[GOLD] PowerPC recreate eh_frame for stubs on each relax pass
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158   *off = 0;
1159
1160   if (!this->include_section(object, name, shdr))
1161     return NULL;
1162
1163   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // Plugins can choose to place one or more subsets of sections in
1182       // unique segments and this is done by mapping these section subsets
1183       // to unique output sections.  Check if this section needs to be
1184       // remapped to a unique output section.
1185       Section_segment_map::iterator it
1186           = this->section_segment_map_.find(Const_section_id(object, shndx));
1187       if (it == this->section_segment_map_.end())
1188         {
1189           os = this->choose_output_section(object, name, sh_type,
1190                                            shdr.get_sh_flags(), true,
1191                                            ORDER_INVALID, false, false,
1192                                            true);
1193         }
1194       else
1195         {
1196           // We know the name of the output section, directly call
1197           // get_output_section here by-passing choose_output_section.
1198           elfcpp::Elf_Xword flags
1199             = this->get_output_section_flags(shdr.get_sh_flags());
1200
1201           const char* os_name = it->second->name;
1202           Stringpool::Key name_key;
1203           os_name = this->namepool_.add(os_name, true, &name_key);
1204           os = this->get_output_section(os_name, name_key, sh_type, flags,
1205                                         ORDER_INVALID, false);
1206           if (!os->is_unique_segment())
1207             {
1208               os->set_is_unique_segment();
1209               os->set_extra_segment_flags(it->second->flags);
1210               os->set_segment_alignment(it->second->align);
1211             }
1212         }
1213       if (os == NULL)
1214         return NULL;
1215     }
1216
1217   // By default the GNU linker sorts input sections whose names match
1218   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1219   // sections are sorted by name.  This is used to implement
1220   // constructor priority ordering.  We are compatible.  When we put
1221   // .ctor sections in .init_array and .dtor sections in .fini_array,
1222   // we must also sort plain .ctor and .dtor sections.
1223   if (!this->script_options_->saw_sections_clause()
1224       && !parameters->options().relocatable()
1225       && (is_prefix_of(".ctors.", name)
1226           || is_prefix_of(".dtors.", name)
1227           || is_prefix_of(".init_array.", name)
1228           || is_prefix_of(".fini_array.", name)
1229           || (parameters->options().ctors_in_init_array()
1230               && (strcmp(name, ".ctors") == 0
1231                   || strcmp(name, ".dtors") == 0))))
1232     os->set_must_sort_attached_input_sections();
1233
1234   // By default the GNU linker sorts some special text sections ahead
1235   // of others.  We are compatible.
1236   if (parameters->options().text_reorder()
1237       && !this->script_options_->saw_sections_clause()
1238       && !this->is_section_ordering_specified()
1239       && !parameters->options().relocatable()
1240       && Layout::special_ordering_of_input_section(name) >= 0)
1241     os->set_must_sort_attached_input_sections();
1242
1243   // If this is a .ctors or .ctors.* section being mapped to a
1244   // .init_array section, or a .dtors or .dtors.* section being mapped
1245   // to a .fini_array section, we will need to reverse the words if
1246   // there is more than one.  Record this section for later.  See
1247   // ctors_sections_in_init_array above.
1248   if (!this->script_options_->saw_sections_clause()
1249       && !parameters->options().relocatable()
1250       && shdr.get_sh_size() > size / 8
1251       && (((strcmp(name, ".ctors") == 0
1252             || is_prefix_of(".ctors.", name))
1253            && strcmp(os->name(), ".init_array") == 0)
1254           || ((strcmp(name, ".dtors") == 0
1255                || is_prefix_of(".dtors.", name))
1256               && strcmp(os->name(), ".fini_array") == 0)))
1257     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1258
1259   // FIXME: Handle SHF_LINK_ORDER somewhere.
1260
1261   elfcpp::Elf_Xword orig_flags = os->flags();
1262
1263   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1264                                this->script_options_->saw_sections_clause());
1265
1266   // If the flags changed, we may have to change the order.
1267   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1268     {
1269       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1270       elfcpp::Elf_Xword new_flags =
1271         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1272       if (orig_flags != new_flags)
1273         os->set_order(this->default_section_order(os, false));
1274     }
1275
1276   this->have_added_input_section_ = true;
1277
1278   return os;
1279 }
1280
1281 // Maps section SECN to SEGMENT s.
1282 void
1283 Layout::insert_section_segment_map(Const_section_id secn,
1284                                    Unique_segment_info *s)
1285 {
1286   gold_assert(this->unique_segment_for_sections_specified_);
1287   this->section_segment_map_[secn] = s;
1288 }
1289
1290 // Handle a relocation section when doing a relocatable link.
1291
1292 template<int size, bool big_endian>
1293 Output_section*
1294 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1295                      unsigned int,
1296                      const elfcpp::Shdr<size, big_endian>& shdr,
1297                      Output_section* data_section,
1298                      Relocatable_relocs* rr)
1299 {
1300   gold_assert(parameters->options().relocatable()
1301               || parameters->options().emit_relocs());
1302
1303   int sh_type = shdr.get_sh_type();
1304
1305   std::string name;
1306   if (sh_type == elfcpp::SHT_REL)
1307     name = ".rel";
1308   else if (sh_type == elfcpp::SHT_RELA)
1309     name = ".rela";
1310   else
1311     gold_unreachable();
1312   name += data_section->name();
1313
1314   // In a relocatable link relocs for a grouped section must not be
1315   // combined with other reloc sections.
1316   Output_section* os;
1317   if (!parameters->options().relocatable()
1318       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1319     os = this->choose_output_section(object, name.c_str(), sh_type,
1320                                      shdr.get_sh_flags(), false,
1321                                      ORDER_INVALID, false, true, false);
1322   else
1323     {
1324       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1325       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1326                                      ORDER_INVALID, false);
1327     }
1328
1329   os->set_should_link_to_symtab();
1330   os->set_info_section(data_section);
1331
1332   Output_section_data* posd;
1333   if (sh_type == elfcpp::SHT_REL)
1334     {
1335       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1336       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1337                                            size,
1338                                            big_endian>(rr);
1339     }
1340   else if (sh_type == elfcpp::SHT_RELA)
1341     {
1342       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1343       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1344                                            size,
1345                                            big_endian>(rr);
1346     }
1347   else
1348     gold_unreachable();
1349
1350   os->add_output_section_data(posd);
1351   rr->set_output_data(posd);
1352
1353   return os;
1354 }
1355
1356 // Handle a group section when doing a relocatable link.
1357
1358 template<int size, bool big_endian>
1359 void
1360 Layout::layout_group(Symbol_table* symtab,
1361                      Sized_relobj_file<size, big_endian>* object,
1362                      unsigned int,
1363                      const char* group_section_name,
1364                      const char* signature,
1365                      const elfcpp::Shdr<size, big_endian>& shdr,
1366                      elfcpp::Elf_Word flags,
1367                      std::vector<unsigned int>* shndxes)
1368 {
1369   gold_assert(parameters->options().relocatable());
1370   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1371   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1372   Output_section* os = this->make_output_section(group_section_name,
1373                                                  elfcpp::SHT_GROUP,
1374                                                  shdr.get_sh_flags(),
1375                                                  ORDER_INVALID, false);
1376
1377   // We need to find a symbol with the signature in the symbol table.
1378   // If we don't find one now, we need to look again later.
1379   Symbol* sym = symtab->lookup(signature, NULL);
1380   if (sym != NULL)
1381     os->set_info_symndx(sym);
1382   else
1383     {
1384       // Reserve some space to minimize reallocations.
1385       if (this->group_signatures_.empty())
1386         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1387
1388       // We will wind up using a symbol whose name is the signature.
1389       // So just put the signature in the symbol name pool to save it.
1390       signature = symtab->canonicalize_name(signature);
1391       this->group_signatures_.push_back(Group_signature(os, signature));
1392     }
1393
1394   os->set_should_link_to_symtab();
1395   os->set_entsize(4);
1396
1397   section_size_type entry_count =
1398     convert_to_section_size_type(shdr.get_sh_size() / 4);
1399   Output_section_data* posd =
1400     new Output_data_group<size, big_endian>(object, entry_count, flags,
1401                                             shndxes);
1402   os->add_output_section_data(posd);
1403 }
1404
1405 // Special GNU handling of sections name .eh_frame.  They will
1406 // normally hold exception frame data as defined by the C++ ABI
1407 // (http://codesourcery.com/cxx-abi/).
1408
1409 template<int size, bool big_endian>
1410 Output_section*
1411 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1412                         const unsigned char* symbols,
1413                         off_t symbols_size,
1414                         const unsigned char* symbol_names,
1415                         off_t symbol_names_size,
1416                         unsigned int shndx,
1417                         const elfcpp::Shdr<size, big_endian>& shdr,
1418                         unsigned int reloc_shndx, unsigned int reloc_type,
1419                         off_t* off)
1420 {
1421   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1422               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1423   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1424
1425   Output_section* os = this->make_eh_frame_section(object);
1426   if (os == NULL)
1427     return NULL;
1428
1429   gold_assert(this->eh_frame_section_ == os);
1430
1431   elfcpp::Elf_Xword orig_flags = os->flags();
1432
1433   Eh_frame::Eh_frame_section_disposition disp =
1434       Eh_frame::EH_UNRECOGNIZED_SECTION;
1435   if (!parameters->incremental())
1436     {
1437       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1438                                                              symbols,
1439                                                              symbols_size,
1440                                                              symbol_names,
1441                                                              symbol_names_size,
1442                                                              shndx,
1443                                                              reloc_shndx,
1444                                                              reloc_type);
1445     }
1446
1447   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1448     {
1449       os->update_flags_for_input_section(shdr.get_sh_flags());
1450
1451       // A writable .eh_frame section is a RELRO section.
1452       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1453           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1454         {
1455           os->set_is_relro();
1456           os->set_order(ORDER_RELRO);
1457         }
1458
1459       *off = -1;
1460       return os;
1461     }
1462
1463   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1464     {
1465       // We found the end marker section, so now we can add the set of
1466       // optimized sections to the output section.  We need to postpone
1467       // adding this until we've found a section we can optimize so that
1468       // the .eh_frame section in crtbeginT.o winds up at the start of
1469       // the output section.
1470       os->add_output_section_data(this->eh_frame_data_);
1471       this->added_eh_frame_data_ = true;
1472      }
1473
1474   // We couldn't handle this .eh_frame section for some reason.
1475   // Add it as a normal section.
1476   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1477   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1478                                reloc_shndx, saw_sections_clause);
1479   this->have_added_input_section_ = true;
1480
1481   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1482       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1483     os->set_order(this->default_section_order(os, false));
1484
1485   return os;
1486 }
1487
1488 void
1489 Layout::finalize_eh_frame_section()
1490 {
1491   // If we never found an end marker section, we need to add the
1492   // optimized eh sections to the output section now.
1493   if (!parameters->incremental()
1494       && this->eh_frame_section_ != NULL
1495       && !this->added_eh_frame_data_)
1496     {
1497       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1498       this->added_eh_frame_data_ = true;
1499     }
1500 }
1501
1502 // Create and return the magic .eh_frame section.  Create
1503 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1504 // input .eh_frame section; it may be NULL.
1505
1506 Output_section*
1507 Layout::make_eh_frame_section(const Relobj* object)
1508 {
1509   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1510   // SHT_PROGBITS.
1511   Output_section* os = this->choose_output_section(object, ".eh_frame",
1512                                                    elfcpp::SHT_PROGBITS,
1513                                                    elfcpp::SHF_ALLOC, false,
1514                                                    ORDER_EHFRAME, false, false,
1515                                                    false);
1516   if (os == NULL)
1517     return NULL;
1518
1519   if (this->eh_frame_section_ == NULL)
1520     {
1521       this->eh_frame_section_ = os;
1522       this->eh_frame_data_ = new Eh_frame();
1523
1524       // For incremental linking, we do not optimize .eh_frame sections
1525       // or create a .eh_frame_hdr section.
1526       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1527         {
1528           Output_section* hdr_os =
1529             this->choose_output_section(NULL, ".eh_frame_hdr",
1530                                         elfcpp::SHT_PROGBITS,
1531                                         elfcpp::SHF_ALLOC, false,
1532                                         ORDER_EHFRAME, false, false,
1533                                         false);
1534
1535           if (hdr_os != NULL)
1536             {
1537               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1538                                                         this->eh_frame_data_);
1539               hdr_os->add_output_section_data(hdr_posd);
1540
1541               hdr_os->set_after_input_sections();
1542
1543               if (!this->script_options_->saw_phdrs_clause())
1544                 {
1545                   Output_segment* hdr_oseg;
1546                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1547                                                        elfcpp::PF_R);
1548                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1549                                                           elfcpp::PF_R);
1550                 }
1551
1552               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1553             }
1554         }
1555     }
1556
1557   return os;
1558 }
1559
1560 // Add an exception frame for a PLT.  This is called from target code.
1561
1562 void
1563 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1564                              size_t cie_length, const unsigned char* fde_data,
1565                              size_t fde_length)
1566 {
1567   if (parameters->incremental())
1568     {
1569       // FIXME: Maybe this could work some day....
1570       return;
1571     }
1572   Output_section* os = this->make_eh_frame_section(NULL);
1573   if (os == NULL)
1574     return;
1575   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1576                                             fde_data, fde_length);
1577   if (!this->added_eh_frame_data_)
1578     {
1579       os->add_output_section_data(this->eh_frame_data_);
1580       this->added_eh_frame_data_ = true;
1581     }
1582 }
1583
1584 // Remove .eh_frame information for a PLT.  FDEs using the CIE must
1585 // be removed in reverse order to the order they were added.
1586
1587 void
1588 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1589                                 size_t cie_length, const unsigned char* fde_data,
1590                                 size_t fde_length)
1591 {
1592   if (parameters->incremental())
1593     {
1594       // FIXME: Maybe this could work some day....
1595       return;
1596     }
1597   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1598                                                fde_data, fde_length);
1599 }
1600
1601 // Scan a .debug_info or .debug_types section, and add summary
1602 // information to the .gdb_index section.
1603
1604 template<int size, bool big_endian>
1605 void
1606 Layout::add_to_gdb_index(bool is_type_unit,
1607                          Sized_relobj<size, big_endian>* object,
1608                          const unsigned char* symbols,
1609                          off_t symbols_size,
1610                          unsigned int shndx,
1611                          unsigned int reloc_shndx,
1612                          unsigned int reloc_type)
1613 {
1614   if (this->gdb_index_data_ == NULL)
1615     {
1616       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1617                                                        elfcpp::SHT_PROGBITS, 0,
1618                                                        false, ORDER_INVALID,
1619                                                        false, false, false);
1620       if (os == NULL)
1621         return;
1622
1623       this->gdb_index_data_ = new Gdb_index(os);
1624       os->add_output_section_data(this->gdb_index_data_);
1625       os->set_after_input_sections();
1626     }
1627
1628   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1629                                          symbols_size, shndx, reloc_shndx,
1630                                          reloc_type);
1631 }
1632
1633 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1634 // the output section.
1635
1636 Output_section*
1637 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1638                                 elfcpp::Elf_Xword flags,
1639                                 Output_section_data* posd,
1640                                 Output_section_order order, bool is_relro)
1641 {
1642   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1643                                                    false, order, is_relro,
1644                                                    false, false);
1645   if (os != NULL)
1646     os->add_output_section_data(posd);
1647   return os;
1648 }
1649
1650 // Map section flags to segment flags.
1651
1652 elfcpp::Elf_Word
1653 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1654 {
1655   elfcpp::Elf_Word ret = elfcpp::PF_R;
1656   if ((flags & elfcpp::SHF_WRITE) != 0)
1657     ret |= elfcpp::PF_W;
1658   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1659     ret |= elfcpp::PF_X;
1660   return ret;
1661 }
1662
1663 // Make a new Output_section, and attach it to segments as
1664 // appropriate.  ORDER is the order in which this section should
1665 // appear in the output segment.  IS_RELRO is true if this is a relro
1666 // (read-only after relocations) section.
1667
1668 Output_section*
1669 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1670                             elfcpp::Elf_Xword flags,
1671                             Output_section_order order, bool is_relro)
1672 {
1673   Output_section* os;
1674   if ((flags & elfcpp::SHF_ALLOC) == 0
1675       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1676       && is_compressible_debug_section(name))
1677     os = new Output_compressed_section(&parameters->options(), name, type,
1678                                        flags);
1679   else if ((flags & elfcpp::SHF_ALLOC) == 0
1680            && parameters->options().strip_debug_non_line()
1681            && strcmp(".debug_abbrev", name) == 0)
1682     {
1683       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1684           name, type, flags);
1685       if (this->debug_info_)
1686         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1687     }
1688   else if ((flags & elfcpp::SHF_ALLOC) == 0
1689            && parameters->options().strip_debug_non_line()
1690            && strcmp(".debug_info", name) == 0)
1691     {
1692       os = this->debug_info_ = new Output_reduced_debug_info_section(
1693           name, type, flags);
1694       if (this->debug_abbrev_)
1695         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1696     }
1697   else
1698     {
1699       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1700       // not have correct section types.  Force them here.
1701       if (type == elfcpp::SHT_PROGBITS)
1702         {
1703           if (is_prefix_of(".init_array", name))
1704             type = elfcpp::SHT_INIT_ARRAY;
1705           else if (is_prefix_of(".preinit_array", name))
1706             type = elfcpp::SHT_PREINIT_ARRAY;
1707           else if (is_prefix_of(".fini_array", name))
1708             type = elfcpp::SHT_FINI_ARRAY;
1709         }
1710
1711       // FIXME: const_cast is ugly.
1712       Target* target = const_cast<Target*>(&parameters->target());
1713       os = target->make_output_section(name, type, flags);
1714     }
1715
1716   // With -z relro, we have to recognize the special sections by name.
1717   // There is no other way.
1718   bool is_relro_local = false;
1719   if (!this->script_options_->saw_sections_clause()
1720       && parameters->options().relro()
1721       && (flags & elfcpp::SHF_ALLOC) != 0
1722       && (flags & elfcpp::SHF_WRITE) != 0)
1723     {
1724       if (type == elfcpp::SHT_PROGBITS)
1725         {
1726           if ((flags & elfcpp::SHF_TLS) != 0)
1727             is_relro = true;
1728           else if (strcmp(name, ".data.rel.ro") == 0)
1729             is_relro = true;
1730           else if (strcmp(name, ".data.rel.ro.local") == 0)
1731             {
1732               is_relro = true;
1733               is_relro_local = true;
1734             }
1735           else if (strcmp(name, ".ctors") == 0
1736                    || strcmp(name, ".dtors") == 0
1737                    || strcmp(name, ".jcr") == 0)
1738             is_relro = true;
1739         }
1740       else if (type == elfcpp::SHT_INIT_ARRAY
1741                || type == elfcpp::SHT_FINI_ARRAY
1742                || type == elfcpp::SHT_PREINIT_ARRAY)
1743         is_relro = true;
1744     }
1745
1746   if (is_relro)
1747     os->set_is_relro();
1748
1749   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1750     order = this->default_section_order(os, is_relro_local);
1751
1752   os->set_order(order);
1753
1754   parameters->target().new_output_section(os);
1755
1756   this->section_list_.push_back(os);
1757
1758   // The GNU linker by default sorts some sections by priority, so we
1759   // do the same.  We need to know that this might happen before we
1760   // attach any input sections.
1761   if (!this->script_options_->saw_sections_clause()
1762       && !parameters->options().relocatable()
1763       && (strcmp(name, ".init_array") == 0
1764           || strcmp(name, ".fini_array") == 0
1765           || (!parameters->options().ctors_in_init_array()
1766               && (strcmp(name, ".ctors") == 0
1767                   || strcmp(name, ".dtors") == 0))))
1768     os->set_may_sort_attached_input_sections();
1769
1770   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1771   // sections before other .text sections.  We are compatible.  We
1772   // need to know that this might happen before we attach any input
1773   // sections.
