2009-07-24 Chris Demetriou <cgd@google.com>
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout_task_runner methods.
57
58 // Lay out the sections.  This is called after all the input objects
59 // have been read.
60
61 void
62 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
63 {
64   off_t file_size = this->layout_->finalize(this->input_objects_,
65                                             this->symtab_,
66                                             this->target_,
67                                             task);
68
69   // Now we know the final size of the output file and we know where
70   // each piece of information goes.
71
72   if (this->mapfile_ != NULL)
73     {
74       this->mapfile_->print_discarded_sections(this->input_objects_);
75       this->layout_->print_to_mapfile(this->mapfile_);
76     }
77
78   Output_file* of = new Output_file(parameters->options().output_file_name());
79   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
80     of->set_is_temporary();
81   of->open(file_size);
82
83   // Queue up the final set of tasks.
84   gold::queue_final_tasks(this->options_, this->input_objects_,
85                           this->symtab_, this->layout_, workqueue, of);
86 }
87
88 // Layout methods.
89
90 Layout::Layout(int number_of_input_files, Script_options* script_options)
91   : number_of_input_files_(number_of_input_files),
92     script_options_(script_options),
93     namepool_(),
94     sympool_(),
95     dynpool_(),
96     signatures_(),
97     section_name_map_(),
98     segment_list_(),
99     section_list_(),
100     unattached_section_list_(),
101     special_output_list_(),
102     section_headers_(NULL),
103     tls_segment_(NULL),
104     relro_segment_(NULL),
105     symtab_section_(NULL),
106     symtab_xindex_(NULL),
107     dynsym_section_(NULL),
108     dynsym_xindex_(NULL),
109     dynamic_section_(NULL),
110     dynamic_data_(NULL),
111     eh_frame_section_(NULL),
112     eh_frame_data_(NULL),
113     added_eh_frame_data_(false),
114     eh_frame_hdr_section_(NULL),
115     build_id_note_(NULL),
116     debug_abbrev_(NULL),
117     debug_info_(NULL),
118     group_signatures_(),
119     output_file_size_(-1),
120     sections_are_attached_(false),
121     input_requires_executable_stack_(false),
122     input_with_gnu_stack_note_(false),
123     input_without_gnu_stack_note_(false),
124     has_static_tls_(false),
125     any_postprocessing_sections_(false),
126     resized_signatures_(false),
127     have_stabstr_section_(false),
128     incremental_inputs_(NULL)
129 {
130   // Make space for more than enough segments for a typical file.
131   // This is just for efficiency--it's OK if we wind up needing more.
132   this->segment_list_.reserve(12);
133
134   // We expect two unattached Output_data objects: the file header and
135   // the segment headers.
136   this->special_output_list_.reserve(2);
137
138   // Initialize structure needed for an incremental build.
139   if (parameters->options().incremental())
140     this->incremental_inputs_ = new Incremental_inputs;
141
142   // The section name pool is worth optimizing in all cases, because
143   // it is small, but there are often overlaps due to .rel sections.
144   this->namepool_.set_optimize();
145 }
146
147 // Hash a key we use to look up an output section mapping.
148
149 size_t
150 Layout::Hash_key::operator()(const Layout::Key& k) const
151 {
152  return k.first + k.second.first + k.second.second;
153 }
154
155 // Returns whether the given section is in the list of
156 // debug-sections-used-by-some-version-of-gdb.  Currently,
157 // we've checked versions of gdb up to and including 6.7.1.
158
159 static const char* gdb_sections[] =
160 { ".debug_abbrev",
161   // ".debug_aranges",   // not used by gdb as of 6.7.1
162   ".debug_frame",
163   ".debug_info",
164   ".debug_line",
165   ".debug_loc",
166   ".debug_macinfo",
167   // ".debug_pubnames",  // not used by gdb as of 6.7.1
168   ".debug_ranges",
169   ".debug_str",
170 };
171
172 static const char* lines_only_debug_sections[] =
173 { ".debug_abbrev",
174   // ".debug_aranges",   // not used by gdb as of 6.7.1
175   // ".debug_frame",
176   ".debug_info",
177   ".debug_line",
178   // ".debug_loc",
179   // ".debug_macinfo",
180   // ".debug_pubnames",  // not used by gdb as of 6.7.1
181   // ".debug_ranges",
182   ".debug_str",
183 };
184
185 static inline bool
186 is_gdb_debug_section(const char* str)
187 {
188   // We can do this faster: binary search or a hashtable.  But why bother?
189   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
190     if (strcmp(str, gdb_sections[i]) == 0)
191       return true;
192   return false;
193 }
194
195 static inline bool
196 is_lines_only_debug_section(const char* str)
197 {
198   // We can do this faster: binary search or a hashtable.  But why bother?
199   for (size_t i = 0;
200        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
201        ++i)
202     if (strcmp(str, lines_only_debug_sections[i]) == 0)
203       return true;
204   return false;
205 }
206
207 // Whether to include this section in the link.
208
209 template<int size, bool big_endian>
210 bool
211 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
212                         const elfcpp::Shdr<size, big_endian>& shdr)
213 {
214   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
215     return false;
216
217   switch (shdr.get_sh_type())
218     {
219     case elfcpp::SHT_NULL:
220     case elfcpp::SHT_SYMTAB:
221     case elfcpp::SHT_DYNSYM:
222     case elfcpp::SHT_HASH:
223     case elfcpp::SHT_DYNAMIC:
224     case elfcpp::SHT_SYMTAB_SHNDX:
225       return false;
226
227     case elfcpp::SHT_STRTAB:
228       // Discard the sections which have special meanings in the ELF
229       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
230       // checking the sh_link fields of the appropriate sections.
231       return (strcmp(name, ".dynstr") != 0
232               && strcmp(name, ".strtab") != 0
233               && strcmp(name, ".shstrtab") != 0);
234
235     case elfcpp::SHT_RELA:
236     case elfcpp::SHT_REL:
237     case elfcpp::SHT_GROUP:
238       // If we are emitting relocations these should be handled
239       // elsewhere.
240       gold_assert(!parameters->options().relocatable()
241                   && !parameters->options().emit_relocs());
242       return false;
243
244     case elfcpp::SHT_PROGBITS:
245       if (parameters->options().strip_debug()
246           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
247         {
248           if (is_debug_info_section(name))
249             return false;
250         }
251       if (parameters->options().strip_debug_non_line()
252           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
253         {
254           // Debugging sections can only be recognized by name.
255           if (is_prefix_of(".debug", name)
256               && !is_lines_only_debug_section(name))
257             return false;
258         }
259       if (parameters->options().strip_debug_gdb()
260           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
261         {
262           // Debugging sections can only be recognized by name.
263           if (is_prefix_of(".debug", name)
264               && !is_gdb_debug_section(name))
265             return false;
266         }
267       if (parameters->options().strip_lto_sections()
268           && !parameters->options().relocatable()
269           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
270         {
271           // Ignore LTO sections containing intermediate code.
272           if (is_prefix_of(".gnu.lto_", name))
273             return false;
274         }
275       return true;
276
277     default:
278       return true;
279     }
280 }
281
282 // Return an output section named NAME, or NULL if there is none.
283
284 Output_section*
285 Layout::find_output_section(const char* name) const
286 {
287   for (Section_list::const_iterator p = this->section_list_.begin();
288        p != this->section_list_.end();
289        ++p)
290     if (strcmp((*p)->name(), name) == 0)
291       return *p;
292   return NULL;
293 }
294
295 // Return an output segment of type TYPE, with segment flags SET set
296 // and segment flags CLEAR clear.  Return NULL if there is none.
297
298 Output_segment*
299 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
300                             elfcpp::Elf_Word clear) const
301 {
302   for (Segment_list::const_iterator p = this->segment_list_.begin();
303        p != this->segment_list_.end();
304        ++p)
305     if (static_cast<elfcpp::PT>((*p)->type()) == type
306         && ((*p)->flags() & set) == set
307         && ((*p)->flags() & clear) == 0)
308       return *p;
309   return NULL;
310 }
311
312 // Return the output section to use for section NAME with type TYPE
313 // and section flags FLAGS.  NAME must be canonicalized in the string
314 // pool, and NAME_KEY is the key.
315
316 Output_section*
317 Layout::get_output_section(const char* name, Stringpool::Key name_key,
318                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
319 {
320   elfcpp::Elf_Xword lookup_flags = flags;
321
322   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
323   // read-write with read-only sections.  Some other ELF linkers do
324   // not do this.  FIXME: Perhaps there should be an option
325   // controlling this.
326   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
327
328   const Key key(name_key, std::make_pair(type, lookup_flags));
329   const std::pair<Key, Output_section*> v(key, NULL);
330   std::pair<Section_name_map::iterator, bool> ins(
331     this->section_name_map_.insert(v));
332
333   if (!ins.second)
334     return ins.first->second;
335   else
336     {
337       // This is the first time we've seen this name/type/flags
338       // combination.  For compatibility with the GNU linker, we
339       // combine sections with contents and zero flags with sections
340       // with non-zero flags.  This is a workaround for cases where
341       // assembler code forgets to set section flags.  FIXME: Perhaps
342       // there should be an option to control this.
343       Output_section* os = NULL;
344
345       if (type == elfcpp::SHT_PROGBITS)
346         {
347           if (flags == 0)
348             {
349               Output_section* same_name = this->find_output_section(name);
350               if (same_name != NULL
351                   && same_name->type() == elfcpp::SHT_PROGBITS
352                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
353                 os = same_name;
354             }
355           else if ((flags & elfcpp::SHF_TLS) == 0)
356             {
357               elfcpp::Elf_Xword zero_flags = 0;
358               const Key zero_key(name_key, std::make_pair(type, zero_flags));
359               Section_name_map::iterator p =
360                   this->section_name_map_.find(zero_key);
361               if (p != this->section_name_map_.end())
362                 os = p->second;
363             }
364         }
365
366       if (os == NULL)
367         os = this->make_output_section(name, type, flags);
368       ins.first->second = os;
369       return os;
370     }
371 }
372
373 // Pick the output section to use for section NAME, in input file
374 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
375 // linker created section.  IS_INPUT_SECTION is true if we are
376 // choosing an output section for an input section found in a input
377 // file.  This will return NULL if the input section should be
378 // discarded.
379
380 Output_section*
381 Layout::choose_output_section(const Relobj* relobj, const char* name,
382                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
383                               bool is_input_section)
384 {
385   // We should not see any input sections after we have attached
386   // sections to segments.
387   gold_assert(!is_input_section || !this->sections_are_attached_);
388
389   // Some flags in the input section should not be automatically
390   // copied to the output section.
391   flags &= ~ (elfcpp::SHF_INFO_LINK
392               | elfcpp::SHF_LINK_ORDER
393               | elfcpp::SHF_GROUP
394               | elfcpp::SHF_MERGE
395               | elfcpp::SHF_STRINGS);
396
397   if (this->script_options_->saw_sections_clause())
398     {
399       // We are using a SECTIONS clause, so the output section is
400       // chosen based only on the name.
401
402       Script_sections* ss = this->script_options_->script_sections();
403       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
404       Output_section** output_section_slot;
405       name = ss->output_section_name(file_name, name, &output_section_slot);
406       if (name == NULL)
407         {
408           // The SECTIONS clause says to discard this input section.
409           return NULL;
410         }
411
412       // If this is an orphan section--one not mentioned in the linker
413       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
414       // default processing below.
415
416       if (output_section_slot != NULL)
417         {
418           if (*output_section_slot != NULL)
419             {
420               (*output_section_slot)->update_flags_for_input_section(flags);
421               return *output_section_slot;
422             }
423
424           // We don't put sections found in the linker script into
425           // SECTION_NAME_MAP_.  That keeps us from getting confused
426           // if an orphan section is mapped to a section with the same
427           // name as one in the linker script.
428
429           name = this->namepool_.add(name, false, NULL);
430
431           Output_section* os = this->make_output_section(name, type, flags);
432           os->set_found_in_sections_clause();
433           *output_section_slot = os;
434           return os;
435         }
436     }
437
438   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
439
440   // Turn NAME from the name of the input section into the name of the
441   // output section.
442
443   size_t len = strlen(name);
444   if (is_input_section
445       && !this->script_options_->saw_sections_clause()
446       && !parameters->options().relocatable())
447     name = Layout::output_section_name(name, &len);
448
449   Stringpool::Key name_key;
450   name = this->namepool_.add_with_length(name, len, true, &name_key);
451
452   // Find or make the output section.  The output section is selected
453   // based on the section name, type, and flags.
454   return this->get_output_section(name, name_key, type, flags);
455 }
456
457 // Return the output section to use for input section SHNDX, with name
458 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
459 // index of a relocation section which applies to this section, or 0
460 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
461 // relocation section if there is one.  Set *OFF to the offset of this
462 // input section without the output section.  Return NULL if the
463 // section should be discarded.  Set *OFF to -1 if the section
464 // contents should not be written directly to the output file, but
465 // will instead receive special handling.
466
467 template<int size, bool big_endian>
468 Output_section*
469 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
470                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
471                unsigned int reloc_shndx, unsigned int, off_t* off)
472 {
473   *off = 0;
474
475   if (!this->include_section(object, name, shdr))
476     return NULL;
477
478   Output_section* os;
479
480   // In a relocatable link a grouped section must not be combined with
481   // any other sections.
482   if (parameters->options().relocatable()
483       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
484     {
485       name = this->namepool_.add(name, true, NULL);
486       os = this->make_output_section(name, shdr.get_sh_type(),
487                                      shdr.get_sh_flags());
488     }
489   else
490     {
491       os = this->choose_output_section(object, name, shdr.get_sh_type(),
492                                        shdr.get_sh_flags(), true);
493       if (os == NULL)
494         return NULL;
495     }
496
497   // By default the GNU linker sorts input sections whose names match
498   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
499   // are sorted by name.  This is used to implement constructor
500   // priority ordering.  We are compatible.
501   if (!this->script_options_->saw_sections_clause()
502       && (is_prefix_of(".ctors.", name)
503           || is_prefix_of(".dtors.", name)
504           || is_prefix_of(".init_array.", name)
505           || is_prefix_of(".fini_array.", name)))
506     os->set_must_sort_attached_input_sections();
507
508   // FIXME: Handle SHF_LINK_ORDER somewhere.
