PR ld/14265
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460
461 static const char* gdb_sections[] =
462 {
463   "abbrev",
464   "addr",         // Fission extension
465   // "aranges",   // not used by gdb as of 7.4
466   "frame",
467   "info",
468   "types",
469   "line",
470   "loc",
471   "macinfo",
472   "macro",
473   // "pubnames",  // not used by gdb as of 7.4
474   // "pubtypes",  // not used by gdb as of 7.4
475   "ranges",
476   "str",
477 };
478
479 // This is the minimum set of sections needed for line numbers.
480
481 static const char* lines_only_debug_sections[] =
482 {
483   "abbrev",
484   // "addr",      // Fission extension
485   // "aranges",   // not used by gdb as of 7.4
486   // "frame",
487   "info",
488   // "types",
489   "line",
490   // "loc",
491   // "macinfo",
492   // "macro",
493   // "pubnames",  // not used by gdb as of 7.4
494   // "pubtypes",  // not used by gdb as of 7.4
495   // "ranges",
496   "str",
497 };
498
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501
502 static const char* gdb_fast_lookup_sections[] =
503 {
504   "aranges",
505   "pubnames",
506   "pubtypes",
507 };
508
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516   // We can do this faster: binary search or a hashtable.  But why bother?
517   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518     if (strcmp(suffix, gdb_sections[i]) == 0)
519       return true;
520   return false;
521 }
522
523 // Returns whether the given section is needed for lines-only debugging.
524
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528   // We can do this faster: binary search or a hashtable.  But why bother?
529   for (size_t i = 0;
530        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531        ++i)
532     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533       return true;
534   return false;
535 }
536
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543   // We can do this faster: binary search or a hashtable.  But why bother?
544   for (size_t i = 0;
545        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546        ++i)
547     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548       return true;
549   return false;
550 }
551
552 // Sometimes we compress sections.  This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections.  This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564   return (is_prefix_of(".debug", secname));
565 }
566
567 // We may see compressed debug sections in input files.  Return TRUE
568 // if this is the name of a compressed debug section.
569
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573   return (is_prefix_of(".zdebug", secname));
574 }
575
576 // Whether to include this section in the link.
577
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581                         const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584     return false;
585
586   switch (shdr.get_sh_type())
587     {
588     case elfcpp::SHT_NULL:
589     case elfcpp::SHT_SYMTAB:
590     case elfcpp::SHT_DYNSYM:
591     case elfcpp::SHT_HASH:
592     case elfcpp::SHT_DYNAMIC:
593     case elfcpp::SHT_SYMTAB_SHNDX:
594       return false;
595
596     case elfcpp::SHT_STRTAB:
597       // Discard the sections which have special meanings in the ELF
598       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
599       // checking the sh_link fields of the appropriate sections.
600       return (strcmp(name, ".dynstr") != 0
601               && strcmp(name, ".strtab") != 0
602               && strcmp(name, ".shstrtab") != 0);
603
604     case elfcpp::SHT_RELA:
605     case elfcpp::SHT_REL:
606     case elfcpp::SHT_GROUP:
607       // If we are emitting relocations these should be handled
608       // elsewhere.
609       gold_assert(!parameters->options().relocatable()
610                   && !parameters->options().emit_relocs());
611       return false;
612
613     case elfcpp::SHT_PROGBITS:
614       if (parameters->options().strip_debug()
615           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
616         {
617           if (is_debug_info_section(name))
618             return false;
619         }
620       if (parameters->options().strip_debug_non_line()
621           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622         {
623           // Debugging sections can only be recognized by name.
624           if (is_prefix_of(".debug_", name)
625               && !is_lines_only_debug_section(name + 7))
626             return false;
627           if (is_prefix_of(".zdebug_", name)
628               && !is_lines_only_debug_section(name + 8))
629             return false;
630         }
631       if (parameters->options().strip_debug_gdb()
632           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
633         {
634           // Debugging sections can only be recognized by name.
635           if (is_prefix_of(".debug_", name)
636               && !is_gdb_debug_section(name + 7))
637             return false;
638           if (is_prefix_of(".zdebug_", name)
639               && !is_gdb_debug_section(name + 8))
640             return false;
641         }
642       if (parameters->options().gdb_index()
643           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
644         {
645           // When building .gdb_index, we can strip .debug_pubnames,
646           // .debug_pubtypes, and .debug_aranges sections.
647           if (is_prefix_of(".debug_", name)
648               && is_gdb_fast_lookup_section(name + 7))
649             return false;
650           if (is_prefix_of(".zdebug_", name)
651               && is_gdb_fast_lookup_section(name + 8))
652             return false;
653         }
654       if (parameters->options().strip_lto_sections()
655           && !parameters->options().relocatable()
656           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
657         {
658           // Ignore LTO sections containing intermediate code.
659           if (is_prefix_of(".gnu.lto_", name))
660             return false;
661         }
662       // The GNU linker strips .gnu_debuglink sections, so we do too.
663       // This is a feature used to keep debugging information in
664       // separate files.
665       if (strcmp(name, ".gnu_debuglink") == 0)
666         return false;
667       return true;
668
669     default:
670       return true;
671     }
672 }
673
674 // Return an output section named NAME, or NULL if there is none.
675
676 Output_section*
677 Layout::find_output_section(const char* name) const
678 {
679   for (Section_list::const_iterator p = this->section_list_.begin();
680        p != this->section_list_.end();
681        ++p)
682     if (strcmp((*p)->name(), name) == 0)
683       return *p;
684   return NULL;
685 }
686
687 // Return an output segment of type TYPE, with segment flags SET set
688 // and segment flags CLEAR clear.  Return NULL if there is none.
689
690 Output_segment*
691 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
692                             elfcpp::Elf_Word clear) const
693 {
694   for (Segment_list::const_iterator p = this->segment_list_.begin();
695        p != this->segment_list_.end();
696        ++p)
697     if (static_cast<elfcpp::PT>((*p)->type()) == type
698         && ((*p)->flags() & set) == set
699         && ((*p)->flags() & clear) == 0)
700       return *p;
701   return NULL;
702 }
703
704 // When we put a .ctors or .dtors section with more than one word into
705 // a .init_array or .fini_array section, we need to reverse the words
706 // in the .ctors/.dtors section.  This is because .init_array executes
707 // constructors front to back, where .ctors executes them back to
708 // front, and vice-versa for .fini_array/.dtors.  Although we do want
709 // to remap .ctors/.dtors into .init_array/.fini_array because it can
710 // be more efficient, we don't want to change the order in which
711 // constructors/destructors are run.  This set just keeps track of
712 // these sections which need to be reversed.  It is only changed by
713 // Layout::layout.  It should be a private member of Layout, but that
714 // would require layout.h to #include object.h to get the definition
715 // of Section_id.
716 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
717
718 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
719 // .init_array/.fini_array section.
720
721 bool
722 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
723 {
724   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
725           != ctors_sections_in_init_array.end());
726 }
727
728 // Return the output section to use for section NAME with type TYPE
729 // and section flags FLAGS.  NAME must be canonicalized in the string
730 // pool, and NAME_KEY is the key.  ORDER is where this should appear
731 // in the output sections.  IS_RELRO is true for a relro section.
732
733 Output_section*
734 Layout::get_output_section(const char* name, Stringpool::Key name_key,
735                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736                            Output_section_order order, bool is_relro)
737 {
738   elfcpp::Elf_Word lookup_type = type;
739
740   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
741   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
742   // .init_array, .fini_array, and .preinit_array sections by name
743   // whatever their type in the input file.  We do this because the
744   // types are not always right in the input files.
745   if (lookup_type == elfcpp::SHT_INIT_ARRAY
746       || lookup_type == elfcpp::SHT_FINI_ARRAY
747       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
748     lookup_type = elfcpp::SHT_PROGBITS;
749
750   elfcpp::Elf_Xword lookup_flags = flags;
751
752   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
753   // read-write with read-only sections.  Some other ELF linkers do
754   // not do this.  FIXME: Perhaps there should be an option
755   // controlling this.
756   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
757
758   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
759   const std::pair<Key, Output_section*> v(key, NULL);
760   std::pair<Section_name_map::iterator, bool> ins(
761     this->section_name_map_.insert(v));
762
763   if (!ins.second)
764     return ins.first->second;
765   else
766     {
767       // This is the first time we've seen this name/type/flags
768       // combination.  For compatibility with the GNU linker, we
769       // combine sections with contents and zero flags with sections
770       // with non-zero flags.  This is a workaround for cases where
771       // assembler code forgets to set section flags.  FIXME: Perhaps
772       // there should be an option to control this.
773       Output_section* os = NULL;
774
775       if (lookup_type == elfcpp::SHT_PROGBITS)
776         {
777           if (flags == 0)
778             {
779               Output_section* same_name = this->find_output_section(name);
780               if (same_name != NULL
781                   && (same_name->type() == elfcpp::SHT_PROGBITS
782                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
783                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
784                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
785                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
786                 os = same_name;
787             }
788           else if ((flags & elfcpp::SHF_TLS) == 0)
789             {
790               elfcpp::Elf_Xword zero_flags = 0;
791               const Key zero_key(name_key, std::make_pair(lookup_type,
792                                                           zero_flags));
793               Section_name_map::iterator p =
794                   this->section_name_map_.find(zero_key);
795               if (p != this->section_name_map_.end())
796                 os = p->second;
797             }
798         }
799
800       if (os == NULL)
801         os = this->make_output_section(name, type, flags, order, is_relro);
802
803       ins.first->second = os;
804       return os;
805     }
806 }
807
808 // Returns TRUE iff NAME (an input section from RELOBJ) will
809 // be mapped to an output section that should be KEPT.
810
811 bool
812 Layout::keep_input_section(const Relobj* relobj, const char* name)
813 {
814   if (! this->script_options_->saw_sections_clause())
815     return false;
816
817   Script_sections* ss = this->script_options_->script_sections();
818   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
819   Output_section** output_section_slot;
820   Script_sections::Section_type script_section_type;
821   bool keep;
822
823   name = ss->output_section_name(file_name, name, &output_section_slot,
824                                  &script_section_type, &keep);
825   return name != NULL && keep;
826 }
827
828 // Pick the output section to use for section NAME, in input file
829 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
830 // linker created section.  IS_INPUT_SECTION is true if we are
831 // choosing an output section for an input section found in a input
832 // file.  ORDER is where this section should appear in the output
833 // sections.  IS_RELRO is true for a relro section.  This will return
834 // NULL if the input section should be discarded.
835
836 Output_section*
837 Layout::choose_output_section(const Relobj* relobj, const char* name,
838                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
839                               bool is_input_section, Output_section_order order,
840                               bool is_relro)
841 {
842   // We should not see any input sections after we have attached
843   // sections to segments.
844   gold_assert(!is_input_section || !this->sections_are_attached_);
845
846   // Some flags in the input section should not be automatically
847   // copied to the output section.
848   flags &= ~ (elfcpp::SHF_INFO_LINK
849               | elfcpp::SHF_GROUP
850               | elfcpp::SHF_MERGE
851               | elfcpp::SHF_STRINGS);
852
853   // We only clear the SHF_LINK_ORDER flag in for
854   // a non-relocatable link.
855   if (!parameters->options().relocatable())
856     flags &= ~elfcpp::SHF_LINK_ORDER;
857
858   if (this->script_options_->saw_sections_clause())
859     {
860       // We are using a SECTIONS clause, so the output section is
861       // chosen based only on the name.
862
863       Script_sections* ss = this->script_options_->script_sections();
864       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
865       Output_section** output_section_slot;
866       Script_sections::Section_type script_section_type;
867       const char* orig_name = name;
868       bool keep;
869       name = ss->output_section_name(file_name, name, &output_section_slot,
870                                      &script_section_type, &keep);
871
872       if (name == NULL)
873         {
874           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
875                                      "because it is not allowed by the "
876                                      "SECTIONS clause of the linker script"),
877                      orig_name);
878           // The SECTIONS clause says to discard this input section.
879           return NULL;
880         }
881
882       // We can only handle script section types ST_NONE and ST_NOLOAD.
883       switch (script_section_type)
884         {
885         case Script_sections::ST_NONE:
886           break;
887         case Script_sections::ST_NOLOAD:
888           flags &= elfcpp::SHF_ALLOC;
889           break;
890         default:
891           gold_unreachable();
892         }
893
894       // If this is an orphan section--one not mentioned in the linker
895       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
896       // default processing below.
897
898       if (output_section_slot != NULL)
899         {
900           if (*output_section_slot != NULL)
901             {
902               (*output_section_slot)->update_flags_for_input_section(flags);
903               return *output_section_slot;
904             }
905
906           // We don't put sections found in the linker script into
907           // SECTION_NAME_MAP_.  That keeps us from getting confused
908           // if an orphan section is mapped to a section with the same
909           // name as one in the linker script.
910
911           name = this->namepool_.add(name, false, NULL);
912
913           Output_section* os = this->make_output_section(name, type, flags,
914                                                          order, is_relro);
915
916           os->set_found_in_sections_clause();
917
918           // Special handling for NOLOAD sections.
919           if (script_section_type == Script_sections::ST_NOLOAD)
920             {
921               os->set_is_noload();
922
923               // The constructor of Output_section sets addresses of non-ALLOC
924               // sections to 0 by default.  We don't want that for NOLOAD
925               // sections even if they have no SHF_ALLOC flag.
926               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
927                   && os->is_address_valid())
928                 {
929                   gold_assert(os->address() == 0
930                               && !os->is_offset_valid()
931                               && !os->is_data_size_valid());
932                   os->reset_address_and_file_offset();
933                 }
934             }
935
936           *output_section_slot = os;
937           return os;
938         }
939     }
940
941   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
942
943   size_t len = strlen(name);
944   char* uncompressed_name = NULL;
945
946   // Compressed debug sections should be mapped to the corresponding
947   // uncompressed section.
948   if (is_compressed_debug_section(name))
949     {
950       uncompressed_name = new char[len];
951       uncompressed_name[0] = '.';
952       gold_assert(name[0] == '.' && name[1] == 'z');
953       strncpy(&uncompressed_name[1], &name[2], len - 2);
954       uncompressed_name[len - 1] = '\0';
955       len -= 1;
956       name = uncompressed_name;
957     }
958
959   // Turn NAME from the name of the input section into the name of the
960   // output section.
961   if (is_input_section
962       && !this->script_options_->saw_sections_clause()
963       && !parameters->options().relocatable())
964     {
965       const char *orig_name = name;
966       name = parameters->target().output_section_name(relobj, name, &len);
967       if (name == NULL)
968         name = Layout::output_section_name(relobj, orig_name, &len);
969     }
970
971   Stringpool::Key name_key;
972   name = this->namepool_.add_with_length(name, len, true, &name_key);
973
974   if (uncompressed_name != NULL)
975     delete[] uncompressed_name;
976
977   // Find or make the output section.  The output section is selected
978   // based on the section name, type, and flags.
979   return this->get_output_section(name, name_key, type, flags, order, is_relro);
980 }
981
982 // For incremental links, record the initial fixed layout of a section
983 // from the base file, and return a pointer to the Output_section.
984
985 template<int size, bool big_endian>
986 Output_section*
987 Layout::init_fixed_output_section(const char* name,
988                                   elfcpp::Shdr<size, big_endian>& shdr)
989 {
990   unsigned int sh_type = shdr.get_sh_type();
991
992   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
993   // PRE_INIT_ARRAY, and NOTE sections.
994   // All others will be created from scratch and reallocated.
995   if (!can_incremental_update(sh_type))
996     return NULL;
997
998   // If we're generating a .gdb_index section, we need to regenerate
999   // it from scratch.
1000   if (parameters->options().gdb_index()
1001       && sh_type == elfcpp::SHT_PROGBITS
1002       && strcmp(name, ".gdb_index") == 0)
1003     return NULL;
1004
1005   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1006   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1007   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1008   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1009   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1010       shdr.get_sh_addralign();
1011
1012   // Make the output section.
1013   Stringpool::Key name_key;
1014   name = this->namepool_.add(name, true, &name_key);
1015   Output_section* os = this->get_output_section(name, name_key, sh_type,
1016                                                 sh_flags, ORDER_INVALID, false);
1017   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1018   if (sh_type != elfcpp::SHT_NOBITS)
1019     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1020   return os;
1021 }
1022
1023 // Return the output section to use for input section SHNDX, with name
1024 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1025 // index of a relocation section which applies to this section, or 0
1026 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1027 // relocation section if there is one.  Set *OFF to the offset of this
1028 // input section without the output section.  Return NULL if the
1029 // section should be discarded.  Set *OFF to -1 if the section
1030 // contents should not be written directly to the output file, but
1031 // will instead receive special handling.
1032
1033 template<int size, bool big_endian>
1034 Output_section*
1035 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1036                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1037                unsigned int reloc_shndx, unsigned int, off_t* off)
1038 {
1039   *off = 0;
1040
1041   if (!this->include_section(object, name, shdr))
1042     return NULL;
1043
1044   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1045
1046   // In a relocatable link a grouped section must not be combined with
1047   // any other sections.
1048   Output_section* os;
1049   if (parameters->options().relocatable()
1050       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1051     {
1052       name = this->namepool_.add(name, true, NULL);
1053       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1054                                      ORDER_INVALID, false);
1055     }
1056   else
1057     {
1058       os = this->choose_output_section(object, name, sh_type,
1059                                        shdr.get_sh_flags(), true,
1060                                        ORDER_INVALID, false);
1061       if (os == NULL)
1062         return NULL;
1063     }
1064
1065   // By default the GNU linker sorts input sections whose names match
1066   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1067   // sections are sorted by name.  This is used to implement
1068   // constructor priority ordering.  We are compatible.  When we put
1069   // .ctor sections in .init_array and .dtor sections in .fini_array,
1070   // we must also sort plain .ctor and .dtor sections.
1071   if (!this->script_options_->saw_sections_clause()
1072       && !parameters->options().relocatable()
1073       && (is_prefix_of(".ctors.", name)
1074           || is_prefix_of(".dtors.", name)
1075           || is_prefix_of(".init_array.", name)
1076           || is_prefix_of(".fini_array.", name)
1077           || (parameters->options().ctors_in_init_array()
1078               && (strcmp(name, ".ctors") == 0
1079                   || strcmp(name, ".dtors") == 0))))
1080     os->set_must_sort_attached_input_sections();
1081
1082   // If this is a .ctors or .ctors.* section being mapped to a
1083   // .init_array section, or a .dtors or .dtors.* section being mapped
1084   // to a .fini_array section, we will need to reverse the words if
1085   // there is more than one.  Record this section for later.  See
1086   // ctors_sections_in_init_array above.
1087   if (!this->script_options_->saw_sections_clause()
1088       && !parameters->options().relocatable()
1089       && shdr.get_sh_size() > size / 8
1090       && (((strcmp(name, ".ctors") == 0
1091             || is_prefix_of(".ctors.", name))
1092            && strcmp(os->name(), ".init_array") == 0)
1093           || ((strcmp(name, ".dtors") == 0
1094                || is_prefix_of(".dtors.", name))
1095               && strcmp(os->name(), ".fini_array") == 0)))
1096     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1097
1098   // FIXME: Handle SHF_LINK_ORDER somewhere.
1099
1100   elfcpp::Elf_Xword orig_flags = os->flags();
1101
1102   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1103                                this->script_options_->saw_sections_clause());
1104
1105   // If the flags changed, we may have to change the order.
1106   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1107     {
1108       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1109       elfcpp::Elf_Xword new_flags =
1110         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1111       if (orig_flags != new_flags)
1112         os->set_order(this->default_section_order(os, false));
1113     }
1114
1115   this->have_added_input_section_ = true;
1116
1117   return os;
1118 }
1119
1120 // Handle a relocation section when doing a relocatable link.
1121
1122 template<int size, bool big_endian>
1123 Output_section*
1124 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1125                      unsigned int,
1126                      const elfcpp::Shdr<size, big_endian>& shdr,
1127                      Output_section* data_section,
1128                      Relocatable_relocs* rr)
1129 {
1130   gold_assert(parameters->options().relocatable()
1131               || parameters->options().emit_relocs());
1132
1133   int sh_type = shdr.get_sh_type();
1134
1135   std::string name;
1136   if (sh_type == elfcpp::SHT_REL)
1137     name = ".rel";
1138   else if (sh_type == elfcpp::SHT_RELA)
1139     name = ".rela";
1140   else
1141     gold_unreachable();
1142   name += data_section->name();
1143
1144   // In a relocatable link relocs for a grouped section must not be
1145   // combined with other reloc sections.