1774   if (parameters->options().text_reorder()
1775       && !this->script_options_->saw_sections_clause()
1776       && !this->is_section_ordering_specified()
1777       && !parameters->options().relocatable()
1778       && strcmp(name, ".text") == 0)
1779     os->set_may_sort_attached_input_sections();
1780
1781   // GNU linker sorts section by name with --sort-section=name.
1782   if (strcmp(parameters->options().sort_section(), "name") == 0)
1783       os->set_must_sort_attached_input_sections();
1784
1785   // Check for .stab*str sections, as .stab* sections need to link to
1786   // them.
1787   if (type == elfcpp::SHT_STRTAB
1788       && !this->have_stabstr_section_
1789       && strncmp(name, ".stab", 5) == 0
1790       && strcmp(name + strlen(name) - 3, "str") == 0)
1791     this->have_stabstr_section_ = true;
1792
1793   // During a full incremental link, we add patch space to most
1794   // PROGBITS and NOBITS sections.  Flag those that may be
1795   // arbitrarily padded.
1796   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1797       && order != ORDER_INTERP
1798       && order != ORDER_INIT
1799       && order != ORDER_PLT
1800       && order != ORDER_FINI
1801       && order != ORDER_RELRO_LAST
1802       && order != ORDER_NON_RELRO_FIRST
1803       && strcmp(name, ".eh_frame") != 0
1804       && strcmp(name, ".ctors") != 0
1805       && strcmp(name, ".dtors") != 0
1806       && strcmp(name, ".jcr") != 0)
1807     {
1808       os->set_is_patch_space_allowed();
1809
1810       // Certain sections require "holes" to be filled with
1811       // specific fill patterns.  These fill patterns may have
1812       // a minimum size, so we must prevent allocations from the
1813       // free list that leave a hole smaller than the minimum.
1814       if (strcmp(name, ".debug_info") == 0)
1815         os->set_free_space_fill(new Output_fill_debug_info(false));
1816       else if (strcmp(name, ".debug_types") == 0)
1817         os->set_free_space_fill(new Output_fill_debug_info(true));
1818       else if (strcmp(name, ".debug_line") == 0)
1819         os->set_free_space_fill(new Output_fill_debug_line());
1820     }
1821
1822   // If we have already attached the sections to segments, then we
1823   // need to attach this one now.  This happens for sections created
1824   // directly by the linker.
1825   if (this->sections_are_attached_)
1826     this->attach_section_to_segment(&parameters->target(), os);
1827
1828   return os;
1829 }
1830
1831 // Return the default order in which a section should be placed in an
1832 // output segment.  This function captures a lot of the ideas in
1833 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1834 // linker created section is normally set when the section is created;
1835 // this function is used for input sections.
1836
1837 Output_section_order
1838 Layout::default_section_order(Output_section* os, bool is_relro_local)
1839 {
1840   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1841   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1842   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1843   bool is_bss = false;
1844
1845   switch (os->type())
1846     {
1847     default:
1848     case elfcpp::SHT_PROGBITS:
1849       break;
1850     case elfcpp::SHT_NOBITS:
1851       is_bss = true;
1852       break;
1853     case elfcpp::SHT_RELA:
1854     case elfcpp::SHT_REL:
1855       if (!is_write)
1856         return ORDER_DYNAMIC_RELOCS;
1857       break;
1858     case elfcpp::SHT_HASH:
1859     case elfcpp::SHT_DYNAMIC:
1860     case elfcpp::SHT_SHLIB:
1861     case elfcpp::SHT_DYNSYM:
1862     case elfcpp::SHT_GNU_HASH:
1863     case elfcpp::SHT_GNU_verdef:
1864     case elfcpp::SHT_GNU_verneed:
1865     case elfcpp::SHT_GNU_versym:
1866       if (!is_write)
1867         return ORDER_DYNAMIC_LINKER;
1868       break;
1869     case elfcpp::SHT_NOTE:
1870       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1871     }
1872
1873   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1874     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1875
1876   if (!is_bss && !is_write)
1877     {
1878       if (is_execinstr)
1879         {
1880           if (strcmp(os->name(), ".init") == 0)
1881             return ORDER_INIT;
1882           else if (strcmp(os->name(), ".fini") == 0)
1883             return ORDER_FINI;
1884         }
1885       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1886     }
1887
1888   if (os->is_relro())
1889     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1890
1891   if (os->is_small_section())
1892     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1893   if (os->is_large_section())
1894     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1895
1896   return is_bss ? ORDER_BSS : ORDER_DATA;
1897 }
1898
1899 // Attach output sections to segments.  This is called after we have
1900 // seen all the input sections.
1901
1902 void
1903 Layout::attach_sections_to_segments(const Target* target)
1904 {
1905   for (Section_list::iterator p = this->section_list_.begin();
1906        p != this->section_list_.end();
1907        ++p)
1908     this->attach_section_to_segment(target, *p);
1909
1910   this->sections_are_attached_ = true;
1911 }
1912
1913 // Attach an output section to a segment.
1914
1915 void
1916 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1917 {
1918   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1919     this->unattached_section_list_.push_back(os);
1920   else
1921     this->attach_allocated_section_to_segment(target, os);
1922 }
1923
1924 // Attach an allocated output section to a segment.
1925
1926 void
1927 Layout::attach_allocated_section_to_segment(const Target* target,
1928                                             Output_section* os)
1929 {
1930   elfcpp::Elf_Xword flags = os->flags();
1931   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1932
1933   if (parameters->options().relocatable())
1934     return;
1935
1936   // If we have a SECTIONS clause, we can't handle the attachment to
1937   // segments until after we've seen all the sections.
1938   if (this->script_options_->saw_sections_clause())
1939     return;
1940
1941   gold_assert(!this->script_options_->saw_phdrs_clause());
1942
1943   // This output section goes into a PT_LOAD segment.
1944
1945   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1946
1947   // If this output section's segment has extra flags that need to be set,
1948   // coming from a linker plugin, do that.
1949   seg_flags |= os->extra_segment_flags();
1950
1951   // Check for --section-start.
1952   uint64_t addr;
1953   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1954
1955   // In general the only thing we really care about for PT_LOAD
1956   // segments is whether or not they are writable or executable,
1957   // so that is how we search for them.
1958   // Large data sections also go into their own PT_LOAD segment.
1959   // People who need segments sorted on some other basis will
1960   // have to use a linker script.
1961
1962   Segment_list::const_iterator p;
1963   if (!os->is_unique_segment())
1964     {
1965       for (p = this->segment_list_.begin();
1966            p != this->segment_list_.end();
1967            ++p)
1968         {
1969           if ((*p)->type() != elfcpp::PT_LOAD)
1970             continue;
1971           if ((*p)->is_unique_segment())
1972             continue;
1973           if (!parameters->options().omagic()
1974               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1975             continue;
1976           if ((target->isolate_execinstr() || parameters->options().rosegment())
1977               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1978             continue;
1979           // If -Tbss was specified, we need to separate the data and BSS
1980           // segments.
1981           if (parameters->options().user_set_Tbss())
1982             {
1983               if ((os->type() == elfcpp::SHT_NOBITS)
1984                   == (*p)->has_any_data_sections())
1985                 continue;
1986             }
1987           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1988             continue;
1989
1990           if (is_address_set)
1991             {
1992               if ((*p)->are_addresses_set())
1993                 continue;
1994
1995               (*p)->add_initial_output_data(os);
1996               (*p)->update_flags_for_output_section(seg_flags);
1997               (*p)->set_addresses(addr, addr);
1998               break;
1999             }
2000
2001           (*p)->add_output_section_to_load(this, os, seg_flags);
2002           break;
2003         }
2004     }
2005
2006   if (p == this->segment_list_.end()
2007       || os->is_unique_segment())
2008     {
2009       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2010                                                        seg_flags);
2011       if (os->is_large_data_section())
2012         oseg->set_is_large_data_segment();
2013       oseg->add_output_section_to_load(this, os, seg_flags);
2014       if (is_address_set)
2015         oseg->set_addresses(addr, addr);
2016       // Check if segment should be marked unique.  For segments marked
2017       // unique by linker plugins, set the new alignment if specified.
2018       if (os->is_unique_segment())
2019         {
2020           oseg->set_is_unique_segment();
2021           if (os->segment_alignment() != 0)
2022             oseg->set_minimum_p_align(os->segment_alignment());
2023         }
2024     }
2025
2026   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2027   // segment.
2028   if (os->type() == elfcpp::SHT_NOTE)
2029     {
2030       // See if we already have an equivalent PT_NOTE segment.
2031       for (p = this->segment_list_.begin();
2032            p != segment_list_.end();
2033            ++p)
2034         {
2035           if ((*p)->type() == elfcpp::PT_NOTE
2036               && (((*p)->flags() & elfcpp::PF_W)
2037                   == (seg_flags & elfcpp::PF_W)))
2038             {
2039               (*p)->add_output_section_to_nonload(os, seg_flags);
2040               break;
2041             }
2042         }
2043
2044       if (p == this->segment_list_.end())
2045         {
2046           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2047                                                            seg_flags);
2048           oseg->add_output_section_to_nonload(os, seg_flags);
2049         }
2050     }
2051
2052   // If we see a loadable SHF_TLS section, we create a PT_TLS
2053   // segment.  There can only be one such segment.
2054   if ((flags & elfcpp::SHF_TLS) != 0)
2055     {
2056       if (this->tls_segment_ == NULL)
2057         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2058       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2059     }
2060
2061   // If -z relro is in effect, and we see a relro section, we create a
2062   // PT_GNU_RELRO segment.  There can only be one such segment.
2063   if (os->is_relro() && parameters->options().relro())
2064     {
2065       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2066       if (this->relro_segment_ == NULL)
2067         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2068       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2069     }
2070
2071   // If we see a section named .interp, put it into a PT_INTERP
2072   // segment.  This seems broken to me, but this is what GNU ld does,
2073   // and glibc expects it.
2074   if (strcmp(os->name(), ".interp") == 0
2075       && !this->script_options_->saw_phdrs_clause())
2076     {
2077       if (this->interp_segment_ == NULL)
2078         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2079       else
2080         gold_warning(_("multiple '.interp' sections in input files "
2081                        "may cause confusing PT_INTERP segment"));
2082       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2083     }
2084 }
2085
2086 // Make an output section for a script.
2087
2088 Output_section*
2089 Layout::make_output_section_for_script(
2090     const char* name,
2091     Script_sections::Section_type section_type)
2092 {
2093   name = this->namepool_.add(name, false, NULL);
2094   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2095   if (section_type == Script_sections::ST_NOLOAD)
2096     sh_flags = 0;
2097   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2098                                                  sh_flags, ORDER_INVALID,
2099                                                  false);
2100   os->set_found_in_sections_clause();
2101   if (section_type == Script_sections::ST_NOLOAD)
2102     os->set_is_noload();
2103   return os;
2104 }
2105
2106 // Return the number of segments we expect to see.
2107
2108 size_t
2109 Layout::expected_segment_count() const
2110 {
2111   size_t ret = this->segment_list_.size();
2112
2113   // If we didn't see a SECTIONS clause in a linker script, we should
2114   // already have the complete list of segments.  Otherwise we ask the
2115   // SECTIONS clause how many segments it expects, and add in the ones
2116   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2117
2118   if (!this->script_options_->saw_sections_clause())
2119     return ret;
2120   else
2121     {
2122       const Script_sections* ss = this->script_options_->script_sections();
2123       return ret + ss->expected_segment_count(this);
2124     }
2125 }
2126
2127 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2128 // is whether we saw a .note.GNU-stack section in the object file.
2129 // GNU_STACK_FLAGS is the section flags.  The flags give the
2130 // protection required for stack memory.  We record this in an
2131 // executable as a PT_GNU_STACK segment.  If an object file does not
2132 // have a .note.GNU-stack segment, we must assume that it is an old
2133 // object.  On some targets that will force an executable stack.
2134
2135 void
2136 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2137                          const Object* obj)
2138 {
2139   if (!seen_gnu_stack)
2140     {
2141       this->input_without_gnu_stack_note_ = true;
2142       if (parameters->options().warn_execstack()
2143           && parameters->target().is_default_stack_executable())
2144         gold_warning(_("%s: missing .note.GNU-stack section"
2145                        " implies executable stack"),
2146                      obj->name().c_str());
2147     }
2148   else
2149     {
2150       this->input_with_gnu_stack_note_ = true;
2151       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2152         {
2153           this->input_requires_executable_stack_ = true;
2154           if (parameters->options().warn_execstack())
2155             gold_warning(_("%s: requires executable stack"),
2156                          obj->name().c_str());
2157         }
2158     }
2159 }
2160
2161 // Create automatic note sections.
2162
2163 void
2164 Layout::create_notes()
2165 {
2166   this->create_gold_note();
2167   this->create_stack_segment();
2168   this->create_build_id();
2169 }
2170
2171 // Create the dynamic sections which are needed before we read the
2172 // relocs.
2173
2174 void
2175 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2176 {
2177   if (parameters->doing_static_link())
2178     return;
2179
2180   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2181                                                        elfcpp::SHT_DYNAMIC,
2182                                                        (elfcpp::SHF_ALLOC
2183                                                         | elfcpp::SHF_WRITE),
2184                                                        false, ORDER_RELRO,
2185                                                        true, false, false);
2186
2187   // A linker script may discard .dynamic, so check for NULL.
2188   if (this->dynamic_section_ != NULL)
2189     {
2190       this->dynamic_symbol_ =
2191         symtab->define_in_output_data("_DYNAMIC", NULL,
2192                                       Symbol_table::PREDEFINED,
2193                                       this->dynamic_section_, 0, 0,
2194                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2195                                       elfcpp::STV_HIDDEN, 0, false, false);
2196
2197       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2198
2199       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2200     }
2201 }
2202
2203 // For each output section whose name can be represented as C symbol,
2204 // define __start and __stop symbols for the section.  This is a GNU
2205 // extension.
2206
2207 void
2208 Layout::define_section_symbols(Symbol_table* symtab)
2209 {
2210   for (Section_list::const_iterator p = this->section_list_.begin();
2211        p != this->section_list_.end();
2212        ++p)
2213     {
2214       const char* const name = (*p)->name();
2215       if (is_cident(name))
2216         {
2217           const std::string name_string(name);
2218           const std::string start_name(cident_section_start_prefix
2219                                        + name_string);
2220           const std::string stop_name(cident_section_stop_prefix
2221                                       + name_string);
2222
2223           symtab->define_in_output_data(start_name.c_str(),
2224                                         NULL, // version
2225                                         Symbol_table::PREDEFINED,
2226                                         *p,
2227                                         0, // value
2228                                         0, // symsize
2229                                         elfcpp::STT_NOTYPE,
2230                                         elfcpp::STB_GLOBAL,
2231                                         elfcpp::STV_DEFAULT,
2232                                         0, // nonvis
2233                                         false, // offset_is_from_end
2234                                         true); // only_if_ref
2235
2236           symtab->define_in_output_data(stop_name.c_str(),
2237                                         NULL, // version
2238                                         Symbol_table::PREDEFINED,
2239                                         *p,
2240                                         0, // value
2241                                         0, // symsize
2242                                         elfcpp::STT_NOTYPE,
2243                                         elfcpp::STB_GLOBAL,
2244                                         elfcpp::STV_DEFAULT,
2245                                         0, // nonvis
2246                                         true, // offset_is_from_end
2247                                         true); // only_if_ref
2248         }
2249     }
2250 }
2251
2252 // Define symbols for group signatures.
2253
2254 void
2255 Layout::define_group_signatures(Symbol_table* symtab)
2256 {
2257   for (Group_signatures::iterator p = this->group_signatures_.begin();
2258        p != this->group_signatures_.end();
2259        ++p)
2260     {
2261       Symbol* sym = symtab->lookup(p->signature, NULL);
2262       if (sym != NULL)
2263         p->section->set_info_symndx(sym);
2264       else
2265         {
2266           // Force the name of the group section to the group
2267           // signature, and use the group's section symbol as the
2268           // signature symbol.
2269           if (strcmp(p->section->name(), p->signature) != 0)
2270             {
2271               const char* name = this->namepool_.add(p->signature,
2272                                                      true, NULL);
2273               p->section->set_name(name);
2274             }
2275           p->section->set_needs_symtab_index();
2276           p->section->set_info_section_symndx(p->section);
2277         }
2278     }
2279
2280   this->group_signatures_.clear();
2281 }
2282
2283 // Find the first read-only PT_LOAD segment, creating one if
2284 // necessary.
2285
2286 Output_segment*
2287 Layout::find_first_load_seg(const Target* target)
2288 {
2289   Output_segment* best = NULL;
2290   for (Segment_list::const_iterator p = this->segment_list_.begin();
2291        p != this->segment_list_.end();
2292        ++p)
2293     {
2294       if ((*p)->type() == elfcpp::PT_LOAD
2295           && ((*p)->flags() & elfcpp::PF_R) != 0
2296           && (parameters->options().omagic()
2297               || ((*p)->flags() & elfcpp::PF_W) == 0)
2298           && (!target->isolate_execinstr()
2299               || ((*p)->flags() & elfcpp::PF_X) == 0))
2300         {
2301           if (best == NULL || this->segment_precedes(*p, best))
2302             best = *p;
2303         }
2304     }
2305   if (best != NULL)
2306     return best;
2307
2308   gold_assert(!this->script_options_->saw_phdrs_clause());
2309
2310   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2311                                                        elfcpp::PF_R);
2312   return load_seg;
2313 }
2314
2315 // Save states of all current output segments.  Store saved states
2316 // in SEGMENT_STATES.
2317
2318 void
2319 Layout::save_segments(Segment_states* segment_states)
2320 {
2321   for (Segment_list::const_iterator p = this->segment_list_.begin();
2322        p != this->segment_list_.end();
2323        ++p)
2324     {
2325       Output_segment* segment = *p;
2326       // Shallow copy.
2327       Output_segment* copy = new Output_segment(*segment);
2328       (*segment_states)[segment] = copy;
2329     }
2330 }
2331
2332 // Restore states of output segments and delete any segment not found in
2333 // SEGMENT_STATES.
2334
2335 void
2336 Layout::restore_segments(const Segment_states* segment_states)
2337 {
2338   // Go through the segment list and remove any segment added in the
2339   // relaxation loop.
2340   this->tls_segment_ = NULL;
2341   this->relro_segment_ = NULL;
2342   Segment_list::iterator list_iter = this->segment_list_.begin();
2343   while (list_iter != this->segment_list_.end())
2344     {
2345       Output_segment* segment = *list_iter;
2346       Segment_states::const_iterator states_iter =
2347           segment_states->find(segment);
2348       if (states_iter != segment_states->end())
2349         {
2350           const Output_segment* copy = states_iter->second;
2351           // Shallow copy to restore states.
2352           *segment = *copy;
2353
2354           // Also fix up TLS and RELRO segment pointers as appropriate.
2355           if (segment->type() == elfcpp::PT_TLS)
2356             this->tls_segment_ = segment;
2357           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2358             this->relro_segment_ = segment;
2359
2360           ++list_iter;
2361         }
2362       else
2363         {
2364           list_iter = this->segment_list_.erase(list_iter);
2365           // This is a segment created during section layout.  It should be
2366           // safe to remove it since we should have removed all pointers to it.
2367           delete segment;
2368         }
2369     }
2370 }
2371
2372 // Clean up after relaxation so that sections can be laid out again.
2373
2374 void
2375 Layout::clean_up_after_relaxation()
2376 {
2377   // Restore the segments to point state just prior to the relaxation loop.
