ld: change --enable-new-dtags to only generate new dtags
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (!parameters->options().relocatable()
586       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587     return false;
588
589   switch (shdr.get_sh_type())
590     {
591     case elfcpp::SHT_NULL:
592     case elfcpp::SHT_SYMTAB:
593     case elfcpp::SHT_DYNSYM:
594     case elfcpp::SHT_HASH:
595     case elfcpp::SHT_DYNAMIC:
596     case elfcpp::SHT_SYMTAB_SHNDX:
597       return false;
598
599     case elfcpp::SHT_STRTAB:
600       // Discard the sections which have special meanings in the ELF
601       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
602       // checking the sh_link fields of the appropriate sections.
603       return (strcmp(name, ".dynstr") != 0
604               && strcmp(name, ".strtab") != 0
605               && strcmp(name, ".shstrtab") != 0);
606
607     case elfcpp::SHT_RELA:
608     case elfcpp::SHT_REL:
609     case elfcpp::SHT_GROUP:
610       // If we are emitting relocations these should be handled
611       // elsewhere.
612       gold_assert(!parameters->options().relocatable());
613       return false;
614
615     case elfcpp::SHT_PROGBITS:
616       if (parameters->options().strip_debug()
617           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618         {
619           if (is_debug_info_section(name))
620             return false;
621         }
622       if (parameters->options().strip_debug_non_line()
623           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624         {
625           // Debugging sections can only be recognized by name.
626           if (is_prefix_of(".debug_", name)
627               && !is_lines_only_debug_section(name + 7))
628             return false;
629           if (is_prefix_of(".zdebug_", name)
630               && !is_lines_only_debug_section(name + 8))
631             return false;
632         }
633       if (parameters->options().strip_debug_gdb()
634           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635         {
636           // Debugging sections can only be recognized by name.
637           if (is_prefix_of(".debug_", name)
638               && !is_gdb_debug_section(name + 7))
639             return false;
640           if (is_prefix_of(".zdebug_", name)
641               && !is_gdb_debug_section(name + 8))
642             return false;
643         }
644       if (parameters->options().gdb_index()
645           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646         {
647           // When building .gdb_index, we can strip .debug_pubnames,
648           // .debug_pubtypes, and .debug_aranges sections.
649           if (is_prefix_of(".debug_", name)
650               && is_gdb_fast_lookup_section(name + 7))
651             return false;
652           if (is_prefix_of(".zdebug_", name)
653               && is_gdb_fast_lookup_section(name + 8))
654             return false;
655         }
656       if (parameters->options().strip_lto_sections()
657           && !parameters->options().relocatable()
658           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659         {
660           // Ignore LTO sections containing intermediate code.
661           if (is_prefix_of(".gnu.lto_", name))
662             return false;
663         }
664       // The GNU linker strips .gnu_debuglink sections, so we do too.
665       // This is a feature used to keep debugging information in
666       // separate files.
667       if (strcmp(name, ".gnu_debuglink") == 0)
668         return false;
669       return true;
670
671     default:
672       return true;
673     }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681   for (Section_list::const_iterator p = this->section_list_.begin();
682        p != this->section_list_.end();
683        ++p)
684     if (strcmp((*p)->name(), name) == 0)
685       return *p;
686   return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear.  Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694                             elfcpp::Elf_Word clear) const
695 {
696   for (Segment_list::const_iterator p = this->segment_list_.begin();
697        p != this->segment_list_.end();
698        ++p)
699     if (static_cast<elfcpp::PT>((*p)->type()) == type
700         && ((*p)->flags() & set) == set
701         && ((*p)->flags() & clear) == 0)
702       return *p;
703   return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section.  This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors.  Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run.  This set just keeps track of
714 // these sections which need to be reversed.  It is only changed by
715 // Layout::layout.  It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727           != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS.  NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key.  ORDER is where this should appear
733 // in the output sections.  IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738                            Output_section_order order, bool is_relro)
739 {
740   elfcpp::Elf_Word lookup_type = type;
741
742   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
744   // .init_array, .fini_array, and .preinit_array sections by name
745   // whatever their type in the input file.  We do this because the
746   // types are not always right in the input files.
747   if (lookup_type == elfcpp::SHT_INIT_ARRAY
748       || lookup_type == elfcpp::SHT_FINI_ARRAY
749       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750     lookup_type = elfcpp::SHT_PROGBITS;
751
752   elfcpp::Elf_Xword lookup_flags = flags;
753
754   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755   // read-write with read-only sections.  Some other ELF linkers do
756   // not do this.  FIXME: Perhaps there should be an option
757   // controlling this.
758   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761   const std::pair<Key, Output_section*> v(key, NULL);
762   std::pair<Section_name_map::iterator, bool> ins(
763     this->section_name_map_.insert(v));
764
765   if (!ins.second)
766     return ins.first->second;
767   else
768     {
769       // This is the first time we've seen this name/type/flags
770       // combination.  For compatibility with the GNU linker, we
771       // combine sections with contents and zero flags with sections
772       // with non-zero flags.  This is a workaround for cases where
773       // assembler code forgets to set section flags.  FIXME: Perhaps
774       // there should be an option to control this.
775       Output_section* os = NULL;
776
777       if (lookup_type == elfcpp::SHT_PROGBITS)
778         {
779           if (flags == 0)
780             {
781               Output_section* same_name = this->find_output_section(name);
782               if (same_name != NULL
783                   && (same_name->type() == elfcpp::SHT_PROGBITS
784                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
785                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
786                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788                 os = same_name;
789             }
790           else if ((flags & elfcpp::SHF_TLS) == 0)
791             {
792               elfcpp::Elf_Xword zero_flags = 0;
793               const Key zero_key(name_key, std::make_pair(lookup_type,
794                                                           zero_flags));
795               Section_name_map::iterator p =
796                   this->section_name_map_.find(zero_key);
797               if (p != this->section_name_map_.end())
798                 os = p->second;
799             }
800         }
801
802       if (os == NULL)
803         os = this->make_output_section(name, type, flags, order, is_relro);
804
805       ins.first->second = os;
806       return os;
807     }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816   if (! this->script_options_->saw_sections_clause())
817     return false;
818
819   Script_sections* ss = this->script_options_->script_sections();
820   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821   Output_section** output_section_slot;
822   Script_sections::Section_type script_section_type;
823   bool keep;
824
825   name = ss->output_section_name(file_name, name, &output_section_slot,
826                                  &script_section_type, &keep);
827   return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836   // Some flags in the input section should not be automatically
837   // copied to the output section.
838   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839                             | elfcpp::SHF_GROUP
840                             | elfcpp::SHF_MERGE
841                             | elfcpp::SHF_STRINGS);
842
843   // We only clear the SHF_LINK_ORDER flag in for
844   // a non-relocatable link.
845   if (!parameters->options().relocatable())
846     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848   return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
853 // linker created section.  IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file.  ORDER is where this section should appear in the output
856 // sections.  IS_RELRO is true for a relro section.  This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862                               bool is_input_section, Output_section_order order,
863                               bool is_relro)
864 {
865   // We should not see any input sections after we have attached
866   // sections to segments.
867   gold_assert(!is_input_section || !this->sections_are_attached_);
868
869   flags = this->get_output_section_flags(flags);
870
871   if (this->script_options_->saw_sections_clause())
872     {
873       // We are using a SECTIONS clause, so the output section is
874       // chosen based only on the name.
875
876       Script_sections* ss = this->script_options_->script_sections();
877       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878       Output_section** output_section_slot;
879       Script_sections::Section_type script_section_type;
880       const char* orig_name = name;
881       bool keep;
882       name = ss->output_section_name(file_name, name, &output_section_slot,
883                                      &script_section_type, &keep);
884
885       if (name == NULL)
886         {
887           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888                                      "because it is not allowed by the "
889                                      "SECTIONS clause of the linker script"),
890                      orig_name);
891           // The SECTIONS clause says to discard this input section.
892           return NULL;
893         }
894
895       // We can only handle script section types ST_NONE and ST_NOLOAD.
896       switch (script_section_type)
897         {
898         case Script_sections::ST_NONE:
899           break;
900         case Script_sections::ST_NOLOAD:
901           flags &= elfcpp::SHF_ALLOC;
902           break;
903         default:
904           gold_unreachable();
905         }
906
907       // If this is an orphan section--one not mentioned in the linker
908       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909       // default processing below.
910
911       if (output_section_slot != NULL)
912         {
913           if (*output_section_slot != NULL)
914             {
915               (*output_section_slot)->update_flags_for_input_section(flags);
916               return *output_section_slot;
917             }
918
919           // We don't put sections found in the linker script into
920           // SECTION_NAME_MAP_.  That keeps us from getting confused
921           // if an orphan section is mapped to a section with the same
922           // name as one in the linker script.
923
924           name = this->namepool_.add(name, false, NULL);
925
926           Output_section* os = this->make_output_section(name, type, flags,
927                                                          order, is_relro);
928
929           os->set_found_in_sections_clause();
930
931           // Special handling for NOLOAD sections.
932           if (script_section_type == Script_sections::ST_NOLOAD)
933             {
934               os->set_is_noload();
935
936               // The constructor of Output_section sets addresses of non-ALLOC
937               // sections to 0 by default.  We don't want that for NOLOAD
938               // sections even if they have no SHF_ALLOC flag.
939               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940                   && os->is_address_valid())
941                 {
942                   gold_assert(os->address() == 0
943                               && !os->is_offset_valid()
944                               && !os->is_data_size_valid());
945                   os->reset_address_and_file_offset();
946                 }
947             }
948
949           *output_section_slot = os;
950           return os;
951         }
952     }
953
954   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956   size_t len = strlen(name);
957   char* uncompressed_name = NULL;
958
959   // Compressed debug sections should be mapped to the corresponding
960   // uncompressed section.
961   if (is_compressed_debug_section(name))
962     {
963       uncompressed_name = new char[len];
964       uncompressed_name[0] = '.';
965       gold_assert(name[0] == '.' && name[1] == 'z');
966       strncpy(&uncompressed_name[1], &name[2], len - 2);
967       uncompressed_name[len - 1] = '\0';
968       len -= 1;
969       name = uncompressed_name;
970     }
971
972   // Turn NAME from the name of the input section into the name of the
973   // output section.
974   if (is_input_section
975       && !this->script_options_->saw_sections_clause()
976       && !parameters->options().relocatable())
977     {
978       const char *orig_name = name;
979       name = parameters->target().output_section_name(relobj, name, &len);
980       if (name == NULL)
981         name = Layout::output_section_name(relobj, orig_name, &len);
982     }
983
984   Stringpool::Key name_key;
985   name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987   if (uncompressed_name != NULL)
988     delete[] uncompressed_name;
989
990   // Find or make the output section.  The output section is selected
991   // based on the section name, type, and flags.
992   return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001                                   elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003   unsigned int sh_type = shdr.get_sh_type();
1004
1005   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006   // PRE_INIT_ARRAY, and NOTE sections.
1007   // All others will be created from scratch and reallocated.
1008   if (!can_incremental_update(sh_type))
1009     return NULL;
1010
1011   // If we're generating a .gdb_index section, we need to regenerate
1012   // it from scratch.
1013   if (parameters->options().gdb_index()
1014       && sh_type == elfcpp::SHT_PROGBITS
1015       && strcmp(name, ".gdb_index") == 0)
1016     return NULL;
1017
1018   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023       shdr.get_sh_addralign();
1024
1025   // Make the output section.
1026   Stringpool::Key name_key;
1027   name = this->namepool_.add(name, true, &name_key);
1028   Output_section* os = this->get_output_section(name, name_key, sh_type,
1029                                                 sh_flags, ORDER_INVALID, false);
1030   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031   if (sh_type != elfcpp::SHT_NOBITS)
1032     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033   return os;
1034 }
1035
1036 // Return the index by which an input section should be ordered.  This
1037 // is used to sort some .text sections, for compatibility with GNU ld.
1038
1039 int
1040 Layout::special_ordering_of_input_section(const char* name)
1041 {
1042   // The GNU linker has some special handling for some sections that
1043   // wind up in the .text section.  Sections that start with these
1044   // prefixes must appear first, and must appear in the order listed
1045   // here.
1046   static const char* const text_section_sort[] = 
1047   {
1048     ".text.unlikely",
1049     ".text.exit",
1050     ".text.startup",
1051     ".text.hot"
1052   };
1053
1054   for (size_t i = 0;
1055        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1056        i++)
1057     if (is_prefix_of(text_section_sort[i], name))
1058       return i;
1059
1060   return -1;
1061 }
1062
1063 // Return the output section to use for input section SHNDX, with name
1064 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1065 // index of a relocation section which applies to this section, or 0
1066 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1067 // relocation section if there is one.  Set *OFF to the offset of this
1068 // input section without the output section.  Return NULL if the
1069 // section should be discarded.  Set *OFF to -1 if the section
1070 // contents should not be written directly to the output file, but
1071 // will instead receive special handling.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1076                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1077                unsigned int reloc_shndx, unsigned int, off_t* off)
1078 {
1079   *off = 0;
1080
1081   if (!this->include_section(object, name, shdr))
1082     return NULL;
1083
1084   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1085
1086   // In a relocatable link a grouped section must not be combined with
1087   // any other sections.
1088   Output_section* os;
1089   if (parameters->options().relocatable()
1090       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1091     {
1092       name = this->namepool_.add(name, true, NULL);
1093       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1094                                      ORDER_INVALID, false);
1095     }
1096   else
1097     {
1098       // Plugins can choose to place one or more subsets of sections in
1099       // unique segments and this is done by mapping these section subsets
1100       // to unique output sections.  Check if this section needs to be
1101       // remapped to a unique output section.
1102       Section_segment_map::iterator it
1103           = this->section_segment_map_.find(Const_section_id(object, shndx));
1104       if (it == this->section_segment_map_.end())
1105         {
1106           os = this->choose_output_section(object, name, sh_type,
1107                                            shdr.get_sh_flags(), true,
1108                                            ORDER_INVALID, false);
1109         }
1110       else
1111         {
1112           // We know the name of the output section, directly call
1113           // get_output_section here by-passing choose_output_section.