1146   Output_section* os;
1147   if (!parameters->options().relocatable()
1148       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1149     os = this->choose_output_section(object, name.c_str(), sh_type,
1150                                      shdr.get_sh_flags(), false,
1151                                      ORDER_INVALID, false);
1152   else
1153     {
1154       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1155       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1156                                      ORDER_INVALID, false);
1157     }
1158
1159   os->set_should_link_to_symtab();
1160   os->set_info_section(data_section);
1161
1162   Output_section_data* posd;
1163   if (sh_type == elfcpp::SHT_REL)
1164     {
1165       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1166       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1167                                            size,
1168                                            big_endian>(rr);
1169     }
1170   else if (sh_type == elfcpp::SHT_RELA)
1171     {
1172       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1173       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1174                                            size,
1175                                            big_endian>(rr);
1176     }
1177   else
1178     gold_unreachable();
1179
1180   os->add_output_section_data(posd);
1181   rr->set_output_data(posd);
1182
1183   return os;
1184 }
1185
1186 // Handle a group section when doing a relocatable link.
1187
1188 template<int size, bool big_endian>
1189 void
1190 Layout::layout_group(Symbol_table* symtab,
1191                      Sized_relobj_file<size, big_endian>* object,
1192                      unsigned int,
1193                      const char* group_section_name,
1194                      const char* signature,
1195                      const elfcpp::Shdr<size, big_endian>& shdr,
1196                      elfcpp::Elf_Word flags,
1197                      std::vector<unsigned int>* shndxes)
1198 {
1199   gold_assert(parameters->options().relocatable());
1200   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1201   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1202   Output_section* os = this->make_output_section(group_section_name,
1203                                                  elfcpp::SHT_GROUP,
1204                                                  shdr.get_sh_flags(),
1205                                                  ORDER_INVALID, false);
1206
1207   // We need to find a symbol with the signature in the symbol table.
1208   // If we don't find one now, we need to look again later.
1209   Symbol* sym = symtab->lookup(signature, NULL);
1210   if (sym != NULL)
1211     os->set_info_symndx(sym);
1212   else
1213     {
1214       // Reserve some space to minimize reallocations.
1215       if (this->group_signatures_.empty())
1216         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1217
1218       // We will wind up using a symbol whose name is the signature.
1219       // So just put the signature in the symbol name pool to save it.
1220       signature = symtab->canonicalize_name(signature);
1221       this->group_signatures_.push_back(Group_signature(os, signature));
1222     }
1223
1224   os->set_should_link_to_symtab();
1225   os->set_entsize(4);
1226
1227   section_size_type entry_count =
1228     convert_to_section_size_type(shdr.get_sh_size() / 4);
1229   Output_section_data* posd =
1230     new Output_data_group<size, big_endian>(object, entry_count, flags,
1231                                             shndxes);
1232   os->add_output_section_data(posd);
1233 }
1234
1235 // Special GNU handling of sections name .eh_frame.  They will
1236 // normally hold exception frame data as defined by the C++ ABI
1237 // (http://codesourcery.com/cxx-abi/).
1238
1239 template<int size, bool big_endian>
1240 Output_section*
1241 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1242                         const unsigned char* symbols,
1243                         off_t symbols_size,
1244                         const unsigned char* symbol_names,
1245                         off_t symbol_names_size,
1246                         unsigned int shndx,
1247                         const elfcpp::Shdr<size, big_endian>& shdr,
1248                         unsigned int reloc_shndx, unsigned int reloc_type,
1249                         off_t* off)
1250 {
1251   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1252               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1253   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1254
1255   Output_section* os = this->make_eh_frame_section(object);
1256   if (os == NULL)
1257     return NULL;
1258
1259   gold_assert(this->eh_frame_section_ == os);
1260
1261   elfcpp::Elf_Xword orig_flags = os->flags();
1262
1263   if (!parameters->incremental()
1264       && this->eh_frame_data_->add_ehframe_input_section(object,
1265                                                          symbols,
1266                                                          symbols_size,
1267                                                          symbol_names,
1268                                                          symbol_names_size,
1269                                                          shndx,
1270                                                          reloc_shndx,
1271                                                          reloc_type))
1272     {
1273       os->update_flags_for_input_section(shdr.get_sh_flags());
1274
1275       // A writable .eh_frame section is a RELRO section.
1276       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1277           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1278         {
1279           os->set_is_relro();
1280           os->set_order(ORDER_RELRO);
1281         }
1282
1283       // We found a .eh_frame section we are going to optimize, so now
1284       // we can add the set of optimized sections to the output
1285       // section.  We need to postpone adding this until we've found a
1286       // section we can optimize so that the .eh_frame section in
1287       // crtbegin.o winds up at the start of the output section.
1288       if (!this->added_eh_frame_data_)
1289         {
1290           os->add_output_section_data(this->eh_frame_data_);
1291           this->added_eh_frame_data_ = true;
1292         }
1293       *off = -1;
1294     }
1295   else
1296     {
1297       // We couldn't handle this .eh_frame section for some reason.
1298       // Add it as a normal section.
1299       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1300       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1301                                    reloc_shndx, saw_sections_clause);
1302       this->have_added_input_section_ = true;
1303
1304       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1305           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1306         os->set_order(this->default_section_order(os, false));
1307     }
1308
1309   return os;
1310 }
1311
1312 // Create and return the magic .eh_frame section.  Create
1313 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1314 // input .eh_frame section; it may be NULL.
1315
1316 Output_section*
1317 Layout::make_eh_frame_section(const Relobj* object)
1318 {
1319   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1320   // SHT_PROGBITS.
1321   Output_section* os = this->choose_output_section(object, ".eh_frame",
1322                                                    elfcpp::SHT_PROGBITS,
1323                                                    elfcpp::SHF_ALLOC, false,
1324                                                    ORDER_EHFRAME, false);
1325   if (os == NULL)
1326     return NULL;
1327
1328   if (this->eh_frame_section_ == NULL)
1329     {
1330       this->eh_frame_section_ = os;
1331       this->eh_frame_data_ = new Eh_frame();
1332
1333       // For incremental linking, we do not optimize .eh_frame sections
1334       // or create a .eh_frame_hdr section.
1335       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1336         {
1337           Output_section* hdr_os =
1338             this->choose_output_section(NULL, ".eh_frame_hdr",
1339                                         elfcpp::SHT_PROGBITS,
1340                                         elfcpp::SHF_ALLOC, false,
1341                                         ORDER_EHFRAME, false);
1342
1343           if (hdr_os != NULL)
1344             {
1345               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1346                                                         this->eh_frame_data_);
1347               hdr_os->add_output_section_data(hdr_posd);
1348
1349               hdr_os->set_after_input_sections();
1350
1351               if (!this->script_options_->saw_phdrs_clause())
1352                 {
1353                   Output_segment* hdr_oseg;
1354                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1355                                                        elfcpp::PF_R);
1356                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1357                                                           elfcpp::PF_R);
1358                 }
1359
1360               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1361             }
1362         }
1363     }
1364
1365   return os;
1366 }
1367
1368 // Add an exception frame for a PLT.  This is called from target code.
1369
1370 void
1371 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1372                              size_t cie_length, const unsigned char* fde_data,
1373                              size_t fde_length)
1374 {
1375   if (parameters->incremental())
1376     {
1377       // FIXME: Maybe this could work some day....
1378       return;
1379     }
1380   Output_section* os = this->make_eh_frame_section(NULL);
1381   if (os == NULL)
1382     return;
1383   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1384                                             fde_data, fde_length);
1385   if (!this->added_eh_frame_data_)
1386     {
1387       os->add_output_section_data(this->eh_frame_data_);
1388       this->added_eh_frame_data_ = true;
1389     }
1390 }
1391
1392 // Scan a .debug_info or .debug_types section, and add summary
1393 // information to the .gdb_index section.
1394
1395 template<int size, bool big_endian>
1396 void
1397 Layout::add_to_gdb_index(bool is_type_unit,
1398                          Sized_relobj<size, big_endian>* object,
1399                          const unsigned char* symbols,
1400                          off_t symbols_size,
1401                          unsigned int shndx,
1402                          unsigned int reloc_shndx,
1403                          unsigned int reloc_type)
1404 {
1405   if (this->gdb_index_data_ == NULL)
1406     {
1407       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1408                                                        elfcpp::SHT_PROGBITS, 0,
1409                                                        false, ORDER_INVALID,
1410                                                        false);
1411       if (os == NULL)
1412         return;
1413
1414       this->gdb_index_data_ = new Gdb_index(os);
1415       os->add_output_section_data(this->gdb_index_data_);
1416       os->set_after_input_sections();
1417     }
1418
1419   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1420                                          symbols_size, shndx, reloc_shndx,
1421                                          reloc_type);
1422 }
1423
1424 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1425 // the output section.
1426
1427 Output_section*
1428 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1429                                 elfcpp::Elf_Xword flags,
1430                                 Output_section_data* posd,
1431                                 Output_section_order order, bool is_relro)
1432 {
1433   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1434                                                    false, order, is_relro);
1435   if (os != NULL)
1436     os->add_output_section_data(posd);
1437   return os;
1438 }
1439
1440 // Map section flags to segment flags.
1441
1442 elfcpp::Elf_Word
1443 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1444 {
1445   elfcpp::Elf_Word ret = elfcpp::PF_R;
1446   if ((flags & elfcpp::SHF_WRITE) != 0)
1447     ret |= elfcpp::PF_W;
1448   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1449     ret |= elfcpp::PF_X;
1450   return ret;
1451 }
1452
1453 // Make a new Output_section, and attach it to segments as
1454 // appropriate.  ORDER is the order in which this section should
1455 // appear in the output segment.  IS_RELRO is true if this is a relro
1456 // (read-only after relocations) section.
1457
1458 Output_section*
1459 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1460                             elfcpp::Elf_Xword flags,
1461                             Output_section_order order, bool is_relro)
1462 {
1463   Output_section* os;
1464   if ((flags & elfcpp::SHF_ALLOC) == 0
1465       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1466       && is_compressible_debug_section(name))
1467     os = new Output_compressed_section(&parameters->options(), name, type,
1468                                        flags);
1469   else if ((flags & elfcpp::SHF_ALLOC) == 0
1470            && parameters->options().strip_debug_non_line()
1471            && strcmp(".debug_abbrev", name) == 0)
1472     {
1473       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1474           name, type, flags);
1475       if (this->debug_info_)
1476         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1477     }
1478   else if ((flags & elfcpp::SHF_ALLOC) == 0
1479            && parameters->options().strip_debug_non_line()
1480            && strcmp(".debug_info", name) == 0)
1481     {
1482       os = this->debug_info_ = new Output_reduced_debug_info_section(
1483           name, type, flags);
1484       if (this->debug_abbrev_)
1485         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1486     }
1487   else
1488     {
1489       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1490       // not have correct section types.  Force them here.
1491       if (type == elfcpp::SHT_PROGBITS)
1492         {
1493           if (is_prefix_of(".init_array", name))
1494             type = elfcpp::SHT_INIT_ARRAY;
1495           else if (is_prefix_of(".preinit_array", name))
1496             type = elfcpp::SHT_PREINIT_ARRAY;
1497           else if (is_prefix_of(".fini_array", name))
1498             type = elfcpp::SHT_FINI_ARRAY;
1499         }
1500
1501       // FIXME: const_cast is ugly.
1502       Target* target = const_cast<Target*>(&parameters->target());
1503       os = target->make_output_section(name, type, flags);
1504     }
1505
1506   // With -z relro, we have to recognize the special sections by name.
1507   // There is no other way.
1508   bool is_relro_local = false;
1509   if (!this->script_options_->saw_sections_clause()
1510       && parameters->options().relro()
1511       && (flags & elfcpp::SHF_ALLOC) != 0
1512       && (flags & elfcpp::SHF_WRITE) != 0)
1513     {
1514       if (type == elfcpp::SHT_PROGBITS)
1515         {
1516           if ((flags & elfcpp::SHF_TLS) != 0)
1517             is_relro = true;
1518           else if (strcmp(name, ".data.rel.ro") == 0)
1519             is_relro = true;
1520           else if (strcmp(name, ".data.rel.ro.local") == 0)
1521             {
1522               is_relro = true;
1523               is_relro_local = true;
1524             }
1525           else if (strcmp(name, ".ctors") == 0
1526                    || strcmp(name, ".dtors") == 0
1527                    || strcmp(name, ".jcr") == 0)
1528             is_relro = true;
1529         }
1530       else if (type == elfcpp::SHT_INIT_ARRAY
1531                || type == elfcpp::SHT_FINI_ARRAY
1532                || type == elfcpp::SHT_PREINIT_ARRAY)
1533         is_relro = true;
1534     }
1535
1536   if (is_relro)
1537     os->set_is_relro();
1538
1539   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1540     order = this->default_section_order(os, is_relro_local);
1541
1542   os->set_order(order);
1543
1544   parameters->target().new_output_section(os);
1545
1546   this->section_list_.push_back(os);
1547
1548   // The GNU linker by default sorts some sections by priority, so we
1549   // do the same.  We need to know that this might happen before we
1550   // attach any input sections.
1551   if (!this->script_options_->saw_sections_clause()
1552       && !parameters->options().relocatable()
1553       && (strcmp(name, ".init_array") == 0
1554           || strcmp(name, ".fini_array") == 0
1555           || (!parameters->options().ctors_in_init_array()
1556               && (strcmp(name, ".ctors") == 0
1557                   || strcmp(name, ".dtors") == 0))))
1558     os->set_may_sort_attached_input_sections();
1559
1560   // Check for .stab*str sections, as .stab* sections need to link to
1561   // them.
1562   if (type == elfcpp::SHT_STRTAB
1563       && !this->have_stabstr_section_
1564       && strncmp(name, ".stab", 5) == 0
1565       && strcmp(name + strlen(name) - 3, "str") == 0)
1566     this->have_stabstr_section_ = true;
1567
1568   // During a full incremental link, we add patch space to most
1569   // PROGBITS and NOBITS sections.  Flag those that may be
1570   // arbitrarily padded.
1571   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1572       && order != ORDER_INTERP
1573       && order != ORDER_INIT
1574       && order != ORDER_PLT
1575       && order != ORDER_FINI
1576       && order != ORDER_RELRO_LAST
1577       && order != ORDER_NON_RELRO_FIRST
1578       && strcmp(name, ".eh_frame") != 0
1579       && strcmp(name, ".ctors") != 0
1580       && strcmp(name, ".dtors") != 0
1581       && strcmp(name, ".jcr") != 0)
1582     {
1583       os->set_is_patch_space_allowed();
1584
1585       // Certain sections require "holes" to be filled with
1586       // specific fill patterns.  These fill patterns may have
1587       // a minimum size, so we must prevent allocations from the
1588       // free list that leave a hole smaller than the minimum.
1589       if (strcmp(name, ".debug_info") == 0)
1590         os->set_free_space_fill(new Output_fill_debug_info(false));
1591       else if (strcmp(name, ".debug_types") == 0)
1592         os->set_free_space_fill(new Output_fill_debug_info(true));
1593       else if (strcmp(name, ".debug_line") == 0)
1594         os->set_free_space_fill(new Output_fill_debug_line());
1595     }
1596
1597   // If we have already attached the sections to segments, then we
1598   // need to attach this one now.  This happens for sections created
1599   // directly by the linker.
1600   if (this->sections_are_attached_)
1601     this->attach_section_to_segment(&parameters->target(), os);
1602
1603   return os;
1604 }
1605
1606 // Return the default order in which a section should be placed in an
1607 // output segment.  This function captures a lot of the ideas in
1608 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1609 // linker created section is normally set when the section is created;
1610 // this function is used for input sections.
1611
1612 Output_section_order
1613 Layout::default_section_order(Output_section* os, bool is_relro_local)
1614 {
1615   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1616   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1617   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1618   bool is_bss = false;
1619
1620   switch (os->type())
1621     {
1622     default:
1623     case elfcpp::SHT_PROGBITS:
1624       break;
1625     case elfcpp::SHT_NOBITS:
1626       is_bss = true;
1627       break;
1628     case elfcpp::SHT_RELA:
1629     case elfcpp::SHT_REL:
1630       if (!is_write)
1631         return ORDER_DYNAMIC_RELOCS;
1632       break;
1633     case elfcpp::SHT_HASH:
1634     case elfcpp::SHT_DYNAMIC:
1635     case elfcpp::SHT_SHLIB:
1636     case elfcpp::SHT_DYNSYM:
1637     case elfcpp::SHT_GNU_HASH:
1638     case elfcpp::SHT_GNU_verdef:
1639     case elfcpp::SHT_GNU_verneed:
1640     case elfcpp::SHT_GNU_versym:
1641       if (!is_write)
1642         return ORDER_DYNAMIC_LINKER;
1643       break;
1644     case elfcpp::SHT_NOTE:
1645       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1646     }
1647
1648   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1649     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1650
1651   if (!is_bss && !is_write)
1652     {
1653       if (is_execinstr)
1654         {
1655           if (strcmp(os->name(), ".init") == 0)
1656             return ORDER_INIT;
1657           else if (strcmp(os->name(), ".fini") == 0)
1658             return ORDER_FINI;
1659         }
1660       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1661     }
1662
1663   if (os->is_relro())
1664     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1665
1666   if (os->is_small_section())
1667     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1668   if (os->is_large_section())
1669     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1670
1671   return is_bss ? ORDER_BSS : ORDER_DATA;
1672 }
1673
1674 // Attach output sections to segments.  This is called after we have
1675 // seen all the input sections.
1676
1677 void
1678 Layout::attach_sections_to_segments(const Target* target)
1679 {
1680   for (Section_list::iterator p = this->section_list_.begin();
1681        p != this->section_list_.end();
1682        ++p)
1683     this->attach_section_to_segment(target, *p);
1684
1685   this->sections_are_attached_ = true;
1686 }
1687
1688 // Attach an output section to a segment.
1689
1690 void
1691 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1692 {
1693   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1694     this->unattached_section_list_.push_back(os);
1695   else
1696     this->attach_allocated_section_to_segment(target, os);
1697 }
1698
1699 // Attach an allocated output section to a segment.
1700
1701 void
1702 Layout::attach_allocated_section_to_segment(const Target* target,
1703                                             Output_section* os)
1704 {
1705   elfcpp::Elf_Xword flags = os->flags();
1706   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1707
1708   if (parameters->options().relocatable())
1709     return;
1710
1711   // If we have a SECTIONS clause, we can't handle the attachment to
1712   // segments until after we've seen all the sections.
1713   if (this->script_options_->saw_sections_clause())
1714     return;
1715
1716   gold_assert(!this->script_options_->saw_phdrs_clause());
1717
1718   // This output section goes into a PT_LOAD segment.
1719
1720   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1721
1722   // Check for --section-start.
1723   uint64_t addr;
1724   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1725
1726   // In general the only thing we really care about for PT_LOAD
1727   // segments is whether or not they are writable or executable,
1728   // so that is how we search for them.
1729   // Large data sections also go into their own PT_LOAD segment.
1730   // People who need segments sorted on some other basis will
1731   // have to use a linker script.
1732
1733   Segment_list::const_iterator p;
1734   for (p = this->segment_list_.begin();
1735        p != this->segment_list_.end();
1736        ++p)
1737     {
1738       if ((*p)->type() != elfcpp::PT_LOAD)
1739         continue;
1740       if (!parameters->options().omagic()
1741           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1742         continue;
1743       if ((target->isolate_execinstr() || parameters->options().rosegment())
1744           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1745         continue;
1746       // If -Tbss was specified, we need to separate the data and BSS
1747       // segments.
1748       if (parameters->options().user_set_Tbss())
1749         {
1750           if ((os->type() == elfcpp::SHT_NOBITS)
1751               == (*p)->has_any_data_sections())
1752             continue;
1753         }
1754       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1755         continue;
1756
1757       if (is_address_set)
1758         {
1759           if ((*p)->are_addresses_set())
1760             continue;
1761
1762           (*p)->add_initial_output_data(os);
1763           (*p)->update_flags_for_output_section(seg_flags);
1764           (*p)->set_addresses(addr, addr);
1765           break;
1766         }
1767
1768       (*p)->add_output_section_to_load(this, os, seg_flags);
1769       break;
1770     }
1771
1772   if (p == this->segment_list_.end())
1773     {
1774       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1775                                                        seg_flags);
1776       if (os->is_large_data_section())
1777         oseg->set_is_large_data_segment();
1778       oseg->add_output_section_to_load(this, os, seg_flags);
1779       if (is_address_set)
1780         oseg->set_addresses(addr, addr);
1781     }
1782
1783   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1784   // segment.