2378   Script_sections* script_section = this->script_options_->script_sections();
2379   script_section->release_segments();
2380   this->restore_segments(this->segment_states_);
2381
2382   // Reset section addresses and file offsets
2383   for (Section_list::iterator p = this->section_list_.begin();
2384        p != this->section_list_.end();
2385        ++p)
2386     {
2387       (*p)->restore_states();
2388
2389       // If an input section changes size because of relaxation,
2390       // we need to adjust the section offsets of all input sections.
2391       // after such a section.
2392       if ((*p)->section_offsets_need_adjustment())
2393         (*p)->adjust_section_offsets();
2394
2395       (*p)->reset_address_and_file_offset();
2396     }
2397
2398   // Reset special output object address and file offsets.
2399   for (Data_list::iterator p = this->special_output_list_.begin();
2400        p != this->special_output_list_.end();
2401        ++p)
2402     (*p)->reset_address_and_file_offset();
2403
2404   // A linker script may have created some output section data objects.
2405   // They are useless now.
2406   for (Output_section_data_list::const_iterator p =
2407          this->script_output_section_data_list_.begin();
2408        p != this->script_output_section_data_list_.end();
2409        ++p)
2410     delete *p;
2411   this->script_output_section_data_list_.clear();
2412
2413   // Special-case fill output objects are recreated each time through
2414   // the relaxation loop.
2415   this->reset_relax_output();
2416 }
2417
2418 void
2419 Layout::reset_relax_output()
2420 {
2421   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2422        p != this->relax_output_list_.end();
2423        ++p)
2424     delete *p;
2425   this->relax_output_list_.clear();
2426 }
2427
2428 // Prepare for relaxation.
2429
2430 void
2431 Layout::prepare_for_relaxation()
2432 {
2433   // Create an relaxation debug check if in debugging mode.
2434   if (is_debugging_enabled(DEBUG_RELAXATION))
2435     this->relaxation_debug_check_ = new Relaxation_debug_check();
2436
2437   // Save segment states.
2438   this->segment_states_ = new Segment_states();
2439   this->save_segments(this->segment_states_);
2440
2441   for(Section_list::const_iterator p = this->section_list_.begin();
2442       p != this->section_list_.end();
2443       ++p)
2444     (*p)->save_states();
2445
2446   if (is_debugging_enabled(DEBUG_RELAXATION))
2447     this->relaxation_debug_check_->check_output_data_for_reset_values(
2448         this->section_list_, this->special_output_list_,
2449         this->relax_output_list_);
2450
2451   // Also enable recording of output section data from scripts.
2452   this->record_output_section_data_from_script_ = true;
2453 }
2454
2455 // If the user set the address of the text segment, that may not be
2456 // compatible with putting the segment headers and file headers into
2457 // that segment.  For isolate_execinstr() targets, it's the rodata
2458 // segment rather than text where we might put the headers.
2459 static inline bool
2460 load_seg_unusable_for_headers(const Target* target)
2461 {
2462   const General_options& options = parameters->options();
2463   if (target->isolate_execinstr())
2464     return (options.user_set_Trodata_segment()
2465             && options.Trodata_segment() % target->abi_pagesize() != 0);
2466   else
2467     return (options.user_set_Ttext()
2468             && options.Ttext() % target->abi_pagesize() != 0);
2469 }
2470
2471 // Relaxation loop body:  If target has no relaxation, this runs only once
2472 // Otherwise, the target relaxation hook is called at the end of
2473 // each iteration.  If the hook returns true, it means re-layout of
2474 // section is required.
2475 //
2476 // The number of segments created by a linking script without a PHDRS
2477 // clause may be affected by section sizes and alignments.  There is
2478 // a remote chance that relaxation causes different number of PT_LOAD
2479 // segments are created and sections are attached to different segments.
2480 // Therefore, we always throw away all segments created during section
2481 // layout.  In order to be able to restart the section layout, we keep
2482 // a copy of the segment list right before the relaxation loop and use
2483 // that to restore the segments.
2484 //
2485 // PASS is the current relaxation pass number.
2486 // SYMTAB is a symbol table.
2487 // PLOAD_SEG is the address of a pointer for the load segment.
2488 // PHDR_SEG is a pointer to the PHDR segment.
2489 // SEGMENT_HEADERS points to the output segment header.
2490 // FILE_HEADER points to the output file header.
2491 // PSHNDX is the address to store the output section index.
2492
2493 off_t inline
2494 Layout::relaxation_loop_body(
2495     int pass,
2496     Target* target,
2497     Symbol_table* symtab,
2498     Output_segment** pload_seg,
2499     Output_segment* phdr_seg,
2500     Output_segment_headers* segment_headers,
2501     Output_file_header* file_header,
2502     unsigned int* pshndx)
2503 {
2504   // If this is not the first iteration, we need to clean up after
2505   // relaxation so that we can lay out the sections again.
2506   if (pass != 0)
2507     this->clean_up_after_relaxation();
2508
2509   // If there is a SECTIONS clause, put all the input sections into
2510   // the required order.
2511   Output_segment* load_seg;
2512   if (this->script_options_->saw_sections_clause())
2513     load_seg = this->set_section_addresses_from_script(symtab);
2514   else if (parameters->options().relocatable())
2515     load_seg = NULL;
2516   else
2517     load_seg = this->find_first_load_seg(target);
2518
2519   if (parameters->options().oformat_enum()
2520       != General_options::OBJECT_FORMAT_ELF)
2521     load_seg = NULL;
2522
2523   if (load_seg_unusable_for_headers(target))
2524     {
2525       load_seg = NULL;
2526       phdr_seg = NULL;
2527     }
2528
2529   gold_assert(phdr_seg == NULL
2530               || load_seg != NULL
2531               || this->script_options_->saw_sections_clause());
2532
2533   // If the address of the load segment we found has been set by
2534   // --section-start rather than by a script, then adjust the VMA and
2535   // LMA downward if possible to include the file and section headers.
2536   uint64_t header_gap = 0;
2537   if (load_seg != NULL
2538       && load_seg->are_addresses_set()
2539       && !this->script_options_->saw_sections_clause()
2540       && !parameters->options().relocatable())
2541     {
2542       file_header->finalize_data_size();
2543       segment_headers->finalize_data_size();
2544       size_t sizeof_headers = (file_header->data_size()
2545                                + segment_headers->data_size());
2546       const uint64_t abi_pagesize = target->abi_pagesize();
2547       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2548       hdr_paddr &= ~(abi_pagesize - 1);
2549       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2550       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2551         load_seg = NULL;
2552       else
2553         {
2554           load_seg->set_addresses(load_seg->vaddr() - subtract,
2555                                   load_seg->paddr() - subtract);
2556           header_gap = subtract - sizeof_headers;
2557         }
2558     }
2559
2560   // Lay out the segment headers.
2561   if (!parameters->options().relocatable())
2562     {
2563       gold_assert(segment_headers != NULL);
2564       if (header_gap != 0 && load_seg != NULL)
2565         {
2566           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2567           load_seg->add_initial_output_data(z);
2568         }
2569       if (load_seg != NULL)
2570         load_seg->add_initial_output_data(segment_headers);
2571       if (phdr_seg != NULL)
2572         phdr_seg->add_initial_output_data(segment_headers);
2573     }
2574
2575   // Lay out the file header.
2576   if (load_seg != NULL)
2577     load_seg->add_initial_output_data(file_header);
2578
2579   if (this->script_options_->saw_phdrs_clause()
2580       && !parameters->options().relocatable())
2581     {
2582       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2583       // clause in a linker script.
2584       Script_sections* ss = this->script_options_->script_sections();
2585       ss->put_headers_in_phdrs(file_header, segment_headers);
2586     }
2587
2588   // We set the output section indexes in set_segment_offsets and
2589   // set_section_indexes.
2590   *pshndx = 1;
2591
2592   // Set the file offsets of all the segments, and all the sections
2593   // they contain.
2594   off_t off;
2595   if (!parameters->options().relocatable())
2596     off = this->set_segment_offsets(target, load_seg, pshndx);
2597   else
2598     off = this->set_relocatable_section_offsets(file_header, pshndx);
2599
2600    // Verify that the dummy relaxation does not change anything.
2601   if (is_debugging_enabled(DEBUG_RELAXATION))
2602     {
2603       if (pass == 0)
2604         this->relaxation_debug_check_->read_sections(this->section_list_);
2605       else
2606         this->relaxation_debug_check_->verify_sections(this->section_list_);
2607     }
2608
2609   *pload_seg = load_seg;
2610   return off;
2611 }
2612
2613 // Search the list of patterns and find the position of the given section
2614 // name in the output section.  If the section name matches a glob
2615 // pattern and a non-glob name, then the non-glob position takes
2616 // precedence.  Return 0 if no match is found.
2617
2618 unsigned int
2619 Layout::find_section_order_index(const std::string& section_name)
2620 {
2621   Unordered_map<std::string, unsigned int>::iterator map_it;
2622   map_it = this->input_section_position_.find(section_name);
2623   if (map_it != this->input_section_position_.end())
2624     return map_it->second;
2625
2626   // Absolute match failed.  Linear search the glob patterns.
2627   std::vector<std::string>::iterator it;
2628   for (it = this->input_section_glob_.begin();
2629        it != this->input_section_glob_.end();
2630        ++it)
2631     {
2632        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2633          {
2634            map_it = this->input_section_position_.find(*it);
2635            gold_assert(map_it != this->input_section_position_.end());
2636            return map_it->second;
2637          }
2638     }
2639   return 0;
2640 }
2641
2642 // Read the sequence of input sections from the file specified with
2643 // option --section-ordering-file.
2644
2645 void
2646 Layout::read_layout_from_file()
2647 {
2648   const char* filename = parameters->options().section_ordering_file();
2649   std::ifstream in;
2650   std::string line;
2651
2652   in.open(filename);
2653   if (!in)
2654     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2655                filename, strerror(errno));
2656
2657   std::getline(in, line);   // this chops off the trailing \n, if any
2658   unsigned int position = 1;
2659   this->set_section_ordering_specified();
2660
2661   while (in)
2662     {
2663       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2664         line.resize(line.length() - 1);
2665       // Ignore comments, beginning with '#'
2666       if (line[0] == '#')
2667         {
2668           std::getline(in, line);
2669           continue;
2670         }
2671       this->input_section_position_[line] = position;
2672       // Store all glob patterns in a vector.
2673       if (is_wildcard_string(line.c_str()))
2674         this->input_section_glob_.push_back(line);
2675       position++;
2676       std::getline(in, line);
2677     }
2678 }
2679
2680 // Finalize the layout.  When this is called, we have created all the
2681 // output sections and all the output segments which are based on
2682 // input sections.  We have several things to do, and we have to do
2683 // them in the right order, so that we get the right results correctly
2684 // and efficiently.
2685
2686 // 1) Finalize the list of output segments and create the segment
2687 // table header.
2688
2689 // 2) Finalize the dynamic symbol table and associated sections.
2690
2691 // 3) Determine the final file offset of all the output segments.
2692
2693 // 4) Determine the final file offset of all the SHF_ALLOC output
2694 // sections.
2695
2696 // 5) Create the symbol table sections and the section name table
2697 // section.
2698
2699 // 6) Finalize the symbol table: set symbol values to their final
2700 // value and make a final determination of which symbols are going
2701 // into the output symbol table.
2702
2703 // 7) Create the section table header.
2704
2705 // 8) Determine the final file offset of all the output sections which
2706 // are not SHF_ALLOC, including the section table header.
2707
2708 // 9) Finalize the ELF file header.
2709
2710 // This function returns the size of the output file.
2711
2712 off_t
2713 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2714                  Target* target, const Task* task)
2715 {
2716   unsigned int local_dynamic_count = 0;
2717   unsigned int forced_local_dynamic_count = 0;
2718
2719   target->finalize_sections(this, input_objects, symtab);
2720
2721   this->count_local_symbols(task, input_objects);
2722
2723   this->link_stabs_sections();
2724
2725   Output_segment* phdr_seg = NULL;
2726   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2727     {
2728       // There was a dynamic object in the link.  We need to create
2729       // some information for the dynamic linker.
2730
2731       // Create the PT_PHDR segment which will hold the program
2732       // headers.
2733       if (!this->script_options_->saw_phdrs_clause())
2734         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2735
2736       // Create the dynamic symbol table, including the hash table.
2737       Output_section* dynstr;
2738       std::vector<Symbol*> dynamic_symbols;
2739       Versions versions(*this->script_options()->version_script_info(),
2740                         &this->dynpool_);
2741       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2742                                   &local_dynamic_count,
2743                                   &forced_local_dynamic_count,
2744                                   &dynamic_symbols,
2745                                   &versions);
2746
2747       // Create the .interp section to hold the name of the
2748       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2749       // if we saw a .interp section in an input file.
2750       if ((!parameters->options().shared()
2751            || parameters->options().dynamic_linker() != NULL)
2752           && this->interp_segment_ == NULL)
2753         this->create_interp(target);
2754
2755       // Finish the .dynamic section to hold the dynamic data, and put
2756       // it in a PT_DYNAMIC segment.
2757       this->finish_dynamic_section(input_objects, symtab);
2758
2759       // We should have added everything we need to the dynamic string
2760       // table.
2761       this->dynpool_.set_string_offsets();
2762
2763       // Create the version sections.  We can't do this until the
2764       // dynamic string table is complete.
2765       this->create_version_sections(&versions, symtab,
2766                                     (local_dynamic_count
2767                                      + forced_local_dynamic_count),
2768                                     dynamic_symbols, dynstr);
2769
2770       // Set the size of the _DYNAMIC symbol.  We can't do this until
2771       // after we call create_version_sections.
2772       this->set_dynamic_symbol_size(symtab);
2773     }
2774
2775   // Create segment headers.
2776   Output_segment_headers* segment_headers =
2777     (parameters->options().relocatable()
2778      ? NULL
2779      : new Output_segment_headers(this->segment_list_));
2780
2781   // Lay out the file header.
2782   Output_file_header* file_header = new Output_file_header(target, symtab,
2783                                                            segment_headers);
2784
2785   this->special_output_list_.push_back(file_header);
2786   if (segment_headers != NULL)
2787     this->special_output_list_.push_back(segment_headers);
2788
2789   // Find approriate places for orphan output sections if we are using
2790   // a linker script.
2791   if (this->script_options_->saw_sections_clause())
2792     this->place_orphan_sections_in_script();
2793
2794   Output_segment* load_seg;
2795   off_t off;
2796   unsigned int shndx;
2797   int pass = 0;
2798
2799   // Take a snapshot of the section layout as needed.
2800   if (target->may_relax())
2801     this->prepare_for_relaxation();
2802
2803   // Run the relaxation loop to lay out sections.
2804   do
2805     {
2806       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2807                                        phdr_seg, segment_headers, file_header,
2808                                        &shndx);
2809       pass++;
2810     }
2811   while (target->may_relax()
2812          && target->relax(pass, input_objects, symtab, this, task));
2813
2814   // If there is a load segment that contains the file and program headers,
2815   // provide a symbol __ehdr_start pointing there.
2816   // A program can use this to examine itself robustly.
2817   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2818   if (ehdr_start != NULL && ehdr_start->is_predefined())
2819     {
2820       if (load_seg != NULL)
2821         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2822       else
2823         ehdr_start->set_undefined();
2824     }
2825
2826   // Set the file offsets of all the non-data sections we've seen so
2827   // far which don't have to wait for the input sections.  We need
2828   // this in order to finalize local symbols in non-allocated
2829   // sections.
2830   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2831
2832   // Set the section indexes of all unallocated sections seen so far,
2833   // in case any of them are somehow referenced by a symbol.
2834   shndx = this->set_section_indexes(shndx);
2835
2836   // Create the symbol table sections.
2837   this->create_symtab_sections(input_objects, symtab, shndx, &off,
2838                                local_dynamic_count);
2839   if (!parameters->doing_static_link())
2840     this->assign_local_dynsym_offsets(input_objects);
2841
2842   // Process any symbol assignments from a linker script.  This must
2843   // be called after the symbol table has been finalized.
2844   this->script_options_->finalize_symbols(symtab, this);
2845
2846   // Create the incremental inputs sections.
2847   if (this->incremental_inputs_)
2848     {
2849       this->incremental_inputs_->finalize();
2850       this->create_incremental_info_sections(symtab);
2851     }
2852
2853   // Create the .shstrtab section.
2854   Output_section* shstrtab_section = this->create_shstrtab();
2855
2856   // Set the file offsets of the rest of the non-data sections which
2857   // don't have to wait for the input sections.
2858   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2859
2860   // Now that all sections have been created, set the section indexes
2861   // for any sections which haven't been done yet.
2862   shndx = this->set_section_indexes(shndx);
2863
2864   // Create the section table header.
2865   this->create_shdrs(shstrtab_section, &off);
2866
2867   // If there are no sections which require postprocessing, we can
2868   // handle the section names now, and avoid a resize later.
2869   if (!this->any_postprocessing_sections_)
2870     {
2871       off = this->set_section_offsets(off,
2872                                       POSTPROCESSING_SECTIONS_PASS);
2873       off =
2874           this->set_section_offsets(off,
2875                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2876     }
2877
2878   file_header->set_section_info(this->section_headers_, shstrtab_section);
2879
2880   // Now we know exactly where everything goes in the output file
2881   // (except for non-allocated sections which require postprocessing).
2882   Output_data::layout_complete();
2883
2884   this->output_file_size_ = off;
2885
2886   return off;
2887 }
2888
2889 // Create a note header following the format defined in the ELF ABI.
2890 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2891 // of the section to create, DESCSZ is the size of the descriptor.
2892 // ALLOCATE is true if the section should be allocated in memory.
2893 // This returns the new note section.  It sets *TRAILING_PADDING to
2894 // the number of trailing zero bytes required.
2895
2896 Output_section*
2897 Layout::create_note(const char* name, int note_type,
2898                     const char* section_name, size_t descsz,
2899                     bool allocate, size_t* trailing_padding)
2900 {
2901   // Authorities all agree that the values in a .note field should
2902   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2903   // they differ on what the alignment is for 64-bit binaries.
2904   // The GABI says unambiguously they take 8-byte alignment:
2905   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2906   // Other documentation says alignment should always be 4 bytes:
2907   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2908   // GNU ld and GNU readelf both support the latter (at least as of
2909   // version 2.16.91), and glibc always generates the latter for
2910   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2911   // here.
2912 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2913   const int size = parameters->target().get_size();
2914 #else
2915   const int size = 32;
2916 #endif
2917
2918   // The contents of the .note section.
2919   size_t namesz = strlen(name) + 1;
2920   size_t aligned_namesz = align_address(namesz, size / 8);
2921   size_t aligned_descsz = align_address(descsz, size / 8);
2922
2923   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2924
2925   unsigned char* buffer = new unsigned char[notehdrsz];
2926   memset(buffer, 0, notehdrsz);
2927
2928   bool is_big_endian = parameters->target().is_big_endian();
2929
2930   if (size == 32)
2931     {
2932       if (!is_big_endian)
2933         {
2934           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2935           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2936           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2937         }
2938       else
2939         {
2940           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2941           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2942           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2943         }
2944     }
2945   else if (size == 64)
2946     {
2947       if (!is_big_endian)
2948         {
2949           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2950           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2951           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2952         }
2953       else
2954         {
2955           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2956           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2957           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2958         }
2959     }
2960   else
2961     gold_unreachable();
2962
2963   memcpy(buffer + 3 * (size / 8), name, namesz);
2964
2965   elfcpp::Elf_Xword flags = 0;
2966   Output_section_order order = ORDER_INVALID;
2967   if (allocate)
2968     {
2969       flags = elfcpp::SHF_ALLOC;
2970       order = ORDER_RO_NOTE;
2971     }
2972   Output_section* os = this->choose_output_section(NULL, section_name,
2973                                                    elfcpp::SHT_NOTE,
2974                                                    flags, false, order, false,
2975                                                    false, true);
2976   if (os == NULL)
2977     return NULL;
2978
2979   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2980                                                            size / 8,
2981                                                            "** note header");
2982   os->add_output_section_data(posd);
2983
2984   *trailing_padding = aligned_descsz - descsz;
2985
2986   return os;
2987 }
2988
2989 // For an executable or shared library, create a note to record the
2990 // version of gold used to create the binary.
