (*p)->set_out_shndx(shndx);
3155 // Set the section addresses according to the linker script. This is
3156 // only called when we see a SECTIONS clause. This returns the
3157 // program segment which should hold the file header and segment
3158 // headers, if any. It will return NULL if they should not be in a
3162 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3164 Script_sections* ss = this->script_options_->script_sections();
3165 gold_assert(ss->saw_sections_clause());
3166 return this->script_options_->set_section_addresses(symtab, this);
3169 // Place the orphan sections in the linker script.
3172 Layout::place_orphan_sections_in_script()
3174 Script_sections* ss = this->script_options_->script_sections();
3175 gold_assert(ss->saw_sections_clause());
3177 // Place each orphaned output section in the script.
3178 for (Section_list::iterator p = this->section_list_.begin();
3179 p != this->section_list_.end();
3182 if (!(*p)->found_in_sections_clause())
3183 ss->place_orphan(*p);
3187 // Count the local symbols in the regular symbol table and the dynamic
3188 // symbol table, and build the respective string pools.
3191 Layout::count_local_symbols(const Task* task,
3192 const Input_objects* input_objects)
3194 // First, figure out an upper bound on the number of symbols we'll
3195 // be inserting into each pool. This helps us create the pools with
3196 // the right size, to avoid unnecessary hashtable resizing.
3197 unsigned int symbol_count = 0;
3198 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3199 p != input_objects->relobj_end();
3201 symbol_count += (*p)->local_symbol_count();
3203 // Go from "upper bound" to "estimate." We overcount for two
3204 // reasons: we double-count symbols that occur in more than one
3205 // object file, and we count symbols that are dropped from the
3206 // output. Add it all together and assume we overcount by 100%.
3209 // We assume all symbols will go into both the sympool and dynpool.
3210 this->sympool_.reserve(symbol_count);
3211 this->dynpool_.reserve(symbol_count);
3213 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3214 p != input_objects->relobj_end();
3217 Task_lock_obj<Object> tlo(task, *p);
3218 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3222 // Create the symbol table sections. Here we also set the final
3223 // values of the symbols. At this point all the loadable sections are
3224 // fully laid out. SHNUM is the number of sections so far.
3227 Layout::create_symtab_sections(const Input_objects* input_objects,
3228 Symbol_table* symtab,
3234 if (parameters->target().get_size() == 32)
3236 symsize = elfcpp::Elf_sizes<32>::sym_size;
3239 else if (parameters->target().get_size() == 64)
3241 symsize = elfcpp::Elf_sizes<64>::sym_size;
3247 // Compute file offsets relative to the start of the symtab section.
3250 // Save space for the dummy symbol at the start of the section. We
3251 // never bother to write this out--it will just be left as zero.
3253 unsigned int local_symbol_index = 1;
3255 // Add STT_SECTION symbols for each Output section which needs one.
3256 for (Section_list::iterator p = this->section_list_.begin();
3257 p != this->section_list_.end();
3260 if (!(*p)->needs_symtab_index())
3261 (*p)->set_symtab_index(-1U);
3264 (*p)->set_symtab_index(local_symbol_index);
3265 ++local_symbol_index;
3270 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3271 p != input_objects->relobj_end();
3274 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3276 off += (index - local_symbol_index) * symsize;
3277 local_symbol_index = index;
3280 unsigned int local_symcount = local_symbol_index;
3281 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3284 size_t dyn_global_index;
3286 if (this->dynsym_section_ == NULL)
3289 dyn_global_index = 0;
3294 dyn_global_index = this->dynsym_section_->info();
3295 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3296 dynoff = this->dynsym_section_->offset() + locsize;
3297 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3298 gold_assert(static_cast<off_t>(dyncount * symsize)
3299 == this->dynsym_section_->data_size() - locsize);
3302 off_t global_off = off;
3303 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3304 &this->sympool_, &local_symcount);
3306 if (!parameters->options().strip_all())
3308 this->sympool_.set_string_offsets();
3310 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3311 Output_section* osymtab = this->make_output_section(symtab_name,
3315 this->symtab_section_ = osymtab;
3317 Output_section_data* pos = new Output_data_fixed_space(off, align,
3319 osymtab->add_output_section_data(pos);
3321 // We generate a .symtab_shndx section if we have more than
3322 // SHN_LORESERVE sections. Technically it is possible that we
3323 // don't need one, because it is possible that there are no
3324 // symbols in any of sections with indexes larger than
3325 // SHN_LORESERVE. That is probably unusual, though, and it is
3326 // easier to always create one than to compute section indexes
3327 // twice (once here, once when writing out the symbols).
3328 if (shnum >= elfcpp::SHN_LORESERVE)
3330 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3332 Output_section* osymtab_xindex =
3333 this->make_output_section(symtab_xindex_name,
3334 elfcpp::SHT_SYMTAB_SHNDX, 0,
3335 ORDER_INVALID, false);
3337 size_t symcount = off / symsize;
3338 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3340 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3342 osymtab_xindex->set_link_section(osymtab);
3343 osymtab_xindex->set_addralign(4);
3344 osymtab_xindex->set_entsize(4);
3346 osymtab_xindex->set_after_input_sections();
3348 // This tells the driver code to wait until the symbol table
3349 // has written out before writing out the postprocessing
3350 // sections, including the .symtab_shndx section.
