Default text reordering fix with a flag to turn it off.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (!parameters->options().relocatable()
586       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587     return false;
588
589   switch (shdr.get_sh_type())
590     {
591     case elfcpp::SHT_NULL:
592     case elfcpp::SHT_SYMTAB:
593     case elfcpp::SHT_DYNSYM:
594     case elfcpp::SHT_HASH:
595     case elfcpp::SHT_DYNAMIC:
596     case elfcpp::SHT_SYMTAB_SHNDX:
597       return false;
598
599     case elfcpp::SHT_STRTAB:
600       // Discard the sections which have special meanings in the ELF
601       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
602       // checking the sh_link fields of the appropriate sections.
603       return (strcmp(name, ".dynstr") != 0
604               && strcmp(name, ".strtab") != 0
605               && strcmp(name, ".shstrtab") != 0);
606
607     case elfcpp::SHT_RELA:
608     case elfcpp::SHT_REL:
609     case elfcpp::SHT_GROUP:
610       // If we are emitting relocations these should be handled
611       // elsewhere.
612       gold_assert(!parameters->options().relocatable());
613       return false;
614
615     case elfcpp::SHT_PROGBITS:
616       if (parameters->options().strip_debug()
617           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618         {
619           if (is_debug_info_section(name))
620             return false;
621         }
622       if (parameters->options().strip_debug_non_line()
623           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624         {
625           // Debugging sections can only be recognized by name.
626           if (is_prefix_of(".debug_", name)
627               && !is_lines_only_debug_section(name + 7))
628             return false;
629           if (is_prefix_of(".zdebug_", name)
630               && !is_lines_only_debug_section(name + 8))
631             return false;
632         }
633       if (parameters->options().strip_debug_gdb()
634           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635         {
636           // Debugging sections can only be recognized by name.
637           if (is_prefix_of(".debug_", name)
638               && !is_gdb_debug_section(name + 7))
639             return false;
640           if (is_prefix_of(".zdebug_", name)
641               && !is_gdb_debug_section(name + 8))
642             return false;
643         }
644       if (parameters->options().gdb_index()
645           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646         {
647           // When building .gdb_index, we can strip .debug_pubnames,
648           // .debug_pubtypes, and .debug_aranges sections.
649           if (is_prefix_of(".debug_", name)
650               && is_gdb_fast_lookup_section(name + 7))
651             return false;
652           if (is_prefix_of(".zdebug_", name)
653               && is_gdb_fast_lookup_section(name + 8))
654             return false;
655         }
656       if (parameters->options().strip_lto_sections()
657           && !parameters->options().relocatable()
658           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659         {
660           // Ignore LTO sections containing intermediate code.
661           if (is_prefix_of(".gnu.lto_", name))
662             return false;
663         }
664       // The GNU linker strips .gnu_debuglink sections, so we do too.
665       // This is a feature used to keep debugging information in
666       // separate files.
667       if (strcmp(name, ".gnu_debuglink") == 0)
668         return false;
669       return true;
670
671     default:
672       return true;
673     }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681   for (Section_list::const_iterator p = this->section_list_.begin();
682        p != this->section_list_.end();
683        ++p)
684     if (strcmp((*p)->name(), name) == 0)
685       return *p;
686   return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear.  Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694                             elfcpp::Elf_Word clear) const
695 {
696   for (Segment_list::const_iterator p = this->segment_list_.begin();
697        p != this->segment_list_.end();
698        ++p)
699     if (static_cast<elfcpp::PT>((*p)->type()) == type
700         && ((*p)->flags() & set) == set
701         && ((*p)->flags() & clear) == 0)
702       return *p;
703   return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section.  This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors.  Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run.  This set just keeps track of
714 // these sections which need to be reversed.  It is only changed by
715 // Layout::layout.  It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727           != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS.  NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key.  ORDER is where this should appear
733 // in the output sections.  IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738                            Output_section_order order, bool is_relro)
739 {
740   elfcpp::Elf_Word lookup_type = type;
741
742   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
744   // .init_array, .fini_array, and .preinit_array sections by name
745   // whatever their type in the input file.  We do this because the
746   // types are not always right in the input files.
747   if (lookup_type == elfcpp::SHT_INIT_ARRAY
748       || lookup_type == elfcpp::SHT_FINI_ARRAY
749       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750     lookup_type = elfcpp::SHT_PROGBITS;
751
752   elfcpp::Elf_Xword lookup_flags = flags;
753
754   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755   // read-write with read-only sections.  Some other ELF linkers do
756   // not do this.  FIXME: Perhaps there should be an option
757   // controlling this.
758   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761   const std::pair<Key, Output_section*> v(key, NULL);
762   std::pair<Section_name_map::iterator, bool> ins(
763     this->section_name_map_.insert(v));
764
765   if (!ins.second)
766     return ins.first->second;
767   else
768     {
769       // This is the first time we've seen this name/type/flags
770       // combination.  For compatibility with the GNU linker, we
771       // combine sections with contents and zero flags with sections
772       // with non-zero flags.  This is a workaround for cases where
773       // assembler code forgets to set section flags.  FIXME: Perhaps
774       // there should be an option to control this.
775       Output_section* os = NULL;
776
777       if (lookup_type == elfcpp::SHT_PROGBITS)
778         {
779           if (flags == 0)
780             {
781               Output_section* same_name = this->find_output_section(name);
782               if (same_name != NULL
783                   && (same_name->type() == elfcpp::SHT_PROGBITS
784                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
785                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
786                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788                 os = same_name;
789             }
790           else if ((flags & elfcpp::SHF_TLS) == 0)
791             {
792               elfcpp::Elf_Xword zero_flags = 0;
793               const Key zero_key(name_key, std::make_pair(lookup_type,
794                                                           zero_flags));
795               Section_name_map::iterator p =
796                   this->section_name_map_.find(zero_key);
797               if (p != this->section_name_map_.end())
798                 os = p->second;
799             }
800         }
801
802       if (os == NULL)
803         os = this->make_output_section(name, type, flags, order, is_relro);
804
805       ins.first->second = os;
806       return os;
807     }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816   if (! this->script_options_->saw_sections_clause())
817     return false;
818
819   Script_sections* ss = this->script_options_->script_sections();
820   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821   Output_section** output_section_slot;
822   Script_sections::Section_type script_section_type;
823   bool keep;
824
825   name = ss->output_section_name(file_name, name, &output_section_slot,
826                                  &script_section_type, &keep);
827   return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836   // Some flags in the input section should not be automatically
837   // copied to the output section.
838   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839                             | elfcpp::SHF_GROUP
840                             | elfcpp::SHF_MERGE
841                             | elfcpp::SHF_STRINGS);
842
843   // We only clear the SHF_LINK_ORDER flag in for
844   // a non-relocatable link.
845   if (!parameters->options().relocatable())
846     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848   return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
853 // linker created section.  IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file.  ORDER is where this section should appear in the output
856 // sections.  IS_RELRO is true for a relro section.  This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862                               bool is_input_section, Output_section_order order,
863                               bool is_relro)
864 {
865   // We should not see any input sections after we have attached
866   // sections to segments.
867   gold_assert(!is_input_section || !this->sections_are_attached_);
868
869   flags = this->get_output_section_flags(flags);
870
871   if (this->script_options_->saw_sections_clause())
872     {
873       // We are using a SECTIONS clause, so the output section is
874       // chosen based only on the name.
875
876       Script_sections* ss = this->script_options_->script_sections();
877       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878       Output_section** output_section_slot;
879       Script_sections::Section_type script_section_type;
880       const char* orig_name = name;
881       bool keep;
882       name = ss->output_section_name(file_name, name, &output_section_slot,
883                                      &script_section_type, &keep);
884
885       if (name == NULL)
886         {
887           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888                                      "because it is not allowed by the "
889                                      "SECTIONS clause of the linker script"),
890                      orig_name);
891           // The SECTIONS clause says to discard this input section.
892           return NULL;
893         }
894
895       // We can only handle script section types ST_NONE and ST_NOLOAD.
896       switch (script_section_type)
897         {
898         case Script_sections::ST_NONE:
899           break;
900         case Script_sections::ST_NOLOAD:
901           flags &= elfcpp::SHF_ALLOC;
902           break;
903         default:
904           gold_unreachable();
905         }
906
907       // If this is an orphan section--one not mentioned in the linker
908       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909       // default processing below.
910
911       if (output_section_slot != NULL)
912         {
913           if (*output_section_slot != NULL)
914             {
915               (*output_section_slot)->update_flags_for_input_section(flags);
916               return *output_section_slot;
917             }
918
919           // We don't put sections found in the linker script into
920           // SECTION_NAME_MAP_.  That keeps us from getting confused
921           // if an orphan section is mapped to a section with the same
922           // name as one in the linker script.
923
924           name = this->namepool_.add(name, false, NULL);
925
926           Output_section* os = this->make_output_section(name, type, flags,
927                                                          order, is_relro);
928
929           os->set_found_in_sections_clause();
930
931           // Special handling for NOLOAD sections.
932           if (script_section_type == Script_sections::ST_NOLOAD)
933             {
934               os->set_is_noload();
935
936               // The constructor of Output_section sets addresses of non-ALLOC
937               // sections to 0 by default.  We don't want that for NOLOAD
938               // sections even if they have no SHF_ALLOC flag.
939               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940                   && os->is_address_valid())
941                 {
942                   gold_assert(os->address() == 0
943                               && !os->is_offset_valid()
944                               && !os->is_data_size_valid());
945                   os->reset_address_and_file_offset();
946                 }
947             }
948
949           *output_section_slot = os;
950           return os;
951         }
952     }
953
954   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956   size_t len = strlen(name);
957   char* uncompressed_name = NULL;
958
959   // Compressed debug sections should be mapped to the corresponding
960   // uncompressed section.
961   if (is_compressed_debug_section(name))
962     {
963       uncompressed_name = new char[len];
964       uncompressed_name[0] = '.';
965       gold_assert(name[0] == '.' && name[1] == 'z');
966       strncpy(&uncompressed_name[1], &name[2], len - 2);
967       uncompressed_name[len - 1] = '\0';
968       len -= 1;
969       name = uncompressed_name;
970     }
971
972   // Turn NAME from the name of the input section into the name of the
973   // output section.
974   if (is_input_section
975       && !this->script_options_->saw_sections_clause()
976       && !parameters->options().relocatable())
977     {
978       const char *orig_name = name;
979       name = parameters->target().output_section_name(relobj, name, &len);
980       if (name == NULL)
981         name = Layout::output_section_name(relobj, orig_name, &len);
982     }
983
984   Stringpool::Key name_key;
985   name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987   if (uncompressed_name != NULL)
988     delete[] uncompressed_name;
989
990   // Find or make the output section.  The output section is selected
991   // based on the section name, type, and flags.
992   return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001                                   elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003   unsigned int sh_type = shdr.get_sh_type();
1004
1005   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006   // PRE_INIT_ARRAY, and NOTE sections.
1007   // All others will be created from scratch and reallocated.
1008   if (!can_incremental_update(sh_type))
1009     return NULL;
1010
1011   // If we're generating a .gdb_index section, we need to regenerate
1012   // it from scratch.
1013   if (parameters->options().gdb_index()
1014       && sh_type == elfcpp::SHT_PROGBITS
1015       && strcmp(name, ".gdb_index") == 0)
1016     return NULL;
1017
1018   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023       shdr.get_sh_addralign();
1024
1025   // Make the output section.
1026   Stringpool::Key name_key;
1027   name = this->namepool_.add(name, true, &name_key);
1028   Output_section* os = this->get_output_section(name, name_key, sh_type,
1029                                                 sh_flags, ORDER_INVALID, false);
1030   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031   if (sh_type != elfcpp::SHT_NOBITS)
1032     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033   return os;
1034 }
1035
1036 // Return the index by which an input section should be ordered.  This
1037 // is used to sort some .text sections, for compatibility with GNU ld.
1038
1039 int
1040 Layout::special_ordering_of_input_section(const char* name)
1041 {
1042   // The GNU linker has some special handling for some sections that
1043   // wind up in the .text section.  Sections that start with these
1044   // prefixes must appear first, and must appear in the order listed
1045   // here.
1046   static const char* const text_section_sort[] = 
1047   {
1048     ".text.unlikely",
1049     ".text.exit",
1050     ".text.startup",
1051     ".text.hot"
1052   };
1053
1054   for (size_t i = 0;
1055        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1056        i++)
1057     if (is_prefix_of(text_section_sort[i], name))
1058       return i;
1059
1060   return -1;
1061 }
1062
1063 // Return the output section to use for input section SHNDX, with name
1064 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1065 // index of a relocation section which applies to this section, or 0
1066 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1067 // relocation section if there is one.  Set *OFF to the offset of this
1068 // input section without the output section.  Return NULL if the
1069 // section should be discarded.  Set *OFF to -1 if the section
1070 // contents should not be written directly to the output file, but
1071 // will instead receive special handling.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1076                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1077                unsigned int reloc_shndx, unsigned int, off_t* off)
1078 {
1079   *off = 0;
1080
1081   if (!this->include_section(object, name, shdr))
1082     return NULL;
1083
1084   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1085
1086   // In a relocatable link a grouped section must not be combined with
1087   // any other sections.
1088   Output_section* os;
1089   if (parameters->options().relocatable()
1090       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1091     {
1092       name = this->namepool_.add(name, true, NULL);
1093       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1094                                      ORDER_INVALID, false);
1095     }
1096   else
1097     {
1098       // Plugins can choose to place one or more subsets of sections in
1099       // unique segments and this is done by mapping these section subsets
1100       // to unique output sections.  Check if this section needs to be
1101       // remapped to a unique output section.
1102       Section_segment_map::iterator it
1103           = this->section_segment_map_.find(Const_section_id(object, shndx));
1104       if (it == this->section_segment_map_.end())
1105         {
1106           os = this->choose_output_section(object, name, sh_type,
1107                                            shdr.get_sh_flags(), true,
1108                                            ORDER_INVALID, false);
1109         }
1110       else
1111         {
1112           // We know the name of the output section, directly call
1113           // get_output_section here by-passing choose_output_section.
1114           elfcpp::Elf_Xword flags
1115             = this->get_output_section_flags(shdr.get_sh_flags());
1116
1117           const char* os_name = it->second->name;
1118           Stringpool::Key name_key;
1119           os_name = this->namepool_.add(os_name, true, &name_key);
1120           os = this->get_output_section(os_name, name_key, sh_type, flags,
1121                                         ORDER_INVALID, false);
1122           if (!os->is_unique_segment())
1123             {
1124               os->set_is_unique_segment();
1125               os->set_extra_segment_flags(it->second->flags);
1126               os->set_segment_alignment(it->second->align);
1127             }
1128         }
1129       if (os == NULL)
1130         return NULL;
1131     }
1132
1133   // By default the GNU linker sorts input sections whose names match
1134   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1135   // sections are sorted by name.  This is used to implement
1136   // constructor priority ordering.  We are compatible.  When we put
1137   // .ctor sections in .init_array and .dtor sections in .fini_array,
1138   // we must also sort plain .ctor and .dtor sections.
1139   if (!this->script_options_->saw_sections_clause()
1140       && !parameters->options().relocatable()
1141       && (is_prefix_of(".ctors.", name)
1142           || is_prefix_of(".dtors.", name)
1143           || is_prefix_of(".init_array.", name)
1144           || is_prefix_of(".fini_array.", name)
1145           || (parameters->options().ctors_in_init_array()
1146               && (strcmp(name, ".ctors") == 0
1147                   || strcmp(name, ".dtors") == 0))))
1148     os->set_must_sort_attached_input_sections();
1149
1150   // By default the GNU linker sorts some special text sections ahead
1151   // of others.  We are compatible.
1152   if (parameters->options().text_reorder()
1153       && !this->script_options_->saw_sections_clause()
1154       && !this->is_section_ordering_specified()
1155       && !parameters->options().relocatable()
1156       && Layout::special_ordering_of_input_section(name) >= 0)
1157     os->set_must_sort_attached_input_sections();
1158
1159   // If this is a .ctors or .ctors.* section being mapped to a
1160   // .init_array section, or a .dtors or .dtors.* section being mapped
1161   // to a .fini_array section, we will need to reverse the words if
1162   // there is more than one.  Record this section for later.  See
1163   // ctors_sections_in_init_array above.
1164   if (!this->script_options_->saw_sections_clause()
1165       && !parameters->options().relocatable()
1166       && shdr.get_sh_size() > size / 8
1167       && (((strcmp(name, ".ctors") == 0
1168             || is_prefix_of(".ctors.", name))
1169            && strcmp(os->name(), ".init_array") == 0)
1170           || ((strcmp(name, ".dtors") == 0
1171                || is_prefix_of(".dtors.", name))
1172               && strcmp(os->name(), ".fini_array") == 0)))
1173     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1174
1175   // FIXME: Handle SHF_LINK_ORDER somewhere.
1176
1177   elfcpp::Elf_Xword orig_flags = os->flags();
1178
1179   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1180                                this->script_options_->saw_sections_clause());
1181
1182   // If the flags changed, we may have to change the order.
1183   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1184     {
1185       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1186       elfcpp::Elf_Xword new_flags =
1187         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1188       if (orig_flags != new_flags)
1189         os->set_order(this->default_section_order(os, false));
1190     }
1191
1192   this->have_added_input_section_ = true;
1193
1194   return os;
1195 }
1196
1197 // Maps section SECN to SEGMENT s.
1198 void
1199 Layout::insert_section_segment_map(Const_section_id secn,
1200                                    Unique_segment_info *s)
1201 {
1202   gold_assert(this->unique_segment_for_sections_specified_); 
1203   this->section_segment_map_[secn] = s;
1204 }
1205
1206 // Handle a relocation section when doing a relocatable link.
1207
1208 template<int size, bool big_endian>
1209 Output_section*
1210 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1211                      unsigned int,
1212                      const elfcpp::Shdr<size, big_endian>& shdr,
1213                      Output_section* data_section,
1214                      Relocatable_relocs* rr)
1215 {
1216   gold_assert(parameters->options().relocatable()
1217               || parameters->options().emit_relocs());
1218
1219   int sh_type = shdr.get_sh_type();
1220
1221   std::string name;
1222   if (sh_type == elfcpp::SHT_REL)
1223     name = ".rel";
1224   else if (sh_type == elfcpp::SHT_RELA)
1225     name = ".rela";
1226   else
1227     gold_unreachable();
1228   name += data_section->name();
1229
1230   // In a relocatable link relocs for a grouped section must not be
1231   // combined with other reloc sections.
1232   Output_section* os;
1233   if (!parameters->options().relocatable()
1234       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1235     os = this->choose_output_section(object, name.c_str(), sh_type,
1236                                      shdr.get_sh_flags(), false,
1237                                      ORDER_INVALID, false);
1238   else
1239     {
1240       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1241       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1242                                      ORDER_INVALID, false);
1243     }
1244
1245   os->set_should_link_to_symtab();
1246   os->set_info_section(data_section);
1247
1248   Output_section_data* posd;
1249   if (sh_type == elfcpp::SHT_REL)
1250     {
1251       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1252       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1253                                            size,
1254                                            big_endian>(rr);
1255     }
1256   else if (sh_type == elfcpp::SHT_RELA)
1257     {
1258       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1259       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1260                                            size,
1261                                            big_endian>(rr);
1262     }
1263   else
1264     gold_unreachable();
1265
1266   os->add_output_section_data(posd);
1267   rr->set_output_data(posd);
1268
1269   return os;
1270 }
1271
1272 // Handle a group section when doing a relocatable link.
1273
1274 template<int size, bool big_endian>
1275 void
1276 Layout::layout_group(Symbol_table* symtab,
1277                      Sized_relobj_file<size, big_endian>* object,
1278                      unsigned int,
1279                      const char* group_section_name,
1280                      const char* signature,
1281                      const elfcpp::Shdr<size, big_endian>& shdr,
1282                      elfcpp::Elf_Word flags,
1283                      std::vector<unsigned int>* shndxes)
1284 {
1285   gold_assert(parameters->options().relocatable());
1286   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1287   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1288   Output_section* os = this->make_output_section(group_section_name,
1289                                                  elfcpp::SHT_GROUP,
1290                                                  shdr.get_sh_flags(),
1291                                                  ORDER_INVALID, false);
1292
1293   // We need to find a symbol with the signature in the symbol table.