509
510   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
511                                this->script_options_->saw_sections_clause());
512
513   return os;
514 }
515
516 // Handle a relocation section when doing a relocatable link.
517
518 template<int size, bool big_endian>
519 Output_section*
520 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
521                      unsigned int,
522                      const elfcpp::Shdr<size, big_endian>& shdr,
523                      Output_section* data_section,
524                      Relocatable_relocs* rr)
525 {
526   gold_assert(parameters->options().relocatable()
527               || parameters->options().emit_relocs());
528
529   int sh_type = shdr.get_sh_type();
530
531   std::string name;
532   if (sh_type == elfcpp::SHT_REL)
533     name = ".rel";
534   else if (sh_type == elfcpp::SHT_RELA)
535     name = ".rela";
536   else
537     gold_unreachable();
538   name += data_section->name();
539
540   Output_section* os = this->choose_output_section(object, name.c_str(),
541                                                    sh_type,
542                                                    shdr.get_sh_flags(),
543                                                    false);
544
545   os->set_should_link_to_symtab();
546   os->set_info_section(data_section);
547
548   Output_section_data* posd;
549   if (sh_type == elfcpp::SHT_REL)
550     {
551       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
552       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
553                                            size,
554                                            big_endian>(rr);
555     }
556   else if (sh_type == elfcpp::SHT_RELA)
557     {
558       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
559       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
560                                            size,
561                                            big_endian>(rr);
562     }
563   else
564     gold_unreachable();
565
566   os->add_output_section_data(posd);
567   rr->set_output_data(posd);
568
569   return os;
570 }
571
572 // Handle a group section when doing a relocatable link.
573
574 template<int size, bool big_endian>
575 void
576 Layout::layout_group(Symbol_table* symtab,
577                      Sized_relobj<size, big_endian>* object,
578                      unsigned int,
579                      const char* group_section_name,
580                      const char* signature,
581                      const elfcpp::Shdr<size, big_endian>& shdr,
582                      elfcpp::Elf_Word flags,
583                      std::vector<unsigned int>* shndxes)
584 {
585   gold_assert(parameters->options().relocatable());
586   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
587   group_section_name = this->namepool_.add(group_section_name, true, NULL);
588   Output_section* os = this->make_output_section(group_section_name,
589                                                  elfcpp::SHT_GROUP,
590                                                  shdr.get_sh_flags());
591
592   // We need to find a symbol with the signature in the symbol table.
593   // If we don't find one now, we need to look again later.
594   Symbol* sym = symtab->lookup(signature, NULL);
595   if (sym != NULL)
596     os->set_info_symndx(sym);
597   else
598     {
599       // Reserve some space to minimize reallocations.
600       if (this->group_signatures_.empty())
601         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
602
603       // We will wind up using a symbol whose name is the signature.
604       // So just put the signature in the symbol name pool to save it.
605       signature = symtab->canonicalize_name(signature);
606       this->group_signatures_.push_back(Group_signature(os, signature));
607     }
608
609   os->set_should_link_to_symtab();
610   os->set_entsize(4);
611
612   section_size_type entry_count =
613     convert_to_section_size_type(shdr.get_sh_size() / 4);
614   Output_section_data* posd =
615     new Output_data_group<size, big_endian>(object, entry_count, flags,
616                                             shndxes);
617   os->add_output_section_data(posd);
618 }
619
620 // Special GNU handling of sections name .eh_frame.  They will
621 // normally hold exception frame data as defined by the C++ ABI
622 // (http://codesourcery.com/cxx-abi/).
623
624 template<int size, bool big_endian>
625 Output_section*
626 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
627                         const unsigned char* symbols,
628                         off_t symbols_size,
629                         const unsigned char* symbol_names,
630                         off_t symbol_names_size,
631                         unsigned int shndx,
632                         const elfcpp::Shdr<size, big_endian>& shdr,
633                         unsigned int reloc_shndx, unsigned int reloc_type,
634                         off_t* off)
635 {
636   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
637   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
638
639   const char* const name = ".eh_frame";
640   Output_section* os = this->choose_output_section(object,
641                                                    name,
642                                                    elfcpp::SHT_PROGBITS,
643                                                    elfcpp::SHF_ALLOC,
644                                                    false);
645   if (os == NULL)
646     return NULL;
647
648   if (this->eh_frame_section_ == NULL)
649     {
650       this->eh_frame_section_ = os;
651       this->eh_frame_data_ = new Eh_frame();
652
653       if (parameters->options().eh_frame_hdr())
654         {
655           Output_section* hdr_os =
656             this->choose_output_section(NULL,
657                                         ".eh_frame_hdr",
658                                         elfcpp::SHT_PROGBITS,
659                                         elfcpp::SHF_ALLOC,
660                                         false);
661
662           if (hdr_os != NULL)
663             {
664               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
665                                                         this->eh_frame_data_);
666               hdr_os->add_output_section_data(hdr_posd);
667
668               hdr_os->set_after_input_sections();
669
670               if (!this->script_options_->saw_phdrs_clause())
671                 {
672                   Output_segment* hdr_oseg;
673                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
674                                                        elfcpp::PF_R);
675                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
676                 }
677
678               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
679             }
680         }
681     }
682
683   gold_assert(this->eh_frame_section_ == os);
684
685   if (this->eh_frame_data_->add_ehframe_input_section(object,
686                                                       symbols,
687                                                       symbols_size,
688                                                       symbol_names,
689                                                       symbol_names_size,
690                                                       shndx,
691                                                       reloc_shndx,
692                                                       reloc_type))
693     {
694       os->update_flags_for_input_section(shdr.get_sh_flags());
695
696       // We found a .eh_frame section we are going to optimize, so now
697       // we can add the set of optimized sections to the output
698       // section.  We need to postpone adding this until we've found a
699       // section we can optimize so that the .eh_frame section in
700       // crtbegin.o winds up at the start of the output section.
701       if (!this->added_eh_frame_data_)
702         {
703           os->add_output_section_data(this->eh_frame_data_);
704           this->added_eh_frame_data_ = true;
705         }
706       *off = -1;
707     }
708   else
709     {
710       // We couldn't handle this .eh_frame section for some reason.
711       // Add it as a normal section.
712       bool saw_sections_clause = this->script_options_->saw_sections_clause();
713       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
714                                    saw_sections_clause);
715     }
716
717   return os;
718 }
719
720 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
721 // the output section.
722
723 Output_section*
724 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
725                                 elfcpp::Elf_Xword flags,
726                                 Output_section_data* posd)
727 {
728   Output_section* os = this->choose_output_section(NULL, name, type, flags,
729                                                    false);
730   if (os != NULL)
731     os->add_output_section_data(posd);
732   return os;
733 }
734
735 // Map section flags to segment flags.
736
737 elfcpp::Elf_Word
738 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
739 {
740   elfcpp::Elf_Word ret = elfcpp::PF_R;
741   if ((flags & elfcpp::SHF_WRITE) != 0)
742     ret |= elfcpp::PF_W;
743   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
744     ret |= elfcpp::PF_X;
745   return ret;
746 }
747
748 // Sometimes we compress sections.  This is typically done for
749 // sections that are not part of normal program execution (such as
750 // .debug_* sections), and where the readers of these sections know
751 // how to deal with compressed sections.  This routine doesn't say for
752 // certain whether we'll compress -- it depends on commandline options
753 // as well -- just whether this section is a candidate for compression.
754 // (The Output_compressed_section class decides whether to compress
755 // a given section, and picks the name of the compressed section.)
756
757 static bool
758 is_compressible_debug_section(const char* secname)
759 {
760   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
761 }
762
763 // Make a new Output_section, and attach it to segments as
764 // appropriate.
765
766 Output_section*
767 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
768                             elfcpp::Elf_Xword flags)
769 {
770   Output_section* os;
771   if ((flags & elfcpp::SHF_ALLOC) == 0
772       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
773       && is_compressible_debug_section(name))
774     os = new Output_compressed_section(&parameters->options(), name, type,
775                                        flags);
776
777   else if ((flags & elfcpp::SHF_ALLOC) == 0
778            && parameters->options().strip_debug_non_line()
779            && strcmp(".debug_abbrev", name) == 0)
780     {
781       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
782           name, type, flags);
783       if (this->debug_info_)
784         this->debug_info_->set_abbreviations(this->debug_abbrev_);
785     }
786   else if ((flags & elfcpp::SHF_ALLOC) == 0
787            && parameters->options().strip_debug_non_line()
788            && strcmp(".debug_info", name) == 0)
789     {
790       os = this->debug_info_ = new Output_reduced_debug_info_section(
791           name, type, flags);
792       if (this->debug_abbrev_)
793         this->debug_info_->set_abbreviations(this->debug_abbrev_);
794     }
795  else
796     os = new Output_section(name, type, flags);
797
798   parameters->target().new_output_section(os);
799
800   this->section_list_.push_back(os);
801
802   // The GNU linker by default sorts some sections by priority, so we
803   // do the same.  We need to know that this might happen before we
804   // attach any input sections.
805   if (!this->script_options_->saw_sections_clause()
806       && (strcmp(name, ".ctors") == 0
807           || strcmp(name, ".dtors") == 0
808           || strcmp(name, ".init_array") == 0
809           || strcmp(name, ".fini_array") == 0))
810     os->set_may_sort_attached_input_sections();
811
812   // With -z relro, we have to recognize the special sections by name.
813   // There is no other way.
814   if (!this->script_options_->saw_sections_clause()
815       && parameters->options().relro()
816       && type == elfcpp::SHT_PROGBITS
817       && (flags & elfcpp::SHF_ALLOC) != 0
818       && (flags & elfcpp::SHF_WRITE) != 0)
819     {
820       if (strcmp(name, ".data.rel.ro") == 0)
821         os->set_is_relro();
822       else if (strcmp(name, ".data.rel.ro.local") == 0)
823         {
824           os->set_is_relro();
825           os->set_is_relro_local();
826         }
827     }
828
829   // Check for .stab*str sections, as .stab* sections need to link to
830   // them.
831   if (type == elfcpp::SHT_STRTAB
832       && !this->have_stabstr_section_
833       && strncmp(name, ".stab", 5) == 0
834       && strcmp(name + strlen(name) - 3, "str") == 0)
835     this->have_stabstr_section_ = true;
836
837   // If we have already attached the sections to segments, then we
838   // need to attach this one now.  This happens for sections created
839   // directly by the linker.
840   if (this->sections_are_attached_)
841     this->attach_section_to_segment(os);
842
843   return os;
844 }
845
846 // Attach output sections to segments.  This is called after we have
847 // seen all the input sections.
848
849 void
850 Layout::attach_sections_to_segments()
851 {
852   for (Section_list::iterator p = this->section_list_.begin();
853        p != this->section_list_.end();
854        ++p)
855     this->attach_section_to_segment(*p);
856
857   this->sections_are_attached_ = true;
858 }
859
860 // Attach an output section to a segment.
861
862 void
863 Layout::attach_section_to_segment(Output_section* os)
864 {
865   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
866     this->unattached_section_list_.push_back(os);
867   else
868     this->attach_allocated_section_to_segment(os);
869 }
870
871 // Attach an allocated output section to a segment.
872
873 void
874 Layout::attach_allocated_section_to_segment(Output_section* os)
875 {
876   elfcpp::Elf_Xword flags = os->flags();
877   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
878
879   if (parameters->options().relocatable())
880     return;
881
882   // If we have a SECTIONS clause, we can't handle the attachment to
883   // segments until after we've seen all the sections.
884   if (this->script_options_->saw_sections_clause())
885     return;
886
887   gold_assert(!this->script_options_->saw_phdrs_clause());
888
889   // This output section goes into a PT_LOAD segment.
890
891   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
892
893   // In general the only thing we really care about for PT_LOAD
894   // segments is whether or not they are writable, so that is how we
895   // search for them.  Large data sections also go into their own
896   // PT_LOAD segment.  People who need segments sorted on some other
897   // basis will have to use a linker script.
898
899   Segment_list::const_iterator p;
900   for (p = this->segment_list_.begin();
901        p != this->segment_list_.end();
902        ++p)
903     {
904       if ((*p)->type() != elfcpp::PT_LOAD)
905         continue;
906       if (!parameters->options().omagic()
907           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
908         continue;
909       // If -Tbss was specified, we need to separate the data and BSS
910       // segments.
911       if (parameters->options().user_set_Tbss())
912         {
913           if ((os->type() == elfcpp::SHT_NOBITS)
914               == (*p)->has_any_data_sections())
915             continue;
916         }
917       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
918         continue;
919
920       (*p)->add_output_section(os, seg_flags);
921       break;
922     }
923
924   if (p == this->segment_list_.end())
925     {
926       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
927                                                        seg_flags);
928       if (os->is_large_data_section())
929         oseg->set_is_large_data_segment();
930       oseg->add_output_section(os, seg_flags);
931     }
932
933   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
934   // segment.
935   if (os->type() == elfcpp::SHT_NOTE)
936     {
937       // See if we already have an equivalent PT_NOTE segment.
938       for (p = this->segment_list_.begin();
939            p != segment_list_.end();
940            ++p)
941         {
942           if ((*p)->type() == elfcpp::PT_NOTE
943               && (((*p)->flags() & elfcpp::PF_W)
944                   == (seg_flags & elfcpp::PF_W)))
945             {
946               (*p)->add_output_section(os, seg_flags);
947               break;
948             }
949         }
950
951       if (p == this->segment_list_.end())
952         {
953           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
954                                                            seg_flags);
955           oseg->add_output_section(os, seg_flags);
956         }
957     }
958
959   // If we see a loadable SHF_TLS section, we create a PT_TLS
960   // segment.  There can only be one such segment.
961   if ((flags & elfcpp::SHF_TLS) != 0)
962     {
963       if (this->tls_segment_ == NULL)
964         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
965       this->tls_segment_->add_output_section(os, seg_flags);
966     }
967
968   // If -z relro is in effect, and we see a relro section, we create a
969   // PT_GNU_RELRO segment.  There can only be one such segment.
