Define __start and __stop symbols.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 #include "gold.h"
4
5 #include <cstring>
6 #include <algorithm>
7 #include <iostream>
8 #include <utility>
9
10 #include "parameters.h"
11 #include "output.h"
12 #include "symtab.h"
13 #include "dynobj.h"
14 #include "layout.h"
15
16 namespace gold
17 {
18
19 // Layout_task_runner methods.
20
21 // Lay out the sections.  This is called after all the input objects
22 // have been read.
23
24 void
25 Layout_task_runner::run(Workqueue* workqueue)
26 {
27   off_t file_size = this->layout_->finalize(this->input_objects_,
28                                             this->symtab_);
29
30   // Now we know the final size of the output file and we know where
31   // each piece of information goes.
32   Output_file* of = new Output_file(this->options_,
33                                     this->input_objects_->target());
34   of->open(file_size);
35
36   // Queue up the final set of tasks.
37   gold::queue_final_tasks(this->options_, this->input_objects_,
38                           this->symtab_, this->layout_, workqueue, of);
39 }
40
41 // Layout methods.
42
43 Layout::Layout(const General_options& options)
44   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
45     section_name_map_(), segment_list_(), section_list_(),
46     unattached_section_list_(), special_output_list_(),
47     tls_segment_(NULL), symtab_section_(NULL),
48     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL)
49 {
50   // Make space for more than enough segments for a typical file.
51   // This is just for efficiency--it's OK if we wind up needing more.
52   this->segment_list_.reserve(12);
53
54   // We expect three unattached Output_data objects: the file header,
55   // the segment headers, and the section headers.
56   this->special_output_list_.reserve(3);
57 }
58
59 // Hash a key we use to look up an output section mapping.
60
61 size_t
62 Layout::Hash_key::operator()(const Layout::Key& k) const
63 {
64  return k.first + k.second.first + k.second.second;
65 }
66
67 // Whether to include this section in the link.
68
69 template<int size, bool big_endian>
70 bool
71 Layout::include_section(Object*, const char*,
72                         const elfcpp::Shdr<size, big_endian>& shdr)
73 {
74   // Some section types are never linked.  Some are only linked when
75   // doing a relocateable link.
76   switch (shdr.get_sh_type())
77     {
78     case elfcpp::SHT_NULL:
79     case elfcpp::SHT_SYMTAB:
80     case elfcpp::SHT_DYNSYM:
81     case elfcpp::SHT_STRTAB:
82     case elfcpp::SHT_HASH:
83     case elfcpp::SHT_DYNAMIC:
84     case elfcpp::SHT_SYMTAB_SHNDX:
85       return false;
86
87     case elfcpp::SHT_RELA:
88     case elfcpp::SHT_REL:
89     case elfcpp::SHT_GROUP:
90       return parameters->output_is_object();
91
92     default:
93       // FIXME: Handle stripping debug sections here.
94       return true;
95     }
96 }
97
98 // Return an output section named NAME, or NULL if there is none.
99
100 Output_section*
101 Layout::find_output_section(const char* name) const
102 {
103   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
104        p != this->section_name_map_.end();
105        ++p)
106     if (strcmp(p->second->name(), name) == 0)
107       return p->second;
108   return NULL;
109 }
110
111 // Return an output segment of type TYPE, with segment flags SET set
112 // and segment flags CLEAR clear.  Return NULL if there is none.
113
114 Output_segment*
115 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
116                             elfcpp::Elf_Word clear) const
117 {
118   for (Segment_list::const_iterator p = this->segment_list_.begin();
119        p != this->segment_list_.end();
120        ++p)
121     if (static_cast<elfcpp::PT>((*p)->type()) == type
122         && ((*p)->flags() & set) == set
123         && ((*p)->flags() & clear) == 0)
124       return *p;
125   return NULL;
126 }
127
128 // Return the output section to use for section NAME with type TYPE
129 // and section flags FLAGS.
130
131 Output_section*
132 Layout::get_output_section(const char* name, Stringpool::Key name_key,
133                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
134 {
135   // We should ignore some flags.
136   flags &= ~ (elfcpp::SHF_INFO_LINK
137               | elfcpp::SHF_LINK_ORDER
138               | elfcpp::SHF_GROUP
139               | elfcpp::SHF_MERGE
140               | elfcpp::SHF_STRINGS);
141
142   const Key key(name_key, std::make_pair(type, flags));
143   const std::pair<Key, Output_section*> v(key, NULL);
144   std::pair<Section_name_map::iterator, bool> ins(
145     this->section_name_map_.insert(v));
146
147   if (!ins.second)
148     return ins.first->second;
149   else
150     {
151       // This is the first time we've seen this name/type/flags
152       // combination.
153       Output_section* os = this->make_output_section(name, type, flags);
154       ins.first->second = os;
155       return os;
156     }
157 }
158
159 // Return the output section to use for input section SHNDX, with name
160 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
161 // offset of this input section without the output section.
162
163 template<int size, bool big_endian>
164 Output_section*
165 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
166                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
167 {
168   if (!this->include_section(object, name, shdr))
169     return NULL;
170
171   // If we are not doing a relocateable link, choose the name to use
172   // for the output section.
173   size_t len = strlen(name);
174   if (!parameters->output_is_object())
175     name = Layout::output_section_name(name, &len);
176
177   // FIXME: Handle SHF_OS_NONCONFORMING here.
178
179   // Canonicalize the section name.
180   Stringpool::Key name_key;
181   name = this->namepool_.add(name, len, &name_key);
182
183   // Find the output section.  The output section is selected based on
184   // the section name, type, and flags.
185   Output_section* os = this->get_output_section(name, name_key,
186                                                 shdr.get_sh_type(),
187                                                 shdr.get_sh_flags());
188
189   // FIXME: Handle SHF_LINK_ORDER somewhere.
190
191   *off = os->add_input_section(object, shndx, name, shdr);
192
193   return os;
194 }
195
196 // Add POSD to an output section using NAME, TYPE, and FLAGS.
