Fix placement of forced local symbols in the dynamic symbol table.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158   *off = 0;
1159
1160   if (!this->include_section(object, name, shdr))
1161     return NULL;
1162
1163   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // Plugins can choose to place one or more subsets of sections in
1182       // unique segments and this is done by mapping these section subsets
1183       // to unique output sections.  Check if this section needs to be
1184       // remapped to a unique output section.
1185       Section_segment_map::iterator it
1186           = this->section_segment_map_.find(Const_section_id(object, shndx));
1187       if (it == this->section_segment_map_.end())
1188         {
1189           os = this->choose_output_section(object, name, sh_type,
1190                                            shdr.get_sh_flags(), true,
1191                                            ORDER_INVALID, false, false,
1192                                            true);
1193         }
1194       else
1195         {
1196           // We know the name of the output section, directly call
1197           // get_output_section here by-passing choose_output_section.
1198           elfcpp::Elf_Xword flags
1199             = this->get_output_section_flags(shdr.get_sh_flags());
1200
1201           const char* os_name = it->second->name;
1202           Stringpool::Key name_key;
1203           os_name = this->namepool_.add(os_name, true, &name_key);
1204           os = this->get_output_section(os_name, name_key, sh_type, flags,
1205                                         ORDER_INVALID, false);
1206           if (!os->is_unique_segment())
1207             {
1208               os->set_is_unique_segment();
1209               os->set_extra_segment_flags(it->second->flags);
1210               os->set_segment_alignment(it->second->align);
1211             }
1212         }
1213       if (os == NULL)
1214         return NULL;
1215     }
1216
1217   // By default the GNU linker sorts input sections whose names match
1218   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1219   // sections are sorted by name.  This is used to implement
1220   // constructor priority ordering.  We are compatible.  When we put
1221   // .ctor sections in .init_array and .dtor sections in .fini_array,
1222   // we must also sort plain .ctor and .dtor sections.
1223   if (!this->script_options_->saw_sections_clause()
1224       && !parameters->options().relocatable()
1225       && (is_prefix_of(".ctors.", name)
1226           || is_prefix_of(".dtors.", name)
1227           || is_prefix_of(".init_array.", name)
1228           || is_prefix_of(".fini_array.", name)
1229           || (parameters->options().ctors_in_init_array()
1230               && (strcmp(name, ".ctors") == 0
1231                   || strcmp(name, ".dtors") == 0))))
1232     os->set_must_sort_attached_input_sections();
1233
1234   // By default the GNU linker sorts some special text sections ahead
1235   // of others.  We are compatible.
1236   if (parameters->options().text_reorder()
1237       && !this->script_options_->saw_sections_clause()
1238       && !this->is_section_ordering_specified()
1239       && !parameters->options().relocatable()
1240       && Layout::special_ordering_of_input_section(name) >= 0)
1241     os->set_must_sort_attached_input_sections();
1242
1243   // If this is a .ctors or .ctors.* section being mapped to a
1244   // .init_array section, or a .dtors or .dtors.* section being mapped
1245   // to a .fini_array section, we will need to reverse the words if
1246   // there is more than one.  Record this section for later.  See
1247   // ctors_sections_in_init_array above.
1248   if (!this->script_options_->saw_sections_clause()
1249       && !parameters->options().relocatable()
1250       && shdr.get_sh_size() > size / 8
1251       && (((strcmp(name, ".ctors") == 0
1252             || is_prefix_of(".ctors.", name))
1253            && strcmp(os->name(), ".init_array") == 0)
1254           || ((strcmp(name, ".dtors") == 0
1255                || is_prefix_of(".dtors.", name))
1256               && strcmp(os->name(), ".fini_array") == 0)))
1257     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1258
1259   // FIXME: Handle SHF_LINK_ORDER somewhere.
1260
1261   elfcpp::Elf_Xword orig_flags = os->flags();
1262
1263   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1264                                this->script_options_->saw_sections_clause());
1265
1266   // If the flags changed, we may have to change the order.
1267   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1268     {
1269       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1270       elfcpp::Elf_Xword new_flags =
1271         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1272       if (orig_flags != new_flags)
1273         os->set_order(this->default_section_order(os, false));
1274     }
1275
1276   this->have_added_input_section_ = true;
1277
1278   return os;
1279 }
1280
1281 // Maps section SECN to SEGMENT s.
1282 void
1283 Layout::insert_section_segment_map(Const_section_id secn,
1284                                    Unique_segment_info *s)
1285 {
1286   gold_assert(this->unique_segment_for_sections_specified_);
1287   this->section_segment_map_[secn] = s;
1288 }
1289
1290 // Handle a relocation section when doing a relocatable link.
1291
1292 template<int size, bool big_endian>
1293 Output_section*
1294 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1295                      unsigned int,
1296                      const elfcpp::Shdr<size, big_endian>& shdr,
1297                      Output_section* data_section,
1298                      Relocatable_relocs* rr)
1299 {
1300   gold_assert(parameters->options().relocatable()
1301               || parameters->options().emit_relocs());
1302
1303   int sh_type = shdr.get_sh_type();
1304
1305   std::string name;
1306   if (sh_type == elfcpp::SHT_REL)
1307     name = ".rel";
1308   else if (sh_type == elfcpp::SHT_RELA)
1309     name = ".rela";
1310   else
1311     gold_unreachable();
1312   name += data_section->name();
1313
1314   // In a relocatable link relocs for a grouped section must not be
1315   // combined with other reloc sections.
1316   Output_section* os;
1317   if (!parameters->options().relocatable()
1318       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1319     os = this->choose_output_section(object, name.c_str(), sh_type,
1320                                      shdr.get_sh_flags(), false,
1321                                      ORDER_INVALID, false, true, false);
1322   else
1323     {
1324       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1325       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1326                                      ORDER_INVALID, false);
1327     }
1328
1329   os->set_should_link_to_symtab();
1330   os->set_info_section(data_section);
1331
1332   Output_section_data* posd;
1333   if (sh_type == elfcpp::SHT_REL)
1334     {
1335       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1336       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1337                                            size,
1338                                            big_endian>(rr);
1339     }
1340   else if (sh_type == elfcpp::SHT_RELA)
1341     {
1342       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1343       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1344                                            size,
1345                                            big_endian>(rr);
1346     }
1347   else
1348     gold_unreachable();
1349
1350   os->add_output_section_data(posd);
1351   rr->set_output_data(posd);
1352
1353   return os;
1354 }
1355
1356 // Handle a group section when doing a relocatable link.
1357
1358 template<int size, bool big_endian>
1359 void
1360 Layout::layout_group(Symbol_table* symtab,
1361                      Sized_relobj_file<size, big_endian>* object,
1362                      unsigned int,
1363                      const char* group_section_name,
1364                      const char* signature,
1365                      const elfcpp::Shdr<size, big_endian>& shdr,
1366                      elfcpp::Elf_Word flags,
1367                      std::vector<unsigned int>* shndxes)
1368 {
1369   gold_assert(parameters->options().relocatable());
1370   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1371   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1372   Output_section* os = this->make_output_section(group_section_name,
1373                                                  elfcpp::SHT_GROUP,
1374                                                  shdr.get_sh_flags(),
1375                                                  ORDER_INVALID, false);
1376
1377   // We need to find a symbol with the signature in the symbol table.
1378   // If we don't find one now, we need to look again later.
1379   Symbol* sym = symtab->lookup(signature, NULL);
1380   if (sym != NULL)
1381     os->set_info_symndx(sym);
1382   else
1383     {
1384       // Reserve some space to minimize reallocations.
1385       if (this->group_signatures_.empty())
1386         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1387
1388       // We will wind up using a symbol whose name is the signature.
1389       // So just put the signature in the symbol name pool to save it.
1390       signature = symtab->canonicalize_name(signature);
1391       this->group_signatures_.push_back(Group_signature(os, signature));
1392     }
1393
1394   os->set_should_link_to_symtab();
1395   os->set_entsize(4);
1396
1397   section_size_type entry_count =
1398     convert_to_section_size_type(shdr.get_sh_size() / 4);
1399   Output_section_data* posd =
1400     new Output_data_group<size, big_endian>(object, entry_count, flags,
1401                                             shndxes);
1402   os->add_output_section_data(posd);
1403 }
1404
1405 // Special GNU handling of sections name .eh_frame.  They will
1406 // normally hold exception frame data as defined by the C++ ABI
1407 // (http://codesourcery.com/cxx-abi/).
1408
1409 template<int size, bool big_endian>
1410 Output_section*
1411 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1412                         const unsigned char* symbols,
1413                         off_t symbols_size,
1414                         const unsigned char* symbol_names,
1415                         off_t symbol_names_size,
1416                         unsigned int shndx,
1417                         const elfcpp::Shdr<size, big_endian>& shdr,
1418                         unsigned int reloc_shndx, unsigned int reloc_type,
1419                         off_t* off)
1420 {
1421   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1422               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1423   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1424
1425   Output_section* os = this->make_eh_frame_section(object);
1426   if (os == NULL)
1427     return NULL;
1428
1429   gold_assert(this->eh_frame_section_ == os);
1430
1431   elfcpp::Elf_Xword orig_flags = os->flags();
1432
1433   Eh_frame::Eh_frame_section_disposition disp =
1434       Eh_frame::EH_UNRECOGNIZED_SECTION;
1435   if (!parameters->incremental())
1436     {
1437       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1438                                                              symbols,
1439                                                              symbols_size,
1440                                                              symbol_names,
1441                                                              symbol_names_size,
1442                                                              shndx,
1443                                                              reloc_shndx,
1444                                                              reloc_type);
1445     }
1446
1447   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1448     {
1449       os->update_flags_for_input_section(shdr.get_sh_flags());
1450
1451       // A writable .eh_frame section is a RELRO section.
1452       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1453           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1454         {
1455           os->set_is_relro();
1456           os->set_order(ORDER_RELRO);
1457         }
1458
1459       *off = -1;
1460       return os;
1461     }
1462
1463   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1464     {
1465       // We found the end marker section, so now we can add the set of
1466       // optimized sections to the output section.  We need to postpone
1467       // adding this until we've found a section we can optimize so that
1468       // the .eh_frame section in crtbeginT.o winds up at the start of
1469       // the output section.
1470       os->add_output_section_data(this->eh_frame_data_);
1471       this->added_eh_frame_data_ = true;
1472      }
1473
1474   // We couldn't handle this .eh_frame section for some reason.
1475   // Add it as a normal section.
1476   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1477   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1478                                reloc_shndx, saw_sections_clause);
1479   this->have_added_input_section_ = true;
1480
1481   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1482       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1483     os->set_order(this->default_section_order(os, false));
1484
1485   return os;
1486 }
1487
1488 void
1489 Layout::finalize_eh_frame_section()
1490 {
1491   // If we never found an end marker section, we need to add the
1492   // optimized eh sections to the output section now.
1493   if (!parameters->incremental()
1494       && this->eh_frame_section_ != NULL
1495       && !this->added_eh_frame_data_)
1496     {
1497       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1498       this->added_eh_frame_data_ = true;
1499     }
1500 }
1501
1502 // Create and return the magic .eh_frame section.  Create
1503 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1504 // input .eh_frame section; it may be NULL.
1505
1506 Output_section*
1507 Layout::make_eh_frame_section(const Relobj* object)
1508 {
1509   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1510   // SHT_PROGBITS.
1511   Output_section* os = this->choose_output_section(object, ".eh_frame",
1512                                                    elfcpp::SHT_PROGBITS,
1513                                                    elfcpp::SHF_ALLOC, false,
1514                                                    ORDER_EHFRAME, false, false,
1515                                                    false);
1516   if (os == NULL)
1517     return NULL;
1518
1519   if (this->eh_frame_section_ == NULL)
1520     {
1521       this->eh_frame_section_ = os;
1522       this->eh_frame_data_ = new Eh_frame();
1523
1524       // For incremental linking, we do not optimize .eh_frame sections
1525       // or create a .eh_frame_hdr section.
1526       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1527         {
1528           Output_section* hdr_os =
1529             this->choose_output_section(NULL, ".eh_frame_hdr",
1530                                         elfcpp::SHT_PROGBITS,
1531                                         elfcpp::SHF_ALLOC, false,
1532                                         ORDER_EHFRAME, false, false,
1533                                         false);
1534
1535           if (hdr_os != NULL)
1536             {
1537               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1538                                                         this->eh_frame_data_);
1539               hdr_os->add_output_section_data(hdr_posd);
1540
1541               hdr_os->set_after_input_sections();
1542
1543               if (!this->script_options_->saw_phdrs_clause())
1544                 {
1545                   Output_segment* hdr_oseg;
1546                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1547                                                        elfcpp::PF_R);
1548                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1549                                                           elfcpp::PF_R);
1550                 }
1551
1552               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1553             }
1554         }
1555     }
1556
1557   return os;
1558 }
1559
1560 // Add an exception frame for a PLT.  This is called from target code.
1561
1562 void
1563 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1564                              size_t cie_length, const unsigned char* fde_data,
1565                              size_t fde_length)
1566 {
1567   if (parameters->incremental())
1568     {
1569       // FIXME: Maybe this could work some day....
1570       return;
1571     }
1572   Output_section* os = this->make_eh_frame_section(NULL);
1573   if (os == NULL)
1574     return;
1575   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1576                                             fde_data, fde_length);
1577   if (!this->added_eh_frame_data_)
1578     {
1579       os->add_output_section_data(this->eh_frame_data_);
1580       this->added_eh_frame_data_ = true;
1581     }
1582 }
1583
1584 // Scan a .debug_info or .debug_types section, and add summary
1585 // information to the .gdb_index section.
1586
1587 template<int size, bool big_endian>
1588 void
1589 Layout::add_to_gdb_index(bool is_type_unit,
1590                          Sized_relobj<size, big_endian>* object,
1591                          const unsigned char* symbols,
1592                          off_t symbols_size,
1593                          unsigned int shndx,
1594                          unsigned int reloc_shndx,
1595                          unsigned int reloc_type)
1596 {
1597   if (this->gdb_index_data_ == NULL)
1598     {
1599       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1600                                                        elfcpp::SHT_PROGBITS, 0,
1601                                                        false, ORDER_INVALID,
1602                                                        false, false, false);
1603       if (os == NULL)
1604         return;
1605
1606       this->gdb_index_data_ = new Gdb_index(os);
1607       os->add_output_section_data(this->gdb_index_data_);
1608       os->set_after_input_sections();
1609     }
1610
1611   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1612                                          symbols_size, shndx, reloc_shndx,
1613                                          reloc_type);
1614 }
1615
1616 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1617 // the output section.
1618
1619 Output_section*
1620 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1621                                 elfcpp::Elf_Xword flags,
1622                                 Output_section_data* posd,
1623                                 Output_section_order order, bool is_relro)
1624 {
1625   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1626                                                    false, order, is_relro,
1627                                                    false, false);
1628   if (os != NULL)
1629     os->add_output_section_data(posd);
1630   return os;
1631 }
1632
1633 // Map section flags to segment flags.
1634
1635 elfcpp::Elf_Word
1636 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1637 {
1638   elfcpp::Elf_Word ret = elfcpp::PF_R;
1639   if ((flags & elfcpp::SHF_WRITE) != 0)
1640     ret |= elfcpp::PF_W;
1641   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1642     ret |= elfcpp::PF_X;
1643   return ret;
1644 }
1645
1646 // Make a new Output_section, and attach it to segments as
1647 // appropriate.  ORDER is the order in which this section should
1648 // appear in the output segment.  IS_RELRO is true if this is a relro
1649 // (read-only after relocations) section.
1650
1651 Output_section*
1652 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1653                             elfcpp::Elf_Xword flags,
1654                             Output_section_order order, bool is_relro)
1655 {
1656   Output_section* os;
1657   if ((flags & elfcpp::SHF_ALLOC) == 0
1658       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1659       && is_compressible_debug_section(name))
1660     os = new Output_compressed_section(&parameters->options(), name, type,
1661                                        flags);
1662   else if ((flags & elfcpp::SHF_ALLOC) == 0
1663            && parameters->options().strip_debug_non_line()
1664            && strcmp(".debug_abbrev", name) == 0)
1665     {
1666       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1667           name, type, flags);
1668       if (this->debug_info_)
1669         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1670     }
1671   else if ((flags & elfcpp::SHF_ALLOC) == 0
1672            && parameters->options().strip_debug_non_line()
1673            && strcmp(".debug_info", name) == 0)
1674     {
1675       os = this->debug_info_ = new Output_reduced_debug_info_section(
1676           name, type, flags);
1677       if (this->debug_abbrev_)
1678         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1679     }
1680   else
1681     {
1682       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1683       // not have correct section types.  Force them here.
1684       if (type == elfcpp::SHT_PROGBITS)
1685         {
1686           if (is_prefix_of(".init_array", name))
1687             type = elfcpp::SHT_INIT_ARRAY;
1688           else if (is_prefix_of(".preinit_array", name))
1689             type = elfcpp::SHT_PREINIT_ARRAY;
1690           else if (is_prefix_of(".fini_array", name))
1691             type = elfcpp::SHT_FINI_ARRAY;
1692         }
1693
1694       // FIXME: const_cast is ugly.
1695       Target* target = const_cast<Target*>(&parameters->target());
1696       os = target->make_output_section(name, type, flags);
1697     }
1698
1699   // With -z relro, we have to recognize the special sections by name.
1700   // There is no other way.
1701   bool is_relro_local = false;
1702   if (!this->script_options_->saw_sections_clause()
1703       && parameters->options().relro()
1704       && (flags & elfcpp::SHF_ALLOC) != 0
1705       && (flags & elfcpp::SHF_WRITE) != 0)
1706     {
1707       if (type == elfcpp::SHT_PROGBITS)
1708         {
1709           if ((flags & elfcpp::SHF_TLS) != 0)
1710             is_relro = true;
1711           else if (strcmp(name, ".data.rel.ro") == 0)
1712             is_relro = true;
1713           else if (strcmp(name, ".data.rel.ro.local") == 0)
1714             {
1715               is_relro = true;
1716               is_relro_local = true;
1717             }
1718           else if (strcmp(name, ".ctors") == 0
1719                    || strcmp(name, ".dtors") == 0
1720                    || strcmp(name, ".jcr") == 0)
1721             is_relro = true;
1722         }
1723       else if (type == elfcpp::SHT_INIT_ARRAY
1724                || type == elfcpp::SHT_FINI_ARRAY
1725                || type == elfcpp::SHT_PREINIT_ARRAY)
1726         is_relro = true;
1727     }
1728
1729   if (is_relro)
1730     os->set_is_relro();
1731
1732   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1733     order = this->default_section_order(os, is_relro_local);
1734
1735   os->set_order(order);
1736
1737   parameters->target().new_output_section(os);
1738
1739   this->section_list_.push_back(os);
1740
1741   // The GNU linker by default sorts some sections by priority, so we
1742   // do the same.  We need to know that this might happen before we
1743   // attach any input sections.
1744   if (!this->script_options_->saw_sections_clause()
1745       && !parameters->options().relocatable()
1746       && (strcmp(name, ".init_array") == 0
1747           || strcmp(name, ".fini_array") == 0
1748           || (!parameters->options().ctors_in_init_array()
1749               && (strcmp(name, ".ctors") == 0
1750                   || strcmp(name, ".dtors") == 0))))
1751     os->set_may_sort_attached_input_sections();
1752
1753   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1754   // sections before other .text sections.  We are compatible.  We
1755   // need to know that this might happen before we attach any input
1756   // sections.
1757   if (parameters->options().text_reorder()
1758       && !this->script_options_->saw_sections_clause()
1759       && !this->is_section_ordering_specified()
1760       && !parameters->options().relocatable()
1761       && strcmp(name, ".text") == 0)
1762     os->set_may_sort_attached_input_sections();
1763
1764   // GNU linker sorts section by name with --sort-section=name.