3351 this->any_postprocessing_sections_ = true;
3354 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3355 Output_section* ostrtab = this->make_output_section(strtab_name,
3360 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3361 ostrtab->add_output_section_data(pstr);
3364 if (!parameters->incremental_update())
3365 symtab_off = align_address(*poff, align);
3368 symtab_off = this->allocate(off, align, *poff);
3370 gold_fatal(_("out of patch space for symbol table; "
3371 "relink with --incremental-full"));
3372 gold_debug(DEBUG_INCREMENTAL,
3373 "create_symtab_sections: %08lx %08lx .symtab",
3374 static_cast<long>(symtab_off),
3375 static_cast<long>(off));
3378 symtab->set_file_offset(symtab_off + global_off);
3379 osymtab->set_file_offset(symtab_off);
3380 osymtab->finalize_data_size();
3381 osymtab->set_link_section(ostrtab);
3382 osymtab->set_info(local_symcount);
3383 osymtab->set_entsize(symsize);
3385 if (symtab_off + off > *poff)
3386 *poff = symtab_off + off;
3390 // Create the .shstrtab section, which holds the names of the
3391 // sections. At the time this is called, we have created all the
3392 // output sections except .shstrtab itself.
3395 Layout::create_shstrtab()
3397 // FIXME: We don't need to create a .shstrtab section if we are
3398 // stripping everything.
3400 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3402 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3403 ORDER_INVALID, false);
3405 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3407 // We can't write out this section until we've set all the
3408 // section names, and we don't set the names of compressed
3409 // output sections until relocations are complete. FIXME: With
3410 // the current names we use, this is unnecessary.
3411 os->set_after_input_sections();
3414 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3415 os->add_output_section_data(posd);
3420 // Create the section headers. SIZE is 32 or 64. OFF is the file
3424 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3426 Output_section_headers* oshdrs;
3427 oshdrs = new Output_section_headers(this,
3428 &this->segment_list_,
3429 &this->section_list_,
3430 &this->unattached_section_list_,
3434 if (!parameters->incremental_update())
3435 off = align_address(*poff, oshdrs->addralign());
3438 oshdrs->pre_finalize_data_size();
3439 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3441 gold_fatal(_("out of patch space for section header table; "
3442 "relink with --incremental-full"));
3443 gold_debug(DEBUG_INCREMENTAL,
3444 "create_shdrs: %08lx %08lx (section header table)",
3445 static_cast<long>(off),
3446 static_cast<long>(off + oshdrs->data_size()));
3448 oshdrs->set_address_and_file_offset(0, off);
3449 off += oshdrs->data_size();
3452 this->section_headers_ = oshdrs;
3455 // Count the allocated sections.
3458 Layout::allocated_output_section_count() const
3460 size_t section_count = 0;
3461 for (Segment_list::const_iterator p = this->segment_list_.begin();
3462 p != this->segment_list_.end();
3464 section_count += (*p)->output_section_count();
3465 return section_count;
3468 // Create the dynamic symbol table.
3471 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3472 Symbol_table* symtab,
3473 Output_section** pdynstr,
3474 unsigned int* plocal_dynamic_count,
3475 std::vector<Symbol*>* pdynamic_symbols,
3476 Versions* pversions)
3478 // Count all the symbols in the dynamic symbol table, and set the
3479 // dynamic symbol indexes.
3481 // Skip symbol 0, which is always all zeroes.
3482 unsigned int index = 1;
3484 // Add STT_SECTION symbols for each Output section which needs one.
3485 for (Section_list::iterator p = this->section_list_.begin();
3486 p != this->section_list_.end();
3489 if (!(*p)->needs_dynsym_index())
3490 (*p)->set_dynsym_index(-1U);
3493 (*p)->set_dynsym_index(index);
3498 // Count the local symbols that need to go in the dynamic symbol table,
3499 // and set the dynamic symbol indexes.
3500 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3501 p != input_objects->relobj_end();
3504 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3508 unsigned int local_symcount = index;
3509 *plocal_dynamic_count = local_symcount;
3511 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3512 &this->dynpool_, pversions);
3516 const int size = parameters->target().get_size();
3519 symsize = elfcpp::Elf_sizes<32>::sym_size;
3522 else if (size == 64)
3524 symsize = elfcpp::Elf_sizes<64>::sym_size;
3530 // Create the dynamic symbol table section.
3532 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3536 ORDER_DYNAMIC_LINKER,
3539 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3542 dynsym->add_output_section_data(odata);
3544 dynsym->set_info(local_symcount);
3545 dynsym->set_entsize(symsize);
3546 dynsym->set_addralign(align);
3548 this->dynsym_section_ = dynsym;
3550 Output_data_dynamic* const odyn = this->dynamic_data_;
3551 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3552 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3554 // If there are more than SHN_LORESERVE allocated sections, we
3555 // create a .dynsym_shndx section. It is possible that we don't
3556 // need one, because it is possible that there are no dynamic
3557 // symbols in any of the sections with indexes larger than
3558 // SHN_LORESERVE. This is probably unusual, though, and at this
3559 // time we don't know the actual section indexes so it is
3560 // inconvenient to check.
3561 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3563 Output_section* dynsym_xindex =
3564 this->choose_output_section(NULL, ".dynsym_shndx",
3565 elfcpp::SHT_SYMTAB_SHNDX,
3567 false, ORDER_DYNAMIC_LINKER, false);
3569 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3571 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3573 dynsym_xindex->set_link_section(dynsym);
3574 dynsym_xindex->set_addralign(4);
3575 dynsym_xindex->set_entsize(4);
3577 dynsym_xindex->set_after_input_sections();
3579 // This tells the driver code to wait until the symbol table has
3580 // written out before writing out the postprocessing sections,
3581 // including the .dynsym_shndx section.