197
198 void
199 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
200                                 elfcpp::Elf_Xword flags,
201                                 Output_section_data* posd)
202 {
203   // Canonicalize the name.
204   Stringpool::Key name_key;
205   name = this->namepool_.add(name, &name_key);
206
207   Output_section* os = this->get_output_section(name, name_key, type, flags);
208   os->add_output_section_data(posd);
209 }
210
211 // Map section flags to segment flags.
212
213 elfcpp::Elf_Word
214 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
215 {
216   elfcpp::Elf_Word ret = elfcpp::PF_R;
217   if ((flags & elfcpp::SHF_WRITE) != 0)
218     ret |= elfcpp::PF_W;
219   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
220     ret |= elfcpp::PF_X;
221   return ret;
222 }
223
224 // Make a new Output_section, and attach it to segments as
225 // appropriate.
226
227 Output_section*
228 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
229                             elfcpp::Elf_Xword flags)
230 {
231   Output_section* os = new Output_section(name, type, flags);
232   this->section_list_.push_back(os);
233
234   if ((flags & elfcpp::SHF_ALLOC) == 0)
235     this->unattached_section_list_.push_back(os);
236   else
237     {
238       // This output section goes into a PT_LOAD segment.
239
240       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
241
242       // The only thing we really care about for PT_LOAD segments is
243       // whether or not they are writable, so that is how we search
244       // for them.  People who need segments sorted on some other
245       // basis will have to wait until we implement a mechanism for
246       // them to describe the segments they want.
247
248       Segment_list::const_iterator p;
249       for (p = this->segment_list_.begin();
250            p != this->segment_list_.end();
251            ++p)
252         {
253           if ((*p)->type() == elfcpp::PT_LOAD
254               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
255             {
256               (*p)->add_output_section(os, seg_flags);
257               break;
258             }
259         }
260
261       if (p == this->segment_list_.end())
262         {
263           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
264                                                     seg_flags);
265           this->segment_list_.push_back(oseg);
266           oseg->add_output_section(os, seg_flags);
267         }
268
269       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
270       // segment.
271       if (type == elfcpp::SHT_NOTE)
272         {
273           // See if we already have an equivalent PT_NOTE segment.
274           for (p = this->segment_list_.begin();
275                p != segment_list_.end();
276                ++p)
277             {
278               if ((*p)->type() == elfcpp::PT_NOTE
279                   && (((*p)->flags() & elfcpp::PF_W)
280                       == (seg_flags & elfcpp::PF_W)))
281                 {
282                   (*p)->add_output_section(os, seg_flags);
283                   break;
284                 }
285             }
286
287           if (p == this->segment_list_.end())
288             {
289               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
290                                                         seg_flags);
291               this->segment_list_.push_back(oseg);
292               oseg->add_output_section(os, seg_flags);
293             }
294         }
295
296       // If we see a loadable SHF_TLS section, we create a PT_TLS
297       // segment.  There can only be one such segment.
298       if ((flags & elfcpp::SHF_TLS) != 0)
299         {
300           if (this->tls_segment_ == NULL)
301             {
302               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
303                                                       seg_flags);
304               this->segment_list_.push_back(this->tls_segment_);
305             }
306           this->tls_segment_->add_output_section(os, seg_flags);
307         }
308     }
309
310   return os;
311 }
312
313 // Create the dynamic sections which are needed before we read the
314 // relocs.
315
316 void
317 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
318                                         Symbol_table* symtab)
319 {
320   if (!input_objects->any_dynamic())
321     return;
322
323   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
324   this->dynamic_section_ = this->make_output_section(dynamic_name,
325                                                      elfcpp::SHT_DYNAMIC,
326                                                      (elfcpp::SHF_ALLOC
327                                                       | elfcpp::SHF_WRITE));
328
329   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
330                                 this->dynamic_section_, 0, 0,
331                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
332                                 elfcpp::STV_HIDDEN, 0, false, false);
333
334   this->dynamic_data_ =  new Output_data_dynamic(input_objects->target(),
335                                                  &this->dynpool_);
336
337   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
338 }
339
340 // For each output section whose name can be represented as C symbol,
341 // define __start and __stop symbols for the section.  This is a GNU
342 // extension.
343
344 void
345 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
346 {
347   for (Section_list::const_iterator p = this->section_list_.begin();
348        p != this->section_list_.end();
349        ++p)
350     {
351       const char* const name = (*p)->name();
352       if (name[strspn(name,
353                       ("0123456789"
354                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
355                        "abcdefghijklmnopqrstuvwxyz"
356                        "_"))]
357           == '\0')
358         {
359           const std::string name_string(name);
360           const std::string start_name("__start_" + name_string);
361           const std::string stop_name("__stop_" + name_string);
362
363           symtab->define_in_output_data(target,
364                                         start_name.c_str(),
365                                         NULL, // version
366                                         *p,
367                                         0, // value
368                                         0, // symsize
369                                         elfcpp::STT_NOTYPE,
370                                         elfcpp::STB_GLOBAL,
371                                         elfcpp::STV_DEFAULT,
372                                         0, // nonvis
373                                         false, // offset_is_from_end
374                                         false); // only_if_ref
375
376           symtab->define_in_output_data(target,
377                                         stop_name.c_str(),
378                                         NULL, // version
379                                         *p,
380                                         0, // value
381                                         0, // symsize
382                                         elfcpp::STT_NOTYPE,
383                                         elfcpp::STB_GLOBAL,
384                                         elfcpp::STV_DEFAULT,
385                                         0, // nonvis
386                                         true, // offset_is_from_end
387                                         false); // only_if_ref
388         }
389     }
390 }
391
392 // Find the first read-only PT_LOAD segment, creating one if
393 // necessary.