970   if (os->is_relro() && parameters->options().relro())
971     {
972       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
973       if (this->relro_segment_ == NULL)
974         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
975       this->relro_segment_->add_output_section(os, seg_flags);
976     }
977 }
978
979 // Make an output section for a script.
980
981 Output_section*
982 Layout::make_output_section_for_script(const char* name)
983 {
984   name = this->namepool_.add(name, false, NULL);
985   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
986                                                  elfcpp::SHF_ALLOC);
987   os->set_found_in_sections_clause();
988   return os;
989 }
990
991 // Return the number of segments we expect to see.
992
993 size_t
994 Layout::expected_segment_count() const
995 {
996   size_t ret = this->segment_list_.size();
997
998   // If we didn't see a SECTIONS clause in a linker script, we should
999   // already have the complete list of segments.  Otherwise we ask the
1000   // SECTIONS clause how many segments it expects, and add in the ones
1001   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1002
1003   if (!this->script_options_->saw_sections_clause())
1004     return ret;
1005   else
1006     {
1007       const Script_sections* ss = this->script_options_->script_sections();
1008       return ret + ss->expected_segment_count(this);
1009     }
1010 }
1011
1012 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1013 // is whether we saw a .note.GNU-stack section in the object file.
1014 // GNU_STACK_FLAGS is the section flags.  The flags give the
1015 // protection required for stack memory.  We record this in an
1016 // executable as a PT_GNU_STACK segment.  If an object file does not
1017 // have a .note.GNU-stack segment, we must assume that it is an old
1018 // object.  On some targets that will force an executable stack.
1019
1020 void
1021 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1022 {
1023   if (!seen_gnu_stack)
1024     this->input_without_gnu_stack_note_ = true;
1025   else
1026     {
1027       this->input_with_gnu_stack_note_ = true;
1028       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1029         this->input_requires_executable_stack_ = true;
1030     }
1031 }
1032
1033 // Create automatic note sections.
1034
1035 void
1036 Layout::create_notes()
1037 {
1038   this->create_gold_note();
1039   this->create_executable_stack_info();
1040   this->create_build_id();
1041 }
1042
1043 // Create the dynamic sections which are needed before we read the
1044 // relocs.
1045
1046 void
1047 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1048 {
1049   if (parameters->doing_static_link())
1050     return;
1051
1052   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1053                                                        elfcpp::SHT_DYNAMIC,
1054                                                        (elfcpp::SHF_ALLOC
1055                                                         | elfcpp::SHF_WRITE),
1056                                                        false);
1057   this->dynamic_section_->set_is_relro();
1058
1059   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1060                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1061                                 elfcpp::STV_HIDDEN, 0, false, false);
1062
1063   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1064
1065   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1066 }
1067
1068 // For each output section whose name can be represented as C symbol,
1069 // define __start and __stop symbols for the section.  This is a GNU
1070 // extension.
1071
1072 void
1073 Layout::define_section_symbols(Symbol_table* symtab)
1074 {
1075   for (Section_list::const_iterator p = this->section_list_.begin();
1076        p != this->section_list_.end();
1077        ++p)
1078     {
1079       const char* const name = (*p)->name();
1080       if (name[strspn(name,
1081                       ("0123456789"
1082                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1083                        "abcdefghijklmnopqrstuvwxyz"
1084                        "_"))]
1085           == '\0')
1086         {
1087           const std::string name_string(name);
1088           const std::string start_name("__start_" + name_string);
1089           const std::string stop_name("__stop_" + name_string);
1090
1091           symtab->define_in_output_data(start_name.c_str(),
1092                                         NULL, // version
1093                                         *p,
1094                                         0, // value
1095                                         0, // symsize
1096                                         elfcpp::STT_NOTYPE,
1097                                         elfcpp::STB_GLOBAL,
1098                                         elfcpp::STV_DEFAULT,
1099                                         0, // nonvis
1100                                         false, // offset_is_from_end
1101                                         true); // only_if_ref
1102
1103           symtab->define_in_output_data(stop_name.c_str(),
1104                                         NULL, // version
1105                                         *p,
1106                                         0, // value
1107                                         0, // symsize
1108                                         elfcpp::STT_NOTYPE,
1109                                         elfcpp::STB_GLOBAL,
1110                                         elfcpp::STV_DEFAULT,
1111                                         0, // nonvis
1112                                         true, // offset_is_from_end
1113                                         true); // only_if_ref
1114         }
1115     }
1116 }
1117
1118 // Define symbols for group signatures.
1119
1120 void
1121 Layout::define_group_signatures(Symbol_table* symtab)
1122 {
1123   for (Group_signatures::iterator p = this->group_signatures_.begin();
1124        p != this->group_signatures_.end();
1125        ++p)
1126     {
1127       Symbol* sym = symtab->lookup(p->signature, NULL);
1128       if (sym != NULL)
1129         p->section->set_info_symndx(sym);
1130       else
1131         {
1132           // Force the name of the group section to the group
1133           // signature, and use the group's section symbol as the
1134           // signature symbol.
1135           if (strcmp(p->section->name(), p->signature) != 0)
1136             {
1137               const char* name = this->namepool_.add(p->signature,
1138                                                      true, NULL);
1139               p->section->set_name(name);
1140             }
1141           p->section->set_needs_symtab_index();
1142           p->section->set_info_section_symndx(p->section);
1143         }
1144     }
1145
1146   this->group_signatures_.clear();
1147 }
1148
1149 // Find the first read-only PT_LOAD segment, creating one if
1150 // necessary.
1151
1152 Output_segment*
1153 Layout::find_first_load_seg()
1154 {
1155   for (Segment_list::const_iterator p = this->segment_list_.begin();
1156        p != this->segment_list_.end();
1157        ++p)
1158     {
1159       if ((*p)->type() == elfcpp::PT_LOAD
1160           && ((*p)->flags() & elfcpp::PF_R) != 0
1161           && (parameters->options().omagic()
1162               || ((*p)->flags() & elfcpp::PF_W) == 0))
1163         return *p;
1164     }
1165
1166   gold_assert(!this->script_options_->saw_phdrs_clause());
1167
1168   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1169                                                        elfcpp::PF_R);
1170   return load_seg;
1171 }
1172
1173 // Finalize the layout.  When this is called, we have created all the
1174 // output sections and all the output segments which are based on
1175 // input sections.  We have several things to do, and we have to do
1176 // them in the right order, so that we get the right results correctly
1177 // and efficiently.
1178
1179 // 1) Finalize the list of output segments and create the segment
1180 // table header.
1181
1182 // 2) Finalize the dynamic symbol table and associated sections.
1183
1184 // 3) Determine the final file offset of all the output segments.
1185
1186 // 4) Determine the final file offset of all the SHF_ALLOC output
1187 // sections.
1188
1189 // 5) Create the symbol table sections and the section name table
1190 // section.
1191
1192 // 6) Finalize the symbol table: set symbol values to their final
1193 // value and make a final determination of which symbols are going
1194 // into the output symbol table.
1195
1196 // 7) Create the section table header.
1197
1198 // 8) Determine the final file offset of all the output sections which
1199 // are not SHF_ALLOC, including the section table header.
1200
1201 // 9) Finalize the ELF file header.
1202
1203 // This function returns the size of the output file.
1204
1205 off_t
1206 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1207                  Target* target, const Task* task)
1208 {
1209   target->finalize_sections(this);
1210
1211   this->count_local_symbols(task, input_objects);
1212
1213   this->link_stabs_sections();
1214
1215   Output_segment* phdr_seg = NULL;
1216   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1217     {
1218       // There was a dynamic object in the link.  We need to create
1219       // some information for the dynamic linker.
1220
1221       // Create the PT_PHDR segment which will hold the program
1222       // headers.
1223       if (!this->script_options_->saw_phdrs_clause())
1224         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1225
1226       // Create the dynamic symbol table, including the hash table.
1227       Output_section* dynstr;
1228       std::vector<Symbol*> dynamic_symbols;
1229       unsigned int local_dynamic_count;
1230       Versions versions(*this->script_options()->version_script_info(),
1231                         &this->dynpool_);
1232       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1233                                   &local_dynamic_count, &dynamic_symbols,
1234                                   &versions);
1235
1236       // Create the .interp section to hold the name of the
1237       // interpreter, and put it in a PT_INTERP segment.
1238       if (!parameters->options().shared())
1239         this->create_interp(target);
1240
1241       // Finish the .dynamic section to hold the dynamic data, and put
1242       // it in a PT_DYNAMIC segment.
1243       this->finish_dynamic_section(input_objects, symtab);
1244
1245       // We should have added everything we need to the dynamic string
1246       // table.
1247       this->dynpool_.set_string_offsets();
1248
1249       // Create the version sections.  We can't do this until the
1250       // dynamic string table is complete.
1251       this->create_version_sections(&versions, symtab, local_dynamic_count,
1252                                     dynamic_symbols, dynstr);
1253     }
1254   
1255   if (this->incremental_inputs_)
1256     {
1257       this->incremental_inputs_->finalize();
1258       this->create_incremental_info_sections();
1259     }
1260
1261   // If there is a SECTIONS clause, put all the input sections into
1262   // the required order.
1263   Output_segment* load_seg;
1264   if (this->script_options_->saw_sections_clause())
1265     load_seg = this->set_section_addresses_from_script(symtab);
1266   else if (parameters->options().relocatable())
1267     load_seg = NULL;
1268   else
1269     load_seg = this->find_first_load_seg();
1270
1271   if (parameters->options().oformat_enum()
1272       != General_options::OBJECT_FORMAT_ELF)
1273     load_seg = NULL;
1274
1275   gold_assert(phdr_seg == NULL || load_seg != NULL);
1276
1277   // Lay out the segment headers.
1278   Output_segment_headers* segment_headers;
1279   if (parameters->options().relocatable())
1280     segment_headers = NULL;
1281   else
1282     {
1283       segment_headers = new Output_segment_headers(this->segment_list_);
1284       if (load_seg != NULL)
1285         load_seg->add_initial_output_data(segment_headers);
1286       if (phdr_seg != NULL)
1287         phdr_seg->add_initial_output_data(segment_headers);
1288     }
1289
1290   // Lay out the file header.
1291   Output_file_header* file_header;
1292   file_header = new Output_file_header(target, symtab, segment_headers,
1293                                        parameters->options().entry());
1294   if (load_seg != NULL)
1295     load_seg->add_initial_output_data(file_header);
1296
1297   this->special_output_list_.push_back(file_header);
1298   if (segment_headers != NULL)
1299     this->special_output_list_.push_back(segment_headers);
1300
1301   if (this->script_options_->saw_phdrs_clause()
1302       && !parameters->options().relocatable())
1303     {
1304       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1305       // clause in a linker script.
1306       Script_sections* ss = this->script_options_->script_sections();
1307       ss->put_headers_in_phdrs(file_header, segment_headers);
1308     }
1309
1310   // We set the output section indexes in set_segment_offsets and
1311   // set_section_indexes.
1312   unsigned int shndx = 1;
1313
1314   // Set the file offsets of all the segments, and all the sections
1315   // they contain.
1316   off_t off;
1317   if (!parameters->options().relocatable())
1318     off = this->set_segment_offsets(target, load_seg, &shndx);
1319   else
1320     off = this->set_relocatable_section_offsets(file_header, &shndx);
1321
1322   // Set the file offsets of all the non-data sections we've seen so
1323   // far which don't have to wait for the input sections.  We need
1324   // this in order to finalize local symbols in non-allocated
1325   // sections.
1326   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1327
1328   // Set the section indexes of all unallocated sections seen so far,
1329   // in case any of them are somehow referenced by a symbol.
1330   shndx = this->set_section_indexes(shndx);
1331
1332   // Create the symbol table sections.
1333   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1334   if (!parameters->doing_static_link())
1335     this->assign_local_dynsym_offsets(input_objects);
1336
1337   // Process any symbol assignments from a linker script.  This must
1338   // be called after the symbol table has been finalized.
1339   this->script_options_->finalize_symbols(symtab, this);
1340
1341   // Create the .shstrtab section.
1342   Output_section* shstrtab_section = this->create_shstrtab();
1343
1344   // Set the file offsets of the rest of the non-data sections which
1345   // don't have to wait for the input sections.
1346   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1347
1348   // Now that all sections have been created, set the section indexes
1349   // for any sections which haven't been done yet.
1350   shndx = this->set_section_indexes(shndx);
1351
1352   // Create the section table header.
1353   this->create_shdrs(shstrtab_section, &off);
1354
1355   // If there are no sections which require postprocessing, we can
1356   // handle the section names now, and avoid a resize later.
1357   if (!this->any_postprocessing_sections_)
1358     off = this->set_section_offsets(off,
1359                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1360
1361   file_header->set_section_info(this->section_headers_, shstrtab_section);
1362
1363   // Now we know exactly where everything goes in the output file
1364   // (except for non-allocated sections which require postprocessing).
1365   Output_data::layout_complete();
1366
1367   this->output_file_size_ = off;
1368
1369   return off;
1370 }
1371
1372 // Create a note header following the format defined in the ELF ABI.
1373 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1374 // of the section to create, DESCSZ is the size of the descriptor.
1375 // ALLOCATE is true if the section should be allocated in memory.
1376 // This returns the new note section.  It sets *TRAILING_PADDING to
1377 // the number of trailing zero bytes required.
1378
1379 Output_section*
1380 Layout::create_note(const char* name, int note_type,
1381                     const char* section_name, size_t descsz,
1382                     bool allocate, size_t* trailing_padding)
1383 {
1384   // Authorities all agree that the values in a .note field should
1385   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1386   // they differ on what the alignment is for 64-bit binaries.
1387   // The GABI says unambiguously they take 8-byte alignment:
1388   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1389   // Other documentation says alignment should always be 4 bytes:
1390   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1391   // GNU ld and GNU readelf both support the latter (at least as of
1392   // version 2.16.91), and glibc always generates the latter for
1393   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1394   // here.
1395 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1396   const int size = parameters->target().get_size();
1397 #else
1398   const int size = 32;
1399 #endif
1400
1401   // The contents of the .note section.