1114           elfcpp::Elf_Xword flags
1115             = this->get_output_section_flags(shdr.get_sh_flags());
1116
1117           const char* os_name = it->second->name;
1118           Stringpool::Key name_key;
1119           os_name = this->namepool_.add(os_name, true, &name_key);
1120           os = this->get_output_section(os_name, name_key, sh_type, flags,
1121                                         ORDER_INVALID, false);
1122           if (!os->is_unique_segment())
1123             {
1124               os->set_is_unique_segment();
1125               os->set_extra_segment_flags(it->second->flags);
1126               os->set_segment_alignment(it->second->align);
1127             }
1128         }
1129       if (os == NULL)
1130         return NULL;
1131     }
1132
1133   // By default the GNU linker sorts input sections whose names match
1134   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1135   // sections are sorted by name.  This is used to implement
1136   // constructor priority ordering.  We are compatible.  When we put
1137   // .ctor sections in .init_array and .dtor sections in .fini_array,
1138   // we must also sort plain .ctor and .dtor sections.
1139   if (!this->script_options_->saw_sections_clause()
1140       && !parameters->options().relocatable()
1141       && (is_prefix_of(".ctors.", name)
1142           || is_prefix_of(".dtors.", name)
1143           || is_prefix_of(".init_array.", name)
1144           || is_prefix_of(".fini_array.", name)
1145           || (parameters->options().ctors_in_init_array()
1146               && (strcmp(name, ".ctors") == 0
1147                   || strcmp(name, ".dtors") == 0))))
1148     os->set_must_sort_attached_input_sections();
1149
1150   // By default the GNU linker sorts some special text sections ahead
1151   // of others.  We are compatible.
1152   if (!this->script_options_->saw_sections_clause()
1153       && !this->is_section_ordering_specified()
1154       && !parameters->options().relocatable()
1155       && Layout::special_ordering_of_input_section(name) >= 0)
1156     os->set_must_sort_attached_input_sections();
1157
1158   // If this is a .ctors or .ctors.* section being mapped to a
1159   // .init_array section, or a .dtors or .dtors.* section being mapped
1160   // to a .fini_array section, we will need to reverse the words if
1161   // there is more than one.  Record this section for later.  See
1162   // ctors_sections_in_init_array above.
1163   if (!this->script_options_->saw_sections_clause()
1164       && !parameters->options().relocatable()
1165       && shdr.get_sh_size() > size / 8
1166       && (((strcmp(name, ".ctors") == 0
1167             || is_prefix_of(".ctors.", name))
1168            && strcmp(os->name(), ".init_array") == 0)
1169           || ((strcmp(name, ".dtors") == 0
1170                || is_prefix_of(".dtors.", name))
1171               && strcmp(os->name(), ".fini_array") == 0)))
1172     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1173
1174   // FIXME: Handle SHF_LINK_ORDER somewhere.
1175
1176   elfcpp::Elf_Xword orig_flags = os->flags();
1177
1178   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1179                                this->script_options_->saw_sections_clause());
1180
1181   // If the flags changed, we may have to change the order.
1182   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1183     {
1184       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1185       elfcpp::Elf_Xword new_flags =
1186         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1187       if (orig_flags != new_flags)
1188         os->set_order(this->default_section_order(os, false));
1189     }
1190
1191   this->have_added_input_section_ = true;
1192
1193   return os;
1194 }
1195
1196 // Maps section SECN to SEGMENT s.
1197 void
1198 Layout::insert_section_segment_map(Const_section_id secn,
1199                                    Unique_segment_info *s)
1200 {
1201   gold_assert(this->unique_segment_for_sections_specified_); 
1202   this->section_segment_map_[secn] = s;
1203 }
1204
1205 // Handle a relocation section when doing a relocatable link.
1206
1207 template<int size, bool big_endian>
1208 Output_section*
1209 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1210                      unsigned int,
1211                      const elfcpp::Shdr<size, big_endian>& shdr,
1212                      Output_section* data_section,
1213                      Relocatable_relocs* rr)
1214 {
1215   gold_assert(parameters->options().relocatable()
1216               || parameters->options().emit_relocs());
1217
1218   int sh_type = shdr.get_sh_type();
1219
1220   std::string name;
1221   if (sh_type == elfcpp::SHT_REL)
1222     name = ".rel";
1223   else if (sh_type == elfcpp::SHT_RELA)
1224     name = ".rela";
1225   else
1226     gold_unreachable();
1227   name += data_section->name();
1228
1229   // In a relocatable link relocs for a grouped section must not be
1230   // combined with other reloc sections.
1231   Output_section* os;
1232   if (!parameters->options().relocatable()
1233       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1234     os = this->choose_output_section(object, name.c_str(), sh_type,
1235                                      shdr.get_sh_flags(), false,
1236                                      ORDER_INVALID, false);
1237   else
1238     {
1239       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1240       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1241                                      ORDER_INVALID, false);
1242     }
1243
1244   os->set_should_link_to_symtab();
1245   os->set_info_section(data_section);
1246
1247   Output_section_data* posd;
1248   if (sh_type == elfcpp::SHT_REL)
1249     {
1250       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1251       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1252                                            size,
1253                                            big_endian>(rr);
1254     }
1255   else if (sh_type == elfcpp::SHT_RELA)
1256     {
1257       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1258       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1259                                            size,
1260                                            big_endian>(rr);
1261     }
1262   else
1263     gold_unreachable();
1264
1265   os->add_output_section_data(posd);
1266   rr->set_output_data(posd);
1267
1268   return os;
1269 }
1270
1271 // Handle a group section when doing a relocatable link.
1272
1273 template<int size, bool big_endian>
1274 void
1275 Layout::layout_group(Symbol_table* symtab,
1276                      Sized_relobj_file<size, big_endian>* object,
1277                      unsigned int,
1278                      const char* group_section_name,
1279                      const char* signature,
1280                      const elfcpp::Shdr<size, big_endian>& shdr,
1281                      elfcpp::Elf_Word flags,
1282                      std::vector<unsigned int>* shndxes)
1283 {
1284   gold_assert(parameters->options().relocatable());
1285   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1286   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1287   Output_section* os = this->make_output_section(group_section_name,
1288                                                  elfcpp::SHT_GROUP,
1289                                                  shdr.get_sh_flags(),
1290                                                  ORDER_INVALID, false);
1291
1292   // We need to find a symbol with the signature in the symbol table.
1293   // If we don't find one now, we need to look again later.
1294   Symbol* sym = symtab->lookup(signature, NULL);
1295   if (sym != NULL)
1296     os->set_info_symndx(sym);
1297   else
1298     {
1299       // Reserve some space to minimize reallocations.
1300       if (this->group_signatures_.empty())
1301         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1302
1303       // We will wind up using a symbol whose name is the signature.
1304       // So just put the signature in the symbol name pool to save it.
1305       signature = symtab->canonicalize_name(signature);
1306       this->group_signatures_.push_back(Group_signature(os, signature));
1307     }
1308
1309   os->set_should_link_to_symtab();
1310   os->set_entsize(4);
1311
1312   section_size_type entry_count =
1313     convert_to_section_size_type(shdr.get_sh_size() / 4);
1314   Output_section_data* posd =
1315     new Output_data_group<size, big_endian>(object, entry_count, flags,
1316                                             shndxes);
1317   os->add_output_section_data(posd);
1318 }
1319
1320 // Special GNU handling of sections name .eh_frame.  They will
1321 // normally hold exception frame data as defined by the C++ ABI
1322 // (http://codesourcery.com/cxx-abi/).
1323
1324 template<int size, bool big_endian>
1325 Output_section*
1326 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1327                         const unsigned char* symbols,
1328                         off_t symbols_size,
1329                         const unsigned char* symbol_names,
1330                         off_t symbol_names_size,
1331                         unsigned int shndx,
1332                         const elfcpp::Shdr<size, big_endian>& shdr,
1333                         unsigned int reloc_shndx, unsigned int reloc_type,
1334                         off_t* off)
1335 {
1336   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1337               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1338   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1339
1340   Output_section* os = this->make_eh_frame_section(object);
1341   if (os == NULL)
1342     return NULL;
1343
1344   gold_assert(this->eh_frame_section_ == os);
1345
1346   elfcpp::Elf_Xword orig_flags = os->flags();
1347
1348   if (!parameters->incremental()
1349       && this->eh_frame_data_->add_ehframe_input_section(object,
1350                                                          symbols,
1351                                                          symbols_size,
1352                                                          symbol_names,
1353                                                          symbol_names_size,
1354                                                          shndx,
1355                                                          reloc_shndx,
1356                                                          reloc_type))
1357     {
1358       os->update_flags_for_input_section(shdr.get_sh_flags());
1359
1360       // A writable .eh_frame section is a RELRO section.
1361       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1362           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1363         {
1364           os->set_is_relro();
1365           os->set_order(ORDER_RELRO);
1366         }
1367
1368       // We found a .eh_frame section we are going to optimize, so now
1369       // we can add the set of optimized sections to the output
1370       // section.  We need to postpone adding this until we've found a
1371       // section we can optimize so that the .eh_frame section in
1372       // crtbegin.o winds up at the start of the output section.
1373       if (!this->added_eh_frame_data_)
1374         {
1375           os->add_output_section_data(this->eh_frame_data_);
1376           this->added_eh_frame_data_ = true;
1377         }
1378       *off = -1;
1379     }
1380   else
1381     {
1382       // We couldn't handle this .eh_frame section for some reason.
1383       // Add it as a normal section.
1384       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1385       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1386                                    reloc_shndx, saw_sections_clause);
1387       this->have_added_input_section_ = true;
1388
1389       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1390           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1391         os->set_order(this->default_section_order(os, false));
1392     }
1393
1394   return os;
1395 }
1396
1397 // Create and return the magic .eh_frame section.  Create
1398 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1399 // input .eh_frame section; it may be NULL.
1400
1401 Output_section*
1402 Layout::make_eh_frame_section(const Relobj* object)
1403 {
1404   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1405   // SHT_PROGBITS.
1406   Output_section* os = this->choose_output_section(object, ".eh_frame",
1407                                                    elfcpp::SHT_PROGBITS,
1408                                                    elfcpp::SHF_ALLOC, false,
1409                                                    ORDER_EHFRAME, false);
1410   if (os == NULL)
1411     return NULL;
1412
1413   if (this->eh_frame_section_ == NULL)
1414     {
1415       this->eh_frame_section_ = os;
1416       this->eh_frame_data_ = new Eh_frame();
1417
1418       // For incremental linking, we do not optimize .eh_frame sections
1419       // or create a .eh_frame_hdr section.
1420       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1421         {
1422           Output_section* hdr_os =
1423             this->choose_output_section(NULL, ".eh_frame_hdr",
1424                                         elfcpp::SHT_PROGBITS,
1425                                         elfcpp::SHF_ALLOC, false,
1426                                         ORDER_EHFRAME, false);
1427
1428           if (hdr_os != NULL)
1429             {
1430               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1431                                                         this->eh_frame_data_);
1432               hdr_os->add_output_section_data(hdr_posd);
1433
1434               hdr_os->set_after_input_sections();
1435
1436               if (!this->script_options_->saw_phdrs_clause())
1437                 {
1438                   Output_segment* hdr_oseg;
1439                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1440                                                        elfcpp::PF_R);
1441                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1442                                                           elfcpp::PF_R);
1443                 }
1444
1445               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1446             }
1447         }
1448     }
1449
1450   return os;
1451 }
1452
1453 // Add an exception frame for a PLT.  This is called from target code.
1454
1455 void
1456 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1457                              size_t cie_length, const unsigned char* fde_data,
1458                              size_t fde_length)
1459 {
1460   if (parameters->incremental())
1461     {
1462       // FIXME: Maybe this could work some day....
1463       return;
1464     }
1465   Output_section* os = this->make_eh_frame_section(NULL);
1466   if (os == NULL)
1467     return;
1468   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1469                                             fde_data, fde_length);
1470   if (!this->added_eh_frame_data_)
1471     {
1472       os->add_output_section_data(this->eh_frame_data_);
1473       this->added_eh_frame_data_ = true;
1474     }
1475 }
1476
1477 // Scan a .debug_info or .debug_types section, and add summary
1478 // information to the .gdb_index section.
1479
1480 template<int size, bool big_endian>
1481 void
1482 Layout::add_to_gdb_index(bool is_type_unit,
1483                          Sized_relobj<size, big_endian>* object,
1484                          const unsigned char* symbols,
1485                          off_t symbols_size,
1486                          unsigned int shndx,
1487                          unsigned int reloc_shndx,
1488                          unsigned int reloc_type)
1489 {
1490   if (this->gdb_index_data_ == NULL)
1491     {
1492       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1493                                                        elfcpp::SHT_PROGBITS, 0,
1494                                                        false, ORDER_INVALID,
1495                                                        false);
1496       if (os == NULL)
1497         return;
1498
1499       this->gdb_index_data_ = new Gdb_index(os);
1500       os->add_output_section_data(this->gdb_index_data_);
1501       os->set_after_input_sections();
1502     }
1503
1504   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1505                                          symbols_size, shndx, reloc_shndx,
1506                                          reloc_type);
1507 }
1508
1509 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1510 // the output section.
1511
1512 Output_section*
1513 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1514                                 elfcpp::Elf_Xword flags,
1515                                 Output_section_data* posd,
1516                                 Output_section_order order, bool is_relro)
1517 {
1518   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1519                                                    false, order, is_relro);
1520   if (os != NULL)
1521     os->add_output_section_data(posd);
1522   return os;
1523 }
1524
1525 // Map section flags to segment flags.
1526
1527 elfcpp::Elf_Word
1528 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1529 {
1530   elfcpp::Elf_Word ret = elfcpp::PF_R;
1531   if ((flags & elfcpp::SHF_WRITE) != 0)
1532     ret |= elfcpp::PF_W;
1533   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1534     ret |= elfcpp::PF_X;
1535   return ret;
1536 }
1537
1538 // Make a new Output_section, and attach it to segments as
1539 // appropriate.  ORDER is the order in which this section should
1540 // appear in the output segment.  IS_RELRO is true if this is a relro
1541 // (read-only after relocations) section.