1294   // If we don't find one now, we need to look again later.
1295   Symbol* sym = symtab->lookup(signature, NULL);
1296   if (sym != NULL)
1297     os->set_info_symndx(sym);
1298   else
1299     {
1300       // Reserve some space to minimize reallocations.
1301       if (this->group_signatures_.empty())
1302         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1303
1304       // We will wind up using a symbol whose name is the signature.
1305       // So just put the signature in the symbol name pool to save it.
1306       signature = symtab->canonicalize_name(signature);
1307       this->group_signatures_.push_back(Group_signature(os, signature));
1308     }
1309
1310   os->set_should_link_to_symtab();
1311   os->set_entsize(4);
1312
1313   section_size_type entry_count =
1314     convert_to_section_size_type(shdr.get_sh_size() / 4);
1315   Output_section_data* posd =
1316     new Output_data_group<size, big_endian>(object, entry_count, flags,
1317                                             shndxes);
1318   os->add_output_section_data(posd);
1319 }
1320
1321 // Special GNU handling of sections name .eh_frame.  They will
1322 // normally hold exception frame data as defined by the C++ ABI
1323 // (http://codesourcery.com/cxx-abi/).
1324
1325 template<int size, bool big_endian>
1326 Output_section*
1327 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1328                         const unsigned char* symbols,
1329                         off_t symbols_size,
1330                         const unsigned char* symbol_names,
1331                         off_t symbol_names_size,
1332                         unsigned int shndx,
1333                         const elfcpp::Shdr<size, big_endian>& shdr,
1334                         unsigned int reloc_shndx, unsigned int reloc_type,
1335                         off_t* off)
1336 {
1337   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1338               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1339   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1340
1341   Output_section* os = this->make_eh_frame_section(object);
1342   if (os == NULL)
1343     return NULL;
1344
1345   gold_assert(this->eh_frame_section_ == os);
1346
1347   elfcpp::Elf_Xword orig_flags = os->flags();
1348
1349   if (!parameters->incremental()
1350       && this->eh_frame_data_->add_ehframe_input_section(object,
1351                                                          symbols,
1352                                                          symbols_size,
1353                                                          symbol_names,
1354                                                          symbol_names_size,
1355                                                          shndx,
1356                                                          reloc_shndx,
1357                                                          reloc_type))
1358     {
1359       os->update_flags_for_input_section(shdr.get_sh_flags());
1360
1361       // A writable .eh_frame section is a RELRO section.
1362       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1363           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1364         {
1365           os->set_is_relro();
1366           os->set_order(ORDER_RELRO);
1367         }
1368
1369       // We found a .eh_frame section we are going to optimize, so now
1370       // we can add the set of optimized sections to the output
1371       // section.  We need to postpone adding this until we've found a
1372       // section we can optimize so that the .eh_frame section in
1373       // crtbegin.o winds up at the start of the output section.
1374       if (!this->added_eh_frame_data_)
1375         {
1376           os->add_output_section_data(this->eh_frame_data_);
1377           this->added_eh_frame_data_ = true;
1378         }
1379       *off = -1;
1380     }
1381   else
1382     {
1383       // We couldn't handle this .eh_frame section for some reason.
1384       // Add it as a normal section.
1385       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1386       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1387                                    reloc_shndx, saw_sections_clause);
1388       this->have_added_input_section_ = true;
1389
1390       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1391           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1392         os->set_order(this->default_section_order(os, false));
1393     }
1394
1395   return os;
1396 }
1397
1398 // Create and return the magic .eh_frame section.  Create
1399 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1400 // input .eh_frame section; it may be NULL.
1401
1402 Output_section*
1403 Layout::make_eh_frame_section(const Relobj* object)
1404 {
1405   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1406   // SHT_PROGBITS.
1407   Output_section* os = this->choose_output_section(object, ".eh_frame",
1408                                                    elfcpp::SHT_PROGBITS,
1409                                                    elfcpp::SHF_ALLOC, false,
1410                                                    ORDER_EHFRAME, false);
1411   if (os == NULL)
1412     return NULL;
1413
1414   if (this->eh_frame_section_ == NULL)
1415     {
1416       this->eh_frame_section_ = os;
1417       this->eh_frame_data_ = new Eh_frame();
1418
1419       // For incremental linking, we do not optimize .eh_frame sections
1420       // or create a .eh_frame_hdr section.
1421       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1422         {
1423           Output_section* hdr_os =
1424             this->choose_output_section(NULL, ".eh_frame_hdr",
1425                                         elfcpp::SHT_PROGBITS,
1426                                         elfcpp::SHF_ALLOC, false,
1427                                         ORDER_EHFRAME, false);
1428
1429           if (hdr_os != NULL)
1430             {
1431               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1432                                                         this->eh_frame_data_);
1433               hdr_os->add_output_section_data(hdr_posd);
1434
1435               hdr_os->set_after_input_sections();
1436
1437               if (!this->script_options_->saw_phdrs_clause())
1438                 {
1439                   Output_segment* hdr_oseg;
1440                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1441                                                        elfcpp::PF_R);
1442                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1443                                                           elfcpp::PF_R);
1444                 }
1445
1446               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1447             }
1448         }
1449     }
1450
1451   return os;
1452 }
1453
1454 // Add an exception frame for a PLT.  This is called from target code.
1455
1456 void
1457 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1458                              size_t cie_length, const unsigned char* fde_data,
1459                              size_t fde_length)
1460 {
1461   if (parameters->incremental())
1462     {
1463       // FIXME: Maybe this could work some day....
1464       return;
1465     }
1466   Output_section* os = this->make_eh_frame_section(NULL);
1467   if (os == NULL)
1468     return;
1469   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1470                                             fde_data, fde_length);
1471   if (!this->added_eh_frame_data_)
1472     {
1473       os->add_output_section_data(this->eh_frame_data_);
1474       this->added_eh_frame_data_ = true;
1475     }
1476 }
1477
1478 // Scan a .debug_info or .debug_types section, and add summary
1479 // information to the .gdb_index section.
1480
1481 template<int size, bool big_endian>
1482 void
1483 Layout::add_to_gdb_index(bool is_type_unit,
1484                          Sized_relobj<size, big_endian>* object,
1485                          const unsigned char* symbols,
1486                          off_t symbols_size,
1487                          unsigned int shndx,
1488                          unsigned int reloc_shndx,
1489                          unsigned int reloc_type)
1490 {
1491   if (this->gdb_index_data_ == NULL)
1492     {
1493       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1494                                                        elfcpp::SHT_PROGBITS, 0,
1495                                                        false, ORDER_INVALID,
1496                                                        false);
1497       if (os == NULL)
1498         return;
1499
1500       this->gdb_index_data_ = new Gdb_index(os);
1501       os->add_output_section_data(this->gdb_index_data_);
1502       os->set_after_input_sections();
1503     }
1504
1505   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1506                                          symbols_size, shndx, reloc_shndx,
1507                                          reloc_type);
1508 }
1509
1510 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1511 // the output section.
1512
1513 Output_section*
1514 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1515                                 elfcpp::Elf_Xword flags,
1516                                 Output_section_data* posd,
1517                                 Output_section_order order, bool is_relro)
1518 {
1519   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1520                                                    false, order, is_relro);
1521   if (os != NULL)
1522     os->add_output_section_data(posd);
1523   return os;
1524 }
1525
1526 // Map section flags to segment flags.
1527
1528 elfcpp::Elf_Word
1529 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1530 {
1531   elfcpp::Elf_Word ret = elfcpp::PF_R;
1532   if ((flags & elfcpp::SHF_WRITE) != 0)
1533     ret |= elfcpp::PF_W;
1534   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1535     ret |= elfcpp::PF_X;
1536   return ret;
1537 }
1538
1539 // Make a new Output_section, and attach it to segments as
1540 // appropriate.  ORDER is the order in which this section should
1541 // appear in the output segment.  IS_RELRO is true if this is a relro
1542 // (read-only after relocations) section.
1543
1544 Output_section*
1545 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1546                             elfcpp::Elf_Xword flags,
1547                             Output_section_order order, bool is_relro)
1548 {
1549   Output_section* os;
1550   if ((flags & elfcpp::SHF_ALLOC) == 0
1551       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1552       && is_compressible_debug_section(name))
1553     os = new Output_compressed_section(&parameters->options(), name, type,
1554                                        flags);
1555   else if ((flags & elfcpp::SHF_ALLOC) == 0
1556            && parameters->options().strip_debug_non_line()
1557            && strcmp(".debug_abbrev", name) == 0)
1558     {
1559       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1560           name, type, flags);
1561       if (this->debug_info_)
1562         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1563     }
1564   else if ((flags & elfcpp::SHF_ALLOC) == 0
1565            && parameters->options().strip_debug_non_line()
1566            && strcmp(".debug_info", name) == 0)
1567     {
1568       os = this->debug_info_ = new Output_reduced_debug_info_section(
1569           name, type, flags);
1570       if (this->debug_abbrev_)
1571         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1572     }
1573   else
1574     {
1575       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1576       // not have correct section types.  Force them here.
1577       if (type == elfcpp::SHT_PROGBITS)
1578         {
1579           if (is_prefix_of(".init_array", name))
1580             type = elfcpp::SHT_INIT_ARRAY;
1581           else if (is_prefix_of(".preinit_array", name))
1582             type = elfcpp::SHT_PREINIT_ARRAY;
1583           else if (is_prefix_of(".fini_array", name))
1584             type = elfcpp::SHT_FINI_ARRAY;
1585         }
1586
1587       // FIXME: const_cast is ugly.
1588       Target* target = const_cast<Target*>(&parameters->target());
1589       os = target->make_output_section(name, type, flags);
1590     }
1591
1592   // With -z relro, we have to recognize the special sections by name.
1593   // There is no other way.
1594   bool is_relro_local = false;
1595   if (!this->script_options_->saw_sections_clause()
1596       && parameters->options().relro()
1597       && (flags & elfcpp::SHF_ALLOC) != 0
1598       && (flags & elfcpp::SHF_WRITE) != 0)
1599     {
1600       if (type == elfcpp::SHT_PROGBITS)
1601         {
1602           if ((flags & elfcpp::SHF_TLS) != 0)
1603             is_relro = true;
1604           else if (strcmp(name, ".data.rel.ro") == 0)
1605             is_relro = true;
1606           else if (strcmp(name, ".data.rel.ro.local") == 0)
1607             {
1608               is_relro = true;
1609               is_relro_local = true;
1610             }
1611           else if (strcmp(name, ".ctors") == 0
1612                    || strcmp(name, ".dtors") == 0
1613                    || strcmp(name, ".jcr") == 0)
1614             is_relro = true;
1615         }
1616       else if (type == elfcpp::SHT_INIT_ARRAY
1617                || type == elfcpp::SHT_FINI_ARRAY
1618                || type == elfcpp::SHT_PREINIT_ARRAY)
1619         is_relro = true;
1620     }
1621
1622   if (is_relro)
1623     os->set_is_relro();
1624
1625   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1626     order = this->default_section_order(os, is_relro_local);
1627
1628   os->set_order(order);
1629
1630   parameters->target().new_output_section(os);
1631
1632   this->section_list_.push_back(os);
1633
1634   // The GNU linker by default sorts some sections by priority, so we
1635   // do the same.  We need to know that this might happen before we
1636   // attach any input sections.
1637   if (!this->script_options_->saw_sections_clause()
1638       && !parameters->options().relocatable()
1639       && (strcmp(name, ".init_array") == 0
1640           || strcmp(name, ".fini_array") == 0
1641           || (!parameters->options().ctors_in_init_array()
1642               && (strcmp(name, ".ctors") == 0
1643                   || strcmp(name, ".dtors") == 0))))
1644     os->set_may_sort_attached_input_sections();
1645
1646   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1647   // sections before other .text sections.  We are compatible.  We
1648   // need to know that this might happen before we attach any input
1649   // sections.
1650   if (parameters->options().text_reorder()
1651       && !this->script_options_->saw_sections_clause()
1652       && !this->is_section_ordering_specified()
1653       && !parameters->options().relocatable()
1654       && strcmp(name, ".text") == 0)
1655     os->set_may_sort_attached_input_sections();
1656
1657   // Check for .stab*str sections, as .stab* sections need to link to
1658   // them.
1659   if (type == elfcpp::SHT_STRTAB
1660       && !this->have_stabstr_section_
1661       && strncmp(name, ".stab", 5) == 0
1662       && strcmp(name + strlen(name) - 3, "str") == 0)
1663     this->have_stabstr_section_ = true;
1664
1665   // During a full incremental link, we add patch space to most
1666   // PROGBITS and NOBITS sections.  Flag those that may be
1667   // arbitrarily padded.
1668   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1669       && order != ORDER_INTERP
1670       && order != ORDER_INIT
1671       && order != ORDER_PLT
1672       && order != ORDER_FINI
1673       && order != ORDER_RELRO_LAST
1674       && order != ORDER_NON_RELRO_FIRST
1675       && strcmp(name, ".eh_frame") != 0
1676       && strcmp(name, ".ctors") != 0
1677       && strcmp(name, ".dtors") != 0
1678       && strcmp(name, ".jcr") != 0)
1679     {
1680       os->set_is_patch_space_allowed();
1681
1682       // Certain sections require "holes" to be filled with
1683       // specific fill patterns.  These fill patterns may have
1684       // a minimum size, so we must prevent allocations from the
1685       // free list that leave a hole smaller than the minimum.
1686       if (strcmp(name, ".debug_info") == 0)
1687         os->set_free_space_fill(new Output_fill_debug_info(false));
1688       else if (strcmp(name, ".debug_types") == 0)
1689         os->set_free_space_fill(new Output_fill_debug_info(true));
1690       else if (strcmp(name, ".debug_line") == 0)
1691         os->set_free_space_fill(new Output_fill_debug_line());
1692     }
1693
1694   // If we have already attached the sections to segments, then we
1695   // need to attach this one now.  This happens for sections created
1696   // directly by the linker.
1697   if (this->sections_are_attached_)
1698     this->attach_section_to_segment(&parameters->target(), os);
1699
1700   return os;
1701 }
1702
1703 // Return the default order in which a section should be placed in an
1704 // output segment.  This function captures a lot of the ideas in
1705 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1706 // linker created section is normally set when the section is created;
1707 // this function is used for input sections.
1708
1709 Output_section_order
1710 Layout::default_section_order(Output_section* os, bool is_relro_local)
1711 {
1712   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1713   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1714   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1715   bool is_bss = false;
1716
1717   switch (os->type())
1718     {
1719     default:
1720     case elfcpp::SHT_PROGBITS:
1721       break;
1722     case elfcpp::SHT_NOBITS:
1723       is_bss = true;
1724       break;
1725     case elfcpp::SHT_RELA:
1726     case elfcpp::SHT_REL:
1727       if (!is_write)
1728         return ORDER_DYNAMIC_RELOCS;
1729       break;
1730     case elfcpp::SHT_HASH:
1731     case elfcpp::SHT_DYNAMIC:
1732     case elfcpp::SHT_SHLIB:
1733     case elfcpp::SHT_DYNSYM:
1734     case elfcpp::SHT_GNU_HASH:
1735     case elfcpp::SHT_GNU_verdef:
1736     case elfcpp::SHT_GNU_verneed:
1737     case elfcpp::SHT_GNU_versym:
1738       if (!is_write)
1739         return ORDER_DYNAMIC_LINKER;
1740       break;
1741     case elfcpp::SHT_NOTE:
1742       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1743     }
1744
1745   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1746     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1747
1748   if (!is_bss && !is_write)
1749     {
1750       if (is_execinstr)
1751         {
1752           if (strcmp(os->name(), ".init") == 0)
1753             return ORDER_INIT;
1754           else if (strcmp(os->name(), ".fini") == 0)
1755             return ORDER_FINI;
1756         }
1757       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1758     }
1759
1760   if (os->is_relro())
1761     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1762
1763   if (os->is_small_section())
1764     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1765   if (os->is_large_section())
1766     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1767
1768   return is_bss ? ORDER_BSS : ORDER_DATA;
1769 }
1770
1771 // Attach output sections to segments.  This is called after we have
1772 // seen all the input sections.
1773
1774 void
1775 Layout::attach_sections_to_segments(const Target* target)
1776 {
1777   for (Section_list::iterator p = this->section_list_.begin();
1778        p != this->section_list_.end();
1779        ++p)
1780     this->attach_section_to_segment(target, *p);
1781
1782   this->sections_are_attached_ = true;
1783 }
1784
1785 // Attach an output section to a segment.
1786
1787 void
1788 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1789 {
1790   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1791     this->unattached_section_list_.push_back(os);
1792   else
1793     this->attach_allocated_section_to_segment(target, os);
1794 }
1795
1796 // Attach an allocated output section to a segment.
1797
1798 void
1799 Layout::attach_allocated_section_to_segment(const Target* target,
1800                                             Output_section* os)
1801 {
1802   elfcpp::Elf_Xword flags = os->flags();
1803   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1804
1805   if (parameters->options().relocatable())
1806     return;
1807
1808   // If we have a SECTIONS clause, we can't handle the attachment to
1809   // segments until after we've seen all the sections.
1810   if (this->script_options_->saw_sections_clause())
1811     return;
1812
1813   gold_assert(!this->script_options_->saw_phdrs_clause());
1814
1815   // This output section goes into a PT_LOAD segment.
1816
1817   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1818
1819   // If this output section's segment has extra flags that need to be set,
1820   // coming from a linker plugin, do that.
1821   seg_flags |= os->extra_segment_flags();
1822
1823   // Check for --section-start.
1824   uint64_t addr;
1825   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1826
1827   // In general the only thing we really care about for PT_LOAD
1828   // segments is whether or not they are writable or executable,
1829   // so that is how we search for them.
1830   // Large data sections also go into their own PT_LOAD segment.
1831   // People who need segments sorted on some other basis will
1832   // have to use a linker script.
1833
1834   Segment_list::const_iterator p;
1835   if (!os->is_unique_segment())
1836     {
1837       for (p = this->segment_list_.begin();
1838            p != this->segment_list_.end();
1839            ++p)
1840         {
1841           if ((*p)->type() != elfcpp::PT_LOAD)                        
1842             continue;                        
1843           if ((*p)->is_unique_segment())                        
1844             continue;                        
1845           if (!parameters->options().omagic()                        
1846               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1847             continue;                        
1848           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1849               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1850             continue;                        
1851           // If -Tbss was specified, we need to separate the data and BSS                        
1852           // segments.                        
1853           if (parameters->options().user_set_Tbss())                        
1854             {                        
1855               if ((os->type() == elfcpp::SHT_NOBITS)                        
1856                   == (*p)->has_any_data_sections())                        
1857                 continue;                        
1858             }                        
1859           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1860             continue;                        
1861                             
1862           if (is_address_set)                        
1863             {                        
1864               if ((*p)->are_addresses_set())                        
1865                 continue;                        
1866                             
1867               (*p)->add_initial_output_data(os);                        
1868               (*p)->update_flags_for_output_section(seg_flags);                        
1869               (*p)->set_addresses(addr, addr);                        
1870               break;                        
1871             }                        
1872                             
1873           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1874           break;                        
1875         }                        
1876     }
1877
1878   if (p == this->segment_list_.end()
1879       || os->is_unique_segment())
1880     {
1881       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1882                                                        seg_flags);
1883       if (os->is_large_data_section())
1884         oseg->set_is_large_data_segment();
1885       oseg->add_output_section_to_load(this, os, seg_flags);
1886       if (is_address_set)
1887         oseg->set_addresses(addr, addr);
1888       // Check if segment should be marked unique.  For segments marked
1889       // unique by linker plugins, set the new alignment if specified.
1890       if (os->is_unique_segment())
1891         {
1892           oseg->set_is_unique_segment();
1893           if (os->segment_alignment() != 0)
1894             oseg->set_minimum_p_align(os->segment_alignment());
1895         }
1896     }
1897
1898   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1899   // segment.
1900   if (os->type() == elfcpp::SHT_NOTE)
1901     {
1902       // See if we already have an equivalent PT_NOTE segment.