1402   size_t namesz = strlen(name) + 1;
1403   size_t aligned_namesz = align_address(namesz, size / 8);
1404   size_t aligned_descsz = align_address(descsz, size / 8);
1405
1406   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1407
1408   unsigned char* buffer = new unsigned char[notehdrsz];
1409   memset(buffer, 0, notehdrsz);
1410
1411   bool is_big_endian = parameters->target().is_big_endian();
1412
1413   if (size == 32)
1414     {
1415       if (!is_big_endian)
1416         {
1417           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1418           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1419           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1420         }
1421       else
1422         {
1423           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1424           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1425           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1426         }
1427     }
1428   else if (size == 64)
1429     {
1430       if (!is_big_endian)
1431         {
1432           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1433           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1434           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1435         }
1436       else
1437         {
1438           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1439           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1440           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1441         }
1442     }
1443   else
1444     gold_unreachable();
1445
1446   memcpy(buffer + 3 * (size / 8), name, namesz);
1447
1448   elfcpp::Elf_Xword flags = 0;
1449   if (allocate)
1450     flags = elfcpp::SHF_ALLOC;
1451   Output_section* os = this->choose_output_section(NULL, section_name,
1452                                                    elfcpp::SHT_NOTE,
1453                                                    flags, false);
1454   if (os == NULL)
1455     return NULL;
1456
1457   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1458                                                            size / 8,
1459                                                            "** note header");
1460   os->add_output_section_data(posd);
1461
1462   *trailing_padding = aligned_descsz - descsz;
1463
1464   return os;
1465 }
1466
1467 // For an executable or shared library, create a note to record the
1468 // version of gold used to create the binary.
1469
1470 void
1471 Layout::create_gold_note()
1472 {
1473   if (parameters->options().relocatable())
1474     return;
1475
1476   std::string desc = std::string("gold ") + gold::get_version_string();
1477
1478   size_t trailing_padding;
1479   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1480                                          ".note.gnu.gold-version", desc.size(),
1481                                          false, &trailing_padding);
1482   if (os == NULL)
1483     return;
1484
1485   Output_section_data* posd = new Output_data_const(desc, 4);
1486   os->add_output_section_data(posd);
1487
1488   if (trailing_padding > 0)
1489     {
1490       posd = new Output_data_zero_fill(trailing_padding, 0);
1491       os->add_output_section_data(posd);
1492     }
1493 }
1494
1495 // Record whether the stack should be executable.  This can be set
1496 // from the command line using the -z execstack or -z noexecstack
1497 // options.  Otherwise, if any input file has a .note.GNU-stack
1498 // section with the SHF_EXECINSTR flag set, the stack should be
1499 // executable.  Otherwise, if at least one input file a
1500 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1501 // section, we use the target default for whether the stack should be
1502 // executable.  Otherwise, we don't generate a stack note.  When
1503 // generating a object file, we create a .note.GNU-stack section with
1504 // the appropriate marking.  When generating an executable or shared
1505 // library, we create a PT_GNU_STACK segment.
1506
1507 void
1508 Layout::create_executable_stack_info()
1509 {
1510   bool is_stack_executable;
1511   if (parameters->options().is_execstack_set())
1512     is_stack_executable = parameters->options().is_stack_executable();
1513   else if (!this->input_with_gnu_stack_note_)
1514     return;
1515   else
1516     {
1517       if (this->input_requires_executable_stack_)
1518         is_stack_executable = true;
1519       else if (this->input_without_gnu_stack_note_)
1520         is_stack_executable =
1521           parameters->target().is_default_stack_executable();
1522       else
1523         is_stack_executable = false;
1524     }
1525
1526   if (parameters->options().relocatable())
1527     {
1528       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1529       elfcpp::Elf_Xword flags = 0;
1530       if (is_stack_executable)
1531         flags |= elfcpp::SHF_EXECINSTR;
1532       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1533     }
1534   else
1535     {
1536       if (this->script_options_->saw_phdrs_clause())
1537         return;
1538       int flags = elfcpp::PF_R | elfcpp::PF_W;
1539       if (is_stack_executable)
1540         flags |= elfcpp::PF_X;
1541       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1542     }
1543 }
1544
1545 // If --build-id was used, set up the build ID note.
1546
1547 void
1548 Layout::create_build_id()
1549 {
1550   if (!parameters->options().user_set_build_id())
1551     return;
1552
1553   const char* style = parameters->options().build_id();
1554   if (strcmp(style, "none") == 0)
1555     return;
1556
1557   // Set DESCSZ to the size of the note descriptor.  When possible,
1558   // set DESC to the note descriptor contents.
1559   size_t descsz;
1560   std::string desc;
1561   if (strcmp(style, "md5") == 0)
1562     descsz = 128 / 8;
1563   else if (strcmp(style, "sha1") == 0)
1564     descsz = 160 / 8;
1565   else if (strcmp(style, "uuid") == 0)
1566     {
1567       const size_t uuidsz = 128 / 8;
1568
1569       char buffer[uuidsz];
1570       memset(buffer, 0, uuidsz);
1571
1572       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1573       if (descriptor < 0)
1574         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1575                    strerror(errno));
1576       else
1577         {
1578           ssize_t got = ::read(descriptor, buffer, uuidsz);
1579           release_descriptor(descriptor, true);
1580           if (got < 0)
1581             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1582           else if (static_cast<size_t>(got) != uuidsz)
1583             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1584                        uuidsz, got);
1585         }
1586
1587       desc.assign(buffer, uuidsz);
1588       descsz = uuidsz;
1589     }
1590   else if (strncmp(style, "0x", 2) == 0)
1591     {
1592       hex_init();
1593       const char* p = style + 2;
1594       while (*p != '\0')
1595         {
1596           if (hex_p(p[0]) && hex_p(p[1]))
1597             {
1598               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1599               desc += c;
1600               p += 2;
1601             }
1602           else if (*p == '-' || *p == ':')
1603             ++p;
1604           else
1605             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1606                        style);
1607         }
1608       descsz = desc.size();
1609     }
1610   else
1611     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1612
1613   // Create the note.
1614   size_t trailing_padding;
1615   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1616                                          ".note.gnu.build-id", descsz, true,
1617                                          &trailing_padding);
1618   if (os == NULL)
1619     return;
1620
1621   if (!desc.empty())
1622     {
1623       // We know the value already, so we fill it in now.
1624       gold_assert(desc.size() == descsz);
1625
1626       Output_section_data* posd = new Output_data_const(desc, 4);
1627       os->add_output_section_data(posd);
1628
1629       if (trailing_padding != 0)
1630         {
1631           posd = new Output_data_zero_fill(trailing_padding, 0);
1632           os->add_output_section_data(posd);
1633         }
1634     }
1635   else
1636     {
1637       // We need to compute a checksum after we have completed the
1638       // link.
1639       gold_assert(trailing_padding == 0);
1640       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1641       os->add_output_section_data(this->build_id_note_);
1642     }
1643 }
1644
1645 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1646 // field of the former should point to the latter.  I'm not sure who
1647 // started this, but the GNU linker does it, and some tools depend
1648 // upon it.
1649
1650 void
1651 Layout::link_stabs_sections()
1652 {
1653   if (!this->have_stabstr_section_)
1654     return;
1655
1656   for (Section_list::iterator p = this->section_list_.begin();
1657        p != this->section_list_.end();
1658        ++p)
1659     {
1660       if ((*p)->type() != elfcpp::SHT_STRTAB)
1661         continue;
1662
1663       const char* name = (*p)->name();
1664       if (strncmp(name, ".stab", 5) != 0)
1665         continue;
1666
1667       size_t len = strlen(name);
1668       if (strcmp(name + len - 3, "str") != 0)
1669         continue;
1670
1671       std::string stab_name(name, len - 3);
1672       Output_section* stab_sec;
1673       stab_sec = this->find_output_section(stab_name.c_str());
1674       if (stab_sec != NULL)
1675         stab_sec->set_link_section(*p);
1676     }
1677 }
1678
1679 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1680 // for the next run of incremental linking to check what has changed.
1681
1682 void
1683 Layout::create_incremental_info_sections()
1684 {
1685   gold_assert(this->incremental_inputs_ != NULL);
1686
1687   // Add the .gnu_incremental_inputs section.
1688   const char *incremental_inputs_name =
1689     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1690   Output_section* inputs_os =
1691     this->make_output_section(incremental_inputs_name,
1692                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1693   Output_section_data* posd =
1694       this->incremental_inputs_->create_incremental_inputs_section_data();
1695   inputs_os->add_output_section_data(posd);
1696   
1697   // Add the .gnu_incremental_strtab section.
1698   const char *incremental_strtab_name =
1699     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1700   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1701                                                         elfcpp::SHT_STRTAB,
1702                                                         0);
1703   Output_data_strtab* strtab_data =
1704     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1705   strtab_os->add_output_section_data(strtab_data);
1706   
1707   inputs_os->set_link_section(strtab_data);
1708 }
1709
1710 // Return whether SEG1 should be before SEG2 in the output file.  This
1711 // is based entirely on the segment type and flags.  When this is
1712 // called the segment addresses has normally not yet been set.
1713
1714 bool
1715 Layout::segment_precedes(const Output_segment* seg1,
1716                          const Output_segment* seg2)
1717 {
1718   elfcpp::Elf_Word type1 = seg1->type();
1719   elfcpp::Elf_Word type2 = seg2->type();
1720
1721   // The single PT_PHDR segment is required to precede any loadable
1722   // segment.  We simply make it always first.
1723   if (type1 == elfcpp::PT_PHDR)
1724     {
1725       gold_assert(type2 != elfcpp::PT_PHDR);
1726       return true;
1727     }
1728   if (type2 == elfcpp::PT_PHDR)
1729     return false;
1730
1731   // The single PT_INTERP segment is required to precede any loadable
1732   // segment.  We simply make it always second.
1733   if (type1 == elfcpp::PT_INTERP)
1734     {
1735       gold_assert(type2 != elfcpp::PT_INTERP);
1736       return true;
1737     }
1738   if (type2 == elfcpp::PT_INTERP)
1739     return false;
1740
1741   // We then put PT_LOAD segments before any other segments.
1742   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1743     return true;
1744   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1745     return false;
1746
1747   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1748   // segment, because that is where the dynamic linker expects to find
1749   // it (this is just for efficiency; other positions would also work
1750   // correctly).
1751   if (type1 == elfcpp::PT_TLS
1752       && type2 != elfcpp::PT_TLS
1753       && type2 != elfcpp::PT_GNU_RELRO)
1754     return false;
1755   if (type2 == elfcpp::PT_TLS
1756       && type1 != elfcpp::PT_TLS
1757       && type1 != elfcpp::PT_GNU_RELRO)
1758     return true;
1759
1760   // We put the PT_GNU_RELRO segment last, because that is where the
1761   // dynamic linker expects to find it (as with PT_TLS, this is just
1762   // for efficiency).
1763   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1764     return false;
1765   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1766     return true;
1767
1768   const elfcpp::Elf_Word flags1 = seg1->flags();
1769   const elfcpp::Elf_Word flags2 = seg2->flags();
1770
1771   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1772   // by the numeric segment type and flags values.  There should not
1773   // be more than one segment with the same type and flags.
1774   if (type1 != elfcpp::PT_LOAD)
1775     {
1776       if (type1 != type2)
1777         return type1 < type2;
1778       gold_assert(flags1 != flags2);
1779       return flags1 < flags2;
1780     }
1781
1782   // If the addresses are set already, sort by load address.
1783   if (seg1->are_addresses_set())
1784     {
1785       if (!seg2->are_addresses_set())
1786         return true;
1787
1788       unsigned int section_count1 = seg1->output_section_count();
1789       unsigned int section_count2 = seg2->output_section_count();
1790       if (section_count1 == 0 && section_count2 > 0)
1791         return true;
1792       if (section_count1 > 0 && section_count2 == 0)
1793         return false;
1794
1795       uint64_t paddr1 = seg1->first_section_load_address();
1796       uint64_t paddr2 = seg2->first_section_load_address();
1797       if (paddr1 != paddr2)
1798         return paddr1 < paddr2;
1799     }
1800   else if (seg2->are_addresses_set())
1801     return false;
1802
1803   // A segment which holds large data comes after a segment which does
1804   // not hold large data.
1805   if (seg1->is_large_data_segment())
1806     {
1807       if (!seg2->is_large_data_segment())
1808         return false;
1809     }
1810   else if (seg2->is_large_data_segment())
1811     return true;
1812
1813   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
1814   // segments come before writable segments.  Then writable segments
1815   // with data come before writable segments without data.  Then
1816   // executable segments come before non-executable segments.  Then
1817   // the unlikely case of a non-readable segment comes before the
1818   // normal case of a readable segment.  If there are multiple
1819   // segments with the same type and flags, we require that the
1820   // address be set, and we sort by virtual address and then physical
1821   // address.
1822   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1823     return (flags1 & elfcpp::PF_W) == 0;
1824   if ((flags1 & elfcpp::PF_W) != 0
1825       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1826     return seg1->has_any_data_sections();
1827   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1828     return (flags1 & elfcpp::PF_X) != 0;
1829   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1830     return (flags1 & elfcpp::PF_R) == 0;
1831
1832   // We shouldn't get here--we shouldn't create segments which we
1833   // can't distinguish.
1834   gold_unreachable();
1835 }
1836
1837 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1838
1839 static off_t
1840 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
1841 {
1842   uint64_t unsigned_off = off;
1843   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1844                           | (addr & (abi_pagesize - 1)));
1845   if (aligned_off < unsigned_off)
1846     aligned_off += abi_pagesize;
1847   return aligned_off;
1848 }
1849
1850 // Set the file offsets of all the segments, and all the sections they
1851 // contain.  They have all been created.  LOAD_SEG must be be laid out
1852 // first.  Return the offset of the data to follow.
1853
1854 off_t
1855 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1856                             unsigned int *pshndx)
1857 {
1858   // Sort them into the final order.
1859   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1860             Layout::Compare_segments());
1861
1862   // Find the PT_LOAD segments, and set their addresses and offsets
1863   // and their section's addresses and offsets.
1864   uint64_t addr;
1865   if (parameters->options().user_set_Ttext())
1866     addr = parameters->options().Ttext();
1867   else if (parameters->options().shared())
1868     addr = 0;
1869   else
1870     addr = target->default_text_segment_address();
1871   off_t off = 0;
1872
1873   // If LOAD_SEG is NULL, then the file header and segment headers
1874   // will not be loadable.  But they still need to be at offset 0 in
1875   // the file.  Set their offsets now.