1542
1543 Output_section*
1544 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1545                             elfcpp::Elf_Xword flags,
1546                             Output_section_order order, bool is_relro)
1547 {
1548   Output_section* os;
1549   if ((flags & elfcpp::SHF_ALLOC) == 0
1550       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1551       && is_compressible_debug_section(name))
1552     os = new Output_compressed_section(&parameters->options(), name, type,
1553                                        flags);
1554   else if ((flags & elfcpp::SHF_ALLOC) == 0
1555            && parameters->options().strip_debug_non_line()
1556            && strcmp(".debug_abbrev", name) == 0)
1557     {
1558       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1559           name, type, flags);
1560       if (this->debug_info_)
1561         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1562     }
1563   else if ((flags & elfcpp::SHF_ALLOC) == 0
1564            && parameters->options().strip_debug_non_line()
1565            && strcmp(".debug_info", name) == 0)
1566     {
1567       os = this->debug_info_ = new Output_reduced_debug_info_section(
1568           name, type, flags);
1569       if (this->debug_abbrev_)
1570         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1571     }
1572   else
1573     {
1574       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1575       // not have correct section types.  Force them here.
1576       if (type == elfcpp::SHT_PROGBITS)
1577         {
1578           if (is_prefix_of(".init_array", name))
1579             type = elfcpp::SHT_INIT_ARRAY;
1580           else if (is_prefix_of(".preinit_array", name))
1581             type = elfcpp::SHT_PREINIT_ARRAY;
1582           else if (is_prefix_of(".fini_array", name))
1583             type = elfcpp::SHT_FINI_ARRAY;
1584         }
1585
1586       // FIXME: const_cast is ugly.
1587       Target* target = const_cast<Target*>(&parameters->target());
1588       os = target->make_output_section(name, type, flags);
1589     }
1590
1591   // With -z relro, we have to recognize the special sections by name.
1592   // There is no other way.
1593   bool is_relro_local = false;
1594   if (!this->script_options_->saw_sections_clause()
1595       && parameters->options().relro()
1596       && (flags & elfcpp::SHF_ALLOC) != 0
1597       && (flags & elfcpp::SHF_WRITE) != 0)
1598     {
1599       if (type == elfcpp::SHT_PROGBITS)
1600         {
1601           if ((flags & elfcpp::SHF_TLS) != 0)
1602             is_relro = true;
1603           else if (strcmp(name, ".data.rel.ro") == 0)
1604             is_relro = true;
1605           else if (strcmp(name, ".data.rel.ro.local") == 0)
1606             {
1607               is_relro = true;
1608               is_relro_local = true;
1609             }
1610           else if (strcmp(name, ".ctors") == 0
1611                    || strcmp(name, ".dtors") == 0
1612                    || strcmp(name, ".jcr") == 0)
1613             is_relro = true;
1614         }
1615       else if (type == elfcpp::SHT_INIT_ARRAY
1616                || type == elfcpp::SHT_FINI_ARRAY
1617                || type == elfcpp::SHT_PREINIT_ARRAY)
1618         is_relro = true;
1619     }
1620
1621   if (is_relro)
1622     os->set_is_relro();
1623
1624   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1625     order = this->default_section_order(os, is_relro_local);
1626
1627   os->set_order(order);
1628
1629   parameters->target().new_output_section(os);
1630
1631   this->section_list_.push_back(os);
1632
1633   // The GNU linker by default sorts some sections by priority, so we
1634   // do the same.  We need to know that this might happen before we
1635   // attach any input sections.
1636   if (!this->script_options_->saw_sections_clause()
1637       && !parameters->options().relocatable()
1638       && (strcmp(name, ".init_array") == 0
1639           || strcmp(name, ".fini_array") == 0
1640           || (!parameters->options().ctors_in_init_array()
1641               && (strcmp(name, ".ctors") == 0
1642                   || strcmp(name, ".dtors") == 0))))
1643     os->set_may_sort_attached_input_sections();
1644
1645   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1646   // sections before other .text sections.  We are compatible.  We
1647   // need to know that this might happen before we attach any input
1648   // sections.
1649   if (!this->script_options_->saw_sections_clause()
1650       && !this->is_section_ordering_specified()
1651       && !parameters->options().relocatable()
1652       && strcmp(name, ".text") == 0)
1653     os->set_may_sort_attached_input_sections();
1654
1655   // Check for .stab*str sections, as .stab* sections need to link to
1656   // them.
1657   if (type == elfcpp::SHT_STRTAB
1658       && !this->have_stabstr_section_
1659       && strncmp(name, ".stab", 5) == 0
1660       && strcmp(name + strlen(name) - 3, "str") == 0)
1661     this->have_stabstr_section_ = true;
1662
1663   // During a full incremental link, we add patch space to most
1664   // PROGBITS and NOBITS sections.  Flag those that may be
1665   // arbitrarily padded.
1666   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1667       && order != ORDER_INTERP
1668       && order != ORDER_INIT
1669       && order != ORDER_PLT
1670       && order != ORDER_FINI
1671       && order != ORDER_RELRO_LAST
1672       && order != ORDER_NON_RELRO_FIRST
1673       && strcmp(name, ".eh_frame") != 0
1674       && strcmp(name, ".ctors") != 0
1675       && strcmp(name, ".dtors") != 0
1676       && strcmp(name, ".jcr") != 0)
1677     {
1678       os->set_is_patch_space_allowed();
1679
1680       // Certain sections require "holes" to be filled with
1681       // specific fill patterns.  These fill patterns may have
1682       // a minimum size, so we must prevent allocations from the
1683       // free list that leave a hole smaller than the minimum.
1684       if (strcmp(name, ".debug_info") == 0)
1685         os->set_free_space_fill(new Output_fill_debug_info(false));
1686       else if (strcmp(name, ".debug_types") == 0)
1687         os->set_free_space_fill(new Output_fill_debug_info(true));
1688       else if (strcmp(name, ".debug_line") == 0)
1689         os->set_free_space_fill(new Output_fill_debug_line());
1690     }
1691
1692   // If we have already attached the sections to segments, then we
1693   // need to attach this one now.  This happens for sections created
1694   // directly by the linker.
1695   if (this->sections_are_attached_)
1696     this->attach_section_to_segment(&parameters->target(), os);
1697
1698   return os;
1699 }
1700
1701 // Return the default order in which a section should be placed in an
1702 // output segment.  This function captures a lot of the ideas in
1703 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1704 // linker created section is normally set when the section is created;
1705 // this function is used for input sections.
1706
1707 Output_section_order
1708 Layout::default_section_order(Output_section* os, bool is_relro_local)
1709 {
1710   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1711   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1712   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1713   bool is_bss = false;
1714
1715   switch (os->type())
1716     {
1717     default:
1718     case elfcpp::SHT_PROGBITS:
1719       break;
1720     case elfcpp::SHT_NOBITS:
1721       is_bss = true;
1722       break;
1723     case elfcpp::SHT_RELA:
1724     case elfcpp::SHT_REL:
1725       if (!is_write)
1726         return ORDER_DYNAMIC_RELOCS;
1727       break;
1728     case elfcpp::SHT_HASH:
1729     case elfcpp::SHT_DYNAMIC:
1730     case elfcpp::SHT_SHLIB:
1731     case elfcpp::SHT_DYNSYM:
1732     case elfcpp::SHT_GNU_HASH:
1733     case elfcpp::SHT_GNU_verdef:
1734     case elfcpp::SHT_GNU_verneed:
1735     case elfcpp::SHT_GNU_versym:
1736       if (!is_write)
1737         return ORDER_DYNAMIC_LINKER;
1738       break;
1739     case elfcpp::SHT_NOTE:
1740       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1741     }
1742
1743   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1744     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1745
1746   if (!is_bss && !is_write)
1747     {
1748       if (is_execinstr)
1749         {
1750           if (strcmp(os->name(), ".init") == 0)
1751             return ORDER_INIT;
1752           else if (strcmp(os->name(), ".fini") == 0)
1753             return ORDER_FINI;
1754         }
1755       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1756     }
1757
1758   if (os->is_relro())
1759     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1760
1761   if (os->is_small_section())
1762     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1763   if (os->is_large_section())
1764     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1765
1766   return is_bss ? ORDER_BSS : ORDER_DATA;
1767 }
1768
1769 // Attach output sections to segments.  This is called after we have
1770 // seen all the input sections.
1771
1772 void
1773 Layout::attach_sections_to_segments(const Target* target)
1774 {
1775   for (Section_list::iterator p = this->section_list_.begin();
1776        p != this->section_list_.end();
1777        ++p)
1778     this->attach_section_to_segment(target, *p);
1779
1780   this->sections_are_attached_ = true;
1781 }
1782
1783 // Attach an output section to a segment.
1784
1785 void
1786 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1787 {
1788   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1789     this->unattached_section_list_.push_back(os);
1790   else
1791     this->attach_allocated_section_to_segment(target, os);
1792 }
1793
1794 // Attach an allocated output section to a segment.
1795
1796 void
1797 Layout::attach_allocated_section_to_segment(const Target* target,
1798                                             Output_section* os)
1799 {
1800   elfcpp::Elf_Xword flags = os->flags();
1801   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1802
1803   if (parameters->options().relocatable())
1804     return;
1805
1806   // If we have a SECTIONS clause, we can't handle the attachment to
1807   // segments until after we've seen all the sections.
1808   if (this->script_options_->saw_sections_clause())
1809     return;
1810
1811   gold_assert(!this->script_options_->saw_phdrs_clause());
1812
1813   // This output section goes into a PT_LOAD segment.
1814
1815   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1816
1817   // If this output section's segment has extra flags that need to be set,
1818   // coming from a linker plugin, do that.
1819   seg_flags |= os->extra_segment_flags();
1820
1821   // Check for --section-start.
1822   uint64_t addr;
1823   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1824
1825   // In general the only thing we really care about for PT_LOAD
1826   // segments is whether or not they are writable or executable,
1827   // so that is how we search for them.
1828   // Large data sections also go into their own PT_LOAD segment.
1829   // People who need segments sorted on some other basis will
1830   // have to use a linker script.
1831
1832   Segment_list::const_iterator p;
1833   if (!os->is_unique_segment())
1834     {
1835       for (p = this->segment_list_.begin();
1836            p != this->segment_list_.end();
1837            ++p)
1838         {
1839           if ((*p)->type() != elfcpp::PT_LOAD)                        
1840             continue;                        
1841           if ((*p)->is_unique_segment())                        
1842             continue;                        
1843           if (!parameters->options().omagic()                        
1844               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1845             continue;                        
1846           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1847               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1848             continue;                        
1849           // If -Tbss was specified, we need to separate the data and BSS                        
1850           // segments.                        
1851           if (parameters->options().user_set_Tbss())                        
1852             {                        
1853               if ((os->type() == elfcpp::SHT_NOBITS)                        
1854                   == (*p)->has_any_data_sections())                        
1855                 continue;                        
1856             }                        
1857           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1858             continue;                        
1859                             
1860           if (is_address_set)                        
1861             {                        
1862               if ((*p)->are_addresses_set())                        
1863                 continue;                        
1864                             
1865               (*p)->add_initial_output_data(os);                        
1866               (*p)->update_flags_for_output_section(seg_flags);                        
1867               (*p)->set_addresses(addr, addr);                        
1868               break;                        
1869             }                        
1870                             
1871           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1872           break;                        
1873         }                        
1874     }
1875
1876   if (p == this->segment_list_.end()
1877       || os->is_unique_segment())
1878     {
1879       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1880                                                        seg_flags);
1881       if (os->is_large_data_section())
1882         oseg->set_is_large_data_segment();
1883       oseg->add_output_section_to_load(this, os, seg_flags);
1884       if (is_address_set)
1885         oseg->set_addresses(addr, addr);
1886       // Check if segment should be marked unique.  For segments marked
1887       // unique by linker plugins, set the new alignment if specified.
1888       if (os->is_unique_segment())
1889         {
1890           oseg->set_is_unique_segment();
1891           if (os->segment_alignment() != 0)
1892             oseg->set_minimum_p_align(os->segment_alignment());
1893         }
1894     }
1895
1896   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1897   // segment.
1898   if (os->type() == elfcpp::SHT_NOTE)
1899     {
1900       // See if we already have an equivalent PT_NOTE segment.
1901       for (p = this->segment_list_.begin();
1902            p != segment_list_.end();
1903            ++p)
1904         {
1905           if ((*p)->type() == elfcpp::PT_NOTE
1906               && (((*p)->flags() & elfcpp::PF_W)
1907                   == (seg_flags & elfcpp::PF_W)))
1908             {
1909               (*p)->add_output_section_to_nonload(os, seg_flags);
1910               break;
1911             }
1912         }
1913
1914       if (p == this->segment_list_.end())
1915         {
1916           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1917                                                            seg_flags);
1918           oseg->add_output_section_to_nonload(os, seg_flags);
1919         }
1920     }
1921
1922   // If we see a loadable SHF_TLS section, we create a PT_TLS
1923   // segment.  There can only be one such segment.
1924   if ((flags & elfcpp::SHF_TLS) != 0)
1925     {
1926       if (this->tls_segment_ == NULL)
1927         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1928       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1929     }
1930
1931   // If -z relro is in effect, and we see a relro section, we create a
1932   // PT_GNU_RELRO segment.  There can only be one such segment.
1933   if (os->is_relro() && parameters->options().relro())
1934     {
1935       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1936       if (this->relro_segment_ == NULL)
1937         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1938       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1939     }
1940
1941   // If we see a section named .interp, put it into a PT_INTERP
1942   // segment.  This seems broken to me, but this is what GNU ld does,
1943   // and glibc expects it.
1944   if (strcmp(os->name(), ".interp") == 0
1945       && !this->script_options_->saw_phdrs_clause())
1946     {
1947       if (this->interp_segment_ == NULL)
1948         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1949       else
1950         gold_warning(_("multiple '.interp' sections in input files "
1951                        "may cause confusing PT_INTERP segment"));
1952       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1953     }
1954 }
1955
1956 // Make an output section for a script.