1903       for (p = this->segment_list_.begin();
1904            p != segment_list_.end();
1905            ++p)
1906         {
1907           if ((*p)->type() == elfcpp::PT_NOTE
1908               && (((*p)->flags() & elfcpp::PF_W)
1909                   == (seg_flags & elfcpp::PF_W)))
1910             {
1911               (*p)->add_output_section_to_nonload(os, seg_flags);
1912               break;
1913             }
1914         }
1915
1916       if (p == this->segment_list_.end())
1917         {
1918           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1919                                                            seg_flags);
1920           oseg->add_output_section_to_nonload(os, seg_flags);
1921         }
1922     }
1923
1924   // If we see a loadable SHF_TLS section, we create a PT_TLS
1925   // segment.  There can only be one such segment.
1926   if ((flags & elfcpp::SHF_TLS) != 0)
1927     {
1928       if (this->tls_segment_ == NULL)
1929         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1930       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1931     }
1932
1933   // If -z relro is in effect, and we see a relro section, we create a
1934   // PT_GNU_RELRO segment.  There can only be one such segment.
1935   if (os->is_relro() && parameters->options().relro())
1936     {
1937       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1938       if (this->relro_segment_ == NULL)
1939         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1940       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1941     }
1942
1943   // If we see a section named .interp, put it into a PT_INTERP
1944   // segment.  This seems broken to me, but this is what GNU ld does,
1945   // and glibc expects it.
1946   if (strcmp(os->name(), ".interp") == 0
1947       && !this->script_options_->saw_phdrs_clause())
1948     {
1949       if (this->interp_segment_ == NULL)
1950         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1951       else
1952         gold_warning(_("multiple '.interp' sections in input files "
1953                        "may cause confusing PT_INTERP segment"));
1954       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1955     }
1956 }
1957
1958 // Make an output section for a script.
1959
1960 Output_section*
1961 Layout::make_output_section_for_script(
1962     const char* name,
1963     Script_sections::Section_type section_type)
1964 {
1965   name = this->namepool_.add(name, false, NULL);
1966   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1967   if (section_type == Script_sections::ST_NOLOAD)
1968     sh_flags = 0;
1969   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1970                                                  sh_flags, ORDER_INVALID,
1971                                                  false);
1972   os->set_found_in_sections_clause();
1973   if (section_type == Script_sections::ST_NOLOAD)
1974     os->set_is_noload();
1975   return os;
1976 }
1977
1978 // Return the number of segments we expect to see.
1979
1980 size_t
1981 Layout::expected_segment_count() const
1982 {
1983   size_t ret = this->segment_list_.size();
1984
1985   // If we didn't see a SECTIONS clause in a linker script, we should
1986   // already have the complete list of segments.  Otherwise we ask the
1987   // SECTIONS clause how many segments it expects, and add in the ones
1988   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1989
1990   if (!this->script_options_->saw_sections_clause())
1991     return ret;
1992   else
1993     {
1994       const Script_sections* ss = this->script_options_->script_sections();
1995       return ret + ss->expected_segment_count(this);
1996     }
1997 }
1998
1999 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2000 // is whether we saw a .note.GNU-stack section in the object file.
2001 // GNU_STACK_FLAGS is the section flags.  The flags give the
2002 // protection required for stack memory.  We record this in an
2003 // executable as a PT_GNU_STACK segment.  If an object file does not
2004 // have a .note.GNU-stack segment, we must assume that it is an old
2005 // object.  On some targets that will force an executable stack.
2006
2007 void
2008 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2009                          const Object* obj)
2010 {
2011   if (!seen_gnu_stack)
2012     {
2013       this->input_without_gnu_stack_note_ = true;
2014       if (parameters->options().warn_execstack()
2015           && parameters->target().is_default_stack_executable())
2016         gold_warning(_("%s: missing .note.GNU-stack section"
2017                        " implies executable stack"),
2018                      obj->name().c_str());
2019     }
2020   else
2021     {
2022       this->input_with_gnu_stack_note_ = true;
2023       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2024         {
2025           this->input_requires_executable_stack_ = true;
2026           if (parameters->options().warn_execstack()
2027               || parameters->options().is_stack_executable())
2028             gold_warning(_("%s: requires executable stack"),
2029                          obj->name().c_str());
2030         }
2031     }
2032 }
2033
2034 // Create automatic note sections.
2035
2036 void
2037 Layout::create_notes()
2038 {
2039   this->create_gold_note();
2040   this->create_executable_stack_info();
2041   this->create_build_id();
2042 }
2043
2044 // Create the dynamic sections which are needed before we read the
2045 // relocs.
2046
2047 void
2048 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2049 {
2050   if (parameters->doing_static_link())
2051     return;
2052
2053   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2054                                                        elfcpp::SHT_DYNAMIC,
2055                                                        (elfcpp::SHF_ALLOC
2056                                                         | elfcpp::SHF_WRITE),
2057                                                        false, ORDER_RELRO,
2058                                                        true);
2059
2060   // A linker script may discard .dynamic, so check for NULL.
2061   if (this->dynamic_section_ != NULL)
2062     {
2063       this->dynamic_symbol_ =
2064         symtab->define_in_output_data("_DYNAMIC", NULL,
2065                                       Symbol_table::PREDEFINED,
2066                                       this->dynamic_section_, 0, 0,
2067                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2068                                       elfcpp::STV_HIDDEN, 0, false, false);
2069
2070       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2071
2072       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2073     }
2074 }
2075
2076 // For each output section whose name can be represented as C symbol,
2077 // define __start and __stop symbols for the section.  This is a GNU
2078 // extension.
2079
2080 void
2081 Layout::define_section_symbols(Symbol_table* symtab)
2082 {
2083   for (Section_list::const_iterator p = this->section_list_.begin();
2084        p != this->section_list_.end();
2085        ++p)
2086     {
2087       const char* const name = (*p)->name();
2088       if (is_cident(name))
2089         {
2090           const std::string name_string(name);
2091           const std::string start_name(cident_section_start_prefix
2092                                        + name_string);
2093           const std::string stop_name(cident_section_stop_prefix
2094                                       + name_string);
2095
2096           symtab->define_in_output_data(start_name.c_str(),
2097                                         NULL, // version
2098                                         Symbol_table::PREDEFINED,
2099                                         *p,
2100                                         0, // value
2101                                         0, // symsize
2102                                         elfcpp::STT_NOTYPE,
2103                                         elfcpp::STB_GLOBAL,
2104                                         elfcpp::STV_DEFAULT,
2105                                         0, // nonvis
2106                                         false, // offset_is_from_end
2107                                         true); // only_if_ref
2108
2109           symtab->define_in_output_data(stop_name.c_str(),
2110                                         NULL, // version
2111                                         Symbol_table::PREDEFINED,
2112                                         *p,
2113                                         0, // value
2114                                         0, // symsize
2115                                         elfcpp::STT_NOTYPE,
2116                                         elfcpp::STB_GLOBAL,
2117                                         elfcpp::STV_DEFAULT,
2118                                         0, // nonvis
2119                                         true, // offset_is_from_end
2120                                         true); // only_if_ref
2121         }
2122     }
2123 }
2124
2125 // Define symbols for group signatures.
2126
2127 void
2128 Layout::define_group_signatures(Symbol_table* symtab)
2129 {
2130   for (Group_signatures::iterator p = this->group_signatures_.begin();
2131        p != this->group_signatures_.end();
2132        ++p)
2133     {
2134       Symbol* sym = symtab->lookup(p->signature, NULL);
2135       if (sym != NULL)
2136         p->section->set_info_symndx(sym);
2137       else
2138         {
2139           // Force the name of the group section to the group
2140           // signature, and use the group's section symbol as the
2141           // signature symbol.
2142           if (strcmp(p->section->name(), p->signature) != 0)
2143             {
2144               const char* name = this->namepool_.add(p->signature,
2145                                                      true, NULL);
2146               p->section->set_name(name);
2147             }
2148           p->section->set_needs_symtab_index();
2149           p->section->set_info_section_symndx(p->section);
2150         }
2151     }
2152
2153   this->group_signatures_.clear();
2154 }
2155
2156 // Find the first read-only PT_LOAD segment, creating one if
2157 // necessary.
2158
2159 Output_segment*
2160 Layout::find_first_load_seg(const Target* target)
2161 {
2162   Output_segment* best = NULL;
2163   for (Segment_list::const_iterator p = this->segment_list_.begin();
2164        p != this->segment_list_.end();
2165        ++p)
2166     {
2167       if ((*p)->type() == elfcpp::PT_LOAD
2168           && ((*p)->flags() & elfcpp::PF_R) != 0
2169           && (parameters->options().omagic()
2170               || ((*p)->flags() & elfcpp::PF_W) == 0)
2171           && (!target->isolate_execinstr()
2172               || ((*p)->flags() & elfcpp::PF_X) == 0))
2173         {
2174           if (best == NULL || this->segment_precedes(*p, best))
2175             best = *p;
2176         }
2177     }
2178   if (best != NULL)
2179     return best;
2180
2181   gold_assert(!this->script_options_->saw_phdrs_clause());
2182
2183   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2184                                                        elfcpp::PF_R);
2185   return load_seg;
2186 }
2187
2188 // Save states of all current output segments.  Store saved states
2189 // in SEGMENT_STATES.
2190
2191 void
2192 Layout::save_segments(Segment_states* segment_states)
2193 {
2194   for (Segment_list::const_iterator p = this->segment_list_.begin();
2195        p != this->segment_list_.end();
2196        ++p)
2197     {
2198       Output_segment* segment = *p;
2199       // Shallow copy.
2200       Output_segment* copy = new Output_segment(*segment);
2201       (*segment_states)[segment] = copy;
2202     }
2203 }
2204
2205 // Restore states of output segments and delete any segment not found in
2206 // SEGMENT_STATES.
2207
2208 void
2209 Layout::restore_segments(const Segment_states* segment_states)
2210 {
2211   // Go through the segment list and remove any segment added in the
2212   // relaxation loop.
2213   this->tls_segment_ = NULL;
2214   this->relro_segment_ = NULL;
2215   Segment_list::iterator list_iter = this->segment_list_.begin();
2216   while (list_iter != this->segment_list_.end())
2217     {
2218       Output_segment* segment = *list_iter;
2219       Segment_states::const_iterator states_iter =
2220           segment_states->find(segment);
2221       if (states_iter != segment_states->end())
2222         {
2223           const Output_segment* copy = states_iter->second;
2224           // Shallow copy to restore states.
2225           *segment = *copy;
2226
2227           // Also fix up TLS and RELRO segment pointers as appropriate.
2228           if (segment->type() == elfcpp::PT_TLS)
2229             this->tls_segment_ = segment;
2230           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2231             this->relro_segment_ = segment;
2232
2233           ++list_iter;
2234         }
2235       else
2236         {
2237           list_iter = this->segment_list_.erase(list_iter);
2238           // This is a segment created during section layout.  It should be
2239           // safe to remove it since we should have removed all pointers to it.
2240           delete segment;
2241         }
2242     }
2243 }
2244
2245 // Clean up after relaxation so that sections can be laid out again.
2246
2247 void
2248 Layout::clean_up_after_relaxation()
2249 {
2250   // Restore the segments to point state just prior to the relaxation loop.
2251   Script_sections* script_section = this->script_options_->script_sections();
2252   script_section->release_segments();
2253   this->restore_segments(this->segment_states_);
2254
2255   // Reset section addresses and file offsets
2256   for (Section_list::iterator p = this->section_list_.begin();
2257        p != this->section_list_.end();
2258        ++p)
2259     {
2260       (*p)->restore_states();
2261
2262       // If an input section changes size because of relaxation,
2263       // we need to adjust the section offsets of all input sections.
2264       // after such a section.
2265       if ((*p)->section_offsets_need_adjustment())
2266         (*p)->adjust_section_offsets();
2267
2268       (*p)->reset_address_and_file_offset();
2269     }
2270
2271   // Reset special output object address and file offsets.
2272   for (Data_list::iterator p = this->special_output_list_.begin();
2273        p != this->special_output_list_.end();
2274        ++p)
2275     (*p)->reset_address_and_file_offset();
2276
2277   // A linker script may have created some output section data objects.
2278   // They are useless now.
2279   for (Output_section_data_list::const_iterator p =
2280          this->script_output_section_data_list_.begin();
2281        p != this->script_output_section_data_list_.end();
2282        ++p)
2283     delete *p;
2284   this->script_output_section_data_list_.clear();
2285 }
2286
2287 // Prepare for relaxation.
2288
2289 void
2290 Layout::prepare_for_relaxation()
2291 {
2292   // Create an relaxation debug check if in debugging mode.
2293   if (is_debugging_enabled(DEBUG_RELAXATION))
2294     this->relaxation_debug_check_ = new Relaxation_debug_check();
2295
2296   // Save segment states.
2297   this->segment_states_ = new Segment_states();
2298   this->save_segments(this->segment_states_);
2299
2300   for(Section_list::const_iterator p = this->section_list_.begin();
2301       p != this->section_list_.end();
2302       ++p)
2303     (*p)->save_states();
2304
2305   if (is_debugging_enabled(DEBUG_RELAXATION))
2306     this->relaxation_debug_check_->check_output_data_for_reset_values(
2307         this->section_list_, this->special_output_list_);
2308
2309   // Also enable recording of output section data from scripts.
2310   this->record_output_section_data_from_script_ = true;
2311 }
2312
2313 // Relaxation loop body:  If target has no relaxation, this runs only once
2314 // Otherwise, the target relaxation hook is called at the end of
2315 // each iteration.  If the hook returns true, it means re-layout of
2316 // section is required.
2317 //
2318 // The number of segments created by a linking script without a PHDRS
2319 // clause may be affected by section sizes and alignments.  There is
2320 // a remote chance that relaxation causes different number of PT_LOAD
2321 // segments are created and sections are attached to different segments.
2322 // Therefore, we always throw away all segments created during section
2323 // layout.  In order to be able to restart the section layout, we keep
2324 // a copy of the segment list right before the relaxation loop and use
2325 // that to restore the segments.
2326 //
2327 // PASS is the current relaxation pass number.
2328 // SYMTAB is a symbol table.
2329 // PLOAD_SEG is the address of a pointer for the load segment.
2330 // PHDR_SEG is a pointer to the PHDR segment.
2331 // SEGMENT_HEADERS points to the output segment header.
2332 // FILE_HEADER points to the output file header.
2333 // PSHNDX is the address to store the output section index.
2334
2335 off_t inline
2336 Layout::relaxation_loop_body(
2337     int pass,
2338     Target* target,
2339     Symbol_table* symtab,
2340     Output_segment** pload_seg,
2341     Output_segment* phdr_seg,
2342     Output_segment_headers* segment_headers,
2343     Output_file_header* file_header,
2344     unsigned int* pshndx)
2345 {
2346   // If this is not the first iteration, we need to clean up after
2347   // relaxation so that we can lay out the sections again.
2348   if (pass != 0)
2349     this->clean_up_after_relaxation();
2350
2351   // If there is a SECTIONS clause, put all the input sections into
2352   // the required order.
2353   Output_segment* load_seg;
2354   if (this->script_options_->saw_sections_clause())
2355     load_seg = this->set_section_addresses_from_script(symtab);
2356   else if (parameters->options().relocatable())
2357     load_seg = NULL;
2358   else
2359     load_seg = this->find_first_load_seg(target);
2360
2361   if (parameters->options().oformat_enum()
2362       != General_options::OBJECT_FORMAT_ELF)
2363     load_seg = NULL;
2364
2365   // If the user set the address of the text segment, that may not be
2366   // compatible with putting the segment headers and file headers into
2367   // that segment.
2368   if (parameters->options().user_set_Ttext()
2369       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2370     {
2371       load_seg = NULL;
2372       phdr_seg = NULL;
2373     }
2374
2375   gold_assert(phdr_seg == NULL
2376               || load_seg != NULL
2377               || this->script_options_->saw_sections_clause());
2378
2379   // If the address of the load segment we found has been set by
2380   // --section-start rather than by a script, then adjust the VMA and
2381   // LMA downward if possible to include the file and section headers.
2382   uint64_t header_gap = 0;
2383   if (load_seg != NULL
2384       && load_seg->are_addresses_set()
2385       && !this->script_options_->saw_sections_clause()
2386       && !parameters->options().relocatable())
2387     {
2388       file_header->finalize_data_size();
2389       segment_headers->finalize_data_size();
2390       size_t sizeof_headers = (file_header->data_size()
2391                                + segment_headers->data_size());
2392       const uint64_t abi_pagesize = target->abi_pagesize();
2393       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2394       hdr_paddr &= ~(abi_pagesize - 1);
2395       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2396       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2397         load_seg = NULL;
2398       else
2399         {
2400           load_seg->set_addresses(load_seg->vaddr() - subtract,
2401                                   load_seg->paddr() - subtract);
2402           header_gap = subtract - sizeof_headers;
2403         }
2404     }
2405
2406   // Lay out the segment headers.
2407   if (!parameters->options().relocatable())
2408     {
2409       gold_assert(segment_headers != NULL);
2410       if (header_gap != 0 && load_seg != NULL)
2411         {
2412           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2413           load_seg->add_initial_output_data(z);
2414         }
2415       if (load_seg != NULL)
2416         load_seg->add_initial_output_data(segment_headers);
2417       if (phdr_seg != NULL)
2418         phdr_seg->add_initial_output_data(segment_headers);
2419     }
2420
2421   // Lay out the file header.
2422   if (load_seg != NULL)
2423     load_seg->add_initial_output_data(file_header);
2424
2425   if (this->script_options_->saw_phdrs_clause()
2426       && !parameters->options().relocatable())
2427     {
2428       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2429       // clause in a linker script.
2430       Script_sections* ss = this->script_options_->script_sections();
2431       ss->put_headers_in_phdrs(file_header, segment_headers);
2432     }
2433
2434   // We set the output section indexes in set_segment_offsets and
2435   // set_section_indexes.
2436   *pshndx = 1;
2437
2438   // Set the file offsets of all the segments, and all the sections
2439   // they contain.
2440   off_t off;
2441   if (!parameters->options().relocatable())
2442     off = this->set_segment_offsets(target, load_seg, pshndx);
2443   else
2444     off = this->set_relocatable_section_offsets(file_header, pshndx);
2445
2446    // Verify that the dummy relaxation does not change anything.
2447   if (is_debugging_enabled(DEBUG_RELAXATION))
2448     {
2449       if (pass == 0)
2450         this->relaxation_debug_check_->read_sections(this->section_list_);
2451       else
2452         this->relaxation_debug_check_->verify_sections(this->section_list_);
2453     }
2454
2455   *pload_seg = load_seg;
2456   return off;
2457 }
2458
2459 // Search the list of patterns and find the postion of the given section
2460 // name in the output section.  If the section name matches a glob
2461 // pattern and a non-glob name, then the non-glob position takes
2462 // precedence.  Return 0 if no match is found.
2463
2464 unsigned int
2465 Layout::find_section_order_index(const std::string& section_name)
2466 {
2467   Unordered_map<std::string, unsigned int>::iterator map_it;
2468   map_it = this->input_section_position_.find(section_name);
2469   if (map_it != this->input_section_position_.end())
2470     return map_it->second;
2471
2472   // Absolute match failed.  Linear search the glob patterns.
2473   std::vector<std::string>::iterator it;
2474   for (it = this->input_section_glob_.begin();
2475        it != this->input_section_glob_.end();
2476        ++it)
2477     {
2478        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2479          {
2480            map_it = this->input_section_position_.find(*it);
2481            gold_assert(map_it != this->input_section_position_.end());
2482            return map_it->second;
2483          }
2484     }
2485   return 0;
2486 }
2487
2488 // Read the sequence of input sections from the file specified with
2489 // option --section-ordering-file.
2490
2491 void
2492 Layout::read_layout_from_file()
2493 {
2494   const char* filename = parameters->options().section_ordering_file();
2495   std::ifstream in;
2496   std::string line;
2497
2498   in.open(filename);
2499   if (!in)
2500     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2501                filename, strerror(errno));
2502
2503   std::getline(in, line);   // this chops off the trailing \n, if any
2504   unsigned int position = 1;
2505   this->set_section_ordering_specified();
2506
2507   while (in)
2508     {
2509       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2510         line.resize(line.length() - 1);
2511       // Ignore comments, beginning with '#'
2512       if (line[0] == '#')
2513         {
2514           std::getline(in, line);
2515           continue;
2516         }
2517       this->input_section_position_[line] = position;
2518       // Store all glob patterns in a vector.