2991
2992 void
2993 Layout::create_gold_note()
2994 {
2995   if (parameters->options().relocatable()
2996       || parameters->incremental_update())
2997     return;
2998
2999   std::string desc = std::string("gold ") + gold::get_version_string();
3000
3001   size_t trailing_padding;
3002   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3003                                          ".note.gnu.gold-version", desc.size(),
3004                                          false, &trailing_padding);
3005   if (os == NULL)
3006     return;
3007
3008   Output_section_data* posd = new Output_data_const(desc, 4);
3009   os->add_output_section_data(posd);
3010
3011   if (trailing_padding > 0)
3012     {
3013       posd = new Output_data_zero_fill(trailing_padding, 0);
3014       os->add_output_section_data(posd);
3015     }
3016 }
3017
3018 // Record whether the stack should be executable.  This can be set
3019 // from the command line using the -z execstack or -z noexecstack
3020 // options.  Otherwise, if any input file has a .note.GNU-stack
3021 // section with the SHF_EXECINSTR flag set, the stack should be
3022 // executable.  Otherwise, if at least one input file a
3023 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3024 // section, we use the target default for whether the stack should be
3025 // executable.  If -z stack-size was used to set a p_memsz value for
3026 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3027 // don't generate a stack note.  When generating a object file, we
3028 // create a .note.GNU-stack section with the appropriate marking.
3029 // When generating an executable or shared library, we create a
3030 // PT_GNU_STACK segment.
3031
3032 void
3033 Layout::create_stack_segment()
3034 {
3035   bool is_stack_executable;
3036   if (parameters->options().is_execstack_set())
3037     {
3038       is_stack_executable = parameters->options().is_stack_executable();
3039       if (!is_stack_executable
3040           && this->input_requires_executable_stack_
3041           && parameters->options().warn_execstack())
3042         gold_warning(_("one or more inputs require executable stack, "
3043                        "but -z noexecstack was given"));
3044     }
3045   else if (!this->input_with_gnu_stack_note_
3046            && (!parameters->options().user_set_stack_size()
3047                || parameters->options().relocatable()))
3048     return;
3049   else
3050     {
3051       if (this->input_requires_executable_stack_)
3052         is_stack_executable = true;
3053       else if (this->input_without_gnu_stack_note_)
3054         is_stack_executable =
3055           parameters->target().is_default_stack_executable();
3056       else
3057         is_stack_executable = false;
3058     }
3059
3060   if (parameters->options().relocatable())
3061     {
3062       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3063       elfcpp::Elf_Xword flags = 0;
3064       if (is_stack_executable)
3065         flags |= elfcpp::SHF_EXECINSTR;
3066       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3067                                 ORDER_INVALID, false);
3068     }
3069   else
3070     {
3071       if (this->script_options_->saw_phdrs_clause())
3072         return;
3073       int flags = elfcpp::PF_R | elfcpp::PF_W;
3074       if (is_stack_executable)
3075         flags |= elfcpp::PF_X;
3076       Output_segment* seg =
3077         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3078       seg->set_size(parameters->options().stack_size());
3079       // BFD lets targets override this default alignment, but the only
3080       // targets that do so are ones that Gold does not support so far.
3081       seg->set_minimum_p_align(16);
3082     }
3083 }
3084
3085 // If --build-id was used, set up the build ID note.
3086
3087 void
3088 Layout::create_build_id()
3089 {
3090   if (!parameters->options().user_set_build_id())
3091     return;
3092
3093   const char* style = parameters->options().build_id();
3094   if (strcmp(style, "none") == 0)
3095     return;
3096
3097   // Set DESCSZ to the size of the note descriptor.  When possible,
3098   // set DESC to the note descriptor contents.
3099   size_t descsz;
3100   std::string desc;
3101   if (strcmp(style, "md5") == 0)
3102     descsz = 128 / 8;
3103   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3104     descsz = 160 / 8;
3105   else if (strcmp(style, "uuid") == 0)
3106     {
3107 #ifndef __MINGW32__
3108       const size_t uuidsz = 128 / 8;
3109
3110       char buffer[uuidsz];
3111       memset(buffer, 0, uuidsz);
3112
3113       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3114       if (descriptor < 0)
3115         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3116                    strerror(errno));
3117       else
3118         {
3119           ssize_t got = ::read(descriptor, buffer, uuidsz);
3120           release_descriptor(descriptor, true);
3121           if (got < 0)
3122             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3123           else if (static_cast<size_t>(got) != uuidsz)
3124             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3125                        uuidsz, got);
3126         }
3127
3128       desc.assign(buffer, uuidsz);
3129       descsz = uuidsz;
3130 #else // __MINGW32__
3131       UUID uuid;
3132       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3133
3134       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3135       if (!rpc_library)
3136         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3137       else
3138         {
3139           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3140               GetProcAddress(rpc_library, "UuidCreate"));
3141           if (!uuid_create)
3142             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3143           else if (uuid_create(&uuid) != RPC_S_OK)
3144             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3145           FreeLibrary(rpc_library);
3146         }
3147       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3148       descsz = sizeof(UUID);
3149 #endif // __MINGW32__
3150     }
3151   else if (strncmp(style, "0x", 2) == 0)
3152     {
3153       hex_init();
3154       const char* p = style + 2;
3155       while (*p != '\0')
3156         {
3157           if (hex_p(p[0]) && hex_p(p[1]))
3158             {
3159               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3160               desc += c;
3161               p += 2;
3162             }
3163           else if (*p == '-' || *p == ':')
3164             ++p;
3165           else
3166             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3167                        style);
3168         }
3169       descsz = desc.size();
3170     }
3171   else
3172     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3173
3174   // Create the note.
3175   size_t trailing_padding;
3176   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3177                                          ".note.gnu.build-id", descsz, true,
3178                                          &trailing_padding);
3179   if (os == NULL)
3180     return;
3181
3182   if (!desc.empty())
3183     {
3184       // We know the value already, so we fill it in now.
3185       gold_assert(desc.size() == descsz);
3186
3187       Output_section_data* posd = new Output_data_const(desc, 4);
3188       os->add_output_section_data(posd);
3189
3190       if (trailing_padding != 0)
3191         {
3192           posd = new Output_data_zero_fill(trailing_padding, 0);
3193           os->add_output_section_data(posd);
3194         }
3195     }
3196   else
3197     {
3198       // We need to compute a checksum after we have completed the
3199       // link.
3200       gold_assert(trailing_padding == 0);
3201       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3202       os->add_output_section_data(this->build_id_note_);
3203     }
3204 }
3205
3206 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3207 // field of the former should point to the latter.  I'm not sure who
3208 // started this, but the GNU linker does it, and some tools depend
3209 // upon it.
3210
3211 void
3212 Layout::link_stabs_sections()
3213 {
3214   if (!this->have_stabstr_section_)
3215     return;
3216
3217   for (Section_list::iterator p = this->section_list_.begin();
3218        p != this->section_list_.end();
3219        ++p)
3220     {
3221       if ((*p)->type() != elfcpp::SHT_STRTAB)
3222         continue;
3223
3224       const char* name = (*p)->name();
3225       if (strncmp(name, ".stab", 5) != 0)
3226         continue;
3227
3228       size_t len = strlen(name);
3229       if (strcmp(name + len - 3, "str") != 0)
3230         continue;
3231
3232       std::string stab_name(name, len - 3);
3233       Output_section* stab_sec;
3234       stab_sec = this->find_output_section(stab_name.c_str());
3235       if (stab_sec != NULL)
3236         stab_sec->set_link_section(*p);
3237     }
3238 }
3239
3240 // Create .gnu_incremental_inputs and related sections needed
3241 // for the next run of incremental linking to check what has changed.
3242
3243 void
3244 Layout::create_incremental_info_sections(Symbol_table* symtab)
3245 {
3246   Incremental_inputs* incr = this->incremental_inputs_;
3247
3248   gold_assert(incr != NULL);
3249
3250   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3251   incr->create_data_sections(symtab);
3252
3253   // Add the .gnu_incremental_inputs section.
3254   const char* incremental_inputs_name =
3255     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3256   Output_section* incremental_inputs_os =
3257     this->make_output_section(incremental_inputs_name,
3258                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3259                               ORDER_INVALID, false);
3260   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3261
3262   // Add the .gnu_incremental_symtab section.
3263   const char* incremental_symtab_name =
3264     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3265   Output_section* incremental_symtab_os =
3266     this->make_output_section(incremental_symtab_name,
3267                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3268                               ORDER_INVALID, false);
3269   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3270   incremental_symtab_os->set_entsize(4);
3271
3272   // Add the .gnu_incremental_relocs section.
3273   const char* incremental_relocs_name =
3274     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3275   Output_section* incremental_relocs_os =
3276     this->make_output_section(incremental_relocs_name,
3277                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3278                               ORDER_INVALID, false);
3279   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3280   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3281
3282   // Add the .gnu_incremental_got_plt section.
3283   const char* incremental_got_plt_name =
3284     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3285   Output_section* incremental_got_plt_os =
3286     this->make_output_section(incremental_got_plt_name,
3287                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3288                               ORDER_INVALID, false);
3289   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3290
3291   // Add the .gnu_incremental_strtab section.
3292   const char* incremental_strtab_name =
3293     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3294   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3295                                                         elfcpp::SHT_STRTAB, 0,
3296                                                         ORDER_INVALID, false);
3297   Output_data_strtab* strtab_data =
3298       new Output_data_strtab(incr->get_stringpool());
3299   incremental_strtab_os->add_output_section_data(strtab_data);
3300
3301   incremental_inputs_os->set_after_input_sections();
3302   incremental_symtab_os->set_after_input_sections();
3303   incremental_relocs_os->set_after_input_sections();
3304   incremental_got_plt_os->set_after_input_sections();
3305
3306   incremental_inputs_os->set_link_section(incremental_strtab_os);
3307   incremental_symtab_os->set_link_section(incremental_inputs_os);
3308   incremental_relocs_os->set_link_section(incremental_inputs_os);
3309   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3310 }
3311
3312 // Return whether SEG1 should be before SEG2 in the output file.  This
3313 // is based entirely on the segment type and flags.  When this is
3314 // called the segment addresses have normally not yet been set.
3315
3316 bool
3317 Layout::segment_precedes(const Output_segment* seg1,
3318                          const Output_segment* seg2)
3319 {
3320   // In order to produce a stable ordering if we're called with the same pointer
3321   // return false.
3322   if (seg1 == seg2)
3323     return false;
3324
3325   elfcpp::Elf_Word type1 = seg1->type();
3326   elfcpp::Elf_Word type2 = seg2->type();
3327
3328   // The single PT_PHDR segment is required to precede any loadable
3329   // segment.  We simply make it always first.
3330   if (type1 == elfcpp::PT_PHDR)
3331     {
3332       gold_assert(type2 != elfcpp::PT_PHDR);
3333       return true;
3334     }
3335   if (type2 == elfcpp::PT_PHDR)
3336     return false;
3337
3338   // The single PT_INTERP segment is required to precede any loadable
3339   // segment.  We simply make it always second.
3340   if (type1 == elfcpp::PT_INTERP)
3341     {
3342       gold_assert(type2 != elfcpp::PT_INTERP);
3343       return true;
3344     }
3345   if (type2 == elfcpp::PT_INTERP)
3346     return false;
3347
3348   // We then put PT_LOAD segments before any other segments.
3349   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3350     return true;
3351   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3352     return false;
3353
3354   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3355   // segment, because that is where the dynamic linker expects to find
3356   // it (this is just for efficiency; other positions would also work
3357   // correctly).
3358   if (type1 == elfcpp::PT_TLS
3359       && type2 != elfcpp::PT_TLS
3360       && type2 != elfcpp::PT_GNU_RELRO)
3361     return false;
3362   if (type2 == elfcpp::PT_TLS
3363       && type1 != elfcpp::PT_TLS
3364       && type1 != elfcpp::PT_GNU_RELRO)
3365     return true;
3366
3367   // We put the PT_GNU_RELRO segment last, because that is where the
3368   // dynamic linker expects to find it (as with PT_TLS, this is just
3369   // for efficiency).
3370   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3371     return false;
3372   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3373     return true;
3374
3375   const elfcpp::Elf_Word flags1 = seg1->flags();
3376   const elfcpp::Elf_Word flags2 = seg2->flags();
3377
3378   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3379   // by the numeric segment type and flags values.  There should not
3380   // be more than one segment with the same type and flags, except
3381   // when a linker script specifies such.
3382   if (type1 != elfcpp::PT_LOAD)
3383     {
3384       if (type1 != type2)
3385         return type1 < type2;
3386       gold_assert(flags1 != flags2
3387                   || this->script_options_->saw_phdrs_clause());
3388       return flags1 < flags2;
3389     }
3390
3391   // If the addresses are set already, sort by load address.
3392   if (seg1->are_addresses_set())
3393     {
3394       if (!seg2->are_addresses_set())
3395         return true;
3396
3397       unsigned int section_count1 = seg1->output_section_count();
3398       unsigned int section_count2 = seg2->output_section_count();
3399       if (section_count1 == 0 && section_count2 > 0)
3400         return true;
3401       if (section_count1 > 0 && section_count2 == 0)
3402         return false;
3403
3404       uint64_t paddr1 = (seg1->are_addresses_set()
3405                          ? seg1->paddr()
3406                          : seg1->first_section_load_address());
3407       uint64_t paddr2 = (seg2->are_addresses_set()
3408                          ? seg2->paddr()
3409                          : seg2->first_section_load_address());
3410
3411       if (paddr1 != paddr2)
3412         return paddr1 < paddr2;
3413     }
3414   else if (seg2->are_addresses_set())
3415     return false;
3416
3417   // A segment which holds large data comes after a segment which does
3418   // not hold large data.
3419   if (seg1->is_large_data_segment())
3420     {
3421       if (!seg2->is_large_data_segment())
3422         return false;
3423     }
3424   else if (seg2->is_large_data_segment())
3425     return true;
3426
3427   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3428   // segments come before writable segments.  Then writable segments
3429   // with data come before writable segments without data.  Then
3430   // executable segments come before non-executable segments.  Then
3431   // the unlikely case of a non-readable segment comes before the
3432   // normal case of a readable segment.  If there are multiple
3433   // segments with the same type and flags, we require that the
3434   // address be set, and we sort by virtual address and then physical
3435   // address.
3436   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3437     return (flags1 & elfcpp::PF_W) == 0;
3438   if ((flags1 & elfcpp::PF_W) != 0
3439       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3440     return seg1->has_any_data_sections();
3441   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3442     return (flags1 & elfcpp::PF_X) != 0;
3443   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3444     return (flags1 & elfcpp::PF_R) == 0;
3445
3446   // We shouldn't get here--we shouldn't create segments which we
3447   // can't distinguish.  Unless of course we are using a weird linker
3448   // script or overlapping --section-start options.  We could also get
3449   // here if plugins want unique segments for subsets of sections.
3450   gold_assert(this->script_options_->saw_phdrs_clause()
3451               || parameters->options().any_section_start()
3452               || this->is_unique_segment_for_sections_specified());
3453   return false;
3454 }
3455
3456 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3457
3458 static off_t
3459 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3460 {
3461   uint64_t unsigned_off = off;
3462   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3463                           | (addr & (abi_pagesize - 1)));
3464   if (aligned_off < unsigned_off)
3465     aligned_off += abi_pagesize;
3466   return aligned_off;
3467 }
3468
3469 // On targets where the text segment contains only executable code,
3470 // a non-executable segment is never the text segment.
3471
3472 static inline bool
3473 is_text_segment(const Target* target, const Output_segment* seg)
3474 {
3475   elfcpp::Elf_Xword flags = seg->flags();
3476   if ((flags & elfcpp::PF_W) != 0)
3477     return false;
3478   if ((flags & elfcpp::PF_X) == 0)
3479     return !target->isolate_execinstr();
3480   return true;
3481 }
3482
3483 // Set the file offsets of all the segments, and all the sections they
3484 // contain.  They have all been created.  LOAD_SEG must be laid out
3485 // first.  Return the offset of the data to follow.
3486
3487 off_t
3488 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3489                             unsigned int* pshndx)
3490 {
3491   // Sort them into the final order.  We use a stable sort so that we
3492   // don't randomize the order of indistinguishable segments created
3493   // by linker scripts.
3494   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3495                    Layout::Compare_segments(this));
3496
3497   // Find the PT_LOAD segments, and set their addresses and offsets
3498   // and their section's addresses and offsets.
3499   uint64_t start_addr;
3500   if (parameters->options().user_set_Ttext())
3501     start_addr = parameters->options().Ttext();
3502   else if (parameters->options().output_is_position_independent())
3503     start_addr = 0;
3504   else
3505     start_addr = target->default_text_segment_address();
3506
3507   uint64_t addr = start_addr;
3508   off_t off = 0;
3509
3510   // If LOAD_SEG is NULL, then the file header and segment headers
3511   // will not be loadable.  But they still need to be at offset 0 in
3512   // the file.  Set their offsets now.
3513   if (load_seg == NULL)
3514     {
3515       for (Data_list::iterator p = this->special_output_list_.begin();
3516            p != this->special_output_list_.end();
3517            ++p)
3518         {
3519           off = align_address(off, (*p)->addralign());
3520           (*p)->set_address_and_file_offset(0, off);
3521           off += (*p)->data_size();
3522         }
3523     }
3524
3525   unsigned int increase_relro = this->increase_relro_;
3526   if (this->script_options_->saw_sections_clause())
3527     increase_relro = 0;
3528
3529   const bool check_sections = parameters->options().check_sections();
3530   Output_segment* last_load_segment = NULL;
3531
3532   unsigned int shndx_begin = *pshndx;
3533   unsigned int shndx_load_seg = *pshndx;
3534
3535   for (Segment_list::iterator p = this->segment_list_.begin();
3536        p != this->segment_list_.end();
3537        ++p)
3538     {
3539       if ((*p)->type() == elfcpp::PT_LOAD)
3540         {
3541           if (target->isolate_execinstr())
3542             {
3543               // When we hit the segment that should contain the
3544               // file headers, reset the file offset so we place
3545               // it and subsequent segments appropriately.
3546               // We'll fix up the preceding segments below.
3547               if (load_seg == *p)
3548                 {
3549                   if (off == 0)
3550                     load_seg = NULL;
3551                   else
3552                     {
3553                       off = 0;
3554                       shndx_load_seg = *pshndx;
3555                     }
3556                 }
3557             }
3558           else
3559             {
3560               // Verify that the file headers fall into the first segment.
3561               if (load_seg != NULL && load_seg != *p)
3562                 gold_unreachable();
3563               load_seg = NULL;
3564             }
3565
3566           bool are_addresses_set = (*p)->are_addresses_set();
3567           if (are_addresses_set)
3568             {
3569               // When it comes to setting file offsets, we care about
3570               // the physical address.