1957
1958 Output_section*
1959 Layout::make_output_section_for_script(
1960     const char* name,
1961     Script_sections::Section_type section_type)
1962 {
1963   name = this->namepool_.add(name, false, NULL);
1964   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1965   if (section_type == Script_sections::ST_NOLOAD)
1966     sh_flags = 0;
1967   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1968                                                  sh_flags, ORDER_INVALID,
1969                                                  false);
1970   os->set_found_in_sections_clause();
1971   if (section_type == Script_sections::ST_NOLOAD)
1972     os->set_is_noload();
1973   return os;
1974 }
1975
1976 // Return the number of segments we expect to see.
1977
1978 size_t
1979 Layout::expected_segment_count() const
1980 {
1981   size_t ret = this->segment_list_.size();
1982
1983   // If we didn't see a SECTIONS clause in a linker script, we should
1984   // already have the complete list of segments.  Otherwise we ask the
1985   // SECTIONS clause how many segments it expects, and add in the ones
1986   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1987
1988   if (!this->script_options_->saw_sections_clause())
1989     return ret;
1990   else
1991     {
1992       const Script_sections* ss = this->script_options_->script_sections();
1993       return ret + ss->expected_segment_count(this);
1994     }
1995 }
1996
1997 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1998 // is whether we saw a .note.GNU-stack section in the object file.
1999 // GNU_STACK_FLAGS is the section flags.  The flags give the
2000 // protection required for stack memory.  We record this in an
2001 // executable as a PT_GNU_STACK segment.  If an object file does not
2002 // have a .note.GNU-stack segment, we must assume that it is an old
2003 // object.  On some targets that will force an executable stack.
2004
2005 void
2006 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2007                          const Object* obj)
2008 {
2009   if (!seen_gnu_stack)
2010     {
2011       this->input_without_gnu_stack_note_ = true;
2012       if (parameters->options().warn_execstack()
2013           && parameters->target().is_default_stack_executable())
2014         gold_warning(_("%s: missing .note.GNU-stack section"
2015                        " implies executable stack"),
2016                      obj->name().c_str());
2017     }
2018   else
2019     {
2020       this->input_with_gnu_stack_note_ = true;
2021       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2022         {
2023           this->input_requires_executable_stack_ = true;
2024           if (parameters->options().warn_execstack()
2025               || parameters->options().is_stack_executable())
2026             gold_warning(_("%s: requires executable stack"),
2027                          obj->name().c_str());
2028         }
2029     }
2030 }
2031
2032 // Create automatic note sections.
2033
2034 void
2035 Layout::create_notes()
2036 {
2037   this->create_gold_note();
2038   this->create_executable_stack_info();
2039   this->create_build_id();
2040 }
2041
2042 // Create the dynamic sections which are needed before we read the
2043 // relocs.
2044
2045 void
2046 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2047 {
2048   if (parameters->doing_static_link())
2049     return;
2050
2051   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2052                                                        elfcpp::SHT_DYNAMIC,
2053                                                        (elfcpp::SHF_ALLOC
2054                                                         | elfcpp::SHF_WRITE),
2055                                                        false, ORDER_RELRO,
2056                                                        true);
2057
2058   // A linker script may discard .dynamic, so check for NULL.
2059   if (this->dynamic_section_ != NULL)
2060     {
2061       this->dynamic_symbol_ =
2062         symtab->define_in_output_data("_DYNAMIC", NULL,
2063                                       Symbol_table::PREDEFINED,
2064                                       this->dynamic_section_, 0, 0,
2065                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2066                                       elfcpp::STV_HIDDEN, 0, false, false);
2067
2068       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2069
2070       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2071     }
2072 }
2073
2074 // For each output section whose name can be represented as C symbol,
2075 // define __start and __stop symbols for the section.  This is a GNU
2076 // extension.
2077
2078 void
2079 Layout::define_section_symbols(Symbol_table* symtab)
2080 {
2081   for (Section_list::const_iterator p = this->section_list_.begin();
2082        p != this->section_list_.end();
2083        ++p)
2084     {
2085       const char* const name = (*p)->name();
2086       if (is_cident(name))
2087         {
2088           const std::string name_string(name);
2089           const std::string start_name(cident_section_start_prefix
2090                                        + name_string);
2091           const std::string stop_name(cident_section_stop_prefix
2092                                       + name_string);
2093
2094           symtab->define_in_output_data(start_name.c_str(),
2095                                         NULL, // version
2096                                         Symbol_table::PREDEFINED,
2097                                         *p,
2098                                         0, // value
2099                                         0, // symsize
2100                                         elfcpp::STT_NOTYPE,
2101                                         elfcpp::STB_GLOBAL,
2102                                         elfcpp::STV_DEFAULT,
2103                                         0, // nonvis
2104                                         false, // offset_is_from_end
2105                                         true); // only_if_ref
2106
2107           symtab->define_in_output_data(stop_name.c_str(),
2108                                         NULL, // version
2109                                         Symbol_table::PREDEFINED,
2110                                         *p,
2111                                         0, // value
2112                                         0, // symsize
2113                                         elfcpp::STT_NOTYPE,
2114                                         elfcpp::STB_GLOBAL,
2115                                         elfcpp::STV_DEFAULT,
2116                                         0, // nonvis
2117                                         true, // offset_is_from_end
2118                                         true); // only_if_ref
2119         }
2120     }
2121 }
2122
2123 // Define symbols for group signatures.
2124
2125 void
2126 Layout::define_group_signatures(Symbol_table* symtab)
2127 {
2128   for (Group_signatures::iterator p = this->group_signatures_.begin();
2129        p != this->group_signatures_.end();
2130        ++p)
2131     {
2132       Symbol* sym = symtab->lookup(p->signature, NULL);
2133       if (sym != NULL)
2134         p->section->set_info_symndx(sym);
2135       else
2136         {
2137           // Force the name of the group section to the group
2138           // signature, and use the group's section symbol as the
2139           // signature symbol.
2140           if (strcmp(p->section->name(), p->signature) != 0)
2141             {
2142               const char* name = this->namepool_.add(p->signature,
2143                                                      true, NULL);
2144               p->section->set_name(name);
2145             }
2146           p->section->set_needs_symtab_index();
2147           p->section->set_info_section_symndx(p->section);
2148         }
2149     }
2150
2151   this->group_signatures_.clear();
2152 }
2153
2154 // Find the first read-only PT_LOAD segment, creating one if
2155 // necessary.
2156
2157 Output_segment*
2158 Layout::find_first_load_seg(const Target* target)
2159 {
2160   Output_segment* best = NULL;
2161   for (Segment_list::const_iterator p = this->segment_list_.begin();
2162        p != this->segment_list_.end();
2163        ++p)
2164     {
2165       if ((*p)->type() == elfcpp::PT_LOAD
2166           && ((*p)->flags() & elfcpp::PF_R) != 0
2167           && (parameters->options().omagic()
2168               || ((*p)->flags() & elfcpp::PF_W) == 0)
2169           && (!target->isolate_execinstr()
2170               || ((*p)->flags() & elfcpp::PF_X) == 0))
2171         {
2172           if (best == NULL || this->segment_precedes(*p, best))
2173             best = *p;
2174         }
2175     }
2176   if (best != NULL)
2177     return best;
2178
2179   gold_assert(!this->script_options_->saw_phdrs_clause());
2180
2181   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2182                                                        elfcpp::PF_R);
2183   return load_seg;
2184 }
2185
2186 // Save states of all current output segments.  Store saved states
2187 // in SEGMENT_STATES.
2188
2189 void
2190 Layout::save_segments(Segment_states* segment_states)
2191 {
2192   for (Segment_list::const_iterator p = this->segment_list_.begin();
2193        p != this->segment_list_.end();
2194        ++p)
2195     {
2196       Output_segment* segment = *p;
2197       // Shallow copy.
2198       Output_segment* copy = new Output_segment(*segment);
2199       (*segment_states)[segment] = copy;
2200     }
2201 }
2202
2203 // Restore states of output segments and delete any segment not found in
2204 // SEGMENT_STATES.
2205
2206 void
2207 Layout::restore_segments(const Segment_states* segment_states)
2208 {
2209   // Go through the segment list and remove any segment added in the
2210   // relaxation loop.
2211   this->tls_segment_ = NULL;
2212   this->relro_segment_ = NULL;
2213   Segment_list::iterator list_iter = this->segment_list_.begin();
2214   while (list_iter != this->segment_list_.end())
2215     {
2216       Output_segment* segment = *list_iter;
2217       Segment_states::const_iterator states_iter =
2218           segment_states->find(segment);
2219       if (states_iter != segment_states->end())
2220         {
2221           const Output_segment* copy = states_iter->second;
2222           // Shallow copy to restore states.
2223           *segment = *copy;
2224
2225           // Also fix up TLS and RELRO segment pointers as appropriate.
2226           if (segment->type() == elfcpp::PT_TLS)
2227             this->tls_segment_ = segment;
2228           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2229             this->relro_segment_ = segment;
2230
2231           ++list_iter;
2232         }
2233       else
2234         {
2235           list_iter = this->segment_list_.erase(list_iter);
2236           // This is a segment created during section layout.  It should be
2237           // safe to remove it since we should have removed all pointers to it.
2238           delete segment;
2239         }
2240     }
2241 }
2242
2243 // Clean up after relaxation so that sections can be laid out again.
2244
2245 void
2246 Layout::clean_up_after_relaxation()
2247 {
2248   // Restore the segments to point state just prior to the relaxation loop.
2249   Script_sections* script_section = this->script_options_->script_sections();
2250   script_section->release_segments();
2251   this->restore_segments(this->segment_states_);
2252
2253   // Reset section addresses and file offsets
2254   for (Section_list::iterator p = this->section_list_.begin();
2255        p != this->section_list_.end();
2256        ++p)
2257     {
2258       (*p)->restore_states();
2259
2260       // If an input section changes size because of relaxation,
2261       // we need to adjust the section offsets of all input sections.
2262       // after such a section.
2263       if ((*p)->section_offsets_need_adjustment())
2264         (*p)->adjust_section_offsets();
2265
2266       (*p)->reset_address_and_file_offset();
2267     }
2268
2269   // Reset special output object address and file offsets.
2270   for (Data_list::iterator p = this->special_output_list_.begin();
2271        p != this->special_output_list_.end();
2272        ++p)
2273     (*p)->reset_address_and_file_offset();
2274
2275   // A linker script may have created some output section data objects.
2276   // They are useless now.
2277   for (Output_section_data_list::const_iterator p =
2278          this->script_output_section_data_list_.begin();
2279        p != this->script_output_section_data_list_.end();
2280        ++p)
2281     delete *p;
2282   this->script_output_section_data_list_.clear();
2283 }
2284
2285 // Prepare for relaxation.
2286
2287 void
2288 Layout::prepare_for_relaxation()
2289 {
2290   // Create an relaxation debug check if in debugging mode.
2291   if (is_debugging_enabled(DEBUG_RELAXATION))
2292     this->relaxation_debug_check_ = new Relaxation_debug_check();
2293
2294   // Save segment states.
2295   this->segment_states_ = new Segment_states();
2296   this->save_segments(this->segment_states_);
2297
2298   for(Section_list::const_iterator p = this->section_list_.begin();
2299       p != this->section_list_.end();
2300       ++p)
2301     (*p)->save_states();
2302
2303   if (is_debugging_enabled(DEBUG_RELAXATION))
2304     this->relaxation_debug_check_->check_output_data_for_reset_values(
2305         this->section_list_, this->special_output_list_);
2306
2307   // Also enable recording of output section data from scripts.
2308   this->record_output_section_data_from_script_ = true;
2309 }
2310
2311 // Relaxation loop body:  If target has no relaxation, this runs only once
2312 // Otherwise, the target relaxation hook is called at the end of
2313 // each iteration.  If the hook returns true, it means re-layout of
2314 // section is required.
2315 //
2316 // The number of segments created by a linking script without a PHDRS
2317 // clause may be affected by section sizes and alignments.  There is
2318 // a remote chance that relaxation causes different number of PT_LOAD
2319 // segments are created and sections are attached to different segments.
2320 // Therefore, we always throw away all segments created during section
2321 // layout.  In order to be able to restart the section layout, we keep
2322 // a copy of the segment list right before the relaxation loop and use
2323 // that to restore the segments.
2324 //
2325 // PASS is the current relaxation pass number.
2326 // SYMTAB is a symbol table.
2327 // PLOAD_SEG is the address of a pointer for the load segment.
2328 // PHDR_SEG is a pointer to the PHDR segment.
2329 // SEGMENT_HEADERS points to the output segment header.
2330 // FILE_HEADER points to the output file header.
2331 // PSHNDX is the address to store the output section index.
2332
2333 off_t inline
2334 Layout::relaxation_loop_body(
2335     int pass,
2336     Target* target,
2337     Symbol_table* symtab,
2338     Output_segment** pload_seg,
2339     Output_segment* phdr_seg,
2340     Output_segment_headers* segment_headers,
2341     Output_file_header* file_header,
2342     unsigned int* pshndx)
2343 {
2344   // If this is not the first iteration, we need to clean up after
2345   // relaxation so that we can lay out the sections again.
2346   if (pass != 0)
2347     this->clean_up_after_relaxation();
2348
2349   // If there is a SECTIONS clause, put all the input sections into
2350   // the required order.
2351   Output_segment* load_seg;
2352   if (this->script_options_->saw_sections_clause())
2353     load_seg = this->set_section_addresses_from_script(symtab);
2354   else if (parameters->options().relocatable())
2355     load_seg = NULL;
2356   else
2357     load_seg = this->find_first_load_seg(target);
2358
2359   if (parameters->options().oformat_enum()
2360       != General_options::OBJECT_FORMAT_ELF)
2361     load_seg = NULL;
2362
2363   // If the user set the address of the text segment, that may not be
2364   // compatible with putting the segment headers and file headers into
2365   // that segment.