2519       if (is_wildcard_string(line.c_str()))
2520         this->input_section_glob_.push_back(line);
2521       position++;
2522       std::getline(in, line);
2523     }
2524 }
2525
2526 // Finalize the layout.  When this is called, we have created all the
2527 // output sections and all the output segments which are based on
2528 // input sections.  We have several things to do, and we have to do
2529 // them in the right order, so that we get the right results correctly
2530 // and efficiently.
2531
2532 // 1) Finalize the list of output segments and create the segment
2533 // table header.
2534
2535 // 2) Finalize the dynamic symbol table and associated sections.
2536
2537 // 3) Determine the final file offset of all the output segments.
2538
2539 // 4) Determine the final file offset of all the SHF_ALLOC output
2540 // sections.
2541
2542 // 5) Create the symbol table sections and the section name table
2543 // section.
2544
2545 // 6) Finalize the symbol table: set symbol values to their final
2546 // value and make a final determination of which symbols are going
2547 // into the output symbol table.
2548
2549 // 7) Create the section table header.
2550
2551 // 8) Determine the final file offset of all the output sections which
2552 // are not SHF_ALLOC, including the section table header.
2553
2554 // 9) Finalize the ELF file header.
2555
2556 // This function returns the size of the output file.
2557
2558 off_t
2559 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2560                  Target* target, const Task* task)
2561 {
2562   target->finalize_sections(this, input_objects, symtab);
2563
2564   this->count_local_symbols(task, input_objects);
2565
2566   this->link_stabs_sections();
2567
2568   Output_segment* phdr_seg = NULL;
2569   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2570     {
2571       // There was a dynamic object in the link.  We need to create
2572       // some information for the dynamic linker.
2573
2574       // Create the PT_PHDR segment which will hold the program
2575       // headers.
2576       if (!this->script_options_->saw_phdrs_clause())
2577         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2578
2579       // Create the dynamic symbol table, including the hash table.
2580       Output_section* dynstr;
2581       std::vector<Symbol*> dynamic_symbols;
2582       unsigned int local_dynamic_count;
2583       Versions versions(*this->script_options()->version_script_info(),
2584                         &this->dynpool_);
2585       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2586                                   &local_dynamic_count, &dynamic_symbols,
2587                                   &versions);
2588
2589       // Create the .interp section to hold the name of the
2590       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2591       // if we saw a .interp section in an input file.
2592       if ((!parameters->options().shared()
2593            || parameters->options().dynamic_linker() != NULL)
2594           && this->interp_segment_ == NULL)
2595         this->create_interp(target);
2596
2597       // Finish the .dynamic section to hold the dynamic data, and put
2598       // it in a PT_DYNAMIC segment.
2599       this->finish_dynamic_section(input_objects, symtab);
2600
2601       // We should have added everything we need to the dynamic string
2602       // table.
2603       this->dynpool_.set_string_offsets();
2604
2605       // Create the version sections.  We can't do this until the
2606       // dynamic string table is complete.
2607       this->create_version_sections(&versions, symtab, local_dynamic_count,
2608                                     dynamic_symbols, dynstr);
2609
2610       // Set the size of the _DYNAMIC symbol.  We can't do this until
2611       // after we call create_version_sections.
2612       this->set_dynamic_symbol_size(symtab);
2613     }
2614
2615   // Create segment headers.
2616   Output_segment_headers* segment_headers =
2617     (parameters->options().relocatable()
2618      ? NULL
2619      : new Output_segment_headers(this->segment_list_));
2620
2621   // Lay out the file header.
2622   Output_file_header* file_header = new Output_file_header(target, symtab,
2623                                                            segment_headers);
2624
2625   this->special_output_list_.push_back(file_header);
2626   if (segment_headers != NULL)
2627     this->special_output_list_.push_back(segment_headers);
2628
2629   // Find approriate places for orphan output sections if we are using
2630   // a linker script.
2631   if (this->script_options_->saw_sections_clause())
2632     this->place_orphan_sections_in_script();
2633
2634   Output_segment* load_seg;
2635   off_t off;
2636   unsigned int shndx;
2637   int pass = 0;
2638
2639   // Take a snapshot of the section layout as needed.
2640   if (target->may_relax())
2641     this->prepare_for_relaxation();
2642
2643   // Run the relaxation loop to lay out sections.
2644   do
2645     {
2646       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2647                                        phdr_seg, segment_headers, file_header,
2648                                        &shndx);
2649       pass++;
2650     }
2651   while (target->may_relax()
2652          && target->relax(pass, input_objects, symtab, this, task));
2653
2654   // If there is a load segment that contains the file and program headers,
2655   // provide a symbol __ehdr_start pointing there.
2656   // A program can use this to examine itself robustly.
2657   if (load_seg != NULL)
2658     symtab->define_in_output_segment("__ehdr_start", NULL,
2659                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2660                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2661                                      elfcpp::STV_DEFAULT, 0,
2662                                      Symbol::SEGMENT_START, true);
2663
2664   // Set the file offsets of all the non-data sections we've seen so
2665   // far which don't have to wait for the input sections.  We need
2666   // this in order to finalize local symbols in non-allocated
2667   // sections.
2668   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2669
2670   // Set the section indexes of all unallocated sections seen so far,
2671   // in case any of them are somehow referenced by a symbol.
2672   shndx = this->set_section_indexes(shndx);
2673
2674   // Create the symbol table sections.
2675   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2676   if (!parameters->doing_static_link())
2677     this->assign_local_dynsym_offsets(input_objects);
2678
2679   // Process any symbol assignments from a linker script.  This must
2680   // be called after the symbol table has been finalized.
2681   this->script_options_->finalize_symbols(symtab, this);
2682
2683   // Create the incremental inputs sections.
2684   if (this->incremental_inputs_)
2685     {
2686       this->incremental_inputs_->finalize();
2687       this->create_incremental_info_sections(symtab);
2688     }
2689
2690   // Create the .shstrtab section.
2691   Output_section* shstrtab_section = this->create_shstrtab();
2692
2693   // Set the file offsets of the rest of the non-data sections which
2694   // don't have to wait for the input sections.
2695   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2696
2697   // Now that all sections have been created, set the section indexes
2698   // for any sections which haven't been done yet.
2699   shndx = this->set_section_indexes(shndx);
2700
2701   // Create the section table header.
2702   this->create_shdrs(shstrtab_section, &off);
2703
2704   // If there are no sections which require postprocessing, we can
2705   // handle the section names now, and avoid a resize later.
2706   if (!this->any_postprocessing_sections_)
2707     {
2708       off = this->set_section_offsets(off,
2709                                       POSTPROCESSING_SECTIONS_PASS);
2710       off =
2711           this->set_section_offsets(off,
2712                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2713     }
2714
2715   file_header->set_section_info(this->section_headers_, shstrtab_section);
2716
2717   // Now we know exactly where everything goes in the output file
2718   // (except for non-allocated sections which require postprocessing).
2719   Output_data::layout_complete();
2720
2721   this->output_file_size_ = off;
2722
2723   return off;
2724 }
2725
2726 // Create a note header following the format defined in the ELF ABI.
2727 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2728 // of the section to create, DESCSZ is the size of the descriptor.
2729 // ALLOCATE is true if the section should be allocated in memory.
2730 // This returns the new note section.  It sets *TRAILING_PADDING to
2731 // the number of trailing zero bytes required.
2732
2733 Output_section*
2734 Layout::create_note(const char* name, int note_type,
2735                     const char* section_name, size_t descsz,
2736                     bool allocate, size_t* trailing_padding)
2737 {
2738   // Authorities all agree that the values in a .note field should
2739   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2740   // they differ on what the alignment is for 64-bit binaries.
2741   // The GABI says unambiguously they take 8-byte alignment:
2742   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2743   // Other documentation says alignment should always be 4 bytes:
2744   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2745   // GNU ld and GNU readelf both support the latter (at least as of
2746   // version 2.16.91), and glibc always generates the latter for
2747   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2748   // here.
2749 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2750   const int size = parameters->target().get_size();
2751 #else
2752   const int size = 32;
2753 #endif
2754
2755   // The contents of the .note section.
2756   size_t namesz = strlen(name) + 1;
2757   size_t aligned_namesz = align_address(namesz, size / 8);
2758   size_t aligned_descsz = align_address(descsz, size / 8);
2759
2760   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2761
2762   unsigned char* buffer = new unsigned char[notehdrsz];
2763   memset(buffer, 0, notehdrsz);
2764
2765   bool is_big_endian = parameters->target().is_big_endian();
2766
2767   if (size == 32)
2768     {
2769       if (!is_big_endian)
2770         {
2771           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2772           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2773           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2774         }
2775       else
2776         {
2777           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2778           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2779           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2780         }
2781     }
2782   else if (size == 64)
2783     {
2784       if (!is_big_endian)
2785         {
2786           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2787           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2788           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2789         }
2790       else
2791         {
2792           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2793           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2794           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2795         }
2796     }
2797   else
2798     gold_unreachable();
2799
2800   memcpy(buffer + 3 * (size / 8), name, namesz);
2801
2802   elfcpp::Elf_Xword flags = 0;
2803   Output_section_order order = ORDER_INVALID;
2804   if (allocate)
2805     {
2806       flags = elfcpp::SHF_ALLOC;
2807       order = ORDER_RO_NOTE;
2808     }
2809   Output_section* os = this->choose_output_section(NULL, section_name,
2810                                                    elfcpp::SHT_NOTE,
2811                                                    flags, false, order, false);
2812   if (os == NULL)
2813     return NULL;
2814
2815   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2816                                                            size / 8,
2817                                                            "** note header");
2818   os->add_output_section_data(posd);
2819
2820   *trailing_padding = aligned_descsz - descsz;
2821
2822   return os;
2823 }
2824
2825 // For an executable or shared library, create a note to record the
2826 // version of gold used to create the binary.
2827
2828 void
2829 Layout::create_gold_note()
2830 {
2831   if (parameters->options().relocatable()
2832       || parameters->incremental_update())
2833     return;
2834
2835   std::string desc = std::string("gold ") + gold::get_version_string();
2836
2837   size_t trailing_padding;
2838   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2839                                          ".note.gnu.gold-version", desc.size(),
2840                                          false, &trailing_padding);
2841   if (os == NULL)
2842     return;
2843
2844   Output_section_data* posd = new Output_data_const(desc, 4);
2845   os->add_output_section_data(posd);
2846
2847   if (trailing_padding > 0)
2848     {
2849       posd = new Output_data_zero_fill(trailing_padding, 0);
2850       os->add_output_section_data(posd);
2851     }
2852 }
2853
2854 // Record whether the stack should be executable.  This can be set
2855 // from the command line using the -z execstack or -z noexecstack
2856 // options.  Otherwise, if any input file has a .note.GNU-stack
2857 // section with the SHF_EXECINSTR flag set, the stack should be
2858 // executable.  Otherwise, if at least one input file a
2859 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2860 // section, we use the target default for whether the stack should be
2861 // executable.  Otherwise, we don't generate a stack note.  When
2862 // generating a object file, we create a .note.GNU-stack section with
2863 // the appropriate marking.  When generating an executable or shared
2864 // library, we create a PT_GNU_STACK segment.
2865
2866 void
2867 Layout::create_executable_stack_info()
2868 {
2869   bool is_stack_executable;
2870   if (parameters->options().is_execstack_set())
2871     is_stack_executable = parameters->options().is_stack_executable();
2872   else if (!this->input_with_gnu_stack_note_)
2873     return;
2874   else
2875     {
2876       if (this->input_requires_executable_stack_)
2877         is_stack_executable = true;
2878       else if (this->input_without_gnu_stack_note_)
2879         is_stack_executable =
2880           parameters->target().is_default_stack_executable();
2881       else
2882         is_stack_executable = false;
2883     }
2884
2885   if (parameters->options().relocatable())
2886     {
2887       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2888       elfcpp::Elf_Xword flags = 0;
2889       if (is_stack_executable)
2890         flags |= elfcpp::SHF_EXECINSTR;
2891       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2892                                 ORDER_INVALID, false);
2893     }
2894   else
2895     {
2896       if (this->script_options_->saw_phdrs_clause())
2897         return;
2898       int flags = elfcpp::PF_R | elfcpp::PF_W;
2899       if (is_stack_executable)
2900         flags |= elfcpp::PF_X;
2901       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2902     }
2903 }
2904
2905 // If --build-id was used, set up the build ID note.
2906
2907 void
2908 Layout::create_build_id()
2909 {
2910   if (!parameters->options().user_set_build_id())
2911     return;
2912
2913   const char* style = parameters->options().build_id();
2914   if (strcmp(style, "none") == 0)
2915     return;
2916
2917   // Set DESCSZ to the size of the note descriptor.  When possible,
2918   // set DESC to the note descriptor contents.
2919   size_t descsz;
2920   std::string desc;
2921   if (strcmp(style, "md5") == 0)
2922     descsz = 128 / 8;
2923   else if (strcmp(style, "sha1") == 0)
2924     descsz = 160 / 8;
2925   else if (strcmp(style, "uuid") == 0)
2926     {
2927       const size_t uuidsz = 128 / 8;
2928
2929       char buffer[uuidsz];
2930       memset(buffer, 0, uuidsz);
2931
2932       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2933       if (descriptor < 0)
2934         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2935                    strerror(errno));
2936       else
2937         {
2938           ssize_t got = ::read(descriptor, buffer, uuidsz);
2939           release_descriptor(descriptor, true);
2940           if (got < 0)
2941             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2942           else if (static_cast<size_t>(got) != uuidsz)
2943             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2944                        uuidsz, got);
2945         }
2946
2947       desc.assign(buffer, uuidsz);
2948       descsz = uuidsz;
2949     }
2950   else if (strncmp(style, "0x", 2) == 0)
2951     {
2952       hex_init();
2953       const char* p = style + 2;
2954       while (*p != '\0')
2955         {
2956           if (hex_p(p[0]) && hex_p(p[1]))
2957             {
2958               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2959               desc += c;
2960               p += 2;
2961             }
2962           else if (*p == '-' || *p == ':')
2963             ++p;
2964           else
2965             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2966                        style);
2967         }
2968       descsz = desc.size();
2969     }
2970   else
2971     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2972
2973   // Create the note.
2974   size_t trailing_padding;
2975   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2976                                          ".note.gnu.build-id", descsz, true,
2977                                          &trailing_padding);
2978   if (os == NULL)
2979     return;
2980
2981   if (!desc.empty())
2982     {
2983       // We know the value already, so we fill it in now.
2984       gold_assert(desc.size() == descsz);
2985
2986       Output_section_data* posd = new Output_data_const(desc, 4);
2987       os->add_output_section_data(posd);
2988
2989       if (trailing_padding != 0)
2990         {
2991           posd = new Output_data_zero_fill(trailing_padding, 0);
2992           os->add_output_section_data(posd);
2993         }
2994     }
2995   else
2996     {
2997       // We need to compute a checksum after we have completed the
2998       // link.
2999       gold_assert(trailing_padding == 0);
3000       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3001       os->add_output_section_data(this->build_id_note_);
3002     }
3003 }
3004
3005 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3006 // field of the former should point to the latter.  I'm not sure who
3007 // started this, but the GNU linker does it, and some tools depend
3008 // upon it.
3009
3010 void
3011 Layout::link_stabs_sections()
3012 {
3013   if (!this->have_stabstr_section_)
3014     return;
3015
3016   for (Section_list::iterator p = this->section_list_.begin();
3017        p != this->section_list_.end();
3018        ++p)
3019     {
3020       if ((*p)->type() != elfcpp::SHT_STRTAB)
3021         continue;
3022
3023       const char* name = (*p)->name();
3024       if (strncmp(name, ".stab", 5) != 0)
3025         continue;
3026
3027       size_t len = strlen(name);
3028       if (strcmp(name + len - 3, "str") != 0)
3029         continue;
3030
3031       std::string stab_name(name, len - 3);
3032       Output_section* stab_sec;
3033       stab_sec = this->find_output_section(stab_name.c_str());
3034       if (stab_sec != NULL)
3035         stab_sec->set_link_section(*p);
3036     }
3037 }
3038
3039 // Create .gnu_incremental_inputs and related sections needed
3040 // for the next run of incremental linking to check what has changed.
3041
3042 void
3043 Layout::create_incremental_info_sections(Symbol_table* symtab)
3044 {
3045   Incremental_inputs* incr = this->incremental_inputs_;
3046
3047   gold_assert(incr != NULL);
3048
3049   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3050   incr->create_data_sections(symtab);
3051
3052   // Add the .gnu_incremental_inputs section.
3053   const char* incremental_inputs_name =
3054     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3055   Output_section* incremental_inputs_os =
3056     this->make_output_section(incremental_inputs_name,
3057                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3058                               ORDER_INVALID, false);
3059   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3060
3061   // Add the .gnu_incremental_symtab section.
3062   const char* incremental_symtab_name =
3063     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3064   Output_section* incremental_symtab_os =
3065     this->make_output_section(incremental_symtab_name,
3066                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3067                               ORDER_INVALID, false);
3068   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3069   incremental_symtab_os->set_entsize(4);
3070
3071   // Add the .gnu_incremental_relocs section.
3072   const char* incremental_relocs_name =
3073     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3074   Output_section* incremental_relocs_os =
3075     this->make_output_section(incremental_relocs_name,
3076                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3077                               ORDER_INVALID, false);
3078   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3079   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3080
3081   // Add the .gnu_incremental_got_plt section.
3082   const char* incremental_got_plt_name =
3083     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3084   Output_section* incremental_got_plt_os =
3085     this->make_output_section(incremental_got_plt_name,
3086                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3087                               ORDER_INVALID, false);
3088   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3089
3090   // Add the .gnu_incremental_strtab section.
3091   const char* incremental_strtab_name =
3092     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3093   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3094                                                         elfcpp::SHT_STRTAB, 0,
3095                                                         ORDER_INVALID, false);
3096   Output_data_strtab* strtab_data =
3097       new Output_data_strtab(incr->get_stringpool());
3098   incremental_strtab_os->add_output_section_data(strtab_data);
3099
3100   incremental_inputs_os->set_after_input_sections();
3101   incremental_symtab_os->set_after_input_sections();
3102   incremental_relocs_os->set_after_input_sections();
3103   incremental_got_plt_os->set_after_input_sections();
3104
3105   incremental_inputs_os->set_link_section(incremental_strtab_os);
3106   incremental_symtab_os->set_link_section(incremental_inputs_os);
3107   incremental_relocs_os->set_link_section(incremental_inputs_os);
3108   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3109 }
3110
3111 // Return whether SEG1 should be before SEG2 in the output file.  This
3112 // is based entirely on the segment type and flags.  When this is
3113 // called the segment addresses have normally not yet been set.
3114
3115 bool
3116 Layout::segment_precedes(const Output_segment* seg1,
3117                          const Output_segment* seg2)
3118 {
3119   elfcpp::Elf_Word type1 = seg1->type();
3120   elfcpp::Elf_Word type2 = seg2->type();
3121
3122   // The single PT_PHDR segment is required to precede any loadable
3123   // segment.  We simply make it always first.
3124   if (type1 == elfcpp::PT_PHDR)
3125     {
3126       gold_assert(type2 != elfcpp::PT_PHDR);
3127       return true;
3128     }
3129   if (type2 == elfcpp::PT_PHDR)
3130     return false;
3131
3132   // The single PT_INTERP segment is required to precede any loadable
3133   // segment.  We simply make it always second.
3134   if (type1 == elfcpp::PT_INTERP)
3135     {
3136       gold_assert(type2 != elfcpp::PT_INTERP);
3137       return true;
3138     }
3139   if (type2 == elfcpp::PT_INTERP)
3140     return false;
3141
3142   // We then put PT_LOAD segments before any other segments.
3143   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3144     return true;
3145   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3146     return false;
3147
3148   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3149   // segment, because that is where the dynamic linker expects to find
3150   // it (this is just for efficiency; other positions would also work
3151   // correctly).
3152   if (type1 == elfcpp::PT_TLS
3153       && type2 != elfcpp::PT_TLS
3154       && type2 != elfcpp::PT_GNU_RELRO)
3155     return false;
3156   if (type2 == elfcpp::PT_TLS
3157       && type1 != elfcpp::PT_TLS
3158       && type1 != elfcpp::PT_GNU_RELRO)
3159     return true;
3160
3161   // We put the PT_GNU_RELRO segment last, because that is where the
3162   // dynamic linker expects to find it (as with PT_TLS, this is just
3163   // for efficiency).