3571               addr = (*p)->paddr();
3572             }
3573           else if (parameters->options().user_set_Ttext()
3574                    && (parameters->options().omagic()
3575                        || is_text_segment(target, *p)))
3576             {
3577               are_addresses_set = true;
3578             }
3579           else if (parameters->options().user_set_Trodata_segment()
3580                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3581             {
3582               addr = parameters->options().Trodata_segment();
3583               are_addresses_set = true;
3584             }
3585           else if (parameters->options().user_set_Tdata()
3586                    && ((*p)->flags() & elfcpp::PF_W) != 0
3587                    && (!parameters->options().user_set_Tbss()
3588                        || (*p)->has_any_data_sections()))
3589             {
3590               addr = parameters->options().Tdata();
3591               are_addresses_set = true;
3592             }
3593           else if (parameters->options().user_set_Tbss()
3594                    && ((*p)->flags() & elfcpp::PF_W) != 0
3595                    && !(*p)->has_any_data_sections())
3596             {
3597               addr = parameters->options().Tbss();
3598               are_addresses_set = true;
3599             }
3600
3601           uint64_t orig_addr = addr;
3602           uint64_t orig_off = off;
3603
3604           uint64_t aligned_addr = 0;
3605           uint64_t abi_pagesize = target->abi_pagesize();
3606           uint64_t common_pagesize = target->common_pagesize();
3607
3608           if (!parameters->options().nmagic()
3609               && !parameters->options().omagic())
3610             (*p)->set_minimum_p_align(abi_pagesize);
3611
3612           if (!are_addresses_set)
3613             {
3614               // Skip the address forward one page, maintaining the same
3615               // position within the page.  This lets us store both segments
3616               // overlapping on a single page in the file, but the loader will
3617               // put them on different pages in memory. We will revisit this
3618               // decision once we know the size of the segment.
3619
3620               uint64_t max_align = (*p)->maximum_alignment();
3621               if (max_align > abi_pagesize)
3622                 addr = align_address(addr, max_align);
3623               aligned_addr = addr;
3624
3625               if (load_seg == *p)
3626                 {
3627                   // This is the segment that will contain the file
3628                   // headers, so its offset will have to be exactly zero.
3629                   gold_assert(orig_off == 0);
3630
3631                   // If the target wants a fixed minimum distance from the
3632                   // text segment to the read-only segment, move up now.
3633                   uint64_t min_addr =
3634                     start_addr + (parameters->options().user_set_rosegment_gap()
3635                                   ? parameters->options().rosegment_gap()
3636                                   : target->rosegment_gap());
3637                   if (addr < min_addr)
3638                     addr = min_addr;
3639
3640                   // But this is not the first segment!  To make its
3641                   // address congruent with its offset, that address better
3642                   // be aligned to the ABI-mandated page size.
3643                   addr = align_address(addr, abi_pagesize);
3644                   aligned_addr = addr;
3645                 }
3646               else
3647                 {
3648                   if ((addr & (abi_pagesize - 1)) != 0)
3649                     addr = addr + abi_pagesize;
3650
3651                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3652                 }
3653             }
3654
3655           if (!parameters->options().nmagic()
3656               && !parameters->options().omagic())
3657             {
3658               // Here we are also taking care of the case when
3659               // the maximum segment alignment is larger than the page size.
3660               off = align_file_offset(off, addr,
3661                                       std::max(abi_pagesize,
3662                                                (*p)->maximum_alignment()));
3663             }
3664           else
3665             {
3666               // This is -N or -n with a section script which prevents
3667               // us from using a load segment.  We need to ensure that
3668               // the file offset is aligned to the alignment of the
3669               // segment.  This is because the linker script
3670               // implicitly assumed a zero offset.  If we don't align
3671               // here, then the alignment of the sections in the
3672               // linker script may not match the alignment of the
3673               // sections in the set_section_addresses call below,
3674               // causing an error about dot moving backward.
3675               off = align_address(off, (*p)->maximum_alignment());
3676             }
3677
3678           unsigned int shndx_hold = *pshndx;
3679           bool has_relro = false;
3680           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3681                                                           false, addr,
3682                                                           &increase_relro,
3683                                                           &has_relro,
3684                                                           &off, pshndx);
3685
3686           // Now that we know the size of this segment, we may be able
3687           // to save a page in memory, at the cost of wasting some
3688           // file space, by instead aligning to the start of a new
3689           // page.  Here we use the real machine page size rather than
3690           // the ABI mandated page size.  If the segment has been
3691           // aligned so that the relro data ends at a page boundary,
3692           // we do not try to realign it.
3693
3694           if (!are_addresses_set
3695               && !has_relro
3696               && aligned_addr != addr
3697               && !parameters->incremental())
3698             {
3699               uint64_t first_off = (common_pagesize
3700                                     - (aligned_addr
3701                                        & (common_pagesize - 1)));
3702               uint64_t last_off = new_addr & (common_pagesize - 1);
3703               if (first_off > 0
3704                   && last_off > 0
3705                   && ((aligned_addr & ~ (common_pagesize - 1))
3706                       != (new_addr & ~ (common_pagesize - 1)))
3707                   && first_off + last_off <= common_pagesize)
3708                 {
3709                   *pshndx = shndx_hold;
3710                   addr = align_address(aligned_addr, common_pagesize);
3711                   addr = align_address(addr, (*p)->maximum_alignment());
3712                   if ((addr & (abi_pagesize - 1)) != 0)
3713                     addr = addr + abi_pagesize;
3714                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3715                   off = align_file_offset(off, addr, abi_pagesize);
3716
3717                   increase_relro = this->increase_relro_;
3718                   if (this->script_options_->saw_sections_clause())
3719                     increase_relro = 0;
3720                   has_relro = false;
3721
3722                   new_addr = (*p)->set_section_addresses(target, this,
3723                                                          true, addr,
3724                                                          &increase_relro,
3725                                                          &has_relro,
3726                                                          &off, pshndx);
3727                 }
3728             }
3729
3730           addr = new_addr;
3731
3732           // Implement --check-sections.  We know that the segments
3733           // are sorted by LMA.
3734           if (check_sections && last_load_segment != NULL)
3735             {
3736               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3737               if (last_load_segment->paddr() + last_load_segment->memsz()
3738                   > (*p)->paddr())
3739                 {
3740                   unsigned long long lb1 = last_load_segment->paddr();
3741                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3742                   unsigned long long lb2 = (*p)->paddr();
3743                   unsigned long long le2 = lb2 + (*p)->memsz();
3744                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3745                                "[0x%llx -> 0x%llx]"),
3746                              lb1, le1, lb2, le2);
3747                 }
3748             }
3749           last_load_segment = *p;
3750         }
3751     }
3752
3753   if (load_seg != NULL && target->isolate_execinstr())
3754     {
3755       // Process the early segments again, setting their file offsets
3756       // so they land after the segments starting at LOAD_SEG.
3757       off = align_file_offset(off, 0, target->abi_pagesize());
3758
3759       this->reset_relax_output();
3760
3761       for (Segment_list::iterator p = this->segment_list_.begin();
3762            *p != load_seg;
3763            ++p)
3764         {
3765           if ((*p)->type() == elfcpp::PT_LOAD)
3766             {
3767               // We repeat the whole job of assigning addresses and
3768               // offsets, but we really only want to change the offsets and
3769               // must ensure that the addresses all come out the same as
3770               // they did the first time through.
3771               bool has_relro = false;
3772               const uint64_t old_addr = (*p)->vaddr();
3773               const uint64_t old_end = old_addr + (*p)->memsz();
3774               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3775                                                               true, old_addr,
3776                                                               &increase_relro,
3777                                                               &has_relro,
3778                                                               &off,
3779                                                               &shndx_begin);
3780               gold_assert(new_addr == old_end);
3781             }
3782         }
3783
3784       gold_assert(shndx_begin == shndx_load_seg);
3785     }
3786
3787   // Handle the non-PT_LOAD segments, setting their offsets from their
3788   // section's offsets.
3789   for (Segment_list::iterator p = this->segment_list_.begin();
3790        p != this->segment_list_.end();
3791        ++p)
3792     {
3793       // PT_GNU_STACK was set up correctly when it was created.
3794       if ((*p)->type() != elfcpp::PT_LOAD
3795           && (*p)->type() != elfcpp::PT_GNU_STACK)
3796         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3797                          ? increase_relro
3798                          : 0);
3799     }
3800
3801   // Set the TLS offsets for each section in the PT_TLS segment.
3802   if (this->tls_segment_ != NULL)
3803     this->tls_segment_->set_tls_offsets();
3804
3805   return off;
3806 }
3807
3808 // Set the offsets of all the allocated sections when doing a
3809 // relocatable link.  This does the same jobs as set_segment_offsets,
3810 // only for a relocatable link.
3811
3812 off_t
3813 Layout::set_relocatable_section_offsets(Output_data* file_header,
3814                                         unsigned int* pshndx)
3815 {
3816   off_t off = 0;
3817
3818   file_header->set_address_and_file_offset(0, 0);
3819   off += file_header->data_size();
3820
3821   for (Section_list::iterator p = this->section_list_.begin();
3822        p != this->section_list_.end();
3823        ++p)
3824     {
3825       // We skip unallocated sections here, except that group sections
3826       // have to come first.
3827       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3828           && (*p)->type() != elfcpp::SHT_GROUP)
3829         continue;
3830
3831       off = align_address(off, (*p)->addralign());
3832
3833       // The linker script might have set the address.
3834       if (!(*p)->is_address_valid())
3835         (*p)->set_address(0);
3836       (*p)->set_file_offset(off);
3837       (*p)->finalize_data_size();
3838       if ((*p)->type() != elfcpp::SHT_NOBITS)
3839         off += (*p)->data_size();
3840
3841       (*p)->set_out_shndx(*pshndx);
3842       ++*pshndx;
3843     }
3844
3845   return off;
3846 }
3847
3848 // Set the file offset of all the sections not associated with a
3849 // segment.
3850
3851 off_t
3852 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3853 {
3854   off_t startoff = off;
3855   off_t maxoff = off;
3856
3857   for (Section_list::iterator p = this->unattached_section_list_.begin();
3858        p != this->unattached_section_list_.end();
3859        ++p)
3860     {
3861       // The symtab section is handled in create_symtab_sections.
3862       if (*p == this->symtab_section_)
3863         continue;
3864
3865       // If we've already set the data size, don't set it again.
3866       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3867         continue;
3868
3869       if (pass == BEFORE_INPUT_SECTIONS_PASS
3870           && (*p)->requires_postprocessing())
3871         {
3872           (*p)->create_postprocessing_buffer();
3873           this->any_postprocessing_sections_ = true;
3874         }
3875
3876       if (pass == BEFORE_INPUT_SECTIONS_PASS
3877           && (*p)->after_input_sections())
3878         continue;
3879       else if (pass == POSTPROCESSING_SECTIONS_PASS
3880                && (!(*p)->after_input_sections()
3881                    || (*p)->type() == elfcpp::SHT_STRTAB))
3882         continue;
3883       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3884                && (!(*p)->after_input_sections()
3885                    || (*p)->type() != elfcpp::SHT_STRTAB))
3886         continue;
3887
3888       if (!parameters->incremental_update())
3889         {
3890           off = align_address(off, (*p)->addralign());
3891           (*p)->set_file_offset(off);
3892           (*p)->finalize_data_size();
3893         }
3894       else
3895         {
3896           // Incremental update: allocate file space from free list.
3897           (*p)->pre_finalize_data_size();
3898           off_t current_size = (*p)->current_data_size();
3899           off = this->allocate(current_size, (*p)->addralign(), startoff);
3900           if (off == -1)
3901             {
3902               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3903                 this->free_list_.dump();
3904               gold_assert((*p)->output_section() != NULL);
3905               gold_fallback(_("out of patch space for section %s; "
3906                               "relink with --incremental-full"),
3907                             (*p)->output_section()->name());
3908             }
3909           (*p)->set_file_offset(off);
3910           (*p)->finalize_data_size();
3911           if ((*p)->data_size() > current_size)
3912             {
3913               gold_assert((*p)->output_section() != NULL);
3914               gold_fallback(_("%s: section changed size; "
3915                               "relink with --incremental-full"),
3916                             (*p)->output_section()->name());
3917             }
3918           gold_debug(DEBUG_INCREMENTAL,
3919                      "set_section_offsets: %08lx %08lx %s",
3920                      static_cast<long>(off),
3921                      static_cast<long>((*p)->data_size()),
3922                      ((*p)->output_section() != NULL
3923                       ? (*p)->output_section()->name() : "(special)"));
3924         }
3925
3926       off += (*p)->data_size();
3927       if (off > maxoff)
3928         maxoff = off;
3929
3930       // At this point the name must be set.
3931       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3932         this->namepool_.add((*p)->name(), false, NULL);
3933     }
3934   return maxoff;
3935 }
3936
3937 // Set the section indexes of all the sections not associated with a
3938 // segment.
3939
3940 unsigned int
3941 Layout::set_section_indexes(unsigned int shndx)
3942 {
3943   for (Section_list::iterator p = this->unattached_section_list_.begin();
3944        p != this->unattached_section_list_.end();
3945        ++p)
3946     {
3947       if (!(*p)->has_out_shndx())
3948         {
3949           (*p)->set_out_shndx(shndx);
3950           ++shndx;
3951         }
3952     }
3953   return shndx;
3954 }
3955
3956 // Set the section addresses according to the linker script.  This is
3957 // only called when we see a SECTIONS clause.  This returns the
3958 // program segment which should hold the file header and segment
3959 // headers, if any.  It will return NULL if they should not be in a
3960 // segment.
3961
3962 Output_segment*
3963 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3964 {
3965   Script_sections* ss = this->script_options_->script_sections();
3966   gold_assert(ss->saw_sections_clause());
3967   return this->script_options_->set_section_addresses(symtab, this);
3968 }
3969
3970 // Place the orphan sections in the linker script.
3971
3972 void
3973 Layout::place_orphan_sections_in_script()
3974 {
3975   Script_sections* ss = this->script_options_->script_sections();
3976   gold_assert(ss->saw_sections_clause());
3977
3978   // Place each orphaned output section in the script.
3979   for (Section_list::iterator p = this->section_list_.begin();
3980        p != this->section_list_.end();
3981        ++p)
3982     {
3983       if (!(*p)->found_in_sections_clause())
3984         ss->place_orphan(*p);
3985     }
3986 }
3987
3988 // Count the local symbols in the regular symbol table and the dynamic
3989 // symbol table, and build the respective string pools.
3990
3991 void
3992 Layout::count_local_symbols(const Task* task,
3993                             const Input_objects* input_objects)
3994 {
3995   // First, figure out an upper bound on the number of symbols we'll
3996   // be inserting into each pool.  This helps us create the pools with
3997   // the right size, to avoid unnecessary hashtable resizing.
3998   unsigned int symbol_count = 0;
3999   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4000        p != input_objects->relobj_end();
4001        ++p)
4002     symbol_count += (*p)->local_symbol_count();
4003
4004   // Go from "upper bound" to "estimate."  We overcount for two
4005   // reasons: we double-count symbols that occur in more than one
4006   // object file, and we count symbols that are dropped from the
4007   // output.  Add it all together and assume we overcount by 100%.
4008   symbol_count /= 2;
4009
4010   // We assume all symbols will go into both the sympool and dynpool.
4011   this->sympool_.reserve(symbol_count);
4012   this->dynpool_.reserve(symbol_count);
4013
4014   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4015        p != input_objects->relobj_end();
4016        ++p)
4017     {
4018       Task_lock_obj<Object> tlo(task, *p);
4019       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4020     }
4021 }
4022
4023 // Create the symbol table sections.  Here we also set the final
4024 // values of the symbols.  At this point all the loadable sections are
4025 // fully laid out.  SHNUM is the number of sections so far.
4026
4027 void
4028 Layout::create_symtab_sections(const Input_objects* input_objects,
4029                                Symbol_table* symtab,
4030                                unsigned int shnum,
4031                                off_t* poff,
4032                                unsigned int local_dynamic_count)
4033 {
4034   int symsize;
4035   unsigned int align;
4036   if (parameters->target().get_size() == 32)
4037     {
4038       symsize = elfcpp::Elf_sizes<32>::sym_size;
4039       align = 4;
4040     }
4041   else if (parameters->target().get_size() == 64)
4042     {
4043       symsize = elfcpp::Elf_sizes<64>::sym_size;
4044       align = 8;
4045     }
4046   else
4047     gold_unreachable();
4048
4049   // Compute file offsets relative to the start of the symtab section.
4050   off_t off = 0;
4051
4052   // Save space for the dummy symbol at the start of the section.  We
4053   // never bother to write this out--it will just be left as zero.
4054   off += symsize;
4055   unsigned int local_symbol_index = 1;
4056
4057   // Add STT_SECTION symbols for each Output section which needs one.
4058   for (Section_list::iterator p = this->section_list_.begin();
4059        p != this->section_list_.end();
4060        ++p)
4061     {
4062       if (!(*p)->needs_symtab_index())
4063         (*p)->set_symtab_index(-1U);
4064       else
4065         {
4066           (*p)->set_symtab_index(local_symbol_index);
4067           ++local_symbol_index;
4068           off += symsize;
4069         }
4070     }
4071
4072   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4073        p != input_objects->relobj_end();
4074        ++p)
4075     {
4076       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4077                                                         off, symtab);
4078       off += (index - local_symbol_index) * symsize;
4079       local_symbol_index = index;
4080     }
4081
4082   unsigned int local_symcount = local_symbol_index;
4083   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4084
4085   off_t dynoff;
4086   size_t dyncount;
4087   if (this->dynsym_section_ == NULL)
4088     {
4089       dynoff = 0;
4090       dyncount = 0;
4091     }
4092   else
4093     {
4094       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4095       dynoff = this->dynsym_section_->offset() + locsize;
4096       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4097       gold_assert(static_cast<off_t>(dyncount * symsize)
4098                   == this->dynsym_section_->data_size() - locsize);
4099     }
4100
4101   off_t global_off = off;
4102   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4103                          &this->sympool_, &local_symcount);
4104
4105   if (!parameters->options().strip_all())
4106     {
4107       this->sympool_.set_string_offsets();
4108
4109       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4110       Output_section* osymtab = this->make_output_section(symtab_name,
4111                                                           elfcpp::SHT_SYMTAB,
4112                                                           0, ORDER_INVALID,
4113                                                           false);
4114       this->symtab_section_ = osymtab;
4115
4116       Output_section_data* pos = new Output_data_fixed_space(off, align,
4117                                                              "** symtab");
4118       osymtab->add_output_section_data(pos);
4119
4120       // We generate a .symtab_shndx section if we have more than
4121       // SHN_LORESERVE sections.  Technically it is possible that we
4122       // don't need one, because it is possible that there are no
4123       // symbols in any of sections with indexes larger than
4124       // SHN_LORESERVE.  That is probably unusual, though, and it is
4125       // easier to always create one than to compute section indexes
4126       // twice (once here, once when writing out the symbols).
4127       if (shnum >= elfcpp::SHN_LORESERVE)
4128         {
4129           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4130                                                                false, NULL);
4131           Output_section* osymtab_xindex =
4132             this->make_output_section(symtab_xindex_name,
4133                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4134                                       ORDER_INVALID, false);
4135
4136           size_t symcount = off / symsize;
4137           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4138
4139           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4140
4141           osymtab_xindex->set_link_section(osymtab);
4142           osymtab_xindex->set_addralign(4);
4143           osymtab_xindex->set_entsize(4);
4144
4145           osymtab_xindex->set_after_input_sections();
4146
4147           // This tells the driver code to wait until the symbol table
4148           // has written out before writing out the postprocessing
4149           // sections, including the .symtab_shndx section.