2366   if (parameters->options().user_set_Ttext()
2367       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2368     {
2369       load_seg = NULL;
2370       phdr_seg = NULL;
2371     }
2372
2373   gold_assert(phdr_seg == NULL
2374               || load_seg != NULL
2375               || this->script_options_->saw_sections_clause());
2376
2377   // If the address of the load segment we found has been set by
2378   // --section-start rather than by a script, then adjust the VMA and
2379   // LMA downward if possible to include the file and section headers.
2380   uint64_t header_gap = 0;
2381   if (load_seg != NULL
2382       && load_seg->are_addresses_set()
2383       && !this->script_options_->saw_sections_clause()
2384       && !parameters->options().relocatable())
2385     {
2386       file_header->finalize_data_size();
2387       segment_headers->finalize_data_size();
2388       size_t sizeof_headers = (file_header->data_size()
2389                                + segment_headers->data_size());
2390       const uint64_t abi_pagesize = target->abi_pagesize();
2391       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2392       hdr_paddr &= ~(abi_pagesize - 1);
2393       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2394       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2395         load_seg = NULL;
2396       else
2397         {
2398           load_seg->set_addresses(load_seg->vaddr() - subtract,
2399                                   load_seg->paddr() - subtract);
2400           header_gap = subtract - sizeof_headers;
2401         }
2402     }
2403
2404   // Lay out the segment headers.
2405   if (!parameters->options().relocatable())
2406     {
2407       gold_assert(segment_headers != NULL);
2408       if (header_gap != 0 && load_seg != NULL)
2409         {
2410           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2411           load_seg->add_initial_output_data(z);
2412         }
2413       if (load_seg != NULL)
2414         load_seg->add_initial_output_data(segment_headers);
2415       if (phdr_seg != NULL)
2416         phdr_seg->add_initial_output_data(segment_headers);
2417     }
2418
2419   // Lay out the file header.
2420   if (load_seg != NULL)
2421     load_seg->add_initial_output_data(file_header);
2422
2423   if (this->script_options_->saw_phdrs_clause()
2424       && !parameters->options().relocatable())
2425     {
2426       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2427       // clause in a linker script.
2428       Script_sections* ss = this->script_options_->script_sections();
2429       ss->put_headers_in_phdrs(file_header, segment_headers);
2430     }
2431
2432   // We set the output section indexes in set_segment_offsets and
2433   // set_section_indexes.
2434   *pshndx = 1;
2435
2436   // Set the file offsets of all the segments, and all the sections
2437   // they contain.
2438   off_t off;
2439   if (!parameters->options().relocatable())
2440     off = this->set_segment_offsets(target, load_seg, pshndx);
2441   else
2442     off = this->set_relocatable_section_offsets(file_header, pshndx);
2443
2444    // Verify that the dummy relaxation does not change anything.
2445   if (is_debugging_enabled(DEBUG_RELAXATION))
2446     {
2447       if (pass == 0)
2448         this->relaxation_debug_check_->read_sections(this->section_list_);
2449       else
2450         this->relaxation_debug_check_->verify_sections(this->section_list_);
2451     }
2452
2453   *pload_seg = load_seg;
2454   return off;
2455 }
2456
2457 // Search the list of patterns and find the postion of the given section
2458 // name in the output section.  If the section name matches a glob
2459 // pattern and a non-glob name, then the non-glob position takes
2460 // precedence.  Return 0 if no match is found.
2461
2462 unsigned int
2463 Layout::find_section_order_index(const std::string& section_name)
2464 {
2465   Unordered_map<std::string, unsigned int>::iterator map_it;
2466   map_it = this->input_section_position_.find(section_name);
2467   if (map_it != this->input_section_position_.end())
2468     return map_it->second;
2469
2470   // Absolute match failed.  Linear search the glob patterns.
2471   std::vector<std::string>::iterator it;
2472   for (it = this->input_section_glob_.begin();
2473        it != this->input_section_glob_.end();
2474        ++it)
2475     {
2476        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2477          {
2478            map_it = this->input_section_position_.find(*it);
2479            gold_assert(map_it != this->input_section_position_.end());
2480            return map_it->second;
2481          }
2482     }
2483   return 0;
2484 }
2485
2486 // Read the sequence of input sections from the file specified with
2487 // option --section-ordering-file.
2488
2489 void
2490 Layout::read_layout_from_file()
2491 {
2492   const char* filename = parameters->options().section_ordering_file();
2493   std::ifstream in;
2494   std::string line;
2495
2496   in.open(filename);
2497   if (!in)
2498     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2499                filename, strerror(errno));
2500
2501   std::getline(in, line);   // this chops off the trailing \n, if any
2502   unsigned int position = 1;
2503   this->set_section_ordering_specified();
2504
2505   while (in)
2506     {
2507       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2508         line.resize(line.length() - 1);
2509       // Ignore comments, beginning with '#'
2510       if (line[0] == '#')
2511         {
2512           std::getline(in, line);
2513           continue;
2514         }
2515       this->input_section_position_[line] = position;
2516       // Store all glob patterns in a vector.
2517       if (is_wildcard_string(line.c_str()))
2518         this->input_section_glob_.push_back(line);
2519       position++;
2520       std::getline(in, line);
2521     }
2522 }
2523
2524 // Finalize the layout.  When this is called, we have created all the
2525 // output sections and all the output segments which are based on
2526 // input sections.  We have several things to do, and we have to do
2527 // them in the right order, so that we get the right results correctly
2528 // and efficiently.
2529
2530 // 1) Finalize the list of output segments and create the segment
2531 // table header.
2532
2533 // 2) Finalize the dynamic symbol table and associated sections.
2534
2535 // 3) Determine the final file offset of all the output segments.
2536
2537 // 4) Determine the final file offset of all the SHF_ALLOC output
2538 // sections.
2539
2540 // 5) Create the symbol table sections and the section name table
2541 // section.
2542
2543 // 6) Finalize the symbol table: set symbol values to their final
2544 // value and make a final determination of which symbols are going
2545 // into the output symbol table.
2546
2547 // 7) Create the section table header.
2548
2549 // 8) Determine the final file offset of all the output sections which
2550 // are not SHF_ALLOC, including the section table header.
2551
2552 // 9) Finalize the ELF file header.
2553
2554 // This function returns the size of the output file.
2555
2556 off_t
2557 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2558                  Target* target, const Task* task)
2559 {
2560   target->finalize_sections(this, input_objects, symtab);
2561
2562   this->count_local_symbols(task, input_objects);
2563
2564   this->link_stabs_sections();
2565
2566   Output_segment* phdr_seg = NULL;
2567   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2568     {
2569       // There was a dynamic object in the link.  We need to create
2570       // some information for the dynamic linker.
2571
2572       // Create the PT_PHDR segment which will hold the program
2573       // headers.
2574       if (!this->script_options_->saw_phdrs_clause())
2575         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2576
2577       // Create the dynamic symbol table, including the hash table.
2578       Output_section* dynstr;
2579       std::vector<Symbol*> dynamic_symbols;
2580       unsigned int local_dynamic_count;
2581       Versions versions(*this->script_options()->version_script_info(),
2582                         &this->dynpool_);
2583       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2584                                   &local_dynamic_count, &dynamic_symbols,
2585                                   &versions);
2586
2587       // Create the .interp section to hold the name of the
2588       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2589       // if we saw a .interp section in an input file.
2590       if ((!parameters->options().shared()
2591            || parameters->options().dynamic_linker() != NULL)
2592           && this->interp_segment_ == NULL)
2593         this->create_interp(target);
2594
2595       // Finish the .dynamic section to hold the dynamic data, and put
2596       // it in a PT_DYNAMIC segment.
2597       this->finish_dynamic_section(input_objects, symtab);
2598
2599       // We should have added everything we need to the dynamic string
2600       // table.
2601       this->dynpool_.set_string_offsets();
2602
2603       // Create the version sections.  We can't do this until the
2604       // dynamic string table is complete.
2605       this->create_version_sections(&versions, symtab, local_dynamic_count,
2606                                     dynamic_symbols, dynstr);
2607
2608       // Set the size of the _DYNAMIC symbol.  We can't do this until
2609       // after we call create_version_sections.
2610       this->set_dynamic_symbol_size(symtab);
2611     }
2612
2613   // Create segment headers.
2614   Output_segment_headers* segment_headers =
2615     (parameters->options().relocatable()
2616      ? NULL
2617      : new Output_segment_headers(this->segment_list_));
2618
2619   // Lay out the file header.
2620   Output_file_header* file_header = new Output_file_header(target, symtab,
2621                                                            segment_headers);
2622
2623   this->special_output_list_.push_back(file_header);
2624   if (segment_headers != NULL)
2625     this->special_output_list_.push_back(segment_headers);
2626
2627   // Find approriate places for orphan output sections if we are using
2628   // a linker script.
2629   if (this->script_options_->saw_sections_clause())
2630     this->place_orphan_sections_in_script();
2631
2632   Output_segment* load_seg;
2633   off_t off;
2634   unsigned int shndx;
2635   int pass = 0;
2636
2637   // Take a snapshot of the section layout as needed.
2638   if (target->may_relax())
2639     this->prepare_for_relaxation();
2640
2641   // Run the relaxation loop to lay out sections.
2642   do
2643     {
2644       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2645                                        phdr_seg, segment_headers, file_header,
2646                                        &shndx);
2647       pass++;
2648     }
2649   while (target->may_relax()
2650          && target->relax(pass, input_objects, symtab, this, task));
2651
2652   // If there is a load segment that contains the file and program headers,
2653   // provide a symbol __ehdr_start pointing there.
2654   // A program can use this to examine itself robustly.
2655   if (load_seg != NULL)
2656     symtab->define_in_output_segment("__ehdr_start", NULL,
2657                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2658                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2659                                      elfcpp::STV_DEFAULT, 0,
2660                                      Symbol::SEGMENT_START, true);
2661
2662   // Set the file offsets of all the non-data sections we've seen so
2663   // far which don't have to wait for the input sections.  We need
2664   // this in order to finalize local symbols in non-allocated
2665   // sections.
2666   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2667
2668   // Set the section indexes of all unallocated sections seen so far,
2669   // in case any of them are somehow referenced by a symbol.
2670   shndx = this->set_section_indexes(shndx);
2671
2672   // Create the symbol table sections.
2673   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2674   if (!parameters->doing_static_link())
2675     this->assign_local_dynsym_offsets(input_objects);
2676
2677   // Process any symbol assignments from a linker script.  This must
2678   // be called after the symbol table has been finalized.
2679   this->script_options_->finalize_symbols(symtab, this);
2680
2681   // Create the incremental inputs sections.
2682   if (this->incremental_inputs_)
2683     {
2684       this->incremental_inputs_->finalize();
2685       this->create_incremental_info_sections(symtab);
2686     }
2687
2688   // Create the .shstrtab section.
2689   Output_section* shstrtab_section = this->create_shstrtab();
2690
2691   // Set the file offsets of the rest of the non-data sections which
2692   // don't have to wait for the input sections.
2693   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2694
2695   // Now that all sections have been created, set the section indexes
2696   // for any sections which haven't been done yet.
2697   shndx = this->set_section_indexes(shndx);
2698
2699   // Create the section table header.
2700   this->create_shdrs(shstrtab_section, &off);
2701
2702   // If there are no sections which require postprocessing, we can
2703   // handle the section names now, and avoid a resize later.
2704   if (!this->any_postprocessing_sections_)
2705     {
2706       off = this->set_section_offsets(off,
2707                                       POSTPROCESSING_SECTIONS_PASS);
2708       off =
2709           this->set_section_offsets(off,
2710                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2711     }
2712
2713   file_header->set_section_info(this->section_headers_, shstrtab_section);
2714
2715   // Now we know exactly where everything goes in the output file
2716   // (except for non-allocated sections which require postprocessing).
2717   Output_data::layout_complete();
2718
2719   this->output_file_size_ = off;
2720
2721   return off;
2722 }
2723
2724 // Create a note header following the format defined in the ELF ABI.
2725 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2726 // of the section to create, DESCSZ is the size of the descriptor.
2727 // ALLOCATE is true if the section should be allocated in memory.
2728 // This returns the new note section.  It sets *TRAILING_PADDING to
2729 // the number of trailing zero bytes required.
2730
2731 Output_section*
2732 Layout::create_note(const char* name, int note_type,
2733                     const char* section_name, size_t descsz,
2734                     bool allocate, size_t* trailing_padding)
2735 {
2736   // Authorities all agree that the values in a .note field should
2737   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2738   // they differ on what the alignment is for 64-bit binaries.
2739   // The GABI says unambiguously they take 8-byte alignment:
2740   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2741   // Other documentation says alignment should always be 4 bytes:
2742   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2743   // GNU ld and GNU readelf both support the latter (at least as of
2744   // version 2.16.91), and glibc always generates the latter for
2745   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2746   // here.
2747 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2748   const int size = parameters->target().get_size();
2749 #else
2750   const int size = 32;
2751 #endif
2752
2753   // The contents of the .note section.
2754   size_t namesz = strlen(name) + 1;
2755   size_t aligned_namesz = align_address(namesz, size / 8);
2756   size_t aligned_descsz = align_address(descsz, size / 8);
2757
2758   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2759
2760   unsigned char* buffer = new unsigned char[notehdrsz];
2761   memset(buffer, 0, notehdrsz);
2762
2763   bool is_big_endian = parameters->target().is_big_endian();
2764
2765   if (size == 32)
2766     {
2767       if (!is_big_endian)
2768         {
2769           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2770           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2771           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2772         }
2773       else
2774         {
2775           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2776           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2777           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2778         }
2779     }
2780   else if (size == 64)
2781     {
2782       if (!is_big_endian)
2783         {
2784           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2785           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2786           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2787         }
2788       else
2789         {
2790           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2791           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2792           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2793         }
2794     }
2795   else
2796     gold_unreachable();
2797
2798   memcpy(buffer + 3 * (size / 8), name, namesz);
2799
2800   elfcpp::Elf_Xword flags = 0;
2801   Output_section_order order = ORDER_INVALID;
2802   if (allocate)
2803     {
2804       flags = elfcpp::SHF_ALLOC;
2805       order = ORDER_RO_NOTE;
2806     }
2807   Output_section* os = this->choose_output_section(NULL, section_name,
2808                                                    elfcpp::SHT_NOTE,
2809                                                    flags, false, order, false);
2810   if (os == NULL)
2811     return NULL;
2812
2813   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2814                                                            size / 8,
2815                                                            "** note header");
2816   os->add_output_section_data(posd);
2817
2818   *trailing_padding = aligned_descsz - descsz;
2819
2820   return os;
2821 }
2822
2823 // For an executable or shared library, create a note to record the
2824 // version of gold used to create the binary.