1765   if (strcmp(parameters->options().sort_section(), "name") == 0)
1766       os->set_must_sort_attached_input_sections();
1767
1768   // Check for .stab*str sections, as .stab* sections need to link to
1769   // them.
1770   if (type == elfcpp::SHT_STRTAB
1771       && !this->have_stabstr_section_
1772       && strncmp(name, ".stab", 5) == 0
1773       && strcmp(name + strlen(name) - 3, "str") == 0)
1774     this->have_stabstr_section_ = true;
1775
1776   // During a full incremental link, we add patch space to most
1777   // PROGBITS and NOBITS sections.  Flag those that may be
1778   // arbitrarily padded.
1779   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1780       && order != ORDER_INTERP
1781       && order != ORDER_INIT
1782       && order != ORDER_PLT
1783       && order != ORDER_FINI
1784       && order != ORDER_RELRO_LAST
1785       && order != ORDER_NON_RELRO_FIRST
1786       && strcmp(name, ".eh_frame") != 0
1787       && strcmp(name, ".ctors") != 0
1788       && strcmp(name, ".dtors") != 0
1789       && strcmp(name, ".jcr") != 0)
1790     {
1791       os->set_is_patch_space_allowed();
1792
1793       // Certain sections require "holes" to be filled with
1794       // specific fill patterns.  These fill patterns may have
1795       // a minimum size, so we must prevent allocations from the
1796       // free list that leave a hole smaller than the minimum.
1797       if (strcmp(name, ".debug_info") == 0)
1798         os->set_free_space_fill(new Output_fill_debug_info(false));
1799       else if (strcmp(name, ".debug_types") == 0)
1800         os->set_free_space_fill(new Output_fill_debug_info(true));
1801       else if (strcmp(name, ".debug_line") == 0)
1802         os->set_free_space_fill(new Output_fill_debug_line());
1803     }
1804
1805   // If we have already attached the sections to segments, then we
1806   // need to attach this one now.  This happens for sections created
1807   // directly by the linker.
1808   if (this->sections_are_attached_)
1809     this->attach_section_to_segment(&parameters->target(), os);
1810
1811   return os;
1812 }
1813
1814 // Return the default order in which a section should be placed in an
1815 // output segment.  This function captures a lot of the ideas in
1816 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1817 // linker created section is normally set when the section is created;
1818 // this function is used for input sections.
1819
1820 Output_section_order
1821 Layout::default_section_order(Output_section* os, bool is_relro_local)
1822 {
1823   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1824   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1825   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1826   bool is_bss = false;
1827
1828   switch (os->type())
1829     {
1830     default:
1831     case elfcpp::SHT_PROGBITS:
1832       break;
1833     case elfcpp::SHT_NOBITS:
1834       is_bss = true;
1835       break;
1836     case elfcpp::SHT_RELA:
1837     case elfcpp::SHT_REL:
1838       if (!is_write)
1839         return ORDER_DYNAMIC_RELOCS;
1840       break;
1841     case elfcpp::SHT_HASH:
1842     case elfcpp::SHT_DYNAMIC:
1843     case elfcpp::SHT_SHLIB:
1844     case elfcpp::SHT_DYNSYM:
1845     case elfcpp::SHT_GNU_HASH:
1846     case elfcpp::SHT_GNU_verdef:
1847     case elfcpp::SHT_GNU_verneed:
1848     case elfcpp::SHT_GNU_versym:
1849       if (!is_write)
1850         return ORDER_DYNAMIC_LINKER;
1851       break;
1852     case elfcpp::SHT_NOTE:
1853       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1854     }
1855
1856   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1857     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1858
1859   if (!is_bss && !is_write)
1860     {
1861       if (is_execinstr)
1862         {
1863           if (strcmp(os->name(), ".init") == 0)
1864             return ORDER_INIT;
1865           else if (strcmp(os->name(), ".fini") == 0)
1866             return ORDER_FINI;
1867         }
1868       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1869     }
1870
1871   if (os->is_relro())
1872     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1873
1874   if (os->is_small_section())
1875     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1876   if (os->is_large_section())
1877     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1878
1879   return is_bss ? ORDER_BSS : ORDER_DATA;
1880 }
1881
1882 // Attach output sections to segments.  This is called after we have
1883 // seen all the input sections.
1884
1885 void
1886 Layout::attach_sections_to_segments(const Target* target)
1887 {
1888   for (Section_list::iterator p = this->section_list_.begin();
1889        p != this->section_list_.end();
1890        ++p)
1891     this->attach_section_to_segment(target, *p);
1892
1893   this->sections_are_attached_ = true;
1894 }
1895
1896 // Attach an output section to a segment.
1897
1898 void
1899 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1900 {
1901   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1902     this->unattached_section_list_.push_back(os);
1903   else
1904     this->attach_allocated_section_to_segment(target, os);
1905 }
1906
1907 // Attach an allocated output section to a segment.
1908
1909 void
1910 Layout::attach_allocated_section_to_segment(const Target* target,
1911                                             Output_section* os)
1912 {
1913   elfcpp::Elf_Xword flags = os->flags();
1914   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1915
1916   if (parameters->options().relocatable())
1917     return;
1918
1919   // If we have a SECTIONS clause, we can't handle the attachment to
1920   // segments until after we've seen all the sections.
1921   if (this->script_options_->saw_sections_clause())
1922     return;
1923
1924   gold_assert(!this->script_options_->saw_phdrs_clause());
1925
1926   // This output section goes into a PT_LOAD segment.
1927
1928   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1929
1930   // If this output section's segment has extra flags that need to be set,
1931   // coming from a linker plugin, do that.
1932   seg_flags |= os->extra_segment_flags();
1933
1934   // Check for --section-start.
1935   uint64_t addr;
1936   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1937
1938   // In general the only thing we really care about for PT_LOAD
1939   // segments is whether or not they are writable or executable,
1940   // so that is how we search for them.
1941   // Large data sections also go into their own PT_LOAD segment.
1942   // People who need segments sorted on some other basis will
1943   // have to use a linker script.
1944
1945   Segment_list::const_iterator p;
1946   if (!os->is_unique_segment())
1947     {
1948       for (p = this->segment_list_.begin();
1949            p != this->segment_list_.end();
1950            ++p)
1951         {
1952           if ((*p)->type() != elfcpp::PT_LOAD)
1953             continue;
1954           if ((*p)->is_unique_segment())
1955             continue;
1956           if (!parameters->options().omagic()
1957               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1958             continue;
1959           if ((target->isolate_execinstr() || parameters->options().rosegment())
1960               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1961             continue;
1962           // If -Tbss was specified, we need to separate the data and BSS
1963           // segments.
1964           if (parameters->options().user_set_Tbss())
1965             {
1966               if ((os->type() == elfcpp::SHT_NOBITS)
1967                   == (*p)->has_any_data_sections())
1968                 continue;
1969             }
1970           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1971             continue;
1972
1973           if (is_address_set)
1974             {
1975               if ((*p)->are_addresses_set())
1976                 continue;
1977
1978               (*p)->add_initial_output_data(os);
1979               (*p)->update_flags_for_output_section(seg_flags);
1980               (*p)->set_addresses(addr, addr);
1981               break;
1982             }
1983
1984           (*p)->add_output_section_to_load(this, os, seg_flags);
1985           break;
1986         }
1987     }
1988
1989   if (p == this->segment_list_.end()
1990       || os->is_unique_segment())
1991     {
1992       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1993                                                        seg_flags);
1994       if (os->is_large_data_section())
1995         oseg->set_is_large_data_segment();
1996       oseg->add_output_section_to_load(this, os, seg_flags);
1997       if (is_address_set)
1998         oseg->set_addresses(addr, addr);
1999       // Check if segment should be marked unique.  For segments marked
2000       // unique by linker plugins, set the new alignment if specified.
2001       if (os->is_unique_segment())
2002         {
2003           oseg->set_is_unique_segment();
2004           if (os->segment_alignment() != 0)
2005             oseg->set_minimum_p_align(os->segment_alignment());
2006         }
2007     }
2008
2009   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2010   // segment.
2011   if (os->type() == elfcpp::SHT_NOTE)
2012     {
2013       // See if we already have an equivalent PT_NOTE segment.
2014       for (p = this->segment_list_.begin();
2015            p != segment_list_.end();
2016            ++p)
2017         {
2018           if ((*p)->type() == elfcpp::PT_NOTE
2019               && (((*p)->flags() & elfcpp::PF_W)
2020                   == (seg_flags & elfcpp::PF_W)))
2021             {
2022               (*p)->add_output_section_to_nonload(os, seg_flags);
2023               break;
2024             }
2025         }
2026
2027       if (p == this->segment_list_.end())
2028         {
2029           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2030                                                            seg_flags);
2031           oseg->add_output_section_to_nonload(os, seg_flags);
2032         }
2033     }
2034
2035   // If we see a loadable SHF_TLS section, we create a PT_TLS
2036   // segment.  There can only be one such segment.
2037   if ((flags & elfcpp::SHF_TLS) != 0)
2038     {
2039       if (this->tls_segment_ == NULL)
2040         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2041       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2042     }
2043
2044   // If -z relro is in effect, and we see a relro section, we create a
2045   // PT_GNU_RELRO segment.  There can only be one such segment.
2046   if (os->is_relro() && parameters->options().relro())
2047     {
2048       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2049       if (this->relro_segment_ == NULL)
2050         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2051       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2052     }
2053
2054   // If we see a section named .interp, put it into a PT_INTERP
2055   // segment.  This seems broken to me, but this is what GNU ld does,
2056   // and glibc expects it.
2057   if (strcmp(os->name(), ".interp") == 0
2058       && !this->script_options_->saw_phdrs_clause())
2059     {
2060       if (this->interp_segment_ == NULL)
2061         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2062       else
2063         gold_warning(_("multiple '.interp' sections in input files "
2064                        "may cause confusing PT_INTERP segment"));
2065       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2066     }
2067 }
2068
2069 // Make an output section for a script.
2070
2071 Output_section*
2072 Layout::make_output_section_for_script(
2073     const char* name,
2074     Script_sections::Section_type section_type)
2075 {
2076   name = this->namepool_.add(name, false, NULL);
2077   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2078   if (section_type == Script_sections::ST_NOLOAD)
2079     sh_flags = 0;
2080   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2081                                                  sh_flags, ORDER_INVALID,
2082                                                  false);
2083   os->set_found_in_sections_clause();
2084   if (section_type == Script_sections::ST_NOLOAD)
2085     os->set_is_noload();
2086   return os;
2087 }
2088
2089 // Return the number of segments we expect to see.
2090
2091 size_t
2092 Layout::expected_segment_count() const
2093 {
2094   size_t ret = this->segment_list_.size();
2095
2096   // If we didn't see a SECTIONS clause in a linker script, we should
2097   // already have the complete list of segments.  Otherwise we ask the
2098   // SECTIONS clause how many segments it expects, and add in the ones
2099   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2100
2101   if (!this->script_options_->saw_sections_clause())
2102     return ret;
2103   else
2104     {
2105       const Script_sections* ss = this->script_options_->script_sections();
2106       return ret + ss->expected_segment_count(this);
2107     }
2108 }
2109
2110 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2111 // is whether we saw a .note.GNU-stack section in the object file.
2112 // GNU_STACK_FLAGS is the section flags.  The flags give the
2113 // protection required for stack memory.  We record this in an
2114 // executable as a PT_GNU_STACK segment.  If an object file does not
2115 // have a .note.GNU-stack segment, we must assume that it is an old
2116 // object.  On some targets that will force an executable stack.
2117
2118 void
2119 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2120                          const Object* obj)
2121 {
2122   if (!seen_gnu_stack)
2123     {
2124       this->input_without_gnu_stack_note_ = true;
2125       if (parameters->options().warn_execstack()
2126           && parameters->target().is_default_stack_executable())
2127         gold_warning(_("%s: missing .note.GNU-stack section"
2128                        " implies executable stack"),
2129                      obj->name().c_str());
2130     }
2131   else
2132     {
2133       this->input_with_gnu_stack_note_ = true;
2134       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2135         {
2136           this->input_requires_executable_stack_ = true;
2137           if (parameters->options().warn_execstack())
2138             gold_warning(_("%s: requires executable stack"),
2139                          obj->name().c_str());
2140         }
2141     }
2142 }
2143
2144 // Create automatic note sections.
2145
2146 void
2147 Layout::create_notes()
2148 {
2149   this->create_gold_note();
2150   this->create_stack_segment();
2151   this->create_build_id();
2152 }
2153
2154 // Create the dynamic sections which are needed before we read the
2155 // relocs.
2156
2157 void
2158 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2159 {
2160   if (parameters->doing_static_link())
2161     return;
2162
2163   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2164                                                        elfcpp::SHT_DYNAMIC,
2165                                                        (elfcpp::SHF_ALLOC
2166                                                         | elfcpp::SHF_WRITE),
2167                                                        false, ORDER_RELRO,
2168                                                        true, false, false);
2169
2170   // A linker script may discard .dynamic, so check for NULL.
2171   if (this->dynamic_section_ != NULL)
2172     {
2173       this->dynamic_symbol_ =
2174         symtab->define_in_output_data("_DYNAMIC", NULL,
2175                                       Symbol_table::PREDEFINED,
2176                                       this->dynamic_section_, 0, 0,
2177                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2178                                       elfcpp::STV_HIDDEN, 0, false, false);
2179
2180       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2181
2182       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2183     }
2184 }
2185
2186 // For each output section whose name can be represented as C symbol,
2187 // define __start and __stop symbols for the section.  This is a GNU
2188 // extension.
2189
2190 void
2191 Layout::define_section_symbols(Symbol_table* symtab)
2192 {
2193   for (Section_list::const_iterator p = this->section_list_.begin();
2194        p != this->section_list_.end();
2195        ++p)
2196     {
2197       const char* const name = (*p)->name();
2198       if (is_cident(name))
2199         {
2200           const std::string name_string(name);
2201           const std::string start_name(cident_section_start_prefix
2202                                        + name_string);
2203           const std::string stop_name(cident_section_stop_prefix
2204                                       + name_string);
2205
2206           symtab->define_in_output_data(start_name.c_str(),
2207                                         NULL, // version
2208                                         Symbol_table::PREDEFINED,
2209                                         *p,
2210                                         0, // value
2211                                         0, // symsize
2212                                         elfcpp::STT_NOTYPE,
2213                                         elfcpp::STB_GLOBAL,
2214                                         elfcpp::STV_DEFAULT,
2215                                         0, // nonvis
2216                                         false, // offset_is_from_end
2217                                         true); // only_if_ref
2218
2219           symtab->define_in_output_data(stop_name.c_str(),
2220                                         NULL, // version
2221                                         Symbol_table::PREDEFINED,
2222                                         *p,
2223                                         0, // value
2224                                         0, // symsize
2225                                         elfcpp::STT_NOTYPE,
2226                                         elfcpp::STB_GLOBAL,
2227                                         elfcpp::STV_DEFAULT,
2228                                         0, // nonvis
2229                                         true, // offset_is_from_end
2230                                         true); // only_if_ref
2231         }
2232     }
2233 }
2234
2235 // Define symbols for group signatures.
2236
2237 void
2238 Layout::define_group_signatures(Symbol_table* symtab)
2239 {
2240   for (Group_signatures::iterator p = this->group_signatures_.begin();
2241        p != this->group_signatures_.end();
2242        ++p)
2243     {
2244       Symbol* sym = symtab->lookup(p->signature, NULL);
2245       if (sym != NULL)
2246         p->section->set_info_symndx(sym);
2247       else
2248         {
2249           // Force the name of the group section to the group
2250           // signature, and use the group's section symbol as the
2251           // signature symbol.
2252           if (strcmp(p->section->name(), p->signature) != 0)
2253             {
2254               const char* name = this->namepool_.add(p->signature,
2255                                                      true, NULL);
2256               p->section->set_name(name);
2257             }
2258           p->section->set_needs_symtab_index();
2259           p->section->set_info_section_symndx(p->section);
2260         }
2261     }
2262
2263   this->group_signatures_.clear();
2264 }
2265
2266 // Find the first read-only PT_LOAD segment, creating one if
2267 // necessary.
2268
2269 Output_segment*
2270 Layout::find_first_load_seg(const Target* target)
2271 {
2272   Output_segment* best = NULL;
2273   for (Segment_list::const_iterator p = this->segment_list_.begin();
2274        p != this->segment_list_.end();
2275        ++p)
2276     {
2277       if ((*p)->type() == elfcpp::PT_LOAD
2278           && ((*p)->flags() & elfcpp::PF_R) != 0
2279           && (parameters->options().omagic()
2280               || ((*p)->flags() & elfcpp::PF_W) == 0)
2281           && (!target->isolate_execinstr()
2282               || ((*p)->flags() & elfcpp::PF_X) == 0))
2283         {
2284           if (best == NULL || this->segment_precedes(*p, best))
2285             best = *p;
2286         }
2287     }
2288   if (best != NULL)
2289     return best;
2290
2291   gold_assert(!this->script_options_->saw_phdrs_clause());
2292
2293   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2294                                                        elfcpp::PF_R);
2295   return load_seg;
2296 }
2297
2298 // Save states of all current output segments.  Store saved states
2299 // in SEGMENT_STATES.
2300
2301 void
2302 Layout::save_segments(Segment_states* segment_states)
2303 {
2304   for (Segment_list::const_iterator p = this->segment_list_.begin();
2305        p != this->segment_list_.end();
2306        ++p)
2307     {
2308       Output_segment* segment = *p;
2309       // Shallow copy.
2310       Output_segment* copy = new Output_segment(*segment);
2311       (*segment_states)[segment] = copy;
2312     }
2313 }
2314
2315 // Restore states of output segments and delete any segment not found in
2316 // SEGMENT_STATES.
2317
2318 void
2319 Layout::restore_segments(const Segment_states* segment_states)
2320 {
2321   // Go through the segment list and remove any segment added in the
2322   // relaxation loop.
2323   this->tls_segment_ = NULL;
2324   this->relro_segment_ = NULL;
2325   Segment_list::iterator list_iter = this->segment_list_.begin();
2326   while (list_iter != this->segment_list_.end())
2327     {
2328       Output_segment* segment = *list_iter;
2329       Segment_states::const_iterator states_iter =
2330           segment_states->find(segment);
2331       if (states_iter != segment_states->end())
2332         {
2333           const Output_segment* copy = states_iter->second;
2334           // Shallow copy to restore states.
2335           *segment = *copy;
2336
2337           // Also fix up TLS and RELRO segment pointers as appropriate.
2338           if (segment->type() == elfcpp::PT_TLS)
2339             this->tls_segment_ = segment;
2340           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2341             this->relro_segment_ = segment;
2342
2343           ++list_iter;
2344         }
2345       else
2346         {
2347           list_iter = this->segment_list_.erase(list_iter);
2348           // This is a segment created during section layout.  It should be
2349           // safe to remove it since we should have removed all pointers to it.
2350           delete segment;
2351         }
2352     }
2353 }
2354
2355 // Clean up after relaxation so that sections can be laid out again.
2356
2357 void
2358 Layout::clean_up_after_relaxation()
2359 {
2360   // Restore the segments to point state just prior to the relaxation loop.
2361   Script_sections* script_section = this->script_options_->script_sections();
2362   script_section->release_segments();
2363   this->restore_segments(this->segment_states_);
2364
2365   // Reset section addresses and file offsets
2366   for (Section_list::iterator p = this->section_list_.begin();
2367        p != this->section_list_.end();
2368        ++p)
2369     {
2370       (*p)->restore_states();
2371
2372       // If an input section changes size because of relaxation,
2373       // we need to adjust the section offsets of all input sections.