1876   if (load_seg == NULL)
1877     {
1878       for (Data_list::iterator p = this->special_output_list_.begin();
1879            p != this->special_output_list_.end();
1880            ++p)
1881         {
1882           off = align_address(off, (*p)->addralign());
1883           (*p)->set_address_and_file_offset(0, off);
1884           off += (*p)->data_size();
1885         }
1886     }
1887
1888   const bool check_sections = parameters->options().check_sections();
1889   Output_segment* last_load_segment = NULL;
1890
1891   bool was_readonly = false;
1892   for (Segment_list::iterator p = this->segment_list_.begin();
1893        p != this->segment_list_.end();
1894        ++p)
1895     {
1896       if ((*p)->type() == elfcpp::PT_LOAD)
1897         {
1898           if (load_seg != NULL && load_seg != *p)
1899             gold_unreachable();
1900           load_seg = NULL;
1901
1902           bool are_addresses_set = (*p)->are_addresses_set();
1903           if (are_addresses_set)
1904             {
1905               // When it comes to setting file offsets, we care about
1906               // the physical address.
1907               addr = (*p)->paddr();
1908             }
1909           else if (parameters->options().user_set_Tdata()
1910                    && ((*p)->flags() & elfcpp::PF_W) != 0
1911                    && (!parameters->options().user_set_Tbss()
1912                        || (*p)->has_any_data_sections()))
1913             {
1914               addr = parameters->options().Tdata();
1915               are_addresses_set = true;
1916             }
1917           else if (parameters->options().user_set_Tbss()
1918                    && ((*p)->flags() & elfcpp::PF_W) != 0
1919                    && !(*p)->has_any_data_sections())
1920             {
1921               addr = parameters->options().Tbss();
1922               are_addresses_set = true;
1923             }
1924
1925           uint64_t orig_addr = addr;
1926           uint64_t orig_off = off;
1927
1928           uint64_t aligned_addr = 0;
1929           uint64_t abi_pagesize = target->abi_pagesize();
1930           uint64_t common_pagesize = target->common_pagesize();
1931
1932           if (!parameters->options().nmagic()
1933               && !parameters->options().omagic())
1934             (*p)->set_minimum_p_align(common_pagesize);
1935
1936           if (!are_addresses_set)
1937             {
1938               // If the last segment was readonly, and this one is
1939               // not, then skip the address forward one page,
1940               // maintaining the same position within the page.  This
1941               // lets us store both segments overlapping on a single
1942               // page in the file, but the loader will put them on
1943               // different pages in memory.
1944
1945               addr = align_address(addr, (*p)->maximum_alignment());
1946               aligned_addr = addr;
1947
1948               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1949                 {
1950                   if ((addr & (abi_pagesize - 1)) != 0)
1951                     addr = addr + abi_pagesize;
1952                 }
1953
1954               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1955             }
1956
1957           if (!parameters->options().nmagic()
1958               && !parameters->options().omagic())
1959             off = align_file_offset(off, addr, abi_pagesize);
1960
1961           unsigned int shndx_hold = *pshndx;
1962           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1963                                                           &off, pshndx);
1964
1965           // Now that we know the size of this segment, we may be able
1966           // to save a page in memory, at the cost of wasting some
1967           // file space, by instead aligning to the start of a new
1968           // page.  Here we use the real machine page size rather than
1969           // the ABI mandated page size.
1970
1971           if (!are_addresses_set && aligned_addr != addr)
1972             {
1973               uint64_t first_off = (common_pagesize
1974                                     - (aligned_addr
1975                                        & (common_pagesize - 1)));
1976               uint64_t last_off = new_addr & (common_pagesize - 1);
1977               if (first_off > 0
1978                   && last_off > 0
1979                   && ((aligned_addr & ~ (common_pagesize - 1))
1980                       != (new_addr & ~ (common_pagesize - 1)))
1981                   && first_off + last_off <= common_pagesize)
1982                 {
1983                   *pshndx = shndx_hold;
1984                   addr = align_address(aligned_addr, common_pagesize);
1985                   addr = align_address(addr, (*p)->maximum_alignment());
1986                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1987                   off = align_file_offset(off, addr, abi_pagesize);
1988                   new_addr = (*p)->set_section_addresses(this, true, addr,
1989                                                          &off, pshndx);
1990                 }
1991             }
1992
1993           addr = new_addr;
1994
1995           if (((*p)->flags() & elfcpp::PF_W) == 0)
1996             was_readonly = true;
1997
1998           // Implement --check-sections.  We know that the segments
1999           // are sorted by LMA.
2000           if (check_sections && last_load_segment != NULL)
2001             {
2002               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2003               if (last_load_segment->paddr() + last_load_segment->memsz()
2004                   > (*p)->paddr())
2005                 {
2006                   unsigned long long lb1 = last_load_segment->paddr();
2007                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2008                   unsigned long long lb2 = (*p)->paddr();
2009                   unsigned long long le2 = lb2 + (*p)->memsz();
2010                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2011                                "[0x%llx -> 0x%llx]"),
2012                              lb1, le1, lb2, le2);
2013                 }
2014             }
2015           last_load_segment = *p;
2016         }
2017     }
2018
2019   // Handle the non-PT_LOAD segments, setting their offsets from their
2020   // section's offsets.
2021   for (Segment_list::iterator p = this->segment_list_.begin();
2022        p != this->segment_list_.end();
2023        ++p)
2024     {
2025       if ((*p)->type() != elfcpp::PT_LOAD)
2026         (*p)->set_offset();
2027     }
2028
2029   // Set the TLS offsets for each section in the PT_TLS segment.
2030   if (this->tls_segment_ != NULL)
2031     this->tls_segment_->set_tls_offsets();
2032
2033   return off;
2034 }
2035
2036 // Set the offsets of all the allocated sections when doing a
2037 // relocatable link.  This does the same jobs as set_segment_offsets,
2038 // only for a relocatable link.
2039
2040 off_t
2041 Layout::set_relocatable_section_offsets(Output_data* file_header,
2042                                         unsigned int *pshndx)
2043 {
2044   off_t off = 0;
2045
2046   file_header->set_address_and_file_offset(0, 0);
2047   off += file_header->data_size();
2048
2049   for (Section_list::iterator p = this->section_list_.begin();
2050        p != this->section_list_.end();
2051        ++p)
2052     {
2053       // We skip unallocated sections here, except that group sections
2054       // have to come first.
2055       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2056           && (*p)->type() != elfcpp::SHT_GROUP)
2057         continue;
2058
2059       off = align_address(off, (*p)->addralign());
2060
2061       // The linker script might have set the address.
2062       if (!(*p)->is_address_valid())
2063         (*p)->set_address(0);
2064       (*p)->set_file_offset(off);
2065       (*p)->finalize_data_size();
2066       off += (*p)->data_size();
2067
2068       (*p)->set_out_shndx(*pshndx);
2069       ++*pshndx;
2070     }
2071
2072   return off;
2073 }
2074
2075 // Set the file offset of all the sections not associated with a
2076 // segment.
2077
2078 off_t
2079 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2080 {
2081   for (Section_list::iterator p = this->unattached_section_list_.begin();
2082        p != this->unattached_section_list_.end();
2083        ++p)
2084     {
2085       // The symtab section is handled in create_symtab_sections.
2086       if (*p == this->symtab_section_)
2087         continue;
2088
2089       // If we've already set the data size, don't set it again.
2090       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2091         continue;
2092
2093       if (pass == BEFORE_INPUT_SECTIONS_PASS
2094           && (*p)->requires_postprocessing())
2095         {
2096           (*p)->create_postprocessing_buffer();
2097           this->any_postprocessing_sections_ = true;
2098         }
2099
2100       if (pass == BEFORE_INPUT_SECTIONS_PASS
2101           && (*p)->after_input_sections())
2102         continue;
2103       else if (pass == POSTPROCESSING_SECTIONS_PASS
2104                && (!(*p)->after_input_sections()
2105                    || (*p)->type() == elfcpp::SHT_STRTAB))
2106         continue;
2107       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2108                && (!(*p)->after_input_sections()
2109                    || (*p)->type() != elfcpp::SHT_STRTAB))
2110         continue;
2111
2112       off = align_address(off, (*p)->addralign());
2113       (*p)->set_file_offset(off);
2114       (*p)->finalize_data_size();
2115       off += (*p)->data_size();
2116
2117       // At this point the name must be set.
2118       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2119         this->namepool_.add((*p)->name(), false, NULL);
2120     }
2121   return off;
2122 }
2123
2124 // Set the section indexes of all the sections not associated with a
2125 // segment.
2126
2127 unsigned int
2128 Layout::set_section_indexes(unsigned int shndx)
2129 {
2130   for (Section_list::iterator p = this->unattached_section_list_.begin();
2131        p != this->unattached_section_list_.end();
2132        ++p)
2133     {
2134       if (!(*p)->has_out_shndx())
2135         {
2136           (*p)->set_out_shndx(shndx);
2137           ++shndx;
2138         }
2139     }
2140   return shndx;
2141 }
2142
2143 // Set the section addresses according to the linker script.  This is
2144 // only called when we see a SECTIONS clause.  This returns the
2145 // program segment which should hold the file header and segment
2146 // headers, if any.  It will return NULL if they should not be in a
2147 // segment.
2148
2149 Output_segment*
2150 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2151 {
2152   Script_sections* ss = this->script_options_->script_sections();
2153   gold_assert(ss->saw_sections_clause());
2154
2155   // Place each orphaned output section in the script.
2156   for (Section_list::iterator p = this->section_list_.begin();
2157        p != this->section_list_.end();
2158        ++p)
2159     {
2160       if (!(*p)->found_in_sections_clause())
2161         ss->place_orphan(*p);
2162     }
2163
2164   return this->script_options_->set_section_addresses(symtab, this);
2165 }
2166
2167 // Count the local symbols in the regular symbol table and the dynamic
2168 // symbol table, and build the respective string pools.
2169
2170 void
2171 Layout::count_local_symbols(const Task* task,
2172                             const Input_objects* input_objects)
2173 {
2174   // First, figure out an upper bound on the number of symbols we'll
2175   // be inserting into each pool.  This helps us create the pools with
2176   // the right size, to avoid unnecessary hashtable resizing.
2177   unsigned int symbol_count = 0;
2178   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2179        p != input_objects->relobj_end();
2180        ++p)
2181     symbol_count += (*p)->local_symbol_count();
2182
2183   // Go from "upper bound" to "estimate."  We overcount for two
2184   // reasons: we double-count symbols that occur in more than one
2185   // object file, and we count symbols that are dropped from the
2186   // output.  Add it all together and assume we overcount by 100%.
2187   symbol_count /= 2;
2188
2189   // We assume all symbols will go into both the sympool and dynpool.
2190   this->sympool_.reserve(symbol_count);
2191   this->dynpool_.reserve(symbol_count);
2192
2193   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2194        p != input_objects->relobj_end();
2195        ++p)
2196     {
2197       Task_lock_obj<Object> tlo(task, *p);
2198       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2199     }
2200 }
2201
2202 // Create the symbol table sections.  Here we also set the final
2203 // values of the symbols.  At this point all the loadable sections are
2204 // fully laid out.  SHNUM is the number of sections so far.
2205
2206 void
2207 Layout::create_symtab_sections(const Input_objects* input_objects,
2208                                Symbol_table* symtab,
2209                                unsigned int shnum,
2210                                off_t* poff)
2211 {
2212   int symsize;
2213   unsigned int align;
2214   if (parameters->target().get_size() == 32)
2215     {
2216       symsize = elfcpp::Elf_sizes<32>::sym_size;
2217       align = 4;
2218     }
2219   else if (parameters->target().get_size() == 64)
2220     {
2221       symsize = elfcpp::Elf_sizes<64>::sym_size;
2222       align = 8;
2223     }
2224   else
2225     gold_unreachable();
2226
2227   off_t off = *poff;
2228   off = align_address(off, align);
2229   off_t startoff = off;
2230
2231   // Save space for the dummy symbol at the start of the section.  We
2232   // never bother to write this out--it will just be left as zero.
2233   off += symsize;
2234   unsigned int local_symbol_index = 1;
2235
2236   // Add STT_SECTION symbols for each Output section which needs one.
2237   for (Section_list::iterator p = this->section_list_.begin();
2238        p != this->section_list_.end();
2239        ++p)
2240     {
2241       if (!(*p)->needs_symtab_index())
2242         (*p)->set_symtab_index(-1U);
2243       else
2244         {
2245           (*p)->set_symtab_index(local_symbol_index);
2246           ++local_symbol_index;
2247           off += symsize;
2248         }
2249     }
2250
2251   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2252        p != input_objects->relobj_end();
2253        ++p)
2254     {
2255       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2256                                                         off);
2257       off += (index - local_symbol_index) * symsize;
2258       local_symbol_index = index;
2259     }
2260
2261   unsigned int local_symcount = local_symbol_index;
2262   gold_assert(local_symcount * symsize == off - startoff);
2263
2264   off_t dynoff;
2265   size_t dyn_global_index;
2266   size_t dyncount;
2267   if (this->dynsym_section_ == NULL)
2268     {
2269       dynoff = 0;
2270       dyn_global_index = 0;
2271       dyncount = 0;
2272     }
2273   else
2274     {
2275       dyn_global_index = this->dynsym_section_->info();
2276       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2277       dynoff = this->dynsym_section_->offset() + locsize;
2278       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2279       gold_assert(static_cast<off_t>(dyncount * symsize)
2280                   == this->dynsym_section_->data_size() - locsize);
2281     }
2282
2283   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2284                          &this->sympool_, &local_symcount);
2285
2286   if (!parameters->options().strip_all())
2287     {
2288       this->sympool_.set_string_offsets();
2289
2290       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2291       Output_section* osymtab = this->make_output_section(symtab_name,
2292                                                           elfcpp::SHT_SYMTAB,
2293                                                           0);
2294       this->symtab_section_ = osymtab;
2295
2296       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2297                                                              align,
2298                                                              "** symtab");
2299       osymtab->add_output_section_data(pos);
2300
2301       // We generate a .symtab_shndx section if we have more than
2302       // SHN_LORESERVE sections.  Technically it is possible that we
2303       // don't need one, because it is possible that there are no
2304       // symbols in any of sections with indexes larger than
2305       // SHN_LORESERVE.  That is probably unusual, though, and it is
2306       // easier to always create one than to compute section indexes
2307       // twice (once here, once when writing out the symbols).