3164   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3165     return false;
3166   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3167     return true;
3168
3169   const elfcpp::Elf_Word flags1 = seg1->flags();
3170   const elfcpp::Elf_Word flags2 = seg2->flags();
3171
3172   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3173   // by the numeric segment type and flags values.  There should not
3174   // be more than one segment with the same type and flags.
3175   if (type1 != elfcpp::PT_LOAD)
3176     {
3177       if (type1 != type2)
3178         return type1 < type2;
3179       gold_assert(flags1 != flags2);
3180       return flags1 < flags2;
3181     }
3182
3183   // If the addresses are set already, sort by load address.
3184   if (seg1->are_addresses_set())
3185     {
3186       if (!seg2->are_addresses_set())
3187         return true;
3188
3189       unsigned int section_count1 = seg1->output_section_count();
3190       unsigned int section_count2 = seg2->output_section_count();
3191       if (section_count1 == 0 && section_count2 > 0)
3192         return true;
3193       if (section_count1 > 0 && section_count2 == 0)
3194         return false;
3195
3196       uint64_t paddr1 = (seg1->are_addresses_set()
3197                          ? seg1->paddr()
3198                          : seg1->first_section_load_address());
3199       uint64_t paddr2 = (seg2->are_addresses_set()
3200                          ? seg2->paddr()
3201                          : seg2->first_section_load_address());
3202
3203       if (paddr1 != paddr2)
3204         return paddr1 < paddr2;
3205     }
3206   else if (seg2->are_addresses_set())
3207     return false;
3208
3209   // A segment which holds large data comes after a segment which does
3210   // not hold large data.
3211   if (seg1->is_large_data_segment())
3212     {
3213       if (!seg2->is_large_data_segment())
3214         return false;
3215     }
3216   else if (seg2->is_large_data_segment())
3217     return true;
3218
3219   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3220   // segments come before writable segments.  Then writable segments
3221   // with data come before writable segments without data.  Then
3222   // executable segments come before non-executable segments.  Then
3223   // the unlikely case of a non-readable segment comes before the
3224   // normal case of a readable segment.  If there are multiple
3225   // segments with the same type and flags, we require that the
3226   // address be set, and we sort by virtual address and then physical
3227   // address.
3228   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3229     return (flags1 & elfcpp::PF_W) == 0;
3230   if ((flags1 & elfcpp::PF_W) != 0
3231       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3232     return seg1->has_any_data_sections();
3233   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3234     return (flags1 & elfcpp::PF_X) != 0;
3235   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3236     return (flags1 & elfcpp::PF_R) == 0;
3237
3238   // We shouldn't get here--we shouldn't create segments which we
3239   // can't distinguish.  Unless of course we are using a weird linker
3240   // script or overlapping --section-start options.  We could also get
3241   // here if plugins want unique segments for subsets of sections.
3242   gold_assert(this->script_options_->saw_phdrs_clause()
3243               || parameters->options().any_section_start()
3244               || this->is_unique_segment_for_sections_specified());
3245   return false;
3246 }
3247
3248 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3249
3250 static off_t
3251 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3252 {
3253   uint64_t unsigned_off = off;
3254   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3255                           | (addr & (abi_pagesize - 1)));
3256   if (aligned_off < unsigned_off)
3257     aligned_off += abi_pagesize;
3258   return aligned_off;
3259 }
3260
3261 // Set the file offsets of all the segments, and all the sections they
3262 // contain.  They have all been created.  LOAD_SEG must be be laid out
3263 // first.  Return the offset of the data to follow.
3264
3265 off_t
3266 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3267                             unsigned int* pshndx)
3268 {
3269   // Sort them into the final order.  We use a stable sort so that we
3270   // don't randomize the order of indistinguishable segments created
3271   // by linker scripts.
3272   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3273                    Layout::Compare_segments(this));
3274
3275   // Find the PT_LOAD segments, and set their addresses and offsets
3276   // and their section's addresses and offsets.
3277   uint64_t start_addr;
3278   if (parameters->options().user_set_Ttext())
3279     start_addr = parameters->options().Ttext();
3280   else if (parameters->options().output_is_position_independent())
3281     start_addr = 0;
3282   else
3283     start_addr = target->default_text_segment_address();
3284
3285   uint64_t addr = start_addr;
3286   off_t off = 0;
3287
3288   // If LOAD_SEG is NULL, then the file header and segment headers
3289   // will not be loadable.  But they still need to be at offset 0 in
3290   // the file.  Set their offsets now.
3291   if (load_seg == NULL)
3292     {
3293       for (Data_list::iterator p = this->special_output_list_.begin();
3294            p != this->special_output_list_.end();
3295            ++p)
3296         {
3297           off = align_address(off, (*p)->addralign());
3298           (*p)->set_address_and_file_offset(0, off);
3299           off += (*p)->data_size();
3300         }
3301     }
3302
3303   unsigned int increase_relro = this->increase_relro_;
3304   if (this->script_options_->saw_sections_clause())
3305     increase_relro = 0;
3306
3307   const bool check_sections = parameters->options().check_sections();
3308   Output_segment* last_load_segment = NULL;
3309
3310   unsigned int shndx_begin = *pshndx;
3311   unsigned int shndx_load_seg = *pshndx;
3312
3313   for (Segment_list::iterator p = this->segment_list_.begin();
3314        p != this->segment_list_.end();
3315        ++p)
3316     {
3317       if ((*p)->type() == elfcpp::PT_LOAD)
3318         {
3319           if (target->isolate_execinstr())
3320             {
3321               // When we hit the segment that should contain the
3322               // file headers, reset the file offset so we place
3323               // it and subsequent segments appropriately.
3324               // We'll fix up the preceding segments below.
3325               if (load_seg == *p)
3326                 {
3327                   if (off == 0)
3328                     load_seg = NULL;
3329                   else
3330                     {
3331                       off = 0;
3332                       shndx_load_seg = *pshndx;
3333                     }
3334                 }
3335             }
3336           else
3337             {
3338               // Verify that the file headers fall into the first segment.
3339               if (load_seg != NULL && load_seg != *p)
3340                 gold_unreachable();
3341               load_seg = NULL;
3342             }
3343
3344           bool are_addresses_set = (*p)->are_addresses_set();
3345           if (are_addresses_set)
3346             {
3347               // When it comes to setting file offsets, we care about
3348               // the physical address.
3349               addr = (*p)->paddr();
3350             }
3351           else if (parameters->options().user_set_Ttext()
3352                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3353             {
3354               are_addresses_set = true;
3355             }
3356           else if (parameters->options().user_set_Tdata()
3357                    && ((*p)->flags() & elfcpp::PF_W) != 0
3358                    && (!parameters->options().user_set_Tbss()
3359                        || (*p)->has_any_data_sections()))
3360             {
3361               addr = parameters->options().Tdata();
3362               are_addresses_set = true;
3363             }
3364           else if (parameters->options().user_set_Tbss()
3365                    && ((*p)->flags() & elfcpp::PF_W) != 0
3366                    && !(*p)->has_any_data_sections())
3367             {
3368               addr = parameters->options().Tbss();
3369               are_addresses_set = true;
3370             }
3371
3372           uint64_t orig_addr = addr;
3373           uint64_t orig_off = off;
3374
3375           uint64_t aligned_addr = 0;
3376           uint64_t abi_pagesize = target->abi_pagesize();
3377           uint64_t common_pagesize = target->common_pagesize();
3378
3379           if (!parameters->options().nmagic()
3380               && !parameters->options().omagic())
3381             (*p)->set_minimum_p_align(abi_pagesize);
3382
3383           if (!are_addresses_set)
3384             {
3385               // Skip the address forward one page, maintaining the same
3386               // position within the page.  This lets us store both segments
3387               // overlapping on a single page in the file, but the loader will
3388               // put them on different pages in memory. We will revisit this
3389               // decision once we know the size of the segment.
3390
3391               addr = align_address(addr, (*p)->maximum_alignment());
3392               aligned_addr = addr;
3393
3394               if (load_seg == *p)
3395                 {
3396                   // This is the segment that will contain the file
3397                   // headers, so its offset will have to be exactly zero.
3398                   gold_assert(orig_off == 0);
3399
3400                   // If the target wants a fixed minimum distance from the
3401                   // text segment to the read-only segment, move up now.
3402                   uint64_t min_addr = start_addr + target->rosegment_gap();
3403                   if (addr < min_addr)
3404                     addr = min_addr;
3405
3406                   // But this is not the first segment!  To make its
3407                   // address congruent with its offset, that address better
3408                   // be aligned to the ABI-mandated page size.
3409                   addr = align_address(addr, abi_pagesize);
3410                   aligned_addr = addr;
3411                 }
3412               else
3413                 {
3414                   if ((addr & (abi_pagesize - 1)) != 0)
3415                     addr = addr + abi_pagesize;
3416
3417                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3418                 }
3419             }
3420
3421           if (!parameters->options().nmagic()
3422               && !parameters->options().omagic())
3423             off = align_file_offset(off, addr, abi_pagesize);
3424           else
3425             {
3426               // This is -N or -n with a section script which prevents
3427               // us from using a load segment.  We need to ensure that
3428               // the file offset is aligned to the alignment of the
3429               // segment.  This is because the linker script
3430               // implicitly assumed a zero offset.  If we don't align
3431               // here, then the alignment of the sections in the
3432               // linker script may not match the alignment of the
3433               // sections in the set_section_addresses call below,
3434               // causing an error about dot moving backward.
3435               off = align_address(off, (*p)->maximum_alignment());
3436             }
3437
3438           unsigned int shndx_hold = *pshndx;
3439           bool has_relro = false;
3440           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3441                                                           &increase_relro,
3442                                                           &has_relro,
3443                                                           &off, pshndx);
3444
3445           // Now that we know the size of this segment, we may be able
3446           // to save a page in memory, at the cost of wasting some
3447           // file space, by instead aligning to the start of a new
3448           // page.  Here we use the real machine page size rather than
3449           // the ABI mandated page size.  If the segment has been
3450           // aligned so that the relro data ends at a page boundary,
3451           // we do not try to realign it.
3452
3453           if (!are_addresses_set
3454               && !has_relro
3455               && aligned_addr != addr
3456               && !parameters->incremental())
3457             {
3458               uint64_t first_off = (common_pagesize
3459                                     - (aligned_addr
3460                                        & (common_pagesize - 1)));
3461               uint64_t last_off = new_addr & (common_pagesize - 1);
3462               if (first_off > 0
3463                   && last_off > 0
3464                   && ((aligned_addr & ~ (common_pagesize - 1))
3465                       != (new_addr & ~ (common_pagesize - 1)))
3466                   && first_off + last_off <= common_pagesize)
3467                 {
3468                   *pshndx = shndx_hold;
3469                   addr = align_address(aligned_addr, common_pagesize);
3470                   addr = align_address(addr, (*p)->maximum_alignment());
3471                   if ((addr & (abi_pagesize - 1)) != 0)
3472                     addr = addr + abi_pagesize;
3473                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3474                   off = align_file_offset(off, addr, abi_pagesize);
3475
3476                   increase_relro = this->increase_relro_;
3477                   if (this->script_options_->saw_sections_clause())
3478                     increase_relro = 0;
3479                   has_relro = false;
3480
3481                   new_addr = (*p)->set_section_addresses(this, true, addr,
3482                                                          &increase_relro,
3483                                                          &has_relro,
3484                                                          &off, pshndx);
3485                 }
3486             }
3487
3488           addr = new_addr;
3489
3490           // Implement --check-sections.  We know that the segments
3491           // are sorted by LMA.
3492           if (check_sections && last_load_segment != NULL)
3493             {
3494               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3495               if (last_load_segment->paddr() + last_load_segment->memsz()
3496                   > (*p)->paddr())
3497                 {
3498                   unsigned long long lb1 = last_load_segment->paddr();
3499                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3500                   unsigned long long lb2 = (*p)->paddr();
3501                   unsigned long long le2 = lb2 + (*p)->memsz();
3502                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3503                                "[0x%llx -> 0x%llx]"),
3504                              lb1, le1, lb2, le2);
3505                 }
3506             }
3507           last_load_segment = *p;
3508         }
3509     }
3510
3511   if (load_seg != NULL && target->isolate_execinstr())
3512     {
3513       // Process the early segments again, setting their file offsets
3514       // so they land after the segments starting at LOAD_SEG.
3515       off = align_file_offset(off, 0, target->abi_pagesize());
3516
3517       for (Segment_list::iterator p = this->segment_list_.begin();
3518            *p != load_seg;
3519            ++p)
3520         {
3521           if ((*p)->type() == elfcpp::PT_LOAD)
3522             {
3523               // We repeat the whole job of assigning addresses and
3524               // offsets, but we really only want to change the offsets and
3525               // must ensure that the addresses all come out the same as
3526               // they did the first time through.
3527               bool has_relro = false;
3528               const uint64_t old_addr = (*p)->vaddr();
3529               const uint64_t old_end = old_addr + (*p)->memsz();
3530               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3531                                                               old_addr,
3532                                                               &increase_relro,
3533                                                               &has_relro,
3534                                                               &off,
3535                                                               &shndx_begin);
3536               gold_assert(new_addr == old_end);
3537             }
3538         }
3539
3540       gold_assert(shndx_begin == shndx_load_seg);
3541     }
3542
3543   // Handle the non-PT_LOAD segments, setting their offsets from their
3544   // section's offsets.
3545   for (Segment_list::iterator p = this->segment_list_.begin();
3546        p != this->segment_list_.end();
3547        ++p)
3548     {
3549       if ((*p)->type() != elfcpp::PT_LOAD)
3550         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3551                          ? increase_relro
3552                          : 0);
3553     }
3554
3555   // Set the TLS offsets for each section in the PT_TLS segment.
3556   if (this->tls_segment_ != NULL)
3557     this->tls_segment_->set_tls_offsets();
3558
3559   return off;
3560 }
3561
3562 // Set the offsets of all the allocated sections when doing a
3563 // relocatable link.  This does the same jobs as set_segment_offsets,
3564 // only for a relocatable link.
3565
3566 off_t
3567 Layout::set_relocatable_section_offsets(Output_data* file_header,
3568                                         unsigned int* pshndx)
3569 {
3570   off_t off = 0;
3571
3572   file_header->set_address_and_file_offset(0, 0);
3573   off += file_header->data_size();
3574
3575   for (Section_list::iterator p = this->section_list_.begin();
3576        p != this->section_list_.end();
3577        ++p)
3578     {
3579       // We skip unallocated sections here, except that group sections
3580       // have to come first.
3581       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3582           && (*p)->type() != elfcpp::SHT_GROUP)
3583         continue;
3584
3585       off = align_address(off, (*p)->addralign());
3586
3587       // The linker script might have set the address.
3588       if (!(*p)->is_address_valid())
3589         (*p)->set_address(0);
3590       (*p)->set_file_offset(off);
3591       (*p)->finalize_data_size();
3592       off += (*p)->data_size();
3593
3594       (*p)->set_out_shndx(*pshndx);
3595       ++*pshndx;
3596     }
3597
3598   return off;
3599 }
3600
3601 // Set the file offset of all the sections not associated with a
3602 // segment.
3603
3604 off_t
3605 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3606 {
3607   off_t startoff = off;
3608   off_t maxoff = off;
3609
3610   for (Section_list::iterator p = this->unattached_section_list_.begin();
3611        p != this->unattached_section_list_.end();
3612        ++p)
3613     {
3614       // The symtab section is handled in create_symtab_sections.
3615       if (*p == this->symtab_section_)
3616         continue;
3617
3618       // If we've already set the data size, don't set it again.
3619       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3620         continue;
3621
3622       if (pass == BEFORE_INPUT_SECTIONS_PASS
3623           && (*p)->requires_postprocessing())
3624         {
3625           (*p)->create_postprocessing_buffer();
3626           this->any_postprocessing_sections_ = true;
3627         }
3628
3629       if (pass == BEFORE_INPUT_SECTIONS_PASS
3630           && (*p)->after_input_sections())
3631         continue;
3632       else if (pass == POSTPROCESSING_SECTIONS_PASS
3633                && (!(*p)->after_input_sections()
3634                    || (*p)->type() == elfcpp::SHT_STRTAB))
3635         continue;
3636       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3637                && (!(*p)->after_input_sections()
3638                    || (*p)->type() != elfcpp::SHT_STRTAB))
3639         continue;
3640
3641       if (!parameters->incremental_update())
3642         {
3643           off = align_address(off, (*p)->addralign());
3644           (*p)->set_file_offset(off);
3645           (*p)->finalize_data_size();
3646         }
3647       else
3648         {
3649           // Incremental update: allocate file space from free list.
3650           (*p)->pre_finalize_data_size();
3651           off_t current_size = (*p)->current_data_size();
3652           off = this->allocate(current_size, (*p)->addralign(), startoff);
3653           if (off == -1)
3654             {
3655               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3656                 this->free_list_.dump();
3657               gold_assert((*p)->output_section() != NULL);
3658               gold_fallback(_("out of patch space for section %s; "
3659                               "relink with --incremental-full"),
3660                             (*p)->output_section()->name());
3661             }
3662           (*p)->set_file_offset(off);
3663           (*p)->finalize_data_size();
3664           if ((*p)->data_size() > current_size)
3665             {
3666               gold_assert((*p)->output_section() != NULL);
3667               gold_fallback(_("%s: section changed size; "
3668                               "relink with --incremental-full"),
3669                             (*p)->output_section()->name());
3670             }
3671           gold_debug(DEBUG_INCREMENTAL,
3672                      "set_section_offsets: %08lx %08lx %s",
3673                      static_cast<long>(off),
3674                      static_cast<long>((*p)->data_size()),
3675                      ((*p)->output_section() != NULL
3676                       ? (*p)->output_section()->name() : "(special)"));
3677         }
3678
3679       off += (*p)->data_size();
3680       if (off > maxoff)
3681         maxoff = off;
3682
3683       // At this point the name must be set.
3684       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3685         this->namepool_.add((*p)->name(), false, NULL);
3686     }
3687   return maxoff;
3688 }
3689
3690 // Set the section indexes of all the sections not associated with a
3691 // segment.
3692
3693 unsigned int
3694 Layout::set_section_indexes(unsigned int shndx)
3695 {
3696   for (Section_list::iterator p = this->unattached_section_list_.begin();
3697        p != this->unattached_section_list_.end();
3698        ++p)
3699     {
3700       if (!(*p)->has_out_shndx())
3701         {
3702           (*p)->set_out_shndx(shndx);
3703           ++shndx;
3704         }
3705     }
3706   return shndx;
3707 }
3708
3709 // Set the section addresses according to the linker script.  This is
3710 // only called when we see a SECTIONS clause.  This returns the
3711 // program segment which should hold the file header and segment
3712 // headers, if any.  It will return NULL if they should not be in a
3713 // segment.
3714
3715 Output_segment*
3716 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3717 {
3718   Script_sections* ss = this->script_options_->script_sections();
3719   gold_assert(ss->saw_sections_clause());
3720   return this->script_options_->set_section_addresses(symtab, this);
3721 }
3722
3723 // Place the orphan sections in the linker script.
3724
3725 void
3726 Layout::place_orphan_sections_in_script()
3727 {
3728   Script_sections* ss = this->script_options_->script_sections();
3729   gold_assert(ss->saw_sections_clause());
3730
3731   // Place each orphaned output section in the script.
3732   for (Section_list::iterator p = this->section_list_.begin();
3733        p != this->section_list_.end();
3734        ++p)
3735     {
3736       if (!(*p)->found_in_sections_clause())
3737         ss->place_orphan(*p);
3738     }
3739 }
3740
3741 // Count the local symbols in the regular symbol table and the dynamic
3742 // symbol table, and build the respective string pools.
3743
3744 void
3745 Layout::count_local_symbols(const Task* task,
3746                             const Input_objects* input_objects)
3747 {
3748   // First, figure out an upper bound on the number of symbols we'll
3749   // be inserting into each pool.  This helps us create the pools with
3750   // the right size, to avoid unnecessary hashtable resizing.
3751   unsigned int symbol_count = 0;
3752   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3753        p != input_objects->relobj_end();
3754        ++p)
3755     symbol_count += (*p)->local_symbol_count();
3756
3757   // Go from "upper bound" to "estimate."  We overcount for two
3758   // reasons: we double-count symbols that occur in more than one
3759   // object file, and we count symbols that are dropped from the
3760   // output.  Add it all together and assume we overcount by 100%.
