Add --build-id=uuid support for MinGW32.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.
939
940 Output_section*
941 Layout::choose_output_section(const Relobj* relobj, const char* name,
942                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
943                               bool is_input_section, Output_section_order order,
944                               bool is_relro)
945 {
946   // We should not see any input sections after we have attached
947   // sections to segments.
948   gold_assert(!is_input_section || !this->sections_are_attached_);
949
950   flags = this->get_output_section_flags(flags);
951
952   if (this->script_options_->saw_sections_clause())
953     {
954       // We are using a SECTIONS clause, so the output section is
955       // chosen based only on the name.
956
957       Script_sections* ss = this->script_options_->script_sections();
958       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
959       Output_section** output_section_slot;
960       Script_sections::Section_type script_section_type;
961       const char* orig_name = name;
962       bool keep;
963       name = ss->output_section_name(file_name, name, &output_section_slot,
964                                      &script_section_type, &keep);
965
966       if (name == NULL)
967         {
968           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
969                                      "because it is not allowed by the "
970                                      "SECTIONS clause of the linker script"),
971                      orig_name);
972           // The SECTIONS clause says to discard this input section.
973           return NULL;
974         }
975
976       // We can only handle script section types ST_NONE and ST_NOLOAD.
977       switch (script_section_type)
978         {
979         case Script_sections::ST_NONE:
980           break;
981         case Script_sections::ST_NOLOAD:
982           flags &= elfcpp::SHF_ALLOC;
983           break;
984         default:
985           gold_unreachable();
986         }
987
988       // If this is an orphan section--one not mentioned in the linker
989       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
990       // default processing below.
991
992       if (output_section_slot != NULL)
993         {
994           if (*output_section_slot != NULL)
995             {
996               (*output_section_slot)->update_flags_for_input_section(flags);
997               return *output_section_slot;
998             }
999
1000           // We don't put sections found in the linker script into
1001           // SECTION_NAME_MAP_.  That keeps us from getting confused
1002           // if an orphan section is mapped to a section with the same
1003           // name as one in the linker script.
1004
1005           name = this->namepool_.add(name, false, NULL);
1006
1007           Output_section* os = this->make_output_section(name, type, flags,
1008                                                          order, is_relro);
1009
1010           os->set_found_in_sections_clause();
1011
1012           // Special handling for NOLOAD sections.
1013           if (script_section_type == Script_sections::ST_NOLOAD)
1014             {
1015               os->set_is_noload();
1016
1017               // The constructor of Output_section sets addresses of non-ALLOC
1018               // sections to 0 by default.  We don't want that for NOLOAD
1019               // sections even if they have no SHF_ALLOC flag.
1020               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1021                   && os->is_address_valid())
1022                 {
1023                   gold_assert(os->address() == 0
1024                               && !os->is_offset_valid()
1025                               && !os->is_data_size_valid());
1026                   os->reset_address_and_file_offset();
1027                 }
1028             }
1029
1030           *output_section_slot = os;
1031           return os;
1032         }
1033     }
1034
1035   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1036
1037   size_t len = strlen(name);
1038   std::string uncompressed_name;
1039
1040   // Compressed debug sections should be mapped to the corresponding
1041   // uncompressed section.
1042   if (is_compressed_debug_section(name))
1043     {
1044       uncompressed_name =
1045           corresponding_uncompressed_section_name(std::string(name, len));
1046       name = uncompressed_name.c_str();
1047       len = uncompressed_name.length();
1048     }
1049
1050   // Turn NAME from the name of the input section into the name of the
1051   // output section.
1052   if (is_input_section
1053       && !this->script_options_->saw_sections_clause()
1054       && !parameters->options().relocatable())
1055     {
1056       const char *orig_name = name;
1057       name = parameters->target().output_section_name(relobj, name, &len);
1058       if (name == NULL)
1059         name = Layout::output_section_name(relobj, orig_name, &len);
1060     }
1061
1062   Stringpool::Key name_key;
1063   name = this->namepool_.add_with_length(name, len, true, &name_key);
1064
1065   // Find or make the output section.  The output section is selected
1066   // based on the section name, type, and flags.
1067   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1068 }
1069
1070 // For incremental links, record the initial fixed layout of a section
1071 // from the base file, and return a pointer to the Output_section.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::init_fixed_output_section(const char* name,
1076                                   elfcpp::Shdr<size, big_endian>& shdr)
1077 {
1078   unsigned int sh_type = shdr.get_sh_type();
1079
1080   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1081   // PRE_INIT_ARRAY, and NOTE sections.
1082   // All others will be created from scratch and reallocated.
1083   if (!can_incremental_update(sh_type))
1084     return NULL;
1085
1086   // If we're generating a .gdb_index section, we need to regenerate
1087   // it from scratch.
1088   if (parameters->options().gdb_index()
1089       && sh_type == elfcpp::SHT_PROGBITS
1090       && strcmp(name, ".gdb_index") == 0)
1091     return NULL;
1092
1093   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1094   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1095   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1096   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1097   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1098       shdr.get_sh_addralign();
1099
1100   // Make the output section.
1101   Stringpool::Key name_key;
1102   name = this->namepool_.add(name, true, &name_key);
1103   Output_section* os = this->get_output_section(name, name_key, sh_type,
1104                                                 sh_flags, ORDER_INVALID, false);
1105   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1106   if (sh_type != elfcpp::SHT_NOBITS)
1107     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1108   return os;
1109 }
1110
1111 // Return the index by which an input section should be ordered.  This
1112 // is used to sort some .text sections, for compatibility with GNU ld.
1113
1114 int
1115 Layout::special_ordering_of_input_section(const char* name)
1116 {
1117   // The GNU linker has some special handling for some sections that
1118   // wind up in the .text section.  Sections that start with these
1119   // prefixes must appear first, and must appear in the order listed
1120   // here.
1121   static const char* const text_section_sort[] =
1122   {
1123     ".text.unlikely",
1124     ".text.exit",
1125     ".text.startup",
1126     ".text.hot"
1127   };
1128
1129   for (size_t i = 0;
1130        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1131        i++)
1132     if (is_prefix_of(text_section_sort[i], name))
1133       return i;
1134
1135   return -1;
1136 }
1137
1138 // Return the output section to use for input section SHNDX, with name
1139 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1140 // index of a relocation section which applies to this section, or 0
1141 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1142 // relocation section if there is one.  Set *OFF to the offset of this
1143 // input section without the output section.  Return NULL if the
1144 // section should be discarded.  Set *OFF to -1 if the section
1145 // contents should not be written directly to the output file, but
1146 // will instead receive special handling.
1147
1148 template<int size, bool big_endian>
1149 Output_section*
1150 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1151                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1152                unsigned int reloc_shndx, unsigned int, off_t* off)
1153 {
1154   *off = 0;
1155
1156   if (!this->include_section(object, name, shdr))
1157     return NULL;
1158
1159   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1160
1161   // In a relocatable link a grouped section must not be combined with
1162   // any other sections.
1163   Output_section* os;
1164   if (parameters->options().relocatable()
1165       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1166     {
1167       // Some flags in the input section should not be automatically
1168       // copied to the output section.
1169       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1170                                  & ~ elfcpp::SHF_COMPRESSED);
1171       name = this->namepool_.add(name, true, NULL);
1172       os = this->make_output_section(name, sh_type, flags,
1173                                      ORDER_INVALID, false);
1174     }
1175   else
1176     {
1177       // Plugins can choose to place one or more subsets of sections in
1178       // unique segments and this is done by mapping these section subsets
1179       // to unique output sections.  Check if this section needs to be
1180       // remapped to a unique output section.
1181       Section_segment_map::iterator it
1182           = this->section_segment_map_.find(Const_section_id(object, shndx));
1183       if (it == this->section_segment_map_.end())
1184         {
1185           os = this->choose_output_section(object, name, sh_type,
1186                                            shdr.get_sh_flags(), true,
1187                                            ORDER_INVALID, false);
1188         }
1189       else
1190         {
1191           // We know the name of the output section, directly call
1192           // get_output_section here by-passing choose_output_section.
1193           elfcpp::Elf_Xword flags
1194             = this->get_output_section_flags(shdr.get_sh_flags());
1195
1196           const char* os_name = it->second->name;
1197           Stringpool::Key name_key;
1198           os_name = this->namepool_.add(os_name, true, &name_key);
1199           os = this->get_output_section(os_name, name_key, sh_type, flags,
1200                                         ORDER_INVALID, false);
1201           if (!os->is_unique_segment())
1202             {
1203               os->set_is_unique_segment();
1204               os->set_extra_segment_flags(it->second->flags);
1205               os->set_segment_alignment(it->second->align);
1206             }
1207         }
1208       if (os == NULL)
1209         return NULL;
1210     }
1211
1212   // By default the GNU linker sorts input sections whose names match
1213   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1214   // sections are sorted by name.  This is used to implement
1215   // constructor priority ordering.  We are compatible.  When we put
1216   // .ctor sections in .init_array and .dtor sections in .fini_array,
1217   // we must also sort plain .ctor and .dtor sections.
1218   if (!this->script_options_->saw_sections_clause()
1219       && !parameters->options().relocatable()
1220       && (is_prefix_of(".ctors.", name)
1221           || is_prefix_of(".dtors.", name)
1222           || is_prefix_of(".init_array.", name)
1223           || is_prefix_of(".fini_array.", name)
1224           || (parameters->options().ctors_in_init_array()
1225               && (strcmp(name, ".ctors") == 0
1226                   || strcmp(name, ".dtors") == 0))))
1227     os->set_must_sort_attached_input_sections();
1228
1229   // By default the GNU linker sorts some special text sections ahead
1230   // of others.  We are compatible.
1231   if (parameters->options().text_reorder()
1232       && !this->script_options_->saw_sections_clause()
1233       && !this->is_section_ordering_specified()
1234       && !parameters->options().relocatable()
1235       && Layout::special_ordering_of_input_section(name) >= 0)
1236     os->set_must_sort_attached_input_sections();
1237
1238   // If this is a .ctors or .ctors.* section being mapped to a
1239   // .init_array section, or a .dtors or .dtors.* section being mapped
1240   // to a .fini_array section, we will need to reverse the words if
1241   // there is more than one.  Record this section for later.  See
1242   // ctors_sections_in_init_array above.
1243   if (!this->script_options_->saw_sections_clause()
1244       && !parameters->options().relocatable()
1245       && shdr.get_sh_size() > size / 8
1246       && (((strcmp(name, ".ctors") == 0
1247             || is_prefix_of(".ctors.", name))
1248            && strcmp(os->name(), ".init_array") == 0)
1249           || ((strcmp(name, ".dtors") == 0
1250                || is_prefix_of(".dtors.", name))
1251               && strcmp(os->name(), ".fini_array") == 0)))
1252     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1253
1254   // FIXME: Handle SHF_LINK_ORDER somewhere.
1255
1256   elfcpp::Elf_Xword orig_flags = os->flags();
1257
1258   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1259                                this->script_options_->saw_sections_clause());
1260
1261   // If the flags changed, we may have to change the order.
1262   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1263     {
1264       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1265       elfcpp::Elf_Xword new_flags =
1266         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1267       if (orig_flags != new_flags)
1268         os->set_order(this->default_section_order(os, false));
1269     }
1270
1271   this->have_added_input_section_ = true;
1272
1273   return os;
1274 }
1275
1276 // Maps section SECN to SEGMENT s.
1277 void
1278 Layout::insert_section_segment_map(Const_section_id secn,
1279                                    Unique_segment_info *s)
1280 {
1281   gold_assert(this->unique_segment_for_sections_specified_);
1282   this->section_segment_map_[secn] = s;
1283 }
1284
1285 // Handle a relocation section when doing a relocatable link.
1286
1287 template<int size, bool big_endian>
1288 Output_section*
1289 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1290                      unsigned int,
1291                      const elfcpp::Shdr<size, big_endian>& shdr,
1292                      Output_section* data_section,
1293                      Relocatable_relocs* rr)
1294 {
1295   gold_assert(parameters->options().relocatable()
1296               || parameters->options().emit_relocs());
1297
1298   int sh_type = shdr.get_sh_type();
1299
1300   std::string name;
1301   if (sh_type == elfcpp::SHT_REL)
1302     name = ".rel";
1303   else if (sh_type == elfcpp::SHT_RELA)
1304     name = ".rela";
1305   else
1306     gold_unreachable();
1307   name += data_section->name();
1308
1309   // In a relocatable link relocs for a grouped section must not be
1310   // combined with other reloc sections.
1311   Output_section* os;
1312   if (!parameters->options().relocatable()
1313       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1314     os = this->choose_output_section(object, name.c_str(), sh_type,
1315                                      shdr.get_sh_flags(), false,
1316                                      ORDER_INVALID, false);
1317   else
1318     {
1319       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1320       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1321                                      ORDER_INVALID, false);
1322     }
1323
1324   os->set_should_link_to_symtab();
1325   os->set_info_section(data_section);
1326
1327   Output_section_data* posd;
1328   if (sh_type == elfcpp::SHT_REL)
1329     {
1330       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1331       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1332                                            size,
1333                                            big_endian>(rr);
1334     }
1335   else if (sh_type == elfcpp::SHT_RELA)
1336     {
1337       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1338       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1339                                            size,
1340                                            big_endian>(rr);
1341     }
1342   else
1343     gold_unreachable();
1344
1345   os->add_output_section_data(posd);
1346   rr->set_output_data(posd);
1347
1348   return os;
1349 }
1350
1351 // Handle a group section when doing a relocatable link.
1352
1353 template<int size, bool big_endian>
1354 void
1355 Layout::layout_group(Symbol_table* symtab,
1356                      Sized_relobj_file<size, big_endian>* object,
1357                      unsigned int,
1358                      const char* group_section_name,
1359                      const char* signature,
1360                      const elfcpp::Shdr<size, big_endian>& shdr,
1361                      elfcpp::Elf_Word flags,
1362                      std::vector<unsigned int>* shndxes)
1363 {
1364   gold_assert(parameters->options().relocatable());
1365   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1366   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1367   Output_section* os = this->make_output_section(group_section_name,
1368                                                  elfcpp::SHT_GROUP,
1369                                                  shdr.get_sh_flags(),
1370                                                  ORDER_INVALID, false);
1371
1372   // We need to find a symbol with the signature in the symbol table.
1373   // If we don't find one now, we need to look again later.
1374   Symbol* sym = symtab->lookup(signature, NULL);
1375   if (sym != NULL)
1376     os->set_info_symndx(sym);
1377   else
1378     {
1379       // Reserve some space to minimize reallocations.
1380       if (this->group_signatures_.empty())
1381         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1382
1383       // We will wind up using a symbol whose name is the signature.
1384       // So just put the signature in the symbol name pool to save it.
1385       signature = symtab->canonicalize_name(signature);
1386       this->group_signatures_.push_back(Group_signature(os, signature));
1387     }
1388
1389   os->set_should_link_to_symtab();
1390   os->set_entsize(4);
1391
1392   section_size_type entry_count =
1393     convert_to_section_size_type(shdr.get_sh_size() / 4);
1394   Output_section_data* posd =
1395     new Output_data_group<size, big_endian>(object, entry_count, flags,
1396                                             shndxes);
1397   os->add_output_section_data(posd);
1398 }
1399
1400 // Special GNU handling of sections name .eh_frame.  They will
1401 // normally hold exception frame data as defined by the C++ ABI
1402 // (http://codesourcery.com/cxx-abi/).
1403
1404 template<int size, bool big_endian>
1405 Output_section*
1406 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1407                         const unsigned char* symbols,
1408                         off_t symbols_size,
1409                         const unsigned char* symbol_names,
1410                         off_t symbol_names_size,
1411                         unsigned int shndx,
1412                         const elfcpp::Shdr<size, big_endian>& shdr,
1413                         unsigned int reloc_shndx, unsigned int reloc_type,
1414                         off_t* off)
1415 {
1416   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1417               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1418   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1419
1420   Output_section* os = this->make_eh_frame_section(object);
1421   if (os == NULL)
1422     return NULL;
1423
1424   gold_assert(this->eh_frame_section_ == os);
1425
1426   elfcpp::Elf_Xword orig_flags = os->flags();
1427
1428   Eh_frame::Eh_frame_section_disposition disp =
1429       Eh_frame::EH_UNRECOGNIZED_SECTION;
1430   if (!parameters->incremental())
1431     {
1432       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1433                                                              symbols,
1434                                                              symbols_size,
1435                                                              symbol_names,
1436                                                              symbol_names_size,
1437                                                              shndx,
1438                                                              reloc_shndx,
1439                                                              reloc_type);
1440     }
1441
1442   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1443     {
1444       os->update_flags_for_input_section(shdr.get_sh_flags());
1445
1446       // A writable .eh_frame section is a RELRO section.
1447       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1448           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1449         {
1450           os->set_is_relro();
1451           os->set_order(ORDER_RELRO);
1452         }
1453
1454       *off = -1;
1455       return os;
1456     }
1457
1458   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1459     {
1460       // We found the end marker section, so now we can add the set of
1461       // optimized sections to the output section.  We need to postpone
1462       // adding this until we've found a section we can optimize so that
1463       // the .eh_frame section in crtbeginT.o winds up at the start of
1464       // the output section.
1465       os->add_output_section_data(this->eh_frame_data_);
1466       this->added_eh_frame_data_ = true;
1467      }
1468
1469   // We couldn't handle this .eh_frame section for some reason.
1470   // Add it as a normal section.
1471   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1472   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1473                                reloc_shndx, saw_sections_clause);
1474   this->have_added_input_section_ = true;
1475
1476   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478     os->set_order(this->default_section_order(os, false));
1479
1480   return os;
1481 }
1482
1483 void
1484 Layout::finalize_eh_frame_section()
1485 {
1486   // If we never found an end marker section, we need to add the
1487   // optimized eh sections to the output section now.
1488   if (!parameters->incremental()
1489       && this->eh_frame_section_ != NULL
1490       && !this->added_eh_frame_data_)
1491     {
1492       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1493       this->added_eh_frame_data_ = true;
1494     }
1495 }
1496
1497 // Create and return the magic .eh_frame section.  Create
1498 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1499 // input .eh_frame section; it may be NULL.
1500
1501 Output_section*
1502 Layout::make_eh_frame_section(const Relobj* object)
1503 {
1504   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1505   // SHT_PROGBITS.
1506   Output_section* os = this->choose_output_section(object, ".eh_frame",
1507                                                    elfcpp::SHT_PROGBITS,
1508                                                    elfcpp::SHF_ALLOC, false,
1509                                                    ORDER_EHFRAME, false);
1510   if (os == NULL)
1511     return NULL;
1512
1513   if (this->eh_frame_section_ == NULL)
1514     {
1515       this->eh_frame_section_ = os;
1516       this->eh_frame_data_ = new Eh_frame();
1517
1518       // For incremental linking, we do not optimize .eh_frame sections
1519       // or create a .eh_frame_hdr section.
1520       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1521         {
1522           Output_section* hdr_os =
1523             this->choose_output_section(NULL, ".eh_frame_hdr",
1524                                         elfcpp::SHT_PROGBITS,
1525                                         elfcpp::SHF_ALLOC, false,
1526                                         ORDER_EHFRAME, false);
1527
1528           if (hdr_os != NULL)
1529             {
1530               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1531                                                         this->eh_frame_data_);
1532               hdr_os->add_output_section_data(hdr_posd);
1533
1534               hdr_os->set_after_input_sections();
1535
1536               if (!this->script_options_->saw_phdrs_clause())
1537                 {
1538                   Output_segment* hdr_oseg;
1539                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1540                                                        elfcpp::PF_R);
1541                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1542                                                           elfcpp::PF_R);
1543                 }
1544
1545               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1546             }
1547         }
1548     }
1549
1550   return os;
1551 }
1552
1553 // Add an exception frame for a PLT.  This is called from target code.
1554
1555 void
1556 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1557                              size_t cie_length, const unsigned char* fde_data,
1558                              size_t fde_length)
1559 {
1560   if (parameters->incremental())
1561     {
1562       // FIXME: Maybe this could work some day....
1563       return;
1564     }
1565   Output_section* os = this->make_eh_frame_section(NULL);
1566   if (os == NULL)
1567     return;
1568   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1569                                             fde_data, fde_length);
1570   if (!this->added_eh_frame_data_)
1571     {
1572       os->add_output_section_data(this->eh_frame_data_);
1573       this->added_eh_frame_data_ = true;
1574     }
1575 }
1576
1577 // Scan a .debug_info or .debug_types section, and add summary
1578 // information to the .gdb_index section.