1785   if (os->type() == elfcpp::SHT_NOTE)
1786     {
1787       // See if we already have an equivalent PT_NOTE segment.
1788       for (p = this->segment_list_.begin();
1789            p != segment_list_.end();
1790            ++p)
1791         {
1792           if ((*p)->type() == elfcpp::PT_NOTE
1793               && (((*p)->flags() & elfcpp::PF_W)
1794                   == (seg_flags & elfcpp::PF_W)))
1795             {
1796               (*p)->add_output_section_to_nonload(os, seg_flags);
1797               break;
1798             }
1799         }
1800
1801       if (p == this->segment_list_.end())
1802         {
1803           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1804                                                            seg_flags);
1805           oseg->add_output_section_to_nonload(os, seg_flags);
1806         }
1807     }
1808
1809   // If we see a loadable SHF_TLS section, we create a PT_TLS
1810   // segment.  There can only be one such segment.
1811   if ((flags & elfcpp::SHF_TLS) != 0)
1812     {
1813       if (this->tls_segment_ == NULL)
1814         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1815       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1816     }
1817
1818   // If -z relro is in effect, and we see a relro section, we create a
1819   // PT_GNU_RELRO segment.  There can only be one such segment.
1820   if (os->is_relro() && parameters->options().relro())
1821     {
1822       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1823       if (this->relro_segment_ == NULL)
1824         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1825       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1826     }
1827
1828   // If we see a section named .interp, put it into a PT_INTERP
1829   // segment.  This seems broken to me, but this is what GNU ld does,
1830   // and glibc expects it.
1831   if (strcmp(os->name(), ".interp") == 0
1832       && !this->script_options_->saw_phdrs_clause())
1833     {
1834       if (this->interp_segment_ == NULL)
1835         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1836       else
1837         gold_warning(_("multiple '.interp' sections in input files "
1838                        "may cause confusing PT_INTERP segment"));
1839       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1840     }
1841 }
1842
1843 // Make an output section for a script.
1844
1845 Output_section*
1846 Layout::make_output_section_for_script(
1847     const char* name,
1848     Script_sections::Section_type section_type)
1849 {
1850   name = this->namepool_.add(name, false, NULL);
1851   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1852   if (section_type == Script_sections::ST_NOLOAD)
1853     sh_flags = 0;
1854   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1855                                                  sh_flags, ORDER_INVALID,
1856                                                  false);
1857   os->set_found_in_sections_clause();
1858   if (section_type == Script_sections::ST_NOLOAD)
1859     os->set_is_noload();
1860   return os;
1861 }
1862
1863 // Return the number of segments we expect to see.
1864
1865 size_t
1866 Layout::expected_segment_count() const
1867 {
1868   size_t ret = this->segment_list_.size();
1869
1870   // If we didn't see a SECTIONS clause in a linker script, we should
1871   // already have the complete list of segments.  Otherwise we ask the
1872   // SECTIONS clause how many segments it expects, and add in the ones
1873   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1874
1875   if (!this->script_options_->saw_sections_clause())
1876     return ret;
1877   else
1878     {
1879       const Script_sections* ss = this->script_options_->script_sections();
1880       return ret + ss->expected_segment_count(this);
1881     }
1882 }
1883
1884 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1885 // is whether we saw a .note.GNU-stack section in the object file.
1886 // GNU_STACK_FLAGS is the section flags.  The flags give the
1887 // protection required for stack memory.  We record this in an
1888 // executable as a PT_GNU_STACK segment.  If an object file does not
1889 // have a .note.GNU-stack segment, we must assume that it is an old
1890 // object.  On some targets that will force an executable stack.
1891
1892 void
1893 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1894                          const Object* obj)
1895 {
1896   if (!seen_gnu_stack)
1897     {
1898       this->input_without_gnu_stack_note_ = true;
1899       if (parameters->options().warn_execstack()
1900           && parameters->target().is_default_stack_executable())
1901         gold_warning(_("%s: missing .note.GNU-stack section"
1902                        " implies executable stack"),
1903                      obj->name().c_str());
1904     }
1905   else
1906     {
1907       this->input_with_gnu_stack_note_ = true;
1908       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1909         {
1910           this->input_requires_executable_stack_ = true;
1911           if (parameters->options().warn_execstack()
1912               || parameters->options().is_stack_executable())
1913             gold_warning(_("%s: requires executable stack"),
1914                          obj->name().c_str());
1915         }
1916     }
1917 }
1918
1919 // Create automatic note sections.
1920
1921 void
1922 Layout::create_notes()
1923 {
1924   this->create_gold_note();
1925   this->create_executable_stack_info();
1926   this->create_build_id();
1927 }
1928
1929 // Create the dynamic sections which are needed before we read the
1930 // relocs.
1931
1932 void
1933 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1934 {
1935   if (parameters->doing_static_link())
1936     return;
1937
1938   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1939                                                        elfcpp::SHT_DYNAMIC,
1940                                                        (elfcpp::SHF_ALLOC
1941                                                         | elfcpp::SHF_WRITE),
1942                                                        false, ORDER_RELRO,
1943                                                        true);
1944
1945   // A linker script may discard .dynamic, so check for NULL.
1946   if (this->dynamic_section_ != NULL)
1947     {
1948       this->dynamic_symbol_ =
1949         symtab->define_in_output_data("_DYNAMIC", NULL,
1950                                       Symbol_table::PREDEFINED,
1951                                       this->dynamic_section_, 0, 0,
1952                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1953                                       elfcpp::STV_HIDDEN, 0, false, false);
1954
1955       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1956
1957       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1958     }
1959 }
1960
1961 // For each output section whose name can be represented as C symbol,
1962 // define __start and __stop symbols for the section.  This is a GNU
1963 // extension.
1964
1965 void
1966 Layout::define_section_symbols(Symbol_table* symtab)
1967 {
1968   for (Section_list::const_iterator p = this->section_list_.begin();
1969        p != this->section_list_.end();
1970        ++p)
1971     {
1972       const char* const name = (*p)->name();
1973       if (is_cident(name))
1974         {
1975           const std::string name_string(name);
1976           const std::string start_name(cident_section_start_prefix
1977                                        + name_string);
1978           const std::string stop_name(cident_section_stop_prefix
1979                                       + name_string);
1980
1981           symtab->define_in_output_data(start_name.c_str(),
1982                                         NULL, // version
1983                                         Symbol_table::PREDEFINED,
1984                                         *p,
1985                                         0, // value
1986                                         0, // symsize
1987                                         elfcpp::STT_NOTYPE,
1988                                         elfcpp::STB_GLOBAL,
1989                                         elfcpp::STV_DEFAULT,
1990                                         0, // nonvis
1991                                         false, // offset_is_from_end
1992                                         true); // only_if_ref
1993
1994           symtab->define_in_output_data(stop_name.c_str(),
1995                                         NULL, // version
1996                                         Symbol_table::PREDEFINED,
1997                                         *p,
1998                                         0, // value
1999                                         0, // symsize
2000                                         elfcpp::STT_NOTYPE,
2001                                         elfcpp::STB_GLOBAL,
2002                                         elfcpp::STV_DEFAULT,
2003                                         0, // nonvis
2004                                         true, // offset_is_from_end
2005                                         true); // only_if_ref
2006         }
2007     }
2008 }
2009
2010 // Define symbols for group signatures.
2011
2012 void
2013 Layout::define_group_signatures(Symbol_table* symtab)
2014 {
2015   for (Group_signatures::iterator p = this->group_signatures_.begin();
2016        p != this->group_signatures_.end();
2017        ++p)
2018     {
2019       Symbol* sym = symtab->lookup(p->signature, NULL);
2020       if (sym != NULL)
2021         p->section->set_info_symndx(sym);
2022       else
2023         {
2024           // Force the name of the group section to the group
2025           // signature, and use the group's section symbol as the
2026           // signature symbol.
2027           if (strcmp(p->section->name(), p->signature) != 0)
2028             {
2029               const char* name = this->namepool_.add(p->signature,
2030                                                      true, NULL);
2031               p->section->set_name(name);
2032             }
2033           p->section->set_needs_symtab_index();
2034           p->section->set_info_section_symndx(p->section);
2035         }
2036     }
2037
2038   this->group_signatures_.clear();
2039 }
2040
2041 // Find the first read-only PT_LOAD segment, creating one if
2042 // necessary.
2043
2044 Output_segment*
2045 Layout::find_first_load_seg(const Target* target)
2046 {
2047   Output_segment* best = NULL;
2048   for (Segment_list::const_iterator p = this->segment_list_.begin();
2049        p != this->segment_list_.end();
2050        ++p)
2051     {
2052       if ((*p)->type() == elfcpp::PT_LOAD
2053           && ((*p)->flags() & elfcpp::PF_R) != 0
2054           && (parameters->options().omagic()
2055               || ((*p)->flags() & elfcpp::PF_W) == 0)
2056           && (!target->isolate_execinstr()
2057               || ((*p)->flags() & elfcpp::PF_X) == 0))
2058         {
2059           if (best == NULL || this->segment_precedes(*p, best))
2060             best = *p;
2061         }
2062     }
2063   if (best != NULL)
2064     return best;
2065
2066   gold_assert(!this->script_options_->saw_phdrs_clause());
2067
2068   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2069                                                        elfcpp::PF_R);
2070   return load_seg;
2071 }
2072
2073 // Save states of all current output segments.  Store saved states
2074 // in SEGMENT_STATES.
2075
2076 void
2077 Layout::save_segments(Segment_states* segment_states)
2078 {
2079   for (Segment_list::const_iterator p = this->segment_list_.begin();
2080        p != this->segment_list_.end();
2081        ++p)
2082     {
2083       Output_segment* segment = *p;
2084       // Shallow copy.
2085       Output_segment* copy = new Output_segment(*segment);
2086       (*segment_states)[segment] = copy;
2087     }
2088 }
2089
2090 // Restore states of output segments and delete any segment not found in
2091 // SEGMENT_STATES.
2092
2093 void
2094 Layout::restore_segments(const Segment_states* segment_states)
2095 {
2096   // Go through the segment list and remove any segment added in the
2097   // relaxation loop.
2098   this->tls_segment_ = NULL;
2099   this->relro_segment_ = NULL;
2100   Segment_list::iterator list_iter = this->segment_list_.begin();
2101   while (list_iter != this->segment_list_.end())
2102     {
2103       Output_segment* segment = *list_iter;
2104       Segment_states::const_iterator states_iter =
2105           segment_states->find(segment);
2106       if (states_iter != segment_states->end())
2107         {
2108           const Output_segment* copy = states_iter->second;
2109           // Shallow copy to restore states.
2110           *segment = *copy;
2111
2112           // Also fix up TLS and RELRO segment pointers as appropriate.
2113           if (segment->type() == elfcpp::PT_TLS)
2114             this->tls_segment_ = segment;
2115           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2116             this->relro_segment_ = segment;
2117
2118           ++list_iter;
2119         }
2120       else
2121         {
2122           list_iter = this->segment_list_.erase(list_iter);
2123           // This is a segment created during section layout.  It should be
2124           // safe to remove it since we should have removed all pointers to it.
2125           delete segment;
2126         }
2127     }
2128 }
2129
2130 // Clean up after relaxation so that sections can be laid out again.
2131
2132 void
2133 Layout::clean_up_after_relaxation()
2134 {
2135   // Restore the segments to point state just prior to the relaxation loop.
2136   Script_sections* script_section = this->script_options_->script_sections();
2137   script_section->release_segments();
2138   this->restore_segments(this->segment_states_);
2139
2140   // Reset section addresses and file offsets
2141   for (Section_list::iterator p = this->section_list_.begin();
2142        p != this->section_list_.end();
2143        ++p)
2144     {
2145       (*p)->restore_states();
2146
2147       // If an input section changes size because of relaxation,
2148       // we need to adjust the section offsets of all input sections.
2149       // after such a section.
2150       if ((*p)->section_offsets_need_adjustment())
2151         (*p)->adjust_section_offsets();
2152
2153       (*p)->reset_address_and_file_offset();
2154     }
2155
2156   // Reset special output object address and file offsets.
2157   for (Data_list::iterator p = this->special_output_list_.begin();
2158        p != this->special_output_list_.end();
2159        ++p)
2160     (*p)->reset_address_and_file_offset();
2161
2162   // A linker script may have created some output section data objects.
2163   // They are useless now.
2164   for (Output_section_data_list::const_iterator p =
2165          this->script_output_section_data_list_.begin();
2166        p != this->script_output_section_data_list_.end();
2167        ++p)
2168     delete *p;
2169   this->script_output_section_data_list_.clear();
2170 }
2171
2172 // Prepare for relaxation.
2173
2174 void
2175 Layout::prepare_for_relaxation()
2176 {
2177   // Create an relaxation debug check if in debugging mode.
2178   if (is_debugging_enabled(DEBUG_RELAXATION))
2179     this->relaxation_debug_check_ = new Relaxation_debug_check();
2180
2181   // Save segment states.
2182   this->segment_states_ = new Segment_states();
2183   this->save_segments(this->segment_states_);
2184
2185   for(Section_list::const_iterator p = this->section_list_.begin();
2186       p != this->section_list_.end();
2187       ++p)
2188     (*p)->save_states();
2189
2190   if (is_debugging_enabled(DEBUG_RELAXATION))
2191     this->relaxation_debug_check_->check_output_data_for_reset_values(
2192         this->section_list_, this->special_output_list_);
2193
2194   // Also enable recording of output section data from scripts.
2195   this->record_output_section_data_from_script_ = true;
2196 }
2197
2198 // Relaxation loop body:  If target has no relaxation, this runs only once
2199 // Otherwise, the target relaxation hook is called at the end of
2200 // each iteration.  If the hook returns true, it means re-layout of
2201 // section is required.
2202 //
2203 // The number of segments created by a linking script without a PHDRS
2204 // clause may be affected by section sizes and alignments.  There is
2205 // a remote chance that relaxation causes different number of PT_LOAD
2206 // segments are created and sections are attached to different segments.
2207 // Therefore, we always throw away all segments created during section
2208 // layout.  In order to be able to restart the section layout, we keep
2209 // a copy of the segment list right before the relaxation loop and use
2210 // that to restore the segments.
2211 //
2212 // PASS is the current relaxation pass number.
2213 // SYMTAB is a symbol table.
2214 // PLOAD_SEG is the address of a pointer for the load segment.
2215 // PHDR_SEG is a pointer to the PHDR segment.
2216 // SEGMENT_HEADERS points to the output segment header.
2217 // FILE_HEADER points to the output file header.
2218 // PSHNDX is the address to store the output section index.
2219
2220 off_t inline
2221 Layout::relaxation_loop_body(
2222     int pass,
2223     Target* target,
2224     Symbol_table* symtab,
2225     Output_segment** pload_seg,
2226     Output_segment* phdr_seg,
2227     Output_segment_headers* segment_headers,
2228     Output_file_header* file_header,
2229     unsigned int* pshndx)
2230 {
2231   // If this is not the first iteration, we need to clean up after
2232   // relaxation so that we can lay out the sections again.
2233   if (pass != 0)
2234     this->clean_up_after_relaxation();
2235
2236   // If there is a SECTIONS clause, put all the input sections into
2237   // the required order.
2238   Output_segment* load_seg;
2239   if (this->script_options_->saw_sections_clause())
2240     load_seg = this->set_section_addresses_from_script(symtab);
2241   else if (parameters->options().relocatable())
2242     load_seg = NULL;
2243   else
2244     load_seg = this->find_first_load_seg(target);
2245
2246   if (parameters->options().oformat_enum()
2247       != General_options::OBJECT_FORMAT_ELF)
2248     load_seg = NULL;
2249
2250   // If the user set the address of the text segment, that may not be
2251   // compatible with putting the segment headers and file headers into
2252   // that segment.
2253   if (parameters->options().user_set_Ttext()
2254       && parameters->options().Ttext() % target->common_pagesize() != 0)
2255     {
2256       load_seg = NULL;
2257       phdr_seg = NULL;
2258     }
2259
2260   gold_assert(phdr_seg == NULL
2261               || load_seg != NULL
2262               || this->script_options_->saw_sections_clause());
2263
2264   // If the address of the load segment we found has been set by
2265   // --section-start rather than by a script, then adjust the VMA and
2266   // LMA downward if possible to include the file and section headers.
2267   uint64_t header_gap = 0;
2268   if (load_seg != NULL
2269       && load_seg->are_addresses_set()
2270       && !this->script_options_->saw_sections_clause()
2271       && !parameters->options().relocatable())
2272     {
2273       file_header->finalize_data_size();
2274       segment_headers->finalize_data_size();
2275       size_t sizeof_headers = (file_header->data_size()
2276                                + segment_headers->data_size());
2277       const uint64_t abi_pagesize = target->abi_pagesize();
2278       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2279       hdr_paddr &= ~(abi_pagesize - 1);
2280       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2281       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2282         load_seg = NULL;
2283       else
2284         {
2285           load_seg->set_addresses(load_seg->vaddr() - subtract,
2286                                   load_seg->paddr() - subtract);
2287           header_gap = subtract - sizeof_headers;
2288         }
2289     }
2290
2291   // Lay out the segment headers.
2292   if (!parameters->options().relocatable())
2293     {
2294       gold_assert(segment_headers != NULL);
2295       if (header_gap != 0 && load_seg != NULL)
2296         {
2297           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2298           load_seg->add_initial_output_data(z);
2299         }
2300       if (load_seg != NULL)
2301         load_seg->add_initial_output_data(segment_headers);
2302       if (phdr_seg != NULL)
2303         phdr_seg->add_initial_output_data(segment_headers);
2304     }
2305
2306   // Lay out the file header.
2307   if (load_seg != NULL)
2308     load_seg->add_initial_output_data(file_header);
2309
2310   if (this->script_options_->saw_phdrs_clause()
2311       && !parameters->options().relocatable())
2312     {
2313       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2314       // clause in a linker script.
2315       Script_sections* ss = this->script_options_->script_sections();
2316       ss->put_headers_in_phdrs(file_header, segment_headers);
2317     }
2318
2319   // We set the output section indexes in set_segment_offsets and
2320   // set_section_indexes.
2321   *pshndx = 1;
2322
2323   // Set the file offsets of all the segments, and all the sections
2324   // they contain.
2325   off_t off;
2326   if (!parameters->options().relocatable())
2327     off = this->set_segment_offsets(target, load_seg, pshndx);
2328   else
2329     off = this->set_relocatable_section_offsets(file_header, pshndx);
2330
2331    // Verify that the dummy relaxation does not change anything.
2332   if (is_debugging_enabled(DEBUG_RELAXATION))
2333     {
2334       if (pass == 0)
2335         this->relaxation_debug_check_->read_sections(this->section_list_);
2336       else
2337         this->relaxation_debug_check_->verify_sections(this->section_list_);
2338     }
2339
2340   *pload_seg = load_seg;
2341   return off;
2342 }
2343
2344 // Search the list of patterns and find the postion of the given section
2345 // name in the output section.  If the section name matches a glob
2346 // pattern and a non-glob name, then the non-glob position takes
2347 // precedence.  Return 0 if no match is found.
2348
2349 unsigned int
2350 Layout::find_section_order_index(const std::string& section_name)
2351 {
2352   Unordered_map<std::string, unsigned int>::iterator map_it;
2353   map_it = this->input_section_position_.find(section_name);
2354   if (map_it != this->input_section_position_.end())
2355     return map_it->second;
2356
2357   // Absolute match failed.  Linear search the glob patterns.
2358   std::vector<std::string>::iterator it;
2359   for (it = this->input_section_glob_.begin();
2360        it != this->input_section_glob_.end();
2361        ++it)
2362     {
2363        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2364          {
2365            map_it = this->input_section_position_.find(*it);
2366            gold_assert(map_it != this->input_section_position_.end());
2367            return map_it->second;
2368          }
2369     }
2370   return 0;
2371 }
2372
2373 // Read the sequence of input sections from the file specified with
2374 // option --section-ordering-file.
