Fix problem where mixed section types can cause internal error during a -r link.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int sh_type, unsigned int reloc_shndx,
1157                unsigned int, off_t* off)
1158 {
1159   *off = 0;
1160
1161   if (!this->include_section(object, name, shdr))
1162     return NULL;
1163
1164   // In a relocatable link a grouped section must not be combined with
1165   // any other sections.
1166   Output_section* os;
1167   if (parameters->options().relocatable()
1168       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1169     {
1170       // Some flags in the input section should not be automatically
1171       // copied to the output section.
1172       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1173                                  & ~ elfcpp::SHF_COMPRESSED);
1174       name = this->namepool_.add(name, true, NULL);
1175       os = this->make_output_section(name, sh_type, flags,
1176                                      ORDER_INVALID, false);
1177     }
1178   else
1179     {
1180       // All ".text.unlikely.*" sections can be moved to a unique
1181       // segment with --text-unlikely-segment option.
1182       bool text_unlikely_segment
1183           = (parameters->options().text_unlikely_segment()
1184              && is_prefix_of(".text.unlikely",
1185                              object->section_name(shndx).c_str()));
1186       if (text_unlikely_segment)
1187         {
1188           elfcpp::Elf_Xword flags
1189             = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191           Stringpool::Key name_key;
1192           const char* os_name = this->namepool_.add(".text.unlikely", true,
1193                                                     &name_key);
1194           os = this->get_output_section(os_name, name_key, sh_type, flags,
1195                                         ORDER_INVALID, false);
1196           // Map this output section to a unique segment.  This is done to
1197           // separate "text" that is not likely to be executed from "text"
1198           // that is likely executed.
1199           os->set_is_unique_segment();
1200         }
1201       else
1202         {
1203           // Plugins can choose to place one or more subsets of sections in
1204           // unique segments and this is done by mapping these section subsets
1205           // to unique output sections.  Check if this section needs to be
1206           // remapped to a unique output section.
1207           Section_segment_map::iterator it
1208             = this->section_segment_map_.find(Const_section_id(object, shndx));
1209           if (it == this->section_segment_map_.end())
1210             {
1211               os = this->choose_output_section(object, name, sh_type,
1212                                                shdr.get_sh_flags(), true,
1213                                                ORDER_INVALID, false, false,
1214                                                true);
1215             }
1216           else
1217             {
1218               // We know the name of the output section, directly call
1219               // get_output_section here by-passing choose_output_section.
1220               elfcpp::Elf_Xword flags
1221                 = this->get_output_section_flags(shdr.get_sh_flags());
1222
1223               const char* os_name = it->second->name;
1224               Stringpool::Key name_key;
1225               os_name = this->namepool_.add(os_name, true, &name_key);
1226               os = this->get_output_section(os_name, name_key, sh_type, flags,
1227                                         ORDER_INVALID, false);
1228               if (!os->is_unique_segment())
1229                 {
1230                   os->set_is_unique_segment();
1231                   os->set_extra_segment_flags(it->second->flags);
1232                   os->set_segment_alignment(it->second->align);
1233                 }
1234             }
1235           }
1236       if (os == NULL)
1237         return NULL;
1238     }
1239
1240   // By default the GNU linker sorts input sections whose names match
1241   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1242   // sections are sorted by name.  This is used to implement
1243   // constructor priority ordering.  We are compatible.  When we put
1244   // .ctor sections in .init_array and .dtor sections in .fini_array,
1245   // we must also sort plain .ctor and .dtor sections.
1246   if (!this->script_options_->saw_sections_clause()
1247       && !parameters->options().relocatable()
1248       && (is_prefix_of(".ctors.", name)
1249           || is_prefix_of(".dtors.", name)
1250           || is_prefix_of(".init_array.", name)
1251           || is_prefix_of(".fini_array.", name)
1252           || (parameters->options().ctors_in_init_array()
1253               && (strcmp(name, ".ctors") == 0
1254                   || strcmp(name, ".dtors") == 0))))
1255     os->set_must_sort_attached_input_sections();
1256
1257   // By default the GNU linker sorts some special text sections ahead
1258   // of others.  We are compatible.
1259   if (parameters->options().text_reorder()
1260       && !this->script_options_->saw_sections_clause()
1261       && !this->is_section_ordering_specified()
1262       && !parameters->options().relocatable()
1263       && Layout::special_ordering_of_input_section(name) >= 0)
1264     os->set_must_sort_attached_input_sections();
1265
1266   // If this is a .ctors or .ctors.* section being mapped to a
1267   // .init_array section, or a .dtors or .dtors.* section being mapped
1268   // to a .fini_array section, we will need to reverse the words if
1269   // there is more than one.  Record this section for later.  See
1270   // ctors_sections_in_init_array above.
1271   if (!this->script_options_->saw_sections_clause()
1272       && !parameters->options().relocatable()
1273       && shdr.get_sh_size() > size / 8
1274       && (((strcmp(name, ".ctors") == 0
1275             || is_prefix_of(".ctors.", name))
1276            && strcmp(os->name(), ".init_array") == 0)
1277           || ((strcmp(name, ".dtors") == 0
1278                || is_prefix_of(".dtors.", name))
1279               && strcmp(os->name(), ".fini_array") == 0)))
1280     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1281
1282   // FIXME: Handle SHF_LINK_ORDER somewhere.
1283
1284   elfcpp::Elf_Xword orig_flags = os->flags();
1285
1286   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1287                                this->script_options_->saw_sections_clause());
1288
1289   // If the flags changed, we may have to change the order.
1290   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1291     {
1292       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1293       elfcpp::Elf_Xword new_flags =
1294         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1295       if (orig_flags != new_flags)
1296         os->set_order(this->default_section_order(os, false));
1297     }
1298
1299   this->have_added_input_section_ = true;
1300
1301   return os;
1302 }
1303
1304 // Maps section SECN to SEGMENT s.
1305 void
1306 Layout::insert_section_segment_map(Const_section_id secn,
1307                                    Unique_segment_info *s)
1308 {
1309   gold_assert(this->unique_segment_for_sections_specified_);
1310   this->section_segment_map_[secn] = s;
1311 }
1312
1313 // Handle a relocation section when doing a relocatable link.
1314
1315 template<int size, bool big_endian>
1316 Output_section*
1317 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1318                      unsigned int,
1319                      const elfcpp::Shdr<size, big_endian>& shdr,
1320                      Output_section* data_section,
1321                      Relocatable_relocs* rr)
1322 {
1323   gold_assert(parameters->options().relocatable()
1324               || parameters->options().emit_relocs());
1325
1326   int sh_type = shdr.get_sh_type();
1327
1328   std::string name;
1329   if (sh_type == elfcpp::SHT_REL)
1330     name = ".rel";
1331   else if (sh_type == elfcpp::SHT_RELA)
1332     name = ".rela";
1333   else
1334     gold_unreachable();
1335   name += data_section->name();
1336
1337   // If the output data section already has a reloc section, use that;
1338   // otherwise, make a new one.
1339   Output_section* os = data_section->reloc_section();
1340   if (os == NULL)
1341     {
1342       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1343       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1344                                      ORDER_INVALID, false);
1345       os->set_should_link_to_symtab();
1346       os->set_info_section(data_section);
1347       data_section->set_reloc_section(os);
1348     }
1349
1350   Output_section_data* posd;
1351   if (sh_type == elfcpp::SHT_REL)
1352     {
1353       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1354       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1355                                            size,
1356                                            big_endian>(rr);
1357     }
1358   else if (sh_type == elfcpp::SHT_RELA)
1359     {
1360       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1361       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1362                                            size,
1363                                            big_endian>(rr);
1364     }
1365   else
1366     gold_unreachable();
1367
1368   os->add_output_section_data(posd);
1369   rr->set_output_data(posd);
1370
1371   return os;
1372 }
1373
1374 // Handle a group section when doing a relocatable link.
1375
1376 template<int size, bool big_endian>
1377 void
1378 Layout::layout_group(Symbol_table* symtab,
1379                      Sized_relobj_file<size, big_endian>* object,
1380                      unsigned int,
1381                      const char* group_section_name,
1382                      const char* signature,
1383                      const elfcpp::Shdr<size, big_endian>& shdr,
1384                      elfcpp::Elf_Word flags,
1385                      std::vector<unsigned int>* shndxes)
1386 {
1387   gold_assert(parameters->options().relocatable());
1388   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1389   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1390   Output_section* os = this->make_output_section(group_section_name,
1391                                                  elfcpp::SHT_GROUP,
1392                                                  shdr.get_sh_flags(),
1393                                                  ORDER_INVALID, false);
1394
1395   // We need to find a symbol with the signature in the symbol table.
1396   // If we don't find one now, we need to look again later.
1397   Symbol* sym = symtab->lookup(signature, NULL);
1398   if (sym != NULL)
1399     os->set_info_symndx(sym);
1400   else
1401     {
1402       // Reserve some space to minimize reallocations.
1403       if (this->group_signatures_.empty())
1404         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1405
1406       // We will wind up using a symbol whose name is the signature.
1407       // So just put the signature in the symbol name pool to save it.
1408       signature = symtab->canonicalize_name(signature);
1409       this->group_signatures_.push_back(Group_signature(os, signature));
1410     }
1411
1412   os->set_should_link_to_symtab();
1413   os->set_entsize(4);
1414
1415   section_size_type entry_count =
1416     convert_to_section_size_type(shdr.get_sh_size() / 4);
1417   Output_section_data* posd =
1418     new Output_data_group<size, big_endian>(object, entry_count, flags,
1419                                             shndxes);
1420   os->add_output_section_data(posd);
1421 }
1422
1423 // Special GNU handling of sections name .eh_frame.  They will
1424 // normally hold exception frame data as defined by the C++ ABI
1425 // (http://codesourcery.com/cxx-abi/).
1426
1427 template<int size, bool big_endian>
1428 Output_section*
1429 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1430                         const unsigned char* symbols,
1431                         off_t symbols_size,
1432                         const unsigned char* symbol_names,
1433                         off_t symbol_names_size,
1434                         unsigned int shndx,
1435                         const elfcpp::Shdr<size, big_endian>& shdr,
1436                         unsigned int reloc_shndx, unsigned int reloc_type,
1437                         off_t* off)
1438 {
1439   const unsigned int unwind_section_type =
1440       parameters->target().unwind_section_type();
1441
1442   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1443               || shdr.get_sh_type() == unwind_section_type);
1444   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1445
1446   Output_section* os = this->make_eh_frame_section(object);
1447   if (os == NULL)
1448     return NULL;
1449
1450   gold_assert(this->eh_frame_section_ == os);
1451
1452   elfcpp::Elf_Xword orig_flags = os->flags();
1453
1454   Eh_frame::Eh_frame_section_disposition disp =
1455       Eh_frame::EH_UNRECOGNIZED_SECTION;
1456   if (!parameters->incremental())
1457     {
1458       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1459                                                              symbols,
1460                                                              symbols_size,
1461                                                              symbol_names,
1462                                                              symbol_names_size,
1463                                                              shndx,
1464                                                              reloc_shndx,
1465                                                              reloc_type);
1466     }
1467
1468   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1469     {
1470       os->update_flags_for_input_section(shdr.get_sh_flags());
1471
1472       // A writable .eh_frame section is a RELRO section.
1473       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1474           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1475         {
1476           os->set_is_relro();
1477           os->set_order(ORDER_RELRO);
1478         }
1479
1480       *off = -1;
1481       return os;
1482     }
1483
1484   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1485     {
1486       // We found the end marker section, so now we can add the set of
1487       // optimized sections to the output section.  We need to postpone
1488       // adding this until we've found a section we can optimize so that
1489       // the .eh_frame section in crtbeginT.o winds up at the start of
1490       // the output section.
1491       os->add_output_section_data(this->eh_frame_data_);
1492       this->added_eh_frame_data_ = true;
1493      }
1494
1495   // We couldn't handle this .eh_frame section for some reason.
1496   // Add it as a normal section.
1497   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1498   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1499                                reloc_shndx, saw_sections_clause);
1500   this->have_added_input_section_ = true;
1501
1502   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1503       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1504     os->set_order(this->default_section_order(os, false));
1505
1506   return os;
1507 }
1508
1509 void
1510 Layout::finalize_eh_frame_section()
1511 {
1512   // If we never found an end marker section, we need to add the
1513   // optimized eh sections to the output section now.
1514   if (!parameters->incremental()
1515       && this->eh_frame_section_ != NULL
1516       && !this->added_eh_frame_data_)
1517     {
1518       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1519       this->added_eh_frame_data_ = true;
1520     }
1521 }
1522
1523 // Create and return the magic .eh_frame section.  Create
1524 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1525 // input .eh_frame section; it may be NULL.
1526
1527 Output_section*
1528 Layout::make_eh_frame_section(const Relobj* object)
1529 {
1530   const unsigned int unwind_section_type =
1531       parameters->target().unwind_section_type();
1532
1533   Output_section* os = this->choose_output_section(object, ".eh_frame",
1534                                                    unwind_section_type,
1535                                                    elfcpp::SHF_ALLOC, false,
1536                                                    ORDER_EHFRAME, false, false,
1537                                                    false);
1538   if (os == NULL)
1539     return NULL;
1540
1541   if (this->eh_frame_section_ == NULL)
1542     {
1543       this->eh_frame_section_ = os;
1544       this->eh_frame_data_ = new Eh_frame();
1545
1546       // For incremental linking, we do not optimize .eh_frame sections
1547       // or create a .eh_frame_hdr section.
1548       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1549         {
1550           Output_section* hdr_os =
1551             this->choose_output_section(NULL, ".eh_frame_hdr",
1552                                         unwind_section_type,
1553                                         elfcpp::SHF_ALLOC, false,
1554                                         ORDER_EHFRAME, false, false,
1555                                         false);
1556
1557           if (hdr_os != NULL)
1558             {
1559               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1560                                                         this->eh_frame_data_);
1561               hdr_os->add_output_section_data(hdr_posd);
1562
1563               hdr_os->set_after_input_sections();
1564
1565               if (!this->script_options_->saw_phdrs_clause())
1566                 {
1567                   Output_segment* hdr_oseg;
1568                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1569                                                        elfcpp::PF_R);
1570                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1571                                                           elfcpp::PF_R);
1572                 }
1573
1574               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1575             }
1576         }
1577     }
1578
1579   return os;
1580 }
1581
1582 // Add an exception frame for a PLT.  This is called from target code.
1583
1584 void
1585 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1586                              size_t cie_length, const unsigned char* fde_data,
1587                              size_t fde_length)
1588 {
1589   if (parameters->incremental())
1590     {
1591       // FIXME: Maybe this could work some day....
1592       return;
1593     }
1594   Output_section* os = this->make_eh_frame_section(NULL);
1595   if (os == NULL)
1596     return;
1597   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1598                                             fde_data, fde_length);
1599   if (!this->added_eh_frame_data_)
1600     {
1601       os->add_output_section_data(this->eh_frame_data_);
1602       this->added_eh_frame_data_ = true;
1603     }
1604 }
1605
1606 // Remove .eh_frame information for a PLT.  FDEs using the CIE must
1607 // be removed in reverse order to the order they were added.
1608
1609 void
1610 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1611                                 size_t cie_length, const unsigned char* fde_data,
1612                                 size_t fde_length)
1613 {
1614   if (parameters->incremental())
1615     {
1616       // FIXME: Maybe this could work some day....
1617       return;
1618     }
1619   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1620                                                fde_data, fde_length);
1621 }
1622
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Layout::add_to_gdb_index(bool is_type_unit,
1629                          Sized_relobj<size, big_endian>* object,
1630                          const unsigned char* symbols,
1631                          off_t symbols_size,
1632                          unsigned int shndx,
1633                          unsigned int reloc_shndx,
1634                          unsigned int reloc_type)
1635 {
1636   if (this->gdb_index_data_ == NULL)
1637     {
1638       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639                                                        elfcpp::SHT_PROGBITS, 0,
1640                                                        false, ORDER_INVALID,
1641                                                        false, false, false);
1642       if (os == NULL)
1643         return;
1644
1645       this->gdb_index_data_ = new Gdb_index(os);
1646       os->add_output_section_data(this->gdb_index_data_);
1647       os->set_after_input_sections();
1648     }
1649
1650   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651                                          symbols_size, shndx, reloc_shndx,
1652                                          reloc_type);
1653 }
1654
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1656 // the output section.
1657
1658 Output_section*
1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660                                 elfcpp::Elf_Xword flags,
1661                                 Output_section_data* posd,
1662                                 Output_section_order order, bool is_relro)
1663 {
1664   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665                                                    false, order, is_relro,
1666                                                    false, false);
1667   if (os != NULL)
1668     os->add_output_section_data(posd);
1669   return os;
1670 }
1671
1672 // Map section flags to segment flags.
1673
1674 elfcpp::Elf_Word
1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677   elfcpp::Elf_Word ret = elfcpp::PF_R;
1678   if ((flags & elfcpp::SHF_WRITE) != 0)
1679     ret |= elfcpp::PF_W;
1680   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681     ret |= elfcpp::PF_X;
1682   return ret;
1683 }
1684
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate.  ORDER is the order in which this section should
1687 // appear in the output segment.  IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689
1690 Output_section*
1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692                             elfcpp::Elf_Xword flags,
1693                             Output_section_order order, bool is_relro)
1694 {
1695   Output_section* os;
1696   if ((flags & elfcpp::SHF_ALLOC) == 0
1697       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698       && is_compressible_debug_section(name))
1699     os = new Output_compressed_section(&parameters->options(), name, type,
1700                                        flags);
1701   else if ((flags & elfcpp::SHF_ALLOC) == 0
1702            && parameters->options().strip_debug_non_line()
1703            && strcmp(".debug_abbrev", name) == 0)
1704     {
1705       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706           name, type, flags);
1707       if (this->debug_info_)
1708         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709     }
1710   else if ((flags & elfcpp::SHF_ALLOC) == 0
1711            && parameters->options().strip_debug_non_line()
1712            && strcmp(".debug_info", name) == 0)
1713     {
1714       os = this->debug_info_ = new Output_reduced_debug_info_section(
1715           name, type, flags);
1716       if (this->debug_abbrev_)
1717         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718     }
1719   else
1720     {
1721       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722       // not have correct section types.  Force them here.
1723       if (type == elfcpp::SHT_PROGBITS)
1724         {
1725           if (is_prefix_of(".init_array", name))
1726             type = elfcpp::SHT_INIT_ARRAY;
1727           else if (is_prefix_of(".preinit_array", name))
1728             type = elfcpp::SHT_PREINIT_ARRAY;
1729           else if (is_prefix_of(".fini_array", name))
1730             type = elfcpp::SHT_FINI_ARRAY;
1731         }
1732
1733       // FIXME: const_cast is ugly.
1734       Target* target = const_cast<Target*>(&parameters->target());
1735       os = target->make_output_section(name, type, flags);
1736     }
1737
1738   // With -z relro, we have to recognize the special sections by name.
1739   // There is no other way.
1740   bool is_relro_local = false;
1741   if (!this->script_options_->saw_sections_clause()
1742       && parameters->options().relro()
1743       && (flags & elfcpp::SHF_ALLOC) != 0
1744       && (flags & elfcpp::SHF_WRITE) != 0)
1745     {
1746       if (type == elfcpp::SHT_PROGBITS)
1747         {
1748           if ((flags & elfcpp::SHF_TLS) != 0)
1749             is_relro = true;
1750           else if (strcmp(name, ".data.rel.ro") == 0)
1751             is_relro = true;
1752           else if (strcmp(name, ".data.rel.ro.local") == 0)
1753             {
1754               is_relro = true;
1755               is_relro_local = true;
1756             }
1757           else if (strcmp(name, ".ctors") == 0
1758                    || strcmp(name, ".dtors") == 0
1759                    || strcmp(name, ".jcr") == 0)
1760             is_relro = true;
1761         }
1762       else if (type == elfcpp::SHT_INIT_ARRAY
1763                || type == elfcpp::SHT_FINI_ARRAY
1764                || type == elfcpp::SHT_PREINIT_ARRAY)
1765         is_relro = true;
1766     }
1767
1768   if (is_relro)
1769     os->set_is_relro();
1770
1771   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772     order = this->default_section_order(os, is_relro_local);
1773
1774   os->set_order(order);
1775
1776   parameters->target().new_output_section(os);
1777
1778   this->section_list_.push_back(os);
1779
1780   // The GNU linker by default sorts some sections by priority, so we
1781   // do the same.  We need to know that this might happen before we
1782   // attach any input sections.