3582 this->any_postprocessing_sections_ = true;
3585 // Create the dynamic string table section.
3587 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3591 ORDER_DYNAMIC_LINKER,
3594 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3595 dynstr->add_output_section_data(strdata);
3597 dynsym->set_link_section(dynstr);
3598 this->dynamic_section_->set_link_section(dynstr);
3600 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3601 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3605 // Create the hash tables.
3607 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3608 || strcmp(parameters->options().hash_style(), "both") == 0)
3610 unsigned char* phash;
3611 unsigned int hashlen;
3612 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3615 Output_section* hashsec =
3616 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3617 elfcpp::SHF_ALLOC, false,
3618 ORDER_DYNAMIC_LINKER, false);
3620 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3624 hashsec->add_output_section_data(hashdata);
3626 hashsec->set_link_section(dynsym);
3627 hashsec->set_entsize(4);
3629 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3632 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3633 || strcmp(parameters->options().hash_style(), "both") == 0)
3635 unsigned char* phash;
3636 unsigned int hashlen;
3637 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3640 Output_section* hashsec =
3641 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3642 elfcpp::SHF_ALLOC, false,
3643 ORDER_DYNAMIC_LINKER, false);
3645 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3649 hashsec->add_output_section_data(hashdata);
3651 hashsec->set_link_section(dynsym);
3653 // For a 64-bit target, the entries in .gnu.hash do not have a
3654 // uniform size, so we only set the entry size for a 32-bit
3656 if (parameters->target().get_size() == 32)
3657 hashsec->set_entsize(4);
3659 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3663 // Assign offsets to each local portion of the dynamic symbol table.
3666 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3668 Output_section* dynsym = this->dynsym_section_;
3669 gold_assert(dynsym != NULL);
3671 off_t off = dynsym->offset();
3673 // Skip the dummy symbol at the start of the section.
3674 off += dynsym->entsize();
3676 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3677 p != input_objects->relobj_end();
3680 unsigned int count = (*p)->set_local_dynsym_offset(off);
3681 off += count * dynsym->entsize();
3685 // Create the version sections.
3688 Layout::create_version_sections(const Versions* versions,
3689 const Symbol_table* symtab,
3690 unsigned int local_symcount,
3691 const std::vector<Symbol*>& dynamic_symbols,
3692 const Output_section* dynstr)
3694 if (!versions->any_defs() && !versions->any_needs())
3697 switch (parameters->size_and_endianness())
3699 #ifdef HAVE_TARGET_32_LITTLE
3700 case Parameters::TARGET_32_LITTLE:
3701 this->sized_create_version_sections<32, false>(versions, symtab,
3703 dynamic_symbols, dynstr);
3706 #ifdef HAVE_TARGET_32_BIG
3707 case Parameters::TARGET_32_BIG:
3708 this->sized_create_version_sections<32, true>(versions, symtab,
3710 dynamic_symbols, dynstr);
3713 #ifdef HAVE_TARGET_64_LITTLE
3714 case Parameters::TARGET_64_LITTLE:
3715 this->sized_create_version_sections<64, false>(versions, symtab,
3717 dynamic_symbols, dynstr);
3720 #ifdef HAVE_TARGET_64_BIG
3721 case Parameters::TARGET_64_BIG:
3722 this->sized_create_version_sections<64, true>(versions, symtab,
3724 dynamic_symbols, dynstr);
3732 // Create the version sections, sized version.
3734 template<int size, bool big_endian>
3736 Layout::sized_create_version_sections(
3737 const Versions* versions,
3738 const Symbol_table* symtab,
3739 unsigned int local_symcount,
3740 const std::vector<Symbol*>& dynamic_symbols,
3741 const Output_section* dynstr)
3743 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3744 elfcpp::SHT_GNU_versym,
3747 ORDER_DYNAMIC_LINKER,
3750 unsigned char* vbuf;
3752 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3757 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3760 vsec->add_output_section_data(vdata);
3761 vsec->set_entsize(2);
3762 vsec->set_link_section(this->dynsym_section_);
3764 Output_data_dynamic* const odyn = this->dynamic_data_;
3765 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3767 if (versions->any_defs())
3769 Output_section* vdsec;
3770 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3771 elfcpp::SHT_GNU_verdef,
3773 false, ORDER_DYNAMIC_LINKER, false);
3775 unsigned char* vdbuf;
3776 unsigned int vdsize;
3777 unsigned int vdentries;
3778 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3779 &vdsize, &vdentries);
3781 Output_section_data* vddata =
3782 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3784 vdsec->add_output_section_data(vddata);
3785 vdsec->set_link_section(dynstr);
3786 vdsec->set_info(vdentries);
3788 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3789 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3792 if (versions->any_needs())
3794 Output_section* vnsec;
3795 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3796 elfcpp::SHT_GNU_verneed,
3798 false, ORDER_DYNAMIC_LINKER, false);
3800 unsigned char* vnbuf;
3801 unsigned int vnsize;
3802 unsigned int vnentries;
3803 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3807 Output_section_data* vndata =
3808 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3810 vnsec->add_output_section_data(vndata);
3811 vnsec->set_link_section(dynstr);
3812 vnsec->set_info(vnentries);
3814 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3815 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3819 // Create the .interp section and PT_INTERP segment.