2375
2376 void
2377 Layout::read_layout_from_file()
2378 {
2379   const char* filename = parameters->options().section_ordering_file();
2380   std::ifstream in;
2381   std::string line;
2382
2383   in.open(filename);
2384   if (!in)
2385     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2386                filename, strerror(errno));
2387
2388   std::getline(in, line);   // this chops off the trailing \n, if any
2389   unsigned int position = 1;
2390   this->set_section_ordering_specified();
2391
2392   while (in)
2393     {
2394       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2395         line.resize(line.length() - 1);
2396       // Ignore comments, beginning with '#'
2397       if (line[0] == '#')
2398         {
2399           std::getline(in, line);
2400           continue;
2401         }
2402       this->input_section_position_[line] = position;
2403       // Store all glob patterns in a vector.
2404       if (is_wildcard_string(line.c_str()))
2405         this->input_section_glob_.push_back(line);
2406       position++;
2407       std::getline(in, line);
2408     }
2409 }
2410
2411 // Finalize the layout.  When this is called, we have created all the
2412 // output sections and all the output segments which are based on
2413 // input sections.  We have several things to do, and we have to do
2414 // them in the right order, so that we get the right results correctly
2415 // and efficiently.
2416
2417 // 1) Finalize the list of output segments and create the segment
2418 // table header.
2419
2420 // 2) Finalize the dynamic symbol table and associated sections.
2421
2422 // 3) Determine the final file offset of all the output segments.
2423
2424 // 4) Determine the final file offset of all the SHF_ALLOC output
2425 // sections.
2426
2427 // 5) Create the symbol table sections and the section name table
2428 // section.
2429
2430 // 6) Finalize the symbol table: set symbol values to their final
2431 // value and make a final determination of which symbols are going
2432 // into the output symbol table.
2433
2434 // 7) Create the section table header.
2435
2436 // 8) Determine the final file offset of all the output sections which
2437 // are not SHF_ALLOC, including the section table header.
2438
2439 // 9) Finalize the ELF file header.
2440
2441 // This function returns the size of the output file.
2442
2443 off_t
2444 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2445                  Target* target, const Task* task)
2446 {
2447   target->finalize_sections(this, input_objects, symtab);
2448
2449   this->count_local_symbols(task, input_objects);
2450
2451   this->link_stabs_sections();
2452
2453   Output_segment* phdr_seg = NULL;
2454   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2455     {
2456       // There was a dynamic object in the link.  We need to create
2457       // some information for the dynamic linker.
2458
2459       // Create the PT_PHDR segment which will hold the program
2460       // headers.
2461       if (!this->script_options_->saw_phdrs_clause())
2462         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2463
2464       // Create the dynamic symbol table, including the hash table.
2465       Output_section* dynstr;
2466       std::vector<Symbol*> dynamic_symbols;
2467       unsigned int local_dynamic_count;
2468       Versions versions(*this->script_options()->version_script_info(),
2469                         &this->dynpool_);
2470       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2471                                   &local_dynamic_count, &dynamic_symbols,
2472                                   &versions);
2473
2474       // Create the .interp section to hold the name of the
2475       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2476       // if we saw a .interp section in an input file.
2477       if ((!parameters->options().shared()
2478            || parameters->options().dynamic_linker() != NULL)
2479           && this->interp_segment_ == NULL)
2480         this->create_interp(target);
2481
2482       // Finish the .dynamic section to hold the dynamic data, and put
2483       // it in a PT_DYNAMIC segment.
2484       this->finish_dynamic_section(input_objects, symtab);
2485
2486       // We should have added everything we need to the dynamic string
2487       // table.
2488       this->dynpool_.set_string_offsets();
2489
2490       // Create the version sections.  We can't do this until the
2491       // dynamic string table is complete.
2492       this->create_version_sections(&versions, symtab, local_dynamic_count,
2493                                     dynamic_symbols, dynstr);
2494
2495       // Set the size of the _DYNAMIC symbol.  We can't do this until
2496       // after we call create_version_sections.
2497       this->set_dynamic_symbol_size(symtab);
2498     }
2499
2500   // Create segment headers.
2501   Output_segment_headers* segment_headers =
2502     (parameters->options().relocatable()
2503      ? NULL
2504      : new Output_segment_headers(this->segment_list_));
2505
2506   // Lay out the file header.
2507   Output_file_header* file_header = new Output_file_header(target, symtab,
2508                                                            segment_headers);
2509
2510   this->special_output_list_.push_back(file_header);
2511   if (segment_headers != NULL)
2512     this->special_output_list_.push_back(segment_headers);
2513
2514   // Find approriate places for orphan output sections if we are using
2515   // a linker script.
2516   if (this->script_options_->saw_sections_clause())
2517     this->place_orphan_sections_in_script();
2518
2519   Output_segment* load_seg;
2520   off_t off;
2521   unsigned int shndx;
2522   int pass = 0;
2523
2524   // Take a snapshot of the section layout as needed.
2525   if (target->may_relax())
2526     this->prepare_for_relaxation();
2527
2528   // Run the relaxation loop to lay out sections.
2529   do
2530     {
2531       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2532                                        phdr_seg, segment_headers, file_header,
2533                                        &shndx);
2534       pass++;
2535     }
2536   while (target->may_relax()
2537          && target->relax(pass, input_objects, symtab, this, task));
2538
2539   // If there is a load segment that contains the file and program headers,
2540   // provide a symbol __ehdr_start pointing there.
2541   // A program can use this to examine itself robustly.
2542   if (load_seg != NULL)
2543     symtab->define_in_output_segment("__ehdr_start", NULL,
2544                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2545                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2546                                      elfcpp::STV_DEFAULT, 0,
2547                                      Symbol::SEGMENT_START, true);
2548
2549   // Set the file offsets of all the non-data sections we've seen so
2550   // far which don't have to wait for the input sections.  We need
2551   // this in order to finalize local symbols in non-allocated
2552   // sections.
2553   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2554
2555   // Set the section indexes of all unallocated sections seen so far,
2556   // in case any of them are somehow referenced by a symbol.
2557   shndx = this->set_section_indexes(shndx);
2558
2559   // Create the symbol table sections.
2560   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2561   if (!parameters->doing_static_link())
2562     this->assign_local_dynsym_offsets(input_objects);
2563
2564   // Process any symbol assignments from a linker script.  This must
2565   // be called after the symbol table has been finalized.
2566   this->script_options_->finalize_symbols(symtab, this);
2567
2568   // Create the incremental inputs sections.
2569   if (this->incremental_inputs_)
2570     {
2571       this->incremental_inputs_->finalize();
2572       this->create_incremental_info_sections(symtab);
2573     }
2574
2575   // Create the .shstrtab section.
2576   Output_section* shstrtab_section = this->create_shstrtab();
2577
2578   // Set the file offsets of the rest of the non-data sections which
2579   // don't have to wait for the input sections.
2580   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2581
2582   // Now that all sections have been created, set the section indexes
2583   // for any sections which haven't been done yet.
2584   shndx = this->set_section_indexes(shndx);
2585
2586   // Create the section table header.
2587   this->create_shdrs(shstrtab_section, &off);
2588
2589   // If there are no sections which require postprocessing, we can
2590   // handle the section names now, and avoid a resize later.
2591   if (!this->any_postprocessing_sections_)
2592     {
2593       off = this->set_section_offsets(off,
2594                                       POSTPROCESSING_SECTIONS_PASS);
2595       off =
2596           this->set_section_offsets(off,
2597                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2598     }
2599
2600   file_header->set_section_info(this->section_headers_, shstrtab_section);
2601
2602   // Now we know exactly where everything goes in the output file
2603   // (except for non-allocated sections which require postprocessing).
2604   Output_data::layout_complete();
2605
2606   this->output_file_size_ = off;
2607
2608   return off;
2609 }
2610
2611 // Create a note header following the format defined in the ELF ABI.
2612 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2613 // of the section to create, DESCSZ is the size of the descriptor.
2614 // ALLOCATE is true if the section should be allocated in memory.
2615 // This returns the new note section.  It sets *TRAILING_PADDING to
2616 // the number of trailing zero bytes required.
2617
2618 Output_section*
2619 Layout::create_note(const char* name, int note_type,
2620                     const char* section_name, size_t descsz,
2621                     bool allocate, size_t* trailing_padding)
2622 {
2623   // Authorities all agree that the values in a .note field should
2624   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2625   // they differ on what the alignment is for 64-bit binaries.
2626   // The GABI says unambiguously they take 8-byte alignment:
2627   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2628   // Other documentation says alignment should always be 4 bytes:
2629   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2630   // GNU ld and GNU readelf both support the latter (at least as of
2631   // version 2.16.91), and glibc always generates the latter for
2632   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2633   // here.
2634 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2635   const int size = parameters->target().get_size();
2636 #else
2637   const int size = 32;
2638 #endif
2639
2640   // The contents of the .note section.
2641   size_t namesz = strlen(name) + 1;
2642   size_t aligned_namesz = align_address(namesz, size / 8);
2643   size_t aligned_descsz = align_address(descsz, size / 8);
2644
2645   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2646
2647   unsigned char* buffer = new unsigned char[notehdrsz];
2648   memset(buffer, 0, notehdrsz);
2649
2650   bool is_big_endian = parameters->target().is_big_endian();
2651
2652   if (size == 32)
2653     {
2654       if (!is_big_endian)
2655         {
2656           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2657           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2658           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2659         }
2660       else
2661         {
2662           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2663           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2664           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2665         }
2666     }
2667   else if (size == 64)
2668     {
2669       if (!is_big_endian)
2670         {
2671           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2672           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2673           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2674         }
2675       else
2676         {
2677           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2678           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2679           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2680         }
2681     }
2682   else
2683     gold_unreachable();
2684
2685   memcpy(buffer + 3 * (size / 8), name, namesz);
2686
2687   elfcpp::Elf_Xword flags = 0;
2688   Output_section_order order = ORDER_INVALID;
2689   if (allocate)
2690     {
2691       flags = elfcpp::SHF_ALLOC;
2692       order = ORDER_RO_NOTE;
2693     }
2694   Output_section* os = this->choose_output_section(NULL, section_name,
2695                                                    elfcpp::SHT_NOTE,
2696                                                    flags, false, order, false);
2697   if (os == NULL)
2698     return NULL;
2699
2700   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2701                                                            size / 8,
2702                                                            "** note header");
2703   os->add_output_section_data(posd);
2704
2705   *trailing_padding = aligned_descsz - descsz;
2706
2707   return os;
2708 }
2709
2710 // For an executable or shared library, create a note to record the
2711 // version of gold used to create the binary.
2712
2713 void
2714 Layout::create_gold_note()
2715 {
2716   if (parameters->options().relocatable()
2717       || parameters->incremental_update())
2718     return;
2719
2720   std::string desc = std::string("gold ") + gold::get_version_string();
2721
2722   size_t trailing_padding;
2723   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2724                                          ".note.gnu.gold-version", desc.size(),
2725                                          false, &trailing_padding);
2726   if (os == NULL)
2727     return;
2728
2729   Output_section_data* posd = new Output_data_const(desc, 4);
2730   os->add_output_section_data(posd);
2731
2732   if (trailing_padding > 0)
2733     {
2734       posd = new Output_data_zero_fill(trailing_padding, 0);
2735       os->add_output_section_data(posd);
2736     }
2737 }
2738
2739 // Record whether the stack should be executable.  This can be set
2740 // from the command line using the -z execstack or -z noexecstack
2741 // options.  Otherwise, if any input file has a .note.GNU-stack
2742 // section with the SHF_EXECINSTR flag set, the stack should be
2743 // executable.  Otherwise, if at least one input file a
2744 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2745 // section, we use the target default for whether the stack should be
2746 // executable.  Otherwise, we don't generate a stack note.  When
2747 // generating a object file, we create a .note.GNU-stack section with
2748 // the appropriate marking.  When generating an executable or shared
2749 // library, we create a PT_GNU_STACK segment.
2750
2751 void
2752 Layout::create_executable_stack_info()
2753 {
2754   bool is_stack_executable;
2755   if (parameters->options().is_execstack_set())
2756     is_stack_executable = parameters->options().is_stack_executable();
2757   else if (!this->input_with_gnu_stack_note_)
2758     return;
2759   else
2760     {
2761       if (this->input_requires_executable_stack_)
2762         is_stack_executable = true;
2763       else if (this->input_without_gnu_stack_note_)
2764         is_stack_executable =
2765           parameters->target().is_default_stack_executable();
2766       else
2767         is_stack_executable = false;
2768     }
2769
2770   if (parameters->options().relocatable())
2771     {
2772       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2773       elfcpp::Elf_Xword flags = 0;
2774       if (is_stack_executable)
2775         flags |= elfcpp::SHF_EXECINSTR;
2776       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2777                                 ORDER_INVALID, false);
2778     }
2779   else
2780     {
2781       if (this->script_options_->saw_phdrs_clause())
2782         return;
2783       int flags = elfcpp::PF_R | elfcpp::PF_W;
2784       if (is_stack_executable)
2785         flags |= elfcpp::PF_X;
2786       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2787     }
2788 }
2789
2790 // If --build-id was used, set up the build ID note.
2791
2792 void
2793 Layout::create_build_id()
2794 {
2795   if (!parameters->options().user_set_build_id())
2796     return;
2797
2798   const char* style = parameters->options().build_id();
2799   if (strcmp(style, "none") == 0)
2800     return;
2801
2802   // Set DESCSZ to the size of the note descriptor.  When possible,
2803   // set DESC to the note descriptor contents.
2804   size_t descsz;
2805   std::string desc;
2806   if (strcmp(style, "md5") == 0)
2807     descsz = 128 / 8;
2808   else if (strcmp(style, "sha1") == 0)
2809     descsz = 160 / 8;
2810   else if (strcmp(style, "uuid") == 0)
2811     {
2812       const size_t uuidsz = 128 / 8;
2813
2814       char buffer[uuidsz];
2815       memset(buffer, 0, uuidsz);
2816
2817       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2818       if (descriptor < 0)
2819         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2820                    strerror(errno));
2821       else
2822         {
2823           ssize_t got = ::read(descriptor, buffer, uuidsz);
2824           release_descriptor(descriptor, true);
2825           if (got < 0)
2826             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2827           else if (static_cast<size_t>(got) != uuidsz)
2828             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2829                        uuidsz, got);
2830         }
2831
2832       desc.assign(buffer, uuidsz);
2833       descsz = uuidsz;
2834     }
2835   else if (strncmp(style, "0x", 2) == 0)
2836     {
2837       hex_init();
2838       const char* p = style + 2;
2839       while (*p != '\0')
2840         {
2841           if (hex_p(p[0]) && hex_p(p[1]))
2842             {
2843               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2844               desc += c;
2845               p += 2;
2846             }
2847           else if (*p == '-' || *p == ':')
2848             ++p;
2849           else
2850             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2851                        style);
2852         }
2853       descsz = desc.size();
2854     }
2855   else
2856     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2857
2858   // Create the note.
2859   size_t trailing_padding;
2860   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2861                                          ".note.gnu.build-id", descsz, true,
2862                                          &trailing_padding);
2863   if (os == NULL)
2864     return;
2865
2866   if (!desc.empty())
2867     {
2868       // We know the value already, so we fill it in now.
2869       gold_assert(desc.size() == descsz);
2870
2871       Output_section_data* posd = new Output_data_const(desc, 4);
2872       os->add_output_section_data(posd);
2873
2874       if (trailing_padding != 0)
2875         {
2876           posd = new Output_data_zero_fill(trailing_padding, 0);
2877           os->add_output_section_data(posd);
2878         }
2879     }
2880   else
2881     {
2882       // We need to compute a checksum after we have completed the
2883       // link.
2884       gold_assert(trailing_padding == 0);
2885       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2886       os->add_output_section_data(this->build_id_note_);
2887     }
2888 }
2889
2890 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2891 // field of the former should point to the latter.  I'm not sure who
2892 // started this, but the GNU linker does it, and some tools depend
2893 // upon it.
2894
2895 void
2896 Layout::link_stabs_sections()
2897 {
2898   if (!this->have_stabstr_section_)
2899     return;
2900
2901   for (Section_list::iterator p = this->section_list_.begin();
2902        p != this->section_list_.end();
2903        ++p)
2904     {
2905       if ((*p)->type() != elfcpp::SHT_STRTAB)
2906         continue;
2907
2908       const char* name = (*p)->name();
2909       if (strncmp(name, ".stab", 5) != 0)
2910         continue;
2911
2912       size_t len = strlen(name);
2913       if (strcmp(name + len - 3, "str") != 0)
2914         continue;
2915
2916       std::string stab_name(name, len - 3);
2917       Output_section* stab_sec;
2918       stab_sec = this->find_output_section(stab_name.c_str());
2919       if (stab_sec != NULL)
2920         stab_sec->set_link_section(*p);
2921     }
2922 }
2923
2924 // Create .gnu_incremental_inputs and related sections needed
2925 // for the next run of incremental linking to check what has changed.
2926
2927 void
2928 Layout::create_incremental_info_sections(Symbol_table* symtab)
2929 {
2930   Incremental_inputs* incr = this->incremental_inputs_;
2931
2932   gold_assert(incr != NULL);
2933
2934   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2935   incr->create_data_sections(symtab);
2936
2937   // Add the .gnu_incremental_inputs section.
2938   const char* incremental_inputs_name =
2939     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2940   Output_section* incremental_inputs_os =
2941     this->make_output_section(incremental_inputs_name,
2942                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2943                               ORDER_INVALID, false);
2944   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2945
2946   // Add the .gnu_incremental_symtab section.
2947   const char* incremental_symtab_name =
2948     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2949   Output_section* incremental_symtab_os =
2950     this->make_output_section(incremental_symtab_name,
2951                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2952                               ORDER_INVALID, false);
2953   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2954   incremental_symtab_os->set_entsize(4);
2955
2956   // Add the .gnu_incremental_relocs section.
2957   const char* incremental_relocs_name =
2958     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2959   Output_section* incremental_relocs_os =
2960     this->make_output_section(incremental_relocs_name,
2961                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2962                               ORDER_INVALID, false);
2963   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2964   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2965
2966   // Add the .gnu_incremental_got_plt section.
2967   const char* incremental_got_plt_name =
2968     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2969   Output_section* incremental_got_plt_os =
2970     this->make_output_section(incremental_got_plt_name,
2971                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2972                               ORDER_INVALID, false);
2973   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2974
2975   // Add the .gnu_incremental_strtab section.
2976   const char* incremental_strtab_name =
2977     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2978   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2979                                                         elfcpp::SHT_STRTAB, 0,
2980                                                         ORDER_INVALID, false);
2981   Output_data_strtab* strtab_data =
2982       new Output_data_strtab(incr->get_stringpool());
2983   incremental_strtab_os->add_output_section_data(strtab_data);
2984
2985   incremental_inputs_os->set_after_input_sections();
2986   incremental_symtab_os->set_after_input_sections();
2987   incremental_relocs_os->set_after_input_sections();
2988   incremental_got_plt_os->set_after_input_sections();
2989
2990   incremental_inputs_os->set_link_section(incremental_strtab_os);
2991   incremental_symtab_os->set_link_section(incremental_inputs_os);
2992   incremental_relocs_os->set_link_section(incremental_inputs_os);
2993   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2994 }
2995
2996 // Return whether SEG1 should be before SEG2 in the output file.  This
2997 // is based entirely on the segment type and flags.  When this is
2998 // called the segment addresses have normally not yet been set.
2999
3000 bool
3001 Layout::segment_precedes(const Output_segment* seg1,
3002                          const Output_segment* seg2)
3003 {
3004   elfcpp::Elf_Word type1 = seg1->type();
3005   elfcpp::Elf_Word type2 = seg2->type();
3006
3007   // The single PT_PHDR segment is required to precede any loadable
3008   // segment.  We simply make it always first.
3009   if (type1 == elfcpp::PT_PHDR)
3010     {
3011       gold_assert(type2 != elfcpp::PT_PHDR);
3012       return true;
3013     }
3014   if (type2 == elfcpp::PT_PHDR)
3015     return false;
3016
3017   // The single PT_INTERP segment is required to precede any loadable
3018   // segment.  We simply make it always second.