1783   if (!this->script_options_->saw_sections_clause()
1784       && !parameters->options().relocatable()
1785       && (strcmp(name, ".init_array") == 0
1786           || strcmp(name, ".fini_array") == 0
1787           || (!parameters->options().ctors_in_init_array()
1788               && (strcmp(name, ".ctors") == 0
1789                   || strcmp(name, ".dtors") == 0))))
1790     os->set_may_sort_attached_input_sections();
1791
1792   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793   // sections before other .text sections.  We are compatible.  We
1794   // need to know that this might happen before we attach any input
1795   // sections.
1796   if (parameters->options().text_reorder()
1797       && !this->script_options_->saw_sections_clause()
1798       && !this->is_section_ordering_specified()
1799       && !parameters->options().relocatable()
1800       && strcmp(name, ".text") == 0)
1801     os->set_may_sort_attached_input_sections();
1802
1803   // GNU linker sorts section by name with --sort-section=name.
1804   if (strcmp(parameters->options().sort_section(), "name") == 0)
1805       os->set_must_sort_attached_input_sections();
1806
1807   // Check for .stab*str sections, as .stab* sections need to link to
1808   // them.
1809   if (type == elfcpp::SHT_STRTAB
1810       && !this->have_stabstr_section_
1811       && strncmp(name, ".stab", 5) == 0
1812       && strcmp(name + strlen(name) - 3, "str") == 0)
1813     this->have_stabstr_section_ = true;
1814
1815   // During a full incremental link, we add patch space to most
1816   // PROGBITS and NOBITS sections.  Flag those that may be
1817   // arbitrarily padded.
1818   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819       && order != ORDER_INTERP
1820       && order != ORDER_INIT
1821       && order != ORDER_PLT
1822       && order != ORDER_FINI
1823       && order != ORDER_RELRO_LAST
1824       && order != ORDER_NON_RELRO_FIRST
1825       && strcmp(name, ".eh_frame") != 0
1826       && strcmp(name, ".ctors") != 0
1827       && strcmp(name, ".dtors") != 0
1828       && strcmp(name, ".jcr") != 0)
1829     {
1830       os->set_is_patch_space_allowed();
1831
1832       // Certain sections require "holes" to be filled with
1833       // specific fill patterns.  These fill patterns may have
1834       // a minimum size, so we must prevent allocations from the
1835       // free list that leave a hole smaller than the minimum.
1836       if (strcmp(name, ".debug_info") == 0)
1837         os->set_free_space_fill(new Output_fill_debug_info(false));
1838       else if (strcmp(name, ".debug_types") == 0)
1839         os->set_free_space_fill(new Output_fill_debug_info(true));
1840       else if (strcmp(name, ".debug_line") == 0)
1841         os->set_free_space_fill(new Output_fill_debug_line());
1842     }
1843
1844   // If we have already attached the sections to segments, then we
1845   // need to attach this one now.  This happens for sections created
1846   // directly by the linker.
1847   if (this->sections_are_attached_)
1848     this->attach_section_to_segment(&parameters->target(), os);
1849
1850   return os;
1851 }
1852
1853 // Return the default order in which a section should be placed in an
1854 // output segment.  This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858
1859 Output_section_order
1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865   bool is_bss = false;
1866
1867   switch (os->type())
1868     {
1869     default:
1870     case elfcpp::SHT_PROGBITS:
1871       break;
1872     case elfcpp::SHT_NOBITS:
1873       is_bss = true;
1874       break;
1875     case elfcpp::SHT_RELA:
1876     case elfcpp::SHT_REL:
1877       if (!is_write)
1878         return ORDER_DYNAMIC_RELOCS;
1879       break;
1880     case elfcpp::SHT_HASH:
1881     case elfcpp::SHT_DYNAMIC:
1882     case elfcpp::SHT_SHLIB:
1883     case elfcpp::SHT_DYNSYM:
1884     case elfcpp::SHT_GNU_HASH:
1885     case elfcpp::SHT_GNU_verdef:
1886     case elfcpp::SHT_GNU_verneed:
1887     case elfcpp::SHT_GNU_versym:
1888       if (!is_write)
1889         return ORDER_DYNAMIC_LINKER;
1890       break;
1891     case elfcpp::SHT_NOTE:
1892       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893     }
1894
1895   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897
1898   if (!is_bss && !is_write)
1899     {
1900       if (is_execinstr)
1901         {
1902           if (strcmp(os->name(), ".init") == 0)
1903             return ORDER_INIT;
1904           else if (strcmp(os->name(), ".fini") == 0)
1905             return ORDER_FINI;
1906           else if (parameters->options().keep_text_section_prefix())
1907             {
1908               // -z,keep-text-section-prefix introduces additional
1909               // output sections.
1910               if (strcmp(os->name(), ".text.hot") == 0)
1911                 return ORDER_TEXT_HOT;
1912               else if (strcmp(os->name(), ".text.startup") == 0)
1913                 return ORDER_TEXT_STARTUP;
1914               else if (strcmp(os->name(), ".text.exit") == 0)
1915                 return ORDER_TEXT_EXIT;
1916               else if (strcmp(os->name(), ".text.unlikely") == 0)
1917                 return ORDER_TEXT_UNLIKELY;
1918             }
1919         }
1920       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921     }
1922
1923   if (os->is_relro())
1924     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925
1926   if (os->is_small_section())
1927     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928   if (os->is_large_section())
1929     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930
1931   return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933
1934 // Attach output sections to segments.  This is called after we have
1935 // seen all the input sections.
1936
1937 void
1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940   for (Section_list::iterator p = this->section_list_.begin();
1941        p != this->section_list_.end();
1942        ++p)
1943     this->attach_section_to_segment(target, *p);
1944
1945   this->sections_are_attached_ = true;
1946 }
1947
1948 // Attach an output section to a segment.
1949
1950 void
1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954     this->unattached_section_list_.push_back(os);
1955   else
1956     this->attach_allocated_section_to_segment(target, os);
1957 }
1958
1959 // Attach an allocated output section to a segment.
1960
1961 void
1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963                                             Output_section* os)
1964 {
1965   elfcpp::Elf_Xword flags = os->flags();
1966   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967
1968   if (parameters->options().relocatable())
1969     return;
1970
1971   // If we have a SECTIONS clause, we can't handle the attachment to
1972   // segments until after we've seen all the sections.
1973   if (this->script_options_->saw_sections_clause())
1974     return;
1975
1976   gold_assert(!this->script_options_->saw_phdrs_clause());
1977
1978   // This output section goes into a PT_LOAD segment.
1979
1980   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981
1982   // If this output section's segment has extra flags that need to be set,
1983   // coming from a linker plugin, do that.
1984   seg_flags |= os->extra_segment_flags();
1985
1986   // Check for --section-start.
1987   uint64_t addr;
1988   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989
1990   // In general the only thing we really care about for PT_LOAD
1991   // segments is whether or not they are writable or executable,
1992   // so that is how we search for them.
1993   // Large data sections also go into their own PT_LOAD segment.
1994   // People who need segments sorted on some other basis will
1995   // have to use a linker script.
1996
1997   Segment_list::const_iterator p;
1998   if (!os->is_unique_segment())
1999     {
2000       for (p = this->segment_list_.begin();
2001            p != this->segment_list_.end();
2002            ++p)
2003         {
2004           if ((*p)->type() != elfcpp::PT_LOAD)
2005             continue;
2006           if ((*p)->is_unique_segment())
2007             continue;
2008           if (!parameters->options().omagic()
2009               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010             continue;
2011           if ((target->isolate_execinstr() || parameters->options().rosegment())
2012               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013             continue;
2014           // If -Tbss was specified, we need to separate the data and BSS
2015           // segments.
2016           if (parameters->options().user_set_Tbss())
2017             {
2018               if ((os->type() == elfcpp::SHT_NOBITS)
2019                   == (*p)->has_any_data_sections())
2020                 continue;
2021             }
2022           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023             continue;
2024
2025           if (is_address_set)
2026             {
2027               if ((*p)->are_addresses_set())
2028                 continue;
2029
2030               (*p)->add_initial_output_data(os);
2031               (*p)->update_flags_for_output_section(seg_flags);
2032               (*p)->set_addresses(addr, addr);
2033               break;
2034             }
2035
2036           (*p)->add_output_section_to_load(this, os, seg_flags);
2037           break;
2038         }
2039     }
2040
2041   if (p == this->segment_list_.end()
2042       || os->is_unique_segment())
2043     {
2044       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045                                                        seg_flags);
2046       if (os->is_large_data_section())
2047         oseg->set_is_large_data_segment();
2048       oseg->add_output_section_to_load(this, os, seg_flags);
2049       if (is_address_set)
2050         oseg->set_addresses(addr, addr);
2051       // Check if segment should be marked unique.  For segments marked
2052       // unique by linker plugins, set the new alignment if specified.
2053       if (os->is_unique_segment())
2054         {
2055           oseg->set_is_unique_segment();
2056           if (os->segment_alignment() != 0)
2057             oseg->set_minimum_p_align(os->segment_alignment());
2058         }
2059     }
2060
2061   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062   // segment.
2063   if (os->type() == elfcpp::SHT_NOTE)
2064     {
2065       // See if we already have an equivalent PT_NOTE segment.
2066       for (p = this->segment_list_.begin();
2067            p != segment_list_.end();
2068            ++p)
2069         {
2070           if ((*p)->type() == elfcpp::PT_NOTE
2071               && (((*p)->flags() & elfcpp::PF_W)
2072                   == (seg_flags & elfcpp::PF_W)))
2073             {
2074               (*p)->add_output_section_to_nonload(os, seg_flags);
2075               break;
2076             }
2077         }
2078
2079       if (p == this->segment_list_.end())
2080         {
2081           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2082                                                            seg_flags);
2083           oseg->add_output_section_to_nonload(os, seg_flags);
2084         }
2085     }
2086
2087   // If we see a loadable SHF_TLS section, we create a PT_TLS
2088   // segment.  There can only be one such segment.
2089   if ((flags & elfcpp::SHF_TLS) != 0)
2090     {
2091       if (this->tls_segment_ == NULL)
2092         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2093       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2094     }
2095
2096   // If -z relro is in effect, and we see a relro section, we create a
2097   // PT_GNU_RELRO segment.  There can only be one such segment.
2098   if (os->is_relro() && parameters->options().relro())
2099     {
2100       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2101       if (this->relro_segment_ == NULL)
2102         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2103       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2104     }
2105
2106   // If we see a section named .interp, put it into a PT_INTERP
2107   // segment.  This seems broken to me, but this is what GNU ld does,
2108   // and glibc expects it.
2109   if (strcmp(os->name(), ".interp") == 0
2110       && !this->script_options_->saw_phdrs_clause())
2111     {
2112       if (this->interp_segment_ == NULL)
2113         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2114       else
2115         gold_warning(_("multiple '.interp' sections in input files "
2116                        "may cause confusing PT_INTERP segment"));
2117       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2118     }
2119 }
2120
2121 // Make an output section for a script.
2122
2123 Output_section*
2124 Layout::make_output_section_for_script(
2125     const char* name,
2126     Script_sections::Section_type section_type)
2127 {
2128   name = this->namepool_.add(name, false, NULL);
2129   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2130   if (section_type == Script_sections::ST_NOLOAD)
2131     sh_flags = 0;
2132   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2133                                                  sh_flags, ORDER_INVALID,
2134                                                  false);
2135   os->set_found_in_sections_clause();
2136   if (section_type == Script_sections::ST_NOLOAD)
2137     os->set_is_noload();
2138   return os;
2139 }
2140
2141 // Return the number of segments we expect to see.
2142
2143 size_t
2144 Layout::expected_segment_count() const
2145 {
2146   size_t ret = this->segment_list_.size();
2147
2148   // If we didn't see a SECTIONS clause in a linker script, we should
2149   // already have the complete list of segments.  Otherwise we ask the
2150   // SECTIONS clause how many segments it expects, and add in the ones
2151   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2152
2153   if (!this->script_options_->saw_sections_clause())
2154     return ret;
2155   else
2156     {
2157       const Script_sections* ss = this->script_options_->script_sections();
2158       return ret + ss->expected_segment_count(this);
2159     }
2160 }
2161
2162 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2163 // is whether we saw a .note.GNU-stack section in the object file.
2164 // GNU_STACK_FLAGS is the section flags.  The flags give the
2165 // protection required for stack memory.  We record this in an
2166 // executable as a PT_GNU_STACK segment.  If an object file does not
2167 // have a .note.GNU-stack segment, we must assume that it is an old
2168 // object.  On some targets that will force an executable stack.
2169
2170 void
2171 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2172                          const Object* obj)
2173 {
2174   if (!seen_gnu_stack)
2175     {
2176       this->input_without_gnu_stack_note_ = true;
2177       if (parameters->options().warn_execstack()
2178           && parameters->target().is_default_stack_executable())
2179         gold_warning(_("%s: missing .note.GNU-stack section"
2180                        " implies executable stack"),
2181                      obj->name().c_str());
2182     }
2183   else
2184     {
2185       this->input_with_gnu_stack_note_ = true;
2186       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2187         {
2188           this->input_requires_executable_stack_ = true;
2189           if (parameters->options().warn_execstack())
2190             gold_warning(_("%s: requires executable stack"),
2191                          obj->name().c_str());
2192         }
2193     }
2194 }
2195
2196 // Create automatic note sections.
2197
2198 void
2199 Layout::create_notes()
2200 {
2201   this->create_gold_note();
2202   this->create_stack_segment();
2203   this->create_build_id();
2204 }
2205
2206 // Create the dynamic sections which are needed before we read the
2207 // relocs.
2208
2209 void
2210 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2211 {
2212   if (parameters->doing_static_link())
2213     return;
2214
2215   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2216                                                        elfcpp::SHT_DYNAMIC,
2217                                                        (elfcpp::SHF_ALLOC
2218                                                         | elfcpp::SHF_WRITE),
2219                                                        false, ORDER_RELRO,
2220                                                        true, false, false);
2221
2222   // A linker script may discard .dynamic, so check for NULL.
2223   if (this->dynamic_section_ != NULL)
2224     {
2225       this->dynamic_symbol_ =
2226         symtab->define_in_output_data("_DYNAMIC", NULL,
2227                                       Symbol_table::PREDEFINED,
2228                                       this->dynamic_section_, 0, 0,
2229                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2230                                       elfcpp::STV_HIDDEN, 0, false, false);
2231
2232       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2233
2234       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2235     }
2236 }
2237
2238 // For each output section whose name can be represented as C symbol,
2239 // define __start and __stop symbols for the section.  This is a GNU
2240 // extension.
2241
2242 void
2243 Layout::define_section_symbols(Symbol_table* symtab)
2244 {
2245   for (Section_list::const_iterator p = this->section_list_.begin();
2246        p != this->section_list_.end();
2247        ++p)
2248     {
2249       const char* const name = (*p)->name();
2250       if (is_cident(name))
2251         {
2252           const std::string name_string(name);
2253           const std::string start_name(cident_section_start_prefix
2254                                        + name_string);
2255           const std::string stop_name(cident_section_stop_prefix
2256                                       + name_string);
2257
2258           symtab->define_in_output_data(start_name.c_str(),
2259                                         NULL, // version
2260                                         Symbol_table::PREDEFINED,
2261                                         *p,
2262                                         0, // value
2263                                         0, // symsize
2264                                         elfcpp::STT_NOTYPE,
2265                                         elfcpp::STB_GLOBAL,
2266                                         elfcpp::STV_PROTECTED,
2267                                         0, // nonvis
2268                                         false, // offset_is_from_end
2269                                         true); // only_if_ref
2270
2271           symtab->define_in_output_data(stop_name.c_str(),
2272                                         NULL, // version
2273                                         Symbol_table::PREDEFINED,
2274                                         *p,
2275                                         0, // value
2276                                         0, // symsize
2277                                         elfcpp::STT_NOTYPE,
2278                                         elfcpp::STB_GLOBAL,
2279                                         elfcpp::STV_PROTECTED,
2280                                         0, // nonvis
2281                                         true, // offset_is_from_end
2282                                         true); // only_if_ref
2283         }
2284     }
2285 }
2286
2287 // Define symbols for group signatures.
2288
2289 void
2290 Layout::define_group_signatures(Symbol_table* symtab)
2291 {
2292   for (Group_signatures::iterator p = this->group_signatures_.begin();
2293        p != this->group_signatures_.end();
2294        ++p)
2295     {
2296       Symbol* sym = symtab->lookup(p->signature, NULL);
2297       if (sym != NULL)
2298         p->section->set_info_symndx(sym);
2299       else
2300         {
2301           // Force the name of the group section to the group
2302           // signature, and use the group's section symbol as the
2303           // signature symbol.
2304           if (strcmp(p->section->name(), p->signature) != 0)
2305             {
2306               const char* name = this->namepool_.add(p->signature,
2307                                                      true, NULL);
2308               p->section->set_name(name);
2309             }
2310           p->section->set_needs_symtab_index();
2311           p->section->set_info_section_symndx(p->section);
2312         }
2313     }
2314
2315   this->group_signatures_.clear();
2316 }
2317
2318 // Find the first read-only PT_LOAD segment, creating one if
2319 // necessary.
2320
2321 Output_segment*
2322 Layout::find_first_load_seg(const Target* target)
2323 {
2324   Output_segment* best = NULL;
2325   for (Segment_list::const_iterator p = this->segment_list_.begin();
2326        p != this->segment_list_.end();
2327        ++p)
2328     {
2329       if ((*p)->type() == elfcpp::PT_LOAD
2330           && ((*p)->flags() & elfcpp::PF_R) != 0
2331           && (parameters->options().omagic()
2332               || ((*p)->flags() & elfcpp::PF_W) == 0)
2333           && (!target->isolate_execinstr()
2334               || ((*p)->flags() & elfcpp::PF_X) == 0))
2335         {
2336           if (best == NULL || this->segment_precedes(*p, best))
2337             best = *p;
2338         }
2339     }
2340   if (best != NULL)
2341     return best;
2342
2343   gold_assert(!this->script_options_->saw_phdrs_clause());
2344
2345   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2346                                                        elfcpp::PF_R);
2347   return load_seg;
2348 }
2349
2350 // Save states of all current output segments.  Store saved states
2351 // in SEGMENT_STATES.
2352
2353 void
2354 Layout::save_segments(Segment_states* segment_states)
2355 {
2356   for (Segment_list::const_iterator p = this->segment_list_.begin();
2357        p != this->segment_list_.end();
2358        ++p)
2359     {
2360       Output_segment* segment = *p;
2361       // Shallow copy.
2362       Output_segment* copy = new Output_segment(*segment);
2363       (*segment_states)[segment] = copy;
2364     }
2365 }
2366
2367 // Restore states of output segments and delete any segment not found in
2368 // SEGMENT_STATES.
2369
2370 void
2371 Layout::restore_segments(const Segment_states* segment_states)
2372 {
2373   // Go through the segment list and remove any segment added in the
2374   // relaxation loop.
2375   this->tls_segment_ = NULL;
2376   this->relro_segment_ = NULL;
2377   Segment_list::iterator list_iter = this->segment_list_.begin();
2378   while (list_iter != this->segment_list_.end())
2379     {
2380       Output_segment* segment = *list_iter;
2381       Segment_states::const_iterator states_iter =
2382           segment_states->find(segment);
2383       if (states_iter != segment_states->end())
2384         {
2385           const Output_segment* copy = states_iter->second;
2386           // Shallow copy to restore states.
2387           *segment = *copy;
2388
2389           // Also fix up TLS and RELRO segment pointers as appropriate.