394
395 Output_segment*
396 Layout::find_first_load_seg()
397 {
398   for (Segment_list::const_iterator p = this->segment_list_.begin();
399        p != this->segment_list_.end();
400        ++p)
401     {
402       if ((*p)->type() == elfcpp::PT_LOAD
403           && ((*p)->flags() & elfcpp::PF_R) != 0
404           && ((*p)->flags() & elfcpp::PF_W) == 0)
405         return *p;
406     }
407
408   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
409   this->segment_list_.push_back(load_seg);
410   return load_seg;
411 }
412
413 // Finalize the layout.  When this is called, we have created all the
414 // output sections and all the output segments which are based on
415 // input sections.  We have several things to do, and we have to do
416 // them in the right order, so that we get the right results correctly
417 // and efficiently.
418
419 // 1) Finalize the list of output segments and create the segment
420 // table header.
421
422 // 2) Finalize the dynamic symbol table and associated sections.
423
424 // 3) Determine the final file offset of all the output segments.
425
426 // 4) Determine the final file offset of all the SHF_ALLOC output
427 // sections.
428
429 // 5) Create the symbol table sections and the section name table
430 // section.
431
432 // 6) Finalize the symbol table: set symbol values to their final
433 // value and make a final determination of which symbols are going
434 // into the output symbol table.
435
436 // 7) Create the section table header.
437
438 // 8) Determine the final file offset of all the output sections which
439 // are not SHF_ALLOC, including the section table header.
440
441 // 9) Finalize the ELF file header.
442
443 // This function returns the size of the output file.
444
445 off_t
446 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
447 {
448   Target* const target = input_objects->target();
449   const int size = target->get_size();
450
451   target->finalize_sections(this);
452
453   Output_segment* phdr_seg = NULL;
454   if (input_objects->any_dynamic())
455     {
456       // There was a dynamic object in the link.  We need to create
457       // some information for the dynamic linker.
458
459       // Create the PT_PHDR segment which will hold the program
460       // headers.
461       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
462       this->segment_list_.push_back(phdr_seg);
463
464       // Create the dynamic symbol table, including the hash table.
465       Output_section* dynstr;
466       std::vector<Symbol*> dynamic_symbols;
467       unsigned int local_dynamic_count;
468       Versions versions;
469       this->create_dynamic_symtab(target, symtab, &dynstr,
470                                   &local_dynamic_count, &dynamic_symbols,
471                                   &versions);
472
473       // Create the .interp section to hold the name of the
474       // interpreter, and put it in a PT_INTERP segment.
475       this->create_interp(target);
476
477       // Finish the .dynamic section to hold the dynamic data, and put
478       // it in a PT_DYNAMIC segment.
479       this->finish_dynamic_section(input_objects, symtab);
480
481       // We should have added everything we need to the dynamic string
482       // table.
483       this->dynpool_.set_string_offsets();
484
485       // Create the version sections.  We can't do this until the
486       // dynamic string table is complete.
487       this->create_version_sections(target, &versions, local_dynamic_count,
488                                     dynamic_symbols, dynstr);
489     }
490
491   // FIXME: Handle PT_GNU_STACK.
492
493   Output_segment* load_seg = this->find_first_load_seg();
494
495   // Lay out the segment headers.
496   bool big_endian = target->is_big_endian();
497   Output_segment_headers* segment_headers;
498   segment_headers = new Output_segment_headers(size, big_endian,
499                                                this->segment_list_);
500   load_seg->add_initial_output_data(segment_headers);
501   this->special_output_list_.push_back(segment_headers);
502   if (phdr_seg != NULL)
503     phdr_seg->add_initial_output_data(segment_headers);
504
505   // Lay out the file header.
506   Output_file_header* file_header;
507   file_header = new Output_file_header(size,
508                                        big_endian,
509                                        target,
510                                        symtab,
511                                        segment_headers);
512   load_seg->add_initial_output_data(file_header);
513   this->special_output_list_.push_back(file_header);
514
515   // We set the output section indexes in set_segment_offsets and
516   // set_section_offsets.
517   unsigned int shndx = 1;
518
519   // Set the file offsets of all the segments, and all the sections
520   // they contain.
521   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
522
523   // Create the symbol table sections.
524   this->create_symtab_sections(size, input_objects, symtab, &off);
525
526   // Create the .shstrtab section.
527   Output_section* shstrtab_section = this->create_shstrtab();
528
529   // Set the file offsets of all the sections not associated with
530   // segments.
531   off = this->set_section_offsets(off, &shndx);
532
533   // Create the section table header.
534   Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
535
536   file_header->set_section_info(oshdrs, shstrtab_section);
537
538   // Now we know exactly where everything goes in the output file.
539   Output_data::layout_complete();
540
541   return off;
542 }
543
544 // Return whether SEG1 should be before SEG2 in the output file.  This
545 // is based entirely on the segment type and flags.  When this is
546 // called the segment addresses has normally not yet been set.
547
548 bool
549 Layout::segment_precedes(const Output_segment* seg1,
550                          const Output_segment* seg2)
551 {
552   elfcpp::Elf_Word type1 = seg1->type();
553   elfcpp::Elf_Word type2 = seg2->type();
554
555   // The single PT_PHDR segment is required to precede any loadable
556   // segment.  We simply make it always first.
557   if (type1 == elfcpp::PT_PHDR)
558     {
559       gold_assert(type2 != elfcpp::PT_PHDR);
560       return true;
561     }
562   if (type2 == elfcpp::PT_PHDR)
563     return false;
564
565   // The single PT_INTERP segment is required to precede any loadable
566   // segment.  We simply make it always second.
567   if (type1 == elfcpp::PT_INTERP)
568     {
569       gold_assert(type2 != elfcpp::PT_INTERP);
570       return true;
571     }
572   if (type2 == elfcpp::PT_INTERP)
573     return false;
574
575   // We then put PT_LOAD segments before any other segments.
576   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
577     return true;
578   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
579     return false;
580
581   // We put the PT_TLS segment last, because that is where the dynamic
582   // linker expects to find it (this is just for efficiency; other
583   // positions would also work correctly).