1579
1580 template<int size, bool big_endian>
1581 void
1582 Layout::add_to_gdb_index(bool is_type_unit,
1583                          Sized_relobj<size, big_endian>* object,
1584                          const unsigned char* symbols,
1585                          off_t symbols_size,
1586                          unsigned int shndx,
1587                          unsigned int reloc_shndx,
1588                          unsigned int reloc_type)
1589 {
1590   if (this->gdb_index_data_ == NULL)
1591     {
1592       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1593                                                        elfcpp::SHT_PROGBITS, 0,
1594                                                        false, ORDER_INVALID,
1595                                                        false);
1596       if (os == NULL)
1597         return;
1598
1599       this->gdb_index_data_ = new Gdb_index(os);
1600       os->add_output_section_data(this->gdb_index_data_);
1601       os->set_after_input_sections();
1602     }
1603
1604   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1605                                          symbols_size, shndx, reloc_shndx,
1606                                          reloc_type);
1607 }
1608
1609 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1610 // the output section.
1611
1612 Output_section*
1613 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1614                                 elfcpp::Elf_Xword flags,
1615                                 Output_section_data* posd,
1616                                 Output_section_order order, bool is_relro)
1617 {
1618   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1619                                                    false, order, is_relro);
1620   if (os != NULL)
1621     os->add_output_section_data(posd);
1622   return os;
1623 }
1624
1625 // Map section flags to segment flags.
1626
1627 elfcpp::Elf_Word
1628 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1629 {
1630   elfcpp::Elf_Word ret = elfcpp::PF_R;
1631   if ((flags & elfcpp::SHF_WRITE) != 0)
1632     ret |= elfcpp::PF_W;
1633   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1634     ret |= elfcpp::PF_X;
1635   return ret;
1636 }
1637
1638 // Make a new Output_section, and attach it to segments as
1639 // appropriate.  ORDER is the order in which this section should
1640 // appear in the output segment.  IS_RELRO is true if this is a relro
1641 // (read-only after relocations) section.
1642
1643 Output_section*
1644 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1645                             elfcpp::Elf_Xword flags,
1646                             Output_section_order order, bool is_relro)
1647 {
1648   Output_section* os;
1649   if ((flags & elfcpp::SHF_ALLOC) == 0
1650       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1651       && is_compressible_debug_section(name))
1652     os = new Output_compressed_section(&parameters->options(), name, type,
1653                                        flags);
1654   else if ((flags & elfcpp::SHF_ALLOC) == 0
1655            && parameters->options().strip_debug_non_line()
1656            && strcmp(".debug_abbrev", name) == 0)
1657     {
1658       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1659           name, type, flags);
1660       if (this->debug_info_)
1661         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1662     }
1663   else if ((flags & elfcpp::SHF_ALLOC) == 0
1664            && parameters->options().strip_debug_non_line()
1665            && strcmp(".debug_info", name) == 0)
1666     {
1667       os = this->debug_info_ = new Output_reduced_debug_info_section(
1668           name, type, flags);
1669       if (this->debug_abbrev_)
1670         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1671     }
1672   else
1673     {
1674       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1675       // not have correct section types.  Force them here.
1676       if (type == elfcpp::SHT_PROGBITS)
1677         {
1678           if (is_prefix_of(".init_array", name))
1679             type = elfcpp::SHT_INIT_ARRAY;
1680           else if (is_prefix_of(".preinit_array", name))
1681             type = elfcpp::SHT_PREINIT_ARRAY;
1682           else if (is_prefix_of(".fini_array", name))
1683             type = elfcpp::SHT_FINI_ARRAY;
1684         }
1685
1686       // FIXME: const_cast is ugly.
1687       Target* target = const_cast<Target*>(&parameters->target());
1688       os = target->make_output_section(name, type, flags);
1689     }
1690
1691   // With -z relro, we have to recognize the special sections by name.
1692   // There is no other way.
1693   bool is_relro_local = false;
1694   if (!this->script_options_->saw_sections_clause()
1695       && parameters->options().relro()
1696       && (flags & elfcpp::SHF_ALLOC) != 0
1697       && (flags & elfcpp::SHF_WRITE) != 0)
1698     {
1699       if (type == elfcpp::SHT_PROGBITS)
1700         {
1701           if ((flags & elfcpp::SHF_TLS) != 0)
1702             is_relro = true;
1703           else if (strcmp(name, ".data.rel.ro") == 0)
1704             is_relro = true;
1705           else if (strcmp(name, ".data.rel.ro.local") == 0)
1706             {
1707               is_relro = true;
1708               is_relro_local = true;
1709             }
1710           else if (strcmp(name, ".ctors") == 0
1711                    || strcmp(name, ".dtors") == 0
1712                    || strcmp(name, ".jcr") == 0)
1713             is_relro = true;
1714         }
1715       else if (type == elfcpp::SHT_INIT_ARRAY
1716                || type == elfcpp::SHT_FINI_ARRAY
1717                || type == elfcpp::SHT_PREINIT_ARRAY)
1718         is_relro = true;
1719     }
1720
1721   if (is_relro)
1722     os->set_is_relro();
1723
1724   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1725     order = this->default_section_order(os, is_relro_local);
1726
1727   os->set_order(order);
1728
1729   parameters->target().new_output_section(os);
1730
1731   this->section_list_.push_back(os);
1732
1733   // The GNU linker by default sorts some sections by priority, so we
1734   // do the same.  We need to know that this might happen before we
1735   // attach any input sections.
1736   if (!this->script_options_->saw_sections_clause()
1737       && !parameters->options().relocatable()
1738       && (strcmp(name, ".init_array") == 0
1739           || strcmp(name, ".fini_array") == 0
1740           || (!parameters->options().ctors_in_init_array()
1741               && (strcmp(name, ".ctors") == 0
1742                   || strcmp(name, ".dtors") == 0))))
1743     os->set_may_sort_attached_input_sections();
1744
1745   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1746   // sections before other .text sections.  We are compatible.  We
1747   // need to know that this might happen before we attach any input
1748   // sections.
1749   if (parameters->options().text_reorder()
1750       && !this->script_options_->saw_sections_clause()
1751       && !this->is_section_ordering_specified()
1752       && !parameters->options().relocatable()
1753       && strcmp(name, ".text") == 0)
1754     os->set_may_sort_attached_input_sections();
1755
1756   // GNU linker sorts section by name with --sort-section=name.
1757   if (strcmp(parameters->options().sort_section(), "name") == 0)
1758       os->set_must_sort_attached_input_sections();
1759
1760   // Check for .stab*str sections, as .stab* sections need to link to
1761   // them.
1762   if (type == elfcpp::SHT_STRTAB
1763       && !this->have_stabstr_section_
1764       && strncmp(name, ".stab", 5) == 0
1765       && strcmp(name + strlen(name) - 3, "str") == 0)
1766     this->have_stabstr_section_ = true;
1767
1768   // During a full incremental link, we add patch space to most
1769   // PROGBITS and NOBITS sections.  Flag those that may be
1770   // arbitrarily padded.
1771   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1772       && order != ORDER_INTERP
1773       && order != ORDER_INIT
1774       && order != ORDER_PLT
1775       && order != ORDER_FINI
1776       && order != ORDER_RELRO_LAST
1777       && order != ORDER_NON_RELRO_FIRST
1778       && strcmp(name, ".eh_frame") != 0
1779       && strcmp(name, ".ctors") != 0
1780       && strcmp(name, ".dtors") != 0
1781       && strcmp(name, ".jcr") != 0)
1782     {
1783       os->set_is_patch_space_allowed();
1784
1785       // Certain sections require "holes" to be filled with
1786       // specific fill patterns.  These fill patterns may have
1787       // a minimum size, so we must prevent allocations from the
1788       // free list that leave a hole smaller than the minimum.
1789       if (strcmp(name, ".debug_info") == 0)
1790         os->set_free_space_fill(new Output_fill_debug_info(false));
1791       else if (strcmp(name, ".debug_types") == 0)
1792         os->set_free_space_fill(new Output_fill_debug_info(true));
1793       else if (strcmp(name, ".debug_line") == 0)
1794         os->set_free_space_fill(new Output_fill_debug_line());
1795     }
1796
1797   // If we have already attached the sections to segments, then we
1798   // need to attach this one now.  This happens for sections created
1799   // directly by the linker.
1800   if (this->sections_are_attached_)
1801     this->attach_section_to_segment(&parameters->target(), os);
1802
1803   return os;
1804 }
1805
1806 // Return the default order in which a section should be placed in an
1807 // output segment.  This function captures a lot of the ideas in
1808 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1809 // linker created section is normally set when the section is created;
1810 // this function is used for input sections.
1811
1812 Output_section_order
1813 Layout::default_section_order(Output_section* os, bool is_relro_local)
1814 {
1815   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1816   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1817   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1818   bool is_bss = false;
1819
1820   switch (os->type())
1821     {
1822     default:
1823     case elfcpp::SHT_PROGBITS:
1824       break;
1825     case elfcpp::SHT_NOBITS:
1826       is_bss = true;
1827       break;
1828     case elfcpp::SHT_RELA:
1829     case elfcpp::SHT_REL:
1830       if (!is_write)
1831         return ORDER_DYNAMIC_RELOCS;
1832       break;
1833     case elfcpp::SHT_HASH:
1834     case elfcpp::SHT_DYNAMIC:
1835     case elfcpp::SHT_SHLIB:
1836     case elfcpp::SHT_DYNSYM:
1837     case elfcpp::SHT_GNU_HASH:
1838     case elfcpp::SHT_GNU_verdef:
1839     case elfcpp::SHT_GNU_verneed:
1840     case elfcpp::SHT_GNU_versym:
1841       if (!is_write)
1842         return ORDER_DYNAMIC_LINKER;
1843       break;
1844     case elfcpp::SHT_NOTE:
1845       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1846     }
1847
1848   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1849     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1850
1851   if (!is_bss && !is_write)
1852     {
1853       if (is_execinstr)
1854         {
1855           if (strcmp(os->name(), ".init") == 0)
1856             return ORDER_INIT;
1857           else if (strcmp(os->name(), ".fini") == 0)
1858             return ORDER_FINI;
1859         }
1860       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1861     }
1862
1863   if (os->is_relro())
1864     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1865
1866   if (os->is_small_section())
1867     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1868   if (os->is_large_section())
1869     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1870
1871   return is_bss ? ORDER_BSS : ORDER_DATA;
1872 }
1873
1874 // Attach output sections to segments.  This is called after we have
1875 // seen all the input sections.
1876
1877 void
1878 Layout::attach_sections_to_segments(const Target* target)
1879 {
1880   for (Section_list::iterator p = this->section_list_.begin();
1881        p != this->section_list_.end();
1882        ++p)
1883     this->attach_section_to_segment(target, *p);
1884
1885   this->sections_are_attached_ = true;
1886 }
1887
1888 // Attach an output section to a segment.
1889
1890 void
1891 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1892 {
1893   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1894     this->unattached_section_list_.push_back(os);
1895   else
1896     this->attach_allocated_section_to_segment(target, os);
1897 }
1898
1899 // Attach an allocated output section to a segment.
1900
1901 void
1902 Layout::attach_allocated_section_to_segment(const Target* target,
1903                                             Output_section* os)
1904 {
1905   elfcpp::Elf_Xword flags = os->flags();
1906   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1907
1908   if (parameters->options().relocatable())
1909     return;
1910
1911   // If we have a SECTIONS clause, we can't handle the attachment to
1912   // segments until after we've seen all the sections.
1913   if (this->script_options_->saw_sections_clause())
1914     return;
1915
1916   gold_assert(!this->script_options_->saw_phdrs_clause());
1917
1918   // This output section goes into a PT_LOAD segment.
1919
1920   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1921
1922   // If this output section's segment has extra flags that need to be set,
1923   // coming from a linker plugin, do that.
1924   seg_flags |= os->extra_segment_flags();
1925
1926   // Check for --section-start.
1927   uint64_t addr;
1928   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1929
1930   // In general the only thing we really care about for PT_LOAD
1931   // segments is whether or not they are writable or executable,
1932   // so that is how we search for them.
1933   // Large data sections also go into their own PT_LOAD segment.
1934   // People who need segments sorted on some other basis will
1935   // have to use a linker script.
1936
1937   Segment_list::const_iterator p;
1938   if (!os->is_unique_segment())
1939     {
1940       for (p = this->segment_list_.begin();
1941            p != this->segment_list_.end();
1942            ++p)
1943         {
1944           if ((*p)->type() != elfcpp::PT_LOAD)
1945             continue;
1946           if ((*p)->is_unique_segment())
1947             continue;
1948           if (!parameters->options().omagic()
1949               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1950             continue;
1951           if ((target->isolate_execinstr() || parameters->options().rosegment())
1952               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1953             continue;
1954           // If -Tbss was specified, we need to separate the data and BSS
1955           // segments.
1956           if (parameters->options().user_set_Tbss())
1957             {
1958               if ((os->type() == elfcpp::SHT_NOBITS)
1959                   == (*p)->has_any_data_sections())
1960                 continue;
1961             }
1962           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1963             continue;
1964
1965           if (is_address_set)
1966             {
1967               if ((*p)->are_addresses_set())
1968                 continue;
1969
1970               (*p)->add_initial_output_data(os);
1971               (*p)->update_flags_for_output_section(seg_flags);
1972               (*p)->set_addresses(addr, addr);
1973               break;
1974             }
1975
1976           (*p)->add_output_section_to_load(this, os, seg_flags);
1977           break;
1978         }
1979     }
1980
1981   if (p == this->segment_list_.end()
1982       || os->is_unique_segment())
1983     {
1984       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1985                                                        seg_flags);
1986       if (os->is_large_data_section())
1987         oseg->set_is_large_data_segment();
1988       oseg->add_output_section_to_load(this, os, seg_flags);
1989       if (is_address_set)
1990         oseg->set_addresses(addr, addr);
1991       // Check if segment should be marked unique.  For segments marked
1992       // unique by linker plugins, set the new alignment if specified.
1993       if (os->is_unique_segment())
1994         {
1995           oseg->set_is_unique_segment();
1996           if (os->segment_alignment() != 0)
1997             oseg->set_minimum_p_align(os->segment_alignment());
1998         }
1999     }
2000
2001   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2002   // segment.
2003   if (os->type() == elfcpp::SHT_NOTE)
2004     {
2005       // See if we already have an equivalent PT_NOTE segment.
2006       for (p = this->segment_list_.begin();
2007            p != segment_list_.end();
2008            ++p)
2009         {
2010           if ((*p)->type() == elfcpp::PT_NOTE
2011               && (((*p)->flags() & elfcpp::PF_W)
2012                   == (seg_flags & elfcpp::PF_W)))
2013             {
2014               (*p)->add_output_section_to_nonload(os, seg_flags);
2015               break;
2016             }
2017         }
2018
2019       if (p == this->segment_list_.end())
2020         {
2021           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2022                                                            seg_flags);
2023           oseg->add_output_section_to_nonload(os, seg_flags);
2024         }
2025     }
2026
2027   // If we see a loadable SHF_TLS section, we create a PT_TLS
2028   // segment.  There can only be one such segment.
2029   if ((flags & elfcpp::SHF_TLS) != 0)
2030     {
2031       if (this->tls_segment_ == NULL)
2032         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2033       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2034     }
2035
2036   // If -z relro is in effect, and we see a relro section, we create a
2037   // PT_GNU_RELRO segment.  There can only be one such segment.
2038   if (os->is_relro() && parameters->options().relro())
2039     {
2040       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2041       if (this->relro_segment_ == NULL)
2042         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2043       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2044     }
2045
2046   // If we see a section named .interp, put it into a PT_INTERP
2047   // segment.  This seems broken to me, but this is what GNU ld does,
2048   // and glibc expects it.
2049   if (strcmp(os->name(), ".interp") == 0
2050       && !this->script_options_->saw_phdrs_clause())
2051     {
2052       if (this->interp_segment_ == NULL)
2053         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2054       else
2055         gold_warning(_("multiple '.interp' sections in input files "
2056                        "may cause confusing PT_INTERP segment"));
2057       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2058     }
2059 }
2060
2061 // Make an output section for a script.
2062
2063 Output_section*
2064 Layout::make_output_section_for_script(
2065     const char* name,
2066     Script_sections::Section_type section_type)
2067 {
2068   name = this->namepool_.add(name, false, NULL);
2069   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2070   if (section_type == Script_sections::ST_NOLOAD)
2071     sh_flags = 0;
2072   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2073                                                  sh_flags, ORDER_INVALID,
2074                                                  false);
2075   os->set_found_in_sections_clause();
2076   if (section_type == Script_sections::ST_NOLOAD)
2077     os->set_is_noload();
2078   return os;
2079 }
2080
2081 // Return the number of segments we expect to see.
2082
2083 size_t
2084 Layout::expected_segment_count() const
2085 {
2086   size_t ret = this->segment_list_.size();
2087
2088   // If we didn't see a SECTIONS clause in a linker script, we should
2089   // already have the complete list of segments.  Otherwise we ask the
2090   // SECTIONS clause how many segments it expects, and add in the ones
2091   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2092
2093   if (!this->script_options_->saw_sections_clause())
2094     return ret;
2095   else
2096     {
2097       const Script_sections* ss = this->script_options_->script_sections();
2098       return ret + ss->expected_segment_count(this);
2099     }
2100 }
2101
2102 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2103 // is whether we saw a .note.GNU-stack section in the object file.
2104 // GNU_STACK_FLAGS is the section flags.  The flags give the
2105 // protection required for stack memory.  We record this in an
2106 // executable as a PT_GNU_STACK segment.  If an object file does not
2107 // have a .note.GNU-stack segment, we must assume that it is an old
2108 // object.  On some targets that will force an executable stack.
2109
2110 void
2111 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2112                          const Object* obj)
2113 {
2114   if (!seen_gnu_stack)
2115     {
2116       this->input_without_gnu_stack_note_ = true;
2117       if (parameters->options().warn_execstack()
2118           && parameters->target().is_default_stack_executable())
2119         gold_warning(_("%s: missing .note.GNU-stack section"
2120                        " implies executable stack"),
2121                      obj->name().c_str());
2122     }
2123   else
2124     {
2125       this->input_with_gnu_stack_note_ = true;
2126       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2127         {
2128           this->input_requires_executable_stack_ = true;
2129           if (parameters->options().warn_execstack())
2130             gold_warning(_("%s: requires executable stack"),
2131                          obj->name().c_str());
2132         }
2133     }
2134 }
2135
2136 // Create automatic note sections.
2137
2138 void
2139 Layout::create_notes()
2140 {
2141   this->create_gold_note();
2142   this->create_stack_segment();
2143   this->create_build_id();
2144 }
2145
2146 // Create the dynamic sections which are needed before we read the
2147 // relocs.
2148
2149 void
2150 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2151 {
2152   if (parameters->doing_static_link())
2153     return;
2154
2155   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2156                                                        elfcpp::SHT_DYNAMIC,
2157                                                        (elfcpp::SHF_ALLOC
2158                                                         | elfcpp::SHF_WRITE),
2159                                                        false, ORDER_RELRO,
2160                                                        true);
2161
2162   // A linker script may discard .dynamic, so check for NULL.
2163   if (this->dynamic_section_ != NULL)
2164     {
2165       this->dynamic_symbol_ =
2166         symtab->define_in_output_data("_DYNAMIC", NULL,
2167                                       Symbol_table::PREDEFINED,
2168                                       this->dynamic_section_, 0, 0,
2169                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2170                                       elfcpp::STV_HIDDEN, 0, false, false);
2171
2172       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2173
2174       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2175     }
2176 }
2177
2178 // For each output section whose name can be represented as C symbol,
2179 // define __start and __stop symbols for the section.  This is a GNU
2180 // extension.