3822 Layout::create_interp(const Target* target)
3824 const char* interp = parameters->options().dynamic_linker();
3827 interp = target->dynamic_linker();
3828 gold_assert(interp != NULL);
3831 size_t len = strlen(interp) + 1;
3833 Output_section_data* odata = new Output_data_const(interp, len, 1);
3835 Output_section* osec = this->choose_output_section(NULL, ".interp",
3836 elfcpp::SHT_PROGBITS,
3838 false, ORDER_INTERP,
3840 osec->add_output_section_data(odata);
3842 if (!this->script_options_->saw_phdrs_clause())
3844 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3846 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3850 // Add dynamic tags for the PLT and the dynamic relocs. This is
3851 // called by the target-specific code. This does nothing if not doing
3854 // USE_REL is true for REL relocs rather than RELA relocs.
3856 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3858 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3859 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3860 // some targets have multiple reloc sections in PLT_REL.
3862 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3863 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3865 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3869 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3870 const Output_data* plt_rel,
3871 const Output_data_reloc_generic* dyn_rel,
3872 bool add_debug, bool dynrel_includes_plt)
3874 Output_data_dynamic* odyn = this->dynamic_data_;
3878 if (plt_got != NULL && plt_got->output_section() != NULL)
3879 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3881 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3883 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3884 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3885 odyn->add_constant(elfcpp::DT_PLTREL,
3886 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3889 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3891 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3893 if (plt_rel != NULL && dynrel_includes_plt)
3894 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3897 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3899 const int size = parameters->target().get_size();
3904 rel_tag = elfcpp::DT_RELENT;
3906 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3907 else if (size == 64)
3908 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3914 rel_tag = elfcpp::DT_RELAENT;
3916 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3917 else if (size == 64)
3918 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3922 odyn->add_constant(rel_tag, rel_size);
3924 if (parameters->options().combreloc())
3926 size_t c = dyn_rel->relative_reloc_count();
3928 odyn->add_constant((use_rel
3929 ? elfcpp::DT_RELCOUNT
3930 : elfcpp::DT_RELACOUNT),
3935 if (add_debug && !parameters->options().shared())
3937 // The value of the DT_DEBUG tag is filled in by the dynamic
3938 // linker at run time, and used by the debugger.
3939 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3943 // Finish the .dynamic section and PT_DYNAMIC segment.
3946 Layout::finish_dynamic_section(const Input_objects* input_objects,
3947 const Symbol_table* symtab)
3949 if (!this->script_options_->saw_phdrs_clause())
3951 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3954 oseg->add_output_section_to_nonload(this->dynamic_section_,
3955 elfcpp::PF_R | elfcpp::PF_W);
3958 Output_data_dynamic* const odyn = this->dynamic_data_;
3960 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3961 p != input_objects->dynobj_end();
3964 if (!(*p)->is_needed()
3965 && !(*p)->is_incremental()
3966 && (*p)->input_file()->options().as_needed())
3968 // This dynamic object was linked with --as-needed, but it
3973 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3976 if (parameters->options().shared())
3978 const char* soname = parameters->options().soname();
3980 odyn->add_string(elfcpp::DT_SONAME, soname);
3983 Symbol* sym = symtab->lookup(parameters->options().init());
3984 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3985 odyn->add_symbol(elfcpp::DT_INIT, sym);
3987 sym = symtab->lookup(parameters->options().fini());
3988 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3989 odyn->add_symbol(elfcpp::DT_FINI, sym);
3991 // Look for .init_array, .preinit_array and .fini_array by checking
3993 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3994 p != this->section_list_.end();
3996 switch((*p)->type())
3998 case elfcpp::SHT_FINI_ARRAY:
3999 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4000 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4002 case elfcpp::SHT_INIT_ARRAY:
4003 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4004 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4006 case elfcpp::SHT_PREINIT_ARRAY:
4007 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4008 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4014 // Add a DT_RPATH entry if needed.
4015 const General_options::Dir_list& rpath(parameters->options().rpath());
4018 std::string rpath_val;
4019 for (General_options::Dir_list::const_iterator p = rpath.begin();
4023 if (rpath_val.empty())
4024 rpath_val = p->name();
4027 // Eliminate duplicates.
4028 General_options::Dir_list::const_iterator q;
4029 for (q = rpath.begin(); q != p; ++q)
4030 if (q->name() == p->name())
4035 rpath_val += p->name();
4040 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4041 if (parameters->options().enable_new_dtags())
4042 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4045 // Look for text segments that have dynamic relocations.
4046 bool have_textrel = false;
4047 if (!this->script_options_->saw_sections_clause())
4049 for (Segment_list::const_iterator p = this->segment_list_.begin();
4050 p != this->segment_list_.end();
4053 if (((*p)->flags() & elfcpp::PF_W) == 0
4054 && (*p)->has_dynamic_reloc())
4056 have_textrel = true;
4063 // We don't know the section -> segment mapping, so we are
4064 // conservative and just look for readonly sections with
4065 // relocations. If those sections wind up in writable segments,
4066 // then we have created an unnecessary DT_TEXTREL entry.
4067 for (Section_list::const_iterator p = this->section_list_.begin();
4068 p != this->section_list_.end();
4071 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4072 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4073 && ((*p)->has_dynamic_reloc()))
4075 have_textrel = true;
4081 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4082 // post-link tools can easily modify these flags if desired.