584   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
585     return false;
586   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
587     return true;
588
589   const elfcpp::Elf_Word flags1 = seg1->flags();
590   const elfcpp::Elf_Word flags2 = seg2->flags();
591
592   // The order of non-PT_LOAD segments is unimportant.  We simply sort
593   // by the numeric segment type and flags values.  There should not
594   // be more than one segment with the same type and flags.
595   if (type1 != elfcpp::PT_LOAD)
596     {
597       if (type1 != type2)
598         return type1 < type2;
599       gold_assert(flags1 != flags2);
600       return flags1 < flags2;
601     }
602
603   // We sort PT_LOAD segments based on the flags.  Readonly segments
604   // come before writable segments.  Then executable segments come
605   // before non-executable segments.  Then the unlikely case of a
606   // non-readable segment comes before the normal case of a readable
607   // segment.  If there are multiple segments with the same type and
608   // flags, we require that the address be set, and we sort by
609   // virtual address and then physical address.
610   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
611     return (flags1 & elfcpp::PF_W) == 0;
612   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
613     return (flags1 & elfcpp::PF_X) != 0;
614   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
615     return (flags1 & elfcpp::PF_R) == 0;
616
617   uint64_t vaddr1 = seg1->vaddr();
618   uint64_t vaddr2 = seg2->vaddr();
619   if (vaddr1 != vaddr2)
620     return vaddr1 < vaddr2;
621
622   uint64_t paddr1 = seg1->paddr();
623   uint64_t paddr2 = seg2->paddr();
624   gold_assert(paddr1 != paddr2);
625   return paddr1 < paddr2;
626 }
627
628 // Set the file offsets of all the segments, and all the sections they
629 // contain.  They have all been created.  LOAD_SEG must be be laid out
630 // first.  Return the offset of the data to follow.
631
632 off_t
633 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
634                             unsigned int *pshndx)
635 {
636   // Sort them into the final order.
637   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
638             Layout::Compare_segments());
639
640   // Find the PT_LOAD segments, and set their addresses and offsets
641   // and their section's addresses and offsets.
642   uint64_t addr = target->text_segment_address();
643   off_t off = 0;
644   bool was_readonly = false;
645   for (Segment_list::iterator p = this->segment_list_.begin();
646        p != this->segment_list_.end();
647        ++p)
648     {
649       if ((*p)->type() == elfcpp::PT_LOAD)
650         {
651           if (load_seg != NULL && load_seg != *p)
652             gold_unreachable();
653           load_seg = NULL;
654
655           // If the last segment was readonly, and this one is not,
656           // then skip the address forward one page, maintaining the
657           // same position within the page.  This lets us store both
658           // segments overlapping on a single page in the file, but
659           // the loader will put them on different pages in memory.
660
661           uint64_t orig_addr = addr;
662           uint64_t orig_off = off;
663
664           uint64_t aligned_addr = addr;
665           uint64_t abi_pagesize = target->abi_pagesize();
666
667           // FIXME: This should depend on the -n and -N options.
668           (*p)->set_minimum_addralign(target->common_pagesize());
669
670           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
671             {
672               uint64_t align = (*p)->addralign();
673
674               addr = align_address(addr, align);
675               aligned_addr = addr;
676               if ((addr & (abi_pagesize - 1)) != 0)
677                 addr = addr + abi_pagesize;
678             }
679
680           unsigned int shndx_hold = *pshndx;
681           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
682           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
683
684           // Now that we know the size of this segment, we may be able
685           // to save a page in memory, at the cost of wasting some
686           // file space, by instead aligning to the start of a new
687           // page.  Here we use the real machine page size rather than
688           // the ABI mandated page size.
689
690           if (aligned_addr != addr)
691             {
692               uint64_t common_pagesize = target->common_pagesize();
693               uint64_t first_off = (common_pagesize
694                                     - (aligned_addr
695                                        & (common_pagesize - 1)));
696               uint64_t last_off = new_addr & (common_pagesize - 1);
697               if (first_off > 0
698                   && last_off > 0
699                   && ((aligned_addr & ~ (common_pagesize - 1))
700                       != (new_addr & ~ (common_pagesize - 1)))
701                   && first_off + last_off <= common_pagesize)
702                 {
703                   *pshndx = shndx_hold;
704                   addr = align_address(aligned_addr, common_pagesize);
705                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
706                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
707                 }
708             }
709
710           addr = new_addr;
711
712           if (((*p)->flags() & elfcpp::PF_W) == 0)
713             was_readonly = true;
714         }
715     }
716
717   // Handle the non-PT_LOAD segments, setting their offsets from their
718   // section's offsets.
719   for (Segment_list::iterator p = this->segment_list_.begin();
720        p != this->segment_list_.end();
721        ++p)
722     {
723       if ((*p)->type() != elfcpp::PT_LOAD)
724         (*p)->set_offset();
725     }
726
727   return off;
728 }
729
730 // Set the file offset of all the sections not associated with a
731 // segment.
732
733 off_t
734 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
735 {
736   for (Section_list::iterator p = this->unattached_section_list_.begin();
737        p != this->unattached_section_list_.end();
738        ++p)
739     {
740       (*p)->set_out_shndx(*pshndx);
741       ++*pshndx;
742       if ((*p)->offset() != -1)
743         continue;
744       off = align_address(off, (*p)->addralign());
745       (*p)->set_address(0, off);
746       off += (*p)->data_size();
747     }
748   return off;
749 }
750
751 // Create the symbol table sections.  Here we also set the final
752 // values of the symbols.  At this point all the loadable sections are
753 // fully laid out.
754
755 void
756 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
757                                Symbol_table* symtab,
758                                off_t* poff)
759 {
760   int symsize;
761   unsigned int align;
762   if (size == 32)
763     {
764       symsize = elfcpp::Elf_sizes<32>::sym_size;
765       align = 4;
766     }
767   else if (size == 64)
768     {
769       symsize = elfcpp::Elf_sizes<64>::sym_size;
770       align = 8;
771     }
772   else
773     gold_unreachable();
774
775   off_t off = *poff;
776   off = align_address(off, align);
777   off_t startoff = off;
778
779   // Save space for the dummy symbol at the start of the section.  We
780   // never bother to write this out--it will just be left as zero.