3019   if (type1 == elfcpp::PT_INTERP)
3020     {
3021       gold_assert(type2 != elfcpp::PT_INTERP);
3022       return true;
3023     }
3024   if (type2 == elfcpp::PT_INTERP)
3025     return false;
3026
3027   // We then put PT_LOAD segments before any other segments.
3028   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3029     return true;
3030   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3031     return false;
3032
3033   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3034   // segment, because that is where the dynamic linker expects to find
3035   // it (this is just for efficiency; other positions would also work
3036   // correctly).
3037   if (type1 == elfcpp::PT_TLS
3038       && type2 != elfcpp::PT_TLS
3039       && type2 != elfcpp::PT_GNU_RELRO)
3040     return false;
3041   if (type2 == elfcpp::PT_TLS
3042       && type1 != elfcpp::PT_TLS
3043       && type1 != elfcpp::PT_GNU_RELRO)
3044     return true;
3045
3046   // We put the PT_GNU_RELRO segment last, because that is where the
3047   // dynamic linker expects to find it (as with PT_TLS, this is just
3048   // for efficiency).
3049   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3050     return false;
3051   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3052     return true;
3053
3054   const elfcpp::Elf_Word flags1 = seg1->flags();
3055   const elfcpp::Elf_Word flags2 = seg2->flags();
3056
3057   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3058   // by the numeric segment type and flags values.  There should not
3059   // be more than one segment with the same type and flags.
3060   if (type1 != elfcpp::PT_LOAD)
3061     {
3062       if (type1 != type2)
3063         return type1 < type2;
3064       gold_assert(flags1 != flags2);
3065       return flags1 < flags2;
3066     }
3067
3068   // If the addresses are set already, sort by load address.
3069   if (seg1->are_addresses_set())
3070     {
3071       if (!seg2->are_addresses_set())
3072         return true;
3073
3074       unsigned int section_count1 = seg1->output_section_count();
3075       unsigned int section_count2 = seg2->output_section_count();
3076       if (section_count1 == 0 && section_count2 > 0)
3077         return true;
3078       if (section_count1 > 0 && section_count2 == 0)
3079         return false;
3080
3081       uint64_t paddr1 = (seg1->are_addresses_set()
3082                          ? seg1->paddr()
3083                          : seg1->first_section_load_address());
3084       uint64_t paddr2 = (seg2->are_addresses_set()
3085                          ? seg2->paddr()
3086                          : seg2->first_section_load_address());
3087
3088       if (paddr1 != paddr2)
3089         return paddr1 < paddr2;
3090     }
3091   else if (seg2->are_addresses_set())
3092     return false;
3093
3094   // A segment which holds large data comes after a segment which does
3095   // not hold large data.
3096   if (seg1->is_large_data_segment())
3097     {
3098       if (!seg2->is_large_data_segment())
3099         return false;
3100     }
3101   else if (seg2->is_large_data_segment())
3102     return true;
3103
3104   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3105   // segments come before writable segments.  Then writable segments
3106   // with data come before writable segments without data.  Then
3107   // executable segments come before non-executable segments.  Then
3108   // the unlikely case of a non-readable segment comes before the
3109   // normal case of a readable segment.  If there are multiple
3110   // segments with the same type and flags, we require that the
3111   // address be set, and we sort by virtual address and then physical
3112   // address.
3113   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3114     return (flags1 & elfcpp::PF_W) == 0;
3115   if ((flags1 & elfcpp::PF_W) != 0
3116       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3117     return seg1->has_any_data_sections();
3118   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3119     return (flags1 & elfcpp::PF_X) != 0;
3120   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3121     return (flags1 & elfcpp::PF_R) == 0;
3122
3123   // We shouldn't get here--we shouldn't create segments which we
3124   // can't distinguish.  Unless of course we are using a weird linker
3125   // script or overlapping --section-start options.
3126   gold_assert(this->script_options_->saw_phdrs_clause()
3127               || parameters->options().any_section_start());
3128   return false;
3129 }
3130
3131 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3132
3133 static off_t
3134 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3135 {
3136   uint64_t unsigned_off = off;
3137   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3138                           | (addr & (abi_pagesize - 1)));
3139   if (aligned_off < unsigned_off)
3140     aligned_off += abi_pagesize;
3141   return aligned_off;
3142 }
3143
3144 // Set the file offsets of all the segments, and all the sections they
3145 // contain.  They have all been created.  LOAD_SEG must be be laid out
3146 // first.  Return the offset of the data to follow.
3147
3148 off_t
3149 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3150                             unsigned int* pshndx)
3151 {
3152   // Sort them into the final order.  We use a stable sort so that we
3153   // don't randomize the order of indistinguishable segments created
3154   // by linker scripts.
3155   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3156                    Layout::Compare_segments(this));
3157
3158   // Find the PT_LOAD segments, and set their addresses and offsets
3159   // and their section's addresses and offsets.
3160   uint64_t start_addr;
3161   if (parameters->options().user_set_Ttext())
3162     start_addr = parameters->options().Ttext();
3163   else if (parameters->options().output_is_position_independent())
3164     start_addr = 0;
3165   else
3166     start_addr = target->default_text_segment_address();
3167
3168   uint64_t addr = start_addr;
3169   off_t off = 0;
3170
3171   // If LOAD_SEG is NULL, then the file header and segment headers
3172   // will not be loadable.  But they still need to be at offset 0 in
3173   // the file.  Set their offsets now.
3174   if (load_seg == NULL)
3175     {
3176       for (Data_list::iterator p = this->special_output_list_.begin();
3177            p != this->special_output_list_.end();
3178            ++p)
3179         {
3180           off = align_address(off, (*p)->addralign());
3181           (*p)->set_address_and_file_offset(0, off);
3182           off += (*p)->data_size();
3183         }
3184     }
3185
3186   unsigned int increase_relro = this->increase_relro_;
3187   if (this->script_options_->saw_sections_clause())
3188     increase_relro = 0;
3189
3190   const bool check_sections = parameters->options().check_sections();
3191   Output_segment* last_load_segment = NULL;
3192
3193   unsigned int shndx_begin = *pshndx;
3194   unsigned int shndx_load_seg = *pshndx;
3195
3196   for (Segment_list::iterator p = this->segment_list_.begin();
3197        p != this->segment_list_.end();
3198        ++p)
3199     {
3200       if ((*p)->type() == elfcpp::PT_LOAD)
3201         {
3202           if (target->isolate_execinstr())
3203             {
3204               // When we hit the segment that should contain the
3205               // file headers, reset the file offset so we place
3206               // it and subsequent segments appropriately.
3207               // We'll fix up the preceding segments below.
3208               if (load_seg == *p)
3209                 {
3210                   if (off == 0)
3211                     load_seg = NULL;
3212                   else
3213                     {
3214                       off = 0;
3215                       shndx_load_seg = *pshndx;
3216                     }
3217                 }
3218             }
3219           else
3220             {
3221               // Verify that the file headers fall into the first segment.
3222               if (load_seg != NULL && load_seg != *p)
3223                 gold_unreachable();
3224               load_seg = NULL;
3225             }
3226
3227           bool are_addresses_set = (*p)->are_addresses_set();
3228           if (are_addresses_set)
3229             {
3230               // When it comes to setting file offsets, we care about
3231               // the physical address.
3232               addr = (*p)->paddr();
3233             }
3234           else if (parameters->options().user_set_Ttext()
3235                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3236             {
3237               are_addresses_set = true;
3238             }
3239           else if (parameters->options().user_set_Tdata()
3240                    && ((*p)->flags() & elfcpp::PF_W) != 0
3241                    && (!parameters->options().user_set_Tbss()
3242                        || (*p)->has_any_data_sections()))
3243             {
3244               addr = parameters->options().Tdata();
3245               are_addresses_set = true;
3246             }
3247           else if (parameters->options().user_set_Tbss()
3248                    && ((*p)->flags() & elfcpp::PF_W) != 0
3249                    && !(*p)->has_any_data_sections())
3250             {
3251               addr = parameters->options().Tbss();
3252               are_addresses_set = true;
3253             }
3254
3255           uint64_t orig_addr = addr;
3256           uint64_t orig_off = off;
3257
3258           uint64_t aligned_addr = 0;
3259           uint64_t abi_pagesize = target->abi_pagesize();
3260           uint64_t common_pagesize = target->common_pagesize();
3261
3262           if (!parameters->options().nmagic()
3263               && !parameters->options().omagic())
3264             (*p)->set_minimum_p_align(common_pagesize);
3265
3266           if (!are_addresses_set)
3267             {
3268               // Skip the address forward one page, maintaining the same
3269               // position within the page.  This lets us store both segments
3270               // overlapping on a single page in the file, but the loader will
3271               // put them on different pages in memory. We will revisit this
3272               // decision once we know the size of the segment.
3273
3274               addr = align_address(addr, (*p)->maximum_alignment());
3275               aligned_addr = addr;
3276
3277               if (load_seg == *p)
3278                 {
3279                   // This is the segment that will contain the file
3280                   // headers, so its offset will have to be exactly zero.
3281                   gold_assert(orig_off == 0);
3282
3283                   // If the target wants a fixed minimum distance from the
3284                   // text segment to the read-only segment, move up now.
3285                   uint64_t min_addr = start_addr + target->rosegment_gap();
3286                   if (addr < min_addr)
3287                     addr = min_addr;
3288
3289                   // But this is not the first segment!  To make its
3290                   // address congruent with its offset, that address better
3291                   // be aligned to the ABI-mandated page size.
3292                   addr = align_address(addr, abi_pagesize);
3293                   aligned_addr = addr;
3294                 }
3295               else
3296                 {
3297                   if ((addr & (abi_pagesize - 1)) != 0)
3298                     addr = addr + abi_pagesize;
3299
3300                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3301                 }
3302             }
3303
3304           if (!parameters->options().nmagic()
3305               && !parameters->options().omagic())
3306             off = align_file_offset(off, addr, abi_pagesize);
3307           else
3308             {
3309               // This is -N or -n with a section script which prevents
3310               // us from using a load segment.  We need to ensure that
3311               // the file offset is aligned to the alignment of the
3312               // segment.  This is because the linker script
3313               // implicitly assumed a zero offset.  If we don't align
3314               // here, then the alignment of the sections in the
3315               // linker script may not match the alignment of the
3316               // sections in the set_section_addresses call below,
3317               // causing an error about dot moving backward.
3318               off = align_address(off, (*p)->maximum_alignment());
3319             }
3320
3321           unsigned int shndx_hold = *pshndx;
3322           bool has_relro = false;
3323           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3324                                                           &increase_relro,
3325                                                           &has_relro,
3326                                                           &off, pshndx);
3327
3328           // Now that we know the size of this segment, we may be able
3329           // to save a page in memory, at the cost of wasting some
3330           // file space, by instead aligning to the start of a new
3331           // page.  Here we use the real machine page size rather than
3332           // the ABI mandated page size.  If the segment has been
3333           // aligned so that the relro data ends at a page boundary,
3334           // we do not try to realign it.
3335
3336           if (!are_addresses_set
3337               && !has_relro
3338               && aligned_addr != addr
3339               && !parameters->incremental())
3340             {
3341               uint64_t first_off = (common_pagesize
3342                                     - (aligned_addr
3343                                        & (common_pagesize - 1)));
3344               uint64_t last_off = new_addr & (common_pagesize - 1);
3345               if (first_off > 0
3346                   && last_off > 0
3347                   && ((aligned_addr & ~ (common_pagesize - 1))
3348                       != (new_addr & ~ (common_pagesize - 1)))
3349                   && first_off + last_off <= common_pagesize)
3350                 {
3351                   *pshndx = shndx_hold;
3352                   addr = align_address(aligned_addr, common_pagesize);
3353                   addr = align_address(addr, (*p)->maximum_alignment());
3354                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3355                   off = align_file_offset(off, addr, abi_pagesize);
3356
3357                   increase_relro = this->increase_relro_;
3358                   if (this->script_options_->saw_sections_clause())
3359                     increase_relro = 0;
3360                   has_relro = false;
3361
3362                   new_addr = (*p)->set_section_addresses(this, true, addr,
3363                                                          &increase_relro,
3364                                                          &has_relro,
3365                                                          &off, pshndx);
3366                 }
3367             }
3368
3369           addr = new_addr;
3370
3371           // Implement --check-sections.  We know that the segments
3372           // are sorted by LMA.
3373           if (check_sections && last_load_segment != NULL)
3374             {
3375               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3376               if (last_load_segment->paddr() + last_load_segment->memsz()
3377                   > (*p)->paddr())
3378                 {
3379                   unsigned long long lb1 = last_load_segment->paddr();
3380                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3381                   unsigned long long lb2 = (*p)->paddr();
3382                   unsigned long long le2 = lb2 + (*p)->memsz();
3383                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3384                                "[0x%llx -> 0x%llx]"),
3385                              lb1, le1, lb2, le2);
3386                 }
3387             }
3388           last_load_segment = *p;
3389         }
3390     }
3391
3392   if (load_seg != NULL && target->isolate_execinstr())
3393     {
3394       // Process the early segments again, setting their file offsets
3395       // so they land after the segments starting at LOAD_SEG.
3396       off = align_file_offset(off, 0, target->abi_pagesize());
3397
3398       for (Segment_list::iterator p = this->segment_list_.begin();
3399            *p != load_seg;
3400            ++p)
3401         {
3402           if ((*p)->type() == elfcpp::PT_LOAD)
3403             {
3404               // We repeat the whole job of assigning addresses and
3405               // offsets, but we really only want to change the offsets and
3406               // must ensure that the addresses all come out the same as
3407               // they did the first time through.
3408               bool has_relro = false;
3409               const uint64_t old_addr = (*p)->vaddr();
3410               const uint64_t old_end = old_addr + (*p)->memsz();
3411               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3412                                                               old_addr,
3413                                                               &increase_relro,
3414                                                               &has_relro,
3415                                                               &off,
3416                                                               &shndx_begin);
3417               gold_assert(new_addr == old_end);
3418             }
3419         }
3420
3421       gold_assert(shndx_begin == shndx_load_seg);
3422     }
3423
3424   // Handle the non-PT_LOAD segments, setting their offsets from their
3425   // section's offsets.
3426   for (Segment_list::iterator p = this->segment_list_.begin();
3427        p != this->segment_list_.end();
3428        ++p)
3429     {
3430       if ((*p)->type() != elfcpp::PT_LOAD)
3431         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3432                          ? increase_relro
3433                          : 0);
3434     }
3435
3436   // Set the TLS offsets for each section in the PT_TLS segment.
3437   if (this->tls_segment_ != NULL)
3438     this->tls_segment_->set_tls_offsets();
3439
3440   return off;
3441 }
3442
3443 // Set the offsets of all the allocated sections when doing a
3444 // relocatable link.  This does the same jobs as set_segment_offsets,
3445 // only for a relocatable link.
3446
3447 off_t
3448 Layout::set_relocatable_section_offsets(Output_data* file_header,
3449                                         unsigned int* pshndx)
3450 {
3451   off_t off = 0;
3452
3453   file_header->set_address_and_file_offset(0, 0);
3454   off += file_header->data_size();
3455
3456   for (Section_list::iterator p = this->section_list_.begin();
3457        p != this->section_list_.end();
3458        ++p)
3459     {
3460       // We skip unallocated sections here, except that group sections
3461       // have to come first.
3462       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3463           && (*p)->type() != elfcpp::SHT_GROUP)
3464         continue;
3465
3466       off = align_address(off, (*p)->addralign());
3467
3468       // The linker script might have set the address.
3469       if (!(*p)->is_address_valid())
3470         (*p)->set_address(0);
3471       (*p)->set_file_offset(off);
3472       (*p)->finalize_data_size();
3473       off += (*p)->data_size();
3474
3475       (*p)->set_out_shndx(*pshndx);
3476       ++*pshndx;
3477     }
3478
3479   return off;
3480 }
3481
3482 // Set the file offset of all the sections not associated with a
3483 // segment.
3484
3485 off_t
3486 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3487 {
3488   off_t startoff = off;
3489   off_t maxoff = off;
3490
3491   for (Section_list::iterator p = this->unattached_section_list_.begin();
3492        p != this->unattached_section_list_.end();
3493        ++p)
3494     {
3495       // The symtab section is handled in create_symtab_sections.
3496       if (*p == this->symtab_section_)
3497         continue;
3498
3499       // If we've already set the data size, don't set it again.
3500       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3501         continue;
3502
3503       if (pass == BEFORE_INPUT_SECTIONS_PASS
3504           && (*p)->requires_postprocessing())
3505         {
3506           (*p)->create_postprocessing_buffer();
3507           this->any_postprocessing_sections_ = true;
3508         }
3509
3510       if (pass == BEFORE_INPUT_SECTIONS_PASS
3511           && (*p)->after_input_sections())
3512         continue;
3513       else if (pass == POSTPROCESSING_SECTIONS_PASS
3514                && (!(*p)->after_input_sections()
3515                    || (*p)->type() == elfcpp::SHT_STRTAB))
3516         continue;
3517       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3518                && (!(*p)->after_input_sections()
3519                    || (*p)->type() != elfcpp::SHT_STRTAB))
3520         continue;
3521
3522       if (!parameters->incremental_update())
3523         {
3524           off = align_address(off, (*p)->addralign());
3525           (*p)->set_file_offset(off);
3526           (*p)->finalize_data_size();
3527         }
3528       else
3529         {
3530           // Incremental update: allocate file space from free list.
3531           (*p)->pre_finalize_data_size();
3532           off_t current_size = (*p)->current_data_size();
3533           off = this->allocate(current_size, (*p)->addralign(), startoff);
3534           if (off == -1)
3535             {
3536               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3537                 this->free_list_.dump();
3538               gold_assert((*p)->output_section() != NULL);
3539               gold_fallback(_("out of patch space for section %s; "
3540                               "relink with --incremental-full"),
3541                             (*p)->output_section()->name());
3542             }
3543           (*p)->set_file_offset(off);
3544           (*p)->finalize_data_size();
3545           if ((*p)->data_size() > current_size)
3546             {
3547               gold_assert((*p)->output_section() != NULL);
3548               gold_fallback(_("%s: section changed size; "
3549                               "relink with --incremental-full"),
3550                             (*p)->output_section()->name());
3551             }
3552           gold_debug(DEBUG_INCREMENTAL,
3553                      "set_section_offsets: %08lx %08lx %s",
3554                      static_cast<long>(off),
3555                      static_cast<long>((*p)->data_size()),
3556                      ((*p)->output_section() != NULL
3557                       ? (*p)->output_section()->name() : "(special)"));
3558         }
3559
3560       off += (*p)->data_size();
3561       if (off > maxoff)
3562         maxoff = off;
3563
3564       // At this point the name must be set.
3565       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3566         this->namepool_.add((*p)->name(), false, NULL);
3567     }
3568   return maxoff;
3569 }
3570
3571 // Set the section indexes of all the sections not associated with a
3572 // segment.
3573
3574 unsigned int
3575 Layout::set_section_indexes(unsigned int shndx)
3576 {
3577   for (Section_list::iterator p = this->unattached_section_list_.begin();
3578        p != this->unattached_section_list_.end();
3579        ++p)
3580     {
3581       if (!(*p)->has_out_shndx())
3582         {
3583           (*p)->set_out_shndx(shndx);
3584           ++shndx;
3585         }
3586     }
3587   return shndx;
3588 }
3589
3590 // Set the section addresses according to the linker script.  This is
3591 // only called when we see a SECTIONS clause.  This returns the
3592 // program segment which should hold the file header and segment
3593 // headers, if any.  It will return NULL if they should not be in a
3594 // segment.
3595
3596 Output_segment*
3597 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3598 {
3599   Script_sections* ss = this->script_options_->script_sections();
3600   gold_assert(ss->saw_sections_clause());
3601   return this->script_options_->set_section_addresses(symtab, this);
3602 }
3603
3604 // Place the orphan sections in the linker script.
3605
3606 void
3607 Layout::place_orphan_sections_in_script()
3608 {
3609   Script_sections* ss = this->script_options_->script_sections();
3610   gold_assert(ss->saw_sections_clause());
3611
3612   // Place each orphaned output section in the script.
3613   for (Section_list::iterator p = this->section_list_.begin();
3614        p != this->section_list_.end();
3615        ++p)
3616     {
3617       if (!(*p)->found_in_sections_clause())
3618         ss->place_orphan(*p);
3619     }
3620 }
3621
3622 // Count the local symbols in the regular symbol table and the dynamic
3623 // symbol table, and build the respective string pools.