2390           if (segment->type() == elfcpp::PT_TLS)
2391             this->tls_segment_ = segment;
2392           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2393             this->relro_segment_ = segment;
2394
2395           ++list_iter;
2396         }
2397       else
2398         {
2399           list_iter = this->segment_list_.erase(list_iter);
2400           // This is a segment created during section layout.  It should be
2401           // safe to remove it since we should have removed all pointers to it.
2402           delete segment;
2403         }
2404     }
2405 }
2406
2407 // Clean up after relaxation so that sections can be laid out again.
2408
2409 void
2410 Layout::clean_up_after_relaxation()
2411 {
2412   // Restore the segments to point state just prior to the relaxation loop.
2413   Script_sections* script_section = this->script_options_->script_sections();
2414   script_section->release_segments();
2415   this->restore_segments(this->segment_states_);
2416
2417   // Reset section addresses and file offsets
2418   for (Section_list::iterator p = this->section_list_.begin();
2419        p != this->section_list_.end();
2420        ++p)
2421     {
2422       (*p)->restore_states();
2423
2424       // If an input section changes size because of relaxation,
2425       // we need to adjust the section offsets of all input sections.
2426       // after such a section.
2427       if ((*p)->section_offsets_need_adjustment())
2428         (*p)->adjust_section_offsets();
2429
2430       (*p)->reset_address_and_file_offset();
2431     }
2432
2433   // Reset special output object address and file offsets.
2434   for (Data_list::iterator p = this->special_output_list_.begin();
2435        p != this->special_output_list_.end();
2436        ++p)
2437     (*p)->reset_address_and_file_offset();
2438
2439   // A linker script may have created some output section data objects.
2440   // They are useless now.
2441   for (Output_section_data_list::const_iterator p =
2442          this->script_output_section_data_list_.begin();
2443        p != this->script_output_section_data_list_.end();
2444        ++p)
2445     delete *p;
2446   this->script_output_section_data_list_.clear();
2447
2448   // Special-case fill output objects are recreated each time through
2449   // the relaxation loop.
2450   this->reset_relax_output();
2451 }
2452
2453 void
2454 Layout::reset_relax_output()
2455 {
2456   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2457        p != this->relax_output_list_.end();
2458        ++p)
2459     delete *p;
2460   this->relax_output_list_.clear();
2461 }
2462
2463 // Prepare for relaxation.
2464
2465 void
2466 Layout::prepare_for_relaxation()
2467 {
2468   // Create an relaxation debug check if in debugging mode.
2469   if (is_debugging_enabled(DEBUG_RELAXATION))
2470     this->relaxation_debug_check_ = new Relaxation_debug_check();
2471
2472   // Save segment states.
2473   this->segment_states_ = new Segment_states();
2474   this->save_segments(this->segment_states_);
2475
2476   for(Section_list::const_iterator p = this->section_list_.begin();
2477       p != this->section_list_.end();
2478       ++p)
2479     (*p)->save_states();
2480
2481   if (is_debugging_enabled(DEBUG_RELAXATION))
2482     this->relaxation_debug_check_->check_output_data_for_reset_values(
2483         this->section_list_, this->special_output_list_,
2484         this->relax_output_list_);
2485
2486   // Also enable recording of output section data from scripts.
2487   this->record_output_section_data_from_script_ = true;
2488 }
2489
2490 // If the user set the address of the text segment, that may not be
2491 // compatible with putting the segment headers and file headers into
2492 // that segment.  For isolate_execinstr() targets, it's the rodata
2493 // segment rather than text where we might put the headers.
2494 static inline bool
2495 load_seg_unusable_for_headers(const Target* target)
2496 {
2497   const General_options& options = parameters->options();
2498   if (target->isolate_execinstr())
2499     return (options.user_set_Trodata_segment()
2500             && options.Trodata_segment() % target->abi_pagesize() != 0);
2501   else
2502     return (options.user_set_Ttext()
2503             && options.Ttext() % target->abi_pagesize() != 0);
2504 }
2505
2506 // Relaxation loop body:  If target has no relaxation, this runs only once
2507 // Otherwise, the target relaxation hook is called at the end of
2508 // each iteration.  If the hook returns true, it means re-layout of
2509 // section is required.
2510 //
2511 // The number of segments created by a linking script without a PHDRS
2512 // clause may be affected by section sizes and alignments.  There is
2513 // a remote chance that relaxation causes different number of PT_LOAD
2514 // segments are created and sections are attached to different segments.
2515 // Therefore, we always throw away all segments created during section
2516 // layout.  In order to be able to restart the section layout, we keep
2517 // a copy of the segment list right before the relaxation loop and use
2518 // that to restore the segments.
2519 //
2520 // PASS is the current relaxation pass number.
2521 // SYMTAB is a symbol table.
2522 // PLOAD_SEG is the address of a pointer for the load segment.
2523 // PHDR_SEG is a pointer to the PHDR segment.
2524 // SEGMENT_HEADERS points to the output segment header.
2525 // FILE_HEADER points to the output file header.
2526 // PSHNDX is the address to store the output section index.
2527
2528 off_t inline
2529 Layout::relaxation_loop_body(
2530     int pass,
2531     Target* target,
2532     Symbol_table* symtab,
2533     Output_segment** pload_seg,
2534     Output_segment* phdr_seg,
2535     Output_segment_headers* segment_headers,
2536     Output_file_header* file_header,
2537     unsigned int* pshndx)
2538 {
2539   // If this is not the first iteration, we need to clean up after
2540   // relaxation so that we can lay out the sections again.
2541   if (pass != 0)
2542     this->clean_up_after_relaxation();
2543
2544   // If there is a SECTIONS clause, put all the input sections into
2545   // the required order.
2546   Output_segment* load_seg;
2547   if (this->script_options_->saw_sections_clause())
2548     load_seg = this->set_section_addresses_from_script(symtab);
2549   else if (parameters->options().relocatable())
2550     load_seg = NULL;
2551   else
2552     load_seg = this->find_first_load_seg(target);
2553
2554   if (parameters->options().oformat_enum()
2555       != General_options::OBJECT_FORMAT_ELF)
2556     load_seg = NULL;
2557
2558   if (load_seg_unusable_for_headers(target))
2559     {
2560       load_seg = NULL;
2561       phdr_seg = NULL;
2562     }
2563
2564   gold_assert(phdr_seg == NULL
2565               || load_seg != NULL
2566               || this->script_options_->saw_sections_clause());
2567
2568   // If the address of the load segment we found has been set by
2569   // --section-start rather than by a script, then adjust the VMA and
2570   // LMA downward if possible to include the file and section headers.
2571   uint64_t header_gap = 0;
2572   if (load_seg != NULL
2573       && load_seg->are_addresses_set()
2574       && !this->script_options_->saw_sections_clause()
2575       && !parameters->options().relocatable())
2576     {
2577       file_header->finalize_data_size();
2578       segment_headers->finalize_data_size();
2579       size_t sizeof_headers = (file_header->data_size()
2580                                + segment_headers->data_size());
2581       const uint64_t abi_pagesize = target->abi_pagesize();
2582       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2583       hdr_paddr &= ~(abi_pagesize - 1);
2584       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2585       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2586         load_seg = NULL;
2587       else
2588         {
2589           load_seg->set_addresses(load_seg->vaddr() - subtract,
2590                                   load_seg->paddr() - subtract);
2591           header_gap = subtract - sizeof_headers;
2592         }
2593     }
2594
2595   // Lay out the segment headers.
2596   if (!parameters->options().relocatable())
2597     {
2598       gold_assert(segment_headers != NULL);
2599       if (header_gap != 0 && load_seg != NULL)
2600         {
2601           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2602           load_seg->add_initial_output_data(z);
2603         }
2604       if (load_seg != NULL)
2605         load_seg->add_initial_output_data(segment_headers);
2606       if (phdr_seg != NULL)
2607         phdr_seg->add_initial_output_data(segment_headers);
2608     }
2609
2610   // Lay out the file header.
2611   if (load_seg != NULL)
2612     load_seg->add_initial_output_data(file_header);
2613
2614   if (this->script_options_->saw_phdrs_clause()
2615       && !parameters->options().relocatable())
2616     {
2617       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2618       // clause in a linker script.
2619       Script_sections* ss = this->script_options_->script_sections();
2620       ss->put_headers_in_phdrs(file_header, segment_headers);
2621     }
2622
2623   // We set the output section indexes in set_segment_offsets and
2624   // set_section_indexes.
2625   *pshndx = 1;
2626
2627   // Set the file offsets of all the segments, and all the sections
2628   // they contain.
2629   off_t off;
2630   if (!parameters->options().relocatable())
2631     off = this->set_segment_offsets(target, load_seg, pshndx);
2632   else
2633     off = this->set_relocatable_section_offsets(file_header, pshndx);
2634
2635    // Verify that the dummy relaxation does not change anything.
2636   if (is_debugging_enabled(DEBUG_RELAXATION))
2637     {
2638       if (pass == 0)
2639         this->relaxation_debug_check_->read_sections(this->section_list_);
2640       else
2641         this->relaxation_debug_check_->verify_sections(this->section_list_);
2642     }
2643
2644   *pload_seg = load_seg;
2645   return off;
2646 }
2647
2648 // Search the list of patterns and find the position of the given section
2649 // name in the output section.  If the section name matches a glob
2650 // pattern and a non-glob name, then the non-glob position takes
2651 // precedence.  Return 0 if no match is found.
2652
2653 unsigned int
2654 Layout::find_section_order_index(const std::string& section_name)
2655 {
2656   Unordered_map<std::string, unsigned int>::iterator map_it;
2657   map_it = this->input_section_position_.find(section_name);
2658   if (map_it != this->input_section_position_.end())
2659     return map_it->second;
2660
2661   // Absolute match failed.  Linear search the glob patterns.
2662   std::vector<std::string>::iterator it;
2663   for (it = this->input_section_glob_.begin();
2664        it != this->input_section_glob_.end();
2665        ++it)
2666     {
2667        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2668          {
2669            map_it = this->input_section_position_.find(*it);
2670            gold_assert(map_it != this->input_section_position_.end());
2671            return map_it->second;
2672          }
2673     }
2674   return 0;
2675 }
2676
2677 // Read the sequence of input sections from the file specified with
2678 // option --section-ordering-file.
2679
2680 void
2681 Layout::read_layout_from_file()
2682 {
2683   const char* filename = parameters->options().section_ordering_file();
2684   std::ifstream in;
2685   std::string line;
2686
2687   in.open(filename);
2688   if (!in)
2689     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2690                filename, strerror(errno));
2691
2692   std::getline(in, line);   // this chops off the trailing \n, if any
2693   unsigned int position = 1;
2694   this->set_section_ordering_specified();
2695
2696   while (in)
2697     {
2698       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2699         line.resize(line.length() - 1);
2700       // Ignore comments, beginning with '#'
2701       if (line[0] == '#')
2702         {
2703           std::getline(in, line);
2704           continue;
2705         }
2706       this->input_section_position_[line] = position;
2707       // Store all glob patterns in a vector.
2708       if (is_wildcard_string(line.c_str()))
2709         this->input_section_glob_.push_back(line);
2710       position++;
2711       std::getline(in, line);
2712     }
2713 }
2714
2715 // Finalize the layout.  When this is called, we have created all the
2716 // output sections and all the output segments which are based on
2717 // input sections.  We have several things to do, and we have to do
2718 // them in the right order, so that we get the right results correctly
2719 // and efficiently.
2720
2721 // 1) Finalize the list of output segments and create the segment
2722 // table header.
2723
2724 // 2) Finalize the dynamic symbol table and associated sections.
2725
2726 // 3) Determine the final file offset of all the output segments.
2727
2728 // 4) Determine the final file offset of all the SHF_ALLOC output
2729 // sections.
2730
2731 // 5) Create the symbol table sections and the section name table
2732 // section.
2733
2734 // 6) Finalize the symbol table: set symbol values to their final
2735 // value and make a final determination of which symbols are going
2736 // into the output symbol table.
2737
2738 // 7) Create the section table header.
2739
2740 // 8) Determine the final file offset of all the output sections which
2741 // are not SHF_ALLOC, including the section table header.
2742
2743 // 9) Finalize the ELF file header.
2744
2745 // This function returns the size of the output file.
2746
2747 off_t
2748 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2749                  Target* target, const Task* task)
2750 {
2751   unsigned int local_dynamic_count = 0;
2752   unsigned int forced_local_dynamic_count = 0;
2753
2754   target->finalize_sections(this, input_objects, symtab);
2755
2756   this->count_local_symbols(task, input_objects);
2757
2758   this->link_stabs_sections();
2759
2760   Output_segment* phdr_seg = NULL;
2761   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2762     {
2763       // There was a dynamic object in the link.  We need to create
2764       // some information for the dynamic linker.
2765
2766       // Create the PT_PHDR segment which will hold the program
2767       // headers.
2768       if (!this->script_options_->saw_phdrs_clause())
2769         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2770
2771       // Create the dynamic symbol table, including the hash table.
2772       Output_section* dynstr;
2773       std::vector<Symbol*> dynamic_symbols;
2774       Versions versions(*this->script_options()->version_script_info(),
2775                         &this->dynpool_);
2776       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2777                                   &local_dynamic_count,
2778                                   &forced_local_dynamic_count,
2779                                   &dynamic_symbols,
2780                                   &versions);
2781
2782       // Create the .interp section to hold the name of the
2783       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2784       // if we saw a .interp section in an input file.
2785       if ((!parameters->options().shared()
2786            || parameters->options().dynamic_linker() != NULL)
2787           && this->interp_segment_ == NULL)
2788         this->create_interp(target);
2789
2790       // Finish the .dynamic section to hold the dynamic data, and put
2791       // it in a PT_DYNAMIC segment.
2792       this->finish_dynamic_section(input_objects, symtab);
2793
2794       // We should have added everything we need to the dynamic string
2795       // table.
2796       this->dynpool_.set_string_offsets();
2797
2798       // Create the version sections.  We can't do this until the
2799       // dynamic string table is complete.
2800       this->create_version_sections(&versions, symtab,
2801                                     (local_dynamic_count
2802                                      + forced_local_dynamic_count),
2803                                     dynamic_symbols, dynstr);
2804
2805       // Set the size of the _DYNAMIC symbol.  We can't do this until
2806       // after we call create_version_sections.
2807       this->set_dynamic_symbol_size(symtab);
2808     }
2809
2810   // Create segment headers.
2811   Output_segment_headers* segment_headers =
2812     (parameters->options().relocatable()
2813      ? NULL
2814      : new Output_segment_headers(this->segment_list_));
2815
2816   // Lay out the file header.
2817   Output_file_header* file_header = new Output_file_header(target, symtab,
2818                                                            segment_headers);
2819
2820   this->special_output_list_.push_back(file_header);
2821   if (segment_headers != NULL)
2822     this->special_output_list_.push_back(segment_headers);
2823
2824   // Find approriate places for orphan output sections if we are using
2825   // a linker script.
2826   if (this->script_options_->saw_sections_clause())
2827     this->place_orphan_sections_in_script();
2828
2829   Output_segment* load_seg;
2830   off_t off;
2831   unsigned int shndx;
2832   int pass = 0;
2833
2834   // Take a snapshot of the section layout as needed.
2835   if (target->may_relax())
2836     this->prepare_for_relaxation();
2837
2838   // Run the relaxation loop to lay out sections.
2839   do
2840     {
2841       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2842                                        phdr_seg, segment_headers, file_header,
2843                                        &shndx);
2844       pass++;
2845     }
2846   while (target->may_relax()
2847          && target->relax(pass, input_objects, symtab, this, task));
2848
2849   // If there is a load segment that contains the file and program headers,
2850   // provide a symbol __ehdr_start pointing there.
2851   // A program can use this to examine itself robustly.
2852   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2853   if (ehdr_start != NULL && ehdr_start->is_predefined())
2854     {
2855       if (load_seg != NULL)
2856         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2857       else
2858         ehdr_start->set_undefined();
2859     }
2860
2861   // Set the file offsets of all the non-data sections we've seen so
2862   // far which don't have to wait for the input sections.  We need
2863   // this in order to finalize local symbols in non-allocated
2864   // sections.
2865   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2866
2867   // Set the section indexes of all unallocated sections seen so far,
2868   // in case any of them are somehow referenced by a symbol.
2869   shndx = this->set_section_indexes(shndx);
2870
2871   // Create the symbol table sections.
2872   this->create_symtab_sections(input_objects, symtab, shndx, &off,
2873                                local_dynamic_count);
2874   if (!parameters->doing_static_link())
2875     this->assign_local_dynsym_offsets(input_objects);
2876
2877   // Process any symbol assignments from a linker script.  This must
2878   // be called after the symbol table has been finalized.
2879   this->script_options_->finalize_symbols(symtab, this);
2880
2881   // Create the incremental inputs sections.
2882   if (this->incremental_inputs_)
2883     {
2884       this->incremental_inputs_->finalize();
2885       this->create_incremental_info_sections(symtab);
2886     }
2887
2888   // Create the .shstrtab section.
2889   Output_section* shstrtab_section = this->create_shstrtab();
2890
2891   // Set the file offsets of the rest of the non-data sections which
2892   // don't have to wait for the input sections.
2893   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2894
2895   // Now that all sections have been created, set the section indexes
2896   // for any sections which haven't been done yet.
2897   shndx = this->set_section_indexes(shndx);
2898
2899   // Create the section table header.
2900   this->create_shdrs(shstrtab_section, &off);
2901
2902   // If there are no sections which require postprocessing, we can
2903   // handle the section names now, and avoid a resize later.
2904   if (!this->any_postprocessing_sections_)
2905     {
2906       off = this->set_section_offsets(off,
2907                                       POSTPROCESSING_SECTIONS_PASS);
2908       off =
2909           this->set_section_offsets(off,
2910                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2911     }
2912
2913   file_header->set_section_info(this->section_headers_, shstrtab_section);
2914
2915   // Now we know exactly where everything goes in the output file
2916   // (except for non-allocated sections which require postprocessing).
2917   Output_data::layout_complete();
2918
2919   this->output_file_size_ = off;
2920
2921   return off;
2922 }
2923
2924 // Create a note header following the format defined in the ELF ABI.
2925 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2926 // of the section to create, DESCSZ is the size of the descriptor.
2927 // ALLOCATE is true if the section should be allocated in memory.
2928 // This returns the new note section.  It sets *TRAILING_PADDING to
2929 // the number of trailing zero bytes required.
2930
2931 Output_section*
2932 Layout::create_note(const char* name, int note_type,
2933                     const char* section_name, size_t descsz,
2934                     bool allocate, size_t* trailing_padding)
2935 {
2936   // Authorities all agree that the values in a .note field should
2937   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2938   // they differ on what the alignment is for 64-bit binaries.
2939   // The GABI says unambiguously they take 8-byte alignment:
2940   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2941   // Other documentation says alignment should always be 4 bytes:
2942   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2943   // GNU ld and GNU readelf both support the latter (at least as of
2944   // version 2.16.91), and glibc always generates the latter for
2945   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2946   // here.
2947 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2948   const int size = parameters->target().get_size();
2949 #else
2950   const int size = 32;
2951 #endif
2952
2953   // The contents of the .note section.
2954   size_t namesz = strlen(name) + 1;
2955   size_t aligned_namesz = align_address(namesz, size / 8);
2956   size_t aligned_descsz = align_address(descsz, size / 8);
2957
2958   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2959
2960   unsigned char* buffer = new unsigned char[notehdrsz];
2961   memset(buffer, 0, notehdrsz);
2962
2963   bool is_big_endian = parameters->target().is_big_endian();
2964
2965   if (size == 32)
2966     {
2967       if (!is_big_endian)
2968         {
2969           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2970           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2971           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2972         }
2973       else
2974         {
2975           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2976           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2977           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2978         }
2979     }
2980   else if (size == 64)
2981     {
2982       if (!is_big_endian)
2983         {
2984           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2985           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2986           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2987         }
2988       else
2989         {
2990           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2991           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2992           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2993         }
2994     }
2995   else
2996     gold_unreachable();
2997
2998   memcpy(buffer + 3 * (size / 8), name, namesz);
2999
3000   elfcpp::Elf_Xword flags = 0;
3001   Output_section_order order = ORDER_INVALID;
3002   if (allocate)
3003     {
3004       flags = elfcpp::SHF_ALLOC;
3005       order = ORDER_RO_NOTE;
3006     }
3007   Output_section* os = this->choose_output_section(NULL, section_name,
3008                                                    elfcpp::SHT_NOTE,
3009                                                    flags, false, order, false,
3010                                                    false, true);
3011   if (os == NULL)
3012     return NULL;
3013
3014   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3015                                                            size / 8,
3016                                                            "** note header");
3017   os->add_output_section_data(posd);
3018
3019   *trailing_padding = aligned_descsz - descsz;
3020
3021   return os;
3022 }
3023
3024 // For an executable or shared library, create a note to record the
3025 // version of gold used to create the binary.