2181
2182 void
2183 Layout::define_section_symbols(Symbol_table* symtab)
2184 {
2185   for (Section_list::const_iterator p = this->section_list_.begin();
2186        p != this->section_list_.end();
2187        ++p)
2188     {
2189       const char* const name = (*p)->name();
2190       if (is_cident(name))
2191         {
2192           const std::string name_string(name);
2193           const std::string start_name(cident_section_start_prefix
2194                                        + name_string);
2195           const std::string stop_name(cident_section_stop_prefix
2196                                       + name_string);
2197
2198           symtab->define_in_output_data(start_name.c_str(),
2199                                         NULL, // version
2200                                         Symbol_table::PREDEFINED,
2201                                         *p,
2202                                         0, // value
2203                                         0, // symsize
2204                                         elfcpp::STT_NOTYPE,
2205                                         elfcpp::STB_GLOBAL,
2206                                         elfcpp::STV_DEFAULT,
2207                                         0, // nonvis
2208                                         false, // offset_is_from_end
2209                                         true); // only_if_ref
2210
2211           symtab->define_in_output_data(stop_name.c_str(),
2212                                         NULL, // version
2213                                         Symbol_table::PREDEFINED,
2214                                         *p,
2215                                         0, // value
2216                                         0, // symsize
2217                                         elfcpp::STT_NOTYPE,
2218                                         elfcpp::STB_GLOBAL,
2219                                         elfcpp::STV_DEFAULT,
2220                                         0, // nonvis
2221                                         true, // offset_is_from_end
2222                                         true); // only_if_ref
2223         }
2224     }
2225 }
2226
2227 // Define symbols for group signatures.
2228
2229 void
2230 Layout::define_group_signatures(Symbol_table* symtab)
2231 {
2232   for (Group_signatures::iterator p = this->group_signatures_.begin();
2233        p != this->group_signatures_.end();
2234        ++p)
2235     {
2236       Symbol* sym = symtab->lookup(p->signature, NULL);
2237       if (sym != NULL)
2238         p->section->set_info_symndx(sym);
2239       else
2240         {
2241           // Force the name of the group section to the group
2242           // signature, and use the group's section symbol as the
2243           // signature symbol.
2244           if (strcmp(p->section->name(), p->signature) != 0)
2245             {
2246               const char* name = this->namepool_.add(p->signature,
2247                                                      true, NULL);
2248               p->section->set_name(name);
2249             }
2250           p->section->set_needs_symtab_index();
2251           p->section->set_info_section_symndx(p->section);
2252         }
2253     }
2254
2255   this->group_signatures_.clear();
2256 }
2257
2258 // Find the first read-only PT_LOAD segment, creating one if
2259 // necessary.
2260
2261 Output_segment*
2262 Layout::find_first_load_seg(const Target* target)
2263 {
2264   Output_segment* best = NULL;
2265   for (Segment_list::const_iterator p = this->segment_list_.begin();
2266        p != this->segment_list_.end();
2267        ++p)
2268     {
2269       if ((*p)->type() == elfcpp::PT_LOAD
2270           && ((*p)->flags() & elfcpp::PF_R) != 0
2271           && (parameters->options().omagic()
2272               || ((*p)->flags() & elfcpp::PF_W) == 0)
2273           && (!target->isolate_execinstr()
2274               || ((*p)->flags() & elfcpp::PF_X) == 0))
2275         {
2276           if (best == NULL || this->segment_precedes(*p, best))
2277             best = *p;
2278         }
2279     }
2280   if (best != NULL)
2281     return best;
2282
2283   gold_assert(!this->script_options_->saw_phdrs_clause());
2284
2285   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2286                                                        elfcpp::PF_R);
2287   return load_seg;
2288 }
2289
2290 // Save states of all current output segments.  Store saved states
2291 // in SEGMENT_STATES.
2292
2293 void
2294 Layout::save_segments(Segment_states* segment_states)
2295 {
2296   for (Segment_list::const_iterator p = this->segment_list_.begin();
2297        p != this->segment_list_.end();
2298        ++p)
2299     {
2300       Output_segment* segment = *p;
2301       // Shallow copy.
2302       Output_segment* copy = new Output_segment(*segment);
2303       (*segment_states)[segment] = copy;
2304     }
2305 }
2306
2307 // Restore states of output segments and delete any segment not found in
2308 // SEGMENT_STATES.
2309
2310 void
2311 Layout::restore_segments(const Segment_states* segment_states)
2312 {
2313   // Go through the segment list and remove any segment added in the
2314   // relaxation loop.
2315   this->tls_segment_ = NULL;
2316   this->relro_segment_ = NULL;
2317   Segment_list::iterator list_iter = this->segment_list_.begin();
2318   while (list_iter != this->segment_list_.end())
2319     {
2320       Output_segment* segment = *list_iter;
2321       Segment_states::const_iterator states_iter =
2322           segment_states->find(segment);
2323       if (states_iter != segment_states->end())
2324         {
2325           const Output_segment* copy = states_iter->second;
2326           // Shallow copy to restore states.
2327           *segment = *copy;
2328
2329           // Also fix up TLS and RELRO segment pointers as appropriate.
2330           if (segment->type() == elfcpp::PT_TLS)
2331             this->tls_segment_ = segment;
2332           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2333             this->relro_segment_ = segment;
2334
2335           ++list_iter;
2336         }
2337       else
2338         {
2339           list_iter = this->segment_list_.erase(list_iter);
2340           // This is a segment created during section layout.  It should be
2341           // safe to remove it since we should have removed all pointers to it.
2342           delete segment;
2343         }
2344     }
2345 }
2346
2347 // Clean up after relaxation so that sections can be laid out again.
2348
2349 void
2350 Layout::clean_up_after_relaxation()
2351 {
2352   // Restore the segments to point state just prior to the relaxation loop.
2353   Script_sections* script_section = this->script_options_->script_sections();
2354   script_section->release_segments();
2355   this->restore_segments(this->segment_states_);
2356
2357   // Reset section addresses and file offsets
2358   for (Section_list::iterator p = this->section_list_.begin();
2359        p != this->section_list_.end();
2360        ++p)
2361     {
2362       (*p)->restore_states();
2363
2364       // If an input section changes size because of relaxation,
2365       // we need to adjust the section offsets of all input sections.
2366       // after such a section.
2367       if ((*p)->section_offsets_need_adjustment())
2368         (*p)->adjust_section_offsets();
2369
2370       (*p)->reset_address_and_file_offset();
2371     }
2372
2373   // Reset special output object address and file offsets.
2374   for (Data_list::iterator p = this->special_output_list_.begin();
2375        p != this->special_output_list_.end();
2376        ++p)
2377     (*p)->reset_address_and_file_offset();
2378
2379   // A linker script may have created some output section data objects.
2380   // They are useless now.
2381   for (Output_section_data_list::const_iterator p =
2382          this->script_output_section_data_list_.begin();
2383        p != this->script_output_section_data_list_.end();
2384        ++p)
2385     delete *p;
2386   this->script_output_section_data_list_.clear();
2387
2388   // Special-case fill output objects are recreated each time through
2389   // the relaxation loop.
2390   this->reset_relax_output();
2391 }
2392
2393 void
2394 Layout::reset_relax_output()
2395 {
2396   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2397        p != this->relax_output_list_.end();
2398        ++p)
2399     delete *p;
2400   this->relax_output_list_.clear();
2401 }
2402
2403 // Prepare for relaxation.
2404
2405 void
2406 Layout::prepare_for_relaxation()
2407 {
2408   // Create an relaxation debug check if in debugging mode.
2409   if (is_debugging_enabled(DEBUG_RELAXATION))
2410     this->relaxation_debug_check_ = new Relaxation_debug_check();
2411
2412   // Save segment states.
2413   this->segment_states_ = new Segment_states();
2414   this->save_segments(this->segment_states_);
2415
2416   for(Section_list::const_iterator p = this->section_list_.begin();
2417       p != this->section_list_.end();
2418       ++p)
2419     (*p)->save_states();
2420
2421   if (is_debugging_enabled(DEBUG_RELAXATION))
2422     this->relaxation_debug_check_->check_output_data_for_reset_values(
2423         this->section_list_, this->special_output_list_,
2424         this->relax_output_list_);
2425
2426   // Also enable recording of output section data from scripts.
2427   this->record_output_section_data_from_script_ = true;
2428 }
2429
2430 // If the user set the address of the text segment, that may not be
2431 // compatible with putting the segment headers and file headers into
2432 // that segment.  For isolate_execinstr() targets, it's the rodata
2433 // segment rather than text where we might put the headers.
2434 static inline bool
2435 load_seg_unusable_for_headers(const Target* target)
2436 {
2437   const General_options& options = parameters->options();
2438   if (target->isolate_execinstr())
2439     return (options.user_set_Trodata_segment()
2440             && options.Trodata_segment() % target->abi_pagesize() != 0);
2441   else
2442     return (options.user_set_Ttext()
2443             && options.Ttext() % target->abi_pagesize() != 0);
2444 }
2445
2446 // Relaxation loop body:  If target has no relaxation, this runs only once
2447 // Otherwise, the target relaxation hook is called at the end of
2448 // each iteration.  If the hook returns true, it means re-layout of
2449 // section is required.
2450 //
2451 // The number of segments created by a linking script without a PHDRS
2452 // clause may be affected by section sizes and alignments.  There is
2453 // a remote chance that relaxation causes different number of PT_LOAD
2454 // segments are created and sections are attached to different segments.
2455 // Therefore, we always throw away all segments created during section
2456 // layout.  In order to be able to restart the section layout, we keep
2457 // a copy of the segment list right before the relaxation loop and use
2458 // that to restore the segments.
2459 //
2460 // PASS is the current relaxation pass number.
2461 // SYMTAB is a symbol table.
2462 // PLOAD_SEG is the address of a pointer for the load segment.
2463 // PHDR_SEG is a pointer to the PHDR segment.
2464 // SEGMENT_HEADERS points to the output segment header.
2465 // FILE_HEADER points to the output file header.
2466 // PSHNDX is the address to store the output section index.
2467
2468 off_t inline
2469 Layout::relaxation_loop_body(
2470     int pass,
2471     Target* target,
2472     Symbol_table* symtab,
2473     Output_segment** pload_seg,
2474     Output_segment* phdr_seg,
2475     Output_segment_headers* segment_headers,
2476     Output_file_header* file_header,
2477     unsigned int* pshndx)
2478 {
2479   // If this is not the first iteration, we need to clean up after
2480   // relaxation so that we can lay out the sections again.
2481   if (pass != 0)
2482     this->clean_up_after_relaxation();
2483
2484   // If there is a SECTIONS clause, put all the input sections into
2485   // the required order.
2486   Output_segment* load_seg;
2487   if (this->script_options_->saw_sections_clause())
2488     load_seg = this->set_section_addresses_from_script(symtab);
2489   else if (parameters->options().relocatable())
2490     load_seg = NULL;
2491   else
2492     load_seg = this->find_first_load_seg(target);
2493
2494   if (parameters->options().oformat_enum()
2495       != General_options::OBJECT_FORMAT_ELF)
2496     load_seg = NULL;
2497
2498   if (load_seg_unusable_for_headers(target))
2499     {
2500       load_seg = NULL;
2501       phdr_seg = NULL;
2502     }
2503
2504   gold_assert(phdr_seg == NULL
2505               || load_seg != NULL
2506               || this->script_options_->saw_sections_clause());
2507
2508   // If the address of the load segment we found has been set by
2509   // --section-start rather than by a script, then adjust the VMA and
2510   // LMA downward if possible to include the file and section headers.
2511   uint64_t header_gap = 0;
2512   if (load_seg != NULL
2513       && load_seg->are_addresses_set()
2514       && !this->script_options_->saw_sections_clause()
2515       && !parameters->options().relocatable())
2516     {
2517       file_header->finalize_data_size();
2518       segment_headers->finalize_data_size();
2519       size_t sizeof_headers = (file_header->data_size()
2520                                + segment_headers->data_size());
2521       const uint64_t abi_pagesize = target->abi_pagesize();
2522       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2523       hdr_paddr &= ~(abi_pagesize - 1);
2524       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2525       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2526         load_seg = NULL;
2527       else
2528         {
2529           load_seg->set_addresses(load_seg->vaddr() - subtract,
2530                                   load_seg->paddr() - subtract);
2531           header_gap = subtract - sizeof_headers;
2532         }
2533     }
2534
2535   // Lay out the segment headers.
2536   if (!parameters->options().relocatable())
2537     {
2538       gold_assert(segment_headers != NULL);
2539       if (header_gap != 0 && load_seg != NULL)
2540         {
2541           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2542           load_seg->add_initial_output_data(z);
2543         }
2544       if (load_seg != NULL)
2545         load_seg->add_initial_output_data(segment_headers);
2546       if (phdr_seg != NULL)
2547         phdr_seg->add_initial_output_data(segment_headers);
2548     }
2549
2550   // Lay out the file header.
2551   if (load_seg != NULL)
2552     load_seg->add_initial_output_data(file_header);
2553
2554   if (this->script_options_->saw_phdrs_clause()
2555       && !parameters->options().relocatable())
2556     {
2557       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2558       // clause in a linker script.
2559       Script_sections* ss = this->script_options_->script_sections();
2560       ss->put_headers_in_phdrs(file_header, segment_headers);
2561     }
2562
2563   // We set the output section indexes in set_segment_offsets and
2564   // set_section_indexes.
2565   *pshndx = 1;
2566
2567   // Set the file offsets of all the segments, and all the sections
2568   // they contain.
2569   off_t off;
2570   if (!parameters->options().relocatable())
2571     off = this->set_segment_offsets(target, load_seg, pshndx);
2572   else
2573     off = this->set_relocatable_section_offsets(file_header, pshndx);
2574
2575    // Verify that the dummy relaxation does not change anything.
2576   if (is_debugging_enabled(DEBUG_RELAXATION))
2577     {
2578       if (pass == 0)
2579         this->relaxation_debug_check_->read_sections(this->section_list_);
2580       else
2581         this->relaxation_debug_check_->verify_sections(this->section_list_);
2582     }
2583
2584   *pload_seg = load_seg;
2585   return off;
2586 }
2587
2588 // Search the list of patterns and find the postion of the given section
2589 // name in the output section.  If the section name matches a glob
2590 // pattern and a non-glob name, then the non-glob position takes
2591 // precedence.  Return 0 if no match is found.
2592
2593 unsigned int
2594 Layout::find_section_order_index(const std::string& section_name)
2595 {
2596   Unordered_map<std::string, unsigned int>::iterator map_it;
2597   map_it = this->input_section_position_.find(section_name);
2598   if (map_it != this->input_section_position_.end())
2599     return map_it->second;
2600
2601   // Absolute match failed.  Linear search the glob patterns.
2602   std::vector<std::string>::iterator it;
2603   for (it = this->input_section_glob_.begin();
2604        it != this->input_section_glob_.end();
2605        ++it)
2606     {
2607        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2608          {
2609            map_it = this->input_section_position_.find(*it);
2610            gold_assert(map_it != this->input_section_position_.end());
2611            return map_it->second;
2612          }
2613     }
2614   return 0;
2615 }
2616
2617 // Read the sequence of input sections from the file specified with
2618 // option --section-ordering-file.
2619
2620 void
2621 Layout::read_layout_from_file()
2622 {
2623   const char* filename = parameters->options().section_ordering_file();
2624   std::ifstream in;
2625   std::string line;
2626
2627   in.open(filename);
2628   if (!in)
2629     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2630                filename, strerror(errno));
2631
2632   std::getline(in, line);   // this chops off the trailing \n, if any
2633   unsigned int position = 1;
2634   this->set_section_ordering_specified();
2635
2636   while (in)
2637     {
2638       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2639         line.resize(line.length() - 1);
2640       // Ignore comments, beginning with '#'
2641       if (line[0] == '#')
2642         {
2643           std::getline(in, line);
2644           continue;
2645         }
2646       this->input_section_position_[line] = position;
2647       // Store all glob patterns in a vector.
2648       if (is_wildcard_string(line.c_str()))
2649         this->input_section_glob_.push_back(line);
2650       position++;
2651       std::getline(in, line);
2652     }
2653 }
2654
2655 // Finalize the layout.  When this is called, we have created all the
2656 // output sections and all the output segments which are based on
2657 // input sections.  We have several things to do, and we have to do
2658 // them in the right order, so that we get the right results correctly
2659 // and efficiently.
2660
2661 // 1) Finalize the list of output segments and create the segment
2662 // table header.
2663
2664 // 2) Finalize the dynamic symbol table and associated sections.
2665
2666 // 3) Determine the final file offset of all the output segments.
2667
2668 // 4) Determine the final file offset of all the SHF_ALLOC output
2669 // sections.
2670
2671 // 5) Create the symbol table sections and the section name table
2672 // section.
2673
2674 // 6) Finalize the symbol table: set symbol values to their final
2675 // value and make a final determination of which symbols are going
2676 // into the output symbol table.
2677
2678 // 7) Create the section table header.
2679
2680 // 8) Determine the final file offset of all the output sections which
2681 // are not SHF_ALLOC, including the section table header.
2682
2683 // 9) Finalize the ELF file header.
2684
2685 // This function returns the size of the output file.
2686
2687 off_t
2688 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2689                  Target* target, const Task* task)
2690 {
2691   target->finalize_sections(this, input_objects, symtab);
2692
2693   this->count_local_symbols(task, input_objects);
2694
2695   this->link_stabs_sections();
2696
2697   Output_segment* phdr_seg = NULL;
2698   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2699     {
2700       // There was a dynamic object in the link.  We need to create
2701       // some information for the dynamic linker.
2702
2703       // Create the PT_PHDR segment which will hold the program
2704       // headers.
2705       if (!this->script_options_->saw_phdrs_clause())
2706         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2707
2708       // Create the dynamic symbol table, including the hash table.
2709       Output_section* dynstr;
2710       std::vector<Symbol*> dynamic_symbols;
2711       unsigned int local_dynamic_count;
2712       Versions versions(*this->script_options()->version_script_info(),
2713                         &this->dynpool_);
2714       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2715                                   &local_dynamic_count, &dynamic_symbols,
2716                                   &versions);
2717
2718       // Create the .interp section to hold the name of the
2719       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2720       // if we saw a .interp section in an input file.
2721       if ((!parameters->options().shared()
2722            || parameters->options().dynamic_linker() != NULL)
2723           && this->interp_segment_ == NULL)
2724         this->create_interp(target);
2725
2726       // Finish the .dynamic section to hold the dynamic data, and put
2727       // it in a PT_DYNAMIC segment.
2728       this->finish_dynamic_section(input_objects, symtab);
2729
2730       // We should have added everything we need to the dynamic string
2731       // table.
2732       this->dynpool_.set_string_offsets();
2733
2734       // Create the version sections.  We can't do this until the
2735       // dynamic string table is complete.
2736       this->create_version_sections(&versions, symtab, local_dynamic_count,
2737                                     dynamic_symbols, dynstr);
2738
2739       // Set the size of the _DYNAMIC symbol.  We can't do this until
2740       // after we call create_version_sections.
2741       this->set_dynamic_symbol_size(symtab);
2742     }
2743
2744   // Create segment headers.
2745   Output_segment_headers* segment_headers =
2746     (parameters->options().relocatable()
2747      ? NULL
2748      : new Output_segment_headers(this->segment_list_));
2749
2750   // Lay out the file header.
2751   Output_file_header* file_header = new Output_file_header(target, symtab,
2752                                                            segment_headers);
2753
2754   this->special_output_list_.push_back(file_header);
2755   if (segment_headers != NULL)
2756     this->special_output_list_.push_back(segment_headers);
2757
2758   // Find approriate places for orphan output sections if we are using
2759   // a linker script.
2760   if (this->script_options_->saw_sections_clause())
2761     this->place_orphan_sections_in_script();
2762
2763   Output_segment* load_seg;
2764   off_t off;
2765   unsigned int shndx;
2766   int pass = 0;
2767
2768   // Take a snapshot of the section layout as needed.
2769   if (target->may_relax())
2770     this->prepare_for_relaxation();
2771
2772   // Run the relaxation loop to lay out sections.
2773   do
2774     {
2775       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2776                                        phdr_seg, segment_headers, file_header,
2777                                        &shndx);
2778       pass++;
2779     }
2780   while (target->may_relax()
2781          && target->relax(pass, input_objects, symtab, this, task));
2782
2783   // If there is a load segment that contains the file and program headers,
2784   // provide a symbol __ehdr_start pointing there.
2785   // A program can use this to examine itself robustly.
2786   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2787   if (ehdr_start != NULL && ehdr_start->is_predefined())
2788     {
2789       if (load_seg != NULL)
2790         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2791       else
2792         ehdr_start->set_undefined();
2793     }
2794
2795   // Set the file offsets of all the non-data sections we've seen so
2796   // far which don't have to wait for the input sections.  We need
2797   // this in order to finalize local symbols in non-allocated
2798   // sections.