4083 unsigned int flags = 0;
4086 // Add a DT_TEXTREL for compatibility with older loaders.
4087 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4088 flags |= elfcpp::DF_TEXTREL;
4090 if (parameters->options().text())
4091 gold_error(_("read-only segment has dynamic relocations"));
4092 else if (parameters->options().warn_shared_textrel()
4093 && parameters->options().shared())
4094 gold_warning(_("shared library text segment is not shareable"));
4096 if (parameters->options().shared() && this->has_static_tls())
4097 flags |= elfcpp::DF_STATIC_TLS;
4098 if (parameters->options().origin())
4099 flags |= elfcpp::DF_ORIGIN;
4100 if (parameters->options().Bsymbolic())
4102 flags |= elfcpp::DF_SYMBOLIC;
4103 // Add DT_SYMBOLIC for compatibility with older loaders.
4104 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4106 if (parameters->options().now())
4107 flags |= elfcpp::DF_BIND_NOW;
4108 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4111 if (parameters->options().initfirst())
4112 flags |= elfcpp::DF_1_INITFIRST;
4113 if (parameters->options().interpose())
4114 flags |= elfcpp::DF_1_INTERPOSE;
4115 if (parameters->options().loadfltr())
4116 flags |= elfcpp::DF_1_LOADFLTR;
4117 if (parameters->options().nodefaultlib())
4118 flags |= elfcpp::DF_1_NODEFLIB;
4119 if (parameters->options().nodelete())
4120 flags |= elfcpp::DF_1_NODELETE;
4121 if (parameters->options().nodlopen())
4122 flags |= elfcpp::DF_1_NOOPEN;
4123 if (parameters->options().nodump())
4124 flags |= elfcpp::DF_1_NODUMP;
4125 if (!parameters->options().shared())
4126 flags &= ~(elfcpp::DF_1_INITFIRST
4127 | elfcpp::DF_1_NODELETE
4128 | elfcpp::DF_1_NOOPEN);
4129 if (parameters->options().origin())
4130 flags |= elfcpp::DF_1_ORIGIN;
4131 if (parameters->options().now())
4132 flags |= elfcpp::DF_1_NOW;
4134 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4137 // Set the size of the _DYNAMIC symbol table to be the size of the
4141 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4143 Output_data_dynamic* const odyn = this->dynamic_data_;
4144 odyn->finalize_data_size();
4145 off_t data_size = odyn->data_size();
4146 const int size = parameters->target().get_size();
4148 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4149 else if (size == 64)
4150 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4155 // The mapping of input section name prefixes to output section names.
4156 // In some cases one prefix is itself a prefix of another prefix; in
4157 // such a case the longer prefix must come first. These prefixes are
4158 // based on the GNU linker default ELF linker script.
4160 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4161 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4163 MAPPING_INIT(".text.", ".text"),
4164 MAPPING_INIT(".ctors.", ".ctors"),
4165 MAPPING_INIT(".dtors.", ".dtors"),
4166 MAPPING_INIT(".rodata.", ".rodata"),
4167 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4168 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4169 MAPPING_INIT(".data.", ".data"),
4170 MAPPING_INIT(".bss.", ".bss"),
4171 MAPPING_INIT(".tdata.", ".tdata"),
4172 MAPPING_INIT(".tbss.", ".tbss"),
4173 MAPPING_INIT(".init_array.", ".init_array"),
4174 MAPPING_INIT(".fini_array.", ".fini_array"),
4175 MAPPING_INIT(".sdata.", ".sdata"),
4176 MAPPING_INIT(".sbss.", ".sbss"),
4177 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4178 // differently depending on whether it is creating a shared library.
4179 MAPPING_INIT(".sdata2.", ".sdata"),
4180 MAPPING_INIT(".sbss2.", ".sbss"),
4181 MAPPING_INIT(".lrodata.", ".lrodata"),
4182 MAPPING_INIT(".ldata.", ".ldata"),
4183 MAPPING_INIT(".lbss.", ".lbss"),
4184 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4185 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4186 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4187 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4188 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4189 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4190 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4191 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4192 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4193 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4194 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4195 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4196 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4197 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4198 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4199 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4200 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4201 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4202 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4203 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4204 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4208 const int Layout::section_name_mapping_count =
4209 (sizeof(Layout::section_name_mapping)
4210 / sizeof(Layout::section_name_mapping[0]));
4212 // Choose the output section name to use given an input section name.
4213 // Set *PLEN to the length of the name. *PLEN is initialized to the
4217 Layout::output_section_name(const char* name, size_t* plen)
4219 // gcc 4.3 generates the following sorts of section names when it
4220 // needs a section name specific to a function:
4226 // .data.rel.local.FN
4228 // .data.rel.ro.local.FN
4235 // The GNU linker maps all of those to the part before the .FN,
4236 // except that .data.rel.local.FN is mapped to .data, and
4237 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4238 // beginning with .data.rel.ro.local are grouped together.
4240 // For an anonymous namespace, the string FN can contain a '.'.
4242 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4243 // GNU linker maps to .rodata.
4245 // The .data.rel.ro sections are used with -z relro. The sections
4246 // are recognized by name. We use the same names that the GNU
4247 // linker does for these sections.