4150           this->any_postprocessing_sections_ = true;
4151         }
4152
4153       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4154       Output_section* ostrtab = this->make_output_section(strtab_name,
4155                                                           elfcpp::SHT_STRTAB,
4156                                                           0, ORDER_INVALID,
4157                                                           false);
4158
4159       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4160       ostrtab->add_output_section_data(pstr);
4161
4162       off_t symtab_off;
4163       if (!parameters->incremental_update())
4164         symtab_off = align_address(*poff, align);
4165       else
4166         {
4167           symtab_off = this->allocate(off, align, *poff);
4168           if (off == -1)
4169             gold_fallback(_("out of patch space for symbol table; "
4170                             "relink with --incremental-full"));
4171           gold_debug(DEBUG_INCREMENTAL,
4172                      "create_symtab_sections: %08lx %08lx .symtab",
4173                      static_cast<long>(symtab_off),
4174                      static_cast<long>(off));
4175         }
4176
4177       symtab->set_file_offset(symtab_off + global_off);
4178       osymtab->set_file_offset(symtab_off);
4179       osymtab->finalize_data_size();
4180       osymtab->set_link_section(ostrtab);
4181       osymtab->set_info(local_symcount);
4182       osymtab->set_entsize(symsize);
4183
4184       if (symtab_off + off > *poff)
4185         *poff = symtab_off + off;
4186     }
4187 }
4188
4189 // Create the .shstrtab section, which holds the names of the
4190 // sections.  At the time this is called, we have created all the
4191 // output sections except .shstrtab itself.
4192
4193 Output_section*
4194 Layout::create_shstrtab()
4195 {
4196   // FIXME: We don't need to create a .shstrtab section if we are
4197   // stripping everything.
4198
4199   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4200
4201   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4202                                                  ORDER_INVALID, false);
4203
4204   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4205     {
4206       // We can't write out this section until we've set all the
4207       // section names, and we don't set the names of compressed
4208       // output sections until relocations are complete.  FIXME: With
4209       // the current names we use, this is unnecessary.
4210       os->set_after_input_sections();
4211     }
4212
4213   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4214   os->add_output_section_data(posd);
4215
4216   return os;
4217 }
4218
4219 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4220 // offset.
4221
4222 void
4223 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4224 {
4225   Output_section_headers* oshdrs;
4226   oshdrs = new Output_section_headers(this,
4227                                       &this->segment_list_,
4228                                       &this->section_list_,
4229                                       &this->unattached_section_list_,
4230                                       &this->namepool_,
4231                                       shstrtab_section);
4232   off_t off;
4233   if (!parameters->incremental_update())
4234     off = align_address(*poff, oshdrs->addralign());
4235   else
4236     {
4237       oshdrs->pre_finalize_data_size();
4238       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4239       if (off == -1)
4240           gold_fallback(_("out of patch space for section header table; "
4241                           "relink with --incremental-full"));
4242       gold_debug(DEBUG_INCREMENTAL,
4243                  "create_shdrs: %08lx %08lx (section header table)",
4244                  static_cast<long>(off),
4245                  static_cast<long>(off + oshdrs->data_size()));
4246     }
4247   oshdrs->set_address_and_file_offset(0, off);
4248   off += oshdrs->data_size();
4249   if (off > *poff)
4250     *poff = off;
4251   this->section_headers_ = oshdrs;
4252 }
4253
4254 // Count the allocated sections.
4255
4256 size_t
4257 Layout::allocated_output_section_count() const
4258 {
4259   size_t section_count = 0;
4260   for (Segment_list::const_iterator p = this->segment_list_.begin();
4261        p != this->segment_list_.end();
4262        ++p)
4263     section_count += (*p)->output_section_count();
4264   return section_count;
4265 }
4266
4267 // Create the dynamic symbol table.
4268 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4269 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4270 // to the number of global symbols that have been forced local.
4271 // We need to remember the former because the forced-local symbols are
4272 // written along with the global symbols in Symtab::write_globals().
4273
4274 void
4275 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4276                               Symbol_table* symtab,
4277                               Output_section** pdynstr,
4278                               unsigned int* plocal_dynamic_count,
4279                               unsigned int* pforced_local_dynamic_count,
4280                               std::vector<Symbol*>* pdynamic_symbols,
4281                               Versions* pversions)
4282 {
4283   // Count all the symbols in the dynamic symbol table, and set the
4284   // dynamic symbol indexes.
4285
4286   // Skip symbol 0, which is always all zeroes.
4287   unsigned int index = 1;
4288
4289   // Add STT_SECTION symbols for each Output section which needs one.
4290   for (Section_list::iterator p = this->section_list_.begin();
4291        p != this->section_list_.end();
4292        ++p)
4293     {
4294       if (!(*p)->needs_dynsym_index())
4295         (*p)->set_dynsym_index(-1U);
4296       else
4297         {
4298           (*p)->set_dynsym_index(index);
4299           ++index;
4300         }
4301     }
4302
4303   // Count the local symbols that need to go in the dynamic symbol table,
4304   // and set the dynamic symbol indexes.
4305   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4306        p != input_objects->relobj_end();
4307        ++p)
4308     {
4309       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4310       index = new_index;
4311     }
4312
4313   unsigned int local_symcount = index;
4314   unsigned int forced_local_count = 0;
4315
4316   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4317                                      pdynamic_symbols, &this->dynpool_,
4318                                      pversions);
4319
4320   *plocal_dynamic_count = local_symcount;
4321   *pforced_local_dynamic_count = forced_local_count;
4322
4323   int symsize;
4324   unsigned int align;
4325   const int size = parameters->target().get_size();
4326   if (size == 32)
4327     {
4328       symsize = elfcpp::Elf_sizes<32>::sym_size;
4329       align = 4;
4330     }
4331   else if (size == 64)
4332     {
4333       symsize = elfcpp::Elf_sizes<64>::sym_size;
4334       align = 8;
4335     }
4336   else
4337     gold_unreachable();
4338
4339   // Create the dynamic symbol table section.
4340
4341   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4342                                                        elfcpp::SHT_DYNSYM,
4343                                                        elfcpp::SHF_ALLOC,
4344                                                        false,
4345                                                        ORDER_DYNAMIC_LINKER,
4346                                                        false, false, false);
4347
4348   // Check for NULL as a linker script may discard .dynsym.
4349   if (dynsym != NULL)
4350     {
4351       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4352                                                                align,
4353                                                                "** dynsym");
4354       dynsym->add_output_section_data(odata);
4355
4356       dynsym->set_info(local_symcount + forced_local_count);
4357       dynsym->set_entsize(symsize);
4358       dynsym->set_addralign(align);
4359
4360       this->dynsym_section_ = dynsym;
4361     }
4362
4363   Output_data_dynamic* const odyn = this->dynamic_data_;
4364   if (odyn != NULL)
4365     {
4366       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4367       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4368     }
4369
4370   // If there are more than SHN_LORESERVE allocated sections, we
4371   // create a .dynsym_shndx section.  It is possible that we don't
4372   // need one, because it is possible that there are no dynamic
4373   // symbols in any of the sections with indexes larger than
4374   // SHN_LORESERVE.  This is probably unusual, though, and at this
4375   // time we don't know the actual section indexes so it is
4376   // inconvenient to check.
4377   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4378     {
4379       Output_section* dynsym_xindex =
4380         this->choose_output_section(NULL, ".dynsym_shndx",
4381                                     elfcpp::SHT_SYMTAB_SHNDX,
4382                                     elfcpp::SHF_ALLOC,
4383                                     false, ORDER_DYNAMIC_LINKER, false, false,
4384                                     false);
4385
4386       if (dynsym_xindex != NULL)
4387         {
4388           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4389
4390           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4391
4392           dynsym_xindex->set_link_section(dynsym);
4393           dynsym_xindex->set_addralign(4);
4394           dynsym_xindex->set_entsize(4);
4395
4396           dynsym_xindex->set_after_input_sections();
4397
4398           // This tells the driver code to wait until the symbol table
4399           // has written out before writing out the postprocessing
4400           // sections, including the .dynsym_shndx section.
4401           this->any_postprocessing_sections_ = true;
4402         }
4403     }
4404
4405   // Create the dynamic string table section.
4406
4407   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4408                                                        elfcpp::SHT_STRTAB,
4409                                                        elfcpp::SHF_ALLOC,
4410                                                        false,
4411                                                        ORDER_DYNAMIC_LINKER,
4412                                                        false, false, false);
4413   *pdynstr = dynstr;
4414   if (dynstr != NULL)
4415     {
4416       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4417       dynstr->add_output_section_data(strdata);
4418
4419       if (dynsym != NULL)
4420         dynsym->set_link_section(dynstr);
4421       if (this->dynamic_section_ != NULL)
4422         this->dynamic_section_->set_link_section(dynstr);
4423
4424       if (odyn != NULL)
4425         {
4426           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4427           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4428         }
4429     }
4430
4431   // Create the hash tables.  The Gnu-style hash table must be
4432   // built first, because it changes the order of the symbols
4433   // in the dynamic symbol table.
4434
4435   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4436       || strcmp(parameters->options().hash_style(), "both") == 0)
4437     {
4438       unsigned char* phash;
4439       unsigned int hashlen;
4440       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4441                                     local_symcount + forced_local_count,
4442                                     &phash, &hashlen);
4443
4444       Output_section* hashsec =
4445         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4446                                     elfcpp::SHF_ALLOC, false,
4447                                     ORDER_DYNAMIC_LINKER, false, false,
4448                                     false);
4449
4450       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4451                                                                    hashlen,
4452                                                                    align,
4453                                                                    "** hash");
4454       if (hashsec != NULL && hashdata != NULL)
4455         hashsec->add_output_section_data(hashdata);
4456
4457       if (hashsec != NULL)
4458         {
4459           if (dynsym != NULL)
4460             hashsec->set_link_section(dynsym);
4461
4462           // For a 64-bit target, the entries in .gnu.hash do not have
4463           // a uniform size, so we only set the entry size for a
4464           // 32-bit target.
4465           if (parameters->target().get_size() == 32)
4466             hashsec->set_entsize(4);
4467
4468           if (odyn != NULL)
4469             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4470         }
4471     }
4472
4473   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4474       || strcmp(parameters->options().hash_style(), "both") == 0)
4475     {
4476       unsigned char* phash;
4477       unsigned int hashlen;
4478       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4479                                     local_symcount + forced_local_count,
4480                                     &phash, &hashlen);
4481
4482       Output_section* hashsec =
4483         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4484                                     elfcpp::SHF_ALLOC, false,
4485                                     ORDER_DYNAMIC_LINKER, false, false,
4486                                     false);
4487
4488       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4489                                                                    hashlen,
4490                                                                    align,
4491                                                                    "** hash");
4492       if (hashsec != NULL && hashdata != NULL)
4493         hashsec->add_output_section_data(hashdata);
4494
4495       if (hashsec != NULL)
4496         {
4497           if (dynsym != NULL)
4498             hashsec->set_link_section(dynsym);
4499           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4500         }
4501
4502       if (odyn != NULL)
4503         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4504     }
4505 }
4506
4507 // Assign offsets to each local portion of the dynamic symbol table.
4508
4509 void
4510 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4511 {
4512   Output_section* dynsym = this->dynsym_section_;
4513   if (dynsym == NULL)
4514     return;
4515
4516   off_t off = dynsym->offset();
4517
4518   // Skip the dummy symbol at the start of the section.
4519   off += dynsym->entsize();
4520
4521   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4522        p != input_objects->relobj_end();
4523        ++p)
4524     {
4525       unsigned int count = (*p)->set_local_dynsym_offset(off);
4526       off += count * dynsym->entsize();
4527     }
4528 }
4529
4530 // Create the version sections.
4531
4532 void
4533 Layout::create_version_sections(const Versions* versions,
4534                                 const Symbol_table* symtab,
4535                                 unsigned int local_symcount,
4536                                 const std::vector<Symbol*>& dynamic_symbols,
4537                                 const Output_section* dynstr)
4538 {
4539   if (!versions->any_defs() && !versions->any_needs())
4540     return;
4541
4542   switch (parameters->size_and_endianness())
4543     {
4544 #ifdef HAVE_TARGET_32_LITTLE
4545     case Parameters::TARGET_32_LITTLE:
4546       this->sized_create_version_sections<32, false>(versions, symtab,
4547                                                      local_symcount,
4548                                                      dynamic_symbols, dynstr);
4549       break;
4550 #endif
4551 #ifdef HAVE_TARGET_32_BIG
4552     case Parameters::TARGET_32_BIG:
4553       this->sized_create_version_sections<32, true>(versions, symtab,
4554                                                     local_symcount,
4555                                                     dynamic_symbols, dynstr);
4556       break;
4557 #endif
4558 #ifdef HAVE_TARGET_64_LITTLE
4559     case Parameters::TARGET_64_LITTLE:
4560       this->sized_create_version_sections<64, false>(versions, symtab,
4561                                                      local_symcount,
4562                                                      dynamic_symbols, dynstr);
4563       break;
4564 #endif
4565 #ifdef HAVE_TARGET_64_BIG
4566     case Parameters::TARGET_64_BIG:
4567       this->sized_create_version_sections<64, true>(versions, symtab,
4568                                                     local_symcount,
4569                                                     dynamic_symbols, dynstr);
4570       break;
4571 #endif
4572     default:
4573       gold_unreachable();
4574     }
4575 }
4576
4577 // Create the version sections, sized version.
4578
4579 template<int size, bool big_endian>
4580 void
4581 Layout::sized_create_version_sections(
4582     const Versions* versions,
4583     const Symbol_table* symtab,
4584     unsigned int local_symcount,
4585     const std::vector<Symbol*>& dynamic_symbols,
4586     const Output_section* dynstr)
4587 {
4588   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4589                                                      elfcpp::SHT_GNU_versym,
4590                                                      elfcpp::SHF_ALLOC,
4591                                                      false,
4592                                                      ORDER_DYNAMIC_LINKER,
4593                                                      false, false, false);
4594
4595   // Check for NULL since a linker script may discard this section.
4596   if (vsec != NULL)
4597     {
4598       unsigned char* vbuf;
4599       unsigned int vsize;
4600       versions->symbol_section_contents<size, big_endian>(symtab,
4601                                                           &this->dynpool_,
4602                                                           local_symcount,
4603                                                           dynamic_symbols,
4604                                                           &vbuf, &vsize);
4605
4606       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4607                                                                 "** versions");
4608
4609       vsec->add_output_section_data(vdata);
4610       vsec->set_entsize(2);
4611       vsec->set_link_section(this->dynsym_section_);
4612     }
4613
4614   Output_data_dynamic* const odyn = this->dynamic_data_;
4615   if (odyn != NULL && vsec != NULL)
4616     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4617
4618   if (versions->any_defs())
4619     {
4620       Output_section* vdsec;
4621       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4622                                           elfcpp::SHT_GNU_verdef,
4623                                           elfcpp::SHF_ALLOC,
4624                                           false, ORDER_DYNAMIC_LINKER, false,
4625                                           false, false);
4626
4627       if (vdsec != NULL)
4628         {
4629           unsigned char* vdbuf;
4630           unsigned int vdsize;
4631           unsigned int vdentries;
4632           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4633                                                            &vdbuf, &vdsize,
4634                                                            &vdentries);
4635
4636           Output_section_data* vddata =
4637             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4638
4639           vdsec->add_output_section_data(vddata);
4640           vdsec->set_link_section(dynstr);
4641           vdsec->set_info(vdentries);
4642
4643           if (odyn != NULL)
4644             {
4645               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4646               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4647             }
4648         }
4649     }
4650
4651   if (versions->any_needs())
4652     {
4653       Output_section* vnsec;
4654       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4655                                           elfcpp::SHT_GNU_verneed,
4656                                           elfcpp::SHF_ALLOC,
4657                                           false, ORDER_DYNAMIC_LINKER, false,
4658                                           false, false);
4659
4660       if (vnsec != NULL)
4661         {
4662           unsigned char* vnbuf;
4663           unsigned int vnsize;
4664           unsigned int vnentries;
4665           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4666                                                             &vnbuf, &vnsize,
4667                                                             &vnentries);
4668
4669           Output_section_data* vndata =
4670             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4671
4672           vnsec->add_output_section_data(vndata);
4673           vnsec->set_link_section(dynstr);
4674           vnsec->set_info(vnentries);
4675
4676           if (odyn != NULL)
4677             {
4678               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4679               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4680             }
4681         }
4682     }
4683 }
4684
4685 // Create the .interp section and PT_INTERP segment.
4686
4687 void
4688 Layout::create_interp(const Target* target)
4689 {
4690   gold_assert(this->interp_segment_ == NULL);
4691
4692   const char* interp = parameters->options().dynamic_linker();
4693   if (interp == NULL)
4694     {
4695       interp = target->dynamic_linker();
4696       gold_assert(interp != NULL);
4697     }
4698
4699   size_t len = strlen(interp) + 1;
4700
4701   Output_section_data* odata = new Output_data_const(interp, len, 1);
4702
4703   Output_section* osec = this->choose_output_section(NULL, ".interp",
4704                                                      elfcpp::SHT_PROGBITS,
4705                                                      elfcpp::SHF_ALLOC,
4706                                                      false, ORDER_INTERP,
4707                                                      false, false, false);
4708   if (osec != NULL)
4709     osec->add_output_section_data(odata);
4710 }
4711
4712 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4713 // called by the target-specific code.  This does nothing if not doing
4714 // a dynamic link.
4715
4716 // USE_REL is true for REL relocs rather than RELA relocs.
4717
4718 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4719
4720 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4721 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4722 // some targets have multiple reloc sections in PLT_REL.
4723
4724 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4725 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4726 // section.
4727
4728 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4729 // executable.
4730
4731 void
4732 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4733                                 const Output_data* plt_rel,
4734                                 const Output_data_reloc_generic* dyn_rel,
4735                                 bool add_debug, bool dynrel_includes_plt)
4736 {
4737   Output_data_dynamic* odyn = this->dynamic_data_;
4738   if (odyn == NULL)
4739     return;
4740
4741   if (plt_got != NULL && plt_got->output_section() != NULL)
4742     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4743
4744   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4745     {
4746       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4747       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4748       odyn->add_constant(elfcpp::DT_PLTREL,
4749                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4750     }
4751
4752   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4753       || (dynrel_includes_plt
4754           && plt_rel != NULL
4755           && plt_rel->output_section() != NULL))
4756     {
4757       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4758       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4759       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4760                                 (have_dyn_rel
4761                                  ? dyn_rel->output_section()
4762                                  : plt_rel->output_section()));
4763       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4764       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4765         odyn->add_section_size(size_tag,
4766                                dyn_rel->output_section(),
4767                                plt_rel->output_section());
4768       else if (have_dyn_rel)
4769         odyn->add_section_size(size_tag, dyn_rel->output_section());
4770       else
4771         odyn->add_section_size(size_tag, plt_rel->output_section());
4772       const int size = parameters->target().get_size();
4773       elfcpp::DT rel_tag;
4774       int rel_size;
4775       if (use_rel)
4776         {
4777           rel_tag = elfcpp::DT_RELENT;
4778           if (size == 32)
4779             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4780           else if (size == 64)
4781             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4782           else
4783             gold_unreachable();
4784         }
4785       else
4786         {
4787           rel_tag = elfcpp::DT_RELAENT;
4788           if (size == 32)
4789             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4790           else if (size == 64)
4791             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4792           else
4793             gold_unreachable();
4794         }
4795       odyn->add_constant(rel_tag, rel_size);
4796
4797       if (parameters->options().combreloc() && have_dyn_rel)
4798         {
4799           size_t c = dyn_rel->relative_reloc_count();
4800           if (c > 0)
4801             odyn->add_constant((use_rel
4802                                 ? elfcpp::DT_RELCOUNT
4803                                 : elfcpp::DT_RELACOUNT),
4804                                c);
4805         }
4806     }
4807
4808   if (add_debug && !parameters->options().shared())
4809     {
4810       // The value of the DT_DEBUG tag is filled in by the dynamic
4811       // linker at run time, and used by the debugger.
4812       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4813     }
4814 }
4815
4816 void
4817 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4818 {
4819   Output_data_dynamic* odyn = this->dynamic_data_;
4820   if (odyn == NULL)
4821     return;
4822   odyn->add_constant(tag, val);
4823 }
4824
4825 // Finish the .dynamic section and PT_DYNAMIC segment.