3624
3625 void
3626 Layout::count_local_symbols(const Task* task,
3627                             const Input_objects* input_objects)
3628 {
3629   // First, figure out an upper bound on the number of symbols we'll
3630   // be inserting into each pool.  This helps us create the pools with
3631   // the right size, to avoid unnecessary hashtable resizing.
3632   unsigned int symbol_count = 0;
3633   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3634        p != input_objects->relobj_end();
3635        ++p)
3636     symbol_count += (*p)->local_symbol_count();
3637
3638   // Go from "upper bound" to "estimate."  We overcount for two
3639   // reasons: we double-count symbols that occur in more than one
3640   // object file, and we count symbols that are dropped from the
3641   // output.  Add it all together and assume we overcount by 100%.
3642   symbol_count /= 2;
3643
3644   // We assume all symbols will go into both the sympool and dynpool.
3645   this->sympool_.reserve(symbol_count);
3646   this->dynpool_.reserve(symbol_count);
3647
3648   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3649        p != input_objects->relobj_end();
3650        ++p)
3651     {
3652       Task_lock_obj<Object> tlo(task, *p);
3653       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3654     }
3655 }
3656
3657 // Create the symbol table sections.  Here we also set the final
3658 // values of the symbols.  At this point all the loadable sections are
3659 // fully laid out.  SHNUM is the number of sections so far.
3660
3661 void
3662 Layout::create_symtab_sections(const Input_objects* input_objects,
3663                                Symbol_table* symtab,
3664                                unsigned int shnum,
3665                                off_t* poff)
3666 {
3667   int symsize;
3668   unsigned int align;
3669   if (parameters->target().get_size() == 32)
3670     {
3671       symsize = elfcpp::Elf_sizes<32>::sym_size;
3672       align = 4;
3673     }
3674   else if (parameters->target().get_size() == 64)
3675     {
3676       symsize = elfcpp::Elf_sizes<64>::sym_size;
3677       align = 8;
3678     }
3679   else
3680     gold_unreachable();
3681
3682   // Compute file offsets relative to the start of the symtab section.
3683   off_t off = 0;
3684
3685   // Save space for the dummy symbol at the start of the section.  We
3686   // never bother to write this out--it will just be left as zero.
3687   off += symsize;
3688   unsigned int local_symbol_index = 1;
3689
3690   // Add STT_SECTION symbols for each Output section which needs one.
3691   for (Section_list::iterator p = this->section_list_.begin();
3692        p != this->section_list_.end();
3693        ++p)
3694     {
3695       if (!(*p)->needs_symtab_index())
3696         (*p)->set_symtab_index(-1U);
3697       else
3698         {
3699           (*p)->set_symtab_index(local_symbol_index);
3700           ++local_symbol_index;
3701           off += symsize;
3702         }
3703     }
3704
3705   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3706        p != input_objects->relobj_end();
3707        ++p)
3708     {
3709       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3710                                                         off, symtab);
3711       off += (index - local_symbol_index) * symsize;
3712       local_symbol_index = index;
3713     }
3714
3715   unsigned int local_symcount = local_symbol_index;
3716   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3717
3718   off_t dynoff;
3719   size_t dyn_global_index;
3720   size_t dyncount;
3721   if (this->dynsym_section_ == NULL)
3722     {
3723       dynoff = 0;
3724       dyn_global_index = 0;
3725       dyncount = 0;
3726     }
3727   else
3728     {
3729       dyn_global_index = this->dynsym_section_->info();
3730       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3731       dynoff = this->dynsym_section_->offset() + locsize;
3732       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3733       gold_assert(static_cast<off_t>(dyncount * symsize)
3734                   == this->dynsym_section_->data_size() - locsize);
3735     }
3736
3737   off_t global_off = off;
3738   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3739                          &this->sympool_, &local_symcount);
3740
3741   if (!parameters->options().strip_all())
3742     {
3743       this->sympool_.set_string_offsets();
3744
3745       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3746       Output_section* osymtab = this->make_output_section(symtab_name,
3747                                                           elfcpp::SHT_SYMTAB,
3748                                                           0, ORDER_INVALID,
3749                                                           false);
3750       this->symtab_section_ = osymtab;
3751
3752       Output_section_data* pos = new Output_data_fixed_space(off, align,
3753                                                              "** symtab");
3754       osymtab->add_output_section_data(pos);
3755
3756       // We generate a .symtab_shndx section if we have more than
3757       // SHN_LORESERVE sections.  Technically it is possible that we
3758       // don't need one, because it is possible that there are no
3759       // symbols in any of sections with indexes larger than
3760       // SHN_LORESERVE.  That is probably unusual, though, and it is
3761       // easier to always create one than to compute section indexes
3762       // twice (once here, once when writing out the symbols).
3763       if (shnum >= elfcpp::SHN_LORESERVE)
3764         {
3765           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3766                                                                false, NULL);
3767           Output_section* osymtab_xindex =
3768             this->make_output_section(symtab_xindex_name,
3769                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3770                                       ORDER_INVALID, false);
3771
3772           size_t symcount = off / symsize;
3773           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3774
3775           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3776
3777           osymtab_xindex->set_link_section(osymtab);
3778           osymtab_xindex->set_addralign(4);
3779           osymtab_xindex->set_entsize(4);
3780
3781           osymtab_xindex->set_after_input_sections();
3782
3783           // This tells the driver code to wait until the symbol table
3784           // has written out before writing out the postprocessing
3785           // sections, including the .symtab_shndx section.
3786           this->any_postprocessing_sections_ = true;
3787         }
3788
3789       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3790       Output_section* ostrtab = this->make_output_section(strtab_name,
3791                                                           elfcpp::SHT_STRTAB,
3792                                                           0, ORDER_INVALID,
3793                                                           false);
3794
3795       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3796       ostrtab->add_output_section_data(pstr);
3797
3798       off_t symtab_off;
3799       if (!parameters->incremental_update())
3800         symtab_off = align_address(*poff, align);
3801       else
3802         {
3803           symtab_off = this->allocate(off, align, *poff);
3804           if (off == -1)
3805             gold_fallback(_("out of patch space for symbol table; "
3806                             "relink with --incremental-full"));
3807           gold_debug(DEBUG_INCREMENTAL,
3808                      "create_symtab_sections: %08lx %08lx .symtab",
3809                      static_cast<long>(symtab_off),
3810                      static_cast<long>(off));
3811         }
3812
3813       symtab->set_file_offset(symtab_off + global_off);
3814       osymtab->set_file_offset(symtab_off);
3815       osymtab->finalize_data_size();
3816       osymtab->set_link_section(ostrtab);
3817       osymtab->set_info(local_symcount);
3818       osymtab->set_entsize(symsize);
3819
3820       if (symtab_off + off > *poff)
3821         *poff = symtab_off + off;
3822     }
3823 }
3824
3825 // Create the .shstrtab section, which holds the names of the
3826 // sections.  At the time this is called, we have created all the
3827 // output sections except .shstrtab itself.
3828
3829 Output_section*
3830 Layout::create_shstrtab()
3831 {
3832   // FIXME: We don't need to create a .shstrtab section if we are
3833   // stripping everything.
3834
3835   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3836
3837   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3838                                                  ORDER_INVALID, false);
3839
3840   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3841     {
3842       // We can't write out this section until we've set all the
3843       // section names, and we don't set the names of compressed
3844       // output sections until relocations are complete.  FIXME: With
3845       // the current names we use, this is unnecessary.
3846       os->set_after_input_sections();
3847     }
3848
3849   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3850   os->add_output_section_data(posd);
3851
3852   return os;
3853 }
3854
3855 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3856 // offset.
3857
3858 void
3859 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3860 {
3861   Output_section_headers* oshdrs;
3862   oshdrs = new Output_section_headers(this,
3863                                       &this->segment_list_,
3864                                       &this->section_list_,
3865                                       &this->unattached_section_list_,
3866                                       &this->namepool_,
3867                                       shstrtab_section);
3868   off_t off;
3869   if (!parameters->incremental_update())
3870     off = align_address(*poff, oshdrs->addralign());
3871   else
3872     {
3873       oshdrs->pre_finalize_data_size();
3874       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3875       if (off == -1)
3876           gold_fallback(_("out of patch space for section header table; "
3877                           "relink with --incremental-full"));
3878       gold_debug(DEBUG_INCREMENTAL,
3879                  "create_shdrs: %08lx %08lx (section header table)",
3880                  static_cast<long>(off),
3881                  static_cast<long>(off + oshdrs->data_size()));
3882     }
3883   oshdrs->set_address_and_file_offset(0, off);
3884   off += oshdrs->data_size();
3885   if (off > *poff)
3886     *poff = off;
3887   this->section_headers_ = oshdrs;
3888 }
3889
3890 // Count the allocated sections.
3891
3892 size_t
3893 Layout::allocated_output_section_count() const
3894 {
3895   size_t section_count = 0;
3896   for (Segment_list::const_iterator p = this->segment_list_.begin();
3897        p != this->segment_list_.end();
3898        ++p)
3899     section_count += (*p)->output_section_count();
3900   return section_count;
3901 }
3902
3903 // Create the dynamic symbol table.
3904
3905 void
3906 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3907                               Symbol_table* symtab,
3908                               Output_section** pdynstr,
3909                               unsigned int* plocal_dynamic_count,
3910                               std::vector<Symbol*>* pdynamic_symbols,
3911                               Versions* pversions)
3912 {
3913   // Count all the symbols in the dynamic symbol table, and set the
3914   // dynamic symbol indexes.
3915
3916   // Skip symbol 0, which is always all zeroes.
3917   unsigned int index = 1;
3918
3919   // Add STT_SECTION symbols for each Output section which needs one.
3920   for (Section_list::iterator p = this->section_list_.begin();
3921        p != this->section_list_.end();
3922        ++p)
3923     {
3924       if (!(*p)->needs_dynsym_index())
3925         (*p)->set_dynsym_index(-1U);
3926       else
3927         {
3928           (*p)->set_dynsym_index(index);
3929           ++index;
3930         }
3931     }
3932
3933   // Count the local symbols that need to go in the dynamic symbol table,
3934   // and set the dynamic symbol indexes.
3935   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3936        p != input_objects->relobj_end();
3937        ++p)
3938     {
3939       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3940       index = new_index;
3941     }
3942
3943   unsigned int local_symcount = index;
3944   *plocal_dynamic_count = local_symcount;
3945
3946   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3947                                      &this->dynpool_, pversions);
3948
3949   int symsize;
3950   unsigned int align;
3951   const int size = parameters->target().get_size();
3952   if (size == 32)
3953     {
3954       symsize = elfcpp::Elf_sizes<32>::sym_size;
3955       align = 4;
3956     }
3957   else if (size == 64)
3958     {
3959       symsize = elfcpp::Elf_sizes<64>::sym_size;
3960       align = 8;
3961     }
3962   else
3963     gold_unreachable();
3964
3965   // Create the dynamic symbol table section.
3966
3967   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3968                                                        elfcpp::SHT_DYNSYM,
3969                                                        elfcpp::SHF_ALLOC,
3970                                                        false,
3971                                                        ORDER_DYNAMIC_LINKER,
3972                                                        false);
3973
3974   // Check for NULL as a linker script may discard .dynsym.
3975   if (dynsym != NULL)
3976     {
3977       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3978                                                                align,
3979                                                                "** dynsym");
3980       dynsym->add_output_section_data(odata);
3981
3982       dynsym->set_info(local_symcount);
3983       dynsym->set_entsize(symsize);
3984       dynsym->set_addralign(align);
3985
3986       this->dynsym_section_ = dynsym;
3987     }
3988
3989   Output_data_dynamic* const odyn = this->dynamic_data_;
3990   if (odyn != NULL)
3991     {
3992       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3993       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3994     }
3995
3996   // If there are more than SHN_LORESERVE allocated sections, we
3997   // create a .dynsym_shndx section.  It is possible that we don't
3998   // need one, because it is possible that there are no dynamic
3999   // symbols in any of the sections with indexes larger than
4000   // SHN_LORESERVE.  This is probably unusual, though, and at this
4001   // time we don't know the actual section indexes so it is
4002   // inconvenient to check.
4003   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4004     {
4005       Output_section* dynsym_xindex =
4006         this->choose_output_section(NULL, ".dynsym_shndx",
4007                                     elfcpp::SHT_SYMTAB_SHNDX,
4008                                     elfcpp::SHF_ALLOC,
4009                                     false, ORDER_DYNAMIC_LINKER, false);
4010
4011       if (dynsym_xindex != NULL)
4012         {
4013           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4014
4015           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4016
4017           dynsym_xindex->set_link_section(dynsym);
4018           dynsym_xindex->set_addralign(4);
4019           dynsym_xindex->set_entsize(4);
4020
4021           dynsym_xindex->set_after_input_sections();
4022
4023           // This tells the driver code to wait until the symbol table
4024           // has written out before writing out the postprocessing
4025           // sections, including the .dynsym_shndx section.
4026           this->any_postprocessing_sections_ = true;
4027         }
4028     }
4029
4030   // Create the dynamic string table section.
4031
4032   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4033                                                        elfcpp::SHT_STRTAB,
4034                                                        elfcpp::SHF_ALLOC,
4035                                                        false,
4036                                                        ORDER_DYNAMIC_LINKER,
4037                                                        false);
4038
4039   if (dynstr != NULL)
4040     {
4041       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4042       dynstr->add_output_section_data(strdata);
4043
4044       if (dynsym != NULL)
4045         dynsym->set_link_section(dynstr);
4046       if (this->dynamic_section_ != NULL)
4047         this->dynamic_section_->set_link_section(dynstr);
4048
4049       if (odyn != NULL)
4050         {
4051           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4052           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4053         }
4054
4055       *pdynstr = dynstr;
4056     }
4057
4058   // Create the hash tables.
4059
4060   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4061       || strcmp(parameters->options().hash_style(), "both") == 0)
4062     {
4063       unsigned char* phash;
4064       unsigned int hashlen;
4065       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4066                                     &phash, &hashlen);
4067
4068       Output_section* hashsec =
4069         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4070                                     elfcpp::SHF_ALLOC, false,
4071                                     ORDER_DYNAMIC_LINKER, false);
4072
4073       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4074                                                                    hashlen,
4075                                                                    align,
4076                                                                    "** hash");
4077       if (hashsec != NULL && hashdata != NULL)
4078         hashsec->add_output_section_data(hashdata);
4079
4080       if (hashsec != NULL)
4081         {
4082           if (dynsym != NULL)
4083             hashsec->set_link_section(dynsym);
4084           hashsec->set_entsize(4);
4085         }
4086
4087       if (odyn != NULL)
4088         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4089     }
4090
4091   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4092       || strcmp(parameters->options().hash_style(), "both") == 0)
4093     {
4094       unsigned char* phash;
4095       unsigned int hashlen;
4096       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4097                                     &phash, &hashlen);
4098
4099       Output_section* hashsec =
4100         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4101                                     elfcpp::SHF_ALLOC, false,
4102                                     ORDER_DYNAMIC_LINKER, false);
4103
4104       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4105                                                                    hashlen,
4106                                                                    align,
4107                                                                    "** hash");
4108       if (hashsec != NULL && hashdata != NULL)
4109         hashsec->add_output_section_data(hashdata);
4110
4111       if (hashsec != NULL)
4112         {
4113           if (dynsym != NULL)
4114             hashsec->set_link_section(dynsym);
4115
4116           // For a 64-bit target, the entries in .gnu.hash do not have
4117           // a uniform size, so we only set the entry size for a
4118           // 32-bit target.
4119           if (parameters->target().get_size() == 32)
4120             hashsec->set_entsize(4);
4121
4122           if (odyn != NULL)
4123             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4124         }
4125     }
4126 }
4127
4128 // Assign offsets to each local portion of the dynamic symbol table.
4129
4130 void
4131 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4132 {
4133   Output_section* dynsym = this->dynsym_section_;
4134   if (dynsym == NULL)
4135     return;
4136
4137   off_t off = dynsym->offset();
4138
4139   // Skip the dummy symbol at the start of the section.
4140   off += dynsym->entsize();
4141
4142   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4143        p != input_objects->relobj_end();
4144        ++p)
4145     {
4146       unsigned int count = (*p)->set_local_dynsym_offset(off);
4147       off += count * dynsym->entsize();
4148     }
4149 }
4150
4151 // Create the version sections.
4152
4153 void
4154 Layout::create_version_sections(const Versions* versions,
4155                                 const Symbol_table* symtab,
4156                                 unsigned int local_symcount,
4157                                 const std::vector<Symbol*>& dynamic_symbols,
4158                                 const Output_section* dynstr)
4159 {
4160   if (!versions->any_defs() && !versions->any_needs())
4161     return;
4162
4163   switch (parameters->size_and_endianness())
4164     {
4165 #ifdef HAVE_TARGET_32_LITTLE
4166     case Parameters::TARGET_32_LITTLE:
4167       this->sized_create_version_sections<32, false>(versions, symtab,
4168                                                      local_symcount,
4169                                                      dynamic_symbols, dynstr);
4170       break;
4171 #endif
4172 #ifdef HAVE_TARGET_32_BIG
4173     case Parameters::TARGET_32_BIG:
4174       this->sized_create_version_sections<32, true>(versions, symtab,
4175                                                     local_symcount,
4176                                                     dynamic_symbols, dynstr);
4177       break;
4178 #endif
4179 #ifdef HAVE_TARGET_64_LITTLE
4180     case Parameters::TARGET_64_LITTLE:
4181       this->sized_create_version_sections<64, false>(versions, symtab,
4182                                                      local_symcount,
4183                                                      dynamic_symbols, dynstr);
4184       break;
4185 #endif
4186 #ifdef HAVE_TARGET_64_BIG
4187     case Parameters::TARGET_64_BIG:
4188       this->sized_create_version_sections<64, true>(versions, symtab,
4189                                                     local_symcount,
4190                                                     dynamic_symbols, dynstr);
4191       break;
4192 #endif
4193     default:
4194       gold_unreachable();
4195     }
4196 }
4197
4198 // Create the version sections, sized version.
4199
4200 template<int size, bool big_endian>
4201 void
4202 Layout::sized_create_version_sections(
4203     const Versions* versions,
4204     const Symbol_table* symtab,
4205     unsigned int local_symcount,
4206     const std::vector<Symbol*>& dynamic_symbols,
4207     const Output_section* dynstr)
4208 {
4209   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4210                                                      elfcpp::SHT_GNU_versym,
4211                                                      elfcpp::SHF_ALLOC,
4212                                                      false,
4213                                                      ORDER_DYNAMIC_LINKER,
4214                                                      false);
4215
4216   // Check for NULL since a linker script may discard this section.
4217   if (vsec != NULL)
4218     {
4219       unsigned char* vbuf;
4220       unsigned int vsize;
4221       versions->symbol_section_contents<size, big_endian>(symtab,
4222                                                           &this->dynpool_,
4223                                                           local_symcount,
4224                                                           dynamic_symbols,
4225                                                           &vbuf, &vsize);
4226
4227       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4228                                                                 "** versions");
4229
4230       vsec->add_output_section_data(vdata);
4231       vsec->set_entsize(2);
4232       vsec->set_link_section(this->dynsym_section_);
4233     }
4234
4235   Output_data_dynamic* const odyn = this->dynamic_data_;
4236   if (odyn != NULL && vsec != NULL)
4237     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4238
4239   if (versions->any_defs())
4240     {
4241       Output_section* vdsec;
4242       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4243                                           elfcpp::SHT_GNU_verdef,
4244                                           elfcpp::SHF_ALLOC,
4245                                           false, ORDER_DYNAMIC_LINKER, false);
4246
4247       if (vdsec != NULL)
4248         {
4249           unsigned char* vdbuf;
4250           unsigned int vdsize;
4251           unsigned int vdentries;
4252           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4253                                                            &vdbuf, &vdsize,
4254                                                            &vdentries);
4255
4256           Output_section_data* vddata =
4257             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4258
4259           vdsec->add_output_section_data(vddata);
4260           vdsec->set_link_section(dynstr);
4261           vdsec->set_info(vdentries);
4262
4263           if (odyn != NULL)
4264             {
4265               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4266               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4267             }
4268         }
4269     }
4270
4271   if (versions->any_needs())
4272     {
4273       Output_section* vnsec;
4274       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4275                                           elfcpp::SHT_GNU_verneed,
4276                                           elfcpp::SHF_ALLOC,
4277                                           false, ORDER_DYNAMIC_LINKER, false);
4278
4279       if (vnsec != NULL)
4280         {
4281           unsigned char* vnbuf;
4282           unsigned int vnsize;
4283           unsigned int vnentries;
4284           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4285                                                             &vnbuf, &vnsize,
4286                                                             &vnentries);
4287
4288           Output_section_data* vndata =
4289             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4290
4291           vnsec->add_output_section_data(vndata);
4292           vnsec->set_link_section(dynstr);
4293           vnsec->set_info(vnentries);
4294
4295           if (odyn != NULL)
4296             {
4297               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4298               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4299             }
4300         }
4301     }
4302 }
4303
4304 // Create the .interp section and PT_INTERP segment.