2799   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2800
2801   // Set the section indexes of all unallocated sections seen so far,
2802   // in case any of them are somehow referenced by a symbol.
2803   shndx = this->set_section_indexes(shndx);
2804
2805   // Create the symbol table sections.
2806   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2807   if (!parameters->doing_static_link())
2808     this->assign_local_dynsym_offsets(input_objects);
2809
2810   // Process any symbol assignments from a linker script.  This must
2811   // be called after the symbol table has been finalized.
2812   this->script_options_->finalize_symbols(symtab, this);
2813
2814   // Create the incremental inputs sections.
2815   if (this->incremental_inputs_)
2816     {
2817       this->incremental_inputs_->finalize();
2818       this->create_incremental_info_sections(symtab);
2819     }
2820
2821   // Create the .shstrtab section.
2822   Output_section* shstrtab_section = this->create_shstrtab();
2823
2824   // Set the file offsets of the rest of the non-data sections which
2825   // don't have to wait for the input sections.
2826   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2827
2828   // Now that all sections have been created, set the section indexes
2829   // for any sections which haven't been done yet.
2830   shndx = this->set_section_indexes(shndx);
2831
2832   // Create the section table header.
2833   this->create_shdrs(shstrtab_section, &off);
2834
2835   // If there are no sections which require postprocessing, we can
2836   // handle the section names now, and avoid a resize later.
2837   if (!this->any_postprocessing_sections_)
2838     {
2839       off = this->set_section_offsets(off,
2840                                       POSTPROCESSING_SECTIONS_PASS);
2841       off =
2842           this->set_section_offsets(off,
2843                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2844     }
2845
2846   file_header->set_section_info(this->section_headers_, shstrtab_section);
2847
2848   // Now we know exactly where everything goes in the output file
2849   // (except for non-allocated sections which require postprocessing).
2850   Output_data::layout_complete();
2851
2852   this->output_file_size_ = off;
2853
2854   return off;
2855 }
2856
2857 // Create a note header following the format defined in the ELF ABI.
2858 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2859 // of the section to create, DESCSZ is the size of the descriptor.
2860 // ALLOCATE is true if the section should be allocated in memory.
2861 // This returns the new note section.  It sets *TRAILING_PADDING to
2862 // the number of trailing zero bytes required.
2863
2864 Output_section*
2865 Layout::create_note(const char* name, int note_type,
2866                     const char* section_name, size_t descsz,
2867                     bool allocate, size_t* trailing_padding)
2868 {
2869   // Authorities all agree that the values in a .note field should
2870   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2871   // they differ on what the alignment is for 64-bit binaries.
2872   // The GABI says unambiguously they take 8-byte alignment:
2873   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2874   // Other documentation says alignment should always be 4 bytes:
2875   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2876   // GNU ld and GNU readelf both support the latter (at least as of
2877   // version 2.16.91), and glibc always generates the latter for
2878   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2879   // here.
2880 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2881   const int size = parameters->target().get_size();
2882 #else
2883   const int size = 32;
2884 #endif
2885
2886   // The contents of the .note section.
2887   size_t namesz = strlen(name) + 1;
2888   size_t aligned_namesz = align_address(namesz, size / 8);
2889   size_t aligned_descsz = align_address(descsz, size / 8);
2890
2891   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2892
2893   unsigned char* buffer = new unsigned char[notehdrsz];
2894   memset(buffer, 0, notehdrsz);
2895
2896   bool is_big_endian = parameters->target().is_big_endian();
2897
2898   if (size == 32)
2899     {
2900       if (!is_big_endian)
2901         {
2902           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2903           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2904           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2905         }
2906       else
2907         {
2908           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2909           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2910           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2911         }
2912     }
2913   else if (size == 64)
2914     {
2915       if (!is_big_endian)
2916         {
2917           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2918           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2919           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2920         }
2921       else
2922         {
2923           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2924           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2925           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2926         }
2927     }
2928   else
2929     gold_unreachable();
2930
2931   memcpy(buffer + 3 * (size / 8), name, namesz);
2932
2933   elfcpp::Elf_Xword flags = 0;
2934   Output_section_order order = ORDER_INVALID;
2935   if (allocate)
2936     {
2937       flags = elfcpp::SHF_ALLOC;
2938       order = ORDER_RO_NOTE;
2939     }
2940   Output_section* os = this->choose_output_section(NULL, section_name,
2941                                                    elfcpp::SHT_NOTE,
2942                                                    flags, false, order, false);
2943   if (os == NULL)
2944     return NULL;
2945
2946   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2947                                                            size / 8,
2948                                                            "** note header");
2949   os->add_output_section_data(posd);
2950
2951   *trailing_padding = aligned_descsz - descsz;
2952
2953   return os;
2954 }
2955
2956 // For an executable or shared library, create a note to record the
2957 // version of gold used to create the binary.
2958
2959 void
2960 Layout::create_gold_note()
2961 {
2962   if (parameters->options().relocatable()
2963       || parameters->incremental_update())
2964     return;
2965
2966   std::string desc = std::string("gold ") + gold::get_version_string();
2967
2968   size_t trailing_padding;
2969   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2970                                          ".note.gnu.gold-version", desc.size(),
2971                                          false, &trailing_padding);
2972   if (os == NULL)
2973     return;
2974
2975   Output_section_data* posd = new Output_data_const(desc, 4);
2976   os->add_output_section_data(posd);
2977
2978   if (trailing_padding > 0)
2979     {
2980       posd = new Output_data_zero_fill(trailing_padding, 0);
2981       os->add_output_section_data(posd);
2982     }
2983 }
2984
2985 // Record whether the stack should be executable.  This can be set
2986 // from the command line using the -z execstack or -z noexecstack
2987 // options.  Otherwise, if any input file has a .note.GNU-stack
2988 // section with the SHF_EXECINSTR flag set, the stack should be
2989 // executable.  Otherwise, if at least one input file a
2990 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2991 // section, we use the target default for whether the stack should be
2992 // executable.  If -z stack-size was used to set a p_memsz value for
2993 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
2994 // don't generate a stack note.  When generating a object file, we
2995 // create a .note.GNU-stack section with the appropriate marking.
2996 // When generating an executable or shared library, we create a
2997 // PT_GNU_STACK segment.
2998
2999 void
3000 Layout::create_stack_segment()
3001 {
3002   bool is_stack_executable;
3003   if (parameters->options().is_execstack_set())
3004     {
3005       is_stack_executable = parameters->options().is_stack_executable();
3006       if (!is_stack_executable
3007           && this->input_requires_executable_stack_
3008           && parameters->options().warn_execstack())
3009         gold_warning(_("one or more inputs require executable stack, "
3010                        "but -z noexecstack was given"));
3011     }
3012   else if (!this->input_with_gnu_stack_note_
3013            && (!parameters->options().user_set_stack_size()
3014                || parameters->options().relocatable()))
3015     return;
3016   else
3017     {
3018       if (this->input_requires_executable_stack_)
3019         is_stack_executable = true;
3020       else if (this->input_without_gnu_stack_note_)
3021         is_stack_executable =
3022           parameters->target().is_default_stack_executable();
3023       else
3024         is_stack_executable = false;
3025     }
3026
3027   if (parameters->options().relocatable())
3028     {
3029       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3030       elfcpp::Elf_Xword flags = 0;
3031       if (is_stack_executable)
3032         flags |= elfcpp::SHF_EXECINSTR;
3033       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3034                                 ORDER_INVALID, false);
3035     }
3036   else
3037     {
3038       if (this->script_options_->saw_phdrs_clause())
3039         return;
3040       int flags = elfcpp::PF_R | elfcpp::PF_W;
3041       if (is_stack_executable)
3042         flags |= elfcpp::PF_X;
3043       Output_segment* seg =
3044         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3045       seg->set_size(parameters->options().stack_size());
3046       // BFD lets targets override this default alignment, but the only
3047       // targets that do so are ones that Gold does not support so far.
3048       seg->set_minimum_p_align(16);
3049     }
3050 }
3051
3052 // If --build-id was used, set up the build ID note.
3053
3054 void
3055 Layout::create_build_id()
3056 {
3057   if (!parameters->options().user_set_build_id())
3058     return;
3059
3060   const char* style = parameters->options().build_id();
3061   if (strcmp(style, "none") == 0)
3062     return;
3063
3064   // Set DESCSZ to the size of the note descriptor.  When possible,
3065   // set DESC to the note descriptor contents.
3066   size_t descsz;
3067   std::string desc;
3068   if (strcmp(style, "md5") == 0)
3069     descsz = 128 / 8;
3070   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3071     descsz = 160 / 8;
3072   else if (strcmp(style, "uuid") == 0)
3073     {
3074 #ifndef __MINGW32__
3075       const size_t uuidsz = 128 / 8;
3076
3077       char buffer[uuidsz];
3078       memset(buffer, 0, uuidsz);
3079
3080       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3081       if (descriptor < 0)
3082         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3083                    strerror(errno));
3084       else
3085         {
3086           ssize_t got = ::read(descriptor, buffer, uuidsz);
3087           release_descriptor(descriptor, true);
3088           if (got < 0)
3089             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3090           else if (static_cast<size_t>(got) != uuidsz)
3091             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3092                        uuidsz, got);
3093         }
3094
3095       desc.assign(buffer, uuidsz);
3096       descsz = uuidsz;
3097 #else // __MINGW32__
3098       UUID uuid;
3099       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3100
3101       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3102       if (!rpc_library)
3103         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3104       else
3105         {
3106           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3107               GetProcAddress(rpc_library, "UuidCreate"));
3108           if (!uuid_create)
3109             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3110           else if (uuid_create(&uuid) != RPC_S_OK)
3111             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3112           FreeLibrary(rpc_library);
3113         }
3114       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3115       descsz = sizeof(UUID);
3116 #endif // __MINGW32__
3117     }
3118   else if (strncmp(style, "0x", 2) == 0)
3119     {
3120       hex_init();
3121       const char* p = style + 2;
3122       while (*p != '\0')
3123         {
3124           if (hex_p(p[0]) && hex_p(p[1]))
3125             {
3126               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3127               desc += c;
3128               p += 2;
3129             }
3130           else if (*p == '-' || *p == ':')
3131             ++p;
3132           else
3133             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3134                        style);
3135         }
3136       descsz = desc.size();
3137     }
3138   else
3139     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3140
3141   // Create the note.
3142   size_t trailing_padding;
3143   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3144                                          ".note.gnu.build-id", descsz, true,
3145                                          &trailing_padding);
3146   if (os == NULL)
3147     return;
3148
3149   if (!desc.empty())
3150     {
3151       // We know the value already, so we fill it in now.
3152       gold_assert(desc.size() == descsz);
3153
3154       Output_section_data* posd = new Output_data_const(desc, 4);
3155       os->add_output_section_data(posd);
3156
3157       if (trailing_padding != 0)
3158         {
3159           posd = new Output_data_zero_fill(trailing_padding, 0);
3160           os->add_output_section_data(posd);
3161         }
3162     }
3163   else
3164     {
3165       // We need to compute a checksum after we have completed the
3166       // link.
3167       gold_assert(trailing_padding == 0);
3168       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3169       os->add_output_section_data(this->build_id_note_);
3170     }
3171 }
3172
3173 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3174 // field of the former should point to the latter.  I'm not sure who
3175 // started this, but the GNU linker does it, and some tools depend
3176 // upon it.
3177
3178 void
3179 Layout::link_stabs_sections()
3180 {
3181   if (!this->have_stabstr_section_)
3182     return;
3183
3184   for (Section_list::iterator p = this->section_list_.begin();
3185        p != this->section_list_.end();
3186        ++p)
3187     {
3188       if ((*p)->type() != elfcpp::SHT_STRTAB)
3189         continue;
3190
3191       const char* name = (*p)->name();
3192       if (strncmp(name, ".stab", 5) != 0)
3193         continue;
3194
3195       size_t len = strlen(name);
3196       if (strcmp(name + len - 3, "str") != 0)
3197         continue;
3198
3199       std::string stab_name(name, len - 3);
3200       Output_section* stab_sec;
3201       stab_sec = this->find_output_section(stab_name.c_str());
3202       if (stab_sec != NULL)
3203         stab_sec->set_link_section(*p);
3204     }
3205 }
3206
3207 // Create .gnu_incremental_inputs and related sections needed
3208 // for the next run of incremental linking to check what has changed.
3209
3210 void
3211 Layout::create_incremental_info_sections(Symbol_table* symtab)
3212 {
3213   Incremental_inputs* incr = this->incremental_inputs_;
3214
3215   gold_assert(incr != NULL);
3216
3217   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3218   incr->create_data_sections(symtab);
3219
3220   // Add the .gnu_incremental_inputs section.
3221   const char* incremental_inputs_name =
3222     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3223   Output_section* incremental_inputs_os =
3224     this->make_output_section(incremental_inputs_name,
3225                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3226                               ORDER_INVALID, false);
3227   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3228
3229   // Add the .gnu_incremental_symtab section.
3230   const char* incremental_symtab_name =
3231     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3232   Output_section* incremental_symtab_os =
3233     this->make_output_section(incremental_symtab_name,
3234                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3235                               ORDER_INVALID, false);
3236   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3237   incremental_symtab_os->set_entsize(4);
3238
3239   // Add the .gnu_incremental_relocs section.
3240   const char* incremental_relocs_name =
3241     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3242   Output_section* incremental_relocs_os =
3243     this->make_output_section(incremental_relocs_name,
3244                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3245                               ORDER_INVALID, false);
3246   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3247   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3248
3249   // Add the .gnu_incremental_got_plt section.
3250   const char* incremental_got_plt_name =
3251     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3252   Output_section* incremental_got_plt_os =
3253     this->make_output_section(incremental_got_plt_name,
3254                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3255                               ORDER_INVALID, false);
3256   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3257
3258   // Add the .gnu_incremental_strtab section.
3259   const char* incremental_strtab_name =
3260     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3261   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3262                                                         elfcpp::SHT_STRTAB, 0,
3263                                                         ORDER_INVALID, false);
3264   Output_data_strtab* strtab_data =
3265       new Output_data_strtab(incr->get_stringpool());
3266   incremental_strtab_os->add_output_section_data(strtab_data);
3267
3268   incremental_inputs_os->set_after_input_sections();
3269   incremental_symtab_os->set_after_input_sections();
3270   incremental_relocs_os->set_after_input_sections();
3271   incremental_got_plt_os->set_after_input_sections();
3272
3273   incremental_inputs_os->set_link_section(incremental_strtab_os);
3274   incremental_symtab_os->set_link_section(incremental_inputs_os);
3275   incremental_relocs_os->set_link_section(incremental_inputs_os);
3276   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3277 }
3278
3279 // Return whether SEG1 should be before SEG2 in the output file.  This
3280 // is based entirely on the segment type and flags.  When this is
3281 // called the segment addresses have normally not yet been set.
3282
3283 bool
3284 Layout::segment_precedes(const Output_segment* seg1,
3285                          const Output_segment* seg2)
3286 {
3287   elfcpp::Elf_Word type1 = seg1->type();
3288   elfcpp::Elf_Word type2 = seg2->type();
3289
3290   // The single PT_PHDR segment is required to precede any loadable
3291   // segment.  We simply make it always first.
3292   if (type1 == elfcpp::PT_PHDR)
3293     {
3294       gold_assert(type2 != elfcpp::PT_PHDR);
3295       return true;
3296     }
3297   if (type2 == elfcpp::PT_PHDR)
3298     return false;
3299
3300   // The single PT_INTERP segment is required to precede any loadable
3301   // segment.  We simply make it always second.
3302   if (type1 == elfcpp::PT_INTERP)
3303     {
3304       gold_assert(type2 != elfcpp::PT_INTERP);
3305       return true;
3306     }
3307   if (type2 == elfcpp::PT_INTERP)
3308     return false;
3309
3310   // We then put PT_LOAD segments before any other segments.
3311   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3312     return true;
3313   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3314     return false;
3315
3316   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3317   // segment, because that is where the dynamic linker expects to find
3318   // it (this is just for efficiency; other positions would also work
3319   // correctly).
3320   if (type1 == elfcpp::PT_TLS
3321       && type2 != elfcpp::PT_TLS
3322       && type2 != elfcpp::PT_GNU_RELRO)
3323     return false;
3324   if (type2 == elfcpp::PT_TLS
3325       && type1 != elfcpp::PT_TLS
3326       && type1 != elfcpp::PT_GNU_RELRO)
3327     return true;
3328
3329   // We put the PT_GNU_RELRO segment last, because that is where the
3330   // dynamic linker expects to find it (as with PT_TLS, this is just
3331   // for efficiency).
3332   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3333     return false;
3334   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3335     return true;
3336
3337   const elfcpp::Elf_Word flags1 = seg1->flags();
3338   const elfcpp::Elf_Word flags2 = seg2->flags();
3339
3340   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3341   // by the numeric segment type and flags values.  There should not
3342   // be more than one segment with the same type and flags, except
3343   // when a linker script specifies such.
3344   if (type1 != elfcpp::PT_LOAD)
3345     {
3346       if (type1 != type2)
3347         return type1 < type2;
3348       gold_assert(flags1 != flags2
3349                   || this->script_options_->saw_phdrs_clause());
3350       return flags1 < flags2;
3351     }
3352
3353   // If the addresses are set already, sort by load address.
3354   if (seg1->are_addresses_set())
3355     {
3356       if (!seg2->are_addresses_set())
3357         return true;
3358
3359       unsigned int section_count1 = seg1->output_section_count();
3360       unsigned int section_count2 = seg2->output_section_count();
3361       if (section_count1 == 0 && section_count2 > 0)
3362         return true;
3363       if (section_count1 > 0 && section_count2 == 0)
3364         return false;
3365
3366       uint64_t paddr1 = (seg1->are_addresses_set()
3367                          ? seg1->paddr()
3368                          : seg1->first_section_load_address());
3369       uint64_t paddr2 = (seg2->are_addresses_set()
3370                          ? seg2->paddr()
3371                          : seg2->first_section_load_address());
3372
3373       if (paddr1 != paddr2)
3374         return paddr1 < paddr2;
3375     }
3376   else if (seg2->are_addresses_set())
3377     return false;
3378
3379   // A segment which holds large data comes after a segment which does
3380   // not hold large data.
3381   if (seg1->is_large_data_segment())
3382     {
3383       if (!seg2->is_large_data_segment())
3384         return false;
3385     }
3386   else if (seg2->is_large_data_segment())
3387     return true;
3388
3389   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3390   // segments come before writable segments.  Then writable segments
3391   // with data come before writable segments without data.  Then
3392   // executable segments come before non-executable segments.  Then
3393   // the unlikely case of a non-readable segment comes before the
3394   // normal case of a readable segment.  If there are multiple
3395   // segments with the same type and flags, we require that the
3396   // address be set, and we sort by virtual address and then physical
3397   // address.
3398   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3399     return (flags1 & elfcpp::PF_W) == 0;
3400   if ((flags1 & elfcpp::PF_W) != 0
3401       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3402     return seg1->has_any_data_sections();
3403   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3404     return (flags1 & elfcpp::PF_X) != 0;
3405   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3406     return (flags1 & elfcpp::PF_R) == 0;
3407
3408   // We shouldn't get here--we shouldn't create segments which we
3409   // can't distinguish.  Unless of course we are using a weird linker
3410   // script or overlapping --section-start options.  We could also get
3411   // here if plugins want unique segments for subsets of sections.
3412   gold_assert(this->script_options_->saw_phdrs_clause()
3413               || parameters->options().any_section_start()
3414               || this->is_unique_segment_for_sections_specified());
3415   return false;
3416 }
3417
3418 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3419
3420 static off_t
3421 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3422 {
3423   uint64_t unsigned_off = off;
3424   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3425                           | (addr & (abi_pagesize - 1)));
3426   if (aligned_off < unsigned_off)
3427     aligned_off += abi_pagesize;
3428   return aligned_off;
3429 }
3430
3431 // On targets where the text segment contains only executable code,
3432 // a non-executable segment is never the text segment.
3433
3434 static inline bool
3435 is_text_segment(const Target* target, const Output_segment* seg)
3436 {
3437   elfcpp::Elf_Xword flags = seg->flags();
3438   if ((flags & elfcpp::PF_W) != 0)
3439     return false;
3440   if ((flags & elfcpp::PF_X) == 0)
3441     return !target->isolate_execinstr();
3442   return true;
3443 }
3444
3445 // Set the file offsets of all the segments, and all the sections they
3446 // contain.  They have all been created.  LOAD_SEG must be be laid out
3447 // first.  Return the offset of the data to follow.