781   off += symsize;
782   unsigned int local_symbol_index = 1;
783
784   // Add STT_SECTION symbols for each Output section which needs one.
785   for (Section_list::iterator p = this->section_list_.begin();
786        p != this->section_list_.end();
787        ++p)
788     {
789       if (!(*p)->needs_symtab_index())
790         (*p)->set_symtab_index(-1U);
791       else
792         {
793           (*p)->set_symtab_index(local_symbol_index);
794           ++local_symbol_index;
795           off += symsize;
796         }
797     }
798
799   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
800        p != input_objects->relobj_end();
801        ++p)
802     {
803       Task_lock_obj<Object> tlo(**p);
804       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
805                                                         off,
806                                                         &this->sympool_);
807       off += (index - local_symbol_index) * symsize;
808       local_symbol_index = index;
809     }
810
811   unsigned int local_symcount = local_symbol_index;
812   gold_assert(local_symcount * symsize == off - startoff);
813
814   off_t dynoff;
815   size_t dyn_global_index;
816   size_t dyncount;
817   if (this->dynsym_section_ == NULL)
818     {
819       dynoff = 0;
820       dyn_global_index = 0;
821       dyncount = 0;
822     }
823   else
824     {
825       dyn_global_index = this->dynsym_section_->info();
826       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
827       dynoff = this->dynsym_section_->offset() + locsize;
828       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
829       gold_assert(dyncount * symsize
830                   == this->dynsym_section_->data_size() - locsize);
831     }
832
833   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
834                          dyncount, &this->sympool_);
835
836   this->sympool_.set_string_offsets();
837
838   const char* symtab_name = this->namepool_.add(".symtab", NULL);
839   Output_section* osymtab = this->make_output_section(symtab_name,
840                                                       elfcpp::SHT_SYMTAB,
841                                                       0);
842   this->symtab_section_ = osymtab;
843
844   Output_section_data* pos = new Output_data_space(off - startoff,
845                                                    align);
846   osymtab->add_output_section_data(pos);
847
848   const char* strtab_name = this->namepool_.add(".strtab", NULL);
849   Output_section* ostrtab = this->make_output_section(strtab_name,
850                                                       elfcpp::SHT_STRTAB,
851                                                       0);
852
853   Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
854   ostrtab->add_output_section_data(pstr);
855
856   osymtab->set_address(0, startoff);
857   osymtab->set_link_section(ostrtab);
858   osymtab->set_info(local_symcount);
859   osymtab->set_entsize(symsize);
860
861   *poff = off;
862 }
863
864 // Create the .shstrtab section, which holds the names of the
865 // sections.  At the time this is called, we have created all the
866 // output sections except .shstrtab itself.
867
868 Output_section*
869 Layout::create_shstrtab()
870 {
871   // FIXME: We don't need to create a .shstrtab section if we are
872   // stripping everything.
873
874   const char* name = this->namepool_.add(".shstrtab", NULL);
875
876   this->namepool_.set_string_offsets();
877
878   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
879
880   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
881   os->add_output_section_data(posd);
882
883   return os;
884 }
885
886 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
887 // offset.
888
889 Output_section_headers*
890 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
891 {
892   Output_section_headers* oshdrs;
893   oshdrs = new Output_section_headers(size, big_endian, this,
894                                       &this->segment_list_,
895                                       &this->unattached_section_list_,
896                                       &this->namepool_);
897   off_t off = align_address(*poff, oshdrs->addralign());
898   oshdrs->set_address(0, off);
899   off += oshdrs->data_size();
900   *poff = off;
901   this->special_output_list_.push_back(oshdrs);
902   return oshdrs;
903 }
904
905 // Create the dynamic symbol table.
906
907 void
908 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
909                               Output_section **pdynstr,
910                               unsigned int* plocal_dynamic_count,
911                               std::vector<Symbol*>* pdynamic_symbols,
912                               Versions* pversions)
913 {
914   // Count all the symbols in the dynamic symbol table, and set the
915   // dynamic symbol indexes.
916
917   // Skip symbol 0, which is always all zeroes.
918   unsigned int index = 1;
919
920   // Add STT_SECTION symbols for each Output section which needs one.
921   for (Section_list::iterator p = this->section_list_.begin();
922        p != this->section_list_.end();
923        ++p)
924     {
925       if (!(*p)->needs_dynsym_index())
926         (*p)->set_dynsym_index(-1U);
927       else
928         {
929           (*p)->set_dynsym_index(index);
930           ++index;
931         }
932     }
933
934   // FIXME: Some targets apparently require local symbols in the
935   // dynamic symbol table.  Here is where we will have to count them,
936   // and set the dynamic symbol indexes, and add the names to
937   // this->dynpool_.
938
939   unsigned int local_symcount = index;
940   *plocal_dynamic_count = local_symcount;
941
942   // FIXME: We have to tell set_dynsym_indexes whether the
943   // -E/--export-dynamic option was used.
944   index = symtab->set_dynsym_indexes(&this->options_, target, index,
945                                      pdynamic_symbols, &this->dynpool_,
946                                      pversions);
947
948   int symsize;
949   unsigned int align;
950   const int size = target->get_size();
951   if (size == 32)
952     {
953       symsize = elfcpp::Elf_sizes<32>::sym_size;
954       align = 4;
955     }
956   else if (size == 64)
957     {
958       symsize = elfcpp::Elf_sizes<64>::sym_size;
959       align = 8;
960     }
961   else
962     gold_unreachable();
963
964   // Create the dynamic symbol table section.
965
966   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
967   Output_section* dynsym = this->make_output_section(dynsym_name,
968                                                      elfcpp::SHT_DYNSYM,
969                                                      elfcpp::SHF_ALLOC);
970
971   Output_section_data* odata = new Output_data_space(index * symsize,
972                                                      align);
973   dynsym->add_output_section_data(odata);
974
975   dynsym->set_info(local_symcount);
976   dynsym->set_entsize(symsize);
977   dynsym->set_addralign(align);
978
979   this->dynsym_section_ = dynsym;
980
981   Output_data_dynamic* const odyn = this->dynamic_data_;
982   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
983   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
984
985   // Create the dynamic string table section.