4249 // It is hard to handle this in a principled way, so we don't even
4250 // try. We use a table of mappings. If the input section name is
4251 // not found in the table, we simply use it as the output section
4254 const Section_name_mapping* psnm = section_name_mapping;
4255 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4257 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4259 *plen = psnm->tolen;
4267 // Check if a comdat group or .gnu.linkonce section with the given
4268 // NAME is selected for the link. If there is already a section,
4269 // *KEPT_SECTION is set to point to the existing section and the
4270 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4271 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4272 // *KEPT_SECTION is set to the internal copy and the function returns
4276 Layout::find_or_add_kept_section(const std::string& name,
4281 Kept_section** kept_section)
4283 // It's normal to see a couple of entries here, for the x86 thunk
4284 // sections. If we see more than a few, we're linking a C++
4285 // program, and we resize to get more space to minimize rehashing.
4286 if (this->signatures_.size() > 4
4287 && !this->resized_signatures_)
4289 reserve_unordered_map(&this->signatures_,
4290 this->number_of_input_files_ * 64);
4291 this->resized_signatures_ = true;
4294 Kept_section candidate;
4295 std::pair<Signatures::iterator, bool> ins =
4296 this->signatures_.insert(std::make_pair(name, candidate));
4298 if (kept_section != NULL)
4299 *kept_section = &ins.first->second;
4302 // This is the first time we've seen this signature.
4303 ins.first->second.set_object(object);
4304 ins.first->second.set_shndx(shndx);
4306 ins.first->second.set_is_comdat();
4308 ins.first->second.set_is_group_name();
4312 // We have already seen this signature.
4314 if (ins.first->second.is_group_name())
4316 // We've already seen a real section group with this signature.
4317 // If the kept group is from a plugin object, and we're in the
4318 // replacement phase, accept the new one as a replacement.
4319 if (ins.first->second.object() == NULL
4320 && parameters->options().plugins()->in_replacement_phase())
4322 ins.first->second.set_object(object);
4323 ins.first->second.set_shndx(shndx);
4328 else if (is_group_name)
4330 // This is a real section group, and we've already seen a
4331 // linkonce section with this signature. Record that we've seen
4332 // a section group, and don't include this section group.
4333 ins.first->second.set_is_group_name();
4338 // We've already seen a linkonce section and this is a linkonce
4339 // section. These don't block each other--this may be the same
4340 // symbol name with different section types.
4345 // Store the allocated sections into the section list.
4348 Layout::get_allocated_sections(Section_list* section_list) const
4350 for (Section_list::const_iterator p = this->section_list_.begin();
4351 p != this->section_list_.end();
4353 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4354 section_list->push_back(*p);
4357 // Create an output segment.
4360 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4362 gold_assert(!parameters->options().relocatable());
4363 Output_segment* oseg = new Output_segment(type, flags);
4364 this->segment_list_.push_back(oseg);
4366 if (type == elfcpp::PT_TLS)
4367 this->tls_segment_ = oseg;
4368 else if (type == elfcpp::PT_GNU_RELRO)
4369 this->relro_segment_ = oseg;
4374 // Write out the Output_sections. Most won't have anything to write,
4375 // since most of the data will come from input sections which are
4376 // handled elsewhere. But some Output_sections do have Output_data.
4379 Layout::write_output_sections(Output_file* of) const
4381 for (Section_list::const_iterator p = this->section_list_.begin();
4382 p != this->section_list_.end();
4385 if (!(*p)->after_input_sections())
4390 // Write out data not associated with a section or the symbol table.
4393 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4395 if (!parameters->options().strip_all())
4397 const Output_section* symtab_section = this->symtab_section_;
4398 for (Section_list::const_iterator p = this->section_list_.begin();
4399 p != this->section_list_.end();
4402 if ((*p)->needs_symtab_index())
4404 gold_assert(symtab_section != NULL);
4405 unsigned int index = (*p)->symtab_index();
4406 gold_assert(index > 0 && index != -1U);
4407 off_t off = (symtab_section->offset()
4408 + index * symtab_section->entsize());
4409 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4414 const Output_section* dynsym_section = this->dynsym_section_;
4415 for (Section_list::const_iterator p = this->section_list_.begin();
4416 p != this->section_list_.end();
4419 if ((*p)->needs_dynsym_index())
4421 gold_assert(dynsym_section != NULL);
4422 unsigned int index = (*p)->dynsym_index();
4423 gold_assert(index > 0 && index != -1U);
4424 off_t off = (dynsym_section->offset()
4425 + index * dynsym_section->entsize());
4426 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4430 // Write out the Output_data which are not in an Output_section.
4431 for (Data_list::const_iterator p = this->special_output_list_.begin();
4432 p != this->special_output_list_.end();
4437 // Write out the Output_sections which can only be written after the
4438 // input sections are complete.
4441 Layout::write_sections_after_input_sections(Output_file* of)
4443 // Determine the final section offsets, and thus the final output
4444 // file size. Note we finalize the .shstrab last, to allow the
4445 // after_input_section sections to modify their section-names before
4447 if (this->any_postprocessing_sections_)
4449 off_t off = this->output_file_size_;
4450 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4452 // Now that we've finalized the names, we can finalize the shstrab.
4454 this->set_section_offsets(off,
4455 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4457 if (off > this->output_file_size_)
4460 this->output_file_size_ = off;
4464 for (Section_list::const_iterator p = this->section_list_.begin();
4465 p != this->section_list_.end();
4468 if ((*p)->after_input_sections())
4472 this->section_headers_->write(of);
4475 // If the build ID requires computing a checksum, do so here, and
4476 // write it out. We compute a checksum over the entire file because
4477 // that is simplest.