2308       if (shnum >= elfcpp::SHN_LORESERVE)
2309         {
2310           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2311                                                                false, NULL);
2312           Output_section* osymtab_xindex =
2313             this->make_output_section(symtab_xindex_name,
2314                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2315
2316           size_t symcount = (off - startoff) / symsize;
2317           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2318
2319           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2320
2321           osymtab_xindex->set_link_section(osymtab);
2322           osymtab_xindex->set_addralign(4);
2323           osymtab_xindex->set_entsize(4);
2324
2325           osymtab_xindex->set_after_input_sections();
2326
2327           // This tells the driver code to wait until the symbol table
2328           // has written out before writing out the postprocessing
2329           // sections, including the .symtab_shndx section.
2330           this->any_postprocessing_sections_ = true;
2331         }
2332
2333       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2334       Output_section* ostrtab = this->make_output_section(strtab_name,
2335                                                           elfcpp::SHT_STRTAB,
2336                                                           0);
2337
2338       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2339       ostrtab->add_output_section_data(pstr);
2340
2341       osymtab->set_file_offset(startoff);
2342       osymtab->finalize_data_size();
2343       osymtab->set_link_section(ostrtab);
2344       osymtab->set_info(local_symcount);
2345       osymtab->set_entsize(symsize);
2346
2347       *poff = off;
2348     }
2349 }
2350
2351 // Create the .shstrtab section, which holds the names of the
2352 // sections.  At the time this is called, we have created all the
2353 // output sections except .shstrtab itself.
2354
2355 Output_section*
2356 Layout::create_shstrtab()
2357 {
2358   // FIXME: We don't need to create a .shstrtab section if we are
2359   // stripping everything.
2360
2361   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2362
2363   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2364
2365   // We can't write out this section until we've set all the section
2366   // names, and we don't set the names of compressed output sections
2367   // until relocations are complete.
2368   os->set_after_input_sections();
2369
2370   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2371   os->add_output_section_data(posd);
2372
2373   return os;
2374 }
2375
2376 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2377 // offset.
2378
2379 void
2380 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2381 {
2382   Output_section_headers* oshdrs;
2383   oshdrs = new Output_section_headers(this,
2384                                       &this->segment_list_,
2385                                       &this->section_list_,
2386                                       &this->unattached_section_list_,
2387                                       &this->namepool_,
2388                                       shstrtab_section);
2389   off_t off = align_address(*poff, oshdrs->addralign());
2390   oshdrs->set_address_and_file_offset(0, off);
2391   off += oshdrs->data_size();
2392   *poff = off;
2393   this->section_headers_ = oshdrs;
2394 }
2395
2396 // Count the allocated sections.
2397
2398 size_t
2399 Layout::allocated_output_section_count() const
2400 {
2401   size_t section_count = 0;
2402   for (Segment_list::const_iterator p = this->segment_list_.begin();
2403        p != this->segment_list_.end();
2404        ++p)
2405     section_count += (*p)->output_section_count();
2406   return section_count;
2407 }
2408
2409 // Create the dynamic symbol table.
2410
2411 void
2412 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2413                               Symbol_table* symtab,
2414                               Output_section **pdynstr,
2415                               unsigned int* plocal_dynamic_count,
2416                               std::vector<Symbol*>* pdynamic_symbols,
2417                               Versions* pversions)
2418 {
2419   // Count all the symbols in the dynamic symbol table, and set the
2420   // dynamic symbol indexes.
2421
2422   // Skip symbol 0, which is always all zeroes.
2423   unsigned int index = 1;
2424
2425   // Add STT_SECTION symbols for each Output section which needs one.
2426   for (Section_list::iterator p = this->section_list_.begin();
2427        p != this->section_list_.end();
2428        ++p)
2429     {
2430       if (!(*p)->needs_dynsym_index())
2431         (*p)->set_dynsym_index(-1U);
2432       else
2433         {
2434           (*p)->set_dynsym_index(index);
2435           ++index;
2436         }
2437     }
2438
2439   // Count the local symbols that need to go in the dynamic symbol table,
2440   // and set the dynamic symbol indexes.
2441   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2442        p != input_objects->relobj_end();
2443        ++p)
2444     {
2445       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2446       index = new_index;
2447     }
2448
2449   unsigned int local_symcount = index;
2450   *plocal_dynamic_count = local_symcount;
2451
2452   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2453                                      &this->dynpool_, pversions);
2454
2455   int symsize;
2456   unsigned int align;
2457   const int size = parameters->target().get_size();
2458   if (size == 32)
2459     {
2460       symsize = elfcpp::Elf_sizes<32>::sym_size;
2461       align = 4;
2462     }
2463   else if (size == 64)
2464     {
2465       symsize = elfcpp::Elf_sizes<64>::sym_size;
2466       align = 8;
2467     }
2468   else
2469     gold_unreachable();
2470
2471   // Create the dynamic symbol table section.
2472
2473   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2474                                                        elfcpp::SHT_DYNSYM,
2475                                                        elfcpp::SHF_ALLOC,
2476                                                        false);
2477
2478   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2479                                                            align,
2480                                                            "** dynsym");
2481   dynsym->add_output_section_data(odata);
2482
2483   dynsym->set_info(local_symcount);
2484   dynsym->set_entsize(symsize);
2485   dynsym->set_addralign(align);
2486
2487   this->dynsym_section_ = dynsym;
2488
2489   Output_data_dynamic* const odyn = this->dynamic_data_;
2490   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2491   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2492
2493   // If there are more than SHN_LORESERVE allocated sections, we
2494   // create a .dynsym_shndx section.  It is possible that we don't
2495   // need one, because it is possible that there are no dynamic
2496   // symbols in any of the sections with indexes larger than
2497   // SHN_LORESERVE.  This is probably unusual, though, and at this
2498   // time we don't know the actual section indexes so it is
2499   // inconvenient to check.
2500   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2501     {
2502       Output_section* dynsym_xindex =
2503         this->choose_output_section(NULL, ".dynsym_shndx",
2504                                     elfcpp::SHT_SYMTAB_SHNDX,
2505                                     elfcpp::SHF_ALLOC,
2506                                     false);
2507
2508       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2509
2510       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2511
2512       dynsym_xindex->set_link_section(dynsym);
2513       dynsym_xindex->set_addralign(4);
2514       dynsym_xindex->set_entsize(4);
2515
2516       dynsym_xindex->set_after_input_sections();
2517
2518       // This tells the driver code to wait until the symbol table has
2519       // written out before writing out the postprocessing sections,
2520       // including the .dynsym_shndx section.
2521       this->any_postprocessing_sections_ = true;
2522     }
2523
2524   // Create the dynamic string table section.
2525
2526   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2527                                                        elfcpp::SHT_STRTAB,
2528                                                        elfcpp::SHF_ALLOC,
2529                                                        false);
2530
2531   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2532   dynstr->add_output_section_data(strdata);
2533
2534   dynsym->set_link_section(dynstr);
2535   this->dynamic_section_->set_link_section(dynstr);
2536
2537   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2538   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2539
2540   *pdynstr = dynstr;
2541
2542   // Create the hash tables.
2543
2544   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2545       || strcmp(parameters->options().hash_style(), "both") == 0)
2546     {
2547       unsigned char* phash;
2548       unsigned int hashlen;
2549       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2550                                     &phash, &hashlen);
2551
2552       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2553                                                             elfcpp::SHT_HASH,
2554                                                             elfcpp::SHF_ALLOC,
2555                                                             false);
2556
2557       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2558                                                                    hashlen,
2559                                                                    align,
2560                                                                    "** hash");
2561       hashsec->add_output_section_data(hashdata);
2562
2563       hashsec->set_link_section(dynsym);
2564       hashsec->set_entsize(4);
2565
2566       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2567     }
2568
2569   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2570       || strcmp(parameters->options().hash_style(), "both") == 0)
2571     {
2572       unsigned char* phash;
2573       unsigned int hashlen;
2574       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2575                                     &phash, &hashlen);
2576
2577       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2578                                                             elfcpp::SHT_GNU_HASH,
2579                                                             elfcpp::SHF_ALLOC,
2580                                                             false);
2581
2582       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2583                                                                    hashlen,
2584                                                                    align,
2585                                                                    "** hash");
2586       hashsec->add_output_section_data(hashdata);
2587
2588       hashsec->set_link_section(dynsym);
2589       hashsec->set_entsize(4);
2590
2591       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2592     }
2593 }
2594
2595 // Assign offsets to each local portion of the dynamic symbol table.
2596
2597 void
2598 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2599 {
2600   Output_section* dynsym = this->dynsym_section_;
2601   gold_assert(dynsym != NULL);
2602
2603   off_t off = dynsym->offset();
2604
2605   // Skip the dummy symbol at the start of the section.
2606   off += dynsym->entsize();
2607
2608   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2609        p != input_objects->relobj_end();
2610        ++p)
2611     {
2612       unsigned int count = (*p)->set_local_dynsym_offset(off);
2613       off += count * dynsym->entsize();
2614     }
2615 }
2616
2617 // Create the version sections.
2618
2619 void
2620 Layout::create_version_sections(const Versions* versions,
2621                                 const Symbol_table* symtab,
2622                                 unsigned int local_symcount,
2623                                 const std::vector<Symbol*>& dynamic_symbols,
2624                                 const Output_section* dynstr)
2625 {
2626   if (!versions->any_defs() && !versions->any_needs())
2627     return;
2628
2629   switch (parameters->size_and_endianness())
2630     {
2631 #ifdef HAVE_TARGET_32_LITTLE
2632     case Parameters::TARGET_32_LITTLE:
2633       this->sized_create_version_sections<32, false>(versions, symtab,
2634                                                      local_symcount,
2635                                                      dynamic_symbols, dynstr);
2636       break;
2637 #endif
2638 #ifdef HAVE_TARGET_32_BIG
2639     case Parameters::TARGET_32_BIG:
2640       this->sized_create_version_sections<32, true>(versions, symtab,
2641                                                     local_symcount,
2642                                                     dynamic_symbols, dynstr);
2643       break;
2644 #endif
2645 #ifdef HAVE_TARGET_64_LITTLE
2646     case Parameters::TARGET_64_LITTLE:
2647       this->sized_create_version_sections<64, false>(versions, symtab,
2648                                                      local_symcount,
2649                                                      dynamic_symbols, dynstr);
2650       break;
2651 #endif
2652 #ifdef HAVE_TARGET_64_BIG
2653     case Parameters::TARGET_64_BIG:
2654       this->sized_create_version_sections<64, true>(versions, symtab,
2655                                                     local_symcount,
2656                                                     dynamic_symbols, dynstr);
2657       break;
2658 #endif
2659     default:
2660       gold_unreachable();
2661     }
2662 }
2663
2664 // Create the version sections, sized version.
2665
2666 template<int size, bool big_endian>
2667 void
2668 Layout::sized_create_version_sections(
2669     const Versions* versions,
2670     const Symbol_table* symtab,
2671     unsigned int local_symcount,
2672     const std::vector<Symbol*>& dynamic_symbols,
2673     const Output_section* dynstr)
2674 {
2675   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2676                                                      elfcpp::SHT_GNU_versym,
2677                                                      elfcpp::SHF_ALLOC,
2678                                                      false);
2679
2680   unsigned char* vbuf;
2681   unsigned int vsize;
2682   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2683                                                       local_symcount,
2684                                                       dynamic_symbols,
2685                                                       &vbuf, &vsize);
2686
2687   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2688                                                             "** versions");
2689
2690   vsec->add_output_section_data(vdata);
2691   vsec->set_entsize(2);
2692   vsec->set_link_section(this->dynsym_section_);
2693
2694   Output_data_dynamic* const odyn = this->dynamic_data_;
2695   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2696
2697   if (versions->any_defs())
2698     {
2699       Output_section* vdsec;
2700       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2701                                          elfcpp::SHT_GNU_verdef,
2702                                          elfcpp::SHF_ALLOC,
2703                                          false);
2704
2705       unsigned char* vdbuf;
2706       unsigned int vdsize;
2707       unsigned int vdentries;
2708       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2709                                                        &vdsize, &vdentries);
2710
2711       Output_section_data* vddata =
2712         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2713
2714       vdsec->add_output_section_data(vddata);
2715       vdsec->set_link_section(dynstr);
2716       vdsec->set_info(vdentries);
2717
2718       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2719       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2720     }
2721
2722   if (versions->any_needs())
2723     {
2724       Output_section* vnsec;
2725       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2726                                           elfcpp::SHT_GNU_verneed,
2727                                           elfcpp::SHF_ALLOC,
2728                                           false);
2729
2730       unsigned char* vnbuf;
2731       unsigned int vnsize;
2732       unsigned int vnentries;
2733       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2734                                                         &vnbuf, &vnsize,
2735                                                         &vnentries);
2736
2737       Output_section_data* vndata =
2738         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2739
2740       vnsec->add_output_section_data(vndata);
2741       vnsec->set_link_section(dynstr);
2742       vnsec->set_info(vnentries);
2743
2744       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2745       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2746     }
2747 }
2748
2749 // Create the .interp section and PT_INTERP segment.
2750
2751 void
2752 Layout::create_interp(const Target* target)
2753 {
2754   const char* interp = parameters->options().dynamic_linker();
2755   if (interp == NULL)
2756     {
2757       interp = target->dynamic_linker();
2758       gold_assert(interp != NULL);
2759     }
2760
2761   size_t len = strlen(interp) + 1;
2762
2763   Output_section_data* odata = new Output_data_const(interp, len, 1);
2764
2765   Output_section* osec = this->choose_output_section(NULL, ".interp",
2766                                                      elfcpp::SHT_PROGBITS,
2767                                                      elfcpp::SHF_ALLOC,
2768                                                      false);
2769   osec->add_output_section_data(odata);
2770
2771   if (!this->script_options_->saw_phdrs_clause())
2772     {
2773       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2774                                                        elfcpp::PF_R);
2775       oseg->add_output_section(osec, elfcpp::PF_R);
2776     }
2777 }
2778
2779 // Finish the .dynamic section and PT_DYNAMIC segment.