2374       // after such a section.
2375       if ((*p)->section_offsets_need_adjustment())
2376         (*p)->adjust_section_offsets();
2377
2378       (*p)->reset_address_and_file_offset();
2379     }
2380
2381   // Reset special output object address and file offsets.
2382   for (Data_list::iterator p = this->special_output_list_.begin();
2383        p != this->special_output_list_.end();
2384        ++p)
2385     (*p)->reset_address_and_file_offset();
2386
2387   // A linker script may have created some output section data objects.
2388   // They are useless now.
2389   for (Output_section_data_list::const_iterator p =
2390          this->script_output_section_data_list_.begin();
2391        p != this->script_output_section_data_list_.end();
2392        ++p)
2393     delete *p;
2394   this->script_output_section_data_list_.clear();
2395
2396   // Special-case fill output objects are recreated each time through
2397   // the relaxation loop.
2398   this->reset_relax_output();
2399 }
2400
2401 void
2402 Layout::reset_relax_output()
2403 {
2404   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2405        p != this->relax_output_list_.end();
2406        ++p)
2407     delete *p;
2408   this->relax_output_list_.clear();
2409 }
2410
2411 // Prepare for relaxation.
2412
2413 void
2414 Layout::prepare_for_relaxation()
2415 {
2416   // Create an relaxation debug check if in debugging mode.
2417   if (is_debugging_enabled(DEBUG_RELAXATION))
2418     this->relaxation_debug_check_ = new Relaxation_debug_check();
2419
2420   // Save segment states.
2421   this->segment_states_ = new Segment_states();
2422   this->save_segments(this->segment_states_);
2423
2424   for(Section_list::const_iterator p = this->section_list_.begin();
2425       p != this->section_list_.end();
2426       ++p)
2427     (*p)->save_states();
2428
2429   if (is_debugging_enabled(DEBUG_RELAXATION))
2430     this->relaxation_debug_check_->check_output_data_for_reset_values(
2431         this->section_list_, this->special_output_list_,
2432         this->relax_output_list_);
2433
2434   // Also enable recording of output section data from scripts.
2435   this->record_output_section_data_from_script_ = true;
2436 }
2437
2438 // If the user set the address of the text segment, that may not be
2439 // compatible with putting the segment headers and file headers into
2440 // that segment.  For isolate_execinstr() targets, it's the rodata
2441 // segment rather than text where we might put the headers.
2442 static inline bool
2443 load_seg_unusable_for_headers(const Target* target)
2444 {
2445   const General_options& options = parameters->options();
2446   if (target->isolate_execinstr())
2447     return (options.user_set_Trodata_segment()
2448             && options.Trodata_segment() % target->abi_pagesize() != 0);
2449   else
2450     return (options.user_set_Ttext()
2451             && options.Ttext() % target->abi_pagesize() != 0);
2452 }
2453
2454 // Relaxation loop body:  If target has no relaxation, this runs only once
2455 // Otherwise, the target relaxation hook is called at the end of
2456 // each iteration.  If the hook returns true, it means re-layout of
2457 // section is required.
2458 //
2459 // The number of segments created by a linking script without a PHDRS
2460 // clause may be affected by section sizes and alignments.  There is
2461 // a remote chance that relaxation causes different number of PT_LOAD
2462 // segments are created and sections are attached to different segments.
2463 // Therefore, we always throw away all segments created during section
2464 // layout.  In order to be able to restart the section layout, we keep
2465 // a copy of the segment list right before the relaxation loop and use
2466 // that to restore the segments.
2467 //
2468 // PASS is the current relaxation pass number.
2469 // SYMTAB is a symbol table.
2470 // PLOAD_SEG is the address of a pointer for the load segment.
2471 // PHDR_SEG is a pointer to the PHDR segment.
2472 // SEGMENT_HEADERS points to the output segment header.
2473 // FILE_HEADER points to the output file header.
2474 // PSHNDX is the address to store the output section index.
2475
2476 off_t inline
2477 Layout::relaxation_loop_body(
2478     int pass,
2479     Target* target,
2480     Symbol_table* symtab,
2481     Output_segment** pload_seg,
2482     Output_segment* phdr_seg,
2483     Output_segment_headers* segment_headers,
2484     Output_file_header* file_header,
2485     unsigned int* pshndx)
2486 {
2487   // If this is not the first iteration, we need to clean up after
2488   // relaxation so that we can lay out the sections again.
2489   if (pass != 0)
2490     this->clean_up_after_relaxation();
2491
2492   // If there is a SECTIONS clause, put all the input sections into
2493   // the required order.
2494   Output_segment* load_seg;
2495   if (this->script_options_->saw_sections_clause())
2496     load_seg = this->set_section_addresses_from_script(symtab);
2497   else if (parameters->options().relocatable())
2498     load_seg = NULL;
2499   else
2500     load_seg = this->find_first_load_seg(target);
2501
2502   if (parameters->options().oformat_enum()
2503       != General_options::OBJECT_FORMAT_ELF)
2504     load_seg = NULL;
2505
2506   if (load_seg_unusable_for_headers(target))
2507     {
2508       load_seg = NULL;
2509       phdr_seg = NULL;
2510     }
2511
2512   gold_assert(phdr_seg == NULL
2513               || load_seg != NULL
2514               || this->script_options_->saw_sections_clause());
2515
2516   // If the address of the load segment we found has been set by
2517   // --section-start rather than by a script, then adjust the VMA and
2518   // LMA downward if possible to include the file and section headers.
2519   uint64_t header_gap = 0;
2520   if (load_seg != NULL
2521       && load_seg->are_addresses_set()
2522       && !this->script_options_->saw_sections_clause()
2523       && !parameters->options().relocatable())
2524     {
2525       file_header->finalize_data_size();
2526       segment_headers->finalize_data_size();
2527       size_t sizeof_headers = (file_header->data_size()
2528                                + segment_headers->data_size());
2529       const uint64_t abi_pagesize = target->abi_pagesize();
2530       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2531       hdr_paddr &= ~(abi_pagesize - 1);
2532       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2533       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2534         load_seg = NULL;
2535       else
2536         {
2537           load_seg->set_addresses(load_seg->vaddr() - subtract,
2538                                   load_seg->paddr() - subtract);
2539           header_gap = subtract - sizeof_headers;
2540         }
2541     }
2542
2543   // Lay out the segment headers.
2544   if (!parameters->options().relocatable())
2545     {
2546       gold_assert(segment_headers != NULL);
2547       if (header_gap != 0 && load_seg != NULL)
2548         {
2549           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2550           load_seg->add_initial_output_data(z);
2551         }
2552       if (load_seg != NULL)
2553         load_seg->add_initial_output_data(segment_headers);
2554       if (phdr_seg != NULL)
2555         phdr_seg->add_initial_output_data(segment_headers);
2556     }
2557
2558   // Lay out the file header.
2559   if (load_seg != NULL)
2560     load_seg->add_initial_output_data(file_header);
2561
2562   if (this->script_options_->saw_phdrs_clause()
2563       && !parameters->options().relocatable())
2564     {
2565       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2566       // clause in a linker script.
2567       Script_sections* ss = this->script_options_->script_sections();
2568       ss->put_headers_in_phdrs(file_header, segment_headers);
2569     }
2570
2571   // We set the output section indexes in set_segment_offsets and
2572   // set_section_indexes.
2573   *pshndx = 1;
2574
2575   // Set the file offsets of all the segments, and all the sections
2576   // they contain.
2577   off_t off;
2578   if (!parameters->options().relocatable())
2579     off = this->set_segment_offsets(target, load_seg, pshndx);
2580   else
2581     off = this->set_relocatable_section_offsets(file_header, pshndx);
2582
2583    // Verify that the dummy relaxation does not change anything.
2584   if (is_debugging_enabled(DEBUG_RELAXATION))
2585     {
2586       if (pass == 0)
2587         this->relaxation_debug_check_->read_sections(this->section_list_);
2588       else
2589         this->relaxation_debug_check_->verify_sections(this->section_list_);
2590     }
2591
2592   *pload_seg = load_seg;
2593   return off;
2594 }
2595
2596 // Search the list of patterns and find the position of the given section
2597 // name in the output section.  If the section name matches a glob
2598 // pattern and a non-glob name, then the non-glob position takes
2599 // precedence.  Return 0 if no match is found.
2600
2601 unsigned int
2602 Layout::find_section_order_index(const std::string& section_name)
2603 {
2604   Unordered_map<std::string, unsigned int>::iterator map_it;
2605   map_it = this->input_section_position_.find(section_name);
2606   if (map_it != this->input_section_position_.end())
2607     return map_it->second;
2608
2609   // Absolute match failed.  Linear search the glob patterns.
2610   std::vector<std::string>::iterator it;
2611   for (it = this->input_section_glob_.begin();
2612        it != this->input_section_glob_.end();
2613        ++it)
2614     {
2615        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2616          {
2617            map_it = this->input_section_position_.find(*it);
2618            gold_assert(map_it != this->input_section_position_.end());
2619            return map_it->second;
2620          }
2621     }
2622   return 0;
2623 }
2624
2625 // Read the sequence of input sections from the file specified with
2626 // option --section-ordering-file.
2627
2628 void
2629 Layout::read_layout_from_file()
2630 {
2631   const char* filename = parameters->options().section_ordering_file();
2632   std::ifstream in;
2633   std::string line;
2634
2635   in.open(filename);
2636   if (!in)
2637     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2638                filename, strerror(errno));
2639
2640   std::getline(in, line);   // this chops off the trailing \n, if any
2641   unsigned int position = 1;
2642   this->set_section_ordering_specified();
2643
2644   while (in)
2645     {
2646       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2647         line.resize(line.length() - 1);
2648       // Ignore comments, beginning with '#'
2649       if (line[0] == '#')
2650         {
2651           std::getline(in, line);
2652           continue;
2653         }
2654       this->input_section_position_[line] = position;
2655       // Store all glob patterns in a vector.
2656       if (is_wildcard_string(line.c_str()))
2657         this->input_section_glob_.push_back(line);
2658       position++;
2659       std::getline(in, line);
2660     }
2661 }
2662
2663 // Finalize the layout.  When this is called, we have created all the
2664 // output sections and all the output segments which are based on
2665 // input sections.  We have several things to do, and we have to do
2666 // them in the right order, so that we get the right results correctly
2667 // and efficiently.
2668
2669 // 1) Finalize the list of output segments and create the segment
2670 // table header.
2671
2672 // 2) Finalize the dynamic symbol table and associated sections.
2673
2674 // 3) Determine the final file offset of all the output segments.
2675
2676 // 4) Determine the final file offset of all the SHF_ALLOC output
2677 // sections.
2678
2679 // 5) Create the symbol table sections and the section name table
2680 // section.
2681
2682 // 6) Finalize the symbol table: set symbol values to their final
2683 // value and make a final determination of which symbols are going
2684 // into the output symbol table.
2685
2686 // 7) Create the section table header.
2687
2688 // 8) Determine the final file offset of all the output sections which
2689 // are not SHF_ALLOC, including the section table header.
2690
2691 // 9) Finalize the ELF file header.
2692
2693 // This function returns the size of the output file.
2694
2695 off_t
2696 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2697                  Target* target, const Task* task)
2698 {
2699   unsigned int local_dynamic_count = 0;
2700   unsigned int forced_local_dynamic_count = 0;
2701
2702   target->finalize_sections(this, input_objects, symtab);
2703
2704   this->count_local_symbols(task, input_objects);
2705
2706   this->link_stabs_sections();
2707
2708   Output_segment* phdr_seg = NULL;
2709   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2710     {
2711       // There was a dynamic object in the link.  We need to create
2712       // some information for the dynamic linker.
2713
2714       // Create the PT_PHDR segment which will hold the program
2715       // headers.
2716       if (!this->script_options_->saw_phdrs_clause())
2717         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2718
2719       // Create the dynamic symbol table, including the hash table.
2720       Output_section* dynstr;
2721       std::vector<Symbol*> dynamic_symbols;
2722       Versions versions(*this->script_options()->version_script_info(),
2723                         &this->dynpool_);
2724       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2725                                   &local_dynamic_count,
2726                                   &forced_local_dynamic_count,
2727                                   &dynamic_symbols,
2728                                   &versions);
2729
2730       // Create the .interp section to hold the name of the
2731       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2732       // if we saw a .interp section in an input file.
2733       if ((!parameters->options().shared()
2734            || parameters->options().dynamic_linker() != NULL)
2735           && this->interp_segment_ == NULL)
2736         this->create_interp(target);
2737
2738       // Finish the .dynamic section to hold the dynamic data, and put
2739       // it in a PT_DYNAMIC segment.
2740       this->finish_dynamic_section(input_objects, symtab);
2741
2742       // We should have added everything we need to the dynamic string
2743       // table.
2744       this->dynpool_.set_string_offsets();
2745
2746       // Create the version sections.  We can't do this until the
2747       // dynamic string table is complete.
2748       this->create_version_sections(&versions, symtab,
2749                                     (local_dynamic_count
2750                                      + forced_local_dynamic_count),
2751                                     dynamic_symbols, dynstr);
2752
2753       // Set the size of the _DYNAMIC symbol.  We can't do this until
2754       // after we call create_version_sections.
2755       this->set_dynamic_symbol_size(symtab);
2756     }
2757
2758   // Create segment headers.
2759   Output_segment_headers* segment_headers =
2760     (parameters->options().relocatable()
2761      ? NULL
2762      : new Output_segment_headers(this->segment_list_));
2763
2764   // Lay out the file header.
2765   Output_file_header* file_header = new Output_file_header(target, symtab,
2766                                                            segment_headers);
2767
2768   this->special_output_list_.push_back(file_header);
2769   if (segment_headers != NULL)
2770     this->special_output_list_.push_back(segment_headers);
2771
2772   // Find approriate places for orphan output sections if we are using
2773   // a linker script.
2774   if (this->script_options_->saw_sections_clause())
2775     this->place_orphan_sections_in_script();
2776
2777   Output_segment* load_seg;
2778   off_t off;
2779   unsigned int shndx;
2780   int pass = 0;
2781
2782   // Take a snapshot of the section layout as needed.
2783   if (target->may_relax())
2784     this->prepare_for_relaxation();
2785
2786   // Run the relaxation loop to lay out sections.
2787   do
2788     {
2789       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2790                                        phdr_seg, segment_headers, file_header,
2791                                        &shndx);
2792       pass++;
2793     }
2794   while (target->may_relax()
2795          && target->relax(pass, input_objects, symtab, this, task));
2796
2797   // If there is a load segment that contains the file and program headers,
2798   // provide a symbol __ehdr_start pointing there.
2799   // A program can use this to examine itself robustly.
2800   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2801   if (ehdr_start != NULL && ehdr_start->is_predefined())
2802     {
2803       if (load_seg != NULL)
2804         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2805       else
2806         ehdr_start->set_undefined();
2807     }
2808
2809   // Set the file offsets of all the non-data sections we've seen so
2810   // far which don't have to wait for the input sections.  We need
2811   // this in order to finalize local symbols in non-allocated
2812   // sections.
2813   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2814
2815   // Set the section indexes of all unallocated sections seen so far,
2816   // in case any of them are somehow referenced by a symbol.
2817   shndx = this->set_section_indexes(shndx);
2818
2819   // Create the symbol table sections.
2820   this->create_symtab_sections(input_objects, symtab, shndx, &off,
2821                                local_dynamic_count);
2822   if (!parameters->doing_static_link())
2823     this->assign_local_dynsym_offsets(input_objects);
2824
2825   // Process any symbol assignments from a linker script.  This must
2826   // be called after the symbol table has been finalized.
2827   this->script_options_->finalize_symbols(symtab, this);
2828
2829   // Create the incremental inputs sections.
2830   if (this->incremental_inputs_)
2831     {
2832       this->incremental_inputs_->finalize();
2833       this->create_incremental_info_sections(symtab);
2834     }
2835
2836   // Create the .shstrtab section.
2837   Output_section* shstrtab_section = this->create_shstrtab();
2838
2839   // Set the file offsets of the rest of the non-data sections which
2840   // don't have to wait for the input sections.
2841   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2842
2843   // Now that all sections have been created, set the section indexes
2844   // for any sections which haven't been done yet.
2845   shndx = this->set_section_indexes(shndx);
2846
2847   // Create the section table header.
2848   this->create_shdrs(shstrtab_section, &off);
2849
2850   // If there are no sections which require postprocessing, we can
2851   // handle the section names now, and avoid a resize later.
2852   if (!this->any_postprocessing_sections_)
2853     {
2854       off = this->set_section_offsets(off,
2855                                       POSTPROCESSING_SECTIONS_PASS);
2856       off =
2857           this->set_section_offsets(off,
2858                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2859     }
2860
2861   file_header->set_section_info(this->section_headers_, shstrtab_section);
2862
2863   // Now we know exactly where everything goes in the output file
2864   // (except for non-allocated sections which require postprocessing).
2865   Output_data::layout_complete();
2866
2867   this->output_file_size_ = off;
2868
2869   return off;
2870 }
2871
2872 // Create a note header following the format defined in the ELF ABI.
2873 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2874 // of the section to create, DESCSZ is the size of the descriptor.
2875 // ALLOCATE is true if the section should be allocated in memory.
2876 // This returns the new note section.  It sets *TRAILING_PADDING to
2877 // the number of trailing zero bytes required.
2878
2879 Output_section*
2880 Layout::create_note(const char* name, int note_type,
2881                     const char* section_name, size_t descsz,
2882                     bool allocate, size_t* trailing_padding)
2883 {
2884   // Authorities all agree that the values in a .note field should
2885   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2886   // they differ on what the alignment is for 64-bit binaries.
2887   // The GABI says unambiguously they take 8-byte alignment:
2888   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2889   // Other documentation says alignment should always be 4 bytes:
2890   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2891   // GNU ld and GNU readelf both support the latter (at least as of
2892   // version 2.16.91), and glibc always generates the latter for
2893   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2894   // here.
2895 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2896   const int size = parameters->target().get_size();
2897 #else
2898   const int size = 32;
2899 #endif
2900
2901   // The contents of the .note section.
2902   size_t namesz = strlen(name) + 1;
2903   size_t aligned_namesz = align_address(namesz, size / 8);
2904   size_t aligned_descsz = align_address(descsz, size / 8);
2905
2906   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2907
2908   unsigned char* buffer = new unsigned char[notehdrsz];
2909   memset(buffer, 0, notehdrsz);
2910
2911   bool is_big_endian = parameters->target().is_big_endian();
2912
2913   if (size == 32)
2914     {
2915       if (!is_big_endian)
2916         {
2917           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2918           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2919           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2920         }
2921       else
2922         {
2923           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2924           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2925           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2926         }
2927     }
2928   else if (size == 64)
2929     {
2930       if (!is_big_endian)
2931         {
2932           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2933           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2934           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2935         }
2936       else
2937         {
2938           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2939           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2940           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2941         }
2942     }
2943   else
2944     gold_unreachable();
2945
2946   memcpy(buffer + 3 * (size / 8), name, namesz);
2947
2948   elfcpp::Elf_Xword flags = 0;
2949   Output_section_order order = ORDER_INVALID;
2950   if (allocate)
2951     {
2952       flags = elfcpp::SHF_ALLOC;
2953       order = ORDER_RO_NOTE;
2954     }
2955   Output_section* os = this->choose_output_section(NULL, section_name,
2956                                                    elfcpp::SHT_NOTE,
2957                                                    flags, false, order, false,
2958                                                    false, true);
2959   if (os == NULL)
2960     return NULL;
2961
2962   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2963                                                            size / 8,
2964                                                            "** note header");
2965   os->add_output_section_data(posd);
2966
2967   *trailing_padding = aligned_descsz - descsz;
2968
2969   return os;
2970 }
2971
2972 // For an executable or shared library, create a note to record the
2973 // version of gold used to create the binary.