3026
3027 void
3028 Layout::create_gold_note()
3029 {
3030   if (parameters->options().relocatable()
3031       || parameters->incremental_update())
3032     return;
3033
3034   std::string desc = std::string("gold ") + gold::get_version_string();
3035
3036   size_t trailing_padding;
3037   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3038                                          ".note.gnu.gold-version", desc.size(),
3039                                          false, &trailing_padding);
3040   if (os == NULL)
3041     return;
3042
3043   Output_section_data* posd = new Output_data_const(desc, 4);
3044   os->add_output_section_data(posd);
3045
3046   if (trailing_padding > 0)
3047     {
3048       posd = new Output_data_zero_fill(trailing_padding, 0);
3049       os->add_output_section_data(posd);
3050     }
3051 }
3052
3053 // Record whether the stack should be executable.  This can be set
3054 // from the command line using the -z execstack or -z noexecstack
3055 // options.  Otherwise, if any input file has a .note.GNU-stack
3056 // section with the SHF_EXECINSTR flag set, the stack should be
3057 // executable.  Otherwise, if at least one input file a
3058 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3059 // section, we use the target default for whether the stack should be
3060 // executable.  If -z stack-size was used to set a p_memsz value for
3061 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3062 // don't generate a stack note.  When generating a object file, we
3063 // create a .note.GNU-stack section with the appropriate marking.
3064 // When generating an executable or shared library, we create a
3065 // PT_GNU_STACK segment.
3066
3067 void
3068 Layout::create_stack_segment()
3069 {
3070   bool is_stack_executable;
3071   if (parameters->options().is_execstack_set())
3072     {
3073       is_stack_executable = parameters->options().is_stack_executable();
3074       if (!is_stack_executable
3075           && this->input_requires_executable_stack_
3076           && parameters->options().warn_execstack())
3077         gold_warning(_("one or more inputs require executable stack, "
3078                        "but -z noexecstack was given"));
3079     }
3080   else if (!this->input_with_gnu_stack_note_
3081            && (!parameters->options().user_set_stack_size()
3082                || parameters->options().relocatable()))
3083     return;
3084   else
3085     {
3086       if (this->input_requires_executable_stack_)
3087         is_stack_executable = true;
3088       else if (this->input_without_gnu_stack_note_)
3089         is_stack_executable =
3090           parameters->target().is_default_stack_executable();
3091       else
3092         is_stack_executable = false;
3093     }
3094
3095   if (parameters->options().relocatable())
3096     {
3097       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3098       elfcpp::Elf_Xword flags = 0;
3099       if (is_stack_executable)
3100         flags |= elfcpp::SHF_EXECINSTR;
3101       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3102                                 ORDER_INVALID, false);
3103     }
3104   else
3105     {
3106       if (this->script_options_->saw_phdrs_clause())
3107         return;
3108       int flags = elfcpp::PF_R | elfcpp::PF_W;
3109       if (is_stack_executable)
3110         flags |= elfcpp::PF_X;
3111       Output_segment* seg =
3112         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3113       seg->set_size(parameters->options().stack_size());
3114       // BFD lets targets override this default alignment, but the only
3115       // targets that do so are ones that Gold does not support so far.
3116       seg->set_minimum_p_align(16);
3117     }
3118 }
3119
3120 // If --build-id was used, set up the build ID note.
3121
3122 void
3123 Layout::create_build_id()
3124 {
3125   if (!parameters->options().user_set_build_id())
3126     return;
3127
3128   const char* style = parameters->options().build_id();
3129   if (strcmp(style, "none") == 0)
3130     return;
3131
3132   // Set DESCSZ to the size of the note descriptor.  When possible,
3133   // set DESC to the note descriptor contents.
3134   size_t descsz;
3135   std::string desc;
3136   if (strcmp(style, "md5") == 0)
3137     descsz = 128 / 8;
3138   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3139     descsz = 160 / 8;
3140   else if (strcmp(style, "uuid") == 0)
3141     {
3142 #ifndef __MINGW32__
3143       const size_t uuidsz = 128 / 8;
3144
3145       char buffer[uuidsz];
3146       memset(buffer, 0, uuidsz);
3147
3148       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3149       if (descriptor < 0)
3150         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3151                    strerror(errno));
3152       else
3153         {
3154           ssize_t got = ::read(descriptor, buffer, uuidsz);
3155           release_descriptor(descriptor, true);
3156           if (got < 0)
3157             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3158           else if (static_cast<size_t>(got) != uuidsz)
3159             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3160                        uuidsz, got);
3161         }
3162
3163       desc.assign(buffer, uuidsz);
3164       descsz = uuidsz;
3165 #else // __MINGW32__
3166       UUID uuid;
3167       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3168
3169       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3170       if (!rpc_library)
3171         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3172       else
3173         {
3174           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3175               GetProcAddress(rpc_library, "UuidCreate"));
3176           if (!uuid_create)
3177             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3178           else if (uuid_create(&uuid) != RPC_S_OK)
3179             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3180           FreeLibrary(rpc_library);
3181         }
3182       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3183       descsz = sizeof(UUID);
3184 #endif // __MINGW32__
3185     }
3186   else if (strncmp(style, "0x", 2) == 0)
3187     {
3188       hex_init();
3189       const char* p = style + 2;
3190       while (*p != '\0')
3191         {
3192           if (hex_p(p[0]) && hex_p(p[1]))
3193             {
3194               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3195               desc += c;
3196               p += 2;
3197             }
3198           else if (*p == '-' || *p == ':')
3199             ++p;
3200           else
3201             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3202                        style);
3203         }
3204       descsz = desc.size();
3205     }
3206   else
3207     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3208
3209   // Create the note.
3210   size_t trailing_padding;
3211   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3212                                          ".note.gnu.build-id", descsz, true,
3213                                          &trailing_padding);
3214   if (os == NULL)
3215     return;
3216
3217   if (!desc.empty())
3218     {
3219       // We know the value already, so we fill it in now.
3220       gold_assert(desc.size() == descsz);
3221
3222       Output_section_data* posd = new Output_data_const(desc, 4);
3223       os->add_output_section_data(posd);
3224
3225       if (trailing_padding != 0)
3226         {
3227           posd = new Output_data_zero_fill(trailing_padding, 0);
3228           os->add_output_section_data(posd);
3229         }
3230     }
3231   else
3232     {
3233       // We need to compute a checksum after we have completed the
3234       // link.
3235       gold_assert(trailing_padding == 0);
3236       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3237       os->add_output_section_data(this->build_id_note_);
3238     }
3239 }
3240
3241 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3242 // field of the former should point to the latter.  I'm not sure who
3243 // started this, but the GNU linker does it, and some tools depend
3244 // upon it.
3245
3246 void
3247 Layout::link_stabs_sections()
3248 {
3249   if (!this->have_stabstr_section_)
3250     return;
3251
3252   for (Section_list::iterator p = this->section_list_.begin();
3253        p != this->section_list_.end();
3254        ++p)
3255     {
3256       if ((*p)->type() != elfcpp::SHT_STRTAB)
3257         continue;
3258
3259       const char* name = (*p)->name();
3260       if (strncmp(name, ".stab", 5) != 0)
3261         continue;
3262
3263       size_t len = strlen(name);
3264       if (strcmp(name + len - 3, "str") != 0)
3265         continue;
3266
3267       std::string stab_name(name, len - 3);
3268       Output_section* stab_sec;
3269       stab_sec = this->find_output_section(stab_name.c_str());
3270       if (stab_sec != NULL)
3271         stab_sec->set_link_section(*p);
3272     }
3273 }
3274
3275 // Create .gnu_incremental_inputs and related sections needed
3276 // for the next run of incremental linking to check what has changed.
3277
3278 void
3279 Layout::create_incremental_info_sections(Symbol_table* symtab)
3280 {
3281   Incremental_inputs* incr = this->incremental_inputs_;
3282
3283   gold_assert(incr != NULL);
3284
3285   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3286   incr->create_data_sections(symtab);
3287
3288   // Add the .gnu_incremental_inputs section.
3289   const char* incremental_inputs_name =
3290     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3291   Output_section* incremental_inputs_os =
3292     this->make_output_section(incremental_inputs_name,
3293                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3294                               ORDER_INVALID, false);
3295   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3296
3297   // Add the .gnu_incremental_symtab section.
3298   const char* incremental_symtab_name =
3299     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3300   Output_section* incremental_symtab_os =
3301     this->make_output_section(incremental_symtab_name,
3302                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3303                               ORDER_INVALID, false);
3304   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3305   incremental_symtab_os->set_entsize(4);
3306
3307   // Add the .gnu_incremental_relocs section.
3308   const char* incremental_relocs_name =
3309     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3310   Output_section* incremental_relocs_os =
3311     this->make_output_section(incremental_relocs_name,
3312                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3313                               ORDER_INVALID, false);
3314   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3315   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3316
3317   // Add the .gnu_incremental_got_plt section.
3318   const char* incremental_got_plt_name =
3319     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3320   Output_section* incremental_got_plt_os =
3321     this->make_output_section(incremental_got_plt_name,
3322                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3323                               ORDER_INVALID, false);
3324   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3325
3326   // Add the .gnu_incremental_strtab section.
3327   const char* incremental_strtab_name =
3328     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3329   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3330                                                         elfcpp::SHT_STRTAB, 0,
3331                                                         ORDER_INVALID, false);
3332   Output_data_strtab* strtab_data =
3333       new Output_data_strtab(incr->get_stringpool());
3334   incremental_strtab_os->add_output_section_data(strtab_data);
3335
3336   incremental_inputs_os->set_after_input_sections();
3337   incremental_symtab_os->set_after_input_sections();
3338   incremental_relocs_os->set_after_input_sections();
3339   incremental_got_plt_os->set_after_input_sections();
3340
3341   incremental_inputs_os->set_link_section(incremental_strtab_os);
3342   incremental_symtab_os->set_link_section(incremental_inputs_os);
3343   incremental_relocs_os->set_link_section(incremental_inputs_os);
3344   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3345 }
3346
3347 // Return whether SEG1 should be before SEG2 in the output file.  This
3348 // is based entirely on the segment type and flags.  When this is
3349 // called the segment addresses have normally not yet been set.
3350
3351 bool
3352 Layout::segment_precedes(const Output_segment* seg1,
3353                          const Output_segment* seg2)
3354 {
3355   // In order to produce a stable ordering if we're called with the same pointer
3356   // return false.
3357   if (seg1 == seg2)
3358     return false;
3359
3360   elfcpp::Elf_Word type1 = seg1->type();
3361   elfcpp::Elf_Word type2 = seg2->type();
3362
3363   // The single PT_PHDR segment is required to precede any loadable
3364   // segment.  We simply make it always first.
3365   if (type1 == elfcpp::PT_PHDR)
3366     {
3367       gold_assert(type2 != elfcpp::PT_PHDR);
3368       return true;
3369     }
3370   if (type2 == elfcpp::PT_PHDR)
3371     return false;
3372
3373   // The single PT_INTERP segment is required to precede any loadable
3374   // segment.  We simply make it always second.
3375   if (type1 == elfcpp::PT_INTERP)
3376     {
3377       gold_assert(type2 != elfcpp::PT_INTERP);
3378       return true;
3379     }
3380   if (type2 == elfcpp::PT_INTERP)
3381     return false;
3382
3383   // We then put PT_LOAD segments before any other segments.
3384   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3385     return true;
3386   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3387     return false;
3388
3389   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3390   // segment, because that is where the dynamic linker expects to find
3391   // it (this is just for efficiency; other positions would also work
3392   // correctly).
3393   if (type1 == elfcpp::PT_TLS
3394       && type2 != elfcpp::PT_TLS
3395       && type2 != elfcpp::PT_GNU_RELRO)
3396     return false;
3397   if (type2 == elfcpp::PT_TLS
3398       && type1 != elfcpp::PT_TLS
3399       && type1 != elfcpp::PT_GNU_RELRO)
3400     return true;
3401
3402   // We put the PT_GNU_RELRO segment last, because that is where the
3403   // dynamic linker expects to find it (as with PT_TLS, this is just
3404   // for efficiency).
3405   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3406     return false;
3407   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3408     return true;
3409
3410   const elfcpp::Elf_Word flags1 = seg1->flags();
3411   const elfcpp::Elf_Word flags2 = seg2->flags();
3412
3413   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3414   // by the numeric segment type and flags values.  There should not
3415   // be more than one segment with the same type and flags, except
3416   // when a linker script specifies such.
3417   if (type1 != elfcpp::PT_LOAD)
3418     {
3419       if (type1 != type2)
3420         return type1 < type2;
3421       gold_assert(flags1 != flags2
3422                   || this->script_options_->saw_phdrs_clause());
3423       return flags1 < flags2;
3424     }
3425
3426   // If the addresses are set already, sort by load address.
3427   if (seg1->are_addresses_set())
3428     {
3429       if (!seg2->are_addresses_set())
3430         return true;
3431
3432       unsigned int section_count1 = seg1->output_section_count();
3433       unsigned int section_count2 = seg2->output_section_count();
3434       if (section_count1 == 0 && section_count2 > 0)
3435         return true;
3436       if (section_count1 > 0 && section_count2 == 0)
3437         return false;
3438
3439       uint64_t paddr1 = (seg1->are_addresses_set()
3440                          ? seg1->paddr()
3441                          : seg1->first_section_load_address());
3442       uint64_t paddr2 = (seg2->are_addresses_set()
3443                          ? seg2->paddr()
3444                          : seg2->first_section_load_address());
3445
3446       if (paddr1 != paddr2)
3447         return paddr1 < paddr2;
3448     }
3449   else if (seg2->are_addresses_set())
3450     return false;
3451
3452   // A segment which holds large data comes after a segment which does
3453   // not hold large data.
3454   if (seg1->is_large_data_segment())
3455     {
3456       if (!seg2->is_large_data_segment())
3457         return false;
3458     }
3459   else if (seg2->is_large_data_segment())
3460     return true;
3461
3462   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3463   // segments come before writable segments.  Then writable segments
3464   // with data come before writable segments without data.  Then
3465   // executable segments come before non-executable segments.  Then
3466   // the unlikely case of a non-readable segment comes before the
3467   // normal case of a readable segment.  If there are multiple
3468   // segments with the same type and flags, we require that the
3469   // address be set, and we sort by virtual address and then physical
3470   // address.
3471   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3472     return (flags1 & elfcpp::PF_W) == 0;
3473   if ((flags1 & elfcpp::PF_W) != 0
3474       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3475     return seg1->has_any_data_sections();
3476   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3477     return (flags1 & elfcpp::PF_X) != 0;
3478   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3479     return (flags1 & elfcpp::PF_R) == 0;
3480
3481   // We shouldn't get here--we shouldn't create segments which we
3482   // can't distinguish.  Unless of course we are using a weird linker
3483   // script or overlapping --section-start options.  We could also get
3484   // here if plugins want unique segments for subsets of sections.
3485   gold_assert(this->script_options_->saw_phdrs_clause()
3486               || parameters->options().any_section_start()
3487               || this->is_unique_segment_for_sections_specified()
3488               || parameters->options().text_unlikely_segment());
3489   return false;
3490 }
3491
3492 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3493
3494 static off_t
3495 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3496 {
3497   uint64_t unsigned_off = off;
3498   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3499                           | (addr & (abi_pagesize - 1)));
3500   if (aligned_off < unsigned_off)
3501     aligned_off += abi_pagesize;
3502   return aligned_off;
3503 }
3504
3505 // On targets where the text segment contains only executable code,
3506 // a non-executable segment is never the text segment.
3507
3508 static inline bool
3509 is_text_segment(const Target* target, const Output_segment* seg)
3510 {
3511   elfcpp::Elf_Xword flags = seg->flags();
3512   if ((flags & elfcpp::PF_W) != 0)
3513     return false;
3514   if ((flags & elfcpp::PF_X) == 0)
3515     return !target->isolate_execinstr();
3516   return true;
3517 }
3518
3519 // Set the file offsets of all the segments, and all the sections they
3520 // contain.  They have all been created.  LOAD_SEG must be laid out
3521 // first.  Return the offset of the data to follow.
3522
3523 off_t
3524 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3525                             unsigned int* pshndx)
3526 {
3527   // Sort them into the final order.  We use a stable sort so that we
3528   // don't randomize the order of indistinguishable segments created
3529   // by linker scripts.
3530   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3531                    Layout::Compare_segments(this));
3532
3533   // Find the PT_LOAD segments, and set their addresses and offsets
3534   // and their section's addresses and offsets.
3535   uint64_t start_addr;
3536   if (parameters->options().user_set_Ttext())
3537     start_addr = parameters->options().Ttext();
3538   else if (parameters->options().output_is_position_independent())
3539     start_addr = 0;
3540   else
3541     start_addr = target->default_text_segment_address();
3542
3543   uint64_t addr = start_addr;
3544   off_t off = 0;
3545
3546   // If LOAD_SEG is NULL, then the file header and segment headers
3547   // will not be loadable.  But they still need to be at offset 0 in
3548   // the file.  Set their offsets now.
3549   if (load_seg == NULL)
3550     {
3551       for (Data_list::iterator p = this->special_output_list_.begin();
3552            p != this->special_output_list_.end();
3553            ++p)
3554         {
3555           off = align_address(off, (*p)->addralign());
3556           (*p)->set_address_and_file_offset(0, off);
3557           off += (*p)->data_size();
3558         }
3559     }
3560
3561   unsigned int increase_relro = this->increase_relro_;
3562   if (this->script_options_->saw_sections_clause())
3563     increase_relro = 0;
3564
3565   const bool check_sections = parameters->options().check_sections();
3566   Output_segment* last_load_segment = NULL;
3567
3568   unsigned int shndx_begin = *pshndx;
3569   unsigned int shndx_load_seg = *pshndx;
3570
3571   for (Segment_list::iterator p = this->segment_list_.begin();
3572        p != this->segment_list_.end();
3573        ++p)
3574     {
3575       if ((*p)->type() == elfcpp::PT_LOAD)
3576         {
3577           if (target->isolate_execinstr())
3578             {
3579               // When we hit the segment that should contain the
3580               // file headers, reset the file offset so we place
3581               // it and subsequent segments appropriately.
3582               // We'll fix up the preceding segments below.
3583               if (load_seg == *p)
3584                 {
3585                   if (off == 0)
3586                     load_seg = NULL;
3587                   else
3588                     {
3589                       off = 0;
3590                       shndx_load_seg = *pshndx;
3591                     }
3592                 }
3593             }
3594           else
3595             {
3596               // Verify that the file headers fall into the first segment.
3597               if (load_seg != NULL && load_seg != *p)
3598                 gold_unreachable();
3599               load_seg = NULL;
3600             }
3601
3602           bool are_addresses_set = (*p)->are_addresses_set();
3603           if (are_addresses_set)
3604             {
3605               // When it comes to setting file offsets, we care about
3606               // the physical address.