4826
4827 void
4828 Layout::finish_dynamic_section(const Input_objects* input_objects,
4829                                const Symbol_table* symtab)
4830 {
4831   if (!this->script_options_->saw_phdrs_clause()
4832       && this->dynamic_section_ != NULL)
4833     {
4834       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4835                                                        (elfcpp::PF_R
4836                                                         | elfcpp::PF_W));
4837       oseg->add_output_section_to_nonload(this->dynamic_section_,
4838                                           elfcpp::PF_R | elfcpp::PF_W);
4839     }
4840
4841   Output_data_dynamic* const odyn = this->dynamic_data_;
4842   if (odyn == NULL)
4843     return;
4844
4845   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4846        p != input_objects->dynobj_end();
4847        ++p)
4848     {
4849       if (!(*p)->is_needed() && (*p)->as_needed())
4850         {
4851           // This dynamic object was linked with --as-needed, but it
4852           // is not needed.
4853           continue;
4854         }
4855
4856       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4857     }
4858
4859   if (parameters->options().shared())
4860     {
4861       const char* soname = parameters->options().soname();
4862       if (soname != NULL)
4863         odyn->add_string(elfcpp::DT_SONAME, soname);
4864     }
4865
4866   Symbol* sym = symtab->lookup(parameters->options().init());
4867   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4868     odyn->add_symbol(elfcpp::DT_INIT, sym);
4869
4870   sym = symtab->lookup(parameters->options().fini());
4871   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4872     odyn->add_symbol(elfcpp::DT_FINI, sym);
4873
4874   // Look for .init_array, .preinit_array and .fini_array by checking
4875   // section types.
4876   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4877       p != this->section_list_.end();
4878       ++p)
4879     switch((*p)->type())
4880       {
4881       case elfcpp::SHT_FINI_ARRAY:
4882         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4883         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4884         break;
4885       case elfcpp::SHT_INIT_ARRAY:
4886         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4887         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4888         break;
4889       case elfcpp::SHT_PREINIT_ARRAY:
4890         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4891         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4892         break;
4893       default:
4894         break;
4895       }
4896
4897   // Add a DT_RPATH entry if needed.
4898   const General_options::Dir_list& rpath(parameters->options().rpath());
4899   if (!rpath.empty())
4900     {
4901       std::string rpath_val;
4902       for (General_options::Dir_list::const_iterator p = rpath.begin();
4903            p != rpath.end();
4904            ++p)
4905         {
4906           if (rpath_val.empty())
4907             rpath_val = p->name();
4908           else
4909             {
4910               // Eliminate duplicates.
4911               General_options::Dir_list::const_iterator q;
4912               for (q = rpath.begin(); q != p; ++q)
4913                 if (q->name() == p->name())
4914                   break;
4915               if (q == p)
4916                 {
4917                   rpath_val += ':';
4918                   rpath_val += p->name();
4919                 }
4920             }
4921         }
4922
4923       if (!parameters->options().enable_new_dtags())
4924         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4925       else
4926         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4927     }
4928
4929   // Look for text segments that have dynamic relocations.
4930   bool have_textrel = false;
4931   if (!this->script_options_->saw_sections_clause())
4932     {
4933       for (Segment_list::const_iterator p = this->segment_list_.begin();
4934            p != this->segment_list_.end();
4935            ++p)
4936         {
4937           if ((*p)->type() == elfcpp::PT_LOAD
4938               && ((*p)->flags() & elfcpp::PF_W) == 0
4939               && (*p)->has_dynamic_reloc())
4940             {
4941               have_textrel = true;
4942               break;
4943             }
4944         }
4945     }
4946   else
4947     {
4948       // We don't know the section -> segment mapping, so we are
4949       // conservative and just look for readonly sections with
4950       // relocations.  If those sections wind up in writable segments,
4951       // then we have created an unnecessary DT_TEXTREL entry.
4952       for (Section_list::const_iterator p = this->section_list_.begin();
4953            p != this->section_list_.end();
4954            ++p)
4955         {
4956           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4957               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4958               && (*p)->has_dynamic_reloc())
4959             {
4960               have_textrel = true;
4961               break;
4962             }
4963         }
4964     }
4965
4966   if (parameters->options().filter() != NULL)
4967     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4968   if (parameters->options().any_auxiliary())
4969     {
4970       for (options::String_set::const_iterator p =
4971              parameters->options().auxiliary_begin();
4972            p != parameters->options().auxiliary_end();
4973            ++p)
4974         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4975     }
4976
4977   // Add a DT_FLAGS entry if necessary.
4978   unsigned int flags = 0;
4979   if (have_textrel)
4980     {
4981       // Add a DT_TEXTREL for compatibility with older loaders.
4982       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4983       flags |= elfcpp::DF_TEXTREL;
4984
4985       if (parameters->options().text())
4986         gold_error(_("read-only segment has dynamic relocations"));
4987       else if (parameters->options().warn_shared_textrel()
4988                && parameters->options().shared())
4989         gold_warning(_("shared library text segment is not shareable"));
4990     }
4991   if (parameters->options().shared() && this->has_static_tls())
4992     flags |= elfcpp::DF_STATIC_TLS;
4993   if (parameters->options().origin())
4994     flags |= elfcpp::DF_ORIGIN;
4995   if (parameters->options().Bsymbolic()
4996       && !parameters->options().have_dynamic_list())
4997     {
4998       flags |= elfcpp::DF_SYMBOLIC;
4999       // Add DT_SYMBOLIC for compatibility with older loaders.
5000       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5001     }
5002   if (parameters->options().now())
5003     flags |= elfcpp::DF_BIND_NOW;
5004   if (flags != 0)
5005     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5006
5007   flags = 0;
5008   if (parameters->options().global())
5009     flags |= elfcpp::DF_1_GLOBAL;
5010   if (parameters->options().initfirst())
5011     flags |= elfcpp::DF_1_INITFIRST;
5012   if (parameters->options().interpose())
5013     flags |= elfcpp::DF_1_INTERPOSE;
5014   if (parameters->options().loadfltr())
5015     flags |= elfcpp::DF_1_LOADFLTR;
5016   if (parameters->options().nodefaultlib())
5017     flags |= elfcpp::DF_1_NODEFLIB;
5018   if (parameters->options().nodelete())
5019     flags |= elfcpp::DF_1_NODELETE;
5020   if (parameters->options().nodlopen())
5021     flags |= elfcpp::DF_1_NOOPEN;
5022   if (parameters->options().nodump())
5023     flags |= elfcpp::DF_1_NODUMP;
5024   if (!parameters->options().shared())
5025     flags &= ~(elfcpp::DF_1_INITFIRST
5026                | elfcpp::DF_1_NODELETE
5027                | elfcpp::DF_1_NOOPEN);
5028   if (parameters->options().origin())
5029     flags |= elfcpp::DF_1_ORIGIN;
5030   if (parameters->options().now())
5031     flags |= elfcpp::DF_1_NOW;
5032   if (parameters->options().Bgroup())
5033     flags |= elfcpp::DF_1_GROUP;
5034   if (flags != 0)
5035     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5036 }
5037
5038 // Set the size of the _DYNAMIC symbol table to be the size of the
5039 // dynamic data.
5040
5041 void
5042 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5043 {
5044   Output_data_dynamic* const odyn = this->dynamic_data_;
5045   if (odyn == NULL)
5046     return;
5047   odyn->finalize_data_size();
5048   if (this->dynamic_symbol_ == NULL)
5049     return;
5050   off_t data_size = odyn->data_size();
5051   const int size = parameters->target().get_size();
5052   if (size == 32)
5053     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5054   else if (size == 64)
5055     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5056   else
5057     gold_unreachable();
5058 }
5059
5060 // The mapping of input section name prefixes to output section names.
5061 // In some cases one prefix is itself a prefix of another prefix; in
5062 // such a case the longer prefix must come first.  These prefixes are
5063 // based on the GNU linker default ELF linker script.
5064
5065 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5066 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5067 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5068 {
5069   MAPPING_INIT(".text.", ".text"),
5070   MAPPING_INIT(".rodata.", ".rodata"),
5071   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5072   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5073   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5074   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5075   MAPPING_INIT(".data.", ".data"),
5076   MAPPING_INIT(".bss.", ".bss"),
5077   MAPPING_INIT(".tdata.", ".tdata"),
5078   MAPPING_INIT(".tbss.", ".tbss"),
5079   MAPPING_INIT(".init_array.", ".init_array"),
5080   MAPPING_INIT(".fini_array.", ".fini_array"),
5081   MAPPING_INIT(".sdata.", ".sdata"),
5082   MAPPING_INIT(".sbss.", ".sbss"),
5083   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5084   // differently depending on whether it is creating a shared library.
5085   MAPPING_INIT(".sdata2.", ".sdata"),
5086   MAPPING_INIT(".sbss2.", ".sbss"),
5087   MAPPING_INIT(".lrodata.", ".lrodata"),
5088   MAPPING_INIT(".ldata.", ".ldata"),
5089   MAPPING_INIT(".lbss.", ".lbss"),
5090   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5091   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5092   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5093   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5094   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5095   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5096   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5097   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5098   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5099   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5100   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5101   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5102   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5103   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5104   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5105   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5106   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5107   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5108   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5109   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5110   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5111 };
5112 #undef MAPPING_INIT
5113 #undef MAPPING_INIT_EXACT
5114
5115 const int Layout::section_name_mapping_count =
5116   (sizeof(Layout::section_name_mapping)
5117    / sizeof(Layout::section_name_mapping[0]));
5118
5119 // Choose the output section name to use given an input section name.
5120 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5121 // length of NAME.
5122
5123 const char*
5124 Layout::output_section_name(const Relobj* relobj, const char* name,
5125                             size_t* plen)
5126 {
5127   // gcc 4.3 generates the following sorts of section names when it
5128   // needs a section name specific to a function:
5129   //   .text.FN
5130   //   .rodata.FN
5131   //   .sdata2.FN
5132   //   .data.FN
5133   //   .data.rel.FN
5134   //   .data.rel.local.FN
5135   //   .data.rel.ro.FN
5136   //   .data.rel.ro.local.FN
5137   //   .sdata.FN
5138   //   .bss.FN
5139   //   .sbss.FN
5140   //   .tdata.FN
5141   //   .tbss.FN
5142
5143   // The GNU linker maps all of those to the part before the .FN,
5144   // except that .data.rel.local.FN is mapped to .data, and
5145   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5146   // beginning with .data.rel.ro.local are grouped together.
5147
5148   // For an anonymous namespace, the string FN can contain a '.'.
5149
5150   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5151   // GNU linker maps to .rodata.
5152
5153   // The .data.rel.ro sections are used with -z relro.  The sections
5154   // are recognized by name.  We use the same names that the GNU
5155   // linker does for these sections.
5156
5157   // It is hard to handle this in a principled way, so we don't even
5158   // try.  We use a table of mappings.  If the input section name is
5159   // not found in the table, we simply use it as the output section
5160   // name.
5161
5162   const Section_name_mapping* psnm = section_name_mapping;
5163   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5164     {
5165       if (psnm->fromlen > 0)
5166         {
5167           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5168             {
5169               *plen = psnm->tolen;
5170               return psnm->to;
5171             }
5172         }
5173       else
5174         {
5175           if (strcmp(name, psnm->from) == 0)
5176             {
5177               *plen = psnm->tolen;
5178               return psnm->to;
5179             }
5180         }
5181     }
5182
5183   // As an additional complication, .ctors sections are output in
5184   // either .ctors or .init_array sections, and .dtors sections are
5185   // output in either .dtors or .fini_array sections.
5186   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5187     {
5188       if (parameters->options().ctors_in_init_array())
5189         {
5190           *plen = 11;
5191           return name[1] == 'c' ? ".init_array" : ".fini_array";
5192         }
5193       else
5194         {
5195           *plen = 6;
5196           return name[1] == 'c' ? ".ctors" : ".dtors";
5197         }
5198     }
5199   if (parameters->options().ctors_in_init_array()
5200       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5201     {
5202       // To make .init_array/.fini_array work with gcc we must exclude
5203       // .ctors and .dtors sections from the crtbegin and crtend
5204       // files.
5205       if (relobj == NULL
5206           || (!Layout::match_file_name(relobj, "crtbegin")
5207               && !Layout::match_file_name(relobj, "crtend")))
5208         {
5209           *plen = 11;
5210           return name[1] == 'c' ? ".init_array" : ".fini_array";
5211         }
5212     }
5213
5214   return name;
5215 }
5216
5217 // Return true if RELOBJ is an input file whose base name matches
5218 // FILE_NAME.  The base name must have an extension of ".o", and must
5219 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5220 // to match crtbegin.o as well as crtbeginS.o without getting confused
5221 // by other possibilities.  Overall matching the file name this way is
5222 // a dreadful hack, but the GNU linker does it in order to better
5223 // support gcc, and we need to be compatible.
5224
5225 bool
5226 Layout::match_file_name(const Relobj* relobj, const char* match)
5227 {
5228   const std::string& file_name(relobj->name());
5229   const char* base_name = lbasename(file_name.c_str());
5230   size_t match_len = strlen(match);
5231   if (strncmp(base_name, match, match_len) != 0)
5232     return false;
5233   size_t base_len = strlen(base_name);
5234   if (base_len != match_len + 2 && base_len != match_len + 3)
5235     return false;
5236   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5237 }
5238
5239 // Check if a comdat group or .gnu.linkonce section with the given
5240 // NAME is selected for the link.  If there is already a section,
5241 // *KEPT_SECTION is set to point to the existing section and the
5242 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5243 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5244 // *KEPT_SECTION is set to the internal copy and the function returns
5245 // true.
5246
5247 bool
5248 Layout::find_or_add_kept_section(const std::string& name,
5249                                  Relobj* object,
5250                                  unsigned int shndx,
5251                                  bool is_comdat,
5252                                  bool is_group_name,
5253                                  Kept_section** kept_section)
5254 {
5255   // It's normal to see a couple of entries here, for the x86 thunk
5256   // sections.  If we see more than a few, we're linking a C++
5257   // program, and we resize to get more space to minimize rehashing.
5258   if (this->signatures_.size() > 4
5259       && !this->resized_signatures_)
5260     {
5261       reserve_unordered_map(&this->signatures_,
5262                             this->number_of_input_files_ * 64);
5263       this->resized_signatures_ = true;
5264     }
5265
5266   Kept_section candidate;
5267   std::pair<Signatures::iterator, bool> ins =
5268     this->signatures_.insert(std::make_pair(name, candidate));
5269
5270   if (kept_section != NULL)
5271     *kept_section = &ins.first->second;
5272   if (ins.second)
5273     {
5274       // This is the first time we've seen this signature.
5275       ins.first->second.set_object(object);
5276       ins.first->second.set_shndx(shndx);
5277       if (is_comdat)
5278         ins.first->second.set_is_comdat();
5279       if (is_group_name)
5280         ins.first->second.set_is_group_name();
5281       return true;
5282     }
5283
5284   // We have already seen this signature.
5285
5286   if (ins.first->second.is_group_name())
5287     {
5288       // We've already seen a real section group with this signature.
5289       // If the kept group is from a plugin object, and we're in the
5290       // replacement phase, accept the new one as a replacement.
5291       if (ins.first->second.object() == NULL
5292           && parameters->options().plugins()->in_replacement_phase())
5293         {
5294           ins.first->second.set_object(object);
5295           ins.first->second.set_shndx(shndx);
5296           return true;
5297         }
5298       return false;
5299     }
5300   else if (is_group_name)
5301     {
5302       // This is a real section group, and we've already seen a
5303       // linkonce section with this signature.  Record that we've seen
5304       // a section group, and don't include this section group.
5305       ins.first->second.set_is_group_name();
5306       return false;
5307     }
5308   else
5309     {
5310       // We've already seen a linkonce section and this is a linkonce
5311       // section.  These don't block each other--this may be the same
5312       // symbol name with different section types.
5313       return true;
5314     }
5315 }
5316
5317 // Store the allocated sections into the section list.
5318
5319 void
5320 Layout::get_allocated_sections(Section_list* section_list) const
5321 {
5322   for (Section_list::const_iterator p = this->section_list_.begin();
5323        p != this->section_list_.end();
5324        ++p)
5325     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5326       section_list->push_back(*p);
5327 }
5328
5329 // Store the executable sections into the section list.
5330
5331 void
5332 Layout::get_executable_sections(Section_list* section_list) const
5333 {
5334   for (Section_list::const_iterator p = this->section_list_.begin();
5335        p != this->section_list_.end();
5336        ++p)
5337     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5338         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5339       section_list->push_back(*p);
5340 }
5341
5342 // Create an output segment.
5343
5344 Output_segment*
5345 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5346 {
5347   gold_assert(!parameters->options().relocatable());
5348   Output_segment* oseg = new Output_segment(type, flags);
5349   this->segment_list_.push_back(oseg);
5350
5351   if (type == elfcpp::PT_TLS)
5352     this->tls_segment_ = oseg;
5353   else if (type == elfcpp::PT_GNU_RELRO)
5354     this->relro_segment_ = oseg;
5355   else if (type == elfcpp::PT_INTERP)
5356     this->interp_segment_ = oseg;
5357
5358   return oseg;
5359 }
5360
5361 // Return the file offset of the normal symbol table.
5362
5363 off_t
5364 Layout::symtab_section_offset() const
5365 {
5366   if (this->symtab_section_ != NULL)
5367     return this->symtab_section_->offset();
5368   return 0;
5369 }
5370
5371 // Return the section index of the normal symbol table.  It may have
5372 // been stripped by the -s/--strip-all option.
5373
5374 unsigned int
5375 Layout::symtab_section_shndx() const
5376 {
5377   if (this->symtab_section_ != NULL)
5378     return this->symtab_section_->out_shndx();
5379   return 0;
5380 }
5381
5382 // Write out the Output_sections.  Most won't have anything to write,
5383 // since most of the data will come from input sections which are
5384 // handled elsewhere.  But some Output_sections do have Output_data.
5385
5386 void
5387 Layout::write_output_sections(Output_file* of) const
5388 {
5389   for (Section_list::const_iterator p = this->section_list_.begin();
5390        p != this->section_list_.end();
5391        ++p)
5392     {
5393       if (!(*p)->after_input_sections())
5394         (*p)->write(of);
5395     }
5396 }
5397
5398 // Write out data not associated with a section or the symbol table.
5399
5400 void
5401 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5402 {
5403   if (!parameters->options().strip_all())
5404     {
5405       const Output_section* symtab_section = this->symtab_section_;
5406       for (Section_list::const_iterator p = this->section_list_.begin();
5407            p != this->section_list_.end();
5408            ++p)
5409         {
5410           if ((*p)->needs_symtab_index())
5411             {
5412               gold_assert(symtab_section != NULL);
5413               unsigned int index = (*p)->symtab_index();
5414               gold_assert(index > 0 && index != -1U);
5415               off_t off = (symtab_section->offset()
5416                            + index * symtab_section->entsize());
5417               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5418             }
5419         }
5420     }
5421
5422   const Output_section* dynsym_section = this->dynsym_section_;
5423   for (Section_list::const_iterator p = this->section_list_.begin();
5424        p != this->section_list_.end();
5425        ++p)
5426     {
5427       if ((*p)->needs_dynsym_index())
5428         {
5429           gold_assert(dynsym_section != NULL);
5430           unsigned int index = (*p)->dynsym_index();
5431           gold_assert(index > 0 && index != -1U);
5432           off_t off = (dynsym_section->offset()
5433                        + index * dynsym_section->entsize());
5434           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5435         }
5436     }
5437
5438   // Write out the Output_data which are not in an Output_section.