2780
2781 void
2782 Layout::finish_dynamic_section(const Input_objects* input_objects,
2783                                const Symbol_table* symtab)
2784 {
2785   if (!this->script_options_->saw_phdrs_clause())
2786     {
2787       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2788                                                        (elfcpp::PF_R
2789                                                         | elfcpp::PF_W));
2790       oseg->add_output_section(this->dynamic_section_,
2791                                elfcpp::PF_R | elfcpp::PF_W);
2792     }
2793
2794   Output_data_dynamic* const odyn = this->dynamic_data_;
2795
2796   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2797        p != input_objects->dynobj_end();
2798        ++p)
2799     {
2800       // FIXME: Handle --as-needed.
2801       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2802     }
2803
2804   if (parameters->options().shared())
2805     {
2806       const char* soname = parameters->options().soname();
2807       if (soname != NULL)
2808         odyn->add_string(elfcpp::DT_SONAME, soname);
2809     }
2810
2811   // FIXME: Support --init and --fini.
2812   Symbol* sym = symtab->lookup("_init");
2813   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2814     odyn->add_symbol(elfcpp::DT_INIT, sym);
2815
2816   sym = symtab->lookup("_fini");
2817   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2818     odyn->add_symbol(elfcpp::DT_FINI, sym);
2819
2820   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2821
2822   // Add a DT_RPATH entry if needed.
2823   const General_options::Dir_list& rpath(parameters->options().rpath());
2824   if (!rpath.empty())
2825     {
2826       std::string rpath_val;
2827       for (General_options::Dir_list::const_iterator p = rpath.begin();
2828            p != rpath.end();
2829            ++p)
2830         {
2831           if (rpath_val.empty())
2832             rpath_val = p->name();
2833           else
2834             {
2835               // Eliminate duplicates.
2836               General_options::Dir_list::const_iterator q;
2837               for (q = rpath.begin(); q != p; ++q)
2838                 if (q->name() == p->name())
2839                   break;
2840               if (q == p)
2841                 {
2842                   rpath_val += ':';
2843                   rpath_val += p->name();
2844                 }
2845             }
2846         }
2847
2848       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2849       if (parameters->options().enable_new_dtags())
2850         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2851     }
2852
2853   // Look for text segments that have dynamic relocations.
2854   bool have_textrel = false;
2855   if (!this->script_options_->saw_sections_clause())
2856     {
2857       for (Segment_list::const_iterator p = this->segment_list_.begin();
2858            p != this->segment_list_.end();
2859            ++p)
2860         {
2861           if (((*p)->flags() & elfcpp::PF_W) == 0
2862               && (*p)->dynamic_reloc_count() > 0)
2863             {
2864               have_textrel = true;
2865               break;
2866             }
2867         }
2868     }
2869   else
2870     {
2871       // We don't know the section -> segment mapping, so we are
2872       // conservative and just look for readonly sections with
2873       // relocations.  If those sections wind up in writable segments,
2874       // then we have created an unnecessary DT_TEXTREL entry.
2875       for (Section_list::const_iterator p = this->section_list_.begin();
2876            p != this->section_list_.end();
2877            ++p)
2878         {
2879           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2880               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2881               && ((*p)->dynamic_reloc_count() > 0))
2882             {
2883               have_textrel = true;
2884               break;
2885             }
2886         }
2887     }
2888
2889   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2890   // post-link tools can easily modify these flags if desired.
2891   unsigned int flags = 0;
2892   if (have_textrel)
2893     {
2894       // Add a DT_TEXTREL for compatibility with older loaders.
2895       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2896       flags |= elfcpp::DF_TEXTREL;
2897     }
2898   if (parameters->options().shared() && this->has_static_tls())
2899     flags |= elfcpp::DF_STATIC_TLS;
2900   if (parameters->options().origin())
2901     flags |= elfcpp::DF_ORIGIN;
2902   if (parameters->options().now())
2903     flags |= elfcpp::DF_BIND_NOW;
2904   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2905
2906   flags = 0;
2907   if (parameters->options().initfirst())
2908     flags |= elfcpp::DF_1_INITFIRST;
2909   if (parameters->options().interpose())
2910     flags |= elfcpp::DF_1_INTERPOSE;
2911   if (parameters->options().loadfltr())
2912     flags |= elfcpp::DF_1_LOADFLTR;
2913   if (parameters->options().nodefaultlib())
2914     flags |= elfcpp::DF_1_NODEFLIB;
2915   if (parameters->options().nodelete())
2916     flags |= elfcpp::DF_1_NODELETE;
2917   if (parameters->options().nodlopen())
2918     flags |= elfcpp::DF_1_NOOPEN;
2919   if (parameters->options().nodump())
2920     flags |= elfcpp::DF_1_NODUMP;
2921   if (!parameters->options().shared())
2922     flags &= ~(elfcpp::DF_1_INITFIRST
2923                | elfcpp::DF_1_NODELETE
2924                | elfcpp::DF_1_NOOPEN);
2925   if (parameters->options().origin())
2926     flags |= elfcpp::DF_1_ORIGIN;
2927   if (parameters->options().now())
2928     flags |= elfcpp::DF_1_NOW;
2929   if (flags)
2930     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2931 }
2932
2933 // The mapping of input section name prefixes to output section names.
2934 // In some cases one prefix is itself a prefix of another prefix; in
2935 // such a case the longer prefix must come first.  These prefixes are
2936 // based on the GNU linker default ELF linker script.
2937
2938 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2939 const Layout::Section_name_mapping Layout::section_name_mapping[] =
2940 {
2941   MAPPING_INIT(".text.", ".text"),
2942   MAPPING_INIT(".ctors.", ".ctors"),
2943   MAPPING_INIT(".dtors.", ".dtors"),
2944   MAPPING_INIT(".rodata.", ".rodata"),
2945   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2946   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2947   MAPPING_INIT(".data.", ".data"),
2948   MAPPING_INIT(".bss.", ".bss"),
2949   MAPPING_INIT(".tdata.", ".tdata"),
2950   MAPPING_INIT(".tbss.", ".tbss"),
2951   MAPPING_INIT(".init_array.", ".init_array"),
2952   MAPPING_INIT(".fini_array.", ".fini_array"),
2953   MAPPING_INIT(".sdata.", ".sdata"),
2954   MAPPING_INIT(".sbss.", ".sbss"),
2955   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2956   // differently depending on whether it is creating a shared library.
2957   MAPPING_INIT(".sdata2.", ".sdata"),
2958   MAPPING_INIT(".sbss2.", ".sbss"),
2959   MAPPING_INIT(".lrodata.", ".lrodata"),
2960   MAPPING_INIT(".ldata.", ".ldata"),
2961   MAPPING_INIT(".lbss.", ".lbss"),
2962   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2963   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2964   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2965   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2966   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2967   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2968   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2969   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2970   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2971   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2972   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2973   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2974   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2975   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2976   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2977   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2978   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2979   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2980   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2981   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2982   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2983 };
2984 #undef MAPPING_INIT
2985
2986 const int Layout::section_name_mapping_count =
2987   (sizeof(Layout::section_name_mapping)
2988    / sizeof(Layout::section_name_mapping[0]));
2989
2990 // Choose the output section name to use given an input section name.
2991 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2992 // length of NAME.
2993
2994 const char*
2995 Layout::output_section_name(const char* name, size_t* plen)
2996 {
2997   // gcc 4.3 generates the following sorts of section names when it
2998   // needs a section name specific to a function:
2999   //   .text.FN
3000   //   .rodata.FN
3001   //   .sdata2.FN
3002   //   .data.FN
3003   //   .data.rel.FN
3004   //   .data.rel.local.FN
3005   //   .data.rel.ro.FN
3006   //   .data.rel.ro.local.FN
3007   //   .sdata.FN
3008   //   .bss.FN
3009   //   .sbss.FN
3010   //   .tdata.FN
3011   //   .tbss.FN
3012
3013   // The GNU linker maps all of those to the part before the .FN,
3014   // except that .data.rel.local.FN is mapped to .data, and
3015   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3016   // beginning with .data.rel.ro.local are grouped together.
3017
3018   // For an anonymous namespace, the string FN can contain a '.'.
3019
3020   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3021   // GNU linker maps to .rodata.
3022
3023   // The .data.rel.ro sections are used with -z relro.  The sections
3024   // are recognized by name.  We use the same names that the GNU
3025   // linker does for these sections.
3026
3027   // It is hard to handle this in a principled way, so we don't even
3028   // try.  We use a table of mappings.  If the input section name is
3029   // not found in the table, we simply use it as the output section
3030   // name.
3031
3032   const Section_name_mapping* psnm = section_name_mapping;
3033   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3034     {
3035       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3036         {
3037           *plen = psnm->tolen;
3038           return psnm->to;
3039         }
3040     }
3041
3042   return name;
3043 }
3044
3045 // Check if a comdat group or .gnu.linkonce section with the given
3046 // NAME is selected for the link.  If there is already a section,
3047 // *KEPT_SECTION is set to point to the existing section and the
3048 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3049 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3050 // *KEPT_SECTION is set to the internal copy and the function returns
3051 // true.
3052
3053 bool
3054 Layout::find_or_add_kept_section(const std::string& name,
3055                                  Relobj* object,
3056                                  unsigned int shndx,
3057                                  bool is_comdat,
3058                                  bool is_group_name,
3059                                  Kept_section** kept_section)
3060 {
3061   // It's normal to see a couple of entries here, for the x86 thunk
3062   // sections.  If we see more than a few, we're linking a C++
3063   // program, and we resize to get more space to minimize rehashing.
3064   if (this->signatures_.size() > 4
3065       && !this->resized_signatures_)
3066     {
3067       reserve_unordered_map(&this->signatures_,
3068                             this->number_of_input_files_ * 64);
3069       this->resized_signatures_ = true;
3070     }
3071
3072   Kept_section candidate;
3073   std::pair<Signatures::iterator, bool> ins =
3074     this->signatures_.insert(std::make_pair(name, candidate));
3075
3076   if (kept_section != NULL)
3077     *kept_section = &ins.first->second;
3078   if (ins.second)
3079     {
3080       // This is the first time we've seen this signature.
3081       ins.first->second.set_object(object);
3082       ins.first->second.set_shndx(shndx);
3083       if (is_comdat)
3084         ins.first->second.set_is_comdat();
3085       if (is_group_name)
3086         ins.first->second.set_is_group_name();
3087       return true;
3088     }
3089
3090   // We have already seen this signature.
3091
3092   if (ins.first->second.is_group_name())
3093     {
3094       // We've already seen a real section group with this signature.
3095       // If the kept group is from a plugin object, and we're in the
3096       // replacement phase, accept the new one as a replacement.
3097       if (ins.first->second.object() == NULL
3098           && parameters->options().plugins()->in_replacement_phase())
3099         {
3100           ins.first->second.set_object(object);
3101           ins.first->second.set_shndx(shndx);
3102           return true;
3103         }
3104       return false;
3105     }
3106   else if (is_group_name)
3107     {
3108       // This is a real section group, and we've already seen a
3109       // linkonce section with this signature.  Record that we've seen
3110       // a section group, and don't include this section group.
3111       ins.first->second.set_is_group_name();
3112       return false;
3113     }
3114   else
3115     {
3116       // We've already seen a linkonce section and this is a linkonce
3117       // section.  These don't block each other--this may be the same
3118       // symbol name with different section types.
3119       return true;
3120     }
3121 }
3122
3123 // Store the allocated sections into the section list.
3124
3125 void
3126 Layout::get_allocated_sections(Section_list* section_list) const
3127 {
3128   for (Section_list::const_iterator p = this->section_list_.begin();
3129        p != this->section_list_.end();
3130        ++p)
3131     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3132       section_list->push_back(*p);
3133 }
3134
3135 // Create an output segment.
3136
3137 Output_segment*
3138 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3139 {
3140   gold_assert(!parameters->options().relocatable());
3141   Output_segment* oseg = new Output_segment(type, flags);
3142   this->segment_list_.push_back(oseg);
3143
3144   if (type == elfcpp::PT_TLS)
3145     this->tls_segment_ = oseg;
3146   else if (type == elfcpp::PT_GNU_RELRO)
3147     this->relro_segment_ = oseg;
3148
3149   return oseg;
3150 }
3151
3152 // Write out the Output_sections.  Most won't have anything to write,
3153 // since most of the data will come from input sections which are
3154 // handled elsewhere.  But some Output_sections do have Output_data.
3155
3156 void
3157 Layout::write_output_sections(Output_file* of) const
3158 {
3159   for (Section_list::const_iterator p = this->section_list_.begin();
3160        p != this->section_list_.end();
3161        ++p)
3162     {
3163       if (!(*p)->after_input_sections())
3164         (*p)->write(of);
3165     }
3166 }
3167
3168 // Write out data not associated with a section or the symbol table.
3169
3170 void
3171 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3172 {
3173   if (!parameters->options().strip_all())
3174     {
3175       const Output_section* symtab_section = this->symtab_section_;
3176       for (Section_list::const_iterator p = this->section_list_.begin();
3177            p != this->section_list_.end();
3178            ++p)
3179         {
3180           if ((*p)->needs_symtab_index())
3181             {
3182               gold_assert(symtab_section != NULL);
3183               unsigned int index = (*p)->symtab_index();
3184               gold_assert(index > 0 && index != -1U);
3185               off_t off = (symtab_section->offset()
3186                            + index * symtab_section->entsize());
3187               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3188             }
3189         }
3190     }
3191
3192   const Output_section* dynsym_section = this->dynsym_section_;
3193   for (Section_list::const_iterator p = this->section_list_.begin();
3194        p != this->section_list_.end();
3195        ++p)
3196     {
3197       if ((*p)->needs_dynsym_index())
3198         {
3199           gold_assert(dynsym_section != NULL);
3200           unsigned int index = (*p)->dynsym_index();
3201           gold_assert(index > 0 && index != -1U);
3202           off_t off = (dynsym_section->offset()
3203                        + index * dynsym_section->entsize());
3204           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3205         }
3206     }
3207
3208   // Write out the Output_data which are not in an Output_section.