3607               addr = (*p)->paddr();
3608             }
3609           else if (parameters->options().user_set_Ttext()
3610                    && (parameters->options().omagic()
3611                        || is_text_segment(target, *p)))
3612             {
3613               are_addresses_set = true;
3614             }
3615           else if (parameters->options().user_set_Trodata_segment()
3616                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3617             {
3618               addr = parameters->options().Trodata_segment();
3619               are_addresses_set = true;
3620             }
3621           else if (parameters->options().user_set_Tdata()
3622                    && ((*p)->flags() & elfcpp::PF_W) != 0
3623                    && (!parameters->options().user_set_Tbss()
3624                        || (*p)->has_any_data_sections()))
3625             {
3626               addr = parameters->options().Tdata();
3627               are_addresses_set = true;
3628             }
3629           else if (parameters->options().user_set_Tbss()
3630                    && ((*p)->flags() & elfcpp::PF_W) != 0
3631                    && !(*p)->has_any_data_sections())
3632             {
3633               addr = parameters->options().Tbss();
3634               are_addresses_set = true;
3635             }
3636
3637           uint64_t orig_addr = addr;
3638           uint64_t orig_off = off;
3639
3640           uint64_t aligned_addr = 0;
3641           uint64_t abi_pagesize = target->abi_pagesize();
3642           uint64_t common_pagesize = target->common_pagesize();
3643
3644           if (!parameters->options().nmagic()
3645               && !parameters->options().omagic())
3646             (*p)->set_minimum_p_align(abi_pagesize);
3647
3648           if (!are_addresses_set)
3649             {
3650               // Skip the address forward one page, maintaining the same
3651               // position within the page.  This lets us store both segments
3652               // overlapping on a single page in the file, but the loader will
3653               // put them on different pages in memory. We will revisit this
3654               // decision once we know the size of the segment.
3655
3656               uint64_t max_align = (*p)->maximum_alignment();
3657               if (max_align > abi_pagesize)
3658                 addr = align_address(addr, max_align);
3659               aligned_addr = addr;
3660
3661               if (load_seg == *p)
3662                 {
3663                   // This is the segment that will contain the file
3664                   // headers, so its offset will have to be exactly zero.
3665                   gold_assert(orig_off == 0);
3666
3667                   // If the target wants a fixed minimum distance from the
3668                   // text segment to the read-only segment, move up now.
3669                   uint64_t min_addr =
3670                     start_addr + (parameters->options().user_set_rosegment_gap()
3671                                   ? parameters->options().rosegment_gap()
3672                                   : target->rosegment_gap());
3673                   if (addr < min_addr)
3674                     addr = min_addr;
3675
3676                   // But this is not the first segment!  To make its
3677                   // address congruent with its offset, that address better
3678                   // be aligned to the ABI-mandated page size.
3679                   addr = align_address(addr, abi_pagesize);
3680                   aligned_addr = addr;
3681                 }
3682               else
3683                 {
3684                   if ((addr & (abi_pagesize - 1)) != 0)
3685                     addr = addr + abi_pagesize;
3686
3687                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3688                 }
3689             }
3690
3691           if (!parameters->options().nmagic()
3692               && !parameters->options().omagic())
3693             {
3694               // Here we are also taking care of the case when
3695               // the maximum segment alignment is larger than the page size.
3696               off = align_file_offset(off, addr,
3697                                       std::max(abi_pagesize,
3698                                                (*p)->maximum_alignment()));
3699             }
3700           else
3701             {
3702               // This is -N or -n with a section script which prevents
3703               // us from using a load segment.  We need to ensure that
3704               // the file offset is aligned to the alignment of the
3705               // segment.  This is because the linker script
3706               // implicitly assumed a zero offset.  If we don't align
3707               // here, then the alignment of the sections in the
3708               // linker script may not match the alignment of the
3709               // sections in the set_section_addresses call below,
3710               // causing an error about dot moving backward.
3711               off = align_address(off, (*p)->maximum_alignment());
3712             }
3713
3714           unsigned int shndx_hold = *pshndx;
3715           bool has_relro = false;
3716           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3717                                                           false, addr,
3718                                                           &increase_relro,
3719                                                           &has_relro,
3720                                                           &off, pshndx);
3721
3722           // Now that we know the size of this segment, we may be able
3723           // to save a page in memory, at the cost of wasting some
3724           // file space, by instead aligning to the start of a new
3725           // page.  Here we use the real machine page size rather than
3726           // the ABI mandated page size.  If the segment has been
3727           // aligned so that the relro data ends at a page boundary,
3728           // we do not try to realign it.
3729
3730           if (!are_addresses_set
3731               && !has_relro
3732               && aligned_addr != addr
3733               && !parameters->incremental())
3734             {
3735               uint64_t first_off = (common_pagesize
3736                                     - (aligned_addr
3737                                        & (common_pagesize - 1)));
3738               uint64_t last_off = new_addr & (common_pagesize - 1);
3739               if (first_off > 0
3740                   && last_off > 0
3741                   && ((aligned_addr & ~ (common_pagesize - 1))
3742                       != (new_addr & ~ (common_pagesize - 1)))
3743                   && first_off + last_off <= common_pagesize)
3744                 {
3745                   *pshndx = shndx_hold;
3746                   addr = align_address(aligned_addr, common_pagesize);
3747                   addr = align_address(addr, (*p)->maximum_alignment());
3748                   if ((addr & (abi_pagesize - 1)) != 0)
3749                     addr = addr + abi_pagesize;
3750                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3751                   off = align_file_offset(off, addr, abi_pagesize);
3752
3753                   increase_relro = this->increase_relro_;
3754                   if (this->script_options_->saw_sections_clause())
3755                     increase_relro = 0;
3756                   has_relro = false;
3757
3758                   new_addr = (*p)->set_section_addresses(target, this,
3759                                                          true, addr,
3760                                                          &increase_relro,
3761                                                          &has_relro,
3762                                                          &off, pshndx);
3763                 }
3764             }
3765
3766           addr = new_addr;
3767
3768           // Implement --check-sections.  We know that the segments
3769           // are sorted by LMA.
3770           if (check_sections && last_load_segment != NULL)
3771             {
3772               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3773               if (last_load_segment->paddr() + last_load_segment->memsz()
3774                   > (*p)->paddr())
3775                 {
3776                   unsigned long long lb1 = last_load_segment->paddr();
3777                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3778                   unsigned long long lb2 = (*p)->paddr();
3779                   unsigned long long le2 = lb2 + (*p)->memsz();
3780                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3781                                "[0x%llx -> 0x%llx]"),
3782                              lb1, le1, lb2, le2);
3783                 }
3784             }
3785           last_load_segment = *p;
3786         }
3787     }
3788
3789   if (load_seg != NULL && target->isolate_execinstr())
3790     {
3791       // Process the early segments again, setting their file offsets
3792       // so they land after the segments starting at LOAD_SEG.
3793       off = align_file_offset(off, 0, target->abi_pagesize());
3794
3795       this->reset_relax_output();
3796
3797       for (Segment_list::iterator p = this->segment_list_.begin();
3798            *p != load_seg;
3799            ++p)
3800         {
3801           if ((*p)->type() == elfcpp::PT_LOAD)
3802             {
3803               // We repeat the whole job of assigning addresses and
3804               // offsets, but we really only want to change the offsets and
3805               // must ensure that the addresses all come out the same as
3806               // they did the first time through.
3807               bool has_relro = false;
3808               const uint64_t old_addr = (*p)->vaddr();
3809               const uint64_t old_end = old_addr + (*p)->memsz();
3810               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3811                                                               true, old_addr,
3812                                                               &increase_relro,
3813                                                               &has_relro,
3814                                                               &off,
3815                                                               &shndx_begin);
3816               gold_assert(new_addr == old_end);
3817             }
3818         }
3819
3820       gold_assert(shndx_begin == shndx_load_seg);
3821     }
3822
3823   // Handle the non-PT_LOAD segments, setting their offsets from their
3824   // section's offsets.
3825   for (Segment_list::iterator p = this->segment_list_.begin();
3826        p != this->segment_list_.end();
3827        ++p)
3828     {
3829       // PT_GNU_STACK was set up correctly when it was created.
3830       if ((*p)->type() != elfcpp::PT_LOAD
3831           && (*p)->type() != elfcpp::PT_GNU_STACK)
3832         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3833                          ? increase_relro
3834                          : 0);
3835     }
3836
3837   // Set the TLS offsets for each section in the PT_TLS segment.
3838   if (this->tls_segment_ != NULL)
3839     this->tls_segment_->set_tls_offsets();
3840
3841   return off;
3842 }
3843
3844 // Set the offsets of all the allocated sections when doing a
3845 // relocatable link.  This does the same jobs as set_segment_offsets,
3846 // only for a relocatable link.
3847
3848 off_t
3849 Layout::set_relocatable_section_offsets(Output_data* file_header,
3850                                         unsigned int* pshndx)
3851 {
3852   off_t off = 0;
3853
3854   file_header->set_address_and_file_offset(0, 0);
3855   off += file_header->data_size();
3856
3857   for (Section_list::iterator p = this->section_list_.begin();
3858        p != this->section_list_.end();
3859        ++p)
3860     {
3861       // We skip unallocated sections here, except that group sections
3862       // have to come first.
3863       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3864           && (*p)->type() != elfcpp::SHT_GROUP)
3865         continue;
3866
3867       off = align_address(off, (*p)->addralign());
3868
3869       // The linker script might have set the address.
3870       if (!(*p)->is_address_valid())
3871         (*p)->set_address(0);
3872       (*p)->set_file_offset(off);
3873       (*p)->finalize_data_size();
3874       if ((*p)->type() != elfcpp::SHT_NOBITS)
3875         off += (*p)->data_size();
3876
3877       (*p)->set_out_shndx(*pshndx);
3878       ++*pshndx;
3879     }
3880
3881   return off;
3882 }
3883
3884 // Set the file offset of all the sections not associated with a
3885 // segment.
3886
3887 off_t
3888 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3889 {
3890   off_t startoff = off;
3891   off_t maxoff = off;
3892
3893   for (Section_list::iterator p = this->unattached_section_list_.begin();
3894        p != this->unattached_section_list_.end();
3895        ++p)
3896     {
3897       // The symtab section is handled in create_symtab_sections.
3898       if (*p == this->symtab_section_)
3899         continue;
3900
3901       // If we've already set the data size, don't set it again.
3902       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3903         continue;
3904
3905       if (pass == BEFORE_INPUT_SECTIONS_PASS
3906           && (*p)->requires_postprocessing())
3907         {
3908           (*p)->create_postprocessing_buffer();
3909           this->any_postprocessing_sections_ = true;
3910         }
3911
3912       if (pass == BEFORE_INPUT_SECTIONS_PASS
3913           && (*p)->after_input_sections())
3914         continue;
3915       else if (pass == POSTPROCESSING_SECTIONS_PASS
3916                && (!(*p)->after_input_sections()
3917                    || (*p)->type() == elfcpp::SHT_STRTAB))
3918         continue;
3919       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3920                && (!(*p)->after_input_sections()
3921                    || (*p)->type() != elfcpp::SHT_STRTAB))
3922         continue;
3923
3924       if (!parameters->incremental_update())
3925         {
3926           off = align_address(off, (*p)->addralign());
3927           (*p)->set_file_offset(off);
3928           (*p)->finalize_data_size();
3929         }
3930       else
3931         {
3932           // Incremental update: allocate file space from free list.
3933           (*p)->pre_finalize_data_size();
3934           off_t current_size = (*p)->current_data_size();
3935           off = this->allocate(current_size, (*p)->addralign(), startoff);
3936           if (off == -1)
3937             {
3938               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3939                 this->free_list_.dump();
3940               gold_assert((*p)->output_section() != NULL);
3941               gold_fallback(_("out of patch space for section %s; "
3942                               "relink with --incremental-full"),
3943                             (*p)->output_section()->name());
3944             }
3945           (*p)->set_file_offset(off);
3946           (*p)->finalize_data_size();
3947           if ((*p)->data_size() > current_size)
3948             {
3949               gold_assert((*p)->output_section() != NULL);
3950               gold_fallback(_("%s: section changed size; "
3951                               "relink with --incremental-full"),
3952                             (*p)->output_section()->name());
3953             }
3954           gold_debug(DEBUG_INCREMENTAL,
3955                      "set_section_offsets: %08lx %08lx %s",
3956                      static_cast<long>(off),
3957                      static_cast<long>((*p)->data_size()),
3958                      ((*p)->output_section() != NULL
3959                       ? (*p)->output_section()->name() : "(special)"));
3960         }
3961
3962       off += (*p)->data_size();
3963       if (off > maxoff)
3964         maxoff = off;
3965
3966       // At this point the name must be set.
3967       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3968         this->namepool_.add((*p)->name(), false, NULL);
3969     }
3970   return maxoff;
3971 }
3972
3973 // Set the section indexes of all the sections not associated with a
3974 // segment.
3975
3976 unsigned int
3977 Layout::set_section_indexes(unsigned int shndx)
3978 {
3979   for (Section_list::iterator p = this->unattached_section_list_.begin();
3980        p != this->unattached_section_list_.end();
3981        ++p)
3982     {
3983       if (!(*p)->has_out_shndx())
3984         {
3985           (*p)->set_out_shndx(shndx);
3986           ++shndx;
3987         }
3988     }
3989   return shndx;
3990 }
3991
3992 // Set the section addresses according to the linker script.  This is
3993 // only called when we see a SECTIONS clause.  This returns the
3994 // program segment which should hold the file header and segment
3995 // headers, if any.  It will return NULL if they should not be in a
3996 // segment.
3997
3998 Output_segment*
3999 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4000 {
4001   Script_sections* ss = this->script_options_->script_sections();
4002   gold_assert(ss->saw_sections_clause());
4003   return this->script_options_->set_section_addresses(symtab, this);
4004 }
4005
4006 // Place the orphan sections in the linker script.
4007
4008 void
4009 Layout::place_orphan_sections_in_script()
4010 {
4011   Script_sections* ss = this->script_options_->script_sections();
4012   gold_assert(ss->saw_sections_clause());
4013
4014   // Place each orphaned output section in the script.
4015   for (Section_list::iterator p = this->section_list_.begin();
4016        p != this->section_list_.end();
4017        ++p)
4018     {
4019       if (!(*p)->found_in_sections_clause())
4020         ss->place_orphan(*p);
4021     }
4022 }
4023
4024 // Count the local symbols in the regular symbol table and the dynamic
4025 // symbol table, and build the respective string pools.
4026
4027 void
4028 Layout::count_local_symbols(const Task* task,
4029                             const Input_objects* input_objects)
4030 {
4031   // First, figure out an upper bound on the number of symbols we'll
4032   // be inserting into each pool.  This helps us create the pools with
4033   // the right size, to avoid unnecessary hashtable resizing.
4034   unsigned int symbol_count = 0;
4035   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4036        p != input_objects->relobj_end();
4037        ++p)
4038     symbol_count += (*p)->local_symbol_count();
4039
4040   // Go from "upper bound" to "estimate."  We overcount for two
4041   // reasons: we double-count symbols that occur in more than one
4042   // object file, and we count symbols that are dropped from the
4043   // output.  Add it all together and assume we overcount by 100%.
4044   symbol_count /= 2;
4045
4046   // We assume all symbols will go into both the sympool and dynpool.
4047   this->sympool_.reserve(symbol_count);
4048   this->dynpool_.reserve(symbol_count);
4049
4050   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4051        p != input_objects->relobj_end();
4052        ++p)
4053     {
4054       Task_lock_obj<Object> tlo(task, *p);
4055       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4056     }
4057 }
4058
4059 // Create the symbol table sections.  Here we also set the final
4060 // values of the symbols.  At this point all the loadable sections are
4061 // fully laid out.  SHNUM is the number of sections so far.
4062
4063 void
4064 Layout::create_symtab_sections(const Input_objects* input_objects,
4065                                Symbol_table* symtab,
4066                                unsigned int shnum,
4067                                off_t* poff,
4068                                unsigned int local_dynamic_count)
4069 {
4070   int symsize;
4071   unsigned int align;
4072   if (parameters->target().get_size() == 32)
4073     {
4074       symsize = elfcpp::Elf_sizes<32>::sym_size;
4075       align = 4;
4076     }
4077   else if (parameters->target().get_size() == 64)
4078     {
4079       symsize = elfcpp::Elf_sizes<64>::sym_size;
4080       align = 8;
4081     }
4082   else
4083     gold_unreachable();
4084
4085   // Compute file offsets relative to the start of the symtab section.
4086   off_t off = 0;
4087
4088   // Save space for the dummy symbol at the start of the section.  We
4089   // never bother to write this out--it will just be left as zero.
4090   off += symsize;
4091   unsigned int local_symbol_index = 1;
4092
4093   // Add STT_SECTION symbols for each Output section which needs one.
4094   for (Section_list::iterator p = this->section_list_.begin();
4095        p != this->section_list_.end();
4096        ++p)
4097     {
4098       if (!(*p)->needs_symtab_index())
4099         (*p)->set_symtab_index(-1U);
4100       else
4101         {
4102           (*p)->set_symtab_index(local_symbol_index);
4103           ++local_symbol_index;
4104           off += symsize;
4105         }
4106     }
4107
4108   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4109        p != input_objects->relobj_end();
4110        ++p)
4111     {
4112       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4113                                                         off, symtab);
4114       off += (index - local_symbol_index) * symsize;
4115       local_symbol_index = index;
4116     }
4117
4118   unsigned int local_symcount = local_symbol_index;
4119   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4120
4121   off_t dynoff;
4122   size_t dyncount;
4123   if (this->dynsym_section_ == NULL)
4124     {
4125       dynoff = 0;
4126       dyncount = 0;
4127     }
4128   else
4129     {
4130       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4131       dynoff = this->dynsym_section_->offset() + locsize;
4132       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4133       gold_assert(static_cast<off_t>(dyncount * symsize)
4134                   == this->dynsym_section_->data_size() - locsize);
4135     }
4136
4137   off_t global_off = off;
4138   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4139                          &this->sympool_, &local_symcount);
4140
4141   if (!parameters->options().strip_all())
4142     {
4143       this->sympool_.set_string_offsets();
4144
4145       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4146       Output_section* osymtab = this->make_output_section(symtab_name,
4147                                                           elfcpp::SHT_SYMTAB,
4148                                                           0, ORDER_INVALID,
4149                                                           false);
4150       this->symtab_section_ = osymtab;
4151
4152       Output_section_data* pos = new Output_data_fixed_space(off, align,
4153                                                              "** symtab");
4154       osymtab->add_output_section_data(pos);
4155
4156       // We generate a .symtab_shndx section if we have more than
4157       // SHN_LORESERVE sections.  Technically it is possible that we
4158       // don't need one, because it is possible that there are no
4159       // symbols in any of sections with indexes larger than
4160       // SHN_LORESERVE.  That is probably unusual, though, and it is
4161       // easier to always create one than to compute section indexes
4162       // twice (once here, once when writing out the symbols).
4163       if (shnum >= elfcpp::SHN_LORESERVE)
4164         {
4165           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4166                                                                false, NULL);
4167           Output_section* osymtab_xindex =
4168             this->make_output_section(symtab_xindex_name,
4169                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4170                                       ORDER_INVALID, false);
4171
4172           size_t symcount = off / symsize;
4173           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4174
4175           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4176
4177           osymtab_xindex->set_link_section(osymtab);
4178           osymtab_xindex->set_addralign(4);
4179           osymtab_xindex->set_entsize(4);
4180
4181           osymtab_xindex->set_after_input_sections();
4182
4183           // This tells the driver code to wait until the symbol table
4184           // has written out before writing out the postprocessing
4185           // sections, including the .symtab_shndx section.
4186           this->any_postprocessing_sections_ = true;
4187         }
4188
4189       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4190       Output_section* ostrtab = this->make_output_section(strtab_name,
4191                                                           elfcpp::SHT_STRTAB,
4192                                                           0, ORDER_INVALID,
4193                                                           false);
4194
4195       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4196       ostrtab->add_output_section_data(pstr);
4197
4198       off_t symtab_off;
4199       if (!parameters->incremental_update())
4200         symtab_off = align_address(*poff, align);
4201       else
4202         {
4203           symtab_off = this->allocate(off, align, *poff);
4204           if (off == -1)
4205             gold_fallback(_("out of patch space for symbol table; "
4206                             "relink with --incremental-full"));
4207           gold_debug(DEBUG_INCREMENTAL,
4208                      "create_symtab_sections: %08lx %08lx .symtab",
4209                      static_cast<long>(symtab_off),
4210                      static_cast<long>(off));
4211         }
4212
4213       symtab->set_file_offset(symtab_off + global_off);
4214       osymtab->set_file_offset(symtab_off);
4215       osymtab->finalize_data_size();
4216       osymtab->set_link_section(ostrtab);
4217       osymtab->set_info(local_symcount);
4218       osymtab->set_entsize(symsize);
4219
4220       if (symtab_off + off > *poff)
4221         *poff = symtab_off + off;
4222     }
4223 }
4224
4225 // Create the .shstrtab section, which holds the names of the
4226 // sections.  At the time this is called, we have created all the
4227 // output sections except .shstrtab itself.