5439   for (Data_list::const_iterator p = this->special_output_list_.begin();
5440        p != this->special_output_list_.end();
5441        ++p)
5442     (*p)->write(of);
5443
5444   // Write out the Output_data which are not in an Output_section
5445   // and are regenerated in each iteration of relaxation.
5446   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5447        p != this->relax_output_list_.end();
5448        ++p)
5449     (*p)->write(of);
5450 }
5451
5452 // Write out the Output_sections which can only be written after the
5453 // input sections are complete.
5454
5455 void
5456 Layout::write_sections_after_input_sections(Output_file* of)
5457 {
5458   // Determine the final section offsets, and thus the final output
5459   // file size.  Note we finalize the .shstrab last, to allow the
5460   // after_input_section sections to modify their section-names before
5461   // writing.
5462   if (this->any_postprocessing_sections_)
5463     {
5464       off_t off = this->output_file_size_;
5465       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5466
5467       // Now that we've finalized the names, we can finalize the shstrab.
5468       off =
5469         this->set_section_offsets(off,
5470                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5471
5472       if (off > this->output_file_size_)
5473         {
5474           of->resize(off);
5475           this->output_file_size_ = off;
5476         }
5477     }
5478
5479   for (Section_list::const_iterator p = this->section_list_.begin();
5480        p != this->section_list_.end();
5481        ++p)
5482     {
5483       if ((*p)->after_input_sections())
5484         (*p)->write(of);
5485     }
5486
5487   this->section_headers_->write(of);
5488 }
5489
5490 // If a tree-style build ID was requested, the parallel part of that computation
5491 // is already done, and the final hash-of-hashes is computed here.  For other
5492 // types of build IDs, all the work is done here.
5493
5494 void
5495 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5496                        size_t size_of_hashes) const
5497 {
5498   if (this->build_id_note_ == NULL)
5499     return;
5500
5501   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5502                                           this->build_id_note_->data_size());
5503
5504   if (array_of_hashes == NULL)
5505     {
5506       const size_t output_file_size = this->output_file_size();
5507       const unsigned char* iv = of->get_input_view(0, output_file_size);
5508       const char* style = parameters->options().build_id();
5509
5510       // If we get here with style == "tree" then the output must be
5511       // too small for chunking, and we use SHA-1 in that case.
5512       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5513         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5514       else if (strcmp(style, "md5") == 0)
5515         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5516       else
5517         gold_unreachable();
5518
5519       of->free_input_view(0, output_file_size, iv);
5520     }
5521   else
5522     {
5523       // Non-overlapping substrings of the output file have been hashed.
5524       // Compute SHA-1 hash of the hashes.
5525       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5526                   size_of_hashes, ov);
5527       delete[] array_of_hashes;
5528     }
5529
5530   of->write_output_view(this->build_id_note_->offset(),
5531                         this->build_id_note_->data_size(),
5532                         ov);
5533 }
5534
5535 // Write out a binary file.  This is called after the link is
5536 // complete.  IN is the temporary output file we used to generate the
5537 // ELF code.  We simply walk through the segments, read them from
5538 // their file offset in IN, and write them to their load address in
5539 // the output file.  FIXME: with a bit more work, we could support
5540 // S-records and/or Intel hex format here.
5541
5542 void
5543 Layout::write_binary(Output_file* in) const
5544 {
5545   gold_assert(parameters->options().oformat_enum()
5546               == General_options::OBJECT_FORMAT_BINARY);
5547
5548   // Get the size of the binary file.
5549   uint64_t max_load_address = 0;
5550   for (Segment_list::const_iterator p = this->segment_list_.begin();
5551        p != this->segment_list_.end();
5552        ++p)
5553     {
5554       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5555         {
5556           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5557           if (max_paddr > max_load_address)
5558             max_load_address = max_paddr;
5559         }
5560     }
5561
5562   Output_file out(parameters->options().output_file_name());
5563   out.open(max_load_address);
5564
5565   for (Segment_list::const_iterator p = this->segment_list_.begin();
5566        p != this->segment_list_.end();
5567        ++p)
5568     {
5569       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5570         {
5571           const unsigned char* vin = in->get_input_view((*p)->offset(),
5572                                                         (*p)->filesz());
5573           unsigned char* vout = out.get_output_view((*p)->paddr(),
5574                                                     (*p)->filesz());
5575           memcpy(vout, vin, (*p)->filesz());
5576           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5577           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5578         }
5579     }
5580
5581   out.close();
5582 }
5583
5584 // Print the output sections to the map file.
5585
5586 void
5587 Layout::print_to_mapfile(Mapfile* mapfile) const
5588 {
5589   for (Segment_list::const_iterator p = this->segment_list_.begin();
5590        p != this->segment_list_.end();
5591        ++p)
5592     (*p)->print_sections_to_mapfile(mapfile);
5593   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5594        p != this->unattached_section_list_.end();
5595        ++p)
5596     (*p)->print_to_mapfile(mapfile);
5597 }
5598
5599 // Print statistical information to stderr.  This is used for --stats.
5600
5601 void
5602 Layout::print_stats() const
5603 {
5604   this->namepool_.print_stats("section name pool");
5605   this->sympool_.print_stats("output symbol name pool");
5606   this->dynpool_.print_stats("dynamic name pool");
5607
5608   for (Section_list::const_iterator p = this->section_list_.begin();
5609        p != this->section_list_.end();
5610        ++p)
5611     (*p)->print_merge_stats();
5612 }
5613
5614 // Write_sections_task methods.
5615
5616 // We can always run this task.
5617
5618 Task_token*
5619 Write_sections_task::is_runnable()
5620 {
5621   return NULL;
5622 }
5623
5624 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5625 // when finished.
5626
5627 void
5628 Write_sections_task::locks(Task_locker* tl)
5629 {
5630   tl->add(this, this->output_sections_blocker_);
5631   if (this->input_sections_blocker_ != NULL)
5632     tl->add(this, this->input_sections_blocker_);
5633   tl->add(this, this->final_blocker_);
5634 }
5635
5636 // Run the task--write out the data.
5637
5638 void
5639 Write_sections_task::run(Workqueue*)
5640 {
5641   this->layout_->write_output_sections(this->of_);
5642 }
5643
5644 // Write_data_task methods.
5645
5646 // We can always run this task.
5647
5648 Task_token*
5649 Write_data_task::is_runnable()
5650 {
5651   return NULL;
5652 }
5653
5654 // We need to unlock FINAL_BLOCKER when finished.
5655
5656 void
5657 Write_data_task::locks(Task_locker* tl)
5658 {
5659   tl->add(this, this->final_blocker_);
5660 }
5661
5662 // Run the task--write out the data.
5663
5664 void
5665 Write_data_task::run(Workqueue*)
5666 {
5667   this->layout_->write_data(this->symtab_, this->of_);
5668 }
5669
5670 // Write_symbols_task methods.
5671
5672 // We can always run this task.
5673
5674 Task_token*
5675 Write_symbols_task::is_runnable()
5676 {
5677   return NULL;
5678 }
5679
5680 // We need to unlock FINAL_BLOCKER when finished.
5681
5682 void
5683 Write_symbols_task::locks(Task_locker* tl)
5684 {
5685   tl->add(this, this->final_blocker_);
5686 }
5687
5688 // Run the task--write out the symbols.
5689
5690 void
5691 Write_symbols_task::run(Workqueue*)
5692 {
5693   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5694                                this->layout_->symtab_xindex(),
5695                                this->layout_->dynsym_xindex(), this->of_);
5696 }
5697
5698 // Write_after_input_sections_task methods.
5699
5700 // We can only run this task after the input sections have completed.
5701
5702 Task_token*
5703 Write_after_input_sections_task::is_runnable()
5704 {
5705   if (this->input_sections_blocker_->is_blocked())
5706     return this->input_sections_blocker_;
5707   return NULL;
5708 }
5709
5710 // We need to unlock FINAL_BLOCKER when finished.
5711
5712 void
5713 Write_after_input_sections_task::locks(Task_locker* tl)
5714 {
5715   tl->add(this, this->final_blocker_);
5716 }
5717
5718 // Run the task.
5719
5720 void
5721 Write_after_input_sections_task::run(Workqueue*)
5722 {
5723   this->layout_->write_sections_after_input_sections(this->of_);
5724 }
5725
5726 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5727 // or as a "tree" where each chunk of the string is hashed and then those
5728 // hashes are put into a (much smaller) string which is hashed with sha1.
5729 // We compute a checksum over the entire file because that is simplest.
5730
5731 void
5732 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5733 {
5734   Task_token* post_hash_tasks_blocker = new Task_token(true);
5735   const Layout* layout = this->layout_;
5736   Output_file* of = this->of_;
5737   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5738                            : static_cast<size_t>(layout->output_file_size()));
5739   unsigned char* array_of_hashes = NULL;
5740   size_t size_of_hashes = 0;
5741
5742   if (strcmp(this->options_->build_id(), "tree") == 0
5743       && this->options_->build_id_chunk_size_for_treehash() > 0
5744       && filesize > 0
5745       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5746     {
5747       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5748       const size_t chunk_size =
5749           this->options_->build_id_chunk_size_for_treehash();
5750       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5751       post_hash_tasks_blocker->add_blockers(num_hashes);
5752       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5753       array_of_hashes = new unsigned char[size_of_hashes];
5754       unsigned char *dst = array_of_hashes;
5755       for (size_t i = 0, src_offset = 0; i < num_hashes;
5756            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5757         {
5758           size_t size = std::min(chunk_size, filesize - src_offset);
5759           workqueue->queue(new Hash_task(of,
5760                                          src_offset,
5761                                          size,
5762                                          dst,
5763                                          post_hash_tasks_blocker));
5764         }
5765     }
5766
5767   // Queue the final task to write the build id and close the output file.
5768   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5769                                                            layout,
5770                                                            of,
5771                                                            array_of_hashes,
5772                                                            size_of_hashes),
5773                                      post_hash_tasks_blocker,
5774                                      "Task_function Close_task_runner"));
5775 }
5776
5777 // Close_task_runner methods.
5778
5779 // Finish up the build ID computation, if necessary, and write a binary file,
5780 // if necessary.  Then close the output file.
5781
5782 void
5783 Close_task_runner::run(Workqueue*, const Task*)
5784 {
5785   // At this point the multi-threaded part of the build ID computation,
5786   // if any, is done.  See Build_id_task_runner.
5787   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5788                                 this->size_of_hashes_);
5789
5790   // If we've been asked to create a binary file, we do so here.
5791   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5792     this->layout_->write_binary(this->of_);
5793
5794   this->of_->close();
5795 }
5796
5797 // Instantiate the templates we need.  We could use the configure
5798 // script to restrict this to only the ones for implemented targets.
5799
5800 #ifdef HAVE_TARGET_32_LITTLE
5801 template
5802 Output_section*
5803 Layout::init_fixed_output_section<32, false>(
5804     const char* name,
5805     elfcpp::Shdr<32, false>& shdr);
5806 #endif
5807
5808 #ifdef HAVE_TARGET_32_BIG
5809 template
5810 Output_section*
5811 Layout::init_fixed_output_section<32, true>(
5812     const char* name,
5813     elfcpp::Shdr<32, true>& shdr);
5814 #endif
5815
5816 #ifdef HAVE_TARGET_64_LITTLE
5817 template
5818 Output_section*
5819 Layout::init_fixed_output_section<64, false>(
5820     const char* name,
5821     elfcpp::Shdr<64, false>& shdr);
5822 #endif
5823
5824 #ifdef HAVE_TARGET_64_BIG
5825 template
5826 Output_section*
5827 Layout::init_fixed_output_section<64, true>(
5828     const char* name,
5829     elfcpp::Shdr<64, true>& shdr);
5830 #endif
5831
5832 #ifdef HAVE_TARGET_32_LITTLE
5833 template
5834 Output_section*
5835 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5836                           unsigned int shndx,
5837                           const char* name,
5838                           const elfcpp::Shdr<32, false>& shdr,
5839                           unsigned int, unsigned int, off_t*);
5840 #endif
5841
5842 #ifdef HAVE_TARGET_32_BIG
5843 template
5844 Output_section*
5845 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5846                          unsigned int shndx,
5847                          const char* name,
5848                          const elfcpp::Shdr<32, true>& shdr,
5849                          unsigned int, unsigned int, off_t*);
5850 #endif
5851
5852 #ifdef HAVE_TARGET_64_LITTLE
5853 template
5854 Output_section*
5855 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5856                           unsigned int shndx,
5857                           const char* name,
5858                           const elfcpp::Shdr<64, false>& shdr,
5859                           unsigned int, unsigned int, off_t*);
5860 #endif
5861
5862 #ifdef HAVE_TARGET_64_BIG
5863 template
5864 Output_section*
5865 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5866                          unsigned int shndx,
5867                          const char* name,
5868                          const elfcpp::Shdr<64, true>& shdr,
5869                          unsigned int, unsigned int, off_t*);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_LITTLE
5873 template
5874 Output_section*
5875 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5876                                 unsigned int reloc_shndx,
5877                                 const elfcpp::Shdr<32, false>& shdr,
5878                                 Output_section* data_section,
5879                                 Relocatable_relocs* rr);
5880 #endif
5881
5882 #ifdef HAVE_TARGET_32_BIG
5883 template
5884 Output_section*
5885 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5886                                unsigned int reloc_shndx,
5887                                const elfcpp::Shdr<32, true>& shdr,
5888                                Output_section* data_section,
5889                                Relocatable_relocs* rr);
5890 #endif
5891
5892 #ifdef HAVE_TARGET_64_LITTLE
5893 template
5894 Output_section*
5895 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5896                                 unsigned int reloc_shndx,
5897                                 const elfcpp::Shdr<64, false>& shdr,
5898                                 Output_section* data_section,
5899                                 Relocatable_relocs* rr);
5900 #endif
5901
5902 #ifdef HAVE_TARGET_64_BIG
5903 template
5904 Output_section*
5905 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5906                                unsigned int reloc_shndx,
5907                                const elfcpp::Shdr<64, true>& shdr,
5908                                Output_section* data_section,
5909                                Relocatable_relocs* rr);
5910 #endif
5911
5912 #ifdef HAVE_TARGET_32_LITTLE
5913 template
5914 void
5915 Layout::layout_group<32, false>(Symbol_table* symtab,
5916                                 Sized_relobj_file<32, false>* object,
5917                                 unsigned int,
5918                                 const char* group_section_name,
5919                                 const char* signature,
5920                                 const elfcpp::Shdr<32, false>& shdr,
5921                                 elfcpp::Elf_Word flags,
5922                                 std::vector<unsigned int>* shndxes);
5923 #endif
5924
5925 #ifdef HAVE_TARGET_32_BIG
5926 template
5927 void
5928 Layout::layout_group<32, true>(Symbol_table* symtab,
5929                                Sized_relobj_file<32, true>* object,
5930                                unsigned int,
5931                                const char* group_section_name,
5932                                const char* signature,
5933                                const elfcpp::Shdr<32, true>& shdr,
5934                                elfcpp::Elf_Word flags,
5935                                std::vector<unsigned int>* shndxes);
5936 #endif
5937
5938 #ifdef HAVE_TARGET_64_LITTLE
5939 template
5940 void
5941 Layout::layout_group<64, false>(Symbol_table* symtab,
5942                                 Sized_relobj_file<64, false>* object,
5943                                 unsigned int,
5944                                 const char* group_section_name,
5945                                 const char* signature,
5946                                 const elfcpp::Shdr<64, false>& shdr,
5947                                 elfcpp::Elf_Word flags,
5948                                 std::vector<unsigned int>* shndxes);
5949 #endif
5950
5951 #ifdef HAVE_TARGET_64_BIG
5952 template
5953 void
5954 Layout::layout_group<64, true>(Symbol_table* symtab,
5955                                Sized_relobj_file<64, true>* object,
5956                                unsigned int,
5957                                const char* group_section_name,
5958                                const char* signature,
5959                                const elfcpp::Shdr<64, true>& shdr,
5960                                elfcpp::Elf_Word flags,
5961                                std::vector<unsigned int>* shndxes);
5962 #endif
5963
5964 #ifdef HAVE_TARGET_32_LITTLE
5965 template
5966 Output_section*
5967 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5968                                    const unsigned char* symbols,
5969                                    off_t symbols_size,
5970                                    const unsigned char* symbol_names,
5971                                    off_t symbol_names_size,
5972                                    unsigned int shndx,
5973                                    const elfcpp::Shdr<32, false>& shdr,
5974                                    unsigned int reloc_shndx,
5975                                    unsigned int reloc_type,
5976                                    off_t* off);
5977 #endif
5978
5979 #ifdef HAVE_TARGET_32_BIG
5980 template
5981 Output_section*
5982 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5983                                   const unsigned char* symbols,
5984                                   off_t symbols_size,
5985                                   const unsigned char* symbol_names,
5986                                   off_t symbol_names_size,
5987                                   unsigned int shndx,
5988                                   const elfcpp::Shdr<32, true>& shdr,
5989                                   unsigned int reloc_shndx,
5990                                   unsigned int reloc_type,
5991                                   off_t* off);
5992 #endif
5993
5994 #ifdef HAVE_TARGET_64_LITTLE
5995 template
5996 Output_section*
5997 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5998                                    const unsigned char* symbols,
5999                                    off_t symbols_size,
6000                                    const unsigned char* symbol_names,
6001                                    off_t symbol_names_size,
6002                                    unsigned int shndx,
6003                                    const elfcpp::Shdr<64, false>& shdr,
6004                                    unsigned int reloc_shndx,
6005                                    unsigned int reloc_type,
6006                                    off_t* off);
6007 #endif
6008
6009 #ifdef HAVE_TARGET_64_BIG
6010 template
6011 Output_section*
6012 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6013                                   const unsigned char* symbols,
6014                                   off_t symbols_size,
6015                                   const unsigned char* symbol_names,
6016                                   off_t symbol_names_size,
6017                                   unsigned int shndx,
6018                                   const elfcpp::Shdr<64, true>& shdr,
6019                                   unsigned int reloc_shndx,
6020                                   unsigned int reloc_type,
6021                                   off_t* off);
6022 #endif
6023
6024 #ifdef HAVE_TARGET_32_LITTLE
6025 template
6026 void
6027 Layout::add_to_gdb_index(bool is_type_unit,
6028                          Sized_relobj<32, false>* object,
6029                          const unsigned char* symbols,
6030                          off_t symbols_size,
6031                          unsigned int shndx,
6032                          unsigned int reloc_shndx,
6033                          unsigned int reloc_type);
6034 #endif
6035
6036 #ifdef HAVE_TARGET_32_BIG
6037 template
6038 void
6039 Layout::add_to_gdb_index(bool is_type_unit,
6040                          Sized_relobj<32, true>* object,
6041                          const unsigned char* symbols,
6042                          off_t symbols_size,
6043                          unsigned int shndx,
6044                          unsigned int reloc_shndx,
6045                          unsigned int reloc_type);
6046 #endif
6047
6048 #ifdef HAVE_TARGET_64_LITTLE
6049 template
6050 void
6051 Layout::add_to_gdb_index(bool is_type_unit,
6052                          Sized_relobj<64, false>* object,
6053                          const unsigned char* symbols,
6054                          off_t symbols_size,
6055                          unsigned int shndx,
6056                          unsigned int reloc_shndx,
6057                          unsigned int reloc_type);
6058 #endif
6059
6060 #ifdef HAVE_TARGET_64_BIG
6061 template
6062 void
6063 Layout::add_to_gdb_index(bool is_type_unit,
6064                          Sized_relobj<64, true>* object,
6065                          const unsigned char* symbols,
6066                          off_t symbols_size,
6067                          unsigned int shndx,
6068                          unsigned int reloc_shndx,
6069                          unsigned int reloc_type);
6070 #endif
6071
6072 } // End namespace gold.