2825
2826 void
2827 Layout::create_gold_note()
2828 {
2829   if (parameters->options().relocatable()
2830       || parameters->incremental_update())
2831     return;
2832
2833   std::string desc = std::string("gold ") + gold::get_version_string();
2834
2835   size_t trailing_padding;
2836   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2837                                          ".note.gnu.gold-version", desc.size(),
2838                                          false, &trailing_padding);
2839   if (os == NULL)
2840     return;
2841
2842   Output_section_data* posd = new Output_data_const(desc, 4);
2843   os->add_output_section_data(posd);
2844
2845   if (trailing_padding > 0)
2846     {
2847       posd = new Output_data_zero_fill(trailing_padding, 0);
2848       os->add_output_section_data(posd);
2849     }
2850 }
2851
2852 // Record whether the stack should be executable.  This can be set
2853 // from the command line using the -z execstack or -z noexecstack
2854 // options.  Otherwise, if any input file has a .note.GNU-stack
2855 // section with the SHF_EXECINSTR flag set, the stack should be
2856 // executable.  Otherwise, if at least one input file a
2857 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2858 // section, we use the target default for whether the stack should be
2859 // executable.  Otherwise, we don't generate a stack note.  When
2860 // generating a object file, we create a .note.GNU-stack section with
2861 // the appropriate marking.  When generating an executable or shared
2862 // library, we create a PT_GNU_STACK segment.
2863
2864 void
2865 Layout::create_executable_stack_info()
2866 {
2867   bool is_stack_executable;
2868   if (parameters->options().is_execstack_set())
2869     is_stack_executable = parameters->options().is_stack_executable();
2870   else if (!this->input_with_gnu_stack_note_)
2871     return;
2872   else
2873     {
2874       if (this->input_requires_executable_stack_)
2875         is_stack_executable = true;
2876       else if (this->input_without_gnu_stack_note_)
2877         is_stack_executable =
2878           parameters->target().is_default_stack_executable();
2879       else
2880         is_stack_executable = false;
2881     }
2882
2883   if (parameters->options().relocatable())
2884     {
2885       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2886       elfcpp::Elf_Xword flags = 0;
2887       if (is_stack_executable)
2888         flags |= elfcpp::SHF_EXECINSTR;
2889       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2890                                 ORDER_INVALID, false);
2891     }
2892   else
2893     {
2894       if (this->script_options_->saw_phdrs_clause())
2895         return;
2896       int flags = elfcpp::PF_R | elfcpp::PF_W;
2897       if (is_stack_executable)
2898         flags |= elfcpp::PF_X;
2899       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2900     }
2901 }
2902
2903 // If --build-id was used, set up the build ID note.
2904
2905 void
2906 Layout::create_build_id()
2907 {
2908   if (!parameters->options().user_set_build_id())
2909     return;
2910
2911   const char* style = parameters->options().build_id();
2912   if (strcmp(style, "none") == 0)
2913     return;
2914
2915   // Set DESCSZ to the size of the note descriptor.  When possible,
2916   // set DESC to the note descriptor contents.
2917   size_t descsz;
2918   std::string desc;
2919   if (strcmp(style, "md5") == 0)
2920     descsz = 128 / 8;
2921   else if (strcmp(style, "sha1") == 0)
2922     descsz = 160 / 8;
2923   else if (strcmp(style, "uuid") == 0)
2924     {
2925       const size_t uuidsz = 128 / 8;
2926
2927       char buffer[uuidsz];
2928       memset(buffer, 0, uuidsz);
2929
2930       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2931       if (descriptor < 0)
2932         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2933                    strerror(errno));
2934       else
2935         {
2936           ssize_t got = ::read(descriptor, buffer, uuidsz);
2937           release_descriptor(descriptor, true);
2938           if (got < 0)
2939             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2940           else if (static_cast<size_t>(got) != uuidsz)
2941             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2942                        uuidsz, got);
2943         }
2944
2945       desc.assign(buffer, uuidsz);
2946       descsz = uuidsz;
2947     }
2948   else if (strncmp(style, "0x", 2) == 0)
2949     {
2950       hex_init();
2951       const char* p = style + 2;
2952       while (*p != '\0')
2953         {
2954           if (hex_p(p[0]) && hex_p(p[1]))
2955             {
2956               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2957               desc += c;
2958               p += 2;
2959             }
2960           else if (*p == '-' || *p == ':')
2961             ++p;
2962           else
2963             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2964                        style);
2965         }
2966       descsz = desc.size();
2967     }
2968   else
2969     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2970
2971   // Create the note.
2972   size_t trailing_padding;
2973   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2974                                          ".note.gnu.build-id", descsz, true,
2975                                          &trailing_padding);
2976   if (os == NULL)
2977     return;
2978
2979   if (!desc.empty())
2980     {
2981       // We know the value already, so we fill it in now.
2982       gold_assert(desc.size() == descsz);
2983
2984       Output_section_data* posd = new Output_data_const(desc, 4);
2985       os->add_output_section_data(posd);
2986
2987       if (trailing_padding != 0)
2988         {
2989           posd = new Output_data_zero_fill(trailing_padding, 0);
2990           os->add_output_section_data(posd);
2991         }
2992     }
2993   else
2994     {
2995       // We need to compute a checksum after we have completed the
2996       // link.
2997       gold_assert(trailing_padding == 0);
2998       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2999       os->add_output_section_data(this->build_id_note_);
3000     }
3001 }
3002
3003 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3004 // field of the former should point to the latter.  I'm not sure who
3005 // started this, but the GNU linker does it, and some tools depend
3006 // upon it.
3007
3008 void
3009 Layout::link_stabs_sections()
3010 {
3011   if (!this->have_stabstr_section_)
3012     return;
3013
3014   for (Section_list::iterator p = this->section_list_.begin();
3015        p != this->section_list_.end();
3016        ++p)
3017     {
3018       if ((*p)->type() != elfcpp::SHT_STRTAB)
3019         continue;
3020
3021       const char* name = (*p)->name();
3022       if (strncmp(name, ".stab", 5) != 0)
3023         continue;
3024
3025       size_t len = strlen(name);
3026       if (strcmp(name + len - 3, "str") != 0)
3027         continue;
3028
3029       std::string stab_name(name, len - 3);
3030       Output_section* stab_sec;
3031       stab_sec = this->find_output_section(stab_name.c_str());
3032       if (stab_sec != NULL)
3033         stab_sec->set_link_section(*p);
3034     }
3035 }
3036
3037 // Create .gnu_incremental_inputs and related sections needed
3038 // for the next run of incremental linking to check what has changed.
3039
3040 void
3041 Layout::create_incremental_info_sections(Symbol_table* symtab)
3042 {
3043   Incremental_inputs* incr = this->incremental_inputs_;
3044
3045   gold_assert(incr != NULL);
3046
3047   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3048   incr->create_data_sections(symtab);
3049
3050   // Add the .gnu_incremental_inputs section.
3051   const char* incremental_inputs_name =
3052     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3053   Output_section* incremental_inputs_os =
3054     this->make_output_section(incremental_inputs_name,
3055                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3056                               ORDER_INVALID, false);
3057   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3058
3059   // Add the .gnu_incremental_symtab section.
3060   const char* incremental_symtab_name =
3061     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3062   Output_section* incremental_symtab_os =
3063     this->make_output_section(incremental_symtab_name,
3064                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3065                               ORDER_INVALID, false);
3066   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3067   incremental_symtab_os->set_entsize(4);
3068
3069   // Add the .gnu_incremental_relocs section.
3070   const char* incremental_relocs_name =
3071     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3072   Output_section* incremental_relocs_os =
3073     this->make_output_section(incremental_relocs_name,
3074                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3075                               ORDER_INVALID, false);
3076   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3077   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3078
3079   // Add the .gnu_incremental_got_plt section.
3080   const char* incremental_got_plt_name =
3081     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3082   Output_section* incremental_got_plt_os =
3083     this->make_output_section(incremental_got_plt_name,
3084                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3085                               ORDER_INVALID, false);
3086   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3087
3088   // Add the .gnu_incremental_strtab section.
3089   const char* incremental_strtab_name =
3090     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3091   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3092                                                         elfcpp::SHT_STRTAB, 0,
3093                                                         ORDER_INVALID, false);
3094   Output_data_strtab* strtab_data =
3095       new Output_data_strtab(incr->get_stringpool());
3096   incremental_strtab_os->add_output_section_data(strtab_data);
3097
3098   incremental_inputs_os->set_after_input_sections();
3099   incremental_symtab_os->set_after_input_sections();
3100   incremental_relocs_os->set_after_input_sections();
3101   incremental_got_plt_os->set_after_input_sections();
3102
3103   incremental_inputs_os->set_link_section(incremental_strtab_os);
3104   incremental_symtab_os->set_link_section(incremental_inputs_os);
3105   incremental_relocs_os->set_link_section(incremental_inputs_os);
3106   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3107 }
3108
3109 // Return whether SEG1 should be before SEG2 in the output file.  This
3110 // is based entirely on the segment type and flags.  When this is
3111 // called the segment addresses have normally not yet been set.
3112
3113 bool
3114 Layout::segment_precedes(const Output_segment* seg1,
3115                          const Output_segment* seg2)
3116 {
3117   elfcpp::Elf_Word type1 = seg1->type();
3118   elfcpp::Elf_Word type2 = seg2->type();
3119
3120   // The single PT_PHDR segment is required to precede any loadable
3121   // segment.  We simply make it always first.
3122   if (type1 == elfcpp::PT_PHDR)
3123     {
3124       gold_assert(type2 != elfcpp::PT_PHDR);
3125       return true;
3126     }
3127   if (type2 == elfcpp::PT_PHDR)
3128     return false;
3129
3130   // The single PT_INTERP segment is required to precede any loadable
3131   // segment.  We simply make it always second.
3132   if (type1 == elfcpp::PT_INTERP)
3133     {
3134       gold_assert(type2 != elfcpp::PT_INTERP);
3135       return true;
3136     }
3137   if (type2 == elfcpp::PT_INTERP)
3138     return false;
3139
3140   // We then put PT_LOAD segments before any other segments.
3141   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3142     return true;
3143   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3144     return false;
3145
3146   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3147   // segment, because that is where the dynamic linker expects to find
3148   // it (this is just for efficiency; other positions would also work
3149   // correctly).
3150   if (type1 == elfcpp::PT_TLS
3151       && type2 != elfcpp::PT_TLS
3152       && type2 != elfcpp::PT_GNU_RELRO)
3153     return false;
3154   if (type2 == elfcpp::PT_TLS
3155       && type1 != elfcpp::PT_TLS
3156       && type1 != elfcpp::PT_GNU_RELRO)
3157     return true;
3158
3159   // We put the PT_GNU_RELRO segment last, because that is where the
3160   // dynamic linker expects to find it (as with PT_TLS, this is just
3161   // for efficiency).
3162   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3163     return false;
3164   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3165     return true;
3166
3167   const elfcpp::Elf_Word flags1 = seg1->flags();
3168   const elfcpp::Elf_Word flags2 = seg2->flags();
3169
3170   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3171   // by the numeric segment type and flags values.  There should not
3172   // be more than one segment with the same type and flags.
3173   if (type1 != elfcpp::PT_LOAD)
3174     {
3175       if (type1 != type2)
3176         return type1 < type2;
3177       gold_assert(flags1 != flags2);
3178       return flags1 < flags2;
3179     }
3180
3181   // If the addresses are set already, sort by load address.
3182   if (seg1->are_addresses_set())
3183     {
3184       if (!seg2->are_addresses_set())
3185         return true;
3186
3187       unsigned int section_count1 = seg1->output_section_count();
3188       unsigned int section_count2 = seg2->output_section_count();
3189       if (section_count1 == 0 && section_count2 > 0)
3190         return true;
3191       if (section_count1 > 0 && section_count2 == 0)
3192         return false;
3193
3194       uint64_t paddr1 = (seg1->are_addresses_set()
3195                          ? seg1->paddr()
3196                          : seg1->first_section_load_address());
3197       uint64_t paddr2 = (seg2->are_addresses_set()
3198                          ? seg2->paddr()
3199                          : seg2->first_section_load_address());
3200
3201       if (paddr1 != paddr2)
3202         return paddr1 < paddr2;
3203     }
3204   else if (seg2->are_addresses_set())
3205     return false;
3206
3207   // A segment which holds large data comes after a segment which does
3208   // not hold large data.
3209   if (seg1->is_large_data_segment())
3210     {
3211       if (!seg2->is_large_data_segment())
3212         return false;
3213     }
3214   else if (seg2->is_large_data_segment())
3215     return true;
3216
3217   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3218   // segments come before writable segments.  Then writable segments
3219   // with data come before writable segments without data.  Then
3220   // executable segments come before non-executable segments.  Then
3221   // the unlikely case of a non-readable segment comes before the
3222   // normal case of a readable segment.  If there are multiple
3223   // segments with the same type and flags, we require that the
3224   // address be set, and we sort by virtual address and then physical
3225   // address.
3226   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3227     return (flags1 & elfcpp::PF_W) == 0;
3228   if ((flags1 & elfcpp::PF_W) != 0
3229       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3230     return seg1->has_any_data_sections();
3231   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3232     return (flags1 & elfcpp::PF_X) != 0;
3233   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3234     return (flags1 & elfcpp::PF_R) == 0;
3235
3236   // We shouldn't get here--we shouldn't create segments which we
3237   // can't distinguish.  Unless of course we are using a weird linker
3238   // script or overlapping --section-start options.  We could also get
3239   // here if plugins want unique segments for subsets of sections.