4228
4229 Output_section*
4230 Layout::create_shstrtab()
4231 {
4232   // FIXME: We don't need to create a .shstrtab section if we are
4233   // stripping everything.
4234
4235   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4236
4237   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4238                                                  ORDER_INVALID, false);
4239
4240   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4241     {
4242       // We can't write out this section until we've set all the
4243       // section names, and we don't set the names of compressed
4244       // output sections until relocations are complete.  FIXME: With
4245       // the current names we use, this is unnecessary.
4246       os->set_after_input_sections();
4247     }
4248
4249   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4250   os->add_output_section_data(posd);
4251
4252   return os;
4253 }
4254
4255 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4256 // offset.
4257
4258 void
4259 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4260 {
4261   Output_section_headers* oshdrs;
4262   oshdrs = new Output_section_headers(this,
4263                                       &this->segment_list_,
4264                                       &this->section_list_,
4265                                       &this->unattached_section_list_,
4266                                       &this->namepool_,
4267                                       shstrtab_section);
4268   off_t off;
4269   if (!parameters->incremental_update())
4270     off = align_address(*poff, oshdrs->addralign());
4271   else
4272     {
4273       oshdrs->pre_finalize_data_size();
4274       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4275       if (off == -1)
4276           gold_fallback(_("out of patch space for section header table; "
4277                           "relink with --incremental-full"));
4278       gold_debug(DEBUG_INCREMENTAL,
4279                  "create_shdrs: %08lx %08lx (section header table)",
4280                  static_cast<long>(off),
4281                  static_cast<long>(off + oshdrs->data_size()));
4282     }
4283   oshdrs->set_address_and_file_offset(0, off);
4284   off += oshdrs->data_size();
4285   if (off > *poff)
4286     *poff = off;
4287   this->section_headers_ = oshdrs;
4288 }
4289
4290 // Count the allocated sections.
4291
4292 size_t
4293 Layout::allocated_output_section_count() const
4294 {
4295   size_t section_count = 0;
4296   for (Segment_list::const_iterator p = this->segment_list_.begin();
4297        p != this->segment_list_.end();
4298        ++p)
4299     section_count += (*p)->output_section_count();
4300   return section_count;
4301 }
4302
4303 // Create the dynamic symbol table.
4304 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4305 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4306 // to the number of global symbols that have been forced local.
4307 // We need to remember the former because the forced-local symbols are
4308 // written along with the global symbols in Symtab::write_globals().
4309
4310 void
4311 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4312                               Symbol_table* symtab,
4313                               Output_section** pdynstr,
4314                               unsigned int* plocal_dynamic_count,
4315                               unsigned int* pforced_local_dynamic_count,
4316                               std::vector<Symbol*>* pdynamic_symbols,
4317                               Versions* pversions)
4318 {
4319   // Count all the symbols in the dynamic symbol table, and set the
4320   // dynamic symbol indexes.
4321
4322   // Skip symbol 0, which is always all zeroes.
4323   unsigned int index = 1;
4324
4325   // Add STT_SECTION symbols for each Output section which needs one.
4326   for (Section_list::iterator p = this->section_list_.begin();
4327        p != this->section_list_.end();
4328        ++p)
4329     {
4330       if (!(*p)->needs_dynsym_index())
4331         (*p)->set_dynsym_index(-1U);
4332       else
4333         {
4334           (*p)->set_dynsym_index(index);
4335           ++index;
4336         }
4337     }
4338
4339   // Count the local symbols that need to go in the dynamic symbol table,
4340   // and set the dynamic symbol indexes.
4341   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4342        p != input_objects->relobj_end();
4343        ++p)
4344     {
4345       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4346       index = new_index;
4347     }
4348
4349   unsigned int local_symcount = index;
4350   unsigned int forced_local_count = 0;
4351
4352   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4353                                      pdynamic_symbols, &this->dynpool_,
4354                                      pversions);
4355
4356   *plocal_dynamic_count = local_symcount;
4357   *pforced_local_dynamic_count = forced_local_count;
4358
4359   int symsize;
4360   unsigned int align;
4361   const int size = parameters->target().get_size();
4362   if (size == 32)
4363     {
4364       symsize = elfcpp::Elf_sizes<32>::sym_size;
4365       align = 4;
4366     }
4367   else if (size == 64)
4368     {
4369       symsize = elfcpp::Elf_sizes<64>::sym_size;
4370       align = 8;
4371     }
4372   else
4373     gold_unreachable();
4374
4375   // Create the dynamic symbol table section.
4376
4377   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4378                                                        elfcpp::SHT_DYNSYM,
4379                                                        elfcpp::SHF_ALLOC,
4380                                                        false,
4381                                                        ORDER_DYNAMIC_LINKER,
4382                                                        false, false, false);
4383
4384   // Check for NULL as a linker script may discard .dynsym.
4385   if (dynsym != NULL)
4386     {
4387       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4388                                                                align,
4389                                                                "** dynsym");
4390       dynsym->add_output_section_data(odata);
4391
4392       dynsym->set_info(local_symcount + forced_local_count);
4393       dynsym->set_entsize(symsize);
4394       dynsym->set_addralign(align);
4395
4396       this->dynsym_section_ = dynsym;
4397     }
4398
4399   Output_data_dynamic* const odyn = this->dynamic_data_;
4400   if (odyn != NULL)
4401     {
4402       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4403       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4404     }
4405
4406   // If there are more than SHN_LORESERVE allocated sections, we
4407   // create a .dynsym_shndx section.  It is possible that we don't
4408   // need one, because it is possible that there are no dynamic
4409   // symbols in any of the sections with indexes larger than
4410   // SHN_LORESERVE.  This is probably unusual, though, and at this
4411   // time we don't know the actual section indexes so it is
4412   // inconvenient to check.
4413   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4414     {
4415       Output_section* dynsym_xindex =
4416         this->choose_output_section(NULL, ".dynsym_shndx",
4417                                     elfcpp::SHT_SYMTAB_SHNDX,
4418                                     elfcpp::SHF_ALLOC,
4419                                     false, ORDER_DYNAMIC_LINKER, false, false,
4420                                     false);
4421
4422       if (dynsym_xindex != NULL)
4423         {
4424           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4425
4426           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4427
4428           dynsym_xindex->set_link_section(dynsym);
4429           dynsym_xindex->set_addralign(4);
4430           dynsym_xindex->set_entsize(4);
4431
4432           dynsym_xindex->set_after_input_sections();
4433
4434           // This tells the driver code to wait until the symbol table
4435           // has written out before writing out the postprocessing
4436           // sections, including the .dynsym_shndx section.
4437           this->any_postprocessing_sections_ = true;
4438         }
4439     }
4440
4441   // Create the dynamic string table section.
4442
4443   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4444                                                        elfcpp::SHT_STRTAB,
4445                                                        elfcpp::SHF_ALLOC,
4446                                                        false,
4447                                                        ORDER_DYNAMIC_LINKER,
4448                                                        false, false, false);
4449   *pdynstr = dynstr;
4450   if (dynstr != NULL)
4451     {
4452       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4453       dynstr->add_output_section_data(strdata);
4454
4455       if (dynsym != NULL)
4456         dynsym->set_link_section(dynstr);
4457       if (this->dynamic_section_ != NULL)
4458         this->dynamic_section_->set_link_section(dynstr);
4459
4460       if (odyn != NULL)
4461         {
4462           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4463           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4464         }
4465     }
4466
4467   // Create the hash tables.  The Gnu-style hash table must be
4468   // built first, because it changes the order of the symbols
4469   // in the dynamic symbol table.
4470
4471   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4472       || strcmp(parameters->options().hash_style(), "both") == 0)
4473     {
4474       unsigned char* phash;
4475       unsigned int hashlen;
4476       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4477                                     local_symcount + forced_local_count,
4478                                     &phash, &hashlen);
4479
4480       Output_section* hashsec =
4481         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4482                                     elfcpp::SHF_ALLOC, false,
4483                                     ORDER_DYNAMIC_LINKER, false, false,
4484                                     false);
4485
4486       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4487                                                                    hashlen,
4488                                                                    align,
4489                                                                    "** hash");
4490       if (hashsec != NULL && hashdata != NULL)
4491         hashsec->add_output_section_data(hashdata);
4492
4493       if (hashsec != NULL)
4494         {
4495           if (dynsym != NULL)
4496             hashsec->set_link_section(dynsym);
4497
4498           // For a 64-bit target, the entries in .gnu.hash do not have
4499           // a uniform size, so we only set the entry size for a
4500           // 32-bit target.
4501           if (parameters->target().get_size() == 32)
4502             hashsec->set_entsize(4);
4503
4504           if (odyn != NULL)
4505             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4506         }
4507     }
4508
4509   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4510       || strcmp(parameters->options().hash_style(), "both") == 0)
4511     {
4512       unsigned char* phash;
4513       unsigned int hashlen;
4514       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4515                                     local_symcount + forced_local_count,
4516                                     &phash, &hashlen);
4517
4518       Output_section* hashsec =
4519         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4520                                     elfcpp::SHF_ALLOC, false,
4521                                     ORDER_DYNAMIC_LINKER, false, false,
4522                                     false);
4523
4524       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4525                                                                    hashlen,
4526                                                                    align,
4527                                                                    "** hash");
4528       if (hashsec != NULL && hashdata != NULL)
4529         hashsec->add_output_section_data(hashdata);
4530
4531       if (hashsec != NULL)
4532         {
4533           if (dynsym != NULL)
4534             hashsec->set_link_section(dynsym);
4535           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4536         }
4537
4538       if (odyn != NULL)
4539         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4540     }
4541 }
4542
4543 // Assign offsets to each local portion of the dynamic symbol table.
4544
4545 void
4546 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4547 {
4548   Output_section* dynsym = this->dynsym_section_;
4549   if (dynsym == NULL)
4550     return;
4551
4552   off_t off = dynsym->offset();
4553
4554   // Skip the dummy symbol at the start of the section.
4555   off += dynsym->entsize();
4556
4557   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4558        p != input_objects->relobj_end();
4559        ++p)
4560     {
4561       unsigned int count = (*p)->set_local_dynsym_offset(off);
4562       off += count * dynsym->entsize();
4563     }
4564 }
4565
4566 // Create the version sections.
4567
4568 void
4569 Layout::create_version_sections(const Versions* versions,
4570                                 const Symbol_table* symtab,
4571                                 unsigned int local_symcount,
4572                                 const std::vector<Symbol*>& dynamic_symbols,
4573                                 const Output_section* dynstr)
4574 {
4575   if (!versions->any_defs() && !versions->any_needs())
4576     return;
4577
4578   switch (parameters->size_and_endianness())
4579     {
4580 #ifdef HAVE_TARGET_32_LITTLE
4581     case Parameters::TARGET_32_LITTLE:
4582       this->sized_create_version_sections<32, false>(versions, symtab,
4583                                                      local_symcount,
4584                                                      dynamic_symbols, dynstr);
4585       break;
4586 #endif
4587 #ifdef HAVE_TARGET_32_BIG
4588     case Parameters::TARGET_32_BIG:
4589       this->sized_create_version_sections<32, true>(versions, symtab,
4590                                                     local_symcount,
4591                                                     dynamic_symbols, dynstr);
4592       break;
4593 #endif
4594 #ifdef HAVE_TARGET_64_LITTLE
4595     case Parameters::TARGET_64_LITTLE:
4596       this->sized_create_version_sections<64, false>(versions, symtab,
4597                                                      local_symcount,
4598                                                      dynamic_symbols, dynstr);
4599       break;
4600 #endif
4601 #ifdef HAVE_TARGET_64_BIG
4602     case Parameters::TARGET_64_BIG:
4603       this->sized_create_version_sections<64, true>(versions, symtab,
4604                                                     local_symcount,
4605                                                     dynamic_symbols, dynstr);
4606       break;
4607 #endif
4608     default:
4609       gold_unreachable();
4610     }
4611 }
4612
4613 // Create the version sections, sized version.
4614
4615 template<int size, bool big_endian>
4616 void
4617 Layout::sized_create_version_sections(
4618     const Versions* versions,
4619     const Symbol_table* symtab,
4620     unsigned int local_symcount,
4621     const std::vector<Symbol*>& dynamic_symbols,
4622     const Output_section* dynstr)
4623 {
4624   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4625                                                      elfcpp::SHT_GNU_versym,
4626                                                      elfcpp::SHF_ALLOC,
4627                                                      false,
4628                                                      ORDER_DYNAMIC_LINKER,
4629                                                      false, false, false);
4630
4631   // Check for NULL since a linker script may discard this section.
4632   if (vsec != NULL)
4633     {
4634       unsigned char* vbuf;
4635       unsigned int vsize;
4636       versions->symbol_section_contents<size, big_endian>(symtab,
4637                                                           &this->dynpool_,
4638                                                           local_symcount,
4639                                                           dynamic_symbols,
4640                                                           &vbuf, &vsize);
4641
4642       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4643                                                                 "** versions");
4644
4645       vsec->add_output_section_data(vdata);
4646       vsec->set_entsize(2);
4647       vsec->set_link_section(this->dynsym_section_);
4648     }
4649
4650   Output_data_dynamic* const odyn = this->dynamic_data_;
4651   if (odyn != NULL && vsec != NULL)
4652     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4653
4654   if (versions->any_defs())
4655     {
4656       Output_section* vdsec;
4657       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4658                                           elfcpp::SHT_GNU_verdef,
4659                                           elfcpp::SHF_ALLOC,
4660                                           false, ORDER_DYNAMIC_LINKER, false,
4661                                           false, false);
4662
4663       if (vdsec != NULL)
4664         {
4665           unsigned char* vdbuf;
4666           unsigned int vdsize;
4667           unsigned int vdentries;
4668           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4669                                                            &vdbuf, &vdsize,
4670                                                            &vdentries);
4671
4672           Output_section_data* vddata =
4673             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4674
4675           vdsec->add_output_section_data(vddata);
4676           vdsec->set_link_section(dynstr);
4677           vdsec->set_info(vdentries);
4678
4679           if (odyn != NULL)
4680             {
4681               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4682               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4683             }
4684         }
4685     }
4686
4687   if (versions->any_needs())
4688     {
4689       Output_section* vnsec;
4690       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4691                                           elfcpp::SHT_GNU_verneed,
4692                                           elfcpp::SHF_ALLOC,
4693                                           false, ORDER_DYNAMIC_LINKER, false,
4694                                           false, false);
4695
4696       if (vnsec != NULL)
4697         {
4698           unsigned char* vnbuf;
4699           unsigned int vnsize;
4700           unsigned int vnentries;
4701           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4702                                                             &vnbuf, &vnsize,
4703                                                             &vnentries);
4704
4705           Output_section_data* vndata =
4706             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4707
4708           vnsec->add_output_section_data(vndata);
4709           vnsec->set_link_section(dynstr);
4710           vnsec->set_info(vnentries);
4711
4712           if (odyn != NULL)
4713             {
4714               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4715               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4716             }
4717         }
4718     }
4719 }
4720
4721 // Create the .interp section and PT_INTERP segment.
4722
4723 void
4724 Layout::create_interp(const Target* target)
4725 {
4726   gold_assert(this->interp_segment_ == NULL);
4727
4728   const char* interp = parameters->options().dynamic_linker();
4729   if (interp == NULL)
4730     {
4731       interp = target->dynamic_linker();
4732       gold_assert(interp != NULL);
4733     }
4734
4735   size_t len = strlen(interp) + 1;
4736
4737   Output_section_data* odata = new Output_data_const(interp, len, 1);
4738
4739   Output_section* osec = this->choose_output_section(NULL, ".interp",
4740                                                      elfcpp::SHT_PROGBITS,
4741                                                      elfcpp::SHF_ALLOC,
4742                                                      false, ORDER_INTERP,
4743                                                      false, false, false);
4744   if (osec != NULL)
4745     osec->add_output_section_data(odata);
4746 }
4747
4748 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4749 // called by the target-specific code.  This does nothing if not doing
4750 // a dynamic link.
4751
4752 // USE_REL is true for REL relocs rather than RELA relocs.
4753
4754 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4755
4756 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4757 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4758 // some targets have multiple reloc sections in PLT_REL.
4759
4760 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4761 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4762 // section.
4763
4764 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4765 // executable.
4766
4767 void
4768 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4769                                 const Output_data* plt_rel,
4770                                 const Output_data_reloc_generic* dyn_rel,
4771                                 bool add_debug, bool dynrel_includes_plt)
4772 {
4773   Output_data_dynamic* odyn = this->dynamic_data_;
4774   if (odyn == NULL)
4775     return;
4776
4777   if (plt_got != NULL && plt_got->output_section() != NULL)
4778     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4779
4780   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4781     {
4782       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4783       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4784       odyn->add_constant(elfcpp::DT_PLTREL,
4785                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4786     }
4787
4788   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4789       || (dynrel_includes_plt
4790           && plt_rel != NULL
4791           && plt_rel->output_section() != NULL))
4792     {
4793       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4794       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4795       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4796                                 (have_dyn_rel
4797                                  ? dyn_rel->output_section()
4798                                  : plt_rel->output_section()));
4799       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4800       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4801         odyn->add_section_size(size_tag,
4802                                dyn_rel->output_section(),
4803                                plt_rel->output_section());
4804       else if (have_dyn_rel)
4805         odyn->add_section_size(size_tag, dyn_rel->output_section());
4806       else
4807         odyn->add_section_size(size_tag, plt_rel->output_section());
4808       const int size = parameters->target().get_size();
4809       elfcpp::DT rel_tag;
4810       int rel_size;
4811       if (use_rel)
4812         {
4813           rel_tag = elfcpp::DT_RELENT;
4814           if (size == 32)
4815             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4816           else if (size == 64)
4817             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4818           else
4819             gold_unreachable();
4820         }
4821       else
4822         {
4823           rel_tag = elfcpp::DT_RELAENT;
4824           if (size == 32)
4825             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4826           else if (size == 64)
4827             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4828           else
4829             gold_unreachable();
4830         }
4831       odyn->add_constant(rel_tag, rel_size);
4832
4833       if (parameters->options().combreloc() && have_dyn_rel)
4834         {
4835           size_t c = dyn_rel->relative_reloc_count();
4836           if (c > 0)
4837             odyn->add_constant((use_rel
4838                                 ? elfcpp::DT_RELCOUNT
4839                                 : elfcpp::DT_RELACOUNT),
4840                                c);
4841         }
4842     }
4843
4844   if (add_debug && !parameters->options().shared())
4845     {
4846       // The value of the DT_DEBUG tag is filled in by the dynamic
4847       // linker at run time, and used by the debugger.
4848       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4849     }
4850 }
4851
4852 void
4853 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4854 {
4855   Output_data_dynamic* odyn = this->dynamic_data_;
4856   if (odyn == NULL)
4857     return;
4858   odyn->add_constant(tag, val);
4859 }
4860
4861 // Finish the .dynamic section and PT_DYNAMIC segment.
4862
4863 void
4864 Layout::finish_dynamic_section(const Input_objects* input_objects,
4865                                const Symbol_table* symtab)
4866 {
4867   if (!this->script_options_->saw_phdrs_clause()
4868       && this->dynamic_section_ != NULL)
4869     {
4870       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4871                                                        (elfcpp::PF_R
4872                                                         | elfcpp::PF_W));
4873       oseg->add_output_section_to_nonload(this->dynamic_section_,
4874                                           elfcpp::PF_R | elfcpp::PF_W);
4875     }
4876
4877   Output_data_dynamic* const odyn = this->dynamic_data_;
4878   if (odyn == NULL)
4879     return;
4880
4881   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4882        p != input_objects->dynobj_end();
4883        ++p)
4884     {
4885       if (!(*p)->is_needed() && (*p)->as_needed())
4886         {
4887           // This dynamic object was linked with --as-needed, but it
4888           // is not needed.