2974
2975 void
2976 Layout::create_gold_note()
2977 {
2978   if (parameters->options().relocatable()
2979       || parameters->incremental_update())
2980     return;
2981
2982   std::string desc = std::string("gold ") + gold::get_version_string();
2983
2984   size_t trailing_padding;
2985   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2986                                          ".note.gnu.gold-version", desc.size(),
2987                                          false, &trailing_padding);
2988   if (os == NULL)
2989     return;
2990
2991   Output_section_data* posd = new Output_data_const(desc, 4);
2992   os->add_output_section_data(posd);
2993
2994   if (trailing_padding > 0)
2995     {
2996       posd = new Output_data_zero_fill(trailing_padding, 0);
2997       os->add_output_section_data(posd);
2998     }
2999 }
3000
3001 // Record whether the stack should be executable.  This can be set
3002 // from the command line using the -z execstack or -z noexecstack
3003 // options.  Otherwise, if any input file has a .note.GNU-stack
3004 // section with the SHF_EXECINSTR flag set, the stack should be
3005 // executable.  Otherwise, if at least one input file a
3006 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3007 // section, we use the target default for whether the stack should be
3008 // executable.  If -z stack-size was used to set a p_memsz value for
3009 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3010 // don't generate a stack note.  When generating a object file, we
3011 // create a .note.GNU-stack section with the appropriate marking.
3012 // When generating an executable or shared library, we create a
3013 // PT_GNU_STACK segment.
3014
3015 void
3016 Layout::create_stack_segment()
3017 {
3018   bool is_stack_executable;
3019   if (parameters->options().is_execstack_set())
3020     {
3021       is_stack_executable = parameters->options().is_stack_executable();
3022       if (!is_stack_executable
3023           && this->input_requires_executable_stack_
3024           && parameters->options().warn_execstack())
3025         gold_warning(_("one or more inputs require executable stack, "
3026                        "but -z noexecstack was given"));
3027     }
3028   else if (!this->input_with_gnu_stack_note_
3029            && (!parameters->options().user_set_stack_size()
3030                || parameters->options().relocatable()))
3031     return;
3032   else
3033     {
3034       if (this->input_requires_executable_stack_)
3035         is_stack_executable = true;
3036       else if (this->input_without_gnu_stack_note_)
3037         is_stack_executable =
3038           parameters->target().is_default_stack_executable();
3039       else
3040         is_stack_executable = false;
3041     }
3042
3043   if (parameters->options().relocatable())
3044     {
3045       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3046       elfcpp::Elf_Xword flags = 0;
3047       if (is_stack_executable)
3048         flags |= elfcpp::SHF_EXECINSTR;
3049       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3050                                 ORDER_INVALID, false);
3051     }
3052   else
3053     {
3054       if (this->script_options_->saw_phdrs_clause())
3055         return;
3056       int flags = elfcpp::PF_R | elfcpp::PF_W;
3057       if (is_stack_executable)
3058         flags |= elfcpp::PF_X;
3059       Output_segment* seg =
3060         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3061       seg->set_size(parameters->options().stack_size());
3062       // BFD lets targets override this default alignment, but the only
3063       // targets that do so are ones that Gold does not support so far.
3064       seg->set_minimum_p_align(16);
3065     }
3066 }
3067
3068 // If --build-id was used, set up the build ID note.
3069
3070 void
3071 Layout::create_build_id()
3072 {
3073   if (!parameters->options().user_set_build_id())
3074     return;
3075
3076   const char* style = parameters->options().build_id();
3077   if (strcmp(style, "none") == 0)
3078     return;
3079
3080   // Set DESCSZ to the size of the note descriptor.  When possible,
3081   // set DESC to the note descriptor contents.
3082   size_t descsz;
3083   std::string desc;
3084   if (strcmp(style, "md5") == 0)
3085     descsz = 128 / 8;
3086   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3087     descsz = 160 / 8;
3088   else if (strcmp(style, "uuid") == 0)
3089     {
3090 #ifndef __MINGW32__
3091       const size_t uuidsz = 128 / 8;
3092
3093       char buffer[uuidsz];
3094       memset(buffer, 0, uuidsz);
3095
3096       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3097       if (descriptor < 0)
3098         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3099                    strerror(errno));
3100       else
3101         {
3102           ssize_t got = ::read(descriptor, buffer, uuidsz);
3103           release_descriptor(descriptor, true);
3104           if (got < 0)
3105             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3106           else if (static_cast<size_t>(got) != uuidsz)
3107             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3108                        uuidsz, got);
3109         }
3110
3111       desc.assign(buffer, uuidsz);
3112       descsz = uuidsz;
3113 #else // __MINGW32__
3114       UUID uuid;
3115       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3116
3117       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3118       if (!rpc_library)
3119         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3120       else
3121         {
3122           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3123               GetProcAddress(rpc_library, "UuidCreate"));
3124           if (!uuid_create)
3125             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3126           else if (uuid_create(&uuid) != RPC_S_OK)
3127             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3128           FreeLibrary(rpc_library);
3129         }
3130       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3131       descsz = sizeof(UUID);
3132 #endif // __MINGW32__
3133     }
3134   else if (strncmp(style, "0x", 2) == 0)
3135     {
3136       hex_init();
3137       const char* p = style + 2;
3138       while (*p != '\0')
3139         {
3140           if (hex_p(p[0]) && hex_p(p[1]))
3141             {
3142               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3143               desc += c;
3144               p += 2;
3145             }
3146           else if (*p == '-' || *p == ':')
3147             ++p;
3148           else
3149             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3150                        style);
3151         }
3152       descsz = desc.size();
3153     }
3154   else
3155     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3156
3157   // Create the note.
3158   size_t trailing_padding;
3159   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3160                                          ".note.gnu.build-id", descsz, true,
3161                                          &trailing_padding);
3162   if (os == NULL)
3163     return;
3164
3165   if (!desc.empty())
3166     {
3167       // We know the value already, so we fill it in now.
3168       gold_assert(desc.size() == descsz);
3169
3170       Output_section_data* posd = new Output_data_const(desc, 4);
3171       os->add_output_section_data(posd);
3172
3173       if (trailing_padding != 0)
3174         {
3175           posd = new Output_data_zero_fill(trailing_padding, 0);
3176           os->add_output_section_data(posd);
3177         }
3178     }
3179   else
3180     {
3181       // We need to compute a checksum after we have completed the
3182       // link.
3183       gold_assert(trailing_padding == 0);
3184       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3185       os->add_output_section_data(this->build_id_note_);
3186     }
3187 }
3188
3189 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3190 // field of the former should point to the latter.  I'm not sure who
3191 // started this, but the GNU linker does it, and some tools depend
3192 // upon it.
3193
3194 void
3195 Layout::link_stabs_sections()
3196 {
3197   if (!this->have_stabstr_section_)
3198     return;
3199
3200   for (Section_list::iterator p = this->section_list_.begin();
3201        p != this->section_list_.end();
3202        ++p)
3203     {
3204       if ((*p)->type() != elfcpp::SHT_STRTAB)
3205         continue;
3206
3207       const char* name = (*p)->name();
3208       if (strncmp(name, ".stab", 5) != 0)
3209         continue;
3210
3211       size_t len = strlen(name);
3212       if (strcmp(name + len - 3, "str") != 0)
3213         continue;
3214
3215       std::string stab_name(name, len - 3);
3216       Output_section* stab_sec;
3217       stab_sec = this->find_output_section(stab_name.c_str());
3218       if (stab_sec != NULL)
3219         stab_sec->set_link_section(*p);
3220     }
3221 }
3222
3223 // Create .gnu_incremental_inputs and related sections needed
3224 // for the next run of incremental linking to check what has changed.
3225
3226 void
3227 Layout::create_incremental_info_sections(Symbol_table* symtab)
3228 {
3229   Incremental_inputs* incr = this->incremental_inputs_;
3230
3231   gold_assert(incr != NULL);
3232
3233   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3234   incr->create_data_sections(symtab);
3235
3236   // Add the .gnu_incremental_inputs section.
3237   const char* incremental_inputs_name =
3238     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3239   Output_section* incremental_inputs_os =
3240     this->make_output_section(incremental_inputs_name,
3241                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3242                               ORDER_INVALID, false);
3243   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3244
3245   // Add the .gnu_incremental_symtab section.
3246   const char* incremental_symtab_name =
3247     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3248   Output_section* incremental_symtab_os =
3249     this->make_output_section(incremental_symtab_name,
3250                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3251                               ORDER_INVALID, false);
3252   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3253   incremental_symtab_os->set_entsize(4);
3254
3255   // Add the .gnu_incremental_relocs section.
3256   const char* incremental_relocs_name =
3257     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3258   Output_section* incremental_relocs_os =
3259     this->make_output_section(incremental_relocs_name,
3260                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3261                               ORDER_INVALID, false);
3262   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3263   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3264
3265   // Add the .gnu_incremental_got_plt section.
3266   const char* incremental_got_plt_name =
3267     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3268   Output_section* incremental_got_plt_os =
3269     this->make_output_section(incremental_got_plt_name,
3270                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3271                               ORDER_INVALID, false);
3272   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3273
3274   // Add the .gnu_incremental_strtab section.
3275   const char* incremental_strtab_name =
3276     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3277   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3278                                                         elfcpp::SHT_STRTAB, 0,
3279                                                         ORDER_INVALID, false);
3280   Output_data_strtab* strtab_data =
3281       new Output_data_strtab(incr->get_stringpool());
3282   incremental_strtab_os->add_output_section_data(strtab_data);
3283
3284   incremental_inputs_os->set_after_input_sections();
3285   incremental_symtab_os->set_after_input_sections();
3286   incremental_relocs_os->set_after_input_sections();
3287   incremental_got_plt_os->set_after_input_sections();
3288
3289   incremental_inputs_os->set_link_section(incremental_strtab_os);
3290   incremental_symtab_os->set_link_section(incremental_inputs_os);
3291   incremental_relocs_os->set_link_section(incremental_inputs_os);
3292   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3293 }
3294
3295 // Return whether SEG1 should be before SEG2 in the output file.  This
3296 // is based entirely on the segment type and flags.  When this is
3297 // called the segment addresses have normally not yet been set.
3298
3299 bool
3300 Layout::segment_precedes(const Output_segment* seg1,
3301                          const Output_segment* seg2)
3302 {
3303   elfcpp::Elf_Word type1 = seg1->type();
3304   elfcpp::Elf_Word type2 = seg2->type();
3305
3306   // The single PT_PHDR segment is required to precede any loadable
3307   // segment.  We simply make it always first.
3308   if (type1 == elfcpp::PT_PHDR)
3309     {
3310       gold_assert(type2 != elfcpp::PT_PHDR);
3311       return true;
3312     }
3313   if (type2 == elfcpp::PT_PHDR)
3314     return false;
3315
3316   // The single PT_INTERP segment is required to precede any loadable
3317   // segment.  We simply make it always second.
3318   if (type1 == elfcpp::PT_INTERP)
3319     {
3320       gold_assert(type2 != elfcpp::PT_INTERP);
3321       return true;
3322     }
3323   if (type2 == elfcpp::PT_INTERP)
3324     return false;
3325
3326   // We then put PT_LOAD segments before any other segments.
3327   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3328     return true;
3329   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3330     return false;
3331
3332   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3333   // segment, because that is where the dynamic linker expects to find
3334   // it (this is just for efficiency; other positions would also work
3335   // correctly).
3336   if (type1 == elfcpp::PT_TLS
3337       && type2 != elfcpp::PT_TLS
3338       && type2 != elfcpp::PT_GNU_RELRO)
3339     return false;
3340   if (type2 == elfcpp::PT_TLS
3341       && type1 != elfcpp::PT_TLS
3342       && type1 != elfcpp::PT_GNU_RELRO)
3343     return true;
3344
3345   // We put the PT_GNU_RELRO segment last, because that is where the
3346   // dynamic linker expects to find it (as with PT_TLS, this is just
3347   // for efficiency).
3348   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3349     return false;
3350   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3351     return true;
3352
3353   const elfcpp::Elf_Word flags1 = seg1->flags();
3354   const elfcpp::Elf_Word flags2 = seg2->flags();
3355
3356   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3357   // by the numeric segment type and flags values.  There should not
3358   // be more than one segment with the same type and flags, except
3359   // when a linker script specifies such.
3360   if (type1 != elfcpp::PT_LOAD)
3361     {
3362       if (type1 != type2)
3363         return type1 < type2;
3364       gold_assert(flags1 != flags2
3365                   || this->script_options_->saw_phdrs_clause());
3366       return flags1 < flags2;
3367     }
3368
3369   // If the addresses are set already, sort by load address.
3370   if (seg1->are_addresses_set())
3371     {
3372       if (!seg2->are_addresses_set())
3373         return true;
3374
3375       unsigned int section_count1 = seg1->output_section_count();
3376       unsigned int section_count2 = seg2->output_section_count();
3377       if (section_count1 == 0 && section_count2 > 0)
3378         return true;
3379       if (section_count1 > 0 && section_count2 == 0)
3380         return false;
3381
3382       uint64_t paddr1 = (seg1->are_addresses_set()
3383                          ? seg1->paddr()
3384                          : seg1->first_section_load_address());
3385       uint64_t paddr2 = (seg2->are_addresses_set()
3386                          ? seg2->paddr()
3387                          : seg2->first_section_load_address());
3388
3389       if (paddr1 != paddr2)
3390         return paddr1 < paddr2;
3391     }
3392   else if (seg2->are_addresses_set())
3393     return false;
3394
3395   // A segment which holds large data comes after a segment which does
3396   // not hold large data.
3397   if (seg1->is_large_data_segment())
3398     {
3399       if (!seg2->is_large_data_segment())
3400         return false;
3401     }
3402   else if (seg2->is_large_data_segment())
3403     return true;
3404
3405   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3406   // segments come before writable segments.  Then writable segments
3407   // with data come before writable segments without data.  Then
3408   // executable segments come before non-executable segments.  Then
3409   // the unlikely case of a non-readable segment comes before the
3410   // normal case of a readable segment.  If there are multiple
3411   // segments with the same type and flags, we require that the
3412   // address be set, and we sort by virtual address and then physical
3413   // address.
3414   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3415     return (flags1 & elfcpp::PF_W) == 0;
3416   if ((flags1 & elfcpp::PF_W) != 0
3417       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3418     return seg1->has_any_data_sections();
3419   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3420     return (flags1 & elfcpp::PF_X) != 0;
3421   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3422     return (flags1 & elfcpp::PF_R) == 0;
3423
3424   // We shouldn't get here--we shouldn't create segments which we
3425   // can't distinguish.  Unless of course we are using a weird linker
3426   // script or overlapping --section-start options.  We could also get
3427   // here if plugins want unique segments for subsets of sections.
3428   gold_assert(this->script_options_->saw_phdrs_clause()
3429               || parameters->options().any_section_start()
3430               || this->is_unique_segment_for_sections_specified());
3431   return false;
3432 }
3433
3434 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3435
3436 static off_t
3437 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3438 {
3439   uint64_t unsigned_off = off;
3440   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3441                           | (addr & (abi_pagesize - 1)));
3442   if (aligned_off < unsigned_off)
3443     aligned_off += abi_pagesize;
3444   return aligned_off;
3445 }
3446
3447 // On targets where the text segment contains only executable code,
3448 // a non-executable segment is never the text segment.
3449
3450 static inline bool
3451 is_text_segment(const Target* target, const Output_segment* seg)
3452 {
3453   elfcpp::Elf_Xword flags = seg->flags();
3454   if ((flags & elfcpp::PF_W) != 0)
3455     return false;
3456   if ((flags & elfcpp::PF_X) == 0)
3457     return !target->isolate_execinstr();
3458   return true;
3459 }
3460
3461 // Set the file offsets of all the segments, and all the sections they
3462 // contain.  They have all been created.  LOAD_SEG must be be laid out
3463 // first.  Return the offset of the data to follow.
3464
3465 off_t
3466 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3467                             unsigned int* pshndx)
3468 {
3469   // Sort them into the final order.  We use a stable sort so that we
3470   // don't randomize the order of indistinguishable segments created
3471   // by linker scripts.
3472   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3473                    Layout::Compare_segments(this));
3474
3475   // Find the PT_LOAD segments, and set their addresses and offsets
3476   // and their section's addresses and offsets.
3477   uint64_t start_addr;
3478   if (parameters->options().user_set_Ttext())
3479     start_addr = parameters->options().Ttext();
3480   else if (parameters->options().output_is_position_independent())
3481     start_addr = 0;
3482   else
3483     start_addr = target->default_text_segment_address();
3484
3485   uint64_t addr = start_addr;
3486   off_t off = 0;
3487
3488   // If LOAD_SEG is NULL, then the file header and segment headers
3489   // will not be loadable.  But they still need to be at offset 0 in
3490   // the file.  Set their offsets now.
3491   if (load_seg == NULL)
3492     {
3493       for (Data_list::iterator p = this->special_output_list_.begin();
3494            p != this->special_output_list_.end();
3495            ++p)
3496         {
3497           off = align_address(off, (*p)->addralign());
3498           (*p)->set_address_and_file_offset(0, off);
3499           off += (*p)->data_size();
3500         }
3501     }
3502
3503   unsigned int increase_relro = this->increase_relro_;
3504   if (this->script_options_->saw_sections_clause())
3505     increase_relro = 0;
3506
3507   const bool check_sections = parameters->options().check_sections();
3508   Output_segment* last_load_segment = NULL;
3509
3510   unsigned int shndx_begin = *pshndx;
3511   unsigned int shndx_load_seg = *pshndx;
3512
3513   for (Segment_list::iterator p = this->segment_list_.begin();
3514        p != this->segment_list_.end();
3515        ++p)
3516     {
3517       if ((*p)->type() == elfcpp::PT_LOAD)
3518         {
3519           if (target->isolate_execinstr())
3520             {
3521               // When we hit the segment that should contain the
3522               // file headers, reset the file offset so we place
3523               // it and subsequent segments appropriately.
3524               // We'll fix up the preceding segments below.
3525               if (load_seg == *p)
3526                 {
3527                   if (off == 0)
3528                     load_seg = NULL;
3529                   else
3530                     {
3531                       off = 0;
3532                       shndx_load_seg = *pshndx;
3533                     }
3534                 }
3535             }
3536           else
3537             {
3538               // Verify that the file headers fall into the first segment.
3539               if (load_seg != NULL && load_seg != *p)
3540                 gold_unreachable();
3541               load_seg = NULL;
3542             }
3543
3544           bool are_addresses_set = (*p)->are_addresses_set();
3545           if (are_addresses_set)
3546             {
3547               // When it comes to setting file offsets, we care about
3548               // the physical address.