4305
4306 void
4307 Layout::create_interp(const Target* target)
4308 {
4309   gold_assert(this->interp_segment_ == NULL);
4310
4311   const char* interp = parameters->options().dynamic_linker();
4312   if (interp == NULL)
4313     {
4314       interp = target->dynamic_linker();
4315       gold_assert(interp != NULL);
4316     }
4317
4318   size_t len = strlen(interp) + 1;
4319
4320   Output_section_data* odata = new Output_data_const(interp, len, 1);
4321
4322   Output_section* osec = this->choose_output_section(NULL, ".interp",
4323                                                      elfcpp::SHT_PROGBITS,
4324                                                      elfcpp::SHF_ALLOC,
4325                                                      false, ORDER_INTERP,
4326                                                      false);
4327   if (osec != NULL)
4328     osec->add_output_section_data(odata);
4329 }
4330
4331 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4332 // called by the target-specific code.  This does nothing if not doing
4333 // a dynamic link.
4334
4335 // USE_REL is true for REL relocs rather than RELA relocs.
4336
4337 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4338
4339 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4340 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4341 // some targets have multiple reloc sections in PLT_REL.
4342
4343 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4344 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4345 // section.
4346
4347 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4348 // executable.
4349
4350 void
4351 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4352                                 const Output_data* plt_rel,
4353                                 const Output_data_reloc_generic* dyn_rel,
4354                                 bool add_debug, bool dynrel_includes_plt)
4355 {
4356   Output_data_dynamic* odyn = this->dynamic_data_;
4357   if (odyn == NULL)
4358     return;
4359
4360   if (plt_got != NULL && plt_got->output_section() != NULL)
4361     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4362
4363   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4364     {
4365       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4366       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4367       odyn->add_constant(elfcpp::DT_PLTREL,
4368                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4369     }
4370
4371   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4372       || (dynrel_includes_plt
4373           && plt_rel != NULL
4374           && plt_rel->output_section() != NULL))
4375     {
4376       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4377       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4378       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4379                                 (have_dyn_rel
4380                                  ? dyn_rel->output_section()
4381                                  : plt_rel->output_section()));
4382       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4383       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4384         odyn->add_section_size(size_tag,
4385                                dyn_rel->output_section(),
4386                                plt_rel->output_section());
4387       else if (have_dyn_rel)
4388         odyn->add_section_size(size_tag, dyn_rel->output_section());
4389       else
4390         odyn->add_section_size(size_tag, plt_rel->output_section());
4391       const int size = parameters->target().get_size();
4392       elfcpp::DT rel_tag;
4393       int rel_size;
4394       if (use_rel)
4395         {
4396           rel_tag = elfcpp::DT_RELENT;
4397           if (size == 32)
4398             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4399           else if (size == 64)
4400             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4401           else
4402             gold_unreachable();
4403         }
4404       else
4405         {
4406           rel_tag = elfcpp::DT_RELAENT;
4407           if (size == 32)
4408             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4409           else if (size == 64)
4410             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4411           else
4412             gold_unreachable();
4413         }
4414       odyn->add_constant(rel_tag, rel_size);
4415
4416       if (parameters->options().combreloc() && have_dyn_rel)
4417         {
4418           size_t c = dyn_rel->relative_reloc_count();
4419           if (c > 0)
4420             odyn->add_constant((use_rel
4421                                 ? elfcpp::DT_RELCOUNT
4422                                 : elfcpp::DT_RELACOUNT),
4423                                c);
4424         }
4425     }
4426
4427   if (add_debug && !parameters->options().shared())
4428     {
4429       // The value of the DT_DEBUG tag is filled in by the dynamic
4430       // linker at run time, and used by the debugger.
4431       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4432     }
4433 }
4434
4435 // Finish the .dynamic section and PT_DYNAMIC segment.
4436
4437 void
4438 Layout::finish_dynamic_section(const Input_objects* input_objects,
4439                                const Symbol_table* symtab)
4440 {
4441   if (!this->script_options_->saw_phdrs_clause()
4442       && this->dynamic_section_ != NULL)
4443     {
4444       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4445                                                        (elfcpp::PF_R
4446                                                         | elfcpp::PF_W));
4447       oseg->add_output_section_to_nonload(this->dynamic_section_,
4448                                           elfcpp::PF_R | elfcpp::PF_W);
4449     }
4450
4451   Output_data_dynamic* const odyn = this->dynamic_data_;
4452   if (odyn == NULL)
4453     return;
4454
4455   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4456        p != input_objects->dynobj_end();
4457        ++p)
4458     {
4459       if (!(*p)->is_needed() && (*p)->as_needed())
4460         {
4461           // This dynamic object was linked with --as-needed, but it
4462           // is not needed.
4463           continue;
4464         }
4465
4466       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4467     }
4468
4469   if (parameters->options().shared())
4470     {
4471       const char* soname = parameters->options().soname();
4472       if (soname != NULL)
4473         odyn->add_string(elfcpp::DT_SONAME, soname);
4474     }
4475
4476   Symbol* sym = symtab->lookup(parameters->options().init());
4477   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4478     odyn->add_symbol(elfcpp::DT_INIT, sym);
4479
4480   sym = symtab->lookup(parameters->options().fini());
4481   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4482     odyn->add_symbol(elfcpp::DT_FINI, sym);
4483
4484   // Look for .init_array, .preinit_array and .fini_array by checking
4485   // section types.
4486   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4487       p != this->section_list_.end();
4488       ++p)
4489     switch((*p)->type())
4490       {
4491       case elfcpp::SHT_FINI_ARRAY:
4492         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4493         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4494         break;
4495       case elfcpp::SHT_INIT_ARRAY:
4496         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4497         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4498         break;
4499       case elfcpp::SHT_PREINIT_ARRAY:
4500         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4501         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4502         break;
4503       default:
4504         break;
4505       }
4506
4507   // Add a DT_RPATH entry if needed.
4508   const General_options::Dir_list& rpath(parameters->options().rpath());
4509   if (!rpath.empty())
4510     {
4511       std::string rpath_val;
4512       for (General_options::Dir_list::const_iterator p = rpath.begin();
4513            p != rpath.end();
4514            ++p)
4515         {
4516           if (rpath_val.empty())
4517             rpath_val = p->name();
4518           else
4519             {
4520               // Eliminate duplicates.
4521               General_options::Dir_list::const_iterator q;
4522               for (q = rpath.begin(); q != p; ++q)
4523                 if (q->name() == p->name())
4524                   break;
4525               if (q == p)
4526                 {
4527                   rpath_val += ':';
4528                   rpath_val += p->name();
4529                 }
4530             }
4531         }
4532
4533       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4534       if (parameters->options().enable_new_dtags())
4535         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4536     }
4537
4538   // Look for text segments that have dynamic relocations.
4539   bool have_textrel = false;
4540   if (!this->script_options_->saw_sections_clause())
4541     {
4542       for (Segment_list::const_iterator p = this->segment_list_.begin();
4543            p != this->segment_list_.end();
4544            ++p)
4545         {
4546           if ((*p)->type() == elfcpp::PT_LOAD
4547               && ((*p)->flags() & elfcpp::PF_W) == 0
4548               && (*p)->has_dynamic_reloc())
4549             {
4550               have_textrel = true;
4551               break;
4552             }
4553         }
4554     }
4555   else
4556     {
4557       // We don't know the section -> segment mapping, so we are
4558       // conservative and just look for readonly sections with
4559       // relocations.  If those sections wind up in writable segments,
4560       // then we have created an unnecessary DT_TEXTREL entry.
4561       for (Section_list::const_iterator p = this->section_list_.begin();
4562            p != this->section_list_.end();
4563            ++p)
4564         {
4565           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4566               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4567               && (*p)->has_dynamic_reloc())
4568             {
4569               have_textrel = true;
4570               break;
4571             }
4572         }
4573     }
4574
4575   if (parameters->options().filter() != NULL)
4576     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4577   if (parameters->options().any_auxiliary())
4578     {
4579       for (options::String_set::const_iterator p =
4580              parameters->options().auxiliary_begin();
4581            p != parameters->options().auxiliary_end();
4582            ++p)
4583         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4584     }
4585
4586   // Add a DT_FLAGS entry if necessary.
4587   unsigned int flags = 0;
4588   if (have_textrel)
4589     {
4590       // Add a DT_TEXTREL for compatibility with older loaders.
4591       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4592       flags |= elfcpp::DF_TEXTREL;
4593
4594       if (parameters->options().text())
4595         gold_error(_("read-only segment has dynamic relocations"));
4596       else if (parameters->options().warn_shared_textrel()
4597                && parameters->options().shared())
4598         gold_warning(_("shared library text segment is not shareable"));
4599     }
4600   if (parameters->options().shared() && this->has_static_tls())
4601     flags |= elfcpp::DF_STATIC_TLS;
4602   if (parameters->options().origin())
4603     flags |= elfcpp::DF_ORIGIN;
4604   if (parameters->options().Bsymbolic())
4605     {
4606       flags |= elfcpp::DF_SYMBOLIC;
4607       // Add DT_SYMBOLIC for compatibility with older loaders.
4608       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4609     }
4610   if (parameters->options().now())
4611     flags |= elfcpp::DF_BIND_NOW;
4612   if (flags != 0)
4613     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4614
4615   flags = 0;
4616   if (parameters->options().initfirst())
4617     flags |= elfcpp::DF_1_INITFIRST;
4618   if (parameters->options().interpose())
4619     flags |= elfcpp::DF_1_INTERPOSE;
4620   if (parameters->options().loadfltr())
4621     flags |= elfcpp::DF_1_LOADFLTR;
4622   if (parameters->options().nodefaultlib())
4623     flags |= elfcpp::DF_1_NODEFLIB;
4624   if (parameters->options().nodelete())
4625     flags |= elfcpp::DF_1_NODELETE;
4626   if (parameters->options().nodlopen())
4627     flags |= elfcpp::DF_1_NOOPEN;
4628   if (parameters->options().nodump())
4629     flags |= elfcpp::DF_1_NODUMP;
4630   if (!parameters->options().shared())
4631     flags &= ~(elfcpp::DF_1_INITFIRST
4632                | elfcpp::DF_1_NODELETE
4633                | elfcpp::DF_1_NOOPEN);
4634   if (parameters->options().origin())
4635     flags |= elfcpp::DF_1_ORIGIN;
4636   if (parameters->options().now())
4637     flags |= elfcpp::DF_1_NOW;
4638   if (parameters->options().Bgroup())
4639     flags |= elfcpp::DF_1_GROUP;
4640   if (flags != 0)
4641     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4642 }
4643
4644 // Set the size of the _DYNAMIC symbol table to be the size of the
4645 // dynamic data.
4646
4647 void
4648 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4649 {
4650   Output_data_dynamic* const odyn = this->dynamic_data_;
4651   if (odyn == NULL)
4652     return;
4653   odyn->finalize_data_size();
4654   if (this->dynamic_symbol_ == NULL)
4655     return;
4656   off_t data_size = odyn->data_size();
4657   const int size = parameters->target().get_size();
4658   if (size == 32)
4659     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4660   else if (size == 64)
4661     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4662   else
4663     gold_unreachable();
4664 }
4665
4666 // The mapping of input section name prefixes to output section names.
4667 // In some cases one prefix is itself a prefix of another prefix; in
4668 // such a case the longer prefix must come first.  These prefixes are
4669 // based on the GNU linker default ELF linker script.
4670
4671 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4672 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4673 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4674 {
4675   MAPPING_INIT(".text.", ".text"),
4676   MAPPING_INIT(".rodata.", ".rodata"),
4677   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4678   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4679   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4680   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4681   MAPPING_INIT(".data.", ".data"),
4682   MAPPING_INIT(".bss.", ".bss"),
4683   MAPPING_INIT(".tdata.", ".tdata"),
4684   MAPPING_INIT(".tbss.", ".tbss"),
4685   MAPPING_INIT(".init_array.", ".init_array"),
4686   MAPPING_INIT(".fini_array.", ".fini_array"),
4687   MAPPING_INIT(".sdata.", ".sdata"),
4688   MAPPING_INIT(".sbss.", ".sbss"),
4689   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4690   // differently depending on whether it is creating a shared library.
4691   MAPPING_INIT(".sdata2.", ".sdata"),
4692   MAPPING_INIT(".sbss2.", ".sbss"),
4693   MAPPING_INIT(".lrodata.", ".lrodata"),
4694   MAPPING_INIT(".ldata.", ".ldata"),
4695   MAPPING_INIT(".lbss.", ".lbss"),
4696   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4697   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4698   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4699   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4700   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4701   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4702   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4703   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4704   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4705   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4706   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4707   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4708   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4709   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4710   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4711   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4712   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4713   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4714   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4715   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4716   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4717 };
4718 #undef MAPPING_INIT
4719 #undef MAPPING_INIT_EXACT
4720
4721 const int Layout::section_name_mapping_count =
4722   (sizeof(Layout::section_name_mapping)
4723    / sizeof(Layout::section_name_mapping[0]));
4724
4725 // Choose the output section name to use given an input section name.
4726 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4727 // length of NAME.
4728
4729 const char*
4730 Layout::output_section_name(const Relobj* relobj, const char* name,
4731                             size_t* plen)
4732 {
4733   // gcc 4.3 generates the following sorts of section names when it
4734   // needs a section name specific to a function:
4735   //   .text.FN
4736   //   .rodata.FN
4737   //   .sdata2.FN
4738   //   .data.FN
4739   //   .data.rel.FN
4740   //   .data.rel.local.FN
4741   //   .data.rel.ro.FN
4742   //   .data.rel.ro.local.FN
4743   //   .sdata.FN
4744   //   .bss.FN
4745   //   .sbss.FN
4746   //   .tdata.FN
4747   //   .tbss.FN
4748
4749   // The GNU linker maps all of those to the part before the .FN,
4750   // except that .data.rel.local.FN is mapped to .data, and
4751   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4752   // beginning with .data.rel.ro.local are grouped together.
4753
4754   // For an anonymous namespace, the string FN can contain a '.'.
4755
4756   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4757   // GNU linker maps to .rodata.
4758
4759   // The .data.rel.ro sections are used with -z relro.  The sections
4760   // are recognized by name.  We use the same names that the GNU
4761   // linker does for these sections.
4762
4763   // It is hard to handle this in a principled way, so we don't even
4764   // try.  We use a table of mappings.  If the input section name is
4765   // not found in the table, we simply use it as the output section
4766   // name.
4767
4768   const Section_name_mapping* psnm = section_name_mapping;
4769   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4770     {
4771       if (psnm->fromlen > 0)
4772         {
4773           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4774             {
4775               *plen = psnm->tolen;
4776               return psnm->to;
4777             }
4778         }
4779       else
4780         {
4781           if (strcmp(name, psnm->from) == 0)
4782             {
4783               *plen = psnm->tolen;
4784               return psnm->to;
4785             }
4786         }
4787     }
4788
4789   // As an additional complication, .ctors sections are output in
4790   // either .ctors or .init_array sections, and .dtors sections are
4791   // output in either .dtors or .fini_array sections.
4792   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4793     {
4794       if (parameters->options().ctors_in_init_array())
4795         {
4796           *plen = 11;
4797           return name[1] == 'c' ? ".init_array" : ".fini_array";
4798         }
4799       else
4800         {
4801           *plen = 6;
4802           return name[1] == 'c' ? ".ctors" : ".dtors";
4803         }
4804     }
4805   if (parameters->options().ctors_in_init_array()
4806       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4807     {
4808       // To make .init_array/.fini_array work with gcc we must exclude
4809       // .ctors and .dtors sections from the crtbegin and crtend
4810       // files.
4811       if (relobj == NULL
4812           || (!Layout::match_file_name(relobj, "crtbegin")
4813               && !Layout::match_file_name(relobj, "crtend")))
4814         {
4815           *plen = 11;
4816           return name[1] == 'c' ? ".init_array" : ".fini_array";
4817         }
4818     }
4819
4820   return name;
4821 }
4822
4823 // Return true if RELOBJ is an input file whose base name matches
4824 // FILE_NAME.  The base name must have an extension of ".o", and must
4825 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4826 // to match crtbegin.o as well as crtbeginS.o without getting confused
4827 // by other possibilities.  Overall matching the file name this way is
4828 // a dreadful hack, but the GNU linker does it in order to better
4829 // support gcc, and we need to be compatible.
4830
4831 bool
4832 Layout::match_file_name(const Relobj* relobj, const char* match)
4833 {
4834   const std::string& file_name(relobj->name());
4835   const char* base_name = lbasename(file_name.c_str());
4836   size_t match_len = strlen(match);
4837   if (strncmp(base_name, match, match_len) != 0)
4838     return false;
4839   size_t base_len = strlen(base_name);
4840   if (base_len != match_len + 2 && base_len != match_len + 3)
4841     return false;
4842   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4843 }
4844
4845 // Check if a comdat group or .gnu.linkonce section with the given
4846 // NAME is selected for the link.  If there is already a section,
4847 // *KEPT_SECTION is set to point to the existing section and the
4848 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4849 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4850 // *KEPT_SECTION is set to the internal copy and the function returns
4851 // true.
4852
4853 bool
4854 Layout::find_or_add_kept_section(const std::string& name,
4855                                  Relobj* object,
4856                                  unsigned int shndx,
4857                                  bool is_comdat,
4858                                  bool is_group_name,
4859                                  Kept_section** kept_section)
4860 {
4861   // It's normal to see a couple of entries here, for the x86 thunk
4862   // sections.  If we see more than a few, we're linking a C++
4863   // program, and we resize to get more space to minimize rehashing.
4864   if (this->signatures_.size() > 4
4865       && !this->resized_signatures_)
4866     {
4867       reserve_unordered_map(&this->signatures_,
4868                             this->number_of_input_files_ * 64);
4869       this->resized_signatures_ = true;
4870     }
4871
4872   Kept_section candidate;
4873   std::pair<Signatures::iterator, bool> ins =
4874     this->signatures_.insert(std::make_pair(name, candidate));
4875
4876   if (kept_section != NULL)
4877     *kept_section = &ins.first->second;
4878   if (ins.second)
4879     {
4880       // This is the first time we've seen this signature.
4881       ins.first->second.set_object(object);
4882       ins.first->second.set_shndx(shndx);
4883       if (is_comdat)
4884         ins.first->second.set_is_comdat();
4885       if (is_group_name)
4886         ins.first->second.set_is_group_name();
4887       return true;
4888     }
4889
4890   // We have already seen this signature.
4891
4892   if (ins.first->second.is_group_name())
4893     {
4894       // We've already seen a real section group with this signature.
4895       // If the kept group is from a plugin object, and we're in the
4896       // replacement phase, accept the new one as a replacement.
4897       if (ins.first->second.object() == NULL
4898           && parameters->options().plugins()->in_replacement_phase())
4899         {
4900           ins.first->second.set_object(object);
4901           ins.first->second.set_shndx(shndx);
4902           return true;
4903         }
4904       return false;
4905     }
4906   else if (is_group_name)
4907     {
4908       // This is a real section group, and we've already seen a
4909       // linkonce section with this signature.  Record that we've seen
4910       // a section group, and don't include this section group.
4911       ins.first->second.set_is_group_name();
4912       return false;
4913     }
4914   else
4915     {
4916       // We've already seen a linkonce section and this is a linkonce
4917       // section.  These don't block each other--this may be the same
4918       // symbol name with different section types.
4919       return true;
4920     }
4921 }
4922
4923 // Store the allocated sections into the section list.