3448
3449 off_t
3450 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3451                             unsigned int* pshndx)
3452 {
3453   // Sort them into the final order.  We use a stable sort so that we
3454   // don't randomize the order of indistinguishable segments created
3455   // by linker scripts.
3456   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3457                    Layout::Compare_segments(this));
3458
3459   // Find the PT_LOAD segments, and set their addresses and offsets
3460   // and their section's addresses and offsets.
3461   uint64_t start_addr;
3462   if (parameters->options().user_set_Ttext())
3463     start_addr = parameters->options().Ttext();
3464   else if (parameters->options().output_is_position_independent())
3465     start_addr = 0;
3466   else
3467     start_addr = target->default_text_segment_address();
3468
3469   uint64_t addr = start_addr;
3470   off_t off = 0;
3471
3472   // If LOAD_SEG is NULL, then the file header and segment headers
3473   // will not be loadable.  But they still need to be at offset 0 in
3474   // the file.  Set their offsets now.
3475   if (load_seg == NULL)
3476     {
3477       for (Data_list::iterator p = this->special_output_list_.begin();
3478            p != this->special_output_list_.end();
3479            ++p)
3480         {
3481           off = align_address(off, (*p)->addralign());
3482           (*p)->set_address_and_file_offset(0, off);
3483           off += (*p)->data_size();
3484         }
3485     }
3486
3487   unsigned int increase_relro = this->increase_relro_;
3488   if (this->script_options_->saw_sections_clause())
3489     increase_relro = 0;
3490
3491   const bool check_sections = parameters->options().check_sections();
3492   Output_segment* last_load_segment = NULL;
3493
3494   unsigned int shndx_begin = *pshndx;
3495   unsigned int shndx_load_seg = *pshndx;
3496
3497   for (Segment_list::iterator p = this->segment_list_.begin();
3498        p != this->segment_list_.end();
3499        ++p)
3500     {
3501       if ((*p)->type() == elfcpp::PT_LOAD)
3502         {
3503           if (target->isolate_execinstr())
3504             {
3505               // When we hit the segment that should contain the
3506               // file headers, reset the file offset so we place
3507               // it and subsequent segments appropriately.
3508               // We'll fix up the preceding segments below.
3509               if (load_seg == *p)
3510                 {
3511                   if (off == 0)
3512                     load_seg = NULL;
3513                   else
3514                     {
3515                       off = 0;
3516                       shndx_load_seg = *pshndx;
3517                     }
3518                 }
3519             }
3520           else
3521             {
3522               // Verify that the file headers fall into the first segment.
3523               if (load_seg != NULL && load_seg != *p)
3524                 gold_unreachable();
3525               load_seg = NULL;
3526             }
3527
3528           bool are_addresses_set = (*p)->are_addresses_set();
3529           if (are_addresses_set)
3530             {
3531               // When it comes to setting file offsets, we care about
3532               // the physical address.
3533               addr = (*p)->paddr();
3534             }
3535           else if (parameters->options().user_set_Ttext()
3536                    && (parameters->options().omagic()
3537                        || is_text_segment(target, *p)))
3538             {
3539               are_addresses_set = true;
3540             }
3541           else if (parameters->options().user_set_Trodata_segment()
3542                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3543             {
3544               addr = parameters->options().Trodata_segment();
3545               are_addresses_set = true;
3546             }
3547           else if (parameters->options().user_set_Tdata()
3548                    && ((*p)->flags() & elfcpp::PF_W) != 0
3549                    && (!parameters->options().user_set_Tbss()
3550                        || (*p)->has_any_data_sections()))
3551             {
3552               addr = parameters->options().Tdata();
3553               are_addresses_set = true;
3554             }
3555           else if (parameters->options().user_set_Tbss()
3556                    && ((*p)->flags() & elfcpp::PF_W) != 0
3557                    && !(*p)->has_any_data_sections())
3558             {
3559               addr = parameters->options().Tbss();
3560               are_addresses_set = true;
3561             }
3562
3563           uint64_t orig_addr = addr;
3564           uint64_t orig_off = off;
3565
3566           uint64_t aligned_addr = 0;
3567           uint64_t abi_pagesize = target->abi_pagesize();
3568           uint64_t common_pagesize = target->common_pagesize();
3569
3570           if (!parameters->options().nmagic()
3571               && !parameters->options().omagic())
3572             (*p)->set_minimum_p_align(abi_pagesize);
3573
3574           if (!are_addresses_set)
3575             {
3576               // Skip the address forward one page, maintaining the same
3577               // position within the page.  This lets us store both segments
3578               // overlapping on a single page in the file, but the loader will
3579               // put them on different pages in memory. We will revisit this
3580               // decision once we know the size of the segment.
3581
3582               uint64_t max_align = (*p)->maximum_alignment();
3583               if (max_align > abi_pagesize)
3584                 addr = align_address(addr, max_align);
3585               aligned_addr = addr;
3586
3587               if (load_seg == *p)
3588                 {
3589                   // This is the segment that will contain the file
3590                   // headers, so its offset will have to be exactly zero.
3591                   gold_assert(orig_off == 0);
3592
3593                   // If the target wants a fixed minimum distance from the
3594                   // text segment to the read-only segment, move up now.
3595                   uint64_t min_addr =
3596                     start_addr + (parameters->options().user_set_rosegment_gap()
3597                                   ? parameters->options().rosegment_gap()
3598                                   : target->rosegment_gap());
3599                   if (addr < min_addr)
3600                     addr = min_addr;
3601
3602                   // But this is not the first segment!  To make its
3603                   // address congruent with its offset, that address better
3604                   // be aligned to the ABI-mandated page size.
3605                   addr = align_address(addr, abi_pagesize);
3606                   aligned_addr = addr;
3607                 }
3608               else
3609                 {
3610                   if ((addr & (abi_pagesize - 1)) != 0)
3611                     addr = addr + abi_pagesize;
3612
3613                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3614                 }
3615             }
3616
3617           if (!parameters->options().nmagic()
3618               && !parameters->options().omagic())
3619             {
3620               // Here we are also taking care of the case when
3621               // the maximum segment alignment is larger than the page size.
3622               off = align_file_offset(off, addr,
3623                                       std::max(abi_pagesize,
3624                                                (*p)->maximum_alignment()));
3625             }
3626           else
3627             {
3628               // This is -N or -n with a section script which prevents
3629               // us from using a load segment.  We need to ensure that
3630               // the file offset is aligned to the alignment of the
3631               // segment.  This is because the linker script
3632               // implicitly assumed a zero offset.  If we don't align
3633               // here, then the alignment of the sections in the
3634               // linker script may not match the alignment of the
3635               // sections in the set_section_addresses call below,
3636               // causing an error about dot moving backward.
3637               off = align_address(off, (*p)->maximum_alignment());
3638             }
3639
3640           unsigned int shndx_hold = *pshndx;
3641           bool has_relro = false;
3642           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3643                                                           false, addr,
3644                                                           &increase_relro,
3645                                                           &has_relro,
3646                                                           &off, pshndx);
3647
3648           // Now that we know the size of this segment, we may be able
3649           // to save a page in memory, at the cost of wasting some
3650           // file space, by instead aligning to the start of a new
3651           // page.  Here we use the real machine page size rather than
3652           // the ABI mandated page size.  If the segment has been
3653           // aligned so that the relro data ends at a page boundary,
3654           // we do not try to realign it.
3655
3656           if (!are_addresses_set
3657               && !has_relro
3658               && aligned_addr != addr
3659               && !parameters->incremental())
3660             {
3661               uint64_t first_off = (common_pagesize
3662                                     - (aligned_addr
3663                                        & (common_pagesize - 1)));
3664               uint64_t last_off = new_addr & (common_pagesize - 1);
3665               if (first_off > 0
3666                   && last_off > 0
3667                   && ((aligned_addr & ~ (common_pagesize - 1))
3668                       != (new_addr & ~ (common_pagesize - 1)))
3669                   && first_off + last_off <= common_pagesize)
3670                 {
3671                   *pshndx = shndx_hold;
3672                   addr = align_address(aligned_addr, common_pagesize);
3673                   addr = align_address(addr, (*p)->maximum_alignment());
3674                   if ((addr & (abi_pagesize - 1)) != 0)
3675                     addr = addr + abi_pagesize;
3676                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3677                   off = align_file_offset(off, addr, abi_pagesize);
3678
3679                   increase_relro = this->increase_relro_;
3680                   if (this->script_options_->saw_sections_clause())
3681                     increase_relro = 0;
3682                   has_relro = false;
3683
3684                   new_addr = (*p)->set_section_addresses(target, this,
3685                                                          true, addr,
3686                                                          &increase_relro,
3687                                                          &has_relro,
3688                                                          &off, pshndx);
3689                 }
3690             }
3691
3692           addr = new_addr;
3693
3694           // Implement --check-sections.  We know that the segments
3695           // are sorted by LMA.
3696           if (check_sections && last_load_segment != NULL)
3697             {
3698               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3699               if (last_load_segment->paddr() + last_load_segment->memsz()
3700                   > (*p)->paddr())
3701                 {
3702                   unsigned long long lb1 = last_load_segment->paddr();
3703                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3704                   unsigned long long lb2 = (*p)->paddr();
3705                   unsigned long long le2 = lb2 + (*p)->memsz();
3706                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3707                                "[0x%llx -> 0x%llx]"),
3708                              lb1, le1, lb2, le2);
3709                 }
3710             }
3711           last_load_segment = *p;
3712         }
3713     }
3714
3715   if (load_seg != NULL && target->isolate_execinstr())
3716     {
3717       // Process the early segments again, setting their file offsets
3718       // so they land after the segments starting at LOAD_SEG.
3719       off = align_file_offset(off, 0, target->abi_pagesize());
3720
3721       this->reset_relax_output();
3722
3723       for (Segment_list::iterator p = this->segment_list_.begin();
3724            *p != load_seg;
3725            ++p)
3726         {
3727           if ((*p)->type() == elfcpp::PT_LOAD)
3728             {
3729               // We repeat the whole job of assigning addresses and
3730               // offsets, but we really only want to change the offsets and
3731               // must ensure that the addresses all come out the same as
3732               // they did the first time through.
3733               bool has_relro = false;
3734               const uint64_t old_addr = (*p)->vaddr();
3735               const uint64_t old_end = old_addr + (*p)->memsz();
3736               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3737                                                               true, old_addr,
3738                                                               &increase_relro,
3739                                                               &has_relro,
3740                                                               &off,
3741                                                               &shndx_begin);
3742               gold_assert(new_addr == old_end);
3743             }
3744         }
3745
3746       gold_assert(shndx_begin == shndx_load_seg);
3747     }
3748
3749   // Handle the non-PT_LOAD segments, setting their offsets from their
3750   // section's offsets.
3751   for (Segment_list::iterator p = this->segment_list_.begin();
3752        p != this->segment_list_.end();
3753        ++p)
3754     {
3755       // PT_GNU_STACK was set up correctly when it was created.
3756       if ((*p)->type() != elfcpp::PT_LOAD
3757           && (*p)->type() != elfcpp::PT_GNU_STACK)
3758         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3759                          ? increase_relro
3760                          : 0);
3761     }
3762
3763   // Set the TLS offsets for each section in the PT_TLS segment.
3764   if (this->tls_segment_ != NULL)
3765     this->tls_segment_->set_tls_offsets();
3766
3767   return off;
3768 }
3769
3770 // Set the offsets of all the allocated sections when doing a
3771 // relocatable link.  This does the same jobs as set_segment_offsets,
3772 // only for a relocatable link.
3773
3774 off_t
3775 Layout::set_relocatable_section_offsets(Output_data* file_header,
3776                                         unsigned int* pshndx)
3777 {
3778   off_t off = 0;
3779
3780   file_header->set_address_and_file_offset(0, 0);
3781   off += file_header->data_size();
3782
3783   for (Section_list::iterator p = this->section_list_.begin();
3784        p != this->section_list_.end();
3785        ++p)
3786     {
3787       // We skip unallocated sections here, except that group sections
3788       // have to come first.
3789       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3790           && (*p)->type() != elfcpp::SHT_GROUP)
3791         continue;
3792
3793       off = align_address(off, (*p)->addralign());
3794
3795       // The linker script might have set the address.
3796       if (!(*p)->is_address_valid())
3797         (*p)->set_address(0);
3798       (*p)->set_file_offset(off);
3799       (*p)->finalize_data_size();
3800       if ((*p)->type() != elfcpp::SHT_NOBITS)
3801         off += (*p)->data_size();
3802
3803       (*p)->set_out_shndx(*pshndx);
3804       ++*pshndx;
3805     }
3806
3807   return off;
3808 }
3809
3810 // Set the file offset of all the sections not associated with a
3811 // segment.
3812
3813 off_t
3814 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3815 {
3816   off_t startoff = off;
3817   off_t maxoff = off;
3818
3819   for (Section_list::iterator p = this->unattached_section_list_.begin();
3820        p != this->unattached_section_list_.end();
3821        ++p)
3822     {
3823       // The symtab section is handled in create_symtab_sections.
3824       if (*p == this->symtab_section_)
3825         continue;
3826
3827       // If we've already set the data size, don't set it again.
3828       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3829         continue;
3830
3831       if (pass == BEFORE_INPUT_SECTIONS_PASS
3832           && (*p)->requires_postprocessing())
3833         {
3834           (*p)->create_postprocessing_buffer();
3835           this->any_postprocessing_sections_ = true;
3836         }
3837
3838       if (pass == BEFORE_INPUT_SECTIONS_PASS
3839           && (*p)->after_input_sections())
3840         continue;
3841       else if (pass == POSTPROCESSING_SECTIONS_PASS
3842                && (!(*p)->after_input_sections()
3843                    || (*p)->type() == elfcpp::SHT_STRTAB))
3844         continue;
3845       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3846                && (!(*p)->after_input_sections()
3847                    || (*p)->type() != elfcpp::SHT_STRTAB))
3848         continue;
3849
3850       if (!parameters->incremental_update())
3851         {
3852           off = align_address(off, (*p)->addralign());
3853           (*p)->set_file_offset(off);
3854           (*p)->finalize_data_size();
3855         }
3856       else
3857         {
3858           // Incremental update: allocate file space from free list.
3859           (*p)->pre_finalize_data_size();
3860           off_t current_size = (*p)->current_data_size();
3861           off = this->allocate(current_size, (*p)->addralign(), startoff);
3862           if (off == -1)
3863             {
3864               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3865                 this->free_list_.dump();
3866               gold_assert((*p)->output_section() != NULL);
3867               gold_fallback(_("out of patch space for section %s; "
3868                               "relink with --incremental-full"),
3869                             (*p)->output_section()->name());
3870             }
3871           (*p)->set_file_offset(off);
3872           (*p)->finalize_data_size();
3873           if ((*p)->data_size() > current_size)
3874             {
3875               gold_assert((*p)->output_section() != NULL);
3876               gold_fallback(_("%s: section changed size; "
3877                               "relink with --incremental-full"),
3878                             (*p)->output_section()->name());
3879             }
3880           gold_debug(DEBUG_INCREMENTAL,
3881                      "set_section_offsets: %08lx %08lx %s",
3882                      static_cast<long>(off),
3883                      static_cast<long>((*p)->data_size()),
3884                      ((*p)->output_section() != NULL
3885                       ? (*p)->output_section()->name() : "(special)"));
3886         }
3887
3888       off += (*p)->data_size();
3889       if (off > maxoff)
3890         maxoff = off;
3891
3892       // At this point the name must be set.
3893       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3894         this->namepool_.add((*p)->name(), false, NULL);
3895     }
3896   return maxoff;
3897 }
3898
3899 // Set the section indexes of all the sections not associated with a
3900 // segment.
3901
3902 unsigned int
3903 Layout::set_section_indexes(unsigned int shndx)
3904 {
3905   for (Section_list::iterator p = this->unattached_section_list_.begin();
3906        p != this->unattached_section_list_.end();
3907        ++p)
3908     {
3909       if (!(*p)->has_out_shndx())
3910         {
3911           (*p)->set_out_shndx(shndx);
3912           ++shndx;
3913         }
3914     }
3915   return shndx;
3916 }
3917
3918 // Set the section addresses according to the linker script.  This is
3919 // only called when we see a SECTIONS clause.  This returns the
3920 // program segment which should hold the file header and segment
3921 // headers, if any.  It will return NULL if they should not be in a
3922 // segment.
3923
3924 Output_segment*
3925 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3926 {
3927   Script_sections* ss = this->script_options_->script_sections();
3928   gold_assert(ss->saw_sections_clause());
3929   return this->script_options_->set_section_addresses(symtab, this);
3930 }
3931
3932 // Place the orphan sections in the linker script.
3933
3934 void
3935 Layout::place_orphan_sections_in_script()
3936 {
3937   Script_sections* ss = this->script_options_->script_sections();
3938   gold_assert(ss->saw_sections_clause());
3939
3940   // Place each orphaned output section in the script.
3941   for (Section_list::iterator p = this->section_list_.begin();
3942        p != this->section_list_.end();
3943        ++p)
3944     {
3945       if (!(*p)->found_in_sections_clause())
3946         ss->place_orphan(*p);
3947     }
3948 }
3949
3950 // Count the local symbols in the regular symbol table and the dynamic
3951 // symbol table, and build the respective string pools.
3952
3953 void
3954 Layout::count_local_symbols(const Task* task,
3955                             const Input_objects* input_objects)
3956 {
3957   // First, figure out an upper bound on the number of symbols we'll
3958   // be inserting into each pool.  This helps us create the pools with
3959   // the right size, to avoid unnecessary hashtable resizing.
3960   unsigned int symbol_count = 0;
3961   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3962        p != input_objects->relobj_end();
3963        ++p)
3964     symbol_count += (*p)->local_symbol_count();
3965
3966   // Go from "upper bound" to "estimate."  We overcount for two
3967   // reasons: we double-count symbols that occur in more than one
3968   // object file, and we count symbols that are dropped from the
3969   // output.  Add it all together and assume we overcount by 100%.
3970   symbol_count /= 2;
3971
3972   // We assume all symbols will go into both the sympool and dynpool.
3973   this->sympool_.reserve(symbol_count);
3974   this->dynpool_.reserve(symbol_count);
3975
3976   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3977        p != input_objects->relobj_end();
3978        ++p)
3979     {
3980       Task_lock_obj<Object> tlo(task, *p);
3981       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3982     }
3983 }
3984
3985 // Create the symbol table sections.  Here we also set the final
3986 // values of the symbols.  At this point all the loadable sections are
3987 // fully laid out.  SHNUM is the number of sections so far.
3988
3989 void
3990 Layout::create_symtab_sections(const Input_objects* input_objects,
3991                                Symbol_table* symtab,
3992                                unsigned int shnum,
3993                                off_t* poff)
3994 {
3995   int symsize;
3996   unsigned int align;
3997   if (parameters->target().get_size() == 32)
3998     {
3999       symsize = elfcpp::Elf_sizes<32>::sym_size;
4000       align = 4;
4001     }
4002   else if (parameters->target().get_size() == 64)
4003     {
4004       symsize = elfcpp::Elf_sizes<64>::sym_size;
4005       align = 8;
4006     }
4007   else
4008     gold_unreachable();
4009
4010   // Compute file offsets relative to the start of the symtab section.
4011   off_t off = 0;
4012
4013   // Save space for the dummy symbol at the start of the section.  We
4014   // never bother to write this out--it will just be left as zero.
4015   off += symsize;
4016   unsigned int local_symbol_index = 1;
4017
4018   // Add STT_SECTION symbols for each Output section which needs one.