4889           continue;
4890         }
4891
4892       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4893     }
4894
4895   if (parameters->options().shared())
4896     {
4897       const char* soname = parameters->options().soname();
4898       if (soname != NULL)
4899         odyn->add_string(elfcpp::DT_SONAME, soname);
4900     }
4901
4902   Symbol* sym = symtab->lookup(parameters->options().init());
4903   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4904     odyn->add_symbol(elfcpp::DT_INIT, sym);
4905
4906   sym = symtab->lookup(parameters->options().fini());
4907   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4908     odyn->add_symbol(elfcpp::DT_FINI, sym);
4909
4910   // Look for .init_array, .preinit_array and .fini_array by checking
4911   // section types.
4912   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4913       p != this->section_list_.end();
4914       ++p)
4915     switch((*p)->type())
4916       {
4917       case elfcpp::SHT_FINI_ARRAY:
4918         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4919         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4920         break;
4921       case elfcpp::SHT_INIT_ARRAY:
4922         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4923         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4924         break;
4925       case elfcpp::SHT_PREINIT_ARRAY:
4926         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4927         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4928         break;
4929       default:
4930         break;
4931       }
4932
4933   // Add a DT_RPATH entry if needed.
4934   const General_options::Dir_list& rpath(parameters->options().rpath());
4935   if (!rpath.empty())
4936     {
4937       std::string rpath_val;
4938       for (General_options::Dir_list::const_iterator p = rpath.begin();
4939            p != rpath.end();
4940            ++p)
4941         {
4942           if (rpath_val.empty())
4943             rpath_val = p->name();
4944           else
4945             {
4946               // Eliminate duplicates.
4947               General_options::Dir_list::const_iterator q;
4948               for (q = rpath.begin(); q != p; ++q)
4949                 if (q->name() == p->name())
4950                   break;
4951               if (q == p)
4952                 {
4953                   rpath_val += ':';
4954                   rpath_val += p->name();
4955                 }
4956             }
4957         }
4958
4959       if (!parameters->options().enable_new_dtags())
4960         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4961       else
4962         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4963     }
4964
4965   // Look for text segments that have dynamic relocations.
4966   bool have_textrel = false;
4967   if (!this->script_options_->saw_sections_clause())
4968     {
4969       for (Segment_list::const_iterator p = this->segment_list_.begin();
4970            p != this->segment_list_.end();
4971            ++p)
4972         {
4973           if ((*p)->type() == elfcpp::PT_LOAD
4974               && ((*p)->flags() & elfcpp::PF_W) == 0
4975               && (*p)->has_dynamic_reloc())
4976             {
4977               have_textrel = true;
4978               break;
4979             }
4980         }
4981     }
4982   else
4983     {
4984       // We don't know the section -> segment mapping, so we are
4985       // conservative and just look for readonly sections with
4986       // relocations.  If those sections wind up in writable segments,
4987       // then we have created an unnecessary DT_TEXTREL entry.
4988       for (Section_list::const_iterator p = this->section_list_.begin();
4989            p != this->section_list_.end();
4990            ++p)
4991         {
4992           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4993               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4994               && (*p)->has_dynamic_reloc())
4995             {
4996               have_textrel = true;
4997               break;
4998             }
4999         }
5000     }
5001
5002   if (parameters->options().filter() != NULL)
5003     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5004   if (parameters->options().any_auxiliary())
5005     {
5006       for (options::String_set::const_iterator p =
5007              parameters->options().auxiliary_begin();
5008            p != parameters->options().auxiliary_end();
5009            ++p)
5010         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5011     }
5012
5013   // Add a DT_FLAGS entry if necessary.
5014   unsigned int flags = 0;
5015   if (have_textrel)
5016     {
5017       // Add a DT_TEXTREL for compatibility with older loaders.
5018       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5019       flags |= elfcpp::DF_TEXTREL;
5020
5021       if (parameters->options().text())
5022         gold_error(_("read-only segment has dynamic relocations"));
5023       else if (parameters->options().warn_shared_textrel()
5024                && parameters->options().shared())
5025         gold_warning(_("shared library text segment is not shareable"));
5026     }
5027   if (parameters->options().shared() && this->has_static_tls())
5028     flags |= elfcpp::DF_STATIC_TLS;
5029   if (parameters->options().origin())
5030     flags |= elfcpp::DF_ORIGIN;
5031   if (parameters->options().Bsymbolic()
5032       && !parameters->options().have_dynamic_list())
5033     {
5034       flags |= elfcpp::DF_SYMBOLIC;
5035       // Add DT_SYMBOLIC for compatibility with older loaders.
5036       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5037     }
5038   if (parameters->options().now())
5039     flags |= elfcpp::DF_BIND_NOW;
5040   if (flags != 0)
5041     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5042
5043   flags = 0;
5044   if (parameters->options().global())
5045     flags |= elfcpp::DF_1_GLOBAL;
5046   if (parameters->options().initfirst())
5047     flags |= elfcpp::DF_1_INITFIRST;
5048   if (parameters->options().interpose())
5049     flags |= elfcpp::DF_1_INTERPOSE;
5050   if (parameters->options().loadfltr())
5051     flags |= elfcpp::DF_1_LOADFLTR;
5052   if (parameters->options().nodefaultlib())
5053     flags |= elfcpp::DF_1_NODEFLIB;
5054   if (parameters->options().nodelete())
5055     flags |= elfcpp::DF_1_NODELETE;
5056   if (parameters->options().nodlopen())
5057     flags |= elfcpp::DF_1_NOOPEN;
5058   if (parameters->options().nodump())
5059     flags |= elfcpp::DF_1_NODUMP;
5060   if (!parameters->options().shared())
5061     flags &= ~(elfcpp::DF_1_INITFIRST
5062                | elfcpp::DF_1_NODELETE
5063                | elfcpp::DF_1_NOOPEN);
5064   if (parameters->options().origin())
5065     flags |= elfcpp::DF_1_ORIGIN;
5066   if (parameters->options().now())
5067     flags |= elfcpp::DF_1_NOW;
5068   if (parameters->options().Bgroup())
5069     flags |= elfcpp::DF_1_GROUP;
5070   if (flags != 0)
5071     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5072 }
5073
5074 // Set the size of the _DYNAMIC symbol table to be the size of the
5075 // dynamic data.
5076
5077 void
5078 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5079 {
5080   Output_data_dynamic* const odyn = this->dynamic_data_;
5081   if (odyn == NULL)
5082     return;
5083   odyn->finalize_data_size();
5084   if (this->dynamic_symbol_ == NULL)
5085     return;
5086   off_t data_size = odyn->data_size();
5087   const int size = parameters->target().get_size();
5088   if (size == 32)
5089     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5090   else if (size == 64)
5091     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5092   else
5093     gold_unreachable();
5094 }
5095
5096 // The mapping of input section name prefixes to output section names.
5097 // In some cases one prefix is itself a prefix of another prefix; in
5098 // such a case the longer prefix must come first.  These prefixes are
5099 // based on the GNU linker default ELF linker script.
5100
5101 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5102 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5103 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5104 {
5105   MAPPING_INIT(".text.", ".text"),
5106   MAPPING_INIT(".rodata.", ".rodata"),
5107   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5108   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5109   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5110   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5111   MAPPING_INIT(".data.", ".data"),
5112   MAPPING_INIT(".bss.", ".bss"),
5113   MAPPING_INIT(".tdata.", ".tdata"),
5114   MAPPING_INIT(".tbss.", ".tbss"),
5115   MAPPING_INIT(".init_array.", ".init_array"),
5116   MAPPING_INIT(".fini_array.", ".fini_array"),
5117   MAPPING_INIT(".sdata.", ".sdata"),
5118   MAPPING_INIT(".sbss.", ".sbss"),
5119   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5120   // differently depending on whether it is creating a shared library.
5121   MAPPING_INIT(".sdata2.", ".sdata"),
5122   MAPPING_INIT(".sbss2.", ".sbss"),
5123   MAPPING_INIT(".lrodata.", ".lrodata"),
5124   MAPPING_INIT(".ldata.", ".ldata"),
5125   MAPPING_INIT(".lbss.", ".lbss"),
5126   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5127   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5128   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5129   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5130   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5131   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5132   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5133   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5134   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5135   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5136   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5137   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5138   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5139   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5140   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5141   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5142   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5143   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5144   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5145   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5146   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5147 };
5148
5149 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5150 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5151 {
5152   MAPPING_INIT(".text.hot.", ".text.hot"),
5153   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5154   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5155   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5156   MAPPING_INIT(".text.startup.", ".text.startup"),
5157   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5158   MAPPING_INIT(".text.exit.", ".text.exit"),
5159   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5160   MAPPING_INIT(".text.", ".text"),
5161 };
5162 #undef MAPPING_INIT
5163 #undef MAPPING_INIT_EXACT
5164
5165 const int Layout::section_name_mapping_count =
5166   (sizeof(Layout::section_name_mapping)
5167    / sizeof(Layout::section_name_mapping[0]));
5168
5169 const int Layout::text_section_name_mapping_count =
5170   (sizeof(Layout::text_section_name_mapping)
5171    / sizeof(Layout::text_section_name_mapping[0]));
5172
5173 // Find section name NAME in PSNM and return the mapped name if found
5174 // with the length set in PLEN.
5175 const char *
5176 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5177                            const int count,
5178                            const char* name, size_t* plen)
5179 {
5180   for (int i = 0; i < count; ++i, ++psnm)
5181     {
5182       if (psnm->fromlen > 0)
5183         {
5184           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5185             {
5186               *plen = psnm->tolen;
5187               return psnm->to;
5188             }
5189         }
5190       else
5191         {
5192           if (strcmp(name, psnm->from) == 0)
5193             {
5194               *plen = psnm->tolen;
5195               return psnm->to;
5196             }
5197         }
5198     }
5199   return NULL;
5200 }
5201
5202 // Choose the output section name to use given an input section name.
5203 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5204 // length of NAME.
5205
5206 const char*
5207 Layout::output_section_name(const Relobj* relobj, const char* name,
5208                             size_t* plen)
5209 {
5210   // gcc 4.3 generates the following sorts of section names when it
5211   // needs a section name specific to a function:
5212   //   .text.FN
5213   //   .rodata.FN
5214   //   .sdata2.FN
5215   //   .data.FN
5216   //   .data.rel.FN
5217   //   .data.rel.local.FN
5218   //   .data.rel.ro.FN
5219   //   .data.rel.ro.local.FN
5220   //   .sdata.FN
5221   //   .bss.FN
5222   //   .sbss.FN
5223   //   .tdata.FN
5224   //   .tbss.FN
5225
5226   // The GNU linker maps all of those to the part before the .FN,
5227   // except that .data.rel.local.FN is mapped to .data, and
5228   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5229   // beginning with .data.rel.ro.local are grouped together.
5230
5231   // For an anonymous namespace, the string FN can contain a '.'.
5232
5233   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5234   // GNU linker maps to .rodata.
5235
5236   // The .data.rel.ro sections are used with -z relro.  The sections
5237   // are recognized by name.  We use the same names that the GNU
5238   // linker does for these sections.
5239
5240   // It is hard to handle this in a principled way, so we don't even
5241   // try.  We use a table of mappings.  If the input section name is
5242   // not found in the table, we simply use it as the output section
5243   // name.
5244
5245   if (parameters->options().keep_text_section_prefix()
5246       && is_prefix_of(".text", name))
5247     {
5248       const char* match = match_section_name(text_section_name_mapping,
5249                                              text_section_name_mapping_count,
5250                                              name, plen);
5251       if (match != NULL)
5252         return match;
5253     }
5254
5255   const char* match = match_section_name(section_name_mapping,
5256                                          section_name_mapping_count, name, plen);
5257   if (match != NULL)
5258     return match;
5259
5260   // As an additional complication, .ctors sections are output in
5261   // either .ctors or .init_array sections, and .dtors sections are
5262   // output in either .dtors or .fini_array sections.
5263   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5264     {
5265       if (parameters->options().ctors_in_init_array())
5266         {
5267           *plen = 11;
5268           return name[1] == 'c' ? ".init_array" : ".fini_array";
5269         }
5270       else
5271         {
5272           *plen = 6;
5273           return name[1] == 'c' ? ".ctors" : ".dtors";
5274         }
5275     }
5276   if (parameters->options().ctors_in_init_array()
5277       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5278     {
5279       // To make .init_array/.fini_array work with gcc we must exclude
5280       // .ctors and .dtors sections from the crtbegin and crtend
5281       // files.
5282       if (relobj == NULL
5283           || (!Layout::match_file_name(relobj, "crtbegin")
5284               && !Layout::match_file_name(relobj, "crtend")))
5285         {
5286           *plen = 11;
5287           return name[1] == 'c' ? ".init_array" : ".fini_array";
5288         }
5289     }
5290
5291   return name;
5292 }
5293
5294 // Return true if RELOBJ is an input file whose base name matches
5295 // FILE_NAME.  The base name must have an extension of ".o", and must
5296 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5297 // to match crtbegin.o as well as crtbeginS.o without getting confused
5298 // by other possibilities.  Overall matching the file name this way is
5299 // a dreadful hack, but the GNU linker does it in order to better
5300 // support gcc, and we need to be compatible.
5301
5302 bool
5303 Layout::match_file_name(const Relobj* relobj, const char* match)
5304 {
5305   const std::string& file_name(relobj->name());
5306   const char* base_name = lbasename(file_name.c_str());
5307   size_t match_len = strlen(match);
5308   if (strncmp(base_name, match, match_len) != 0)
5309     return false;
5310   size_t base_len = strlen(base_name);
5311   if (base_len != match_len + 2 && base_len != match_len + 3)
5312     return false;
5313   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5314 }
5315
5316 // Check if a comdat group or .gnu.linkonce section with the given
5317 // NAME is selected for the link.  If there is already a section,
5318 // *KEPT_SECTION is set to point to the existing section and the
5319 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5320 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5321 // *KEPT_SECTION is set to the internal copy and the function returns
5322 // true.
5323
5324 bool
5325 Layout::find_or_add_kept_section(const std::string& name,
5326                                  Relobj* object,
5327                                  unsigned int shndx,
5328                                  bool is_comdat,
5329                                  bool is_group_name,
5330                                  Kept_section** kept_section)
5331 {
5332   // It's normal to see a couple of entries here, for the x86 thunk
5333   // sections.  If we see more than a few, we're linking a C++
5334   // program, and we resize to get more space to minimize rehashing.
5335   if (this->signatures_.size() > 4
5336       && !this->resized_signatures_)
5337     {
5338       reserve_unordered_map(&this->signatures_,
5339                             this->number_of_input_files_ * 64);
5340       this->resized_signatures_ = true;
5341     }
5342
5343   Kept_section candidate;
5344   std::pair<Signatures::iterator, bool> ins =
5345     this->signatures_.insert(std::make_pair(name, candidate));
5346
5347   if (kept_section != NULL)
5348     *kept_section = &ins.first->second;
5349   if (ins.second)
5350     {
5351       // This is the first time we've seen this signature.
5352       ins.first->second.set_object(object);
5353       ins.first->second.set_shndx(shndx);
5354       if (is_comdat)
5355         ins.first->second.set_is_comdat();
5356       if (is_group_name)
5357         ins.first->second.set_is_group_name();
5358       return true;
5359     }
5360
5361   // We have already seen this signature.
5362
5363   if (ins.first->second.is_group_name())
5364     {
5365       // We've already seen a real section group with this signature.
5366       // If the kept group is from a plugin object, and we're in the
5367       // replacement phase, accept the new one as a replacement.
5368       if (ins.first->second.object() == NULL
5369           && parameters->options().plugins()->in_replacement_phase())
5370         {
5371           ins.first->second.set_object(object);
5372           ins.first->second.set_shndx(shndx);
5373           return true;
5374         }
5375       return false;
5376     }
5377   else if (is_group_name)
5378     {
5379       // This is a real section group, and we've already seen a
5380       // linkonce section with this signature.  Record that we've seen
5381       // a section group, and don't include this section group.
5382       ins.first->second.set_is_group_name();
5383       return false;
5384     }
5385   else
5386     {
5387       // We've already seen a linkonce section and this is a linkonce
5388       // section.  These don't block each other--this may be the same
5389       // symbol name with different section types.
5390       return true;
5391     }
5392 }
5393
5394 // Store the allocated sections into the section list.
5395
5396 void
5397 Layout::get_allocated_sections(Section_list* section_list) const
5398 {
5399   for (Section_list::const_iterator p = this->section_list_.begin();
5400        p != this->section_list_.end();
5401        ++p)
5402     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5403       section_list->push_back(*p);
5404 }
5405
5406 // Store the executable sections into the section list.
5407
5408 void
5409 Layout::get_executable_sections(Section_list* section_list) const
5410 {
5411   for (Section_list::const_iterator p = this->section_list_.begin();
5412        p != this->section_list_.end();
5413        ++p)
5414     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5415         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5416       section_list->push_back(*p);
5417 }
5418
5419 // Create an output segment.
5420
5421 Output_segment*
5422 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5423 {
5424   gold_assert(!parameters->options().relocatable());
5425   Output_segment* oseg = new Output_segment(type, flags);
5426   this->segment_list_.push_back(oseg);
5427
5428   if (type == elfcpp::PT_TLS)
5429     this->tls_segment_ = oseg;
5430   else if (type == elfcpp::PT_GNU_RELRO)
5431     this->relro_segment_ = oseg;
5432   else if (type == elfcpp::PT_INTERP)
5433     this->interp_segment_ = oseg;
5434
5435   return oseg;
5436 }
5437
5438 // Return the file offset of the normal symbol table.
5439
5440 off_t
5441 Layout::symtab_section_offset() const
5442 {
5443   if (this->symtab_section_ != NULL)
5444     return this->symtab_section_->offset();
5445   return 0;
5446 }
5447
5448 // Return the section index of the normal symbol table.  It may have
5449 // been stripped by the -s/--strip-all option.
5450
5451 unsigned int
5452 Layout::symtab_section_shndx() const
5453 {
5454   if (this->symtab_section_ != NULL)
5455     return this->symtab_section_->out_shndx();
5456   return 0;
5457 }
5458
5459 // Write out the Output_sections.  Most won't have anything to write,
5460 // since most of the data will come from input sections which are
5461 // handled elsewhere.  But some Output_sections do have Output_data.
5462
5463 void
5464 Layout::write_output_sections(Output_file* of) const
5465 {
5466   for (Section_list::const_iterator p = this->section_list_.begin();
5467        p != this->section_list_.end();
5468        ++p)
5469     {
5470       if (!(*p)->after_input_sections())
5471         (*p)->write(of);
5472     }
5473 }
5474
5475 // Write out data not associated with a section or the symbol table.
5476
5477 void
5478 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5479 {
5480   if (!parameters->options().strip_all())
5481     {
5482       const Output_section* symtab_section = this->symtab_section_;
5483       for (Section_list::const_iterator p = this->section_list_.begin();
5484            p != this->section_list_.end();
5485            ++p)
5486         {
5487           if ((*p)->needs_symtab_index())
5488             {
5489               gold_assert(symtab_section != NULL);
5490               unsigned int index = (*p)->symtab_index();
5491               gold_assert(index > 0 && index != -1U);
5492               off_t off = (symtab_section->offset()
5493                            + index * symtab_section->entsize());
5494               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5495             }
5496         }
5497     }
5498
5499   const Output_section* dynsym_section = this->dynsym_section_;
5500   for (Section_list::const_iterator p = this->section_list_.begin();
5501        p != this->section_list_.end();
5502        ++p)
5503     {
5504       if ((*p)->needs_dynsym_index())
5505         {
5506           gold_assert(dynsym_section != NULL);
5507           unsigned int index = (*p)->dynsym_index();
5508           gold_assert(index > 0 && index != -1U);
5509           off_t off = (dynsym_section->offset()
5510                        + index * dynsym_section->entsize());
5511           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5512         }
5513     }
5514
5515   // Write out the Output_data which are not in an Output_section.