4924
4925 void
4926 Layout::get_allocated_sections(Section_list* section_list) const
4927 {
4928   for (Section_list::const_iterator p = this->section_list_.begin();
4929        p != this->section_list_.end();
4930        ++p)
4931     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4932       section_list->push_back(*p);
4933 }
4934
4935 // Create an output segment.
4936
4937 Output_segment*
4938 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4939 {
4940   gold_assert(!parameters->options().relocatable());
4941   Output_segment* oseg = new Output_segment(type, flags);
4942   this->segment_list_.push_back(oseg);
4943
4944   if (type == elfcpp::PT_TLS)
4945     this->tls_segment_ = oseg;
4946   else if (type == elfcpp::PT_GNU_RELRO)
4947     this->relro_segment_ = oseg;
4948   else if (type == elfcpp::PT_INTERP)
4949     this->interp_segment_ = oseg;
4950
4951   return oseg;
4952 }
4953
4954 // Return the file offset of the normal symbol table.
4955
4956 off_t
4957 Layout::symtab_section_offset() const
4958 {
4959   if (this->symtab_section_ != NULL)
4960     return this->symtab_section_->offset();
4961   return 0;
4962 }
4963
4964 // Return the section index of the normal symbol table.  It may have
4965 // been stripped by the -s/--strip-all option.
4966
4967 unsigned int
4968 Layout::symtab_section_shndx() const
4969 {
4970   if (this->symtab_section_ != NULL)
4971     return this->symtab_section_->out_shndx();
4972   return 0;
4973 }
4974
4975 // Write out the Output_sections.  Most won't have anything to write,
4976 // since most of the data will come from input sections which are
4977 // handled elsewhere.  But some Output_sections do have Output_data.
4978
4979 void
4980 Layout::write_output_sections(Output_file* of) const
4981 {
4982   for (Section_list::const_iterator p = this->section_list_.begin();
4983        p != this->section_list_.end();
4984        ++p)
4985     {
4986       if (!(*p)->after_input_sections())
4987         (*p)->write(of);
4988     }
4989 }
4990
4991 // Write out data not associated with a section or the symbol table.
4992
4993 void
4994 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4995 {
4996   if (!parameters->options().strip_all())
4997     {
4998       const Output_section* symtab_section = this->symtab_section_;
4999       for (Section_list::const_iterator p = this->section_list_.begin();
5000            p != this->section_list_.end();
5001            ++p)
5002         {
5003           if ((*p)->needs_symtab_index())
5004             {
5005               gold_assert(symtab_section != NULL);
5006               unsigned int index = (*p)->symtab_index();
5007               gold_assert(index > 0 && index != -1U);
5008               off_t off = (symtab_section->offset()
5009                            + index * symtab_section->entsize());
5010               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5011             }
5012         }
5013     }
5014
5015   const Output_section* dynsym_section = this->dynsym_section_;
5016   for (Section_list::const_iterator p = this->section_list_.begin();
5017        p != this->section_list_.end();
5018        ++p)
5019     {
5020       if ((*p)->needs_dynsym_index())
5021         {
5022           gold_assert(dynsym_section != NULL);
5023           unsigned int index = (*p)->dynsym_index();
5024           gold_assert(index > 0 && index != -1U);
5025           off_t off = (dynsym_section->offset()
5026                        + index * dynsym_section->entsize());
5027           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5028         }
5029     }
5030
5031   // Write out the Output_data which are not in an Output_section.
5032   for (Data_list::const_iterator p = this->special_output_list_.begin();
5033        p != this->special_output_list_.end();
5034        ++p)
5035     (*p)->write(of);
5036 }
5037
5038 // Write out the Output_sections which can only be written after the
5039 // input sections are complete.
5040
5041 void
5042 Layout::write_sections_after_input_sections(Output_file* of)
5043 {
5044   // Determine the final section offsets, and thus the final output
5045   // file size.  Note we finalize the .shstrab last, to allow the
5046   // after_input_section sections to modify their section-names before
5047   // writing.
5048   if (this->any_postprocessing_sections_)
5049     {
5050       off_t off = this->output_file_size_;
5051       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5052
5053       // Now that we've finalized the names, we can finalize the shstrab.
5054       off =
5055         this->set_section_offsets(off,
5056                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5057
5058       if (off > this->output_file_size_)
5059         {
5060           of->resize(off);
5061           this->output_file_size_ = off;
5062         }
5063     }
5064
5065   for (Section_list::const_iterator p = this->section_list_.begin();
5066        p != this->section_list_.end();
5067        ++p)
5068     {
5069       if ((*p)->after_input_sections())
5070         (*p)->write(of);
5071     }
5072
5073   this->section_headers_->write(of);
5074 }
5075
5076 // If the build ID requires computing a checksum, do so here, and
5077 // write it out.  We compute a checksum over the entire file because
5078 // that is simplest.
5079
5080 void
5081 Layout::write_build_id(Output_file* of) const
5082 {
5083   if (this->build_id_note_ == NULL)
5084     return;
5085
5086   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5087
5088   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5089                                           this->build_id_note_->data_size());
5090
5091   const char* style = parameters->options().build_id();
5092   if (strcmp(style, "sha1") == 0)
5093     {
5094       sha1_ctx ctx;
5095       sha1_init_ctx(&ctx);
5096       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5097       sha1_finish_ctx(&ctx, ov);
5098     }
5099   else if (strcmp(style, "md5") == 0)
5100     {
5101       md5_ctx ctx;
5102       md5_init_ctx(&ctx);
5103       md5_process_bytes(iv, this->output_file_size_, &ctx);
5104       md5_finish_ctx(&ctx, ov);
5105     }
5106   else
5107     gold_unreachable();
5108
5109   of->write_output_view(this->build_id_note_->offset(),
5110                         this->build_id_note_->data_size(),
5111                         ov);
5112
5113   of->free_input_view(0, this->output_file_size_, iv);
5114 }
5115
5116 // Write out a binary file.  This is called after the link is
5117 // complete.  IN is the temporary output file we used to generate the
5118 // ELF code.  We simply walk through the segments, read them from
5119 // their file offset in IN, and write them to their load address in
5120 // the output file.  FIXME: with a bit more work, we could support
5121 // S-records and/or Intel hex format here.
5122
5123 void
5124 Layout::write_binary(Output_file* in) const
5125 {
5126   gold_assert(parameters->options().oformat_enum()
5127               == General_options::OBJECT_FORMAT_BINARY);
5128
5129   // Get the size of the binary file.
5130   uint64_t max_load_address = 0;
5131   for (Segment_list::const_iterator p = this->segment_list_.begin();
5132        p != this->segment_list_.end();
5133        ++p)
5134     {
5135       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5136         {
5137           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5138           if (max_paddr > max_load_address)
5139             max_load_address = max_paddr;
5140         }
5141     }
5142
5143   Output_file out(parameters->options().output_file_name());
5144   out.open(max_load_address);
5145
5146   for (Segment_list::const_iterator p = this->segment_list_.begin();
5147        p != this->segment_list_.end();
5148        ++p)
5149     {
5150       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5151         {
5152           const unsigned char* vin = in->get_input_view((*p)->offset(),
5153                                                         (*p)->filesz());
5154           unsigned char* vout = out.get_output_view((*p)->paddr(),
5155                                                     (*p)->filesz());
5156           memcpy(vout, vin, (*p)->filesz());
5157           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5158           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5159         }
5160     }
5161
5162   out.close();
5163 }
5164
5165 // Print the output sections to the map file.
5166
5167 void
5168 Layout::print_to_mapfile(Mapfile* mapfile) const
5169 {
5170   for (Segment_list::const_iterator p = this->segment_list_.begin();
5171        p != this->segment_list_.end();
5172        ++p)
5173     (*p)->print_sections_to_mapfile(mapfile);
5174 }
5175
5176 // Print statistical information to stderr.  This is used for --stats.
5177
5178 void
5179 Layout::print_stats() const
5180 {
5181   this->namepool_.print_stats("section name pool");
5182   this->sympool_.print_stats("output symbol name pool");
5183   this->dynpool_.print_stats("dynamic name pool");
5184
5185   for (Section_list::const_iterator p = this->section_list_.begin();
5186        p != this->section_list_.end();
5187        ++p)
5188     (*p)->print_merge_stats();
5189 }
5190
5191 // Write_sections_task methods.
5192
5193 // We can always run this task.
5194
5195 Task_token*
5196 Write_sections_task::is_runnable()
5197 {
5198   return NULL;
5199 }
5200
5201 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5202 // when finished.
5203
5204 void
5205 Write_sections_task::locks(Task_locker* tl)
5206 {
5207   tl->add(this, this->output_sections_blocker_);
5208   tl->add(this, this->final_blocker_);
5209 }
5210
5211 // Run the task--write out the data.
5212
5213 void
5214 Write_sections_task::run(Workqueue*)
5215 {
5216   this->layout_->write_output_sections(this->of_);
5217 }
5218
5219 // Write_data_task methods.
5220
5221 // We can always run this task.
5222
5223 Task_token*
5224 Write_data_task::is_runnable()
5225 {
5226   return NULL;
5227 }
5228
5229 // We need to unlock FINAL_BLOCKER when finished.
5230
5231 void
5232 Write_data_task::locks(Task_locker* tl)
5233 {
5234   tl->add(this, this->final_blocker_);
5235 }
5236
5237 // Run the task--write out the data.
5238
5239 void
5240 Write_data_task::run(Workqueue*)
5241 {
5242   this->layout_->write_data(this->symtab_, this->of_);
5243 }
5244
5245 // Write_symbols_task methods.
5246
5247 // We can always run this task.
5248
5249 Task_token*
5250 Write_symbols_task::is_runnable()
5251 {
5252   return NULL;
5253 }
5254
5255 // We need to unlock FINAL_BLOCKER when finished.
5256
5257 void
5258 Write_symbols_task::locks(Task_locker* tl)
5259 {
5260   tl->add(this, this->final_blocker_);
5261 }
5262
5263 // Run the task--write out the symbols.
5264
5265 void
5266 Write_symbols_task::run(Workqueue*)
5267 {
5268   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5269                                this->layout_->symtab_xindex(),
5270                                this->layout_->dynsym_xindex(), this->of_);
5271 }
5272
5273 // Write_after_input_sections_task methods.
5274
5275 // We can only run this task after the input sections have completed.
5276
5277 Task_token*
5278 Write_after_input_sections_task::is_runnable()
5279 {
5280   if (this->input_sections_blocker_->is_blocked())
5281     return this->input_sections_blocker_;
5282   return NULL;
5283 }
5284
5285 // We need to unlock FINAL_BLOCKER when finished.
5286
5287 void
5288 Write_after_input_sections_task::locks(Task_locker* tl)
5289 {
5290   tl->add(this, this->final_blocker_);
5291 }
5292
5293 // Run the task.
5294
5295 void
5296 Write_after_input_sections_task::run(Workqueue*)
5297 {
5298   this->layout_->write_sections_after_input_sections(this->of_);
5299 }
5300
5301 // Close_task_runner methods.
5302
5303 // Run the task--close the file.
5304
5305 void
5306 Close_task_runner::run(Workqueue*, const Task*)
5307 {
5308   // If we need to compute a checksum for the BUILD if, we do so here.
5309   this->layout_->write_build_id(this->of_);
5310
5311   // If we've been asked to create a binary file, we do so here.
5312   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5313     this->layout_->write_binary(this->of_);
5314
5315   this->of_->close();
5316 }
5317
5318 // Instantiate the templates we need.  We could use the configure
5319 // script to restrict this to only the ones for implemented targets.
5320
5321 #ifdef HAVE_TARGET_32_LITTLE
5322 template
5323 Output_section*
5324 Layout::init_fixed_output_section<32, false>(
5325     const char* name,
5326     elfcpp::Shdr<32, false>& shdr);
5327 #endif
5328
5329 #ifdef HAVE_TARGET_32_BIG
5330 template
5331 Output_section*
5332 Layout::init_fixed_output_section<32, true>(
5333     const char* name,
5334     elfcpp::Shdr<32, true>& shdr);
5335 #endif
5336
5337 #ifdef HAVE_TARGET_64_LITTLE
5338 template
5339 Output_section*
5340 Layout::init_fixed_output_section<64, false>(
5341     const char* name,
5342     elfcpp::Shdr<64, false>& shdr);
5343 #endif
5344
5345 #ifdef HAVE_TARGET_64_BIG
5346 template
5347 Output_section*
5348 Layout::init_fixed_output_section<64, true>(
5349     const char* name,
5350     elfcpp::Shdr<64, true>& shdr);
5351 #endif
5352
5353 #ifdef HAVE_TARGET_32_LITTLE
5354 template
5355 Output_section*
5356 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5357                           unsigned int shndx,
5358                           const char* name,
5359                           const elfcpp::Shdr<32, false>& shdr,
5360                           unsigned int, unsigned int, off_t*);
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_BIG
5364 template
5365 Output_section*
5366 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5367                          unsigned int shndx,
5368                          const char* name,
5369                          const elfcpp::Shdr<32, true>& shdr,
5370                          unsigned int, unsigned int, off_t*);
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_LITTLE
5374 template
5375 Output_section*
5376 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5377                           unsigned int shndx,
5378                           const char* name,
5379                           const elfcpp::Shdr<64, false>& shdr,
5380                           unsigned int, unsigned int, off_t*);
5381 #endif
5382
5383 #ifdef HAVE_TARGET_64_BIG
5384 template
5385 Output_section*
5386 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5387                          unsigned int shndx,
5388                          const char* name,
5389                          const elfcpp::Shdr<64, true>& shdr,
5390                          unsigned int, unsigned int, off_t*);
5391 #endif
5392
5393 #ifdef HAVE_TARGET_32_LITTLE
5394 template
5395 Output_section*
5396 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5397                                 unsigned int reloc_shndx,
5398                                 const elfcpp::Shdr<32, false>& shdr,
5399                                 Output_section* data_section,
5400                                 Relocatable_relocs* rr);
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_BIG
5404 template
5405 Output_section*
5406 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5407                                unsigned int reloc_shndx,
5408                                const elfcpp::Shdr<32, true>& shdr,
5409                                Output_section* data_section,
5410                                Relocatable_relocs* rr);
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_LITTLE
5414 template
5415 Output_section*
5416 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5417                                 unsigned int reloc_shndx,
5418                                 const elfcpp::Shdr<64, false>& shdr,
5419                                 Output_section* data_section,
5420                                 Relocatable_relocs* rr);
5421 #endif
5422
5423 #ifdef HAVE_TARGET_64_BIG
5424 template
5425 Output_section*
5426 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5427                                unsigned int reloc_shndx,
5428                                const elfcpp::Shdr<64, true>& shdr,
5429                                Output_section* data_section,
5430                                Relocatable_relocs* rr);
5431 #endif
5432
5433 #ifdef HAVE_TARGET_32_LITTLE
5434 template
5435 void
5436 Layout::layout_group<32, false>(Symbol_table* symtab,
5437                                 Sized_relobj_file<32, false>* object,
5438                                 unsigned int,
5439                                 const char* group_section_name,
5440                                 const char* signature,
5441                                 const elfcpp::Shdr<32, false>& shdr,
5442                                 elfcpp::Elf_Word flags,
5443                                 std::vector<unsigned int>* shndxes);
5444 #endif
5445
5446 #ifdef HAVE_TARGET_32_BIG
5447 template
5448 void
5449 Layout::layout_group<32, true>(Symbol_table* symtab,
5450                                Sized_relobj_file<32, true>* object,
5451                                unsigned int,
5452                                const char* group_section_name,
5453                                const char* signature,
5454                                const elfcpp::Shdr<32, true>& shdr,
5455                                elfcpp::Elf_Word flags,
5456                                std::vector<unsigned int>* shndxes);
5457 #endif
5458
5459 #ifdef HAVE_TARGET_64_LITTLE
5460 template
5461 void
5462 Layout::layout_group<64, false>(Symbol_table* symtab,
5463                                 Sized_relobj_file<64, false>* object,
5464                                 unsigned int,
5465                                 const char* group_section_name,
5466                                 const char* signature,
5467                                 const elfcpp::Shdr<64, false>& shdr,
5468                                 elfcpp::Elf_Word flags,
5469                                 std::vector<unsigned int>* shndxes);
5470 #endif
5471
5472 #ifdef HAVE_TARGET_64_BIG
5473 template
5474 void
5475 Layout::layout_group<64, true>(Symbol_table* symtab,
5476                                Sized_relobj_file<64, true>* object,
5477                                unsigned int,
5478                                const char* group_section_name,
5479                                const char* signature,
5480                                const elfcpp::Shdr<64, true>& shdr,
5481                                elfcpp::Elf_Word flags,
5482                                std::vector<unsigned int>* shndxes);
5483 #endif
5484
5485 #ifdef HAVE_TARGET_32_LITTLE
5486 template
5487 Output_section*
5488 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5489                                    const unsigned char* symbols,
5490                                    off_t symbols_size,
5491                                    const unsigned char* symbol_names,
5492                                    off_t symbol_names_size,
5493                                    unsigned int shndx,
5494                                    const elfcpp::Shdr<32, false>& shdr,
5495                                    unsigned int reloc_shndx,
5496                                    unsigned int reloc_type,
5497                                    off_t* off);
5498 #endif
5499
5500 #ifdef HAVE_TARGET_32_BIG
5501 template
5502 Output_section*
5503 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5504                                   const unsigned char* symbols,
5505                                   off_t symbols_size,
5506                                   const unsigned char* symbol_names,
5507                                   off_t symbol_names_size,
5508                                   unsigned int shndx,
5509                                   const elfcpp::Shdr<32, true>& shdr,
5510                                   unsigned int reloc_shndx,
5511                                   unsigned int reloc_type,
5512                                   off_t* off);
5513 #endif
5514
5515 #ifdef HAVE_TARGET_64_LITTLE
5516 template
5517 Output_section*
5518 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5519                                    const unsigned char* symbols,
5520                                    off_t symbols_size,
5521                                    const unsigned char* symbol_names,
5522                                    off_t symbol_names_size,
5523                                    unsigned int shndx,
5524                                    const elfcpp::Shdr<64, false>& shdr,
5525                                    unsigned int reloc_shndx,
5526                                    unsigned int reloc_type,
5527                                    off_t* off);
5528 #endif
5529
5530 #ifdef HAVE_TARGET_64_BIG
5531 template
5532 Output_section*
5533 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5534                                   const unsigned char* symbols,
5535                                   off_t symbols_size,
5536                                   const unsigned char* symbol_names,
5537                                   off_t symbol_names_size,
5538                                   unsigned int shndx,
5539                                   const elfcpp::Shdr<64, true>& shdr,
5540                                   unsigned int reloc_shndx,
5541                                   unsigned int reloc_type,
5542                                   off_t* off);
5543 #endif
5544
5545 #ifdef HAVE_TARGET_32_LITTLE
5546 template
5547 void
5548 Layout::add_to_gdb_index(bool is_type_unit,
5549                          Sized_relobj<32, false>* object,
5550                          const unsigned char* symbols,
5551                          off_t symbols_size,
5552                          unsigned int shndx,
5553                          unsigned int reloc_shndx,
5554                          unsigned int reloc_type);
5555 #endif
5556
5557 #ifdef HAVE_TARGET_32_BIG
5558 template
5559 void
5560 Layout::add_to_gdb_index(bool is_type_unit,
5561                          Sized_relobj<32, true>* object,
5562                          const unsigned char* symbols,
5563                          off_t symbols_size,
5564                          unsigned int shndx,
5565                          unsigned int reloc_shndx,
5566                          unsigned int reloc_type);
5567 #endif
5568
5569 #ifdef HAVE_TARGET_64_LITTLE
5570 template
5571 void
5572 Layout::add_to_gdb_index(bool is_type_unit,
5573                          Sized_relobj<64, false>* object,
5574                          const unsigned char* symbols,
5575                          off_t symbols_size,
5576                          unsigned int shndx,
5577                          unsigned int reloc_shndx,
5578                          unsigned int reloc_type);
5579 #endif
5580
5581 #ifdef HAVE_TARGET_64_BIG
5582 template
5583 void
5584 Layout::add_to_gdb_index(bool is_type_unit,
5585                          Sized_relobj<64, true>* object,
5586                          const unsigned char* symbols,
5587                          off_t symbols_size,
5588                          unsigned int shndx,
5589                          unsigned int reloc_shndx,
5590                          unsigned int reloc_type);
5591 #endif
5592
5593 } // End namespace gold.