3761   symbol_count /= 2;
3762
3763   // We assume all symbols will go into both the sympool and dynpool.
3764   this->sympool_.reserve(symbol_count);
3765   this->dynpool_.reserve(symbol_count);
3766
3767   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3768        p != input_objects->relobj_end();
3769        ++p)
3770     {
3771       Task_lock_obj<Object> tlo(task, *p);
3772       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3773     }
3774 }
3775
3776 // Create the symbol table sections.  Here we also set the final
3777 // values of the symbols.  At this point all the loadable sections are
3778 // fully laid out.  SHNUM is the number of sections so far.
3779
3780 void
3781 Layout::create_symtab_sections(const Input_objects* input_objects,
3782                                Symbol_table* symtab,
3783                                unsigned int shnum,
3784                                off_t* poff)
3785 {
3786   int symsize;
3787   unsigned int align;
3788   if (parameters->target().get_size() == 32)
3789     {
3790       symsize = elfcpp::Elf_sizes<32>::sym_size;
3791       align = 4;
3792     }
3793   else if (parameters->target().get_size() == 64)
3794     {
3795       symsize = elfcpp::Elf_sizes<64>::sym_size;
3796       align = 8;
3797     }
3798   else
3799     gold_unreachable();
3800
3801   // Compute file offsets relative to the start of the symtab section.
3802   off_t off = 0;
3803
3804   // Save space for the dummy symbol at the start of the section.  We
3805   // never bother to write this out--it will just be left as zero.
3806   off += symsize;
3807   unsigned int local_symbol_index = 1;
3808
3809   // Add STT_SECTION symbols for each Output section which needs one.
3810   for (Section_list::iterator p = this->section_list_.begin();
3811        p != this->section_list_.end();
3812        ++p)
3813     {
3814       if (!(*p)->needs_symtab_index())
3815         (*p)->set_symtab_index(-1U);
3816       else
3817         {
3818           (*p)->set_symtab_index(local_symbol_index);
3819           ++local_symbol_index;
3820           off += symsize;
3821         }
3822     }
3823
3824   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3825        p != input_objects->relobj_end();
3826        ++p)
3827     {
3828       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3829                                                         off, symtab);
3830       off += (index - local_symbol_index) * symsize;
3831       local_symbol_index = index;
3832     }
3833
3834   unsigned int local_symcount = local_symbol_index;
3835   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3836
3837   off_t dynoff;
3838   size_t dyn_global_index;
3839   size_t dyncount;
3840   if (this->dynsym_section_ == NULL)
3841     {
3842       dynoff = 0;
3843       dyn_global_index = 0;
3844       dyncount = 0;
3845     }
3846   else
3847     {
3848       dyn_global_index = this->dynsym_section_->info();
3849       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3850       dynoff = this->dynsym_section_->offset() + locsize;
3851       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3852       gold_assert(static_cast<off_t>(dyncount * symsize)
3853                   == this->dynsym_section_->data_size() - locsize);
3854     }
3855
3856   off_t global_off = off;
3857   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3858                          &this->sympool_, &local_symcount);
3859
3860   if (!parameters->options().strip_all())
3861     {
3862       this->sympool_.set_string_offsets();
3863
3864       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3865       Output_section* osymtab = this->make_output_section(symtab_name,
3866                                                           elfcpp::SHT_SYMTAB,
3867                                                           0, ORDER_INVALID,
3868                                                           false);
3869       this->symtab_section_ = osymtab;
3870
3871       Output_section_data* pos = new Output_data_fixed_space(off, align,
3872                                                              "** symtab");
3873       osymtab->add_output_section_data(pos);
3874
3875       // We generate a .symtab_shndx section if we have more than
3876       // SHN_LORESERVE sections.  Technically it is possible that we
3877       // don't need one, because it is possible that there are no
3878       // symbols in any of sections with indexes larger than
3879       // SHN_LORESERVE.  That is probably unusual, though, and it is
3880       // easier to always create one than to compute section indexes
3881       // twice (once here, once when writing out the symbols).
3882       if (shnum >= elfcpp::SHN_LORESERVE)
3883         {
3884           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3885                                                                false, NULL);
3886           Output_section* osymtab_xindex =
3887             this->make_output_section(symtab_xindex_name,
3888                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3889                                       ORDER_INVALID, false);
3890
3891           size_t symcount = off / symsize;
3892           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3893
3894           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3895
3896           osymtab_xindex->set_link_section(osymtab);
3897           osymtab_xindex->set_addralign(4);
3898           osymtab_xindex->set_entsize(4);
3899
3900           osymtab_xindex->set_after_input_sections();
3901
3902           // This tells the driver code to wait until the symbol table
3903           // has written out before writing out the postprocessing
3904           // sections, including the .symtab_shndx section.
3905           this->any_postprocessing_sections_ = true;
3906         }
3907
3908       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3909       Output_section* ostrtab = this->make_output_section(strtab_name,
3910                                                           elfcpp::SHT_STRTAB,
3911                                                           0, ORDER_INVALID,
3912                                                           false);
3913
3914       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3915       ostrtab->add_output_section_data(pstr);
3916
3917       off_t symtab_off;
3918       if (!parameters->incremental_update())
3919         symtab_off = align_address(*poff, align);
3920       else
3921         {
3922           symtab_off = this->allocate(off, align, *poff);
3923           if (off == -1)
3924             gold_fallback(_("out of patch space for symbol table; "
3925                             "relink with --incremental-full"));
3926           gold_debug(DEBUG_INCREMENTAL,
3927                      "create_symtab_sections: %08lx %08lx .symtab",
3928                      static_cast<long>(symtab_off),
3929                      static_cast<long>(off));
3930         }
3931
3932       symtab->set_file_offset(symtab_off + global_off);
3933       osymtab->set_file_offset(symtab_off);
3934       osymtab->finalize_data_size();
3935       osymtab->set_link_section(ostrtab);
3936       osymtab->set_info(local_symcount);
3937       osymtab->set_entsize(symsize);
3938
3939       if (symtab_off + off > *poff)
3940         *poff = symtab_off + off;
3941     }
3942 }
3943
3944 // Create the .shstrtab section, which holds the names of the
3945 // sections.  At the time this is called, we have created all the
3946 // output sections except .shstrtab itself.
3947
3948 Output_section*
3949 Layout::create_shstrtab()
3950 {
3951   // FIXME: We don't need to create a .shstrtab section if we are
3952   // stripping everything.
3953
3954   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3955
3956   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3957                                                  ORDER_INVALID, false);
3958
3959   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3960     {
3961       // We can't write out this section until we've set all the
3962       // section names, and we don't set the names of compressed
3963       // output sections until relocations are complete.  FIXME: With
3964       // the current names we use, this is unnecessary.
3965       os->set_after_input_sections();
3966     }
3967
3968   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3969   os->add_output_section_data(posd);
3970
3971   return os;
3972 }
3973
3974 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3975 // offset.
3976
3977 void
3978 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3979 {
3980   Output_section_headers* oshdrs;
3981   oshdrs = new Output_section_headers(this,
3982                                       &this->segment_list_,
3983                                       &this->section_list_,
3984                                       &this->unattached_section_list_,
3985                                       &this->namepool_,
3986                                       shstrtab_section);
3987   off_t off;
3988   if (!parameters->incremental_update())
3989     off = align_address(*poff, oshdrs->addralign());
3990   else
3991     {
3992       oshdrs->pre_finalize_data_size();
3993       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3994       if (off == -1)
3995           gold_fallback(_("out of patch space for section header table; "
3996                           "relink with --incremental-full"));
3997       gold_debug(DEBUG_INCREMENTAL,
3998                  "create_shdrs: %08lx %08lx (section header table)",
3999                  static_cast<long>(off),
4000                  static_cast<long>(off + oshdrs->data_size()));
4001     }
4002   oshdrs->set_address_and_file_offset(0, off);
4003   off += oshdrs->data_size();
4004   if (off > *poff)
4005     *poff = off;
4006   this->section_headers_ = oshdrs;
4007 }
4008
4009 // Count the allocated sections.
4010
4011 size_t
4012 Layout::allocated_output_section_count() const
4013 {
4014   size_t section_count = 0;
4015   for (Segment_list::const_iterator p = this->segment_list_.begin();
4016        p != this->segment_list_.end();
4017        ++p)
4018     section_count += (*p)->output_section_count();
4019   return section_count;
4020 }
4021
4022 // Create the dynamic symbol table.
4023
4024 void
4025 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4026                               Symbol_table* symtab,
4027                               Output_section** pdynstr,
4028                               unsigned int* plocal_dynamic_count,
4029                               std::vector<Symbol*>* pdynamic_symbols,
4030                               Versions* pversions)
4031 {
4032   // Count all the symbols in the dynamic symbol table, and set the
4033   // dynamic symbol indexes.
4034
4035   // Skip symbol 0, which is always all zeroes.
4036   unsigned int index = 1;
4037
4038   // Add STT_SECTION symbols for each Output section which needs one.
4039   for (Section_list::iterator p = this->section_list_.begin();
4040        p != this->section_list_.end();
4041        ++p)
4042     {
4043       if (!(*p)->needs_dynsym_index())
4044         (*p)->set_dynsym_index(-1U);
4045       else
4046         {
4047           (*p)->set_dynsym_index(index);
4048           ++index;
4049         }
4050     }
4051
4052   // Count the local symbols that need to go in the dynamic symbol table,
4053   // and set the dynamic symbol indexes.
4054   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4055        p != input_objects->relobj_end();
4056        ++p)
4057     {
4058       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4059       index = new_index;
4060     }
4061
4062   unsigned int local_symcount = index;
4063   *plocal_dynamic_count = local_symcount;
4064
4065   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4066                                      &this->dynpool_, pversions);
4067
4068   int symsize;
4069   unsigned int align;
4070   const int size = parameters->target().get_size();
4071   if (size == 32)
4072     {
4073       symsize = elfcpp::Elf_sizes<32>::sym_size;
4074       align = 4;
4075     }
4076   else if (size == 64)
4077     {
4078       symsize = elfcpp::Elf_sizes<64>::sym_size;
4079       align = 8;
4080     }
4081   else
4082     gold_unreachable();
4083
4084   // Create the dynamic symbol table section.
4085
4086   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4087                                                        elfcpp::SHT_DYNSYM,
4088                                                        elfcpp::SHF_ALLOC,
4089                                                        false,
4090                                                        ORDER_DYNAMIC_LINKER,
4091                                                        false);
4092
4093   // Check for NULL as a linker script may discard .dynsym.
4094   if (dynsym != NULL)
4095     {
4096       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4097                                                                align,
4098                                                                "** dynsym");
4099       dynsym->add_output_section_data(odata);
4100
4101       dynsym->set_info(local_symcount);
4102       dynsym->set_entsize(symsize);
4103       dynsym->set_addralign(align);
4104
4105       this->dynsym_section_ = dynsym;
4106     }
4107
4108   Output_data_dynamic* const odyn = this->dynamic_data_;
4109   if (odyn != NULL)
4110     {
4111       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4112       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4113     }
4114
4115   // If there are more than SHN_LORESERVE allocated sections, we
4116   // create a .dynsym_shndx section.  It is possible that we don't
4117   // need one, because it is possible that there are no dynamic
4118   // symbols in any of the sections with indexes larger than
4119   // SHN_LORESERVE.  This is probably unusual, though, and at this
4120   // time we don't know the actual section indexes so it is
4121   // inconvenient to check.
4122   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4123     {
4124       Output_section* dynsym_xindex =
4125         this->choose_output_section(NULL, ".dynsym_shndx",
4126                                     elfcpp::SHT_SYMTAB_SHNDX,
4127                                     elfcpp::SHF_ALLOC,
4128                                     false, ORDER_DYNAMIC_LINKER, false);
4129
4130       if (dynsym_xindex != NULL)
4131         {
4132           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4133
4134           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4135
4136           dynsym_xindex->set_link_section(dynsym);
4137           dynsym_xindex->set_addralign(4);
4138           dynsym_xindex->set_entsize(4);
4139
4140           dynsym_xindex->set_after_input_sections();
4141
4142           // This tells the driver code to wait until the symbol table
4143           // has written out before writing out the postprocessing
4144           // sections, including the .dynsym_shndx section.
4145           this->any_postprocessing_sections_ = true;
4146         }
4147     }
4148
4149   // Create the dynamic string table section.
4150
4151   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4152                                                        elfcpp::SHT_STRTAB,
4153                                                        elfcpp::SHF_ALLOC,
4154                                                        false,
4155                                                        ORDER_DYNAMIC_LINKER,
4156                                                        false);
4157
4158   if (dynstr != NULL)
4159     {
4160       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4161       dynstr->add_output_section_data(strdata);
4162
4163       if (dynsym != NULL)
4164         dynsym->set_link_section(dynstr);
4165       if (this->dynamic_section_ != NULL)
4166         this->dynamic_section_->set_link_section(dynstr);
4167
4168       if (odyn != NULL)
4169         {
4170           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4171           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4172         }
4173
4174       *pdynstr = dynstr;
4175     }
4176
4177   // Create the hash tables.
4178
4179   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4180       || strcmp(parameters->options().hash_style(), "both") == 0)
4181     {
4182       unsigned char* phash;
4183       unsigned int hashlen;
4184       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4185                                     &phash, &hashlen);
4186
4187       Output_section* hashsec =
4188         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4189                                     elfcpp::SHF_ALLOC, false,
4190                                     ORDER_DYNAMIC_LINKER, false);
4191
4192       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4193                                                                    hashlen,
4194                                                                    align,
4195                                                                    "** hash");
4196       if (hashsec != NULL && hashdata != NULL)
4197         hashsec->add_output_section_data(hashdata);
4198
4199       if (hashsec != NULL)
4200         {
4201           if (dynsym != NULL)
4202             hashsec->set_link_section(dynsym);
4203           hashsec->set_entsize(4);
4204         }
4205
4206       if (odyn != NULL)
4207         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4208     }
4209
4210   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4211       || strcmp(parameters->options().hash_style(), "both") == 0)
4212     {
4213       unsigned char* phash;
4214       unsigned int hashlen;
4215       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4216                                     &phash, &hashlen);
4217
4218       Output_section* hashsec =
4219         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4220                                     elfcpp::SHF_ALLOC, false,
4221                                     ORDER_DYNAMIC_LINKER, false);
4222
4223       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4224                                                                    hashlen,
4225                                                                    align,
4226                                                                    "** hash");
4227       if (hashsec != NULL && hashdata != NULL)
4228         hashsec->add_output_section_data(hashdata);
4229
4230       if (hashsec != NULL)
4231         {
4232           if (dynsym != NULL)
4233             hashsec->set_link_section(dynsym);
4234
4235           // For a 64-bit target, the entries in .gnu.hash do not have
4236           // a uniform size, so we only set the entry size for a
4237           // 32-bit target.
4238           if (parameters->target().get_size() == 32)
4239             hashsec->set_entsize(4);
4240
4241           if (odyn != NULL)
4242             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4243         }
4244     }
4245 }
4246
4247 // Assign offsets to each local portion of the dynamic symbol table.
4248
4249 void
4250 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4251 {
4252   Output_section* dynsym = this->dynsym_section_;
4253   if (dynsym == NULL)
4254     return;
4255
4256   off_t off = dynsym->offset();
4257
4258   // Skip the dummy symbol at the start of the section.
4259   off += dynsym->entsize();
4260
4261   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4262        p != input_objects->relobj_end();
4263        ++p)
4264     {
4265       unsigned int count = (*p)->set_local_dynsym_offset(off);
4266       off += count * dynsym->entsize();
4267     }
4268 }
4269
4270 // Create the version sections.
4271
4272 void
4273 Layout::create_version_sections(const Versions* versions,
4274                                 const Symbol_table* symtab,
4275                                 unsigned int local_symcount,
4276                                 const std::vector<Symbol*>& dynamic_symbols,
4277                                 const Output_section* dynstr)
4278 {
4279   if (!versions->any_defs() && !versions->any_needs())
4280     return;
4281
4282   switch (parameters->size_and_endianness())
4283     {
4284 #ifdef HAVE_TARGET_32_LITTLE
4285     case Parameters::TARGET_32_LITTLE:
4286       this->sized_create_version_sections<32, false>(versions, symtab,
4287                                                      local_symcount,
4288                                                      dynamic_symbols, dynstr);
4289       break;
4290 #endif
4291 #ifdef HAVE_TARGET_32_BIG
4292     case Parameters::TARGET_32_BIG:
4293       this->sized_create_version_sections<32, true>(versions, symtab,
4294                                                     local_symcount,
4295                                                     dynamic_symbols, dynstr);
4296       break;
4297 #endif
4298 #ifdef HAVE_TARGET_64_LITTLE
4299     case Parameters::TARGET_64_LITTLE:
4300       this->sized_create_version_sections<64, false>(versions, symtab,
4301                                                      local_symcount,
4302                                                      dynamic_symbols, dynstr);
4303       break;
4304 #endif
4305 #ifdef HAVE_TARGET_64_BIG
4306     case Parameters::TARGET_64_BIG:
4307       this->sized_create_version_sections<64, true>(versions, symtab,
4308                                                     local_symcount,
4309                                                     dynamic_symbols, dynstr);
4310       break;
4311 #endif
4312     default:
4313       gold_unreachable();
4314     }
4315 }
4316
4317 // Create the version sections, sized version.
4318
4319 template<int size, bool big_endian>
4320 void
4321 Layout::sized_create_version_sections(
4322     const Versions* versions,
4323     const Symbol_table* symtab,
4324     unsigned int local_symcount,
4325     const std::vector<Symbol*>& dynamic_symbols,
4326     const Output_section* dynstr)
4327 {
4328   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4329                                                      elfcpp::SHT_GNU_versym,
4330                                                      elfcpp::SHF_ALLOC,
4331                                                      false,
4332                                                      ORDER_DYNAMIC_LINKER,
4333                                                      false);
4334
4335   // Check for NULL since a linker script may discard this section.
4336   if (vsec != NULL)
4337     {
4338       unsigned char* vbuf;
4339       unsigned int vsize;
4340       versions->symbol_section_contents<size, big_endian>(symtab,
4341                                                           &this->dynpool_,
4342                                                           local_symcount,
4343                                                           dynamic_symbols,
4344                                                           &vbuf, &vsize);
4345
4346       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4347                                                                 "** versions");
4348
4349       vsec->add_output_section_data(vdata);
4350       vsec->set_entsize(2);
4351       vsec->set_link_section(this->dynsym_section_);
4352     }
4353
4354   Output_data_dynamic* const odyn = this->dynamic_data_;
4355   if (odyn != NULL && vsec != NULL)
4356     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4357
4358   if (versions->any_defs())
4359     {
4360       Output_section* vdsec;
4361       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4362                                           elfcpp::SHT_GNU_verdef,
4363                                           elfcpp::SHF_ALLOC,
4364                                           false, ORDER_DYNAMIC_LINKER, false);
4365
4366       if (vdsec != NULL)
4367         {
4368           unsigned char* vdbuf;
4369           unsigned int vdsize;
4370           unsigned int vdentries;
4371           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4372                                                            &vdbuf, &vdsize,
4373                                                            &vdentries);
4374
4375           Output_section_data* vddata =
4376             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4377
4378           vdsec->add_output_section_data(vddata);
4379           vdsec->set_link_section(dynstr);
4380           vdsec->set_info(vdentries);
4381
4382           if (odyn != NULL)
4383             {
4384               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4385               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4386             }
4387         }
4388     }
4389
4390   if (versions->any_needs())
4391     {
4392       Output_section* vnsec;
4393       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4394                                           elfcpp::SHT_GNU_verneed,
4395                                           elfcpp::SHF_ALLOC,
4396                                           false, ORDER_DYNAMIC_LINKER, false);
4397
4398       if (vnsec != NULL)
4399         {
4400           unsigned char* vnbuf;
4401           unsigned int vnsize;
4402           unsigned int vnentries;
4403           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4404                                                             &vnbuf, &vnsize,
4405                                                             &vnentries);
4406
4407           Output_section_data* vndata =
4408             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4409
4410           vnsec->add_output_section_data(vndata);
4411           vnsec->set_link_section(dynstr);
4412           vnsec->set_info(vnentries);
4413
4414           if (odyn != NULL)
4415             {
4416               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4417               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4418             }
4419         }
4420     }
4421 }
4422
4423 // Create the .interp section and PT_INTERP segment.