3549               addr = (*p)->paddr();
3550             }
3551           else if (parameters->options().user_set_Ttext()
3552                    && (parameters->options().omagic()
3553                        || is_text_segment(target, *p)))
3554             {
3555               are_addresses_set = true;
3556             }
3557           else if (parameters->options().user_set_Trodata_segment()
3558                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3559             {
3560               addr = parameters->options().Trodata_segment();
3561               are_addresses_set = true;
3562             }
3563           else if (parameters->options().user_set_Tdata()
3564                    && ((*p)->flags() & elfcpp::PF_W) != 0
3565                    && (!parameters->options().user_set_Tbss()
3566                        || (*p)->has_any_data_sections()))
3567             {
3568               addr = parameters->options().Tdata();
3569               are_addresses_set = true;
3570             }
3571           else if (parameters->options().user_set_Tbss()
3572                    && ((*p)->flags() & elfcpp::PF_W) != 0
3573                    && !(*p)->has_any_data_sections())
3574             {
3575               addr = parameters->options().Tbss();
3576               are_addresses_set = true;
3577             }
3578
3579           uint64_t orig_addr = addr;
3580           uint64_t orig_off = off;
3581
3582           uint64_t aligned_addr = 0;
3583           uint64_t abi_pagesize = target->abi_pagesize();
3584           uint64_t common_pagesize = target->common_pagesize();
3585
3586           if (!parameters->options().nmagic()
3587               && !parameters->options().omagic())
3588             (*p)->set_minimum_p_align(abi_pagesize);
3589
3590           if (!are_addresses_set)
3591             {
3592               // Skip the address forward one page, maintaining the same
3593               // position within the page.  This lets us store both segments
3594               // overlapping on a single page in the file, but the loader will
3595               // put them on different pages in memory. We will revisit this
3596               // decision once we know the size of the segment.
3597
3598               uint64_t max_align = (*p)->maximum_alignment();
3599               if (max_align > abi_pagesize)
3600                 addr = align_address(addr, max_align);
3601               aligned_addr = addr;
3602
3603               if (load_seg == *p)
3604                 {
3605                   // This is the segment that will contain the file
3606                   // headers, so its offset will have to be exactly zero.
3607                   gold_assert(orig_off == 0);
3608
3609                   // If the target wants a fixed minimum distance from the
3610                   // text segment to the read-only segment, move up now.
3611                   uint64_t min_addr =
3612                     start_addr + (parameters->options().user_set_rosegment_gap()
3613                                   ? parameters->options().rosegment_gap()
3614                                   : target->rosegment_gap());
3615                   if (addr < min_addr)
3616                     addr = min_addr;
3617
3618                   // But this is not the first segment!  To make its
3619                   // address congruent with its offset, that address better
3620                   // be aligned to the ABI-mandated page size.
3621                   addr = align_address(addr, abi_pagesize);
3622                   aligned_addr = addr;
3623                 }
3624               else
3625                 {
3626                   if ((addr & (abi_pagesize - 1)) != 0)
3627                     addr = addr + abi_pagesize;
3628
3629                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3630                 }
3631             }
3632
3633           if (!parameters->options().nmagic()
3634               && !parameters->options().omagic())
3635             {
3636               // Here we are also taking care of the case when
3637               // the maximum segment alignment is larger than the page size.
3638               off = align_file_offset(off, addr,
3639                                       std::max(abi_pagesize,
3640                                                (*p)->maximum_alignment()));
3641             }
3642           else
3643             {
3644               // This is -N or -n with a section script which prevents
3645               // us from using a load segment.  We need to ensure that
3646               // the file offset is aligned to the alignment of the
3647               // segment.  This is because the linker script
3648               // implicitly assumed a zero offset.  If we don't align
3649               // here, then the alignment of the sections in the
3650               // linker script may not match the alignment of the
3651               // sections in the set_section_addresses call below,
3652               // causing an error about dot moving backward.
3653               off = align_address(off, (*p)->maximum_alignment());
3654             }
3655
3656           unsigned int shndx_hold = *pshndx;
3657           bool has_relro = false;
3658           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3659                                                           false, addr,
3660                                                           &increase_relro,
3661                                                           &has_relro,
3662                                                           &off, pshndx);
3663
3664           // Now that we know the size of this segment, we may be able
3665           // to save a page in memory, at the cost of wasting some
3666           // file space, by instead aligning to the start of a new
3667           // page.  Here we use the real machine page size rather than
3668           // the ABI mandated page size.  If the segment has been
3669           // aligned so that the relro data ends at a page boundary,
3670           // we do not try to realign it.
3671
3672           if (!are_addresses_set
3673               && !has_relro
3674               && aligned_addr != addr
3675               && !parameters->incremental())
3676             {
3677               uint64_t first_off = (common_pagesize
3678                                     - (aligned_addr
3679                                        & (common_pagesize - 1)));
3680               uint64_t last_off = new_addr & (common_pagesize - 1);
3681               if (first_off > 0
3682                   && last_off > 0
3683                   && ((aligned_addr & ~ (common_pagesize - 1))
3684                       != (new_addr & ~ (common_pagesize - 1)))
3685                   && first_off + last_off <= common_pagesize)
3686                 {
3687                   *pshndx = shndx_hold;
3688                   addr = align_address(aligned_addr, common_pagesize);
3689                   addr = align_address(addr, (*p)->maximum_alignment());
3690                   if ((addr & (abi_pagesize - 1)) != 0)
3691                     addr = addr + abi_pagesize;
3692                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3693                   off = align_file_offset(off, addr, abi_pagesize);
3694
3695                   increase_relro = this->increase_relro_;
3696                   if (this->script_options_->saw_sections_clause())
3697                     increase_relro = 0;
3698                   has_relro = false;
3699
3700                   new_addr = (*p)->set_section_addresses(target, this,
3701                                                          true, addr,
3702                                                          &increase_relro,
3703                                                          &has_relro,
3704                                                          &off, pshndx);
3705                 }
3706             }
3707
3708           addr = new_addr;
3709
3710           // Implement --check-sections.  We know that the segments
3711           // are sorted by LMA.
3712           if (check_sections && last_load_segment != NULL)
3713             {
3714               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3715               if (last_load_segment->paddr() + last_load_segment->memsz()
3716                   > (*p)->paddr())
3717                 {
3718                   unsigned long long lb1 = last_load_segment->paddr();
3719                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3720                   unsigned long long lb2 = (*p)->paddr();
3721                   unsigned long long le2 = lb2 + (*p)->memsz();
3722                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3723                                "[0x%llx -> 0x%llx]"),
3724                              lb1, le1, lb2, le2);
3725                 }
3726             }
3727           last_load_segment = *p;
3728         }
3729     }
3730
3731   if (load_seg != NULL && target->isolate_execinstr())
3732     {
3733       // Process the early segments again, setting their file offsets
3734       // so they land after the segments starting at LOAD_SEG.
3735       off = align_file_offset(off, 0, target->abi_pagesize());
3736
3737       this->reset_relax_output();
3738
3739       for (Segment_list::iterator p = this->segment_list_.begin();
3740            *p != load_seg;
3741            ++p)
3742         {
3743           if ((*p)->type() == elfcpp::PT_LOAD)
3744             {
3745               // We repeat the whole job of assigning addresses and
3746               // offsets, but we really only want to change the offsets and
3747               // must ensure that the addresses all come out the same as
3748               // they did the first time through.
3749               bool has_relro = false;
3750               const uint64_t old_addr = (*p)->vaddr();
3751               const uint64_t old_end = old_addr + (*p)->memsz();
3752               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3753                                                               true, old_addr,
3754                                                               &increase_relro,
3755                                                               &has_relro,
3756                                                               &off,
3757                                                               &shndx_begin);
3758               gold_assert(new_addr == old_end);
3759             }
3760         }
3761
3762       gold_assert(shndx_begin == shndx_load_seg);
3763     }
3764
3765   // Handle the non-PT_LOAD segments, setting their offsets from their
3766   // section's offsets.
3767   for (Segment_list::iterator p = this->segment_list_.begin();
3768        p != this->segment_list_.end();
3769        ++p)
3770     {
3771       // PT_GNU_STACK was set up correctly when it was created.
3772       if ((*p)->type() != elfcpp::PT_LOAD
3773           && (*p)->type() != elfcpp::PT_GNU_STACK)
3774         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3775                          ? increase_relro
3776                          : 0);
3777     }
3778
3779   // Set the TLS offsets for each section in the PT_TLS segment.
3780   if (this->tls_segment_ != NULL)
3781     this->tls_segment_->set_tls_offsets();
3782
3783   return off;
3784 }
3785
3786 // Set the offsets of all the allocated sections when doing a
3787 // relocatable link.  This does the same jobs as set_segment_offsets,
3788 // only for a relocatable link.
3789
3790 off_t
3791 Layout::set_relocatable_section_offsets(Output_data* file_header,
3792                                         unsigned int* pshndx)
3793 {
3794   off_t off = 0;
3795
3796   file_header->set_address_and_file_offset(0, 0);
3797   off += file_header->data_size();
3798
3799   for (Section_list::iterator p = this->section_list_.begin();
3800        p != this->section_list_.end();
3801        ++p)
3802     {
3803       // We skip unallocated sections here, except that group sections
3804       // have to come first.
3805       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3806           && (*p)->type() != elfcpp::SHT_GROUP)
3807         continue;
3808
3809       off = align_address(off, (*p)->addralign());
3810
3811       // The linker script might have set the address.
3812       if (!(*p)->is_address_valid())
3813         (*p)->set_address(0);
3814       (*p)->set_file_offset(off);
3815       (*p)->finalize_data_size();
3816       if ((*p)->type() != elfcpp::SHT_NOBITS)
3817         off += (*p)->data_size();
3818
3819       (*p)->set_out_shndx(*pshndx);
3820       ++*pshndx;
3821     }
3822
3823   return off;
3824 }
3825
3826 // Set the file offset of all the sections not associated with a
3827 // segment.
3828
3829 off_t
3830 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3831 {
3832   off_t startoff = off;
3833   off_t maxoff = off;
3834
3835   for (Section_list::iterator p = this->unattached_section_list_.begin();
3836        p != this->unattached_section_list_.end();
3837        ++p)
3838     {
3839       // The symtab section is handled in create_symtab_sections.
3840       if (*p == this->symtab_section_)
3841         continue;
3842
3843       // If we've already set the data size, don't set it again.
3844       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3845         continue;
3846
3847       if (pass == BEFORE_INPUT_SECTIONS_PASS
3848           && (*p)->requires_postprocessing())
3849         {
3850           (*p)->create_postprocessing_buffer();
3851           this->any_postprocessing_sections_ = true;
3852         }
3853
3854       if (pass == BEFORE_INPUT_SECTIONS_PASS
3855           && (*p)->after_input_sections())
3856         continue;
3857       else if (pass == POSTPROCESSING_SECTIONS_PASS
3858                && (!(*p)->after_input_sections()
3859                    || (*p)->type() == elfcpp::SHT_STRTAB))
3860         continue;
3861       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3862                && (!(*p)->after_input_sections()
3863                    || (*p)->type() != elfcpp::SHT_STRTAB))
3864         continue;
3865
3866       if (!parameters->incremental_update())
3867         {
3868           off = align_address(off, (*p)->addralign());
3869           (*p)->set_file_offset(off);
3870           (*p)->finalize_data_size();
3871         }
3872       else
3873         {
3874           // Incremental update: allocate file space from free list.
3875           (*p)->pre_finalize_data_size();
3876           off_t current_size = (*p)->current_data_size();
3877           off = this->allocate(current_size, (*p)->addralign(), startoff);
3878           if (off == -1)
3879             {
3880               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3881                 this->free_list_.dump();
3882               gold_assert((*p)->output_section() != NULL);
3883               gold_fallback(_("out of patch space for section %s; "
3884                               "relink with --incremental-full"),
3885                             (*p)->output_section()->name());
3886             }
3887           (*p)->set_file_offset(off);
3888           (*p)->finalize_data_size();
3889           if ((*p)->data_size() > current_size)
3890             {
3891               gold_assert((*p)->output_section() != NULL);
3892               gold_fallback(_("%s: section changed size; "
3893                               "relink with --incremental-full"),
3894                             (*p)->output_section()->name());
3895             }
3896           gold_debug(DEBUG_INCREMENTAL,
3897                      "set_section_offsets: %08lx %08lx %s",
3898                      static_cast<long>(off),
3899                      static_cast<long>((*p)->data_size()),
3900                      ((*p)->output_section() != NULL
3901                       ? (*p)->output_section()->name() : "(special)"));
3902         }
3903
3904       off += (*p)->data_size();
3905       if (off > maxoff)
3906         maxoff = off;
3907
3908       // At this point the name must be set.
3909       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3910         this->namepool_.add((*p)->name(), false, NULL);
3911     }
3912   return maxoff;
3913 }
3914
3915 // Set the section indexes of all the sections not associated with a
3916 // segment.
3917
3918 unsigned int
3919 Layout::set_section_indexes(unsigned int shndx)
3920 {
3921   for (Section_list::iterator p = this->unattached_section_list_.begin();
3922        p != this->unattached_section_list_.end();
3923        ++p)
3924     {
3925       if (!(*p)->has_out_shndx())
3926         {
3927           (*p)->set_out_shndx(shndx);
3928           ++shndx;
3929         }
3930     }
3931   return shndx;
3932 }
3933
3934 // Set the section addresses according to the linker script.  This is
3935 // only called when we see a SECTIONS clause.  This returns the
3936 // program segment which should hold the file header and segment
3937 // headers, if any.  It will return NULL if they should not be in a
3938 // segment.
3939
3940 Output_segment*
3941 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3942 {
3943   Script_sections* ss = this->script_options_->script_sections();
3944   gold_assert(ss->saw_sections_clause());
3945   return this->script_options_->set_section_addresses(symtab, this);
3946 }
3947
3948 // Place the orphan sections in the linker script.
3949
3950 void
3951 Layout::place_orphan_sections_in_script()
3952 {
3953   Script_sections* ss = this->script_options_->script_sections();
3954   gold_assert(ss->saw_sections_clause());
3955
3956   // Place each orphaned output section in the script.
3957   for (Section_list::iterator p = this->section_list_.begin();
3958        p != this->section_list_.end();
3959        ++p)
3960     {
3961       if (!(*p)->found_in_sections_clause())
3962         ss->place_orphan(*p);
3963     }
3964 }
3965
3966 // Count the local symbols in the regular symbol table and the dynamic
3967 // symbol table, and build the respective string pools.
3968
3969 void
3970 Layout::count_local_symbols(const Task* task,
3971                             const Input_objects* input_objects)
3972 {
3973   // First, figure out an upper bound on the number of symbols we'll
3974   // be inserting into each pool.  This helps us create the pools with
3975   // the right size, to avoid unnecessary hashtable resizing.
3976   unsigned int symbol_count = 0;
3977   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3978        p != input_objects->relobj_end();
3979        ++p)
3980     symbol_count += (*p)->local_symbol_count();
3981
3982   // Go from "upper bound" to "estimate."  We overcount for two
3983   // reasons: we double-count symbols that occur in more than one
3984   // object file, and we count symbols that are dropped from the
3985   // output.  Add it all together and assume we overcount by 100%.
3986   symbol_count /= 2;
3987
3988   // We assume all symbols will go into both the sympool and dynpool.
3989   this->sympool_.reserve(symbol_count);
3990   this->dynpool_.reserve(symbol_count);
3991
3992   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3993        p != input_objects->relobj_end();
3994        ++p)
3995     {
3996       Task_lock_obj<Object> tlo(task, *p);
3997       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3998     }
3999 }
4000
4001 // Create the symbol table sections.  Here we also set the final
4002 // values of the symbols.  At this point all the loadable sections are
4003 // fully laid out.  SHNUM is the number of sections so far.
4004
4005 void
4006 Layout::create_symtab_sections(const Input_objects* input_objects,
4007                                Symbol_table* symtab,
4008                                unsigned int shnum,
4009                                off_t* poff,
4010                                unsigned int local_dynamic_count)
4011 {
4012   int symsize;
4013   unsigned int align;
4014   if (parameters->target().get_size() == 32)
4015     {
4016       symsize = elfcpp::Elf_sizes<32>::sym_size;
4017       align = 4;
4018     }
4019   else if (parameters->target().get_size() == 64)
4020     {
4021       symsize = elfcpp::Elf_sizes<64>::sym_size;
4022       align = 8;
4023     }
4024   else
4025     gold_unreachable();
4026
4027   // Compute file offsets relative to the start of the symtab section.
4028   off_t off = 0;
4029
4030   // Save space for the dummy symbol at the start of the section.  We
4031   // never bother to write this out--it will just be left as zero.
4032   off += symsize;
4033   unsigned int local_symbol_index = 1;
4034
4035   // Add STT_SECTION symbols for each Output section which needs one.
4036   for (Section_list::iterator p = this->section_list_.begin();
4037        p != this->section_list_.end();
4038        ++p)
4039     {
4040       if (!(*p)->needs_symtab_index())
4041         (*p)->set_symtab_index(-1U);
4042       else
4043         {
4044           (*p)->set_symtab_index(local_symbol_index);
4045           ++local_symbol_index;
4046           off += symsize;
4047         }
4048     }
4049
4050   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4051        p != input_objects->relobj_end();
4052        ++p)
4053     {
4054       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4055                                                         off, symtab);
4056       off += (index - local_symbol_index) * symsize;
4057       local_symbol_index = index;
4058     }
4059
4060   unsigned int local_symcount = local_symbol_index;
4061   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4062
4063   off_t dynoff;
4064   size_t dyncount;
4065   if (this->dynsym_section_ == NULL)
4066     {
4067       dynoff = 0;
4068       dyncount = 0;
4069     }
4070   else
4071     {
4072       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4073       dynoff = this->dynsym_section_->offset() + locsize;
4074       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4075       gold_assert(static_cast<off_t>(dyncount * symsize)
4076                   == this->dynsym_section_->data_size() - locsize);
4077     }
4078
4079   off_t global_off = off;
4080   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4081                          &this->sympool_, &local_symcount);
4082
4083   if (!parameters->options().strip_all())
4084     {
4085       this->sympool_.set_string_offsets();
4086
4087       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4088       Output_section* osymtab = this->make_output_section(symtab_name,
4089                                                           elfcpp::SHT_SYMTAB,
4090                                                           0, ORDER_INVALID,
4091                                                           false);
4092       this->symtab_section_ = osymtab;
4093
4094       Output_section_data* pos = new Output_data_fixed_space(off, align,
4095                                                              "** symtab");
4096       osymtab->add_output_section_data(pos);
4097
4098       // We generate a .symtab_shndx section if we have more than
4099       // SHN_LORESERVE sections.  Technically it is possible that we
4100       // don't need one, because it is possible that there are no
4101       // symbols in any of sections with indexes larger than
4102       // SHN_LORESERVE.  That is probably unusual, though, and it is
4103       // easier to always create one than to compute section indexes
4104       // twice (once here, once when writing out the symbols).
4105       if (shnum >= elfcpp::SHN_LORESERVE)
4106         {
4107           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4108                                                                false, NULL);
4109           Output_section* osymtab_xindex =
4110             this->make_output_section(symtab_xindex_name,
4111                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4112                                       ORDER_INVALID, false);
4113
4114           size_t symcount = off / symsize;
4115           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4116
4117           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4118
4119           osymtab_xindex->set_link_section(osymtab);
4120           osymtab_xindex->set_addralign(4);
4121           osymtab_xindex->set_entsize(4);
4122
4123           osymtab_xindex->set_after_input_sections();
4124
4125           // This tells the driver code to wait until the symbol table
4126           // has written out before writing out the postprocessing
4127           // sections, including the .symtab_shndx section.
4128           this->any_postprocessing_sections_ = true;
4129         }
4130
4131       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4132       Output_section* ostrtab = this->make_output_section(strtab_name,
4133                                                           elfcpp::SHT_STRTAB,
4134                                                           0, ORDER_INVALID,
4135                                                           false);
4136
4137       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4138       ostrtab->add_output_section_data(pstr);
4139
4140       off_t symtab_off;
4141       if (!parameters->incremental_update())
4142         symtab_off = align_address(*poff, align);
4143       else
4144         {
4145           symtab_off = this->allocate(off, align, *poff);
4146           if (off == -1)
4147             gold_fallback(_("out of patch space for symbol table; "
4148                             "relink with --incremental-full"));
4149           gold_debug(DEBUG_INCREMENTAL,
4150                      "create_symtab_sections: %08lx %08lx .symtab",
4151                      static_cast<long>(symtab_off),
4152                      static_cast<long>(off));
4153         }
4154
4155       symtab->set_file_offset(symtab_off + global_off);
4156       osymtab->set_file_offset(symtab_off);
4157       osymtab->finalize_data_size();
4158       osymtab->set_link_section(ostrtab);
4159       osymtab->set_info(local_symcount);
4160       osymtab->set_entsize(symsize);
4161
4162       if (symtab_off + off > *poff)
4163         *poff = symtab_off + off;
4164     }
4165 }
4166
4167 // Create the .shstrtab section, which holds the names of the
4168 // sections.  At the time this is called, we have created all the
4169 // output sections except .shstrtab itself.