3240   gold_assert(this->script_options_->saw_phdrs_clause()
3241               || parameters->options().any_section_start()
3242               || this->is_unique_segment_for_sections_specified());
3243   return false;
3244 }
3245
3246 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3247
3248 static off_t
3249 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3250 {
3251   uint64_t unsigned_off = off;
3252   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3253                           | (addr & (abi_pagesize - 1)));
3254   if (aligned_off < unsigned_off)
3255     aligned_off += abi_pagesize;
3256   return aligned_off;
3257 }
3258
3259 // Set the file offsets of all the segments, and all the sections they
3260 // contain.  They have all been created.  LOAD_SEG must be be laid out
3261 // first.  Return the offset of the data to follow.
3262
3263 off_t
3264 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3265                             unsigned int* pshndx)
3266 {
3267   // Sort them into the final order.  We use a stable sort so that we
3268   // don't randomize the order of indistinguishable segments created
3269   // by linker scripts.
3270   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3271                    Layout::Compare_segments(this));
3272
3273   // Find the PT_LOAD segments, and set their addresses and offsets
3274   // and their section's addresses and offsets.
3275   uint64_t start_addr;
3276   if (parameters->options().user_set_Ttext())
3277     start_addr = parameters->options().Ttext();
3278   else if (parameters->options().output_is_position_independent())
3279     start_addr = 0;
3280   else
3281     start_addr = target->default_text_segment_address();
3282
3283   uint64_t addr = start_addr;
3284   off_t off = 0;
3285
3286   // If LOAD_SEG is NULL, then the file header and segment headers
3287   // will not be loadable.  But they still need to be at offset 0 in
3288   // the file.  Set their offsets now.
3289   if (load_seg == NULL)
3290     {
3291       for (Data_list::iterator p = this->special_output_list_.begin();
3292            p != this->special_output_list_.end();
3293            ++p)
3294         {
3295           off = align_address(off, (*p)->addralign());
3296           (*p)->set_address_and_file_offset(0, off);
3297           off += (*p)->data_size();
3298         }
3299     }
3300
3301   unsigned int increase_relro = this->increase_relro_;
3302   if (this->script_options_->saw_sections_clause())
3303     increase_relro = 0;
3304
3305   const bool check_sections = parameters->options().check_sections();
3306   Output_segment* last_load_segment = NULL;
3307
3308   unsigned int shndx_begin = *pshndx;
3309   unsigned int shndx_load_seg = *pshndx;
3310
3311   for (Segment_list::iterator p = this->segment_list_.begin();
3312        p != this->segment_list_.end();
3313        ++p)
3314     {
3315       if ((*p)->type() == elfcpp::PT_LOAD)
3316         {
3317           if (target->isolate_execinstr())
3318             {
3319               // When we hit the segment that should contain the
3320               // file headers, reset the file offset so we place
3321               // it and subsequent segments appropriately.
3322               // We'll fix up the preceding segments below.
3323               if (load_seg == *p)
3324                 {
3325                   if (off == 0)
3326                     load_seg = NULL;
3327                   else
3328                     {
3329                       off = 0;
3330                       shndx_load_seg = *pshndx;
3331                     }
3332                 }
3333             }
3334           else
3335             {
3336               // Verify that the file headers fall into the first segment.
3337               if (load_seg != NULL && load_seg != *p)
3338                 gold_unreachable();
3339               load_seg = NULL;
3340             }
3341
3342           bool are_addresses_set = (*p)->are_addresses_set();
3343           if (are_addresses_set)
3344             {
3345               // When it comes to setting file offsets, we care about
3346               // the physical address.
3347               addr = (*p)->paddr();
3348             }
3349           else if (parameters->options().user_set_Ttext()
3350                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3351             {
3352               are_addresses_set = true;
3353             }
3354           else if (parameters->options().user_set_Tdata()
3355                    && ((*p)->flags() & elfcpp::PF_W) != 0
3356                    && (!parameters->options().user_set_Tbss()
3357                        || (*p)->has_any_data_sections()))
3358             {
3359               addr = parameters->options().Tdata();
3360               are_addresses_set = true;
3361             }
3362           else if (parameters->options().user_set_Tbss()
3363                    && ((*p)->flags() & elfcpp::PF_W) != 0
3364                    && !(*p)->has_any_data_sections())
3365             {
3366               addr = parameters->options().Tbss();
3367               are_addresses_set = true;
3368             }
3369
3370           uint64_t orig_addr = addr;
3371           uint64_t orig_off = off;
3372
3373           uint64_t aligned_addr = 0;
3374           uint64_t abi_pagesize = target->abi_pagesize();
3375           uint64_t common_pagesize = target->common_pagesize();
3376
3377           if (!parameters->options().nmagic()
3378               && !parameters->options().omagic())
3379             (*p)->set_minimum_p_align(abi_pagesize);
3380
3381           if (!are_addresses_set)
3382             {
3383               // Skip the address forward one page, maintaining the same
3384               // position within the page.  This lets us store both segments
3385               // overlapping on a single page in the file, but the loader will
3386               // put them on different pages in memory. We will revisit this
3387               // decision once we know the size of the segment.
3388
3389               addr = align_address(addr, (*p)->maximum_alignment());
3390               aligned_addr = addr;
3391
3392               if (load_seg == *p)
3393                 {
3394                   // This is the segment that will contain the file
3395                   // headers, so its offset will have to be exactly zero.
3396                   gold_assert(orig_off == 0);
3397
3398                   // If the target wants a fixed minimum distance from the
3399                   // text segment to the read-only segment, move up now.
3400                   uint64_t min_addr = start_addr + target->rosegment_gap();
3401                   if (addr < min_addr)
3402                     addr = min_addr;
3403
3404                   // But this is not the first segment!  To make its
3405                   // address congruent with its offset, that address better
3406                   // be aligned to the ABI-mandated page size.
3407                   addr = align_address(addr, abi_pagesize);
3408                   aligned_addr = addr;
3409                 }
3410               else
3411                 {
3412                   if ((addr & (abi_pagesize - 1)) != 0)
3413                     addr = addr + abi_pagesize;
3414
3415                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3416                 }
3417             }
3418
3419           if (!parameters->options().nmagic()
3420               && !parameters->options().omagic())
3421             off = align_file_offset(off, addr, abi_pagesize);
3422           else
3423             {
3424               // This is -N or -n with a section script which prevents
3425               // us from using a load segment.  We need to ensure that
3426               // the file offset is aligned to the alignment of the
3427               // segment.  This is because the linker script
3428               // implicitly assumed a zero offset.  If we don't align
3429               // here, then the alignment of the sections in the
3430               // linker script may not match the alignment of the
3431               // sections in the set_section_addresses call below,
3432               // causing an error about dot moving backward.
3433               off = align_address(off, (*p)->maximum_alignment());
3434             }
3435
3436           unsigned int shndx_hold = *pshndx;
3437           bool has_relro = false;
3438           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3439                                                           &increase_relro,
3440                                                           &has_relro,
3441                                                           &off, pshndx);
3442
3443           // Now that we know the size of this segment, we may be able
3444           // to save a page in memory, at the cost of wasting some
3445           // file space, by instead aligning to the start of a new
3446           // page.  Here we use the real machine page size rather than
3447           // the ABI mandated page size.  If the segment has been
3448           // aligned so that the relro data ends at a page boundary,
3449           // we do not try to realign it.
3450
3451           if (!are_addresses_set
3452               && !has_relro
3453               && aligned_addr != addr
3454               && !parameters->incremental())
3455             {
3456               uint64_t first_off = (common_pagesize
3457                                     - (aligned_addr
3458                                        & (common_pagesize - 1)));
3459               uint64_t last_off = new_addr & (common_pagesize - 1);
3460               if (first_off > 0
3461                   && last_off > 0
3462                   && ((aligned_addr & ~ (common_pagesize - 1))
3463                       != (new_addr & ~ (common_pagesize - 1)))
3464                   && first_off + last_off <= common_pagesize)
3465                 {
3466                   *pshndx = shndx_hold;
3467                   addr = align_address(aligned_addr, common_pagesize);
3468                   addr = align_address(addr, (*p)->maximum_alignment());
3469                   if ((addr & (abi_pagesize - 1)) != 0)
3470                     addr = addr + abi_pagesize;
3471                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3472                   off = align_file_offset(off, addr, abi_pagesize);
3473
3474                   increase_relro = this->increase_relro_;
3475                   if (this->script_options_->saw_sections_clause())
3476                     increase_relro = 0;
3477                   has_relro = false;
3478
3479                   new_addr = (*p)->set_section_addresses(this, true, addr,
3480                                                          &increase_relro,
3481                                                          &has_relro,
3482                                                          &off, pshndx);
3483                 }
3484             }
3485
3486           addr = new_addr;
3487
3488           // Implement --check-sections.  We know that the segments
3489           // are sorted by LMA.
3490           if (check_sections && last_load_segment != NULL)
3491             {
3492               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3493               if (last_load_segment->paddr() + last_load_segment->memsz()
3494                   > (*p)->paddr())
3495                 {
3496                   unsigned long long lb1 = last_load_segment->paddr();
3497                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3498                   unsigned long long lb2 = (*p)->paddr();
3499                   unsigned long long le2 = lb2 + (*p)->memsz();
3500                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3501                                "[0x%llx -> 0x%llx]"),
3502                              lb1, le1, lb2, le2);
3503                 }
3504             }
3505           last_load_segment = *p;
3506         }
3507     }
3508
3509   if (load_seg != NULL && target->isolate_execinstr())
3510     {
3511       // Process the early segments again, setting their file offsets
3512       // so they land after the segments starting at LOAD_SEG.
3513       off = align_file_offset(off, 0, target->abi_pagesize());
3514
3515       for (Segment_list::iterator p = this->segment_list_.begin();
3516            *p != load_seg;
3517            ++p)
3518         {
3519           if ((*p)->type() == elfcpp::PT_LOAD)
3520             {
3521               // We repeat the whole job of assigning addresses and
3522               // offsets, but we really only want to change the offsets and
3523               // must ensure that the addresses all come out the same as
3524               // they did the first time through.
3525               bool has_relro = false;
3526               const uint64_t old_addr = (*p)->vaddr();
3527               const uint64_t old_end = old_addr + (*p)->memsz();
3528               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3529                                                               old_addr,
3530                                                               &increase_relro,
3531                                                               &has_relro,
3532                                                               &off,
3533                                                               &shndx_begin);
3534               gold_assert(new_addr == old_end);
3535             }
3536         }
3537
3538       gold_assert(shndx_begin == shndx_load_seg);
3539     }
3540
3541   // Handle the non-PT_LOAD segments, setting their offsets from their
3542   // section's offsets.
3543   for (Segment_list::iterator p = this->segment_list_.begin();
3544        p != this->segment_list_.end();
3545        ++p)
3546     {
3547       if ((*p)->type() != elfcpp::PT_LOAD)
3548         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3549                          ? increase_relro
3550                          : 0);
3551     }
3552
3553   // Set the TLS offsets for each section in the PT_TLS segment.
3554   if (this->tls_segment_ != NULL)
3555     this->tls_segment_->set_tls_offsets();
3556
3557   return off;
3558 }
3559
3560 // Set the offsets of all the allocated sections when doing a
3561 // relocatable link.  This does the same jobs as set_segment_offsets,
3562 // only for a relocatable link.
3563
3564 off_t
3565 Layout::set_relocatable_section_offsets(Output_data* file_header,
3566                                         unsigned int* pshndx)
3567 {
3568   off_t off = 0;
3569
3570   file_header->set_address_and_file_offset(0, 0);
3571   off += file_header->data_size();
3572
3573   for (Section_list::iterator p = this->section_list_.begin();
3574        p != this->section_list_.end();
3575        ++p)
3576     {
3577       // We skip unallocated sections here, except that group sections
3578       // have to come first.
3579       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3580           && (*p)->type() != elfcpp::SHT_GROUP)
3581         continue;
3582
3583       off = align_address(off, (*p)->addralign());
3584
3585       // The linker script might have set the address.
3586       if (!(*p)->is_address_valid())
3587         (*p)->set_address(0);
3588       (*p)->set_file_offset(off);
3589       (*p)->finalize_data_size();
3590       off += (*p)->data_size();
3591
3592       (*p)->set_out_shndx(*pshndx);
3593       ++*pshndx;
3594     }
3595
3596   return off;
3597 }
3598
3599 // Set the file offset of all the sections not associated with a
3600 // segment.
3601
3602 off_t
3603 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3604 {
3605   off_t startoff = off;
3606   off_t maxoff = off;
3607
3608   for (Section_list::iterator p = this->unattached_section_list_.begin();
3609        p != this->unattached_section_list_.end();
3610        ++p)
3611     {
3612       // The symtab section is handled in create_symtab_sections.
3613       if (*p == this->symtab_section_)
3614         continue;
3615
3616       // If we've already set the data size, don't set it again.
3617       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3618         continue;
3619
3620       if (pass == BEFORE_INPUT_SECTIONS_PASS
3621           && (*p)->requires_postprocessing())
3622         {
3623           (*p)->create_postprocessing_buffer();
3624           this->any_postprocessing_sections_ = true;
3625         }
3626
3627       if (pass == BEFORE_INPUT_SECTIONS_PASS
3628           && (*p)->after_input_sections())
3629         continue;
3630       else if (pass == POSTPROCESSING_SECTIONS_PASS
3631                && (!(*p)->after_input_sections()
3632                    || (*p)->type() == elfcpp::SHT_STRTAB))
3633         continue;
3634       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3635                && (!(*p)->after_input_sections()
3636                    || (*p)->type() != elfcpp::SHT_STRTAB))
3637         continue;
3638
3639       if (!parameters->incremental_update())
3640         {
3641           off = align_address(off, (*p)->addralign());
3642           (*p)->set_file_offset(off);
3643           (*p)->finalize_data_size();
3644         }
3645       else
3646         {
3647           // Incremental update: allocate file space from free list.