3209   for (Data_list::const_iterator p = this->special_output_list_.begin();
3210        p != this->special_output_list_.end();
3211        ++p)
3212     (*p)->write(of);
3213 }
3214
3215 // Write out the Output_sections which can only be written after the
3216 // input sections are complete.
3217
3218 void
3219 Layout::write_sections_after_input_sections(Output_file* of)
3220 {
3221   // Determine the final section offsets, and thus the final output
3222   // file size.  Note we finalize the .shstrab last, to allow the
3223   // after_input_section sections to modify their section-names before
3224   // writing.
3225   if (this->any_postprocessing_sections_)
3226     {
3227       off_t off = this->output_file_size_;
3228       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3229
3230       // Now that we've finalized the names, we can finalize the shstrab.
3231       off =
3232         this->set_section_offsets(off,
3233                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3234
3235       if (off > this->output_file_size_)
3236         {
3237           of->resize(off);
3238           this->output_file_size_ = off;
3239         }
3240     }
3241
3242   for (Section_list::const_iterator p = this->section_list_.begin();
3243        p != this->section_list_.end();
3244        ++p)
3245     {
3246       if ((*p)->after_input_sections())
3247         (*p)->write(of);
3248     }
3249
3250   this->section_headers_->write(of);
3251 }
3252
3253 // If the build ID requires computing a checksum, do so here, and
3254 // write it out.  We compute a checksum over the entire file because
3255 // that is simplest.
3256
3257 void
3258 Layout::write_build_id(Output_file* of) const
3259 {
3260   if (this->build_id_note_ == NULL)
3261     return;
3262
3263   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3264
3265   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3266                                           this->build_id_note_->data_size());
3267
3268   const char* style = parameters->options().build_id();
3269   if (strcmp(style, "sha1") == 0)
3270     {
3271       sha1_ctx ctx;
3272       sha1_init_ctx(&ctx);
3273       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3274       sha1_finish_ctx(&ctx, ov);
3275     }
3276   else if (strcmp(style, "md5") == 0)
3277     {
3278       md5_ctx ctx;
3279       md5_init_ctx(&ctx);
3280       md5_process_bytes(iv, this->output_file_size_, &ctx);
3281       md5_finish_ctx(&ctx, ov);
3282     }
3283   else
3284     gold_unreachable();
3285
3286   of->write_output_view(this->build_id_note_->offset(),
3287                         this->build_id_note_->data_size(),
3288                         ov);
3289
3290   of->free_input_view(0, this->output_file_size_, iv);
3291 }
3292
3293 // Write out a binary file.  This is called after the link is
3294 // complete.  IN is the temporary output file we used to generate the
3295 // ELF code.  We simply walk through the segments, read them from
3296 // their file offset in IN, and write them to their load address in
3297 // the output file.  FIXME: with a bit more work, we could support
3298 // S-records and/or Intel hex format here.
3299
3300 void
3301 Layout::write_binary(Output_file* in) const
3302 {
3303   gold_assert(parameters->options().oformat_enum()
3304               == General_options::OBJECT_FORMAT_BINARY);
3305
3306   // Get the size of the binary file.
3307   uint64_t max_load_address = 0;
3308   for (Segment_list::const_iterator p = this->segment_list_.begin();
3309        p != this->segment_list_.end();
3310        ++p)
3311     {
3312       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3313         {
3314           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3315           if (max_paddr > max_load_address)
3316             max_load_address = max_paddr;
3317         }
3318     }
3319
3320   Output_file out(parameters->options().output_file_name());
3321   out.open(max_load_address);
3322
3323   for (Segment_list::const_iterator p = this->segment_list_.begin();
3324        p != this->segment_list_.end();
3325        ++p)
3326     {
3327       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3328         {
3329           const unsigned char* vin = in->get_input_view((*p)->offset(),
3330                                                         (*p)->filesz());
3331           unsigned char* vout = out.get_output_view((*p)->paddr(),
3332                                                     (*p)->filesz());
3333           memcpy(vout, vin, (*p)->filesz());
3334           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3335           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3336         }
3337     }
3338
3339   out.close();
3340 }
3341
3342 // Print the output sections to the map file.
3343
3344 void
3345 Layout::print_to_mapfile(Mapfile* mapfile) const
3346 {
3347   for (Segment_list::const_iterator p = this->segment_list_.begin();
3348        p != this->segment_list_.end();
3349        ++p)
3350     (*p)->print_sections_to_mapfile(mapfile);
3351 }
3352
3353 // Print statistical information to stderr.  This is used for --stats.
3354
3355 void
3356 Layout::print_stats() const
3357 {
3358   this->namepool_.print_stats("section name pool");
3359   this->sympool_.print_stats("output symbol name pool");
3360   this->dynpool_.print_stats("dynamic name pool");
3361
3362   for (Section_list::const_iterator p = this->section_list_.begin();
3363        p != this->section_list_.end();
3364        ++p)
3365     (*p)->print_merge_stats();
3366 }
3367
3368 // Write_sections_task methods.
3369
3370 // We can always run this task.
3371
3372 Task_token*
3373 Write_sections_task::is_runnable()
3374 {
3375   return NULL;
3376 }
3377
3378 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3379 // when finished.
3380
3381 void
3382 Write_sections_task::locks(Task_locker* tl)
3383 {
3384   tl->add(this, this->output_sections_blocker_);
3385   tl->add(this, this->final_blocker_);
3386 }
3387
3388 // Run the task--write out the data.
3389
3390 void
3391 Write_sections_task::run(Workqueue*)
3392 {
3393   this->layout_->write_output_sections(this->of_);
3394 }
3395
3396 // Write_data_task methods.
3397
3398 // We can always run this task.
3399
3400 Task_token*
3401 Write_data_task::is_runnable()
3402 {
3403   return NULL;
3404 }
3405
3406 // We need to unlock FINAL_BLOCKER when finished.
3407
3408 void
3409 Write_data_task::locks(Task_locker* tl)
3410 {
3411   tl->add(this, this->final_blocker_);
3412 }
3413
3414 // Run the task--write out the data.
3415
3416 void
3417 Write_data_task::run(Workqueue*)
3418 {
3419   this->layout_->write_data(this->symtab_, this->of_);
3420 }
3421
3422 // Write_symbols_task methods.
3423
3424 // We can always run this task.
3425
3426 Task_token*
3427 Write_symbols_task::is_runnable()
3428 {
3429   return NULL;
3430 }
3431
3432 // We need to unlock FINAL_BLOCKER when finished.
3433
3434 void
3435 Write_symbols_task::locks(Task_locker* tl)
3436 {
3437   tl->add(this, this->final_blocker_);
3438 }
3439
3440 // Run the task--write out the symbols.
3441
3442 void
3443 Write_symbols_task::run(Workqueue*)
3444 {
3445   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3446                                this->layout_->symtab_xindex(),
3447                                this->layout_->dynsym_xindex(), this->of_);
3448 }
3449
3450 // Write_after_input_sections_task methods.
3451
3452 // We can only run this task after the input sections have completed.
3453
3454 Task_token*
3455 Write_after_input_sections_task::is_runnable()
3456 {
3457   if (this->input_sections_blocker_->is_blocked())
3458     return this->input_sections_blocker_;
3459   return NULL;
3460 }
3461
3462 // We need to unlock FINAL_BLOCKER when finished.
3463
3464 void
3465 Write_after_input_sections_task::locks(Task_locker* tl)
3466 {
3467   tl->add(this, this->final_blocker_);
3468 }
3469
3470 // Run the task.
3471
3472 void
3473 Write_after_input_sections_task::run(Workqueue*)
3474 {
3475   this->layout_->write_sections_after_input_sections(this->of_);
3476 }
3477
3478 // Close_task_runner methods.
3479
3480 // Run the task--close the file.
3481
3482 void
3483 Close_task_runner::run(Workqueue*, const Task*)
3484 {
3485   // If we need to compute a checksum for the BUILD if, we do so here.
3486   this->layout_->write_build_id(this->of_);
3487
3488   // If we've been asked to create a binary file, we do so here.
3489   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3490     this->layout_->write_binary(this->of_);
3491
3492   this->of_->close();
3493 }
3494
3495 // Instantiate the templates we need.  We could use the configure
3496 // script to restrict this to only the ones for implemented targets.
3497
3498 #ifdef HAVE_TARGET_32_LITTLE
3499 template
3500 Output_section*
3501 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3502                           const char* name,
3503                           const elfcpp::Shdr<32, false>& shdr,
3504                           unsigned int, unsigned int, off_t*);
3505 #endif
3506
3507 #ifdef HAVE_TARGET_32_BIG
3508 template
3509 Output_section*
3510 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3511                          const char* name,
3512                          const elfcpp::Shdr<32, true>& shdr,
3513                          unsigned int, unsigned int, off_t*);
3514 #endif
3515
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 Output_section*
3519 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3520                           const char* name,
3521                           const elfcpp::Shdr<64, false>& shdr,
3522                           unsigned int, unsigned int, off_t*);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_64_BIG
3526 template
3527 Output_section*
3528 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3529                          const char* name,
3530                          const elfcpp::Shdr<64, true>& shdr,
3531                          unsigned int, unsigned int, off_t*);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 Output_section*
3537 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3538                                 unsigned int reloc_shndx,
3539                                 const elfcpp::Shdr<32, false>& shdr,
3540                                 Output_section* data_section,
3541                                 Relocatable_relocs* rr);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_32_BIG
3545 template
3546 Output_section*
3547 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3548                                unsigned int reloc_shndx,
3549                                const elfcpp::Shdr<32, true>& shdr,
3550                                Output_section* data_section,
3551                                Relocatable_relocs* rr);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_64_LITTLE
3555 template
3556 Output_section*
3557 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3558                                 unsigned int reloc_shndx,
3559                                 const elfcpp::Shdr<64, false>& shdr,
3560                                 Output_section* data_section,
3561                                 Relocatable_relocs* rr);
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_BIG
3565 template
3566 Output_section*
3567 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3568                                unsigned int reloc_shndx,
3569                                const elfcpp::Shdr<64, true>& shdr,
3570                                Output_section* data_section,
3571                                Relocatable_relocs* rr);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 void
3577 Layout::layout_group<32, false>(Symbol_table* symtab,
3578                                 Sized_relobj<32, false>* object,
3579                                 unsigned int,
3580                                 const char* group_section_name,
3581                                 const char* signature,
3582                                 const elfcpp::Shdr<32, false>& shdr,
3583                                 elfcpp::Elf_Word flags,
3584                                 std::vector<unsigned int>* shndxes);
3585 #endif
3586
3587 #ifdef HAVE_TARGET_32_BIG
3588 template
3589 void
3590 Layout::layout_group<32, true>(Symbol_table* symtab,
3591                                Sized_relobj<32, true>* object,
3592                                unsigned int,
3593                                const char* group_section_name,
3594                                const char* signature,
3595                                const elfcpp::Shdr<32, true>& shdr,
3596                                elfcpp::Elf_Word flags,
3597                                std::vector<unsigned int>* shndxes);
3598 #endif
3599
3600 #ifdef HAVE_TARGET_64_LITTLE
3601 template
3602 void
3603 Layout::layout_group<64, false>(Symbol_table* symtab,
3604                                 Sized_relobj<64, false>* object,
3605                                 unsigned int,
3606                                 const char* group_section_name,
3607                                 const char* signature,
3608                                 const elfcpp::Shdr<64, false>& shdr,
3609                                 elfcpp::Elf_Word flags,
3610                                 std::vector<unsigned int>* shndxes);
3611 #endif
3612
3613 #ifdef HAVE_TARGET_64_BIG
3614 template
3615 void
3616 Layout::layout_group<64, true>(Symbol_table* symtab,
3617                                Sized_relobj<64, true>* object,
3618                                unsigned int,
3619                                const char* group_section_name,
3620                                const char* signature,
3621                                const elfcpp::Shdr<64, true>& shdr,
3622                                elfcpp::Elf_Word flags,
3623                                std::vector<unsigned int>* shndxes);
3624 #endif
3625
3626 #ifdef HAVE_TARGET_32_LITTLE
3627 template
3628 Output_section*
3629 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3630                                    const unsigned char* symbols,
3631                                    off_t symbols_size,
3632                                    const unsigned char* symbol_names,
3633                                    off_t symbol_names_size,
3634                                    unsigned int shndx,
3635                                    const elfcpp::Shdr<32, false>& shdr,
3636                                    unsigned int reloc_shndx,
3637                                    unsigned int reloc_type,
3638                                    off_t* off);
3639 #endif
3640
3641 #ifdef HAVE_TARGET_32_BIG
3642 template
3643 Output_section*
3644 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3645                                    const unsigned char* symbols,
3646                                    off_t symbols_size,
3647                                   const unsigned char* symbol_names,
3648                                   off_t symbol_names_size,
3649                                   unsigned int shndx,
3650                                   const elfcpp::Shdr<32, true>& shdr,
3651                                   unsigned int reloc_shndx,
3652                                   unsigned int reloc_type,
3653                                   off_t* off);
3654 #endif
3655
3656 #ifdef HAVE_TARGET_64_LITTLE
3657 template
3658 Output_section*
3659 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3660                                    const unsigned char* symbols,
3661                                    off_t symbols_size,
3662                                    const unsigned char* symbol_names,
3663                                    off_t symbol_names_size,
3664                                    unsigned int shndx,
3665                                    const elfcpp::Shdr<64, false>& shdr,
3666                                    unsigned int reloc_shndx,
3667                                    unsigned int reloc_type,
3668                                    off_t* off);
3669 #endif
3670
3671 #ifdef HAVE_TARGET_64_BIG
3672 template
3673 Output_section*
3674 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3675                                    const unsigned char* symbols,
3676                                    off_t symbols_size,
3677                                   const unsigned char* symbol_names,
3678                                   off_t symbol_names_size,
3679                                   unsigned int shndx,
3680                                   const elfcpp::Shdr<64, true>& shdr,
3681                                   unsigned int reloc_shndx,
3682                                   unsigned int reloc_type,
3683                                   off_t* off);
3684 #endif
3685
3686 } // End namespace gold.