4170
4171 Output_section*
4172 Layout::create_shstrtab()
4173 {
4174   // FIXME: We don't need to create a .shstrtab section if we are
4175   // stripping everything.
4176
4177   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4178
4179   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4180                                                  ORDER_INVALID, false);
4181
4182   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4183     {
4184       // We can't write out this section until we've set all the
4185       // section names, and we don't set the names of compressed
4186       // output sections until relocations are complete.  FIXME: With
4187       // the current names we use, this is unnecessary.
4188       os->set_after_input_sections();
4189     }
4190
4191   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4192   os->add_output_section_data(posd);
4193
4194   return os;
4195 }
4196
4197 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4198 // offset.
4199
4200 void
4201 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4202 {
4203   Output_section_headers* oshdrs;
4204   oshdrs = new Output_section_headers(this,
4205                                       &this->segment_list_,
4206                                       &this->section_list_,
4207                                       &this->unattached_section_list_,
4208                                       &this->namepool_,
4209                                       shstrtab_section);
4210   off_t off;
4211   if (!parameters->incremental_update())
4212     off = align_address(*poff, oshdrs->addralign());
4213   else
4214     {
4215       oshdrs->pre_finalize_data_size();
4216       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4217       if (off == -1)
4218           gold_fallback(_("out of patch space for section header table; "
4219                           "relink with --incremental-full"));
4220       gold_debug(DEBUG_INCREMENTAL,
4221                  "create_shdrs: %08lx %08lx (section header table)",
4222                  static_cast<long>(off),
4223                  static_cast<long>(off + oshdrs->data_size()));
4224     }
4225   oshdrs->set_address_and_file_offset(0, off);
4226   off += oshdrs->data_size();
4227   if (off > *poff)
4228     *poff = off;
4229   this->section_headers_ = oshdrs;
4230 }
4231
4232 // Count the allocated sections.
4233
4234 size_t
4235 Layout::allocated_output_section_count() const
4236 {
4237   size_t section_count = 0;
4238   for (Segment_list::const_iterator p = this->segment_list_.begin();
4239        p != this->segment_list_.end();
4240        ++p)
4241     section_count += (*p)->output_section_count();
4242   return section_count;
4243 }
4244
4245 // Create the dynamic symbol table.
4246 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4247 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4248 // to the number of global symbols that have been forced local.
4249 // We need to remember the former because the forced-local symbols are
4250 // written along with the global symbols in Symtab::write_globals().
4251
4252 void
4253 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4254                               Symbol_table* symtab,
4255                               Output_section** pdynstr,
4256                               unsigned int* plocal_dynamic_count,
4257                               unsigned int* pforced_local_dynamic_count,
4258                               std::vector<Symbol*>* pdynamic_symbols,
4259                               Versions* pversions)
4260 {
4261   // Count all the symbols in the dynamic symbol table, and set the
4262   // dynamic symbol indexes.
4263
4264   // Skip symbol 0, which is always all zeroes.
4265   unsigned int index = 1;
4266
4267   // Add STT_SECTION symbols for each Output section which needs one.
4268   for (Section_list::iterator p = this->section_list_.begin();
4269        p != this->section_list_.end();
4270        ++p)
4271     {
4272       if (!(*p)->needs_dynsym_index())
4273         (*p)->set_dynsym_index(-1U);
4274       else
4275         {
4276           (*p)->set_dynsym_index(index);
4277           ++index;
4278         }
4279     }
4280
4281   // Count the local symbols that need to go in the dynamic symbol table,
4282   // and set the dynamic symbol indexes.
4283   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4284        p != input_objects->relobj_end();
4285        ++p)
4286     {
4287       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4288       index = new_index;
4289     }
4290
4291   unsigned int local_symcount = index;
4292   unsigned int forced_local_count = 0;
4293
4294   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4295                                      pdynamic_symbols, &this->dynpool_,
4296                                      pversions);
4297
4298   *plocal_dynamic_count = local_symcount;
4299   *pforced_local_dynamic_count = forced_local_count;
4300
4301   int symsize;
4302   unsigned int align;
4303   const int size = parameters->target().get_size();
4304   if (size == 32)
4305     {
4306       symsize = elfcpp::Elf_sizes<32>::sym_size;
4307       align = 4;
4308     }
4309   else if (size == 64)
4310     {
4311       symsize = elfcpp::Elf_sizes<64>::sym_size;
4312       align = 8;
4313     }
4314   else
4315     gold_unreachable();
4316
4317   // Create the dynamic symbol table section.
4318
4319   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4320                                                        elfcpp::SHT_DYNSYM,
4321                                                        elfcpp::SHF_ALLOC,
4322                                                        false,
4323                                                        ORDER_DYNAMIC_LINKER,
4324                                                        false, false, false);
4325
4326   // Check for NULL as a linker script may discard .dynsym.
4327   if (dynsym != NULL)
4328     {
4329       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4330                                                                align,
4331                                                                "** dynsym");
4332       dynsym->add_output_section_data(odata);
4333
4334       dynsym->set_info(local_symcount + forced_local_count);
4335       dynsym->set_entsize(symsize);
4336       dynsym->set_addralign(align);
4337
4338       this->dynsym_section_ = dynsym;
4339     }
4340
4341   Output_data_dynamic* const odyn = this->dynamic_data_;
4342   if (odyn != NULL)
4343     {
4344       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4345       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4346     }
4347
4348   // If there are more than SHN_LORESERVE allocated sections, we
4349   // create a .dynsym_shndx section.  It is possible that we don't
4350   // need one, because it is possible that there are no dynamic
4351   // symbols in any of the sections with indexes larger than
4352   // SHN_LORESERVE.  This is probably unusual, though, and at this
4353   // time we don't know the actual section indexes so it is
4354   // inconvenient to check.
4355   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4356     {
4357       Output_section* dynsym_xindex =
4358         this->choose_output_section(NULL, ".dynsym_shndx",
4359                                     elfcpp::SHT_SYMTAB_SHNDX,
4360                                     elfcpp::SHF_ALLOC,
4361                                     false, ORDER_DYNAMIC_LINKER, false, false,
4362                                     false);
4363
4364       if (dynsym_xindex != NULL)
4365         {
4366           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4367
4368           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4369
4370           dynsym_xindex->set_link_section(dynsym);
4371           dynsym_xindex->set_addralign(4);
4372           dynsym_xindex->set_entsize(4);
4373
4374           dynsym_xindex->set_after_input_sections();
4375
4376           // This tells the driver code to wait until the symbol table
4377           // has written out before writing out the postprocessing
4378           // sections, including the .dynsym_shndx section.
4379           this->any_postprocessing_sections_ = true;
4380         }
4381     }
4382
4383   // Create the dynamic string table section.
4384
4385   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4386                                                        elfcpp::SHT_STRTAB,
4387                                                        elfcpp::SHF_ALLOC,
4388                                                        false,
4389                                                        ORDER_DYNAMIC_LINKER,
4390                                                        false, false, false);
4391   *pdynstr = dynstr;
4392   if (dynstr != NULL)
4393     {
4394       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4395       dynstr->add_output_section_data(strdata);
4396
4397       if (dynsym != NULL)
4398         dynsym->set_link_section(dynstr);
4399       if (this->dynamic_section_ != NULL)
4400         this->dynamic_section_->set_link_section(dynstr);
4401
4402       if (odyn != NULL)
4403         {
4404           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4405           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4406         }
4407     }
4408
4409   // Create the hash tables.  The Gnu-style hash table must be
4410   // built first, because it changes the order of the symbols
4411   // in the dynamic symbol table.
4412
4413   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4414       || strcmp(parameters->options().hash_style(), "both") == 0)
4415     {
4416       unsigned char* phash;
4417       unsigned int hashlen;
4418       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4419                                     local_symcount + forced_local_count,
4420                                     &phash, &hashlen);
4421
4422       Output_section* hashsec =
4423         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4424                                     elfcpp::SHF_ALLOC, false,
4425                                     ORDER_DYNAMIC_LINKER, false, false,
4426                                     false);
4427
4428       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4429                                                                    hashlen,
4430                                                                    align,
4431                                                                    "** hash");
4432       if (hashsec != NULL && hashdata != NULL)
4433         hashsec->add_output_section_data(hashdata);
4434
4435       if (hashsec != NULL)
4436         {
4437           if (dynsym != NULL)
4438             hashsec->set_link_section(dynsym);
4439
4440           // For a 64-bit target, the entries in .gnu.hash do not have
4441           // a uniform size, so we only set the entry size for a
4442           // 32-bit target.
4443           if (parameters->target().get_size() == 32)
4444             hashsec->set_entsize(4);
4445
4446           if (odyn != NULL)
4447             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4448         }
4449     }
4450
4451   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4452       || strcmp(parameters->options().hash_style(), "both") == 0)
4453     {
4454       unsigned char* phash;
4455       unsigned int hashlen;
4456       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4457                                     local_symcount + forced_local_count,
4458                                     &phash, &hashlen);
4459
4460       Output_section* hashsec =
4461         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4462                                     elfcpp::SHF_ALLOC, false,
4463                                     ORDER_DYNAMIC_LINKER, false, false,
4464                                     false);
4465
4466       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4467                                                                    hashlen,
4468                                                                    align,
4469                                                                    "** hash");
4470       if (hashsec != NULL && hashdata != NULL)
4471         hashsec->add_output_section_data(hashdata);
4472
4473       if (hashsec != NULL)
4474         {
4475           if (dynsym != NULL)
4476             hashsec->set_link_section(dynsym);
4477           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4478         }
4479
4480       if (odyn != NULL)
4481         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4482     }
4483 }
4484
4485 // Assign offsets to each local portion of the dynamic symbol table.
4486
4487 void
4488 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4489 {
4490   Output_section* dynsym = this->dynsym_section_;
4491   if (dynsym == NULL)
4492     return;
4493
4494   off_t off = dynsym->offset();
4495
4496   // Skip the dummy symbol at the start of the section.
4497   off += dynsym->entsize();
4498
4499   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4500        p != input_objects->relobj_end();
4501        ++p)
4502     {
4503       unsigned int count = (*p)->set_local_dynsym_offset(off);
4504       off += count * dynsym->entsize();
4505     }
4506 }
4507
4508 // Create the version sections.
4509
4510 void
4511 Layout::create_version_sections(const Versions* versions,
4512                                 const Symbol_table* symtab,
4513                                 unsigned int local_symcount,
4514                                 const std::vector<Symbol*>& dynamic_symbols,
4515                                 const Output_section* dynstr)
4516 {
4517   if (!versions->any_defs() && !versions->any_needs())
4518     return;
4519
4520   switch (parameters->size_and_endianness())
4521     {
4522 #ifdef HAVE_TARGET_32_LITTLE
4523     case Parameters::TARGET_32_LITTLE:
4524       this->sized_create_version_sections<32, false>(versions, symtab,
4525                                                      local_symcount,
4526                                                      dynamic_symbols, dynstr);
4527       break;
4528 #endif
4529 #ifdef HAVE_TARGET_32_BIG
4530     case Parameters::TARGET_32_BIG:
4531       this->sized_create_version_sections<32, true>(versions, symtab,
4532                                                     local_symcount,
4533                                                     dynamic_symbols, dynstr);
4534       break;
4535 #endif
4536 #ifdef HAVE_TARGET_64_LITTLE
4537     case Parameters::TARGET_64_LITTLE:
4538       this->sized_create_version_sections<64, false>(versions, symtab,
4539                                                      local_symcount,
4540                                                      dynamic_symbols, dynstr);
4541       break;
4542 #endif
4543 #ifdef HAVE_TARGET_64_BIG
4544     case Parameters::TARGET_64_BIG:
4545       this->sized_create_version_sections<64, true>(versions, symtab,
4546                                                     local_symcount,
4547                                                     dynamic_symbols, dynstr);
4548       break;
4549 #endif
4550     default:
4551       gold_unreachable();
4552     }
4553 }
4554
4555 // Create the version sections, sized version.
4556
4557 template<int size, bool big_endian>
4558 void
4559 Layout::sized_create_version_sections(
4560     const Versions* versions,
4561     const Symbol_table* symtab,
4562     unsigned int local_symcount,
4563     const std::vector<Symbol*>& dynamic_symbols,
4564     const Output_section* dynstr)
4565 {
4566   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4567                                                      elfcpp::SHT_GNU_versym,
4568                                                      elfcpp::SHF_ALLOC,
4569                                                      false,
4570                                                      ORDER_DYNAMIC_LINKER,
4571                                                      false, false, false);
4572
4573   // Check for NULL since a linker script may discard this section.
4574   if (vsec != NULL)
4575     {
4576       unsigned char* vbuf;
4577       unsigned int vsize;
4578       versions->symbol_section_contents<size, big_endian>(symtab,
4579                                                           &this->dynpool_,
4580                                                           local_symcount,
4581                                                           dynamic_symbols,
4582                                                           &vbuf, &vsize);
4583
4584       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4585                                                                 "** versions");
4586
4587       vsec->add_output_section_data(vdata);
4588       vsec->set_entsize(2);
4589       vsec->set_link_section(this->dynsym_section_);
4590     }
4591
4592   Output_data_dynamic* const odyn = this->dynamic_data_;
4593   if (odyn != NULL && vsec != NULL)
4594     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4595
4596   if (versions->any_defs())
4597     {
4598       Output_section* vdsec;
4599       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4600                                           elfcpp::SHT_GNU_verdef,
4601                                           elfcpp::SHF_ALLOC,
4602                                           false, ORDER_DYNAMIC_LINKER, false,
4603                                           false, false);
4604
4605       if (vdsec != NULL)
4606         {
4607           unsigned char* vdbuf;
4608           unsigned int vdsize;
4609           unsigned int vdentries;
4610           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4611                                                            &vdbuf, &vdsize,
4612                                                            &vdentries);
4613
4614           Output_section_data* vddata =
4615             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4616
4617           vdsec->add_output_section_data(vddata);
4618           vdsec->set_link_section(dynstr);
4619           vdsec->set_info(vdentries);
4620
4621           if (odyn != NULL)
4622             {
4623               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4624               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4625             }
4626         }
4627     }
4628
4629   if (versions->any_needs())
4630     {
4631       Output_section* vnsec;
4632       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4633                                           elfcpp::SHT_GNU_verneed,
4634                                           elfcpp::SHF_ALLOC,
4635                                           false, ORDER_DYNAMIC_LINKER, false,
4636                                           false, false);
4637
4638       if (vnsec != NULL)
4639         {
4640           unsigned char* vnbuf;
4641           unsigned int vnsize;
4642           unsigned int vnentries;
4643           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4644                                                             &vnbuf, &vnsize,
4645                                                             &vnentries);
4646
4647           Output_section_data* vndata =
4648             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4649
4650           vnsec->add_output_section_data(vndata);
4651           vnsec->set_link_section(dynstr);
4652           vnsec->set_info(vnentries);
4653
4654           if (odyn != NULL)
4655             {
4656               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4657               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4658             }
4659         }
4660     }
4661 }
4662
4663 // Create the .interp section and PT_INTERP segment.
4664
4665 void
4666 Layout::create_interp(const Target* target)
4667 {
4668   gold_assert(this->interp_segment_ == NULL);
4669
4670   const char* interp = parameters->options().dynamic_linker();
4671   if (interp == NULL)
4672     {
4673       interp = target->dynamic_linker();
4674       gold_assert(interp != NULL);
4675     }
4676
4677   size_t len = strlen(interp) + 1;
4678
4679   Output_section_data* odata = new Output_data_const(interp, len, 1);
4680
4681   Output_section* osec = this->choose_output_section(NULL, ".interp",
4682                                                      elfcpp::SHT_PROGBITS,
4683                                                      elfcpp::SHF_ALLOC,
4684                                                      false, ORDER_INTERP,
4685                                                      false, false, false);
4686   if (osec != NULL)
4687     osec->add_output_section_data(odata);
4688 }
4689
4690 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4691 // called by the target-specific code.  This does nothing if not doing
4692 // a dynamic link.
4693
4694 // USE_REL is true for REL relocs rather than RELA relocs.
4695
4696 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4697
4698 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4699 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4700 // some targets have multiple reloc sections in PLT_REL.
4701
4702 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4703 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4704 // section.
4705
4706 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4707 // executable.
4708
4709 void
4710 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4711                                 const Output_data* plt_rel,
4712                                 const Output_data_reloc_generic* dyn_rel,
4713                                 bool add_debug, bool dynrel_includes_plt)
4714 {
4715   Output_data_dynamic* odyn = this->dynamic_data_;
4716   if (odyn == NULL)
4717     return;
4718
4719   if (plt_got != NULL && plt_got->output_section() != NULL)
4720     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4721
4722   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4723     {
4724       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4725       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4726       odyn->add_constant(elfcpp::DT_PLTREL,
4727                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4728     }
4729
4730   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4731       || (dynrel_includes_plt
4732           && plt_rel != NULL
4733           && plt_rel->output_section() != NULL))
4734     {
4735       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4736       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4737       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4738                                 (have_dyn_rel
4739                                  ? dyn_rel->output_section()
4740                                  : plt_rel->output_section()));
4741       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4742       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4743         odyn->add_section_size(size_tag,
4744                                dyn_rel->output_section(),
4745                                plt_rel->output_section());
4746       else if (have_dyn_rel)
4747         odyn->add_section_size(size_tag, dyn_rel->output_section());
4748       else
4749         odyn->add_section_size(size_tag, plt_rel->output_section());
4750       const int size = parameters->target().get_size();
4751       elfcpp::DT rel_tag;
4752       int rel_size;
4753       if (use_rel)
4754         {
4755           rel_tag = elfcpp::DT_RELENT;
4756           if (size == 32)
4757             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4758           else if (size == 64)
4759             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4760           else
4761             gold_unreachable();
4762         }
4763       else
4764         {
4765           rel_tag = elfcpp::DT_RELAENT;
4766           if (size == 32)
4767             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4768           else if (size == 64)
4769             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4770           else
4771             gold_unreachable();
4772         }
4773       odyn->add_constant(rel_tag, rel_size);
4774
4775       if (parameters->options().combreloc() && have_dyn_rel)
4776         {
4777           size_t c = dyn_rel->relative_reloc_count();
4778           if (c > 0)
4779             odyn->add_constant((use_rel
4780                                 ? elfcpp::DT_RELCOUNT
4781                                 : elfcpp::DT_RELACOUNT),
4782                                c);
4783         }
4784     }
4785
4786   if (add_debug && !parameters->options().shared())
4787     {
4788       // The value of the DT_DEBUG tag is filled in by the dynamic
4789       // linker at run time, and used by the debugger.
4790       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4791     }
4792 }
4793
4794 void
4795 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4796 {
4797   Output_data_dynamic* odyn = this->dynamic_data_;
4798   if (odyn == NULL)
4799     return;
4800   odyn->add_constant(tag, val);
4801 }
4802
4803 // Finish the .dynamic section and PT_DYNAMIC segment.