4019   for (Section_list::iterator p = this->section_list_.begin();
4020        p != this->section_list_.end();
4021        ++p)
4022     {
4023       if (!(*p)->needs_symtab_index())
4024         (*p)->set_symtab_index(-1U);
4025       else
4026         {
4027           (*p)->set_symtab_index(local_symbol_index);
4028           ++local_symbol_index;
4029           off += symsize;
4030         }
4031     }
4032
4033   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4034        p != input_objects->relobj_end();
4035        ++p)
4036     {
4037       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4038                                                         off, symtab);
4039       off += (index - local_symbol_index) * symsize;
4040       local_symbol_index = index;
4041     }
4042
4043   unsigned int local_symcount = local_symbol_index;
4044   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4045
4046   off_t dynoff;
4047   size_t dyn_global_index;
4048   size_t dyncount;
4049   if (this->dynsym_section_ == NULL)
4050     {
4051       dynoff = 0;
4052       dyn_global_index = 0;
4053       dyncount = 0;
4054     }
4055   else
4056     {
4057       dyn_global_index = this->dynsym_section_->info();
4058       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4059       dynoff = this->dynsym_section_->offset() + locsize;
4060       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4061       gold_assert(static_cast<off_t>(dyncount * symsize)
4062                   == this->dynsym_section_->data_size() - locsize);
4063     }
4064
4065   off_t global_off = off;
4066   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4067                          &this->sympool_, &local_symcount);
4068
4069   if (!parameters->options().strip_all())
4070     {
4071       this->sympool_.set_string_offsets();
4072
4073       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4074       Output_section* osymtab = this->make_output_section(symtab_name,
4075                                                           elfcpp::SHT_SYMTAB,
4076                                                           0, ORDER_INVALID,
4077                                                           false);
4078       this->symtab_section_ = osymtab;
4079
4080       Output_section_data* pos = new Output_data_fixed_space(off, align,
4081                                                              "** symtab");
4082       osymtab->add_output_section_data(pos);
4083
4084       // We generate a .symtab_shndx section if we have more than
4085       // SHN_LORESERVE sections.  Technically it is possible that we
4086       // don't need one, because it is possible that there are no
4087       // symbols in any of sections with indexes larger than
4088       // SHN_LORESERVE.  That is probably unusual, though, and it is
4089       // easier to always create one than to compute section indexes
4090       // twice (once here, once when writing out the symbols).
4091       if (shnum >= elfcpp::SHN_LORESERVE)
4092         {
4093           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4094                                                                false, NULL);
4095           Output_section* osymtab_xindex =
4096             this->make_output_section(symtab_xindex_name,
4097                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4098                                       ORDER_INVALID, false);
4099
4100           size_t symcount = off / symsize;
4101           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4102
4103           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4104
4105           osymtab_xindex->set_link_section(osymtab);
4106           osymtab_xindex->set_addralign(4);
4107           osymtab_xindex->set_entsize(4);
4108
4109           osymtab_xindex->set_after_input_sections();
4110
4111           // This tells the driver code to wait until the symbol table
4112           // has written out before writing out the postprocessing
4113           // sections, including the .symtab_shndx section.
4114           this->any_postprocessing_sections_ = true;
4115         }
4116
4117       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4118       Output_section* ostrtab = this->make_output_section(strtab_name,
4119                                                           elfcpp::SHT_STRTAB,
4120                                                           0, ORDER_INVALID,
4121                                                           false);
4122
4123       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4124       ostrtab->add_output_section_data(pstr);
4125
4126       off_t symtab_off;
4127       if (!parameters->incremental_update())
4128         symtab_off = align_address(*poff, align);
4129       else
4130         {
4131           symtab_off = this->allocate(off, align, *poff);
4132           if (off == -1)
4133             gold_fallback(_("out of patch space for symbol table; "
4134                             "relink with --incremental-full"));
4135           gold_debug(DEBUG_INCREMENTAL,
4136                      "create_symtab_sections: %08lx %08lx .symtab",
4137                      static_cast<long>(symtab_off),
4138                      static_cast<long>(off));
4139         }
4140
4141       symtab->set_file_offset(symtab_off + global_off);
4142       osymtab->set_file_offset(symtab_off);
4143       osymtab->finalize_data_size();
4144       osymtab->set_link_section(ostrtab);
4145       osymtab->set_info(local_symcount);
4146       osymtab->set_entsize(symsize);
4147
4148       if (symtab_off + off > *poff)
4149         *poff = symtab_off + off;
4150     }
4151 }
4152
4153 // Create the .shstrtab section, which holds the names of the
4154 // sections.  At the time this is called, we have created all the
4155 // output sections except .shstrtab itself.
4156
4157 Output_section*
4158 Layout::create_shstrtab()
4159 {
4160   // FIXME: We don't need to create a .shstrtab section if we are
4161   // stripping everything.
4162
4163   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4164
4165   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4166                                                  ORDER_INVALID, false);
4167
4168   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4169     {
4170       // We can't write out this section until we've set all the
4171       // section names, and we don't set the names of compressed
4172       // output sections until relocations are complete.  FIXME: With
4173       // the current names we use, this is unnecessary.
4174       os->set_after_input_sections();
4175     }
4176
4177   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4178   os->add_output_section_data(posd);
4179
4180   return os;
4181 }
4182
4183 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4184 // offset.
4185
4186 void
4187 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4188 {
4189   Output_section_headers* oshdrs;
4190   oshdrs = new Output_section_headers(this,
4191                                       &this->segment_list_,
4192                                       &this->section_list_,
4193                                       &this->unattached_section_list_,
4194                                       &this->namepool_,
4195                                       shstrtab_section);
4196   off_t off;
4197   if (!parameters->incremental_update())
4198     off = align_address(*poff, oshdrs->addralign());
4199   else
4200     {
4201       oshdrs->pre_finalize_data_size();
4202       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4203       if (off == -1)
4204           gold_fallback(_("out of patch space for section header table; "
4205                           "relink with --incremental-full"));
4206       gold_debug(DEBUG_INCREMENTAL,
4207                  "create_shdrs: %08lx %08lx (section header table)",
4208                  static_cast<long>(off),
4209                  static_cast<long>(off + oshdrs->data_size()));
4210     }
4211   oshdrs->set_address_and_file_offset(0, off);
4212   off += oshdrs->data_size();
4213   if (off > *poff)
4214     *poff = off;
4215   this->section_headers_ = oshdrs;
4216 }
4217
4218 // Count the allocated sections.
4219
4220 size_t
4221 Layout::allocated_output_section_count() const
4222 {
4223   size_t section_count = 0;
4224   for (Segment_list::const_iterator p = this->segment_list_.begin();
4225        p != this->segment_list_.end();
4226        ++p)
4227     section_count += (*p)->output_section_count();
4228   return section_count;
4229 }
4230
4231 // Create the dynamic symbol table.
4232
4233 void
4234 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4235                               Symbol_table* symtab,
4236                               Output_section** pdynstr,
4237                               unsigned int* plocal_dynamic_count,
4238                               std::vector<Symbol*>* pdynamic_symbols,
4239                               Versions* pversions)
4240 {
4241   // Count all the symbols in the dynamic symbol table, and set the
4242   // dynamic symbol indexes.
4243
4244   // Skip symbol 0, which is always all zeroes.
4245   unsigned int index = 1;
4246
4247   // Add STT_SECTION symbols for each Output section which needs one.
4248   for (Section_list::iterator p = this->section_list_.begin();
4249        p != this->section_list_.end();
4250        ++p)
4251     {
4252       if (!(*p)->needs_dynsym_index())
4253         (*p)->set_dynsym_index(-1U);
4254       else
4255         {
4256           (*p)->set_dynsym_index(index);
4257           ++index;
4258         }
4259     }
4260
4261   // Count the local symbols that need to go in the dynamic symbol table,
4262   // and set the dynamic symbol indexes.
4263   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4264        p != input_objects->relobj_end();
4265        ++p)
4266     {
4267       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4268       index = new_index;
4269     }
4270
4271   unsigned int local_symcount = index;
4272   *plocal_dynamic_count = local_symcount;
4273
4274   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4275                                      &this->dynpool_, pversions);
4276
4277   int symsize;
4278   unsigned int align;
4279   const int size = parameters->target().get_size();
4280   if (size == 32)
4281     {
4282       symsize = elfcpp::Elf_sizes<32>::sym_size;
4283       align = 4;
4284     }
4285   else if (size == 64)
4286     {
4287       symsize = elfcpp::Elf_sizes<64>::sym_size;
4288       align = 8;
4289     }
4290   else
4291     gold_unreachable();
4292
4293   // Create the dynamic symbol table section.
4294
4295   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4296                                                        elfcpp::SHT_DYNSYM,
4297                                                        elfcpp::SHF_ALLOC,
4298                                                        false,
4299                                                        ORDER_DYNAMIC_LINKER,
4300                                                        false);
4301
4302   // Check for NULL as a linker script may discard .dynsym.
4303   if (dynsym != NULL)
4304     {
4305       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4306                                                                align,
4307                                                                "** dynsym");
4308       dynsym->add_output_section_data(odata);
4309
4310       dynsym->set_info(local_symcount);
4311       dynsym->set_entsize(symsize);
4312       dynsym->set_addralign(align);
4313
4314       this->dynsym_section_ = dynsym;
4315     }
4316
4317   Output_data_dynamic* const odyn = this->dynamic_data_;
4318   if (odyn != NULL)
4319     {
4320       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4321       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4322     }
4323
4324   // If there are more than SHN_LORESERVE allocated sections, we
4325   // create a .dynsym_shndx section.  It is possible that we don't
4326   // need one, because it is possible that there are no dynamic
4327   // symbols in any of the sections with indexes larger than
4328   // SHN_LORESERVE.  This is probably unusual, though, and at this
4329   // time we don't know the actual section indexes so it is
4330   // inconvenient to check.
4331   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4332     {
4333       Output_section* dynsym_xindex =
4334         this->choose_output_section(NULL, ".dynsym_shndx",
4335                                     elfcpp::SHT_SYMTAB_SHNDX,
4336                                     elfcpp::SHF_ALLOC,
4337                                     false, ORDER_DYNAMIC_LINKER, false);
4338
4339       if (dynsym_xindex != NULL)
4340         {
4341           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4342
4343           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4344
4345           dynsym_xindex->set_link_section(dynsym);
4346           dynsym_xindex->set_addralign(4);
4347           dynsym_xindex->set_entsize(4);
4348
4349           dynsym_xindex->set_after_input_sections();
4350
4351           // This tells the driver code to wait until the symbol table
4352           // has written out before writing out the postprocessing
4353           // sections, including the .dynsym_shndx section.
4354           this->any_postprocessing_sections_ = true;
4355         }
4356     }
4357
4358   // Create the dynamic string table section.
4359
4360   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4361                                                        elfcpp::SHT_STRTAB,
4362                                                        elfcpp::SHF_ALLOC,
4363                                                        false,
4364                                                        ORDER_DYNAMIC_LINKER,
4365                                                        false);
4366   *pdynstr = dynstr;
4367   if (dynstr != NULL)
4368     {
4369       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4370       dynstr->add_output_section_data(strdata);
4371
4372       if (dynsym != NULL)
4373         dynsym->set_link_section(dynstr);
4374       if (this->dynamic_section_ != NULL)
4375         this->dynamic_section_->set_link_section(dynstr);
4376
4377       if (odyn != NULL)
4378         {
4379           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4380           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4381         }
4382     }
4383
4384   // Create the hash tables.  The Gnu-style hash table must be
4385   // built first, because it changes the order of the symbols
4386   // in the dynamic symbol table.
4387
4388   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4389       || strcmp(parameters->options().hash_style(), "both") == 0)
4390     {
4391       unsigned char* phash;
4392       unsigned int hashlen;
4393       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4394                                     &phash, &hashlen);
4395
4396       Output_section* hashsec =
4397         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4398                                     elfcpp::SHF_ALLOC, false,
4399                                     ORDER_DYNAMIC_LINKER, false);
4400
4401       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4402                                                                    hashlen,
4403                                                                    align,
4404                                                                    "** hash");
4405       if (hashsec != NULL && hashdata != NULL)
4406         hashsec->add_output_section_data(hashdata);
4407
4408       if (hashsec != NULL)
4409         {
4410           if (dynsym != NULL)
4411             hashsec->set_link_section(dynsym);
4412
4413           // For a 64-bit target, the entries in .gnu.hash do not have
4414           // a uniform size, so we only set the entry size for a
4415           // 32-bit target.
4416           if (parameters->target().get_size() == 32)
4417             hashsec->set_entsize(4);
4418
4419           if (odyn != NULL)
4420             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4421         }
4422     }
4423
4424   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4425       || strcmp(parameters->options().hash_style(), "both") == 0)
4426     {
4427       unsigned char* phash;
4428       unsigned int hashlen;
4429       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4430                                     &phash, &hashlen);
4431
4432       Output_section* hashsec =
4433         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4434                                     elfcpp::SHF_ALLOC, false,
4435                                     ORDER_DYNAMIC_LINKER, false);
4436
4437       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4438                                                                    hashlen,
4439                                                                    align,
4440                                                                    "** hash");
4441       if (hashsec != NULL && hashdata != NULL)
4442         hashsec->add_output_section_data(hashdata);
4443
4444       if (hashsec != NULL)
4445         {
4446           if (dynsym != NULL)
4447             hashsec->set_link_section(dynsym);
4448           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4449         }
4450
4451       if (odyn != NULL)
4452         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4453     }
4454 }
4455
4456 // Assign offsets to each local portion of the dynamic symbol table.
4457
4458 void
4459 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4460 {
4461   Output_section* dynsym = this->dynsym_section_;
4462   if (dynsym == NULL)
4463     return;
4464
4465   off_t off = dynsym->offset();
4466
4467   // Skip the dummy symbol at the start of the section.
4468   off += dynsym->entsize();
4469
4470   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4471        p != input_objects->relobj_end();
4472        ++p)
4473     {
4474       unsigned int count = (*p)->set_local_dynsym_offset(off);
4475       off += count * dynsym->entsize();
4476     }
4477 }
4478
4479 // Create the version sections.
4480
4481 void
4482 Layout::create_version_sections(const Versions* versions,
4483                                 const Symbol_table* symtab,
4484                                 unsigned int local_symcount,
4485                                 const std::vector<Symbol*>& dynamic_symbols,
4486                                 const Output_section* dynstr)
4487 {
4488   if (!versions->any_defs() && !versions->any_needs())
4489     return;
4490
4491   switch (parameters->size_and_endianness())
4492     {
4493 #ifdef HAVE_TARGET_32_LITTLE
4494     case Parameters::TARGET_32_LITTLE:
4495       this->sized_create_version_sections<32, false>(versions, symtab,
4496                                                      local_symcount,
4497                                                      dynamic_symbols, dynstr);
4498       break;
4499 #endif
4500 #ifdef HAVE_TARGET_32_BIG
4501     case Parameters::TARGET_32_BIG:
4502       this->sized_create_version_sections<32, true>(versions, symtab,
4503                                                     local_symcount,
4504                                                     dynamic_symbols, dynstr);
4505       break;
4506 #endif
4507 #ifdef HAVE_TARGET_64_LITTLE
4508     case Parameters::TARGET_64_LITTLE:
4509       this->sized_create_version_sections<64, false>(versions, symtab,
4510                                                      local_symcount,
4511                                                      dynamic_symbols, dynstr);
4512       break;
4513 #endif
4514 #ifdef HAVE_TARGET_64_BIG
4515     case Parameters::TARGET_64_BIG:
4516       this->sized_create_version_sections<64, true>(versions, symtab,
4517                                                     local_symcount,
4518                                                     dynamic_symbols, dynstr);
4519       break;
4520 #endif
4521     default:
4522       gold_unreachable();
4523     }
4524 }
4525
4526 // Create the version sections, sized version.
4527
4528 template<int size, bool big_endian>
4529 void
4530 Layout::sized_create_version_sections(
4531     const Versions* versions,
4532     const Symbol_table* symtab,
4533     unsigned int local_symcount,
4534     const std::vector<Symbol*>& dynamic_symbols,
4535     const Output_section* dynstr)
4536 {
4537   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4538                                                      elfcpp::SHT_GNU_versym,
4539                                                      elfcpp::SHF_ALLOC,
4540                                                      false,
4541                                                      ORDER_DYNAMIC_LINKER,
4542                                                      false);
4543
4544   // Check for NULL since a linker script may discard this section.
4545   if (vsec != NULL)
4546     {
4547       unsigned char* vbuf;
4548       unsigned int vsize;
4549       versions->symbol_section_contents<size, big_endian>(symtab,
4550                                                           &this->dynpool_,
4551                                                           local_symcount,
4552                                                           dynamic_symbols,
4553                                                           &vbuf, &vsize);
4554
4555       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4556                                                                 "** versions");
4557
4558       vsec->add_output_section_data(vdata);
4559       vsec->set_entsize(2);
4560       vsec->set_link_section(this->dynsym_section_);
4561     }
4562
4563   Output_data_dynamic* const odyn = this->dynamic_data_;
4564   if (odyn != NULL && vsec != NULL)
4565     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4566
4567   if (versions->any_defs())
4568     {
4569       Output_section* vdsec;
4570       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4571                                           elfcpp::SHT_GNU_verdef,
4572                                           elfcpp::SHF_ALLOC,
4573                                           false, ORDER_DYNAMIC_LINKER, false);
4574
4575       if (vdsec != NULL)
4576         {
4577           unsigned char* vdbuf;
4578           unsigned int vdsize;
4579           unsigned int vdentries;
4580           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4581                                                            &vdbuf, &vdsize,
4582                                                            &vdentries);
4583
4584           Output_section_data* vddata =
4585             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4586
4587           vdsec->add_output_section_data(vddata);
4588           vdsec->set_link_section(dynstr);
4589           vdsec->set_info(vdentries);
4590
4591           if (odyn != NULL)
4592             {
4593               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4594               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4595             }
4596         }
4597     }
4598
4599   if (versions->any_needs())
4600     {
4601       Output_section* vnsec;
4602       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4603                                           elfcpp::SHT_GNU_verneed,
4604                                           elfcpp::SHF_ALLOC,
4605                                           false, ORDER_DYNAMIC_LINKER, false);
4606
4607       if (vnsec != NULL)
4608         {
4609           unsigned char* vnbuf;
4610           unsigned int vnsize;
4611           unsigned int vnentries;
4612           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4613                                                             &vnbuf, &vnsize,
4614                                                             &vnentries);
4615
4616           Output_section_data* vndata =
4617             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4618
4619           vnsec->add_output_section_data(vndata);
4620           vnsec->set_link_section(dynstr);
4621           vnsec->set_info(vnentries);
4622
4623           if (odyn != NULL)
4624             {
4625               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4626               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4627             }
4628         }
4629     }
4630 }
4631
4632 // Create the .interp section and PT_INTERP segment.
4633
4634 void
4635 Layout::create_interp(const Target* target)
4636 {
4637   gold_assert(this->interp_segment_ == NULL);
4638
4639   const char* interp = parameters->options().dynamic_linker();
4640   if (interp == NULL)
4641     {
4642       interp = target->dynamic_linker();
4643       gold_assert(interp != NULL);
4644     }
4645
4646   size_t len = strlen(interp) + 1;
4647
4648   Output_section_data* odata = new Output_data_const(interp, len, 1);
4649
4650   Output_section* osec = this->choose_output_section(NULL, ".interp",
4651                                                      elfcpp::SHT_PROGBITS,
4652                                                      elfcpp::SHF_ALLOC,
4653                                                      false, ORDER_INTERP,
4654                                                      false);
4655   if (osec != NULL)
4656     osec->add_output_section_data(odata);
4657 }
4658
4659 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4660 // called by the target-specific code.  This does nothing if not doing
4661 // a dynamic link.
4662
4663 // USE_REL is true for REL relocs rather than RELA relocs.
4664
4665 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4666
4667 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4668 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4669 // some targets have multiple reloc sections in PLT_REL.
4670
4671 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4672 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4673 // section.
4674
4675 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4676 // executable.