986
987   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
988   Output_section* dynstr = this->make_output_section(dynstr_name,
989                                                      elfcpp::SHT_STRTAB,
990                                                      elfcpp::SHF_ALLOC);
991
992   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
993   dynstr->add_output_section_data(strdata);
994
995   dynsym->set_link_section(dynstr);
996   this->dynamic_section_->set_link_section(dynstr);
997
998   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
999   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1000
1001   *pdynstr = dynstr;
1002
1003   // Create the hash tables.
1004
1005   // FIXME: We need an option to create a GNU hash table.
1006
1007   unsigned char* phash;
1008   unsigned int hashlen;
1009   Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
1010                                 &phash, &hashlen);
1011
1012   const char* hash_name = this->namepool_.add(".hash", NULL);
1013   Output_section* hashsec = this->make_output_section(hash_name,
1014                                                       elfcpp::SHT_HASH,
1015                                                       elfcpp::SHF_ALLOC);
1016
1017   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1018                                                                hashlen,
1019                                                                align);
1020   hashsec->add_output_section_data(hashdata);
1021
1022   hashsec->set_link_section(dynsym);
1023   hashsec->set_entsize(4);
1024
1025   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1026 }
1027
1028 // Create the version sections.
1029
1030 void
1031 Layout::create_version_sections(const Target* target, const Versions* versions,
1032                                 unsigned int local_symcount,
1033                                 const std::vector<Symbol*>& dynamic_symbols,
1034                                 const Output_section* dynstr)
1035 {
1036   if (!versions->any_defs() && !versions->any_needs())
1037     return;
1038
1039   if (target->get_size() == 32)
1040     {
1041       if (target->is_big_endian())
1042         {
1043 #ifdef HAVE_TARGET_32_BIG
1044           this->sized_create_version_sections
1045               SELECT_SIZE_ENDIAN_NAME(32, true)(
1046                   versions, local_symcount, dynamic_symbols, dynstr
1047                   SELECT_SIZE_ENDIAN(32, true));
1048 #else
1049           gold_unreachable();
1050 #endif
1051         }
1052       else
1053         {
1054 #ifdef HAVE_TARGET_32_LITTLE
1055           this->sized_create_version_sections
1056               SELECT_SIZE_ENDIAN_NAME(32, false)(
1057                   versions, local_symcount, dynamic_symbols, dynstr
1058                   SELECT_SIZE_ENDIAN(32, false));
1059 #else
1060           gold_unreachable();
1061 #endif
1062         }
1063     }
1064   else if (target->get_size() == 64)
1065     {
1066       if (target->is_big_endian())
1067         {
1068 #ifdef HAVE_TARGET_64_BIG
1069           this->sized_create_version_sections
1070               SELECT_SIZE_ENDIAN_NAME(64, true)(
1071                   versions, local_symcount, dynamic_symbols, dynstr
1072                   SELECT_SIZE_ENDIAN(64, true));
1073 #else
1074           gold_unreachable();
1075 #endif
1076         }
1077       else
1078         {
1079 #ifdef HAVE_TARGET_64_LITTLE
1080           this->sized_create_version_sections
1081               SELECT_SIZE_ENDIAN_NAME(64, false)(
1082                   versions, local_symcount, dynamic_symbols, dynstr
1083                   SELECT_SIZE_ENDIAN(64, false));
1084 #else
1085           gold_unreachable();
1086 #endif
1087         }
1088     }
1089   else
1090     gold_unreachable();
1091 }
1092
1093 // Create the version sections, sized version.
1094
1095 template<int size, bool big_endian>
1096 void
1097 Layout::sized_create_version_sections(
1098     const Versions* versions,
1099     unsigned int local_symcount,
1100     const std::vector<Symbol*>& dynamic_symbols,
1101     const Output_section* dynstr
1102     ACCEPT_SIZE_ENDIAN)
1103 {
1104   const char* vname = this->namepool_.add(".gnu.version", NULL);
1105   Output_section* vsec = this->make_output_section(vname,
1106                                                    elfcpp::SHT_GNU_versym,
1107                                                    elfcpp::SHF_ALLOC);
1108
1109   unsigned char* vbuf;
1110   unsigned int vsize;
1111   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1112       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1113       SELECT_SIZE_ENDIAN(size, big_endian));
1114
1115   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1116
1117   vsec->add_output_section_data(vdata);
1118   vsec->set_entsize(2);
1119   vsec->set_link_section(this->dynsym_section_);
1120
1121   Output_data_dynamic* const odyn = this->dynamic_data_;
1122   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1123
1124   if (versions->any_defs())
1125     {
1126       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1127       Output_section *vdsec;
1128       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1129                                         elfcpp::SHF_ALLOC);
1130
1131       unsigned char* vdbuf;
1132       unsigned int vdsize;
1133       unsigned int vdentries;
1134       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1135           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1136           SELECT_SIZE_ENDIAN(size, big_endian));
1137
1138       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1139                                                                  vdsize,
1140                                                                  4);
1141
1142       vdsec->add_output_section_data(vddata);
1143       vdsec->set_link_section(dynstr);
1144       vdsec->set_info(vdentries);
1145
1146       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1147       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1148     }
1149
1150   if (versions->any_needs())
1151     {
1152       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1153       Output_section* vnsec;
1154       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1155                                         elfcpp::SHF_ALLOC);
1156
1157       unsigned char* vnbuf;
1158       unsigned int vnsize;
1159       unsigned int vnentries;
1160       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1161         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1162          SELECT_SIZE_ENDIAN(size, big_endian));
1163
1164       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1165                                                                  vnsize,
1166                                                                  4);
1167
1168       vnsec->add_output_section_data(vndata);
1169       vnsec->set_link_section(dynstr);
1170       vnsec->set_info(vnentries);
1171
1172       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1173       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1174     }
1175 }
1176
1177 // Create the .interp section and PT_INTERP segment.