4804
4805 void
4806 Layout::finish_dynamic_section(const Input_objects* input_objects,
4807                                const Symbol_table* symtab)
4808 {
4809   if (!this->script_options_->saw_phdrs_clause()
4810       && this->dynamic_section_ != NULL)
4811     {
4812       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4813                                                        (elfcpp::PF_R
4814                                                         | elfcpp::PF_W));
4815       oseg->add_output_section_to_nonload(this->dynamic_section_,
4816                                           elfcpp::PF_R | elfcpp::PF_W);
4817     }
4818
4819   Output_data_dynamic* const odyn = this->dynamic_data_;
4820   if (odyn == NULL)
4821     return;
4822
4823   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4824        p != input_objects->dynobj_end();
4825        ++p)
4826     {
4827       if (!(*p)->is_needed() && (*p)->as_needed())
4828         {
4829           // This dynamic object was linked with --as-needed, but it
4830           // is not needed.
4831           continue;
4832         }
4833
4834       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4835     }
4836
4837   if (parameters->options().shared())
4838     {
4839       const char* soname = parameters->options().soname();
4840       if (soname != NULL)
4841         odyn->add_string(elfcpp::DT_SONAME, soname);
4842     }
4843
4844   Symbol* sym = symtab->lookup(parameters->options().init());
4845   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4846     odyn->add_symbol(elfcpp::DT_INIT, sym);
4847
4848   sym = symtab->lookup(parameters->options().fini());
4849   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4850     odyn->add_symbol(elfcpp::DT_FINI, sym);
4851
4852   // Look for .init_array, .preinit_array and .fini_array by checking
4853   // section types.
4854   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4855       p != this->section_list_.end();
4856       ++p)
4857     switch((*p)->type())
4858       {
4859       case elfcpp::SHT_FINI_ARRAY:
4860         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4861         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4862         break;
4863       case elfcpp::SHT_INIT_ARRAY:
4864         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4865         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4866         break;
4867       case elfcpp::SHT_PREINIT_ARRAY:
4868         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4869         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4870         break;
4871       default:
4872         break;
4873       }
4874
4875   // Add a DT_RPATH entry if needed.
4876   const General_options::Dir_list& rpath(parameters->options().rpath());
4877   if (!rpath.empty())
4878     {
4879       std::string rpath_val;
4880       for (General_options::Dir_list::const_iterator p = rpath.begin();
4881            p != rpath.end();
4882            ++p)
4883         {
4884           if (rpath_val.empty())
4885             rpath_val = p->name();
4886           else
4887             {
4888               // Eliminate duplicates.
4889               General_options::Dir_list::const_iterator q;
4890               for (q = rpath.begin(); q != p; ++q)
4891                 if (q->name() == p->name())
4892                   break;
4893               if (q == p)
4894                 {
4895                   rpath_val += ':';
4896                   rpath_val += p->name();
4897                 }
4898             }
4899         }
4900
4901       if (!parameters->options().enable_new_dtags())
4902         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4903       else
4904         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4905     }
4906
4907   // Look for text segments that have dynamic relocations.
4908   bool have_textrel = false;
4909   if (!this->script_options_->saw_sections_clause())
4910     {
4911       for (Segment_list::const_iterator p = this->segment_list_.begin();
4912            p != this->segment_list_.end();
4913            ++p)
4914         {
4915           if ((*p)->type() == elfcpp::PT_LOAD
4916               && ((*p)->flags() & elfcpp::PF_W) == 0
4917               && (*p)->has_dynamic_reloc())
4918             {
4919               have_textrel = true;
4920               break;
4921             }
4922         }
4923     }
4924   else
4925     {
4926       // We don't know the section -> segment mapping, so we are
4927       // conservative and just look for readonly sections with
4928       // relocations.  If those sections wind up in writable segments,
4929       // then we have created an unnecessary DT_TEXTREL entry.
4930       for (Section_list::const_iterator p = this->section_list_.begin();
4931            p != this->section_list_.end();
4932            ++p)
4933         {
4934           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4935               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4936               && (*p)->has_dynamic_reloc())
4937             {
4938               have_textrel = true;
4939               break;
4940             }
4941         }
4942     }
4943
4944   if (parameters->options().filter() != NULL)
4945     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4946   if (parameters->options().any_auxiliary())
4947     {
4948       for (options::String_set::const_iterator p =
4949              parameters->options().auxiliary_begin();
4950            p != parameters->options().auxiliary_end();
4951            ++p)
4952         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4953     }
4954
4955   // Add a DT_FLAGS entry if necessary.
4956   unsigned int flags = 0;
4957   if (have_textrel)
4958     {
4959       // Add a DT_TEXTREL for compatibility with older loaders.
4960       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4961       flags |= elfcpp::DF_TEXTREL;
4962
4963       if (parameters->options().text())
4964         gold_error(_("read-only segment has dynamic relocations"));
4965       else if (parameters->options().warn_shared_textrel()
4966                && parameters->options().shared())
4967         gold_warning(_("shared library text segment is not shareable"));
4968     }
4969   if (parameters->options().shared() && this->has_static_tls())
4970     flags |= elfcpp::DF_STATIC_TLS;
4971   if (parameters->options().origin())
4972     flags |= elfcpp::DF_ORIGIN;
4973   if (parameters->options().Bsymbolic()
4974       && !parameters->options().have_dynamic_list())
4975     {
4976       flags |= elfcpp::DF_SYMBOLIC;
4977       // Add DT_SYMBOLIC for compatibility with older loaders.
4978       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4979     }
4980   if (parameters->options().now())
4981     flags |= elfcpp::DF_BIND_NOW;
4982   if (flags != 0)
4983     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4984
4985   flags = 0;
4986   if (parameters->options().global())
4987     flags |= elfcpp::DF_1_GLOBAL;
4988   if (parameters->options().initfirst())
4989     flags |= elfcpp::DF_1_INITFIRST;
4990   if (parameters->options().interpose())
4991     flags |= elfcpp::DF_1_INTERPOSE;
4992   if (parameters->options().loadfltr())
4993     flags |= elfcpp::DF_1_LOADFLTR;
4994   if (parameters->options().nodefaultlib())
4995     flags |= elfcpp::DF_1_NODEFLIB;
4996   if (parameters->options().nodelete())
4997     flags |= elfcpp::DF_1_NODELETE;
4998   if (parameters->options().nodlopen())
4999     flags |= elfcpp::DF_1_NOOPEN;
5000   if (parameters->options().nodump())
5001     flags |= elfcpp::DF_1_NODUMP;
5002   if (!parameters->options().shared())
5003     flags &= ~(elfcpp::DF_1_INITFIRST
5004                | elfcpp::DF_1_NODELETE
5005                | elfcpp::DF_1_NOOPEN);
5006   if (parameters->options().origin())
5007     flags |= elfcpp::DF_1_ORIGIN;
5008   if (parameters->options().now())
5009     flags |= elfcpp::DF_1_NOW;
5010   if (parameters->options().Bgroup())
5011     flags |= elfcpp::DF_1_GROUP;
5012   if (flags != 0)
5013     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5014 }
5015
5016 // Set the size of the _DYNAMIC symbol table to be the size of the
5017 // dynamic data.
5018
5019 void
5020 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5021 {
5022   Output_data_dynamic* const odyn = this->dynamic_data_;
5023   if (odyn == NULL)
5024     return;
5025   odyn->finalize_data_size();
5026   if (this->dynamic_symbol_ == NULL)
5027     return;
5028   off_t data_size = odyn->data_size();
5029   const int size = parameters->target().get_size();
5030   if (size == 32)
5031     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5032   else if (size == 64)
5033     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5034   else
5035     gold_unreachable();
5036 }
5037
5038 // The mapping of input section name prefixes to output section names.
5039 // In some cases one prefix is itself a prefix of another prefix; in
5040 // such a case the longer prefix must come first.  These prefixes are
5041 // based on the GNU linker default ELF linker script.
5042
5043 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5044 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5045 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5046 {
5047   MAPPING_INIT(".text.", ".text"),
5048   MAPPING_INIT(".rodata.", ".rodata"),
5049   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5050   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5051   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5052   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5053   MAPPING_INIT(".data.", ".data"),
5054   MAPPING_INIT(".bss.", ".bss"),
5055   MAPPING_INIT(".tdata.", ".tdata"),
5056   MAPPING_INIT(".tbss.", ".tbss"),
5057   MAPPING_INIT(".init_array.", ".init_array"),
5058   MAPPING_INIT(".fini_array.", ".fini_array"),
5059   MAPPING_INIT(".sdata.", ".sdata"),
5060   MAPPING_INIT(".sbss.", ".sbss"),
5061   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5062   // differently depending on whether it is creating a shared library.
5063   MAPPING_INIT(".sdata2.", ".sdata"),
5064   MAPPING_INIT(".sbss2.", ".sbss"),
5065   MAPPING_INIT(".lrodata.", ".lrodata"),
5066   MAPPING_INIT(".ldata.", ".ldata"),
5067   MAPPING_INIT(".lbss.", ".lbss"),
5068   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5069   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5070   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5071   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5072   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5073   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5074   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5075   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5076   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5077   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5078   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5079   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5080   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5081   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5082   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5083   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5084   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5085   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5086   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5087   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5088   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5089 };
5090 #undef MAPPING_INIT
5091 #undef MAPPING_INIT_EXACT
5092
5093 const int Layout::section_name_mapping_count =
5094   (sizeof(Layout::section_name_mapping)
5095    / sizeof(Layout::section_name_mapping[0]));
5096
5097 // Choose the output section name to use given an input section name.
5098 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5099 // length of NAME.
5100
5101 const char*
5102 Layout::output_section_name(const Relobj* relobj, const char* name,
5103                             size_t* plen)
5104 {
5105   // gcc 4.3 generates the following sorts of section names when it
5106   // needs a section name specific to a function:
5107   //   .text.FN
5108   //   .rodata.FN
5109   //   .sdata2.FN
5110   //   .data.FN
5111   //   .data.rel.FN
5112   //   .data.rel.local.FN
5113   //   .data.rel.ro.FN
5114   //   .data.rel.ro.local.FN
5115   //   .sdata.FN
5116   //   .bss.FN
5117   //   .sbss.FN
5118   //   .tdata.FN
5119   //   .tbss.FN
5120
5121   // The GNU linker maps all of those to the part before the .FN,
5122   // except that .data.rel.local.FN is mapped to .data, and
5123   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5124   // beginning with .data.rel.ro.local are grouped together.
5125
5126   // For an anonymous namespace, the string FN can contain a '.'.
5127
5128   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5129   // GNU linker maps to .rodata.
5130
5131   // The .data.rel.ro sections are used with -z relro.  The sections
5132   // are recognized by name.  We use the same names that the GNU
5133   // linker does for these sections.
5134
5135   // It is hard to handle this in a principled way, so we don't even
5136   // try.  We use a table of mappings.  If the input section name is
5137   // not found in the table, we simply use it as the output section
5138   // name.
5139
5140   const Section_name_mapping* psnm = section_name_mapping;
5141   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5142     {
5143       if (psnm->fromlen > 0)
5144         {
5145           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5146             {
5147               *plen = psnm->tolen;
5148               return psnm->to;
5149             }
5150         }
5151       else
5152         {
5153           if (strcmp(name, psnm->from) == 0)
5154             {
5155               *plen = psnm->tolen;
5156               return psnm->to;
5157             }
5158         }
5159     }
5160
5161   // As an additional complication, .ctors sections are output in
5162   // either .ctors or .init_array sections, and .dtors sections are
5163   // output in either .dtors or .fini_array sections.
5164   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5165     {
5166       if (parameters->options().ctors_in_init_array())
5167         {
5168           *plen = 11;
5169           return name[1] == 'c' ? ".init_array" : ".fini_array";
5170         }
5171       else
5172         {
5173           *plen = 6;
5174           return name[1] == 'c' ? ".ctors" : ".dtors";
5175         }
5176     }
5177   if (parameters->options().ctors_in_init_array()
5178       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5179     {
5180       // To make .init_array/.fini_array work with gcc we must exclude
5181       // .ctors and .dtors sections from the crtbegin and crtend
5182       // files.
5183       if (relobj == NULL
5184           || (!Layout::match_file_name(relobj, "crtbegin")
5185               && !Layout::match_file_name(relobj, "crtend")))
5186         {
5187           *plen = 11;
5188           return name[1] == 'c' ? ".init_array" : ".fini_array";
5189         }
5190     }
5191
5192   return name;
5193 }
5194
5195 // Return true if RELOBJ is an input file whose base name matches
5196 // FILE_NAME.  The base name must have an extension of ".o", and must
5197 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5198 // to match crtbegin.o as well as crtbeginS.o without getting confused
5199 // by other possibilities.  Overall matching the file name this way is
5200 // a dreadful hack, but the GNU linker does it in order to better
5201 // support gcc, and we need to be compatible.
5202
5203 bool
5204 Layout::match_file_name(const Relobj* relobj, const char* match)
5205 {
5206   const std::string& file_name(relobj->name());
5207   const char* base_name = lbasename(file_name.c_str());
5208   size_t match_len = strlen(match);
5209   if (strncmp(base_name, match, match_len) != 0)
5210     return false;
5211   size_t base_len = strlen(base_name);
5212   if (base_len != match_len + 2 && base_len != match_len + 3)
5213     return false;
5214   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5215 }
5216
5217 // Check if a comdat group or .gnu.linkonce section with the given
5218 // NAME is selected for the link.  If there is already a section,
5219 // *KEPT_SECTION is set to point to the existing section and the
5220 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5221 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5222 // *KEPT_SECTION is set to the internal copy and the function returns
5223 // true.
5224
5225 bool
5226 Layout::find_or_add_kept_section(const std::string& name,
5227                                  Relobj* object,
5228                                  unsigned int shndx,
5229                                  bool is_comdat,
5230                                  bool is_group_name,
5231                                  Kept_section** kept_section)
5232 {
5233   // It's normal to see a couple of entries here, for the x86 thunk
5234   // sections.  If we see more than a few, we're linking a C++
5235   // program, and we resize to get more space to minimize rehashing.
5236   if (this->signatures_.size() > 4
5237       && !this->resized_signatures_)
5238     {
5239       reserve_unordered_map(&this->signatures_,
5240                             this->number_of_input_files_ * 64);
5241       this->resized_signatures_ = true;
5242     }
5243
5244   Kept_section candidate;
5245   std::pair<Signatures::iterator, bool> ins =
5246     this->signatures_.insert(std::make_pair(name, candidate));
5247
5248   if (kept_section != NULL)
5249     *kept_section = &ins.first->second;
5250   if (ins.second)
5251     {
5252       // This is the first time we've seen this signature.
5253       ins.first->second.set_object(object);
5254       ins.first->second.set_shndx(shndx);
5255       if (is_comdat)
5256         ins.first->second.set_is_comdat();
5257       if (is_group_name)
5258         ins.first->second.set_is_group_name();
5259       return true;
5260     }
5261
5262   // We have already seen this signature.
5263
5264   if (ins.first->second.is_group_name())
5265     {
5266       // We've already seen a real section group with this signature.
5267       // If the kept group is from a plugin object, and we're in the
5268       // replacement phase, accept the new one as a replacement.
5269       if (ins.first->second.object() == NULL
5270           && parameters->options().plugins()->in_replacement_phase())
5271         {
5272           ins.first->second.set_object(object);
5273           ins.first->second.set_shndx(shndx);
5274           return true;
5275         }
5276       return false;
5277     }
5278   else if (is_group_name)
5279     {
5280       // This is a real section group, and we've already seen a
5281       // linkonce section with this signature.  Record that we've seen
5282       // a section group, and don't include this section group.
5283       ins.first->second.set_is_group_name();
5284       return false;
5285     }
5286   else
5287     {
5288       // We've already seen a linkonce section and this is a linkonce
5289       // section.  These don't block each other--this may be the same
5290       // symbol name with different section types.
5291       return true;
5292     }
5293 }
5294
5295 // Store the allocated sections into the section list.
5296
5297 void
5298 Layout::get_allocated_sections(Section_list* section_list) const
5299 {
5300   for (Section_list::const_iterator p = this->section_list_.begin();
5301        p != this->section_list_.end();
5302        ++p)
5303     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5304       section_list->push_back(*p);
5305 }
5306
5307 // Store the executable sections into the section list.
5308
5309 void
5310 Layout::get_executable_sections(Section_list* section_list) const
5311 {
5312   for (Section_list::const_iterator p = this->section_list_.begin();
5313        p != this->section_list_.end();
5314        ++p)
5315     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5316         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5317       section_list->push_back(*p);
5318 }
5319
5320 // Create an output segment.
5321
5322 Output_segment*
5323 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5324 {
5325   gold_assert(!parameters->options().relocatable());
5326   Output_segment* oseg = new Output_segment(type, flags);
5327   this->segment_list_.push_back(oseg);
5328
5329   if (type == elfcpp::PT_TLS)
5330     this->tls_segment_ = oseg;
5331   else if (type == elfcpp::PT_GNU_RELRO)
5332     this->relro_segment_ = oseg;
5333   else if (type == elfcpp::PT_INTERP)
5334     this->interp_segment_ = oseg;
5335
5336   return oseg;
5337 }
5338
5339 // Return the file offset of the normal symbol table.
5340
5341 off_t
5342 Layout::symtab_section_offset() const
5343 {
5344   if (this->symtab_section_ != NULL)
5345     return this->symtab_section_->offset();
5346   return 0;
5347 }
5348
5349 // Return the section index of the normal symbol table.  It may have
5350 // been stripped by the -s/--strip-all option.
5351
5352 unsigned int
5353 Layout::symtab_section_shndx() const
5354 {
5355   if (this->symtab_section_ != NULL)
5356     return this->symtab_section_->out_shndx();
5357   return 0;
5358 }
5359
5360 // Write out the Output_sections.  Most won't have anything to write,
5361 // since most of the data will come from input sections which are
5362 // handled elsewhere.  But some Output_sections do have Output_data.
5363
5364 void
5365 Layout::write_output_sections(Output_file* of) const
5366 {
5367   for (Section_list::const_iterator p = this->section_list_.begin();
5368        p != this->section_list_.end();
5369        ++p)
5370     {
5371       if (!(*p)->after_input_sections())
5372         (*p)->write(of);
5373     }
5374 }
5375
5376 // Write out data not associated with a section or the symbol table.
5377
5378 void
5379 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5380 {
5381   if (!parameters->options().strip_all())
5382     {
5383       const Output_section* symtab_section = this->symtab_section_;
5384       for (Section_list::const_iterator p = this->section_list_.begin();
5385            p != this->section_list_.end();
5386            ++p)
5387         {
5388           if ((*p)->needs_symtab_index())
5389             {
5390               gold_assert(symtab_section != NULL);
5391               unsigned int index = (*p)->symtab_index();
5392               gold_assert(index > 0 && index != -1U);
5393               off_t off = (symtab_section->offset()
5394                            + index * symtab_section->entsize());
5395               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5396             }
5397         }
5398     }
5399
5400   const Output_section* dynsym_section = this->dynsym_section_;
5401   for (Section_list::const_iterator p = this->section_list_.begin();
5402        p != this->section_list_.end();
5403        ++p)
5404     {
5405       if ((*p)->needs_dynsym_index())
5406         {
5407           gold_assert(dynsym_section != NULL);
5408           unsigned int index = (*p)->dynsym_index();
5409           gold_assert(index > 0 && index != -1U);
5410           off_t off = (dynsym_section->offset()
5411                        + index * dynsym_section->entsize());
5412           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5413         }
5414     }
5415
5416   // Write out the Output_data which are not in an Output_section.
5417   for (Data_list::const_iterator p = this->special_output_list_.begin();
5418        p != this->special_output_list_.end();
5419        ++p)
5420     (*p)->write(of);
5421
5422   // Write out the Output_data which are not in an Output_section
5423   // and are regenerated in each iteration of relaxation.