4677
4678 void
4679 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4680                                 const Output_data* plt_rel,
4681                                 const Output_data_reloc_generic* dyn_rel,
4682                                 bool add_debug, bool dynrel_includes_plt)
4683 {
4684   Output_data_dynamic* odyn = this->dynamic_data_;
4685   if (odyn == NULL)
4686     return;
4687
4688   if (plt_got != NULL && plt_got->output_section() != NULL)
4689     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4690
4691   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4692     {
4693       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4694       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4695       odyn->add_constant(elfcpp::DT_PLTREL,
4696                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4697     }
4698
4699   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4700       || (dynrel_includes_plt
4701           && plt_rel != NULL
4702           && plt_rel->output_section() != NULL))
4703     {
4704       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4705       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4706       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4707                                 (have_dyn_rel
4708                                  ? dyn_rel->output_section()
4709                                  : plt_rel->output_section()));
4710       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4711       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4712         odyn->add_section_size(size_tag,
4713                                dyn_rel->output_section(),
4714                                plt_rel->output_section());
4715       else if (have_dyn_rel)
4716         odyn->add_section_size(size_tag, dyn_rel->output_section());
4717       else
4718         odyn->add_section_size(size_tag, plt_rel->output_section());
4719       const int size = parameters->target().get_size();
4720       elfcpp::DT rel_tag;
4721       int rel_size;
4722       if (use_rel)
4723         {
4724           rel_tag = elfcpp::DT_RELENT;
4725           if (size == 32)
4726             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4727           else if (size == 64)
4728             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4729           else
4730             gold_unreachable();
4731         }
4732       else
4733         {
4734           rel_tag = elfcpp::DT_RELAENT;
4735           if (size == 32)
4736             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4737           else if (size == 64)
4738             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4739           else
4740             gold_unreachable();
4741         }
4742       odyn->add_constant(rel_tag, rel_size);
4743
4744       if (parameters->options().combreloc() && have_dyn_rel)
4745         {
4746           size_t c = dyn_rel->relative_reloc_count();
4747           if (c > 0)
4748             odyn->add_constant((use_rel
4749                                 ? elfcpp::DT_RELCOUNT
4750                                 : elfcpp::DT_RELACOUNT),
4751                                c);
4752         }
4753     }
4754
4755   if (add_debug && !parameters->options().shared())
4756     {
4757       // The value of the DT_DEBUG tag is filled in by the dynamic
4758       // linker at run time, and used by the debugger.
4759       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4760     }
4761 }
4762
4763 void
4764 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4765 {
4766   Output_data_dynamic* odyn = this->dynamic_data_;
4767   if (odyn == NULL)
4768     return;
4769   odyn->add_constant(tag, val);
4770 }
4771
4772 // Finish the .dynamic section and PT_DYNAMIC segment.
4773
4774 void
4775 Layout::finish_dynamic_section(const Input_objects* input_objects,
4776                                const Symbol_table* symtab)
4777 {
4778   if (!this->script_options_->saw_phdrs_clause()
4779       && this->dynamic_section_ != NULL)
4780     {
4781       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4782                                                        (elfcpp::PF_R
4783                                                         | elfcpp::PF_W));
4784       oseg->add_output_section_to_nonload(this->dynamic_section_,
4785                                           elfcpp::PF_R | elfcpp::PF_W);
4786     }
4787
4788   Output_data_dynamic* const odyn = this->dynamic_data_;
4789   if (odyn == NULL)
4790     return;
4791
4792   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4793        p != input_objects->dynobj_end();
4794        ++p)
4795     {
4796       if (!(*p)->is_needed() && (*p)->as_needed())
4797         {
4798           // This dynamic object was linked with --as-needed, but it
4799           // is not needed.
4800           continue;
4801         }
4802
4803       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4804     }
4805
4806   if (parameters->options().shared())
4807     {
4808       const char* soname = parameters->options().soname();
4809       if (soname != NULL)
4810         odyn->add_string(elfcpp::DT_SONAME, soname);
4811     }
4812
4813   Symbol* sym = symtab->lookup(parameters->options().init());
4814   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4815     odyn->add_symbol(elfcpp::DT_INIT, sym);
4816
4817   sym = symtab->lookup(parameters->options().fini());
4818   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4819     odyn->add_symbol(elfcpp::DT_FINI, sym);
4820
4821   // Look for .init_array, .preinit_array and .fini_array by checking
4822   // section types.
4823   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4824       p != this->section_list_.end();
4825       ++p)
4826     switch((*p)->type())
4827       {
4828       case elfcpp::SHT_FINI_ARRAY:
4829         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4830         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4831         break;
4832       case elfcpp::SHT_INIT_ARRAY:
4833         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4834         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4835         break;
4836       case elfcpp::SHT_PREINIT_ARRAY:
4837         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4838         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4839         break;
4840       default:
4841         break;
4842       }
4843
4844   // Add a DT_RPATH entry if needed.
4845   const General_options::Dir_list& rpath(parameters->options().rpath());
4846   if (!rpath.empty())
4847     {
4848       std::string rpath_val;
4849       for (General_options::Dir_list::const_iterator p = rpath.begin();
4850            p != rpath.end();
4851            ++p)
4852         {
4853           if (rpath_val.empty())
4854             rpath_val = p->name();
4855           else
4856             {
4857               // Eliminate duplicates.
4858               General_options::Dir_list::const_iterator q;
4859               for (q = rpath.begin(); q != p; ++q)
4860                 if (q->name() == p->name())
4861                   break;
4862               if (q == p)
4863                 {
4864                   rpath_val += ':';
4865                   rpath_val += p->name();
4866                 }
4867             }
4868         }
4869
4870       if (!parameters->options().enable_new_dtags())
4871         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4872       else
4873         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4874     }
4875
4876   // Look for text segments that have dynamic relocations.
4877   bool have_textrel = false;
4878   if (!this->script_options_->saw_sections_clause())
4879     {
4880       for (Segment_list::const_iterator p = this->segment_list_.begin();
4881            p != this->segment_list_.end();
4882            ++p)
4883         {
4884           if ((*p)->type() == elfcpp::PT_LOAD
4885               && ((*p)->flags() & elfcpp::PF_W) == 0
4886               && (*p)->has_dynamic_reloc())
4887             {
4888               have_textrel = true;
4889               break;
4890             }
4891         }
4892     }
4893   else
4894     {
4895       // We don't know the section -> segment mapping, so we are
4896       // conservative and just look for readonly sections with
4897       // relocations.  If those sections wind up in writable segments,
4898       // then we have created an unnecessary DT_TEXTREL entry.
4899       for (Section_list::const_iterator p = this->section_list_.begin();
4900            p != this->section_list_.end();
4901            ++p)
4902         {
4903           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4904               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4905               && (*p)->has_dynamic_reloc())
4906             {
4907               have_textrel = true;
4908               break;
4909             }
4910         }
4911     }
4912
4913   if (parameters->options().filter() != NULL)
4914     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4915   if (parameters->options().any_auxiliary())
4916     {
4917       for (options::String_set::const_iterator p =
4918              parameters->options().auxiliary_begin();
4919            p != parameters->options().auxiliary_end();
4920            ++p)
4921         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4922     }
4923
4924   // Add a DT_FLAGS entry if necessary.
4925   unsigned int flags = 0;
4926   if (have_textrel)
4927     {
4928       // Add a DT_TEXTREL for compatibility with older loaders.
4929       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4930       flags |= elfcpp::DF_TEXTREL;
4931
4932       if (parameters->options().text())
4933         gold_error(_("read-only segment has dynamic relocations"));
4934       else if (parameters->options().warn_shared_textrel()
4935                && parameters->options().shared())
4936         gold_warning(_("shared library text segment is not shareable"));
4937     }
4938   if (parameters->options().shared() && this->has_static_tls())
4939     flags |= elfcpp::DF_STATIC_TLS;
4940   if (parameters->options().origin())
4941     flags |= elfcpp::DF_ORIGIN;
4942   if (parameters->options().Bsymbolic()
4943       && !parameters->options().have_dynamic_list())
4944     {
4945       flags |= elfcpp::DF_SYMBOLIC;
4946       // Add DT_SYMBOLIC for compatibility with older loaders.
4947       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4948     }
4949   if (parameters->options().now())
4950     flags |= elfcpp::DF_BIND_NOW;
4951   if (flags != 0)
4952     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4953
4954   flags = 0;
4955   if (parameters->options().global())
4956     flags |= elfcpp::DF_1_GLOBAL;
4957   if (parameters->options().initfirst())
4958     flags |= elfcpp::DF_1_INITFIRST;
4959   if (parameters->options().interpose())
4960     flags |= elfcpp::DF_1_INTERPOSE;
4961   if (parameters->options().loadfltr())
4962     flags |= elfcpp::DF_1_LOADFLTR;
4963   if (parameters->options().nodefaultlib())
4964     flags |= elfcpp::DF_1_NODEFLIB;
4965   if (parameters->options().nodelete())
4966     flags |= elfcpp::DF_1_NODELETE;
4967   if (parameters->options().nodlopen())
4968     flags |= elfcpp::DF_1_NOOPEN;
4969   if (parameters->options().nodump())
4970     flags |= elfcpp::DF_1_NODUMP;
4971   if (!parameters->options().shared())
4972     flags &= ~(elfcpp::DF_1_INITFIRST
4973                | elfcpp::DF_1_NODELETE
4974                | elfcpp::DF_1_NOOPEN);
4975   if (parameters->options().origin())
4976     flags |= elfcpp::DF_1_ORIGIN;
4977   if (parameters->options().now())
4978     flags |= elfcpp::DF_1_NOW;
4979   if (parameters->options().Bgroup())
4980     flags |= elfcpp::DF_1_GROUP;
4981   if (flags != 0)
4982     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4983 }
4984
4985 // Set the size of the _DYNAMIC symbol table to be the size of the
4986 // dynamic data.
4987
4988 void
4989 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4990 {
4991   Output_data_dynamic* const odyn = this->dynamic_data_;
4992   if (odyn == NULL)
4993     return;
4994   odyn->finalize_data_size();
4995   if (this->dynamic_symbol_ == NULL)
4996     return;
4997   off_t data_size = odyn->data_size();
4998   const int size = parameters->target().get_size();
4999   if (size == 32)
5000     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5001   else if (size == 64)
5002     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5003   else
5004     gold_unreachable();
5005 }
5006
5007 // The mapping of input section name prefixes to output section names.
5008 // In some cases one prefix is itself a prefix of another prefix; in
5009 // such a case the longer prefix must come first.  These prefixes are
5010 // based on the GNU linker default ELF linker script.
5011
5012 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5013 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5014 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5015 {
5016   MAPPING_INIT(".text.", ".text"),
5017   MAPPING_INIT(".rodata.", ".rodata"),
5018   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5019   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5020   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5021   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5022   MAPPING_INIT(".data.", ".data"),
5023   MAPPING_INIT(".bss.", ".bss"),
5024   MAPPING_INIT(".tdata.", ".tdata"),
5025   MAPPING_INIT(".tbss.", ".tbss"),
5026   MAPPING_INIT(".init_array.", ".init_array"),
5027   MAPPING_INIT(".fini_array.", ".fini_array"),
5028   MAPPING_INIT(".sdata.", ".sdata"),
5029   MAPPING_INIT(".sbss.", ".sbss"),
5030   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5031   // differently depending on whether it is creating a shared library.
5032   MAPPING_INIT(".sdata2.", ".sdata"),
5033   MAPPING_INIT(".sbss2.", ".sbss"),
5034   MAPPING_INIT(".lrodata.", ".lrodata"),
5035   MAPPING_INIT(".ldata.", ".ldata"),
5036   MAPPING_INIT(".lbss.", ".lbss"),
5037   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5038   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5039   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5040   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5041   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5042   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5043   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5044   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5045   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5046   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5047   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5048   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5049   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5050   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5051   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5052   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5053   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5054   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5055   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5056   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5057   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5058 };
5059 #undef MAPPING_INIT
5060 #undef MAPPING_INIT_EXACT
5061
5062 const int Layout::section_name_mapping_count =
5063   (sizeof(Layout::section_name_mapping)
5064    / sizeof(Layout::section_name_mapping[0]));
5065
5066 // Choose the output section name to use given an input section name.
5067 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5068 // length of NAME.
5069
5070 const char*
5071 Layout::output_section_name(const Relobj* relobj, const char* name,
5072                             size_t* plen)
5073 {
5074   // gcc 4.3 generates the following sorts of section names when it
5075   // needs a section name specific to a function:
5076   //   .text.FN
5077   //   .rodata.FN
5078   //   .sdata2.FN
5079   //   .data.FN
5080   //   .data.rel.FN
5081   //   .data.rel.local.FN
5082   //   .data.rel.ro.FN
5083   //   .data.rel.ro.local.FN
5084   //   .sdata.FN
5085   //   .bss.FN
5086   //   .sbss.FN
5087   //   .tdata.FN
5088   //   .tbss.FN
5089
5090   // The GNU linker maps all of those to the part before the .FN,
5091   // except that .data.rel.local.FN is mapped to .data, and
5092   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5093   // beginning with .data.rel.ro.local are grouped together.
5094
5095   // For an anonymous namespace, the string FN can contain a '.'.
5096
5097   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5098   // GNU linker maps to .rodata.
5099
5100   // The .data.rel.ro sections are used with -z relro.  The sections
5101   // are recognized by name.  We use the same names that the GNU
5102   // linker does for these sections.
5103
5104   // It is hard to handle this in a principled way, so we don't even
5105   // try.  We use a table of mappings.  If the input section name is
5106   // not found in the table, we simply use it as the output section
5107   // name.
5108
5109   const Section_name_mapping* psnm = section_name_mapping;
5110   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5111     {
5112       if (psnm->fromlen > 0)
5113         {
5114           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5115             {
5116               *plen = psnm->tolen;
5117               return psnm->to;
5118             }
5119         }
5120       else
5121         {
5122           if (strcmp(name, psnm->from) == 0)
5123             {
5124               *plen = psnm->tolen;
5125               return psnm->to;
5126             }
5127         }
5128     }
5129
5130   // As an additional complication, .ctors sections are output in
5131   // either .ctors or .init_array sections, and .dtors sections are
5132   // output in either .dtors or .fini_array sections.
5133   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5134     {
5135       if (parameters->options().ctors_in_init_array())
5136         {
5137           *plen = 11;
5138           return name[1] == 'c' ? ".init_array" : ".fini_array";
5139         }
5140       else
5141         {
5142           *plen = 6;
5143           return name[1] == 'c' ? ".ctors" : ".dtors";
5144         }
5145     }
5146   if (parameters->options().ctors_in_init_array()
5147       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5148     {
5149       // To make .init_array/.fini_array work with gcc we must exclude
5150       // .ctors and .dtors sections from the crtbegin and crtend
5151       // files.
5152       if (relobj == NULL
5153           || (!Layout::match_file_name(relobj, "crtbegin")
5154               && !Layout::match_file_name(relobj, "crtend")))
5155         {
5156           *plen = 11;
5157           return name[1] == 'c' ? ".init_array" : ".fini_array";
5158         }
5159     }
5160
5161   return name;
5162 }
5163
5164 // Return true if RELOBJ is an input file whose base name matches
5165 // FILE_NAME.  The base name must have an extension of ".o", and must
5166 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5167 // to match crtbegin.o as well as crtbeginS.o without getting confused
5168 // by other possibilities.  Overall matching the file name this way is
5169 // a dreadful hack, but the GNU linker does it in order to better
5170 // support gcc, and we need to be compatible.
5171
5172 bool
5173 Layout::match_file_name(const Relobj* relobj, const char* match)
5174 {
5175   const std::string& file_name(relobj->name());
5176   const char* base_name = lbasename(file_name.c_str());
5177   size_t match_len = strlen(match);
5178   if (strncmp(base_name, match, match_len) != 0)
5179     return false;
5180   size_t base_len = strlen(base_name);
5181   if (base_len != match_len + 2 && base_len != match_len + 3)
5182     return false;
5183   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5184 }
5185
5186 // Check if a comdat group or .gnu.linkonce section with the given
5187 // NAME is selected for the link.  If there is already a section,
5188 // *KEPT_SECTION is set to point to the existing section and the
5189 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5190 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5191 // *KEPT_SECTION is set to the internal copy and the function returns
5192 // true.
5193
5194 bool
5195 Layout::find_or_add_kept_section(const std::string& name,
5196                                  Relobj* object,
5197                                  unsigned int shndx,
5198                                  bool is_comdat,
5199                                  bool is_group_name,
5200                                  Kept_section** kept_section)
5201 {
5202   // It's normal to see a couple of entries here, for the x86 thunk
5203   // sections.  If we see more than a few, we're linking a C++
5204   // program, and we resize to get more space to minimize rehashing.
5205   if (this->signatures_.size() > 4
5206       && !this->resized_signatures_)
5207     {
5208       reserve_unordered_map(&this->signatures_,
5209                             this->number_of_input_files_ * 64);
5210       this->resized_signatures_ = true;
5211     }
5212
5213   Kept_section candidate;
5214   std::pair<Signatures::iterator, bool> ins =
5215     this->signatures_.insert(std::make_pair(name, candidate));
5216
5217   if (kept_section != NULL)
5218     *kept_section = &ins.first->second;
5219   if (ins.second)
5220     {
5221       // This is the first time we've seen this signature.
5222       ins.first->second.set_object(object);
5223       ins.first->second.set_shndx(shndx);
5224       if (is_comdat)
5225         ins.first->second.set_is_comdat();
5226       if (is_group_name)
5227         ins.first->second.set_is_group_name();
5228       return true;
5229     }
5230
5231   // We have already seen this signature.
5232
5233   if (ins.first->second.is_group_name())
5234     {
5235       // We've already seen a real section group with this signature.
5236       // If the kept group is from a plugin object, and we're in the
5237       // replacement phase, accept the new one as a replacement.
5238       if (ins.first->second.object() == NULL
5239           && parameters->options().plugins()->in_replacement_phase())
5240         {
5241           ins.first->second.set_object(object);
5242           ins.first->second.set_shndx(shndx);
5243           return true;
5244         }
5245       return false;
5246     }
5247   else if (is_group_name)
5248     {
5249       // This is a real section group, and we've already seen a
5250       // linkonce section with this signature.  Record that we've seen
5251       // a section group, and don't include this section group.
5252       ins.first->second.set_is_group_name();
5253       return false;
5254     }
5255   else
5256     {
5257       // We've already seen a linkonce section and this is a linkonce
5258       // section.  These don't block each other--this may be the same
5259       // symbol name with different section types.
5260       return true;
5261     }
5262 }
5263
5264 // Store the allocated sections into the section list.
5265
5266 void
5267 Layout::get_allocated_sections(Section_list* section_list) const
5268 {
5269   for (Section_list::const_iterator p = this->section_list_.begin();
5270        p != this->section_list_.end();
5271        ++p)
5272     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5273       section_list->push_back(*p);
5274 }
5275
5276 // Store the executable sections into the section list.
5277
5278 void
5279 Layout::get_executable_sections(Section_list* section_list) const
5280 {
5281   for (Section_list::const_iterator p = this->section_list_.begin();
5282        p != this->section_list_.end();
5283        ++p)
5284     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5285         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5286       section_list->push_back(*p);
5287 }
5288
5289 // Create an output segment.
5290
5291 Output_segment*
5292 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5293 {
5294   gold_assert(!parameters->options().relocatable());
5295   Output_segment* oseg = new Output_segment(type, flags);
5296   this->segment_list_.push_back(oseg);
5297
5298   if (type == elfcpp::PT_TLS)
5299     this->tls_segment_ = oseg;
5300   else if (type == elfcpp::PT_GNU_RELRO)
5301     this->relro_segment_ = oseg;
5302   else if (type == elfcpp::PT_INTERP)
5303     this->interp_segment_ = oseg;
5304
5305   return oseg;
5306 }
5307
5308 // Return the file offset of the normal symbol table.
5309
5310 off_t
5311 Layout::symtab_section_offset() const
5312 {
5313   if (this->symtab_section_ != NULL)
5314     return this->symtab_section_->offset();
5315   return 0;
5316 }
5317
5318 // Return the section index of the normal symbol table.  It may have
5319 // been stripped by the -s/--strip-all option.
5320
5321 unsigned int
5322 Layout::symtab_section_shndx() const
5323 {
5324   if (this->symtab_section_ != NULL)
5325     return this->symtab_section_->out_shndx();
5326   return 0;
5327 }
5328
5329 // Write out the Output_sections.  Most won't have anything to write,
5330 // since most of the data will come from input sections which are
5331 // handled elsewhere.  But some Output_sections do have Output_data.
5332
5333 void
5334 Layout::write_output_sections(Output_file* of) const
5335 {
5336   for (Section_list::const_iterator p = this->section_list_.begin();
5337        p != this->section_list_.end();
5338        ++p)
5339     {
5340       if (!(*p)->after_input_sections())
5341         (*p)->write(of);
5342     }
5343 }
5344
5345 // Write out data not associated with a section or the symbol table.