5516   for (Data_list::const_iterator p = this->special_output_list_.begin();
5517        p != this->special_output_list_.end();
5518        ++p)
5519     (*p)->write(of);
5520
5521   // Write out the Output_data which are not in an Output_section
5522   // and are regenerated in each iteration of relaxation.
5523   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5524        p != this->relax_output_list_.end();
5525        ++p)
5526     (*p)->write(of);
5527 }
5528
5529 // Write out the Output_sections which can only be written after the
5530 // input sections are complete.
5531
5532 void
5533 Layout::write_sections_after_input_sections(Output_file* of)
5534 {
5535   // Determine the final section offsets, and thus the final output
5536   // file size.  Note we finalize the .shstrab last, to allow the
5537   // after_input_section sections to modify their section-names before
5538   // writing.
5539   if (this->any_postprocessing_sections_)
5540     {
5541       off_t off = this->output_file_size_;
5542       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5543
5544       // Now that we've finalized the names, we can finalize the shstrab.
5545       off =
5546         this->set_section_offsets(off,
5547                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5548
5549       if (off > this->output_file_size_)
5550         {
5551           of->resize(off);
5552           this->output_file_size_ = off;
5553         }
5554     }
5555
5556   for (Section_list::const_iterator p = this->section_list_.begin();
5557        p != this->section_list_.end();
5558        ++p)
5559     {
5560       if ((*p)->after_input_sections())
5561         (*p)->write(of);
5562     }
5563
5564   this->section_headers_->write(of);
5565 }
5566
5567 // If a tree-style build ID was requested, the parallel part of that computation
5568 // is already done, and the final hash-of-hashes is computed here.  For other
5569 // types of build IDs, all the work is done here.
5570
5571 void
5572 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5573                        size_t size_of_hashes) const
5574 {
5575   if (this->build_id_note_ == NULL)
5576     return;
5577
5578   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5579                                           this->build_id_note_->data_size());
5580
5581   if (array_of_hashes == NULL)
5582     {
5583       const size_t output_file_size = this->output_file_size();
5584       const unsigned char* iv = of->get_input_view(0, output_file_size);
5585       const char* style = parameters->options().build_id();
5586
5587       // If we get here with style == "tree" then the output must be
5588       // too small for chunking, and we use SHA-1 in that case.
5589       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5590         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5591       else if (strcmp(style, "md5") == 0)
5592         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5593       else
5594         gold_unreachable();
5595
5596       of->free_input_view(0, output_file_size, iv);
5597     }
5598   else
5599     {
5600       // Non-overlapping substrings of the output file have been hashed.
5601       // Compute SHA-1 hash of the hashes.
5602       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5603                   size_of_hashes, ov);
5604       delete[] array_of_hashes;
5605     }
5606
5607   of->write_output_view(this->build_id_note_->offset(),
5608                         this->build_id_note_->data_size(),
5609                         ov);
5610 }
5611
5612 // Write out a binary file.  This is called after the link is
5613 // complete.  IN is the temporary output file we used to generate the
5614 // ELF code.  We simply walk through the segments, read them from
5615 // their file offset in IN, and write them to their load address in
5616 // the output file.  FIXME: with a bit more work, we could support
5617 // S-records and/or Intel hex format here.
5618
5619 void
5620 Layout::write_binary(Output_file* in) const
5621 {
5622   gold_assert(parameters->options().oformat_enum()
5623               == General_options::OBJECT_FORMAT_BINARY);
5624
5625   // Get the size of the binary file.
5626   uint64_t max_load_address = 0;
5627   for (Segment_list::const_iterator p = this->segment_list_.begin();
5628        p != this->segment_list_.end();
5629        ++p)
5630     {
5631       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5632         {
5633           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5634           if (max_paddr > max_load_address)
5635             max_load_address = max_paddr;
5636         }
5637     }
5638
5639   Output_file out(parameters->options().output_file_name());
5640   out.open(max_load_address);
5641
5642   for (Segment_list::const_iterator p = this->segment_list_.begin();
5643        p != this->segment_list_.end();
5644        ++p)
5645     {
5646       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5647         {
5648           const unsigned char* vin = in->get_input_view((*p)->offset(),
5649                                                         (*p)->filesz());
5650           unsigned char* vout = out.get_output_view((*p)->paddr(),
5651                                                     (*p)->filesz());
5652           memcpy(vout, vin, (*p)->filesz());
5653           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5654           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5655         }
5656     }
5657
5658   out.close();
5659 }
5660
5661 // Print the output sections to the map file.
5662
5663 void
5664 Layout::print_to_mapfile(Mapfile* mapfile) const
5665 {
5666   for (Segment_list::const_iterator p = this->segment_list_.begin();
5667        p != this->segment_list_.end();
5668        ++p)
5669     (*p)->print_sections_to_mapfile(mapfile);
5670   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5671        p != this->unattached_section_list_.end();
5672        ++p)
5673     (*p)->print_to_mapfile(mapfile);
5674 }
5675
5676 // Print statistical information to stderr.  This is used for --stats.
5677
5678 void
5679 Layout::print_stats() const
5680 {
5681   this->namepool_.print_stats("section name pool");
5682   this->sympool_.print_stats("output symbol name pool");
5683   this->dynpool_.print_stats("dynamic name pool");
5684
5685   for (Section_list::const_iterator p = this->section_list_.begin();
5686        p != this->section_list_.end();
5687        ++p)
5688     (*p)->print_merge_stats();
5689 }
5690
5691 // Write_sections_task methods.
5692
5693 // We can always run this task.
5694
5695 Task_token*
5696 Write_sections_task::is_runnable()
5697 {
5698   return NULL;
5699 }
5700
5701 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5702 // when finished.
5703
5704 void
5705 Write_sections_task::locks(Task_locker* tl)
5706 {
5707   tl->add(this, this->output_sections_blocker_);
5708   if (this->input_sections_blocker_ != NULL)
5709     tl->add(this, this->input_sections_blocker_);
5710   tl->add(this, this->final_blocker_);
5711 }
5712
5713 // Run the task--write out the data.
5714
5715 void
5716 Write_sections_task::run(Workqueue*)
5717 {
5718   this->layout_->write_output_sections(this->of_);
5719 }
5720
5721 // Write_data_task methods.
5722
5723 // We can always run this task.
5724
5725 Task_token*
5726 Write_data_task::is_runnable()
5727 {
5728   return NULL;
5729 }
5730
5731 // We need to unlock FINAL_BLOCKER when finished.
5732
5733 void
5734 Write_data_task::locks(Task_locker* tl)
5735 {
5736   tl->add(this, this->final_blocker_);
5737 }
5738
5739 // Run the task--write out the data.
5740
5741 void
5742 Write_data_task::run(Workqueue*)
5743 {
5744   this->layout_->write_data(this->symtab_, this->of_);
5745 }
5746
5747 // Write_symbols_task methods.
5748
5749 // We can always run this task.
5750
5751 Task_token*
5752 Write_symbols_task::is_runnable()
5753 {
5754   return NULL;
5755 }
5756
5757 // We need to unlock FINAL_BLOCKER when finished.
5758
5759 void
5760 Write_symbols_task::locks(Task_locker* tl)
5761 {
5762   tl->add(this, this->final_blocker_);
5763 }
5764
5765 // Run the task--write out the symbols.
5766
5767 void
5768 Write_symbols_task::run(Workqueue*)
5769 {
5770   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5771                                this->layout_->symtab_xindex(),
5772                                this->layout_->dynsym_xindex(), this->of_);
5773 }
5774
5775 // Write_after_input_sections_task methods.
5776
5777 // We can only run this task after the input sections have completed.
5778
5779 Task_token*
5780 Write_after_input_sections_task::is_runnable()
5781 {
5782   if (this->input_sections_blocker_->is_blocked())
5783     return this->input_sections_blocker_;
5784   return NULL;
5785 }
5786
5787 // We need to unlock FINAL_BLOCKER when finished.
5788
5789 void
5790 Write_after_input_sections_task::locks(Task_locker* tl)
5791 {
5792   tl->add(this, this->final_blocker_);
5793 }
5794
5795 // Run the task.
5796
5797 void
5798 Write_after_input_sections_task::run(Workqueue*)
5799 {
5800   this->layout_->write_sections_after_input_sections(this->of_);
5801 }
5802
5803 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5804 // or as a "tree" where each chunk of the string is hashed and then those
5805 // hashes are put into a (much smaller) string which is hashed with sha1.
5806 // We compute a checksum over the entire file because that is simplest.
5807
5808 void
5809 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5810 {
5811   Task_token* post_hash_tasks_blocker = new Task_token(true);
5812   const Layout* layout = this->layout_;
5813   Output_file* of = this->of_;
5814   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5815                            : static_cast<size_t>(layout->output_file_size()));
5816   unsigned char* array_of_hashes = NULL;
5817   size_t size_of_hashes = 0;
5818
5819   if (strcmp(this->options_->build_id(), "tree") == 0
5820       && this->options_->build_id_chunk_size_for_treehash() > 0
5821       && filesize > 0
5822       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5823     {
5824       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5825       const size_t chunk_size =
5826           this->options_->build_id_chunk_size_for_treehash();
5827       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5828       post_hash_tasks_blocker->add_blockers(num_hashes);
5829       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5830       array_of_hashes = new unsigned char[size_of_hashes];
5831       unsigned char *dst = array_of_hashes;
5832       for (size_t i = 0, src_offset = 0; i < num_hashes;
5833            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5834         {
5835           size_t size = std::min(chunk_size, filesize - src_offset);
5836           workqueue->queue(new Hash_task(of,
5837                                          src_offset,
5838                                          size,
5839                                          dst,
5840                                          post_hash_tasks_blocker));
5841         }
5842     }
5843
5844   // Queue the final task to write the build id and close the output file.
5845   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5846                                                            layout,
5847                                                            of,
5848                                                            array_of_hashes,
5849                                                            size_of_hashes),
5850                                      post_hash_tasks_blocker,
5851                                      "Task_function Close_task_runner"));
5852 }
5853
5854 // Close_task_runner methods.
5855
5856 // Finish up the build ID computation, if necessary, and write a binary file,
5857 // if necessary.  Then close the output file.
5858
5859 void
5860 Close_task_runner::run(Workqueue*, const Task*)
5861 {
5862   // At this point the multi-threaded part of the build ID computation,
5863   // if any, is done.  See Build_id_task_runner.
5864   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5865                                 this->size_of_hashes_);
5866
5867   // If we've been asked to create a binary file, we do so here.
5868   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5869     this->layout_->write_binary(this->of_);
5870
5871   this->of_->close();
5872 }
5873
5874 // Instantiate the templates we need.  We could use the configure
5875 // script to restrict this to only the ones for implemented targets.
5876
5877 #ifdef HAVE_TARGET_32_LITTLE
5878 template
5879 Output_section*
5880 Layout::init_fixed_output_section<32, false>(
5881     const char* name,
5882     elfcpp::Shdr<32, false>& shdr);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_32_BIG
5886 template
5887 Output_section*
5888 Layout::init_fixed_output_section<32, true>(
5889     const char* name,
5890     elfcpp::Shdr<32, true>& shdr);
5891 #endif
5892
5893 #ifdef HAVE_TARGET_64_LITTLE
5894 template
5895 Output_section*
5896 Layout::init_fixed_output_section<64, false>(
5897     const char* name,
5898     elfcpp::Shdr<64, false>& shdr);
5899 #endif
5900
5901 #ifdef HAVE_TARGET_64_BIG
5902 template
5903 Output_section*
5904 Layout::init_fixed_output_section<64, true>(
5905     const char* name,
5906     elfcpp::Shdr<64, true>& shdr);
5907 #endif
5908
5909 #ifdef HAVE_TARGET_32_LITTLE
5910 template
5911 Output_section*
5912 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5913                           unsigned int shndx,
5914                           const char* name,
5915                           const elfcpp::Shdr<32, false>& shdr,
5916                           unsigned int, unsigned int, unsigned int, off_t*);
5917 #endif
5918
5919 #ifdef HAVE_TARGET_32_BIG
5920 template
5921 Output_section*
5922 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5923                          unsigned int shndx,
5924                          const char* name,
5925                          const elfcpp::Shdr<32, true>& shdr,
5926                          unsigned int, unsigned int, unsigned int, off_t*);
5927 #endif
5928
5929 #ifdef HAVE_TARGET_64_LITTLE
5930 template
5931 Output_section*
5932 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5933                           unsigned int shndx,
5934                           const char* name,
5935                           const elfcpp::Shdr<64, false>& shdr,
5936                           unsigned int, unsigned int, unsigned int, off_t*);
5937 #endif
5938
5939 #ifdef HAVE_TARGET_64_BIG
5940 template
5941 Output_section*
5942 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5943                          unsigned int shndx,
5944                          const char* name,
5945                          const elfcpp::Shdr<64, true>& shdr,
5946                          unsigned int, unsigned int, unsigned int, off_t*);
5947 #endif
5948
5949 #ifdef HAVE_TARGET_32_LITTLE
5950 template
5951 Output_section*
5952 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5953                                 unsigned int reloc_shndx,
5954                                 const elfcpp::Shdr<32, false>& shdr,
5955                                 Output_section* data_section,
5956                                 Relocatable_relocs* rr);
5957 #endif
5958
5959 #ifdef HAVE_TARGET_32_BIG
5960 template
5961 Output_section*
5962 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5963                                unsigned int reloc_shndx,
5964                                const elfcpp::Shdr<32, true>& shdr,
5965                                Output_section* data_section,
5966                                Relocatable_relocs* rr);
5967 #endif
5968
5969 #ifdef HAVE_TARGET_64_LITTLE
5970 template
5971 Output_section*
5972 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5973                                 unsigned int reloc_shndx,
5974                                 const elfcpp::Shdr<64, false>& shdr,
5975                                 Output_section* data_section,
5976                                 Relocatable_relocs* rr);
5977 #endif
5978
5979 #ifdef HAVE_TARGET_64_BIG
5980 template
5981 Output_section*
5982 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5983                                unsigned int reloc_shndx,
5984                                const elfcpp::Shdr<64, true>& shdr,
5985                                Output_section* data_section,
5986                                Relocatable_relocs* rr);
5987 #endif
5988
5989 #ifdef HAVE_TARGET_32_LITTLE
5990 template
5991 void
5992 Layout::layout_group<32, false>(Symbol_table* symtab,
5993                                 Sized_relobj_file<32, false>* object,
5994                                 unsigned int,
5995                                 const char* group_section_name,
5996                                 const char* signature,
5997                                 const elfcpp::Shdr<32, false>& shdr,
5998                                 elfcpp::Elf_Word flags,
5999                                 std::vector<unsigned int>* shndxes);
6000 #endif
6001
6002 #ifdef HAVE_TARGET_32_BIG
6003 template
6004 void
6005 Layout::layout_group<32, true>(Symbol_table* symtab,
6006                                Sized_relobj_file<32, true>* object,
6007                                unsigned int,
6008                                const char* group_section_name,
6009                                const char* signature,
6010                                const elfcpp::Shdr<32, true>& shdr,
6011                                elfcpp::Elf_Word flags,
6012                                std::vector<unsigned int>* shndxes);
6013 #endif
6014
6015 #ifdef HAVE_TARGET_64_LITTLE
6016 template
6017 void
6018 Layout::layout_group<64, false>(Symbol_table* symtab,
6019                                 Sized_relobj_file<64, false>* object,
6020                                 unsigned int,
6021                                 const char* group_section_name,
6022                                 const char* signature,
6023                                 const elfcpp::Shdr<64, false>& shdr,
6024                                 elfcpp::Elf_Word flags,
6025                                 std::vector<unsigned int>* shndxes);
6026 #endif
6027
6028 #ifdef HAVE_TARGET_64_BIG
6029 template
6030 void
6031 Layout::layout_group<64, true>(Symbol_table* symtab,
6032                                Sized_relobj_file<64, true>* object,
6033                                unsigned int,
6034                                const char* group_section_name,
6035                                const char* signature,
6036                                const elfcpp::Shdr<64, true>& shdr,
6037                                elfcpp::Elf_Word flags,
6038                                std::vector<unsigned int>* shndxes);
6039 #endif
6040
6041 #ifdef HAVE_TARGET_32_LITTLE
6042 template
6043 Output_section*
6044 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6045                                    const unsigned char* symbols,
6046                                    off_t symbols_size,
6047                                    const unsigned char* symbol_names,
6048                                    off_t symbol_names_size,
6049                                    unsigned int shndx,
6050                                    const elfcpp::Shdr<32, false>& shdr,
6051                                    unsigned int reloc_shndx,
6052                                    unsigned int reloc_type,
6053                                    off_t* off);
6054 #endif
6055
6056 #ifdef HAVE_TARGET_32_BIG
6057 template
6058 Output_section*
6059 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6060                                   const unsigned char* symbols,
6061                                   off_t symbols_size,
6062                                   const unsigned char* symbol_names,
6063                                   off_t symbol_names_size,
6064                                   unsigned int shndx,
6065                                   const elfcpp::Shdr<32, true>& shdr,
6066                                   unsigned int reloc_shndx,
6067                                   unsigned int reloc_type,
6068                                   off_t* off);
6069 #endif
6070
6071 #ifdef HAVE_TARGET_64_LITTLE
6072 template
6073 Output_section*
6074 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6075                                    const unsigned char* symbols,
6076                                    off_t symbols_size,
6077                                    const unsigned char* symbol_names,
6078                                    off_t symbol_names_size,
6079                                    unsigned int shndx,
6080                                    const elfcpp::Shdr<64, false>& shdr,
6081                                    unsigned int reloc_shndx,
6082                                    unsigned int reloc_type,
6083                                    off_t* off);
6084 #endif
6085
6086 #ifdef HAVE_TARGET_64_BIG
6087 template
6088 Output_section*
6089 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6090                                   const unsigned char* symbols,
6091                                   off_t symbols_size,
6092                                   const unsigned char* symbol_names,
6093                                   off_t symbol_names_size,
6094                                   unsigned int shndx,
6095                                   const elfcpp::Shdr<64, true>& shdr,
6096                                   unsigned int reloc_shndx,
6097                                   unsigned int reloc_type,
6098                                   off_t* off);
6099 #endif
6100
6101 #ifdef HAVE_TARGET_32_LITTLE
6102 template
6103 void
6104 Layout::add_to_gdb_index(bool is_type_unit,
6105                          Sized_relobj<32, false>* object,
6106                          const unsigned char* symbols,
6107                          off_t symbols_size,
6108                          unsigned int shndx,
6109                          unsigned int reloc_shndx,
6110                          unsigned int reloc_type);
6111 #endif
6112
6113 #ifdef HAVE_TARGET_32_BIG
6114 template
6115 void
6116 Layout::add_to_gdb_index(bool is_type_unit,
6117                          Sized_relobj<32, true>* object,
6118                          const unsigned char* symbols,
6119                          off_t symbols_size,
6120                          unsigned int shndx,
6121                          unsigned int reloc_shndx,
6122                          unsigned int reloc_type);
6123 #endif
6124
6125 #ifdef HAVE_TARGET_64_LITTLE
6126 template
6127 void
6128 Layout::add_to_gdb_index(bool is_type_unit,
6129                          Sized_relobj<64, false>* object,
6130                          const unsigned char* symbols,
6131                          off_t symbols_size,
6132                          unsigned int shndx,
6133                          unsigned int reloc_shndx,
6134                          unsigned int reloc_type);
6135 #endif
6136
6137 #ifdef HAVE_TARGET_64_BIG
6138 template
6139 void
6140 Layout::add_to_gdb_index(bool is_type_unit,
6141                          Sized_relobj<64, true>* object,
6142                          const unsigned char* symbols,
6143                          off_t symbols_size,
6144                          unsigned int shndx,
6145                          unsigned int reloc_shndx,
6146                          unsigned int reloc_type);
6147 #endif
6148
6149 } // End namespace gold.