1178
1179 void
1180 Layout::create_interp(const Target* target)
1181 {
1182   const char* interp = this->options_.dynamic_linker();
1183   if (interp == NULL)
1184     {
1185       interp = target->dynamic_linker();
1186       gold_assert(interp != NULL);
1187     }
1188
1189   size_t len = strlen(interp) + 1;
1190
1191   Output_section_data* odata = new Output_data_const(interp, len, 1);
1192
1193   const char* interp_name = this->namepool_.add(".interp", NULL);
1194   Output_section* osec = this->make_output_section(interp_name,
1195                                                    elfcpp::SHT_PROGBITS,
1196                                                    elfcpp::SHF_ALLOC);
1197   osec->add_output_section_data(odata);
1198
1199   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1200   this->segment_list_.push_back(oseg);
1201   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1202 }
1203
1204 // Finish the .dynamic section and PT_DYNAMIC segment.
1205
1206 void
1207 Layout::finish_dynamic_section(const Input_objects* input_objects,
1208                                const Symbol_table* symtab)
1209 {
1210   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1211                                             elfcpp::PF_R | elfcpp::PF_W);
1212   this->segment_list_.push_back(oseg);
1213   oseg->add_initial_output_section(this->dynamic_section_,
1214                                    elfcpp::PF_R | elfcpp::PF_W);
1215
1216   Output_data_dynamic* const odyn = this->dynamic_data_;
1217
1218   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1219        p != input_objects->dynobj_end();
1220        ++p)
1221     {
1222       // FIXME: Handle --as-needed.
1223       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1224     }
1225
1226   // FIXME: Support --init and --fini.
1227   Symbol* sym = symtab->lookup("_init");
1228   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1229     odyn->add_symbol(elfcpp::DT_INIT, sym);
1230
1231   sym = symtab->lookup("_fini");
1232   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1233     odyn->add_symbol(elfcpp::DT_FINI, sym);
1234
1235   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1236
1237   // Add a DT_RPATH entry if needed.
1238   const General_options::Dir_list& rpath(this->options_.rpath());
1239   if (!rpath.empty())
1240     {
1241       std::string rpath_val;
1242       for (General_options::Dir_list::const_iterator p = rpath.begin();
1243            p != rpath.end();
1244            ++p)
1245         {
1246           if (rpath_val.empty())
1247             rpath_val = *p;
1248           else
1249             {
1250               // Eliminate duplicates.
1251               General_options::Dir_list::const_iterator q;
1252               for (q = rpath.begin(); q != p; ++q)
1253                 if (strcmp(*q, *p) == 0)
1254                   break;
1255               if (q == p)
1256                 {
1257                   rpath_val += ':';
1258                   rpath_val += *p;
1259                 }
1260             }
1261         }
1262
1263       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1264     }
1265 }
1266
1267 // The mapping of .gnu.linkonce section names to real section names.
1268
1269 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1270 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1271 {
1272   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1273   MAPPING_INIT("t", ".text"),
1274   MAPPING_INIT("r", ".rodata"),
1275   MAPPING_INIT("d", ".data"),
1276   MAPPING_INIT("b", ".bss"),
1277   MAPPING_INIT("s", ".sdata"),
1278   MAPPING_INIT("sb", ".sbss"),
1279   MAPPING_INIT("s2", ".sdata2"),
1280   MAPPING_INIT("sb2", ".sbss2"),
1281   MAPPING_INIT("wi", ".debug_info"),
1282   MAPPING_INIT("td", ".tdata"),
1283   MAPPING_INIT("tb", ".tbss"),
1284   MAPPING_INIT("lr", ".lrodata"),
1285   MAPPING_INIT("l", ".ldata"),
1286   MAPPING_INIT("lb", ".lbss"),
1287 };
1288 #undef MAPPING_INIT
1289
1290 const int Layout::linkonce_mapping_count =
1291   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1292
1293 // Return the name of the output section to use for a .gnu.linkonce
1294 // section.  This is based on the default ELF linker script of the old
1295 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1296 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1297 // initialized to the length of NAME.
1298
1299 const char*
1300 Layout::linkonce_output_name(const char* name, size_t *plen)
1301 {
1302   const char* s = name + sizeof(".gnu.linkonce") - 1;
1303   if (*s != '.')
1304     return name;
1305   ++s;
1306   const Linkonce_mapping* plm = linkonce_mapping;
1307   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1308     {
1309       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1310         {
1311           *plen = plm->tolen;
1312           return plm->to;
1313         }
1314     }
1315   return name;
1316 }
1317
1318 // Choose the output section name to use given an input section name.
1319 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1320 // length of NAME.
1321
1322 const char*
1323 Layout::output_section_name(const char* name, size_t* plen)
1324 {
1325   if (Layout::is_linkonce(name))
1326     {
1327       // .gnu.linkonce sections are laid out as though they were named
1328       // for the sections are placed into.
1329       return Layout::linkonce_output_name(name, plen);
1330     }
1331
1332   // If the section name has no '.', or only an initial '.', we use
1333   // the name unchanged (i.e., ".text" is unchanged).
1334
1335   // Otherwise, if the section name does not include ".rel", we drop
1336   // the last '.'  and everything that follows (i.e., ".text.XXX"
1337   // becomes ".text").
1338
1339   // Otherwise, if the section name has zero or one '.' after the
1340   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1341   // unchanged).
1342
1343   // Otherwise, we drop the last '.' and everything that follows
1344   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1345
1346   const char* s = name;
1347   if (*s == '.')