5424   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5425        p != this->relax_output_list_.end();
5426        ++p)
5427     (*p)->write(of);
5428 }
5429
5430 // Write out the Output_sections which can only be written after the
5431 // input sections are complete.
5432
5433 void
5434 Layout::write_sections_after_input_sections(Output_file* of)
5435 {
5436   // Determine the final section offsets, and thus the final output
5437   // file size.  Note we finalize the .shstrab last, to allow the
5438   // after_input_section sections to modify their section-names before
5439   // writing.
5440   if (this->any_postprocessing_sections_)
5441     {
5442       off_t off = this->output_file_size_;
5443       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5444
5445       // Now that we've finalized the names, we can finalize the shstrab.
5446       off =
5447         this->set_section_offsets(off,
5448                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5449
5450       if (off > this->output_file_size_)
5451         {
5452           of->resize(off);
5453           this->output_file_size_ = off;
5454         }
5455     }
5456
5457   for (Section_list::const_iterator p = this->section_list_.begin();
5458        p != this->section_list_.end();
5459        ++p)
5460     {
5461       if ((*p)->after_input_sections())
5462         (*p)->write(of);
5463     }
5464
5465   this->section_headers_->write(of);
5466 }
5467
5468 // If a tree-style build ID was requested, the parallel part of that computation
5469 // is already done, and the final hash-of-hashes is computed here.  For other
5470 // types of build IDs, all the work is done here.
5471
5472 void
5473 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5474                        size_t size_of_hashes) const
5475 {
5476   if (this->build_id_note_ == NULL)
5477     return;
5478
5479   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5480                                           this->build_id_note_->data_size());
5481
5482   if (array_of_hashes == NULL)
5483     {
5484       const size_t output_file_size = this->output_file_size();
5485       const unsigned char* iv = of->get_input_view(0, output_file_size);
5486       const char* style = parameters->options().build_id();
5487
5488       // If we get here with style == "tree" then the output must be
5489       // too small for chunking, and we use SHA-1 in that case.
5490       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5491         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5492       else if (strcmp(style, "md5") == 0)
5493         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5494       else
5495         gold_unreachable();
5496
5497       of->free_input_view(0, output_file_size, iv);
5498     }
5499   else
5500     {
5501       // Non-overlapping substrings of the output file have been hashed.
5502       // Compute SHA-1 hash of the hashes.
5503       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5504                   size_of_hashes, ov);
5505       delete[] array_of_hashes;
5506     }
5507
5508   of->write_output_view(this->build_id_note_->offset(),
5509                         this->build_id_note_->data_size(),
5510                         ov);
5511 }
5512
5513 // Write out a binary file.  This is called after the link is
5514 // complete.  IN is the temporary output file we used to generate the
5515 // ELF code.  We simply walk through the segments, read them from
5516 // their file offset in IN, and write them to their load address in
5517 // the output file.  FIXME: with a bit more work, we could support
5518 // S-records and/or Intel hex format here.
5519
5520 void
5521 Layout::write_binary(Output_file* in) const
5522 {
5523   gold_assert(parameters->options().oformat_enum()
5524               == General_options::OBJECT_FORMAT_BINARY);
5525
5526   // Get the size of the binary file.
5527   uint64_t max_load_address = 0;
5528   for (Segment_list::const_iterator p = this->segment_list_.begin();
5529        p != this->segment_list_.end();
5530        ++p)
5531     {
5532       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5533         {
5534           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5535           if (max_paddr > max_load_address)
5536             max_load_address = max_paddr;
5537         }
5538     }
5539
5540   Output_file out(parameters->options().output_file_name());
5541   out.open(max_load_address);
5542
5543   for (Segment_list::const_iterator p = this->segment_list_.begin();
5544        p != this->segment_list_.end();
5545        ++p)
5546     {
5547       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5548         {
5549           const unsigned char* vin = in->get_input_view((*p)->offset(),
5550                                                         (*p)->filesz());
5551           unsigned char* vout = out.get_output_view((*p)->paddr(),
5552                                                     (*p)->filesz());
5553           memcpy(vout, vin, (*p)->filesz());
5554           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5555           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5556         }
5557     }
5558
5559   out.close();
5560 }
5561
5562 // Print the output sections to the map file.
5563
5564 void
5565 Layout::print_to_mapfile(Mapfile* mapfile) const
5566 {
5567   for (Segment_list::const_iterator p = this->segment_list_.begin();
5568        p != this->segment_list_.end();
5569        ++p)
5570     (*p)->print_sections_to_mapfile(mapfile);
5571   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5572        p != this->unattached_section_list_.end();
5573        ++p)
5574     (*p)->print_to_mapfile(mapfile);
5575 }
5576
5577 // Print statistical information to stderr.  This is used for --stats.
5578
5579 void
5580 Layout::print_stats() const
5581 {
5582   this->namepool_.print_stats("section name pool");
5583   this->sympool_.print_stats("output symbol name pool");
5584   this->dynpool_.print_stats("dynamic name pool");
5585
5586   for (Section_list::const_iterator p = this->section_list_.begin();
5587        p != this->section_list_.end();
5588        ++p)
5589     (*p)->print_merge_stats();
5590 }
5591
5592 // Write_sections_task methods.
5593
5594 // We can always run this task.
5595
5596 Task_token*
5597 Write_sections_task::is_runnable()
5598 {
5599   return NULL;
5600 }
5601
5602 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5603 // when finished.
5604
5605 void
5606 Write_sections_task::locks(Task_locker* tl)
5607 {
5608   tl->add(this, this->output_sections_blocker_);
5609   if (this->input_sections_blocker_ != NULL)
5610     tl->add(this, this->input_sections_blocker_);
5611   tl->add(this, this->final_blocker_);
5612 }
5613
5614 // Run the task--write out the data.
5615
5616 void
5617 Write_sections_task::run(Workqueue*)
5618 {
5619   this->layout_->write_output_sections(this->of_);
5620 }
5621
5622 // Write_data_task methods.
5623
5624 // We can always run this task.
5625
5626 Task_token*
5627 Write_data_task::is_runnable()
5628 {
5629   return NULL;
5630 }
5631
5632 // We need to unlock FINAL_BLOCKER when finished.
5633
5634 void
5635 Write_data_task::locks(Task_locker* tl)
5636 {
5637   tl->add(this, this->final_blocker_);
5638 }
5639
5640 // Run the task--write out the data.
5641
5642 void
5643 Write_data_task::run(Workqueue*)
5644 {
5645   this->layout_->write_data(this->symtab_, this->of_);
5646 }
5647
5648 // Write_symbols_task methods.
5649
5650 // We can always run this task.
5651
5652 Task_token*
5653 Write_symbols_task::is_runnable()
5654 {
5655   return NULL;
5656 }
5657
5658 // We need to unlock FINAL_BLOCKER when finished.
5659
5660 void
5661 Write_symbols_task::locks(Task_locker* tl)
5662 {
5663   tl->add(this, this->final_blocker_);
5664 }
5665
5666 // Run the task--write out the symbols.
5667
5668 void
5669 Write_symbols_task::run(Workqueue*)
5670 {
5671   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5672                                this->layout_->symtab_xindex(),
5673                                this->layout_->dynsym_xindex(), this->of_);
5674 }
5675
5676 // Write_after_input_sections_task methods.
5677
5678 // We can only run this task after the input sections have completed.
5679
5680 Task_token*
5681 Write_after_input_sections_task::is_runnable()
5682 {
5683   if (this->input_sections_blocker_->is_blocked())
5684     return this->input_sections_blocker_;
5685   return NULL;
5686 }
5687
5688 // We need to unlock FINAL_BLOCKER when finished.
5689
5690 void
5691 Write_after_input_sections_task::locks(Task_locker* tl)
5692 {
5693   tl->add(this, this->final_blocker_);
5694 }
5695
5696 // Run the task.
5697
5698 void
5699 Write_after_input_sections_task::run(Workqueue*)
5700 {
5701   this->layout_->write_sections_after_input_sections(this->of_);
5702 }
5703
5704 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5705 // or as a "tree" where each chunk of the string is hashed and then those
5706 // hashes are put into a (much smaller) string which is hashed with sha1.
5707 // We compute a checksum over the entire file because that is simplest.
5708
5709 void
5710 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5711 {
5712   Task_token* post_hash_tasks_blocker = new Task_token(true);
5713   const Layout* layout = this->layout_;
5714   Output_file* of = this->of_;
5715   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5716                            : static_cast<size_t>(layout->output_file_size()));
5717   unsigned char* array_of_hashes = NULL;
5718   size_t size_of_hashes = 0;
5719
5720   if (strcmp(this->options_->build_id(), "tree") == 0
5721       && this->options_->build_id_chunk_size_for_treehash() > 0
5722       && filesize > 0
5723       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5724     {
5725       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5726       const size_t chunk_size =
5727           this->options_->build_id_chunk_size_for_treehash();
5728       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5729       post_hash_tasks_blocker->add_blockers(num_hashes);
5730       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5731       array_of_hashes = new unsigned char[size_of_hashes];
5732       unsigned char *dst = array_of_hashes;
5733       for (size_t i = 0, src_offset = 0; i < num_hashes;
5734            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5735         {
5736           size_t size = std::min(chunk_size, filesize - src_offset);
5737           workqueue->queue(new Hash_task(of,
5738                                          src_offset,
5739                                          size,
5740                                          dst,
5741                                          post_hash_tasks_blocker));
5742         }
5743     }
5744
5745   // Queue the final task to write the build id and close the output file.
5746   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5747                                                            layout,
5748                                                            of,
5749                                                            array_of_hashes,
5750                                                            size_of_hashes),
5751                                      post_hash_tasks_blocker,
5752                                      "Task_function Close_task_runner"));
5753 }
5754
5755 // Close_task_runner methods.
5756
5757 // Finish up the build ID computation, if necessary, and write a binary file,
5758 // if necessary.  Then close the output file.
5759
5760 void
5761 Close_task_runner::run(Workqueue*, const Task*)
5762 {
5763   // At this point the multi-threaded part of the build ID computation,
5764   // if any, is done.  See Build_id_task_runner.
5765   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5766                                 this->size_of_hashes_);
5767
5768   // If we've been asked to create a binary file, we do so here.
5769   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5770     this->layout_->write_binary(this->of_);
5771
5772   this->of_->close();
5773 }
5774
5775 // Instantiate the templates we need.  We could use the configure
5776 // script to restrict this to only the ones for implemented targets.
5777
5778 #ifdef HAVE_TARGET_32_LITTLE
5779 template
5780 Output_section*
5781 Layout::init_fixed_output_section<32, false>(
5782     const char* name,
5783     elfcpp::Shdr<32, false>& shdr);
5784 #endif
5785
5786 #ifdef HAVE_TARGET_32_BIG
5787 template
5788 Output_section*
5789 Layout::init_fixed_output_section<32, true>(
5790     const char* name,
5791     elfcpp::Shdr<32, true>& shdr);
5792 #endif
5793
5794 #ifdef HAVE_TARGET_64_LITTLE
5795 template
5796 Output_section*
5797 Layout::init_fixed_output_section<64, false>(
5798     const char* name,
5799     elfcpp::Shdr<64, false>& shdr);
5800 #endif
5801
5802 #ifdef HAVE_TARGET_64_BIG
5803 template
5804 Output_section*
5805 Layout::init_fixed_output_section<64, true>(
5806     const char* name,
5807     elfcpp::Shdr<64, true>& shdr);
5808 #endif
5809
5810 #ifdef HAVE_TARGET_32_LITTLE
5811 template
5812 Output_section*
5813 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5814                           unsigned int shndx,
5815                           const char* name,
5816                           const elfcpp::Shdr<32, false>& shdr,
5817                           unsigned int, unsigned int, off_t*);
5818 #endif
5819
5820 #ifdef HAVE_TARGET_32_BIG
5821 template
5822 Output_section*
5823 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5824                          unsigned int shndx,
5825                          const char* name,
5826                          const elfcpp::Shdr<32, true>& shdr,
5827                          unsigned int, unsigned int, off_t*);
5828 #endif
5829
5830 #ifdef HAVE_TARGET_64_LITTLE
5831 template
5832 Output_section*
5833 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5834                           unsigned int shndx,
5835                           const char* name,
5836                           const elfcpp::Shdr<64, false>& shdr,
5837                           unsigned int, unsigned int, off_t*);
5838 #endif
5839
5840 #ifdef HAVE_TARGET_64_BIG
5841 template
5842 Output_section*
5843 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5844                          unsigned int shndx,
5845                          const char* name,
5846                          const elfcpp::Shdr<64, true>& shdr,
5847                          unsigned int, unsigned int, off_t*);
5848 #endif
5849
5850 #ifdef HAVE_TARGET_32_LITTLE
5851 template
5852 Output_section*
5853 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5854                                 unsigned int reloc_shndx,
5855                                 const elfcpp::Shdr<32, false>& shdr,
5856                                 Output_section* data_section,
5857                                 Relocatable_relocs* rr);
5858 #endif
5859
5860 #ifdef HAVE_TARGET_32_BIG
5861 template
5862 Output_section*
5863 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5864                                unsigned int reloc_shndx,
5865                                const elfcpp::Shdr<32, true>& shdr,
5866                                Output_section* data_section,
5867                                Relocatable_relocs* rr);
5868 #endif
5869
5870 #ifdef HAVE_TARGET_64_LITTLE
5871 template
5872 Output_section*
5873 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5874                                 unsigned int reloc_shndx,
5875                                 const elfcpp::Shdr<64, false>& shdr,
5876                                 Output_section* data_section,
5877                                 Relocatable_relocs* rr);
5878 #endif
5879
5880 #ifdef HAVE_TARGET_64_BIG
5881 template
5882 Output_section*
5883 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5884                                unsigned int reloc_shndx,
5885                                const elfcpp::Shdr<64, true>& shdr,
5886                                Output_section* data_section,
5887                                Relocatable_relocs* rr);
5888 #endif
5889
5890 #ifdef HAVE_TARGET_32_LITTLE
5891 template
5892 void
5893 Layout::layout_group<32, false>(Symbol_table* symtab,
5894                                 Sized_relobj_file<32, false>* object,
5895                                 unsigned int,
5896                                 const char* group_section_name,
5897                                 const char* signature,
5898                                 const elfcpp::Shdr<32, false>& shdr,
5899                                 elfcpp::Elf_Word flags,
5900                                 std::vector<unsigned int>* shndxes);
5901 #endif
5902
5903 #ifdef HAVE_TARGET_32_BIG
5904 template
5905 void
5906 Layout::layout_group<32, true>(Symbol_table* symtab,
5907                                Sized_relobj_file<32, true>* object,
5908                                unsigned int,
5909                                const char* group_section_name,
5910                                const char* signature,
5911                                const elfcpp::Shdr<32, true>& shdr,
5912                                elfcpp::Elf_Word flags,
5913                                std::vector<unsigned int>* shndxes);
5914 #endif
5915
5916 #ifdef HAVE_TARGET_64_LITTLE
5917 template
5918 void
5919 Layout::layout_group<64, false>(Symbol_table* symtab,
5920                                 Sized_relobj_file<64, false>* object,
5921                                 unsigned int,
5922                                 const char* group_section_name,
5923                                 const char* signature,
5924                                 const elfcpp::Shdr<64, false>& shdr,
5925                                 elfcpp::Elf_Word flags,
5926                                 std::vector<unsigned int>* shndxes);
5927 #endif
5928
5929 #ifdef HAVE_TARGET_64_BIG
5930 template
5931 void
5932 Layout::layout_group<64, true>(Symbol_table* symtab,
5933                                Sized_relobj_file<64, true>* object,
5934                                unsigned int,
5935                                const char* group_section_name,
5936                                const char* signature,
5937                                const elfcpp::Shdr<64, true>& shdr,
5938                                elfcpp::Elf_Word flags,
5939                                std::vector<unsigned int>* shndxes);
5940 #endif
5941
5942 #ifdef HAVE_TARGET_32_LITTLE
5943 template
5944 Output_section*
5945 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5946                                    const unsigned char* symbols,
5947                                    off_t symbols_size,
5948                                    const unsigned char* symbol_names,
5949                                    off_t symbol_names_size,
5950                                    unsigned int shndx,
5951                                    const elfcpp::Shdr<32, false>& shdr,
5952                                    unsigned int reloc_shndx,
5953                                    unsigned int reloc_type,
5954                                    off_t* off);
5955 #endif
5956
5957 #ifdef HAVE_TARGET_32_BIG
5958 template
5959 Output_section*
5960 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5961                                   const unsigned char* symbols,
5962                                   off_t symbols_size,
5963                                   const unsigned char* symbol_names,
5964                                   off_t symbol_names_size,
5965                                   unsigned int shndx,
5966                                   const elfcpp::Shdr<32, true>& shdr,
5967                                   unsigned int reloc_shndx,
5968                                   unsigned int reloc_type,
5969                                   off_t* off);
5970 #endif
5971
5972 #ifdef HAVE_TARGET_64_LITTLE
5973 template
5974 Output_section*
5975 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5976                                    const unsigned char* symbols,
5977                                    off_t symbols_size,
5978                                    const unsigned char* symbol_names,
5979                                    off_t symbol_names_size,
5980                                    unsigned int shndx,
5981                                    const elfcpp::Shdr<64, false>& shdr,
5982                                    unsigned int reloc_shndx,
5983                                    unsigned int reloc_type,
5984                                    off_t* off);
5985 #endif
5986
5987 #ifdef HAVE_TARGET_64_BIG
5988 template
5989 Output_section*
5990 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5991                                   const unsigned char* symbols,
5992                                   off_t symbols_size,
5993                                   const unsigned char* symbol_names,
5994                                   off_t symbol_names_size,
5995                                   unsigned int shndx,
5996                                   const elfcpp::Shdr<64, true>& shdr,
5997                                   unsigned int reloc_shndx,
5998                                   unsigned int reloc_type,
5999                                   off_t* off);
6000 #endif
6001
6002 #ifdef HAVE_TARGET_32_LITTLE
6003 template
6004 void
6005 Layout::add_to_gdb_index(bool is_type_unit,
6006                          Sized_relobj<32, false>* object,
6007                          const unsigned char* symbols,
6008                          off_t symbols_size,
6009                          unsigned int shndx,
6010                          unsigned int reloc_shndx,
6011                          unsigned int reloc_type);
6012 #endif
6013
6014 #ifdef HAVE_TARGET_32_BIG
6015 template
6016 void
6017 Layout::add_to_gdb_index(bool is_type_unit,
6018                          Sized_relobj<32, true>* object,
6019                          const unsigned char* symbols,
6020                          off_t symbols_size,
6021                          unsigned int shndx,
6022                          unsigned int reloc_shndx,
6023                          unsigned int reloc_type);
6024 #endif
6025
6026 #ifdef HAVE_TARGET_64_LITTLE
6027 template
6028 void
6029 Layout::add_to_gdb_index(bool is_type_unit,
6030                          Sized_relobj<64, false>* object,
6031                          const unsigned char* symbols,
6032                          off_t symbols_size,
6033                          unsigned int shndx,
6034                          unsigned int reloc_shndx,
6035                          unsigned int reloc_type);
6036 #endif
6037
6038 #ifdef HAVE_TARGET_64_BIG
6039 template
6040 void
6041 Layout::add_to_gdb_index(bool is_type_unit,
6042                          Sized_relobj<64, true>* object,
6043                          const unsigned char* symbols,
6044                          off_t symbols_size,
6045                          unsigned int shndx,
6046                          unsigned int reloc_shndx,
6047                          unsigned int reloc_type);
6048 #endif
6049
6050 } // End namespace gold.