4480 Layout::write_build_id(Output_file* of) const
4482 if (this->build_id_note_ == NULL)
4485 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4487 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4488 this->build_id_note_->data_size());
4490 const char* style = parameters->options().build_id();
4491 if (strcmp(style, "sha1") == 0)
4494 sha1_init_ctx(&ctx);
4495 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4496 sha1_finish_ctx(&ctx, ov);
4498 else if (strcmp(style, "md5") == 0)
4502 md5_process_bytes(iv, this->output_file_size_, &ctx);
4503 md5_finish_ctx(&ctx, ov);
4508 of->write_output_view(this->build_id_note_->offset(),
4509 this->build_id_note_->data_size(),
4512 of->free_input_view(0, this->output_file_size_, iv);
4515 // Write out a binary file. This is called after the link is
4516 // complete. IN is the temporary output file we used to generate the
4517 // ELF code. We simply walk through the segments, read them from
4518 // their file offset in IN, and write them to their load address in
4519 // the output file. FIXME: with a bit more work, we could support
4520 // S-records and/or Intel hex format here.
4523 Layout::write_binary(Output_file* in) const
4525 gold_assert(parameters->options().oformat_enum()
4526 == General_options::OBJECT_FORMAT_BINARY);
4528 // Get the size of the binary file.
4529 uint64_t max_load_address = 0;
4530 for (Segment_list::const_iterator p = this->segment_list_.begin();
4531 p != this->segment_list_.end();
4534 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4536 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4537 if (max_paddr > max_load_address)
4538 max_load_address = max_paddr;
4542 Output_file out(parameters->options().output_file_name());
4543 out.open(max_load_address);
4545 for (Segment_list::const_iterator p = this->segment_list_.begin();
4546 p != this->segment_list_.end();
4549 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4551 const unsigned char* vin = in->get_input_view((*p)->offset(),
4553 unsigned char* vout = out.get_output_view((*p)->paddr(),
4555 memcpy(vout, vin, (*p)->filesz());
4556 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4557 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4564 // Print the output sections to the map file.
4567 Layout::print_to_mapfile(Mapfile* mapfile) const
4569 for (Segment_list::const_iterator p = this->segment_list_.begin();
4570 p != this->segment_list_.end();
4572 (*p)->print_sections_to_mapfile(mapfile);
4575 // Print statistical information to stderr. This is used for --stats.
4578 Layout::print_stats() const
4580 this->namepool_.print_stats("section name pool");
4581 this->sympool_.print_stats("output symbol name pool");
4582 this->dynpool_.print_stats("dynamic name pool");
4584 for (Section_list::const_iterator p = this->section_list_.begin();
4585 p != this->section_list_.end();
4587 (*p)->print_merge_stats();
4590 // Write_sections_task methods.
4592 // We can always run this task.
4595 Write_sections_task::is_runnable()
4600 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4604 Write_sections_task::locks(Task_locker* tl)
4606 tl->add(this, this->output_sections_blocker_);
4607 tl->add(this, this->final_blocker_);
4610 // Run the task--write out the data.
4613 Write_sections_task::run(Workqueue*)
4615 this->layout_->write_output_sections(this->of_);
4618 // Write_data_task methods.
4620 // We can always run this task.
4623 Write_data_task::is_runnable()
4628 // We need to unlock FINAL_BLOCKER when finished.
4631 Write_data_task::locks(Task_locker* tl)
4633 tl->add(this, this->final_blocker_);
4636 // Run the task--write out the data.
4639 Write_data_task::run(Workqueue*)
4641 this->layout_->write_data(this->symtab_, this->of_);
4644 // Write_symbols_task methods.
4646 // We can always run this task.
4649 Write_symbols_task::is_runnable()
4654 // We need to unlock FINAL_BLOCKER when finished.
4657 Write_symbols_task::locks(Task_locker* tl)
4659 tl->add(this, this->final_blocker_);
4662 // Run the task--write out the symbols.
4665 Write_symbols_task::run(Workqueue*)
4667 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4668 this->layout_->symtab_xindex(),
4669 this->layout_->dynsym_xindex(), this->of_);
4672 // Write_after_input_sections_task methods.
4674 // We can only run this task after the input sections have completed.
4677 Write_after_input_sections_task::is_runnable()
4679 if (this->input_sections_blocker_->is_blocked())
4680 return this->input_sections_blocker_;
4684 // We need to unlock FINAL_BLOCKER when finished.
4687 Write_after_input_sections_task::locks(Task_locker* tl)
4689 tl->add(this, this->final_blocker_);
4695 Write_after_input_sections_task::run(Workqueue*)
4697 this->layout_->write_sections_after_input_sections(this->of_);
4700 // Close_task_runner methods.
4702 // Run the task--close the file.
4705 Close_task_runner::run(Workqueue*, const Task*)
4707 // If we need to compute a checksum for the BUILD if, we do so here.
4708 this->layout_->write_build_id(this->of_);
4710 // If we've been asked to create a binary file, we do so here.
4711 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4712 this->layout_->write_binary(this->of_);
4717 // Instantiate the templates we need. We could use the configure
4718 // script to restrict this to only the ones for implemented targets.