1348     ++s;
1349   const char* sdot = strchr(s, '.');
1350   if (sdot == NULL)
1351     return name;
1352
1353   const char* srel = strstr(s, ".rel");
1354   if (srel == NULL)
1355     {
1356       *plen = sdot - name;
1357       return name;
1358     }
1359
1360   sdot = strchr(srel + 1, '.');
1361   if (sdot == NULL)
1362     return name;
1363   sdot = strchr(sdot + 1, '.');
1364   if (sdot == NULL)
1365     return name;
1366
1367   *plen = sdot - name;
1368   return name;
1369 }
1370
1371 // Record the signature of a comdat section, and return whether to
1372 // include it in the link.  If GROUP is true, this is a regular
1373 // section group.  If GROUP is false, this is a group signature
1374 // derived from the name of a linkonce section.  We want linkonce
1375 // signatures and group signatures to block each other, but we don't
1376 // want a linkonce signature to block another linkonce signature.
1377
1378 bool
1379 Layout::add_comdat(const char* signature, bool group)
1380 {
1381   std::string sig(signature);
1382   std::pair<Signatures::iterator, bool> ins(
1383     this->signatures_.insert(std::make_pair(sig, group)));
1384
1385   if (ins.second)
1386     {
1387       // This is the first time we've seen this signature.
1388       return true;
1389     }
1390
1391   if (ins.first->second)
1392     {
1393       // We've already seen a real section group with this signature.
1394       return false;
1395     }
1396   else if (group)
1397     {
1398       // This is a real section group, and we've already seen a
1399       // linkonce section with tihs signature.  Record that we've seen
1400       // a section group, and don't include this section group.
1401       ins.first->second = true;
1402       return false;
1403     }
1404   else
1405     {
1406       // We've already seen a linkonce section and this is a linkonce
1407       // section.  These don't block each other--this may be the same
1408       // symbol name with different section types.
1409       return true;
1410     }
1411 }
1412
1413 // Write out data not associated with a section or the symbol table.
1414
1415 void
1416 Layout::write_data(const Symbol_table* symtab, const Target* target,
1417                    Output_file* of) const
1418 {
1419   const Output_section* symtab_section = this->symtab_section_;
1420   for (Section_list::const_iterator p = this->section_list_.begin();
1421        p != this->section_list_.end();
1422        ++p)
1423     {
1424       if ((*p)->needs_symtab_index())
1425         {
1426           gold_assert(symtab_section != NULL);
1427           unsigned int index = (*p)->symtab_index();
1428           gold_assert(index > 0 && index != -1U);
1429           off_t off = (symtab_section->offset()
1430                        + index * symtab_section->entsize());
1431           symtab->write_section_symbol(target, *p, of, off);
1432         }
1433     }
1434
1435   const Output_section* dynsym_section = this->dynsym_section_;
1436   for (Section_list::const_iterator p = this->section_list_.begin();
1437        p != this->section_list_.end();
1438        ++p)
1439     {
1440       if ((*p)->needs_dynsym_index())
1441         {
1442           gold_assert(dynsym_section != NULL);
1443           unsigned int index = (*p)->dynsym_index();
1444           gold_assert(index > 0 && index != -1U);
1445           off_t off = (dynsym_section->offset()
1446                        + index * dynsym_section->entsize());
1447           symtab->write_section_symbol(target, *p, of, off);
1448         }
1449     }
1450
1451   // Write out the Output_sections.  Most won't have anything to
1452   // write, since most of the data will come from input sections which
1453   // are handled elsewhere.  But some Output_sections do have
1454   // Output_data.
1455   for (Section_list::const_iterator p = this->section_list_.begin();
1456        p != this->section_list_.end();
1457        ++p)
1458     (*p)->write(of);
1459
1460   // Write out the Output_data which are not in an Output_section.
1461   for (Data_list::const_iterator p = this->special_output_list_.begin();
1462        p != this->special_output_list_.end();
1463        ++p)
1464     (*p)->write(of);
1465 }
1466
1467 // Write_data_task methods.
1468
1469 // We can always run this task.
1470
1471 Task::Is_runnable_type
1472 Write_data_task::is_runnable(Workqueue*)
1473 {
1474   return IS_RUNNABLE;
1475 }
1476
1477 // We need to unlock FINAL_BLOCKER when finished.
1478
1479 Task_locker*
1480 Write_data_task::locks(Workqueue* workqueue)
1481 {
1482   return new Task_locker_block(*this->final_blocker_, workqueue);
1483 }
1484
1485 // Run the task--write out the data.
1486
1487 void
1488 Write_data_task::run(Workqueue*)
1489 {
1490   this->layout_->write_data(this->symtab_, this->target_, this->of_);
1491 }
1492
1493 // Write_symbols_task methods.
1494
1495 // We can always run this task.
1496
1497 Task::Is_runnable_type
1498 Write_symbols_task::is_runnable(Workqueue*)
1499 {
1500   return IS_RUNNABLE;
1501 }
1502
1503 // We need to unlock FINAL_BLOCKER when finished.
1504
1505 Task_locker*
1506 Write_symbols_task::locks(Workqueue* workqueue)
1507 {
1508   return new Task_locker_block(*this->final_blocker_, workqueue);
1509 }
1510
1511 // Run the task--write out the symbols.
1512
1513 void
1514 Write_symbols_task::run(Workqueue*)
1515 {
1516   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1517                                this->of_);
1518 }
1519
1520 // Close_task_runner methods.
1521
1522 // Run the task--close the file.
1523
1524 void
1525 Close_task_runner::run(Workqueue*)
1526 {
1527   this->of_->close();
1528 }
1529
1530 // Instantiate the templates we need.  We could use the configure
1531 // script to restrict this to only the ones for implemented targets.
1532
1533 #ifdef HAVE_TARGET_32_LITTLE
1534 template
1535 Output_section*
1536 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1537                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1538 #endif
1539
1540 #ifdef HAVE_TARGET_32_BIG
1541 template
1542 Output_section*
1543 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1544                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1545 #endif
1546
1547 #ifdef HAVE_TARGET_64_LITTLE
1548 template
1549 Output_section*
1550 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1551                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1552 #endif
1553
1554 #ifdef HAVE_TARGET_64_BIG
1555 template
1556 Output_section*
1557 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1558                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1559 #endif
1560
1561
1562 } // End namespace gold.