5346
5347 void
5348 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5349 {
5350   if (!parameters->options().strip_all())
5351     {
5352       const Output_section* symtab_section = this->symtab_section_;
5353       for (Section_list::const_iterator p = this->section_list_.begin();
5354            p != this->section_list_.end();
5355            ++p)
5356         {
5357           if ((*p)->needs_symtab_index())
5358             {
5359               gold_assert(symtab_section != NULL);
5360               unsigned int index = (*p)->symtab_index();
5361               gold_assert(index > 0 && index != -1U);
5362               off_t off = (symtab_section->offset()
5363                            + index * symtab_section->entsize());
5364               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5365             }
5366         }
5367     }
5368
5369   const Output_section* dynsym_section = this->dynsym_section_;
5370   for (Section_list::const_iterator p = this->section_list_.begin();
5371        p != this->section_list_.end();
5372        ++p)
5373     {
5374       if ((*p)->needs_dynsym_index())
5375         {
5376           gold_assert(dynsym_section != NULL);
5377           unsigned int index = (*p)->dynsym_index();
5378           gold_assert(index > 0 && index != -1U);
5379           off_t off = (dynsym_section->offset()
5380                        + index * dynsym_section->entsize());
5381           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5382         }
5383     }
5384
5385   // Write out the Output_data which are not in an Output_section.
5386   for (Data_list::const_iterator p = this->special_output_list_.begin();
5387        p != this->special_output_list_.end();
5388        ++p)
5389     (*p)->write(of);
5390
5391   // Write out the Output_data which are not in an Output_section
5392   // and are regenerated in each iteration of relaxation.
5393   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5394        p != this->relax_output_list_.end();
5395        ++p)
5396     (*p)->write(of);
5397 }
5398
5399 // Write out the Output_sections which can only be written after the
5400 // input sections are complete.
5401
5402 void
5403 Layout::write_sections_after_input_sections(Output_file* of)
5404 {
5405   // Determine the final section offsets, and thus the final output
5406   // file size.  Note we finalize the .shstrab last, to allow the
5407   // after_input_section sections to modify their section-names before
5408   // writing.
5409   if (this->any_postprocessing_sections_)
5410     {
5411       off_t off = this->output_file_size_;
5412       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5413
5414       // Now that we've finalized the names, we can finalize the shstrab.
5415       off =
5416         this->set_section_offsets(off,
5417                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5418
5419       if (off > this->output_file_size_)
5420         {
5421           of->resize(off);
5422           this->output_file_size_ = off;
5423         }
5424     }
5425
5426   for (Section_list::const_iterator p = this->section_list_.begin();
5427        p != this->section_list_.end();
5428        ++p)
5429     {
5430       if ((*p)->after_input_sections())
5431         (*p)->write(of);
5432     }
5433
5434   this->section_headers_->write(of);
5435 }
5436
5437 // If a tree-style build ID was requested, the parallel part of that computation
5438 // is already done, and the final hash-of-hashes is computed here.  For other
5439 // types of build IDs, all the work is done here.
5440
5441 void
5442 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5443                        size_t size_of_hashes) const
5444 {
5445   if (this->build_id_note_ == NULL)
5446     return;
5447
5448   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5449                                           this->build_id_note_->data_size());
5450
5451   if (array_of_hashes == NULL)
5452     {
5453       const size_t output_file_size = this->output_file_size();
5454       const unsigned char* iv = of->get_input_view(0, output_file_size);
5455       const char* style = parameters->options().build_id();
5456
5457       // If we get here with style == "tree" then the output must be
5458       // too small for chunking, and we use SHA-1 in that case.
5459       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5460         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5461       else if (strcmp(style, "md5") == 0)
5462         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5463       else
5464         gold_unreachable();
5465
5466       of->free_input_view(0, output_file_size, iv);
5467     }
5468   else
5469     {
5470       // Non-overlapping substrings of the output file have been hashed.
5471       // Compute SHA-1 hash of the hashes.
5472       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5473                   size_of_hashes, ov);
5474       delete[] array_of_hashes;
5475     }
5476
5477   of->write_output_view(this->build_id_note_->offset(),
5478                         this->build_id_note_->data_size(),
5479                         ov);
5480 }
5481
5482 // Write out a binary file.  This is called after the link is
5483 // complete.  IN is the temporary output file we used to generate the
5484 // ELF code.  We simply walk through the segments, read them from
5485 // their file offset in IN, and write them to their load address in
5486 // the output file.  FIXME: with a bit more work, we could support
5487 // S-records and/or Intel hex format here.
5488
5489 void
5490 Layout::write_binary(Output_file* in) const
5491 {
5492   gold_assert(parameters->options().oformat_enum()
5493               == General_options::OBJECT_FORMAT_BINARY);
5494
5495   // Get the size of the binary file.
5496   uint64_t max_load_address = 0;
5497   for (Segment_list::const_iterator p = this->segment_list_.begin();
5498        p != this->segment_list_.end();
5499        ++p)
5500     {
5501       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5502         {
5503           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5504           if (max_paddr > max_load_address)
5505             max_load_address = max_paddr;
5506         }
5507     }
5508
5509   Output_file out(parameters->options().output_file_name());
5510   out.open(max_load_address);
5511
5512   for (Segment_list::const_iterator p = this->segment_list_.begin();
5513        p != this->segment_list_.end();
5514        ++p)
5515     {
5516       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5517         {
5518           const unsigned char* vin = in->get_input_view((*p)->offset(),
5519                                                         (*p)->filesz());
5520           unsigned char* vout = out.get_output_view((*p)->paddr(),
5521                                                     (*p)->filesz());
5522           memcpy(vout, vin, (*p)->filesz());
5523           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5524           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5525         }
5526     }
5527
5528   out.close();
5529 }
5530
5531 // Print the output sections to the map file.
5532
5533 void
5534 Layout::print_to_mapfile(Mapfile* mapfile) const
5535 {
5536   for (Segment_list::const_iterator p = this->segment_list_.begin();
5537        p != this->segment_list_.end();
5538        ++p)
5539     (*p)->print_sections_to_mapfile(mapfile);
5540   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5541        p != this->unattached_section_list_.end();
5542        ++p)
5543     (*p)->print_to_mapfile(mapfile);
5544 }
5545
5546 // Print statistical information to stderr.  This is used for --stats.
5547
5548 void
5549 Layout::print_stats() const
5550 {
5551   this->namepool_.print_stats("section name pool");
5552   this->sympool_.print_stats("output symbol name pool");
5553   this->dynpool_.print_stats("dynamic name pool");
5554
5555   for (Section_list::const_iterator p = this->section_list_.begin();
5556        p != this->section_list_.end();
5557        ++p)
5558     (*p)->print_merge_stats();
5559 }
5560
5561 // Write_sections_task methods.
5562
5563 // We can always run this task.
5564
5565 Task_token*
5566 Write_sections_task::is_runnable()
5567 {
5568   return NULL;
5569 }
5570
5571 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5572 // when finished.
5573
5574 void
5575 Write_sections_task::locks(Task_locker* tl)
5576 {
5577   tl->add(this, this->output_sections_blocker_);
5578   if (this->input_sections_blocker_ != NULL)
5579     tl->add(this, this->input_sections_blocker_);
5580   tl->add(this, this->final_blocker_);
5581 }
5582
5583 // Run the task--write out the data.
5584
5585 void
5586 Write_sections_task::run(Workqueue*)
5587 {
5588   this->layout_->write_output_sections(this->of_);
5589 }
5590
5591 // Write_data_task methods.
5592
5593 // We can always run this task.
5594
5595 Task_token*
5596 Write_data_task::is_runnable()
5597 {
5598   return NULL;
5599 }
5600
5601 // We need to unlock FINAL_BLOCKER when finished.
5602
5603 void
5604 Write_data_task::locks(Task_locker* tl)
5605 {
5606   tl->add(this, this->final_blocker_);
5607 }
5608
5609 // Run the task--write out the data.
5610
5611 void
5612 Write_data_task::run(Workqueue*)
5613 {
5614   this->layout_->write_data(this->symtab_, this->of_);
5615 }
5616
5617 // Write_symbols_task methods.
5618
5619 // We can always run this task.
5620
5621 Task_token*
5622 Write_symbols_task::is_runnable()
5623 {
5624   return NULL;
5625 }
5626
5627 // We need to unlock FINAL_BLOCKER when finished.
5628
5629 void
5630 Write_symbols_task::locks(Task_locker* tl)
5631 {
5632   tl->add(this, this->final_blocker_);
5633 }
5634
5635 // Run the task--write out the symbols.
5636
5637 void
5638 Write_symbols_task::run(Workqueue*)
5639 {
5640   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5641                                this->layout_->symtab_xindex(),
5642                                this->layout_->dynsym_xindex(), this->of_);
5643 }
5644
5645 // Write_after_input_sections_task methods.
5646
5647 // We can only run this task after the input sections have completed.
5648
5649 Task_token*
5650 Write_after_input_sections_task::is_runnable()
5651 {
5652   if (this->input_sections_blocker_->is_blocked())
5653     return this->input_sections_blocker_;
5654   return NULL;
5655 }
5656
5657 // We need to unlock FINAL_BLOCKER when finished.
5658
5659 void
5660 Write_after_input_sections_task::locks(Task_locker* tl)
5661 {
5662   tl->add(this, this->final_blocker_);
5663 }
5664
5665 // Run the task.
5666
5667 void
5668 Write_after_input_sections_task::run(Workqueue*)
5669 {
5670   this->layout_->write_sections_after_input_sections(this->of_);
5671 }
5672
5673 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5674 // or as a "tree" where each chunk of the string is hashed and then those
5675 // hashes are put into a (much smaller) string which is hashed with sha1.
5676 // We compute a checksum over the entire file because that is simplest.
5677
5678 void
5679 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5680 {
5681   Task_token* post_hash_tasks_blocker = new Task_token(true);
5682   const Layout* layout = this->layout_;
5683   Output_file* of = this->of_;
5684   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5685                            : static_cast<size_t>(layout->output_file_size()));
5686   unsigned char* array_of_hashes = NULL;
5687   size_t size_of_hashes = 0;
5688
5689   if (strcmp(this->options_->build_id(), "tree") == 0
5690       && this->options_->build_id_chunk_size_for_treehash() > 0
5691       && filesize > 0
5692       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5693     {
5694       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5695       const size_t chunk_size =
5696           this->options_->build_id_chunk_size_for_treehash();
5697       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5698       post_hash_tasks_blocker->add_blockers(num_hashes);
5699       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5700       array_of_hashes = new unsigned char[size_of_hashes];
5701       unsigned char *dst = array_of_hashes;
5702       for (size_t i = 0, src_offset = 0; i < num_hashes;
5703            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5704         {
5705           size_t size = std::min(chunk_size, filesize - src_offset);
5706           workqueue->queue(new Hash_task(of,
5707                                          src_offset,
5708                                          size,
5709                                          dst,
5710                                          post_hash_tasks_blocker));
5711         }
5712     }
5713
5714   // Queue the final task to write the build id and close the output file.
5715   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5716                                                            layout,
5717                                                            of,
5718                                                            array_of_hashes,
5719                                                            size_of_hashes),
5720                                      post_hash_tasks_blocker,
5721                                      "Task_function Close_task_runner"));
5722 }
5723
5724 // Close_task_runner methods.
5725
5726 // Finish up the build ID computation, if necessary, and write a binary file,
5727 // if necessary.  Then close the output file.
5728
5729 void
5730 Close_task_runner::run(Workqueue*, const Task*)
5731 {
5732   // At this point the multi-threaded part of the build ID computation,
5733   // if any, is done.  See Build_id_task_runner.
5734   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5735                                 this->size_of_hashes_);
5736
5737   // If we've been asked to create a binary file, we do so here.
5738   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5739     this->layout_->write_binary(this->of_);
5740
5741   this->of_->close();
5742 }
5743
5744 // Instantiate the templates we need.  We could use the configure
5745 // script to restrict this to only the ones for implemented targets.
5746
5747 #ifdef HAVE_TARGET_32_LITTLE
5748 template
5749 Output_section*
5750 Layout::init_fixed_output_section<32, false>(
5751     const char* name,
5752     elfcpp::Shdr<32, false>& shdr);
5753 #endif
5754
5755 #ifdef HAVE_TARGET_32_BIG
5756 template
5757 Output_section*
5758 Layout::init_fixed_output_section<32, true>(
5759     const char* name,
5760     elfcpp::Shdr<32, true>& shdr);
5761 #endif
5762
5763 #ifdef HAVE_TARGET_64_LITTLE
5764 template
5765 Output_section*
5766 Layout::init_fixed_output_section<64, false>(
5767     const char* name,
5768     elfcpp::Shdr<64, false>& shdr);
5769 #endif
5770
5771 #ifdef HAVE_TARGET_64_BIG
5772 template
5773 Output_section*
5774 Layout::init_fixed_output_section<64, true>(
5775     const char* name,
5776     elfcpp::Shdr<64, true>& shdr);
5777 #endif
5778
5779 #ifdef HAVE_TARGET_32_LITTLE
5780 template
5781 Output_section*
5782 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5783                           unsigned int shndx,
5784                           const char* name,
5785                           const elfcpp::Shdr<32, false>& shdr,
5786                           unsigned int, unsigned int, off_t*);
5787 #endif
5788
5789 #ifdef HAVE_TARGET_32_BIG
5790 template
5791 Output_section*
5792 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5793                          unsigned int shndx,
5794                          const char* name,
5795                          const elfcpp::Shdr<32, true>& shdr,
5796                          unsigned int, unsigned int, off_t*);
5797 #endif
5798
5799 #ifdef HAVE_TARGET_64_LITTLE
5800 template
5801 Output_section*
5802 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5803                           unsigned int shndx,
5804                           const char* name,
5805                           const elfcpp::Shdr<64, false>& shdr,
5806                           unsigned int, unsigned int, off_t*);
5807 #endif
5808
5809 #ifdef HAVE_TARGET_64_BIG
5810 template
5811 Output_section*
5812 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5813                          unsigned int shndx,
5814                          const char* name,
5815                          const elfcpp::Shdr<64, true>& shdr,
5816                          unsigned int, unsigned int, off_t*);
5817 #endif
5818
5819 #ifdef HAVE_TARGET_32_LITTLE
5820 template
5821 Output_section*
5822 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5823                                 unsigned int reloc_shndx,
5824                                 const elfcpp::Shdr<32, false>& shdr,
5825                                 Output_section* data_section,
5826                                 Relocatable_relocs* rr);
5827 #endif
5828
5829 #ifdef HAVE_TARGET_32_BIG
5830 template
5831 Output_section*
5832 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5833                                unsigned int reloc_shndx,
5834                                const elfcpp::Shdr<32, true>& shdr,
5835                                Output_section* data_section,
5836                                Relocatable_relocs* rr);
5837 #endif
5838
5839 #ifdef HAVE_TARGET_64_LITTLE
5840 template
5841 Output_section*
5842 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5843                                 unsigned int reloc_shndx,
5844                                 const elfcpp::Shdr<64, false>& shdr,
5845                                 Output_section* data_section,
5846                                 Relocatable_relocs* rr);
5847 #endif
5848
5849 #ifdef HAVE_TARGET_64_BIG
5850 template
5851 Output_section*
5852 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5853                                unsigned int reloc_shndx,
5854                                const elfcpp::Shdr<64, true>& shdr,
5855                                Output_section* data_section,
5856                                Relocatable_relocs* rr);
5857 #endif
5858
5859 #ifdef HAVE_TARGET_32_LITTLE
5860 template
5861 void
5862 Layout::layout_group<32, false>(Symbol_table* symtab,
5863                                 Sized_relobj_file<32, false>* object,
5864                                 unsigned int,
5865                                 const char* group_section_name,
5866                                 const char* signature,
5867                                 const elfcpp::Shdr<32, false>& shdr,
5868                                 elfcpp::Elf_Word flags,
5869                                 std::vector<unsigned int>* shndxes);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_BIG
5873 template
5874 void
5875 Layout::layout_group<32, true>(Symbol_table* symtab,
5876                                Sized_relobj_file<32, true>* object,
5877                                unsigned int,
5878                                const char* group_section_name,
5879                                const char* signature,
5880                                const elfcpp::Shdr<32, true>& shdr,
5881                                elfcpp::Elf_Word flags,
5882                                std::vector<unsigned int>* shndxes);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_64_LITTLE
5886 template
5887 void
5888 Layout::layout_group<64, false>(Symbol_table* symtab,
5889                                 Sized_relobj_file<64, false>* object,
5890                                 unsigned int,
5891                                 const char* group_section_name,
5892                                 const char* signature,
5893                                 const elfcpp::Shdr<64, false>& shdr,
5894                                 elfcpp::Elf_Word flags,
5895                                 std::vector<unsigned int>* shndxes);
5896 #endif
5897
5898 #ifdef HAVE_TARGET_64_BIG
5899 template
5900 void
5901 Layout::layout_group<64, true>(Symbol_table* symtab,
5902                                Sized_relobj_file<64, true>* object,
5903                                unsigned int,
5904                                const char* group_section_name,
5905                                const char* signature,
5906                                const elfcpp::Shdr<64, true>& shdr,
5907                                elfcpp::Elf_Word flags,
5908                                std::vector<unsigned int>* shndxes);
5909 #endif
5910
5911 #ifdef HAVE_TARGET_32_LITTLE
5912 template
5913 Output_section*
5914 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5915                                    const unsigned char* symbols,
5916                                    off_t symbols_size,
5917                                    const unsigned char* symbol_names,
5918                                    off_t symbol_names_size,
5919                                    unsigned int shndx,
5920                                    const elfcpp::Shdr<32, false>& shdr,
5921                                    unsigned int reloc_shndx,
5922                                    unsigned int reloc_type,
5923                                    off_t* off);
5924 #endif
5925
5926 #ifdef HAVE_TARGET_32_BIG
5927 template
5928 Output_section*
5929 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5930                                   const unsigned char* symbols,
5931                                   off_t symbols_size,
5932                                   const unsigned char* symbol_names,
5933                                   off_t symbol_names_size,
5934                                   unsigned int shndx,
5935                                   const elfcpp::Shdr<32, true>& shdr,
5936                                   unsigned int reloc_shndx,
5937                                   unsigned int reloc_type,
5938                                   off_t* off);
5939 #endif
5940
5941 #ifdef HAVE_TARGET_64_LITTLE
5942 template
5943 Output_section*
5944 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5945                                    const unsigned char* symbols,
5946                                    off_t symbols_size,
5947                                    const unsigned char* symbol_names,
5948                                    off_t symbol_names_size,
5949                                    unsigned int shndx,
5950                                    const elfcpp::Shdr<64, false>& shdr,
5951                                    unsigned int reloc_shndx,
5952                                    unsigned int reloc_type,
5953                                    off_t* off);
5954 #endif
5955
5956 #ifdef HAVE_TARGET_64_BIG
5957 template
5958 Output_section*
5959 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5960                                   const unsigned char* symbols,
5961                                   off_t symbols_size,
5962                                   const unsigned char* symbol_names,
5963                                   off_t symbol_names_size,
5964                                   unsigned int shndx,
5965                                   const elfcpp::Shdr<64, true>& shdr,
5966                                   unsigned int reloc_shndx,
5967                                   unsigned int reloc_type,
5968                                   off_t* off);
5969 #endif
5970
5971 #ifdef HAVE_TARGET_32_LITTLE
5972 template
5973 void
5974 Layout::add_to_gdb_index(bool is_type_unit,
5975                          Sized_relobj<32, false>* object,
5976                          const unsigned char* symbols,
5977                          off_t symbols_size,
5978                          unsigned int shndx,
5979                          unsigned int reloc_shndx,
5980                          unsigned int reloc_type);
5981 #endif
5982
5983 #ifdef HAVE_TARGET_32_BIG
5984 template
5985 void
5986 Layout::add_to_gdb_index(bool is_type_unit,
5987                          Sized_relobj<32, true>* object,
5988                          const unsigned char* symbols,
5989                          off_t symbols_size,
5990                          unsigned int shndx,
5991                          unsigned int reloc_shndx,
5992                          unsigned int reloc_type);
5993 #endif
5994
5995 #ifdef HAVE_TARGET_64_LITTLE
5996 template
5997 void
5998 Layout::add_to_gdb_index(bool is_type_unit,
5999                          Sized_relobj<64, false>* object,
6000                          const unsigned char* symbols,
6001                          off_t symbols_size,
6002                          unsigned int shndx,
6003                          unsigned int reloc_shndx,
6004                          unsigned int reloc_type);
6005 #endif
6006
6007 #ifdef HAVE_TARGET_64_BIG
6008 template
6009 void
6010 Layout::add_to_gdb_index(bool is_type_unit,
6011                          Sized_relobj<64, true>* object,
6012                          const unsigned char* symbols,
6013                          off_t symbols_size,
6014                          unsigned int shndx,
6015                          unsigned int reloc_shndx,
6016                          unsigned int reloc_type);
6017 #endif
6018
6019 } // End namespace gold.