4424
4425 void
4426 Layout::create_interp(const Target* target)
4427 {
4428   gold_assert(this->interp_segment_ == NULL);
4429
4430   const char* interp = parameters->options().dynamic_linker();
4431   if (interp == NULL)
4432     {
4433       interp = target->dynamic_linker();
4434       gold_assert(interp != NULL);
4435     }
4436
4437   size_t len = strlen(interp) + 1;
4438
4439   Output_section_data* odata = new Output_data_const(interp, len, 1);
4440
4441   Output_section* osec = this->choose_output_section(NULL, ".interp",
4442                                                      elfcpp::SHT_PROGBITS,
4443                                                      elfcpp::SHF_ALLOC,
4444                                                      false, ORDER_INTERP,
4445                                                      false);
4446   if (osec != NULL)
4447     osec->add_output_section_data(odata);
4448 }
4449
4450 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4451 // called by the target-specific code.  This does nothing if not doing
4452 // a dynamic link.
4453
4454 // USE_REL is true for REL relocs rather than RELA relocs.
4455
4456 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4457
4458 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4459 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4460 // some targets have multiple reloc sections in PLT_REL.
4461
4462 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4463 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4464 // section.
4465
4466 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4467 // executable.
4468
4469 void
4470 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4471                                 const Output_data* plt_rel,
4472                                 const Output_data_reloc_generic* dyn_rel,
4473                                 bool add_debug, bool dynrel_includes_plt)
4474 {
4475   Output_data_dynamic* odyn = this->dynamic_data_;
4476   if (odyn == NULL)
4477     return;
4478
4479   if (plt_got != NULL && plt_got->output_section() != NULL)
4480     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4481
4482   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4483     {
4484       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4485       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4486       odyn->add_constant(elfcpp::DT_PLTREL,
4487                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4488     }
4489
4490   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4491       || (dynrel_includes_plt
4492           && plt_rel != NULL
4493           && plt_rel->output_section() != NULL))
4494     {
4495       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4496       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4497       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4498                                 (have_dyn_rel
4499                                  ? dyn_rel->output_section()
4500                                  : plt_rel->output_section()));
4501       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4502       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4503         odyn->add_section_size(size_tag,
4504                                dyn_rel->output_section(),
4505                                plt_rel->output_section());
4506       else if (have_dyn_rel)
4507         odyn->add_section_size(size_tag, dyn_rel->output_section());
4508       else
4509         odyn->add_section_size(size_tag, plt_rel->output_section());
4510       const int size = parameters->target().get_size();
4511       elfcpp::DT rel_tag;
4512       int rel_size;
4513       if (use_rel)
4514         {
4515           rel_tag = elfcpp::DT_RELENT;
4516           if (size == 32)
4517             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4518           else if (size == 64)
4519             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4520           else
4521             gold_unreachable();
4522         }
4523       else
4524         {
4525           rel_tag = elfcpp::DT_RELAENT;
4526           if (size == 32)
4527             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4528           else if (size == 64)
4529             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4530           else
4531             gold_unreachable();
4532         }
4533       odyn->add_constant(rel_tag, rel_size);
4534
4535       if (parameters->options().combreloc() && have_dyn_rel)
4536         {
4537           size_t c = dyn_rel->relative_reloc_count();
4538           if (c > 0)
4539             odyn->add_constant((use_rel
4540                                 ? elfcpp::DT_RELCOUNT
4541                                 : elfcpp::DT_RELACOUNT),
4542                                c);
4543         }
4544     }
4545
4546   if (add_debug && !parameters->options().shared())
4547     {
4548       // The value of the DT_DEBUG tag is filled in by the dynamic
4549       // linker at run time, and used by the debugger.
4550       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4551     }
4552 }
4553
4554 // Finish the .dynamic section and PT_DYNAMIC segment.
4555
4556 void
4557 Layout::finish_dynamic_section(const Input_objects* input_objects,
4558                                const Symbol_table* symtab)
4559 {
4560   if (!this->script_options_->saw_phdrs_clause()
4561       && this->dynamic_section_ != NULL)
4562     {
4563       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4564                                                        (elfcpp::PF_R
4565                                                         | elfcpp::PF_W));
4566       oseg->add_output_section_to_nonload(this->dynamic_section_,
4567                                           elfcpp::PF_R | elfcpp::PF_W);
4568     }
4569
4570   Output_data_dynamic* const odyn = this->dynamic_data_;
4571   if (odyn == NULL)
4572     return;
4573
4574   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4575        p != input_objects->dynobj_end();
4576        ++p)
4577     {
4578       if (!(*p)->is_needed() && (*p)->as_needed())
4579         {
4580           // This dynamic object was linked with --as-needed, but it
4581           // is not needed.
4582           continue;
4583         }
4584
4585       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4586     }
4587
4588   if (parameters->options().shared())
4589     {
4590       const char* soname = parameters->options().soname();
4591       if (soname != NULL)
4592         odyn->add_string(elfcpp::DT_SONAME, soname);
4593     }
4594
4595   Symbol* sym = symtab->lookup(parameters->options().init());
4596   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4597     odyn->add_symbol(elfcpp::DT_INIT, sym);
4598
4599   sym = symtab->lookup(parameters->options().fini());
4600   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4601     odyn->add_symbol(elfcpp::DT_FINI, sym);
4602
4603   // Look for .init_array, .preinit_array and .fini_array by checking
4604   // section types.
4605   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4606       p != this->section_list_.end();
4607       ++p)
4608     switch((*p)->type())
4609       {
4610       case elfcpp::SHT_FINI_ARRAY:
4611         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4612         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4613         break;
4614       case elfcpp::SHT_INIT_ARRAY:
4615         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4616         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4617         break;
4618       case elfcpp::SHT_PREINIT_ARRAY:
4619         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4620         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4621         break;
4622       default:
4623         break;
4624       }
4625
4626   // Add a DT_RPATH entry if needed.
4627   const General_options::Dir_list& rpath(parameters->options().rpath());
4628   if (!rpath.empty())
4629     {
4630       std::string rpath_val;
4631       for (General_options::Dir_list::const_iterator p = rpath.begin();
4632            p != rpath.end();
4633            ++p)
4634         {
4635           if (rpath_val.empty())
4636             rpath_val = p->name();
4637           else
4638             {
4639               // Eliminate duplicates.
4640               General_options::Dir_list::const_iterator q;
4641               for (q = rpath.begin(); q != p; ++q)
4642                 if (q->name() == p->name())
4643                   break;
4644               if (q == p)
4645                 {
4646                   rpath_val += ':';
4647                   rpath_val += p->name();
4648                 }
4649             }
4650         }
4651
4652       if (!parameters->options().enable_new_dtags())
4653         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4654       else
4655         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4656     }
4657
4658   // Look for text segments that have dynamic relocations.
4659   bool have_textrel = false;
4660   if (!this->script_options_->saw_sections_clause())
4661     {
4662       for (Segment_list::const_iterator p = this->segment_list_.begin();
4663            p != this->segment_list_.end();
4664            ++p)
4665         {
4666           if ((*p)->type() == elfcpp::PT_LOAD
4667               && ((*p)->flags() & elfcpp::PF_W) == 0
4668               && (*p)->has_dynamic_reloc())
4669             {
4670               have_textrel = true;
4671               break;
4672             }
4673         }
4674     }
4675   else
4676     {
4677       // We don't know the section -> segment mapping, so we are
4678       // conservative and just look for readonly sections with
4679       // relocations.  If those sections wind up in writable segments,
4680       // then we have created an unnecessary DT_TEXTREL entry.
4681       for (Section_list::const_iterator p = this->section_list_.begin();
4682            p != this->section_list_.end();
4683            ++p)
4684         {
4685           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4686               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4687               && (*p)->has_dynamic_reloc())
4688             {
4689               have_textrel = true;
4690               break;
4691             }
4692         }
4693     }
4694
4695   if (parameters->options().filter() != NULL)
4696     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4697   if (parameters->options().any_auxiliary())
4698     {
4699       for (options::String_set::const_iterator p =
4700              parameters->options().auxiliary_begin();
4701            p != parameters->options().auxiliary_end();
4702            ++p)
4703         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4704     }
4705
4706   // Add a DT_FLAGS entry if necessary.
4707   unsigned int flags = 0;
4708   if (have_textrel)
4709     {
4710       // Add a DT_TEXTREL for compatibility with older loaders.
4711       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4712       flags |= elfcpp::DF_TEXTREL;
4713
4714       if (parameters->options().text())
4715         gold_error(_("read-only segment has dynamic relocations"));
4716       else if (parameters->options().warn_shared_textrel()
4717                && parameters->options().shared())
4718         gold_warning(_("shared library text segment is not shareable"));
4719     }
4720   if (parameters->options().shared() && this->has_static_tls())
4721     flags |= elfcpp::DF_STATIC_TLS;
4722   if (parameters->options().origin())
4723     flags |= elfcpp::DF_ORIGIN;
4724   if (parameters->options().Bsymbolic())
4725     {
4726       flags |= elfcpp::DF_SYMBOLIC;
4727       // Add DT_SYMBOLIC for compatibility with older loaders.
4728       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4729     }
4730   if (parameters->options().now())
4731     flags |= elfcpp::DF_BIND_NOW;
4732   if (flags != 0)
4733     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4734
4735   flags = 0;
4736   if (parameters->options().initfirst())
4737     flags |= elfcpp::DF_1_INITFIRST;
4738   if (parameters->options().interpose())
4739     flags |= elfcpp::DF_1_INTERPOSE;
4740   if (parameters->options().loadfltr())
4741     flags |= elfcpp::DF_1_LOADFLTR;
4742   if (parameters->options().nodefaultlib())
4743     flags |= elfcpp::DF_1_NODEFLIB;
4744   if (parameters->options().nodelete())
4745     flags |= elfcpp::DF_1_NODELETE;
4746   if (parameters->options().nodlopen())
4747     flags |= elfcpp::DF_1_NOOPEN;
4748   if (parameters->options().nodump())
4749     flags |= elfcpp::DF_1_NODUMP;
4750   if (!parameters->options().shared())
4751     flags &= ~(elfcpp::DF_1_INITFIRST
4752                | elfcpp::DF_1_NODELETE
4753                | elfcpp::DF_1_NOOPEN);
4754   if (parameters->options().origin())
4755     flags |= elfcpp::DF_1_ORIGIN;
4756   if (parameters->options().now())
4757     flags |= elfcpp::DF_1_NOW;
4758   if (parameters->options().Bgroup())
4759     flags |= elfcpp::DF_1_GROUP;
4760   if (flags != 0)
4761     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4762 }
4763
4764 // Set the size of the _DYNAMIC symbol table to be the size of the
4765 // dynamic data.
4766
4767 void
4768 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4769 {
4770   Output_data_dynamic* const odyn = this->dynamic_data_;
4771   if (odyn == NULL)
4772     return;
4773   odyn->finalize_data_size();
4774   if (this->dynamic_symbol_ == NULL)
4775     return;
4776   off_t data_size = odyn->data_size();
4777   const int size = parameters->target().get_size();
4778   if (size == 32)
4779     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4780   else if (size == 64)
4781     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4782   else
4783     gold_unreachable();
4784 }
4785
4786 // The mapping of input section name prefixes to output section names.
4787 // In some cases one prefix is itself a prefix of another prefix; in
4788 // such a case the longer prefix must come first.  These prefixes are
4789 // based on the GNU linker default ELF linker script.
4790
4791 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4792 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4793 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4794 {
4795   MAPPING_INIT(".text.", ".text"),
4796   MAPPING_INIT(".rodata.", ".rodata"),
4797   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4798   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4799   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4800   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4801   MAPPING_INIT(".data.", ".data"),
4802   MAPPING_INIT(".bss.", ".bss"),
4803   MAPPING_INIT(".tdata.", ".tdata"),
4804   MAPPING_INIT(".tbss.", ".tbss"),
4805   MAPPING_INIT(".init_array.", ".init_array"),
4806   MAPPING_INIT(".fini_array.", ".fini_array"),
4807   MAPPING_INIT(".sdata.", ".sdata"),
4808   MAPPING_INIT(".sbss.", ".sbss"),
4809   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4810   // differently depending on whether it is creating a shared library.
4811   MAPPING_INIT(".sdata2.", ".sdata"),
4812   MAPPING_INIT(".sbss2.", ".sbss"),
4813   MAPPING_INIT(".lrodata.", ".lrodata"),
4814   MAPPING_INIT(".ldata.", ".ldata"),
4815   MAPPING_INIT(".lbss.", ".lbss"),
4816   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4817   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4818   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4819   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4820   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4821   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4822   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4823   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4824   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4825   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4826   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4827   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4828   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4829   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4830   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4831   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4832   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4833   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4834   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4835   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4836   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4837 };
4838 #undef MAPPING_INIT
4839 #undef MAPPING_INIT_EXACT
4840
4841 const int Layout::section_name_mapping_count =
4842   (sizeof(Layout::section_name_mapping)
4843    / sizeof(Layout::section_name_mapping[0]));
4844
4845 // Choose the output section name to use given an input section name.
4846 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4847 // length of NAME.
4848
4849 const char*
4850 Layout::output_section_name(const Relobj* relobj, const char* name,
4851                             size_t* plen)
4852 {
4853   // gcc 4.3 generates the following sorts of section names when it
4854   // needs a section name specific to a function:
4855   //   .text.FN
4856   //   .rodata.FN
4857   //   .sdata2.FN
4858   //   .data.FN
4859   //   .data.rel.FN
4860   //   .data.rel.local.FN
4861   //   .data.rel.ro.FN
4862   //   .data.rel.ro.local.FN
4863   //   .sdata.FN
4864   //   .bss.FN
4865   //   .sbss.FN
4866   //   .tdata.FN
4867   //   .tbss.FN
4868
4869   // The GNU linker maps all of those to the part before the .FN,
4870   // except that .data.rel.local.FN is mapped to .data, and
4871   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4872   // beginning with .data.rel.ro.local are grouped together.
4873
4874   // For an anonymous namespace, the string FN can contain a '.'.
4875
4876   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4877   // GNU linker maps to .rodata.
4878
4879   // The .data.rel.ro sections are used with -z relro.  The sections
4880   // are recognized by name.  We use the same names that the GNU
4881   // linker does for these sections.
4882
4883   // It is hard to handle this in a principled way, so we don't even
4884   // try.  We use a table of mappings.  If the input section name is
4885   // not found in the table, we simply use it as the output section
4886   // name.
4887
4888   const Section_name_mapping* psnm = section_name_mapping;
4889   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4890     {
4891       if (psnm->fromlen > 0)
4892         {
4893           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4894             {
4895               *plen = psnm->tolen;
4896               return psnm->to;
4897             }
4898         }
4899       else
4900         {
4901           if (strcmp(name, psnm->from) == 0)
4902             {
4903               *plen = psnm->tolen;
4904               return psnm->to;
4905             }
4906         }
4907     }
4908
4909   // As an additional complication, .ctors sections are output in
4910   // either .ctors or .init_array sections, and .dtors sections are
4911   // output in either .dtors or .fini_array sections.
4912   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4913     {
4914       if (parameters->options().ctors_in_init_array())
4915         {
4916           *plen = 11;
4917           return name[1] == 'c' ? ".init_array" : ".fini_array";
4918         }
4919       else
4920         {
4921           *plen = 6;
4922           return name[1] == 'c' ? ".ctors" : ".dtors";
4923         }
4924     }
4925   if (parameters->options().ctors_in_init_array()
4926       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4927     {
4928       // To make .init_array/.fini_array work with gcc we must exclude
4929       // .ctors and .dtors sections from the crtbegin and crtend
4930       // files.
4931       if (relobj == NULL
4932           || (!Layout::match_file_name(relobj, "crtbegin")
4933               && !Layout::match_file_name(relobj, "crtend")))
4934         {
4935           *plen = 11;
4936           return name[1] == 'c' ? ".init_array" : ".fini_array";
4937         }
4938     }
4939
4940   return name;
4941 }
4942
4943 // Return true if RELOBJ is an input file whose base name matches
4944 // FILE_NAME.  The base name must have an extension of ".o", and must
4945 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4946 // to match crtbegin.o as well as crtbeginS.o without getting confused
4947 // by other possibilities.  Overall matching the file name this way is
4948 // a dreadful hack, but the GNU linker does it in order to better
4949 // support gcc, and we need to be compatible.
4950
4951 bool
4952 Layout::match_file_name(const Relobj* relobj, const char* match)
4953 {
4954   const std::string& file_name(relobj->name());
4955   const char* base_name = lbasename(file_name.c_str());
4956   size_t match_len = strlen(match);
4957   if (strncmp(base_name, match, match_len) != 0)
4958     return false;
4959   size_t base_len = strlen(base_name);
4960   if (base_len != match_len + 2 && base_len != match_len + 3)
4961     return false;
4962   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4963 }
4964
4965 // Check if a comdat group or .gnu.linkonce section with the given
4966 // NAME is selected for the link.  If there is already a section,
4967 // *KEPT_SECTION is set to point to the existing section and the
4968 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4969 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4970 // *KEPT_SECTION is set to the internal copy and the function returns
4971 // true.
4972
4973 bool
4974 Layout::find_or_add_kept_section(const std::string& name,
4975                                  Relobj* object,
4976                                  unsigned int shndx,
4977                                  bool is_comdat,
4978                                  bool is_group_name,
4979                                  Kept_section** kept_section)
4980 {
4981   // It's normal to see a couple of entries here, for the x86 thunk
4982   // sections.  If we see more than a few, we're linking a C++
4983   // program, and we resize to get more space to minimize rehashing.
4984   if (this->signatures_.size() > 4
4985       && !this->resized_signatures_)
4986     {
4987       reserve_unordered_map(&this->signatures_,
4988                             this->number_of_input_files_ * 64);
4989       this->resized_signatures_ = true;
4990     }
4991
4992   Kept_section candidate;
4993   std::pair<Signatures::iterator, bool> ins =
4994     this->signatures_.insert(std::make_pair(name, candidate));
4995
4996   if (kept_section != NULL)
4997     *kept_section = &ins.first->second;
4998   if (ins.second)
4999     {
5000       // This is the first time we've seen this signature.
5001       ins.first->second.set_object(object);
5002       ins.first->second.set_shndx(shndx);
5003       if (is_comdat)
5004         ins.first->second.set_is_comdat();
5005       if (is_group_name)
5006         ins.first->second.set_is_group_name();
5007       return true;
5008     }
5009
5010   // We have already seen this signature.
5011
5012   if (ins.first->second.is_group_name())
5013     {
5014       // We've already seen a real section group with this signature.
5015       // If the kept group is from a plugin object, and we're in the
5016       // replacement phase, accept the new one as a replacement.
5017       if (ins.first->second.object() == NULL
5018           && parameters->options().plugins()->in_replacement_phase())
5019         {
5020           ins.first->second.set_object(object);
5021           ins.first->second.set_shndx(shndx);
5022           return true;
5023         }
5024       return false;
5025     }
5026   else if (is_group_name)
5027     {
5028       // This is a real section group, and we've already seen a
5029       // linkonce section with this signature.  Record that we've seen
5030       // a section group, and don't include this section group.
5031       ins.first->second.set_is_group_name();
5032       return false;
5033     }
5034   else
5035     {
5036       // We've already seen a linkonce section and this is a linkonce
5037       // section.  These don't block each other--this may be the same
5038       // symbol name with different section types.
5039       return true;
5040     }
5041 }
5042
5043 // Store the allocated sections into the section list.
5044
5045 void
5046 Layout::get_allocated_sections(Section_list* section_list) const
5047 {
5048   for (Section_list::const_iterator p = this->section_list_.begin();
5049        p != this->section_list_.end();
5050        ++p)
5051     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5052       section_list->push_back(*p);
5053 }
5054
5055 // Store the executable sections into the section list.
5056
5057 void
5058 Layout::get_executable_sections(Section_list* section_list) const
5059 {
5060   for (Section_list::const_iterator p = this->section_list_.begin();
5061        p != this->section_list_.end();
5062        ++p)
5063     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5064         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5065       section_list->push_back(*p);
5066 }
5067
5068 // Create an output segment.