4720 #ifdef HAVE_TARGET_32_LITTLE
4723 Layout::init_fixed_output_section<32, false>(
4725 elfcpp::Shdr<32, false>& shdr);
4728 #ifdef HAVE_TARGET_32_BIG
4731 Layout::init_fixed_output_section<32, true>(
4733 elfcpp::Shdr<32, true>& shdr);
4736 #ifdef HAVE_TARGET_64_LITTLE
4739 Layout::init_fixed_output_section<64, false>(
4741 elfcpp::Shdr<64, false>& shdr);
4744 #ifdef HAVE_TARGET_64_BIG
4747 Layout::init_fixed_output_section<64, true>(
4749 elfcpp::Shdr<64, true>& shdr);
4752 #ifdef HAVE_TARGET_32_LITTLE
4755 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4757 const elfcpp::Shdr<32, false>& shdr,
4758 unsigned int, unsigned int, off_t*);
4761 #ifdef HAVE_TARGET_32_BIG
4764 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4766 const elfcpp::Shdr<32, true>& shdr,
4767 unsigned int, unsigned int, off_t*);
4770 #ifdef HAVE_TARGET_64_LITTLE
4773 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4775 const elfcpp::Shdr<64, false>& shdr,
4776 unsigned int, unsigned int, off_t*);
4779 #ifdef HAVE_TARGET_64_BIG
4782 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4784 const elfcpp::Shdr<64, true>& shdr,
4785 unsigned int, unsigned int, off_t*);
4788 #ifdef HAVE_TARGET_32_LITTLE
4791 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4792 unsigned int reloc_shndx,
4793 const elfcpp::Shdr<32, false>& shdr,
4794 Output_section* data_section,
4795 Relocatable_relocs* rr);
4798 #ifdef HAVE_TARGET_32_BIG
4801 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4802 unsigned int reloc_shndx,
4803 const elfcpp::Shdr<32, true>& shdr,
4804 Output_section* data_section,
4805 Relocatable_relocs* rr);
4808 #ifdef HAVE_TARGET_64_LITTLE
4811 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4812 unsigned int reloc_shndx,
4813 const elfcpp::Shdr<64, false>& shdr,
4814 Output_section* data_section,
4815 Relocatable_relocs* rr);
4818 #ifdef HAVE_TARGET_64_BIG
4821 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4822 unsigned int reloc_shndx,
4823 const elfcpp::Shdr<64, true>& shdr,
4824 Output_section* data_section,
4825 Relocatable_relocs* rr);
4828 #ifdef HAVE_TARGET_32_LITTLE
4831 Layout::layout_group<32, false>(Symbol_table* symtab,
4832 Sized_relobj<32, false>* object,
4834 const char* group_section_name,
4835 const char* signature,
4836 const elfcpp::Shdr<32, false>& shdr,
4837 elfcpp::Elf_Word flags,
4838 std::vector<unsigned int>* shndxes);
4841 #ifdef HAVE_TARGET_32_BIG
4844 Layout::layout_group<32, true>(Symbol_table* symtab,
4845 Sized_relobj<32, true>* object,
4847 const char* group_section_name,
4848 const char* signature,
4849 const elfcpp::Shdr<32, true>& shdr,
4850 elfcpp::Elf_Word flags,
4851 std::vector<unsigned int>* shndxes);
4854 #ifdef HAVE_TARGET_64_LITTLE
4857 Layout::layout_group<64, false>(Symbol_table* symtab,
4858 Sized_relobj<64, false>* object,
4860 const char* group_section_name,
4861 const char* signature,
4862 const elfcpp::Shdr<64, false>& shdr,
4863 elfcpp::Elf_Word flags,
4864 std::vector<unsigned int>* shndxes);
4867 #ifdef HAVE_TARGET_64_BIG
4870 Layout::layout_group<64, true>(Symbol_table* symtab,
4871 Sized_relobj<64, true>* object,
4873 const char* group_section_name,
4874 const char* signature,
4875 const elfcpp::Shdr<64, true>& shdr,
4876 elfcpp::Elf_Word flags,
4877 std::vector<unsigned int>* shndxes);
4880 #ifdef HAVE_TARGET_32_LITTLE
4883 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4884 const unsigned char* symbols,
4886 const unsigned char* symbol_names,
4887 off_t symbol_names_size,
4889 const elfcpp::Shdr<32, false>& shdr,
4890 unsigned int reloc_shndx,
4891 unsigned int reloc_type,
4895 #ifdef HAVE_TARGET_32_BIG
4898 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4899 const unsigned char* symbols,
4901 const unsigned char* symbol_names,
4902 off_t symbol_names_size,
4904 const elfcpp::Shdr<32, true>& shdr,
4905 unsigned int reloc_shndx,
4906 unsigned int reloc_type,
4910 #ifdef HAVE_TARGET_64_LITTLE
4913 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4914 const unsigned char* symbols,
4916 const unsigned char* symbol_names,
4917 off_t symbol_names_size,
4919 const elfcpp::Shdr<64, false>& shdr,
4920 unsigned int reloc_shndx,
4921 unsigned int reloc_type,
4925 #ifdef HAVE_TARGET_64_BIG
4928 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4929 const unsigned char* symbols,
4931 const unsigned char* symbol_names,
4932 off_t symbol_names_size,
4934 const elfcpp::Shdr<64, true>& shdr,
4935 unsigned int reloc_shndx,
4936 unsigned int reloc_type,
4940 } // End namespace gold.