5069
5070 Output_segment*
5071 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5072 {
5073   gold_assert(!parameters->options().relocatable());
5074   Output_segment* oseg = new Output_segment(type, flags);
5075   this->segment_list_.push_back(oseg);
5076
5077   if (type == elfcpp::PT_TLS)
5078     this->tls_segment_ = oseg;
5079   else if (type == elfcpp::PT_GNU_RELRO)
5080     this->relro_segment_ = oseg;
5081   else if (type == elfcpp::PT_INTERP)
5082     this->interp_segment_ = oseg;
5083
5084   return oseg;
5085 }
5086
5087 // Return the file offset of the normal symbol table.
5088
5089 off_t
5090 Layout::symtab_section_offset() const
5091 {
5092   if (this->symtab_section_ != NULL)
5093     return this->symtab_section_->offset();
5094   return 0;
5095 }
5096
5097 // Return the section index of the normal symbol table.  It may have
5098 // been stripped by the -s/--strip-all option.
5099
5100 unsigned int
5101 Layout::symtab_section_shndx() const
5102 {
5103   if (this->symtab_section_ != NULL)
5104     return this->symtab_section_->out_shndx();
5105   return 0;
5106 }
5107
5108 // Write out the Output_sections.  Most won't have anything to write,
5109 // since most of the data will come from input sections which are
5110 // handled elsewhere.  But some Output_sections do have Output_data.
5111
5112 void
5113 Layout::write_output_sections(Output_file* of) const
5114 {
5115   for (Section_list::const_iterator p = this->section_list_.begin();
5116        p != this->section_list_.end();
5117        ++p)
5118     {
5119       if (!(*p)->after_input_sections())
5120         (*p)->write(of);
5121     }
5122 }
5123
5124 // Write out data not associated with a section or the symbol table.
5125
5126 void
5127 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5128 {
5129   if (!parameters->options().strip_all())
5130     {
5131       const Output_section* symtab_section = this->symtab_section_;
5132       for (Section_list::const_iterator p = this->section_list_.begin();
5133            p != this->section_list_.end();
5134            ++p)
5135         {
5136           if ((*p)->needs_symtab_index())
5137             {
5138               gold_assert(symtab_section != NULL);
5139               unsigned int index = (*p)->symtab_index();
5140               gold_assert(index > 0 && index != -1U);
5141               off_t off = (symtab_section->offset()
5142                            + index * symtab_section->entsize());
5143               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5144             }
5145         }
5146     }
5147
5148   const Output_section* dynsym_section = this->dynsym_section_;
5149   for (Section_list::const_iterator p = this->section_list_.begin();
5150        p != this->section_list_.end();
5151        ++p)
5152     {
5153       if ((*p)->needs_dynsym_index())
5154         {
5155           gold_assert(dynsym_section != NULL);
5156           unsigned int index = (*p)->dynsym_index();
5157           gold_assert(index > 0 && index != -1U);
5158           off_t off = (dynsym_section->offset()
5159                        + index * dynsym_section->entsize());
5160           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5161         }
5162     }
5163
5164   // Write out the Output_data which are not in an Output_section.
5165   for (Data_list::const_iterator p = this->special_output_list_.begin();
5166        p != this->special_output_list_.end();
5167        ++p)
5168     (*p)->write(of);
5169 }
5170
5171 // Write out the Output_sections which can only be written after the
5172 // input sections are complete.
5173
5174 void
5175 Layout::write_sections_after_input_sections(Output_file* of)
5176 {
5177   // Determine the final section offsets, and thus the final output
5178   // file size.  Note we finalize the .shstrab last, to allow the
5179   // after_input_section sections to modify their section-names before
5180   // writing.
5181   if (this->any_postprocessing_sections_)
5182     {
5183       off_t off = this->output_file_size_;
5184       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5185
5186       // Now that we've finalized the names, we can finalize the shstrab.
5187       off =
5188         this->set_section_offsets(off,
5189                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5190
5191       if (off > this->output_file_size_)
5192         {
5193           of->resize(off);
5194           this->output_file_size_ = off;
5195         }
5196     }
5197
5198   for (Section_list::const_iterator p = this->section_list_.begin();
5199        p != this->section_list_.end();
5200        ++p)
5201     {
5202       if ((*p)->after_input_sections())
5203         (*p)->write(of);
5204     }
5205
5206   this->section_headers_->write(of);
5207 }
5208
5209 // If the build ID requires computing a checksum, do so here, and
5210 // write it out.  We compute a checksum over the entire file because
5211 // that is simplest.
5212
5213 void
5214 Layout::write_build_id(Output_file* of) const
5215 {
5216   if (this->build_id_note_ == NULL)
5217     return;
5218
5219   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5220
5221   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5222                                           this->build_id_note_->data_size());
5223
5224   const char* style = parameters->options().build_id();
5225   if (strcmp(style, "sha1") == 0)
5226     {
5227       sha1_ctx ctx;
5228       sha1_init_ctx(&ctx);
5229       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5230       sha1_finish_ctx(&ctx, ov);
5231     }
5232   else if (strcmp(style, "md5") == 0)
5233     {
5234       md5_ctx ctx;
5235       md5_init_ctx(&ctx);
5236       md5_process_bytes(iv, this->output_file_size_, &ctx);
5237       md5_finish_ctx(&ctx, ov);
5238     }
5239   else
5240     gold_unreachable();
5241
5242   of->write_output_view(this->build_id_note_->offset(),
5243                         this->build_id_note_->data_size(),
5244                         ov);
5245
5246   of->free_input_view(0, this->output_file_size_, iv);
5247 }
5248
5249 // Write out a binary file.  This is called after the link is
5250 // complete.  IN is the temporary output file we used to generate the
5251 // ELF code.  We simply walk through the segments, read them from
5252 // their file offset in IN, and write them to their load address in
5253 // the output file.  FIXME: with a bit more work, we could support
5254 // S-records and/or Intel hex format here.
5255
5256 void
5257 Layout::write_binary(Output_file* in) const
5258 {
5259   gold_assert(parameters->options().oformat_enum()
5260               == General_options::OBJECT_FORMAT_BINARY);
5261
5262   // Get the size of the binary file.
5263   uint64_t max_load_address = 0;
5264   for (Segment_list::const_iterator p = this->segment_list_.begin();
5265        p != this->segment_list_.end();
5266        ++p)
5267     {
5268       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5269         {
5270           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5271           if (max_paddr > max_load_address)
5272             max_load_address = max_paddr;
5273         }
5274     }
5275
5276   Output_file out(parameters->options().output_file_name());
5277   out.open(max_load_address);
5278
5279   for (Segment_list::const_iterator p = this->segment_list_.begin();
5280        p != this->segment_list_.end();
5281        ++p)
5282     {
5283       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5284         {
5285           const unsigned char* vin = in->get_input_view((*p)->offset(),
5286                                                         (*p)->filesz());
5287           unsigned char* vout = out.get_output_view((*p)->paddr(),
5288                                                     (*p)->filesz());
5289           memcpy(vout, vin, (*p)->filesz());
5290           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5291           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5292         }
5293     }
5294
5295   out.close();
5296 }
5297
5298 // Print the output sections to the map file.
5299
5300 void
5301 Layout::print_to_mapfile(Mapfile* mapfile) const
5302 {
5303   for (Segment_list::const_iterator p = this->segment_list_.begin();
5304        p != this->segment_list_.end();
5305        ++p)
5306     (*p)->print_sections_to_mapfile(mapfile);
5307 }
5308
5309 // Print statistical information to stderr.  This is used for --stats.
5310
5311 void
5312 Layout::print_stats() const
5313 {
5314   this->namepool_.print_stats("section name pool");
5315   this->sympool_.print_stats("output symbol name pool");
5316   this->dynpool_.print_stats("dynamic name pool");
5317
5318   for (Section_list::const_iterator p = this->section_list_.begin();
5319        p != this->section_list_.end();
5320        ++p)
5321     (*p)->print_merge_stats();
5322 }
5323
5324 // Write_sections_task methods.
5325
5326 // We can always run this task.
5327
5328 Task_token*
5329 Write_sections_task::is_runnable()
5330 {
5331   return NULL;
5332 }
5333
5334 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5335 // when finished.
5336
5337 void
5338 Write_sections_task::locks(Task_locker* tl)
5339 {
5340   tl->add(this, this->output_sections_blocker_);
5341   tl->add(this, this->final_blocker_);
5342 }
5343
5344 // Run the task--write out the data.
5345
5346 void
5347 Write_sections_task::run(Workqueue*)
5348 {
5349   this->layout_->write_output_sections(this->of_);
5350 }
5351
5352 // Write_data_task methods.
5353
5354 // We can always run this task.
5355
5356 Task_token*
5357 Write_data_task::is_runnable()
5358 {
5359   return NULL;
5360 }
5361
5362 // We need to unlock FINAL_BLOCKER when finished.
5363
5364 void
5365 Write_data_task::locks(Task_locker* tl)
5366 {
5367   tl->add(this, this->final_blocker_);
5368 }
5369
5370 // Run the task--write out the data.
5371
5372 void
5373 Write_data_task::run(Workqueue*)
5374 {
5375   this->layout_->write_data(this->symtab_, this->of_);
5376 }
5377
5378 // Write_symbols_task methods.
5379
5380 // We can always run this task.
5381
5382 Task_token*
5383 Write_symbols_task::is_runnable()
5384 {
5385   return NULL;
5386 }
5387
5388 // We need to unlock FINAL_BLOCKER when finished.
5389
5390 void
5391 Write_symbols_task::locks(Task_locker* tl)
5392 {
5393   tl->add(this, this->final_blocker_);
5394 }
5395
5396 // Run the task--write out the symbols.
5397
5398 void
5399 Write_symbols_task::run(Workqueue*)
5400 {
5401   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5402                                this->layout_->symtab_xindex(),
5403                                this->layout_->dynsym_xindex(), this->of_);
5404 }
5405
5406 // Write_after_input_sections_task methods.
5407
5408 // We can only run this task after the input sections have completed.
5409
5410 Task_token*
5411 Write_after_input_sections_task::is_runnable()
5412 {
5413   if (this->input_sections_blocker_->is_blocked())
5414     return this->input_sections_blocker_;
5415   return NULL;
5416 }
5417
5418 // We need to unlock FINAL_BLOCKER when finished.
5419
5420 void
5421 Write_after_input_sections_task::locks(Task_locker* tl)
5422 {
5423   tl->add(this, this->final_blocker_);
5424 }
5425
5426 // Run the task.
5427
5428 void
5429 Write_after_input_sections_task::run(Workqueue*)
5430 {
5431   this->layout_->write_sections_after_input_sections(this->of_);
5432 }
5433
5434 // Close_task_runner methods.
5435
5436 // Run the task--close the file.
5437
5438 void
5439 Close_task_runner::run(Workqueue*, const Task*)
5440 {
5441   // If we need to compute a checksum for the BUILD if, we do so here.
5442   this->layout_->write_build_id(this->of_);
5443
5444   // If we've been asked to create a binary file, we do so here.
5445   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5446     this->layout_->write_binary(this->of_);
5447
5448   this->of_->close();
5449 }
5450
5451 // Instantiate the templates we need.  We could use the configure
5452 // script to restrict this to only the ones for implemented targets.
5453
5454 #ifdef HAVE_TARGET_32_LITTLE
5455 template
5456 Output_section*
5457 Layout::init_fixed_output_section<32, false>(
5458     const char* name,
5459     elfcpp::Shdr<32, false>& shdr);
5460 #endif
5461
5462 #ifdef HAVE_TARGET_32_BIG
5463 template
5464 Output_section*
5465 Layout::init_fixed_output_section<32, true>(
5466     const char* name,
5467     elfcpp::Shdr<32, true>& shdr);
5468 #endif
5469
5470 #ifdef HAVE_TARGET_64_LITTLE
5471 template
5472 Output_section*
5473 Layout::init_fixed_output_section<64, false>(
5474     const char* name,
5475     elfcpp::Shdr<64, false>& shdr);
5476 #endif
5477
5478 #ifdef HAVE_TARGET_64_BIG
5479 template
5480 Output_section*
5481 Layout::init_fixed_output_section<64, true>(
5482     const char* name,
5483     elfcpp::Shdr<64, true>& shdr);
5484 #endif
5485
5486 #ifdef HAVE_TARGET_32_LITTLE
5487 template
5488 Output_section*
5489 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5490                           unsigned int shndx,
5491                           const char* name,
5492                           const elfcpp::Shdr<32, false>& shdr,
5493                           unsigned int, unsigned int, off_t*);
5494 #endif
5495
5496 #ifdef HAVE_TARGET_32_BIG
5497 template
5498 Output_section*
5499 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5500                          unsigned int shndx,
5501                          const char* name,
5502                          const elfcpp::Shdr<32, true>& shdr,
5503                          unsigned int, unsigned int, off_t*);
5504 #endif
5505
5506 #ifdef HAVE_TARGET_64_LITTLE
5507 template
5508 Output_section*
5509 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5510                           unsigned int shndx,
5511                           const char* name,
5512                           const elfcpp::Shdr<64, false>& shdr,
5513                           unsigned int, unsigned int, off_t*);
5514 #endif
5515
5516 #ifdef HAVE_TARGET_64_BIG
5517 template
5518 Output_section*
5519 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5520                          unsigned int shndx,
5521                          const char* name,
5522                          const elfcpp::Shdr<64, true>& shdr,
5523                          unsigned int, unsigned int, off_t*);
5524 #endif
5525
5526 #ifdef HAVE_TARGET_32_LITTLE
5527 template
5528 Output_section*
5529 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5530                                 unsigned int reloc_shndx,
5531                                 const elfcpp::Shdr<32, false>& shdr,
5532                                 Output_section* data_section,
5533                                 Relocatable_relocs* rr);
5534 #endif
5535
5536 #ifdef HAVE_TARGET_32_BIG
5537 template
5538 Output_section*
5539 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5540                                unsigned int reloc_shndx,
5541                                const elfcpp::Shdr<32, true>& shdr,
5542                                Output_section* data_section,
5543                                Relocatable_relocs* rr);
5544 #endif
5545
5546 #ifdef HAVE_TARGET_64_LITTLE
5547 template
5548 Output_section*
5549 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5550                                 unsigned int reloc_shndx,
5551                                 const elfcpp::Shdr<64, false>& shdr,
5552                                 Output_section* data_section,
5553                                 Relocatable_relocs* rr);
5554 #endif
5555
5556 #ifdef HAVE_TARGET_64_BIG
5557 template
5558 Output_section*
5559 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5560                                unsigned int reloc_shndx,
5561                                const elfcpp::Shdr<64, true>& shdr,
5562                                Output_section* data_section,
5563                                Relocatable_relocs* rr);
5564 #endif
5565
5566 #ifdef HAVE_TARGET_32_LITTLE
5567 template
5568 void
5569 Layout::layout_group<32, false>(Symbol_table* symtab,
5570                                 Sized_relobj_file<32, false>* object,
5571                                 unsigned int,
5572                                 const char* group_section_name,
5573                                 const char* signature,
5574                                 const elfcpp::Shdr<32, false>& shdr,
5575                                 elfcpp::Elf_Word flags,
5576                                 std::vector<unsigned int>* shndxes);
5577 #endif
5578
5579 #ifdef HAVE_TARGET_32_BIG
5580 template
5581 void
5582 Layout::layout_group<32, true>(Symbol_table* symtab,
5583                                Sized_relobj_file<32, true>* object,
5584                                unsigned int,
5585                                const char* group_section_name,
5586                                const char* signature,
5587                                const elfcpp::Shdr<32, true>& shdr,
5588                                elfcpp::Elf_Word flags,
5589                                std::vector<unsigned int>* shndxes);
5590 #endif
5591
5592 #ifdef HAVE_TARGET_64_LITTLE
5593 template
5594 void
5595 Layout::layout_group<64, false>(Symbol_table* symtab,
5596                                 Sized_relobj_file<64, false>* object,
5597                                 unsigned int,
5598                                 const char* group_section_name,
5599                                 const char* signature,
5600                                 const elfcpp::Shdr<64, false>& shdr,
5601                                 elfcpp::Elf_Word flags,
5602                                 std::vector<unsigned int>* shndxes);
5603 #endif
5604
5605 #ifdef HAVE_TARGET_64_BIG
5606 template
5607 void
5608 Layout::layout_group<64, true>(Symbol_table* symtab,
5609                                Sized_relobj_file<64, true>* object,
5610                                unsigned int,
5611                                const char* group_section_name,
5612                                const char* signature,
5613                                const elfcpp::Shdr<64, true>& shdr,
5614                                elfcpp::Elf_Word flags,
5615                                std::vector<unsigned int>* shndxes);
5616 #endif
5617
5618 #ifdef HAVE_TARGET_32_LITTLE
5619 template
5620 Output_section*
5621 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5622                                    const unsigned char* symbols,
5623                                    off_t symbols_size,
5624                                    const unsigned char* symbol_names,
5625                                    off_t symbol_names_size,
5626                                    unsigned int shndx,
5627                                    const elfcpp::Shdr<32, false>& shdr,
5628                                    unsigned int reloc_shndx,
5629                                    unsigned int reloc_type,
5630                                    off_t* off);
5631 #endif
5632
5633 #ifdef HAVE_TARGET_32_BIG
5634 template
5635 Output_section*
5636 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5637                                   const unsigned char* symbols,
5638                                   off_t symbols_size,
5639                                   const unsigned char* symbol_names,
5640                                   off_t symbol_names_size,
5641                                   unsigned int shndx,
5642                                   const elfcpp::Shdr<32, true>& shdr,
5643                                   unsigned int reloc_shndx,
5644                                   unsigned int reloc_type,
5645                                   off_t* off);
5646 #endif
5647
5648 #ifdef HAVE_TARGET_64_LITTLE
5649 template
5650 Output_section*
5651 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5652                                    const unsigned char* symbols,
5653                                    off_t symbols_size,
5654                                    const unsigned char* symbol_names,
5655                                    off_t symbol_names_size,
5656                                    unsigned int shndx,
5657                                    const elfcpp::Shdr<64, false>& shdr,
5658                                    unsigned int reloc_shndx,
5659                                    unsigned int reloc_type,
5660                                    off_t* off);
5661 #endif
5662
5663 #ifdef HAVE_TARGET_64_BIG
5664 template
5665 Output_section*
5666 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5667                                   const unsigned char* symbols,
5668                                   off_t symbols_size,
5669                                   const unsigned char* symbol_names,
5670                                   off_t symbol_names_size,
5671                                   unsigned int shndx,
5672                                   const elfcpp::Shdr<64, true>& shdr,
5673                                   unsigned int reloc_shndx,
5674                                   unsigned int reloc_type,
5675                                   off_t* off);
5676 #endif
5677
5678 #ifdef HAVE_TARGET_32_LITTLE
5679 template
5680 void
5681 Layout::add_to_gdb_index(bool is_type_unit,
5682                          Sized_relobj<32, false>* object,
5683                          const unsigned char* symbols,
5684                          off_t symbols_size,
5685                          unsigned int shndx,
5686                          unsigned int reloc_shndx,
5687                          unsigned int reloc_type);
5688 #endif
5689
5690 #ifdef HAVE_TARGET_32_BIG
5691 template
5692 void
5693 Layout::add_to_gdb_index(bool is_type_unit,
5694                          Sized_relobj<32, true>* object,
5695                          const unsigned char* symbols,
5696                          off_t symbols_size,
5697                          unsigned int shndx,
5698                          unsigned int reloc_shndx,
5699                          unsigned int reloc_type);
5700 #endif
5701
5702 #ifdef HAVE_TARGET_64_LITTLE
5703 template
5704 void
5705 Layout::add_to_gdb_index(bool is_type_unit,
5706                          Sized_relobj<64, false>* object,
5707                          const unsigned char* symbols,
5708                          off_t symbols_size,
5709                          unsigned int shndx,
5710                          unsigned int reloc_shndx,
5711                          unsigned int reloc_type);
5712 #endif
5713
5714 #ifdef HAVE_TARGET_64_BIG
5715 template
5716 void
5717 Layout::add_to_gdb_index(bool is_type_unit,
5718                          Sized_relobj<64, true>* object,
5719                          const unsigned char* symbols,
5720                          off_t symbols_size,
5721                          unsigned int shndx,
5722                          unsigned int reloc_shndx,
5723                          unsigned int reloc_type);
5724 #endif
5725
5726 } // End namespace gold.