3648           (*p)->pre_finalize_data_size();
3649           off_t current_size = (*p)->current_data_size();
3650           off = this->allocate(current_size, (*p)->addralign(), startoff);
3651           if (off == -1)
3652             {
3653               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3654                 this->free_list_.dump();
3655               gold_assert((*p)->output_section() != NULL);
3656               gold_fallback(_("out of patch space for section %s; "
3657                               "relink with --incremental-full"),
3658                             (*p)->output_section()->name());
3659             }
3660           (*p)->set_file_offset(off);
3661           (*p)->finalize_data_size();
3662           if ((*p)->data_size() > current_size)
3663             {
3664               gold_assert((*p)->output_section() != NULL);
3665               gold_fallback(_("%s: section changed size; "
3666                               "relink with --incremental-full"),
3667                             (*p)->output_section()->name());
3668             }
3669           gold_debug(DEBUG_INCREMENTAL,
3670                      "set_section_offsets: %08lx %08lx %s",
3671                      static_cast<long>(off),
3672                      static_cast<long>((*p)->data_size()),
3673                      ((*p)->output_section() != NULL
3674                       ? (*p)->output_section()->name() : "(special)"));
3675         }
3676
3677       off += (*p)->data_size();
3678       if (off > maxoff)
3679         maxoff = off;
3680
3681       // At this point the name must be set.
3682       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3683         this->namepool_.add((*p)->name(), false, NULL);
3684     }
3685   return maxoff;
3686 }
3687
3688 // Set the section indexes of all the sections not associated with a
3689 // segment.
3690
3691 unsigned int
3692 Layout::set_section_indexes(unsigned int shndx)
3693 {
3694   for (Section_list::iterator p = this->unattached_section_list_.begin();
3695        p != this->unattached_section_list_.end();
3696        ++p)
3697     {
3698       if (!(*p)->has_out_shndx())
3699         {
3700           (*p)->set_out_shndx(shndx);
3701           ++shndx;
3702         }
3703     }
3704   return shndx;
3705 }
3706
3707 // Set the section addresses according to the linker script.  This is
3708 // only called when we see a SECTIONS clause.  This returns the
3709 // program segment which should hold the file header and segment
3710 // headers, if any.  It will return NULL if they should not be in a
3711 // segment.
3712
3713 Output_segment*
3714 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3715 {
3716   Script_sections* ss = this->script_options_->script_sections();
3717   gold_assert(ss->saw_sections_clause());
3718   return this->script_options_->set_section_addresses(symtab, this);
3719 }
3720
3721 // Place the orphan sections in the linker script.
3722
3723 void
3724 Layout::place_orphan_sections_in_script()
3725 {
3726   Script_sections* ss = this->script_options_->script_sections();
3727   gold_assert(ss->saw_sections_clause());
3728
3729   // Place each orphaned output section in the script.
3730   for (Section_list::iterator p = this->section_list_.begin();
3731        p != this->section_list_.end();
3732        ++p)
3733     {
3734       if (!(*p)->found_in_sections_clause())
3735         ss->place_orphan(*p);
3736     }
3737 }
3738
3739 // Count the local symbols in the regular symbol table and the dynamic
3740 // symbol table, and build the respective string pools.
3741
3742 void
3743 Layout::count_local_symbols(const Task* task,
3744                             const Input_objects* input_objects)
3745 {
3746   // First, figure out an upper bound on the number of symbols we'll
3747   // be inserting into each pool.  This helps us create the pools with
3748   // the right size, to avoid unnecessary hashtable resizing.
3749   unsigned int symbol_count = 0;
3750   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3751        p != input_objects->relobj_end();
3752        ++p)
3753     symbol_count += (*p)->local_symbol_count();
3754
3755   // Go from "upper bound" to "estimate."  We overcount for two
3756   // reasons: we double-count symbols that occur in more than one
3757   // object file, and we count symbols that are dropped from the
3758   // output.  Add it all together and assume we overcount by 100%.
3759   symbol_count /= 2;
3760
3761   // We assume all symbols will go into both the sympool and dynpool.
3762   this->sympool_.reserve(symbol_count);
3763   this->dynpool_.reserve(symbol_count);
3764
3765   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3766        p != input_objects->relobj_end();
3767        ++p)
3768     {
3769       Task_lock_obj<Object> tlo(task, *p);
3770       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3771     }
3772 }
3773
3774 // Create the symbol table sections.  Here we also set the final
3775 // values of the symbols.  At this point all the loadable sections are
3776 // fully laid out.  SHNUM is the number of sections so far.
3777
3778 void
3779 Layout::create_symtab_sections(const Input_objects* input_objects,
3780                                Symbol_table* symtab,
3781                                unsigned int shnum,
3782                                off_t* poff)
3783 {
3784   int symsize;
3785   unsigned int align;
3786   if (parameters->target().get_size() == 32)
3787     {
3788       symsize = elfcpp::Elf_sizes<32>::sym_size;
3789       align = 4;
3790     }
3791   else if (parameters->target().get_size() == 64)
3792     {
3793       symsize = elfcpp::Elf_sizes<64>::sym_size;
3794       align = 8;
3795     }
3796   else
3797     gold_unreachable();
3798
3799   // Compute file offsets relative to the start of the symtab section.
3800   off_t off = 0;
3801
3802   // Save space for the dummy symbol at the start of the section.  We
3803   // never bother to write this out--it will just be left as zero.
3804   off += symsize;
3805   unsigned int local_symbol_index = 1;
3806
3807   // Add STT_SECTION symbols for each Output section which needs one.
3808   for (Section_list::iterator p = this->section_list_.begin();
3809        p != this->section_list_.end();
3810        ++p)
3811     {
3812       if (!(*p)->needs_symtab_index())
3813         (*p)->set_symtab_index(-1U);
3814       else
3815         {
3816           (*p)->set_symtab_index(local_symbol_index);
3817           ++local_symbol_index;
3818           off += symsize;
3819         }
3820     }
3821
3822   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3823        p != input_objects->relobj_end();
3824        ++p)
3825     {
3826       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3827                                                         off, symtab);
3828       off += (index - local_symbol_index) * symsize;
3829       local_symbol_index = index;
3830     }
3831
3832   unsigned int local_symcount = local_symbol_index;
3833   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3834
3835   off_t dynoff;
3836   size_t dyn_global_index;
3837   size_t dyncount;
3838   if (this->dynsym_section_ == NULL)
3839     {
3840       dynoff = 0;
3841       dyn_global_index = 0;
3842       dyncount = 0;
3843     }
3844   else
3845     {
3846       dyn_global_index = this->dynsym_section_->info();
3847       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3848       dynoff = this->dynsym_section_->offset() + locsize;
3849       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3850       gold_assert(static_cast<off_t>(dyncount * symsize)
3851                   == this->dynsym_section_->data_size() - locsize);
3852     }
3853
3854   off_t global_off = off;
3855   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3856                          &this->sympool_, &local_symcount);
3857
3858   if (!parameters->options().strip_all())
3859     {
3860       this->sympool_.set_string_offsets();
3861
3862       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3863       Output_section* osymtab = this->make_output_section(symtab_name,
3864                                                           elfcpp::SHT_SYMTAB,
3865                                                           0, ORDER_INVALID,
3866                                                           false);
3867       this->symtab_section_ = osymtab;
3868
3869       Output_section_data* pos = new Output_data_fixed_space(off, align,
3870                                                              "** symtab");
3871       osymtab->add_output_section_data(pos);
3872
3873       // We generate a .symtab_shndx section if we have more than
3874       // SHN_LORESERVE sections.  Technically it is possible that we
3875       // don't need one, because it is possible that there are no
3876       // symbols in any of sections with indexes larger than
3877       // SHN_LORESERVE.  That is probably unusual, though, and it is
3878       // easier to always create one than to compute section indexes
3879       // twice (once here, once when writing out the symbols).
3880       if (shnum >= elfcpp::SHN_LORESERVE)
3881         {
3882           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3883                                                                false, NULL);
3884           Output_section* osymtab_xindex =
3885             this->make_output_section(symtab_xindex_name,
3886                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3887                                       ORDER_INVALID, false);
3888
3889           size_t symcount = off / symsize;
3890           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3891
3892           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3893
3894           osymtab_xindex->set_link_section(osymtab);
3895           osymtab_xindex->set_addralign(4);
3896           osymtab_xindex->set_entsize(4);
3897
3898           osymtab_xindex->set_after_input_sections();
3899
3900           // This tells the driver code to wait until the symbol table
3901           // has written out before writing out the postprocessing
3902           // sections, including the .symtab_shndx section.
3903           this->any_postprocessing_sections_ = true;
3904         }
3905
3906       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3907       Output_section* ostrtab = this->make_output_section(strtab_name,
3908                                                           elfcpp::SHT_STRTAB,
3909                                                           0, ORDER_INVALID,
3910                                                           false);
3911
3912       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3913       ostrtab->add_output_section_data(pstr);
3914
3915       off_t symtab_off;
3916       if (!parameters->incremental_update())
3917         symtab_off = align_address(*poff, align);
3918       else
3919         {
3920           symtab_off = this->allocate(off, align, *poff);
3921           if (off == -1)
3922             gold_fallback(_("out of patch space for symbol table; "
3923                             "relink with --incremental-full"));
3924           gold_debug(DEBUG_INCREMENTAL,
3925                      "create_symtab_sections: %08lx %08lx .symtab",
3926                      static_cast<long>(symtab_off),
3927                      static_cast<long>(off));
3928         }
3929
3930       symtab->set_file_offset(symtab_off + global_off);
3931       osymtab->set_file_offset(symtab_off);
3932       osymtab->finalize_data_size();
3933       osymtab->set_link_section(ostrtab);
3934       osymtab->set_info(local_symcount);
3935       osymtab->set_entsize(symsize);
3936
3937       if (symtab_off + off > *poff)
3938         *poff = symtab_off + off;
3939     }
3940 }
3941
3942 // Create the .shstrtab section, which holds the names of the
3943 // sections.  At the time this is called, we have created all the
3944 // output sections except .shstrtab itself.
3945
3946 Output_section*
3947 Layout::create_shstrtab()
3948 {
3949   // FIXME: We don't need to create a .shstrtab section if we are
3950   // stripping everything.
3951
3952   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3953
3954   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3955                                                  ORDER_INVALID, false);
3956
3957   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3958     {
3959       // We can't write out this section until we've set all the
3960       // section names, and we don't set the names of compressed
3961       // output sections until relocations are complete.  FIXME: With
3962       // the current names we use, this is unnecessary.
3963       os->set_after_input_sections();
3964     }
3965
3966   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3967   os->add_output_section_data(posd);
3968
3969   return os;
3970 }
3971
3972 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3973 // offset.
3974
3975 void
3976 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3977 {
3978   Output_section_headers* oshdrs;
3979   oshdrs = new Output_section_headers(this,
3980                                       &this->segment_list_,
3981                                       &this->section_list_,
3982                                       &this->unattached_section_list_,
3983                                       &this->namepool_,
3984                                       shstrtab_section);
3985   off_t off;
3986   if (!parameters->incremental_update())
3987     off = align_address(*poff, oshdrs->addralign());
3988   else
3989     {
3990       oshdrs->pre_finalize_data_size();
3991       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3992       if (off == -1)
3993           gold_fallback(_("out of patch space for section header table; "
3994                           "relink with --incremental-full"));
3995       gold_debug(DEBUG_INCREMENTAL,
3996                  "create_shdrs: %08lx %08lx (section header table)",
3997                  static_cast<long>(off),
3998                  static_cast<long>(off + oshdrs->data_size()));
3999     }
4000   oshdrs->set_address_and_file_offset(0, off);
4001   off += oshdrs->data_size();
4002   if (off > *poff)
4003     *poff = off;
4004   this->section_headers_ = oshdrs;
4005 }
4006
4007 // Count the allocated sections.
4008
4009 size_t
4010 Layout::allocated_output_section_count() const
4011 {
4012   size_t section_count = 0;
4013   for (Segment_list::const_iterator p = this->segment_list_.begin();
4014        p != this->segment_list_.end();
4015        ++p)
4016     section_count += (*p)->output_section_count();
4017   return section_count;
4018 }
4019
4020 // Create the dynamic symbol table.
4021
4022 void
4023 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4024                               Symbol_table* symtab,
4025                               Output_section** pdynstr,
4026                               unsigned int* plocal_dynamic_count,
4027                               std::vector<Symbol*>* pdynamic_symbols,
4028                               Versions* pversions)
4029 {
4030   // Count all the symbols in the dynamic symbol table, and set the
4031   // dynamic symbol indexes.
4032
4033   // Skip symbol 0, which is always all zeroes.
4034   unsigned int index = 1;
4035
4036   // Add STT_SECTION symbols for each Output section which needs one.
4037   for (Section_list::iterator p = this->section_list_.begin();
4038        p != this->section_list_.end();
4039        ++p)
4040     {
4041       if (!(*p)->needs_dynsym_index())
4042         (*p)->set_dynsym_index(-1U);
4043       else
4044         {
4045           (*p)->set_dynsym_index(index);
4046           ++index;
4047         }
4048     }
4049
4050   // Count the local symbols that need to go in the dynamic symbol table,
4051   // and set the dynamic symbol indexes.
4052   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4053        p != input_objects->relobj_end();
4054        ++p)
4055     {
4056       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4057       index = new_index;
4058     }
4059
4060   unsigned int local_symcount = index;
4061   *plocal_dynamic_count = local_symcount;
4062
4063   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4064                                      &this->dynpool_, pversions);
4065
4066   int symsize;
4067   unsigned int align;
4068   const int size = parameters->target().get_size();
4069   if (size == 32)
4070     {
4071       symsize = elfcpp::Elf_sizes<32>::sym_size;
4072       align = 4;
4073     }
4074   else if (size == 64)
4075     {
4076       symsize = elfcpp::Elf_sizes<64>::sym_size;
4077       align = 8;
4078     }
4079   else
4080     gold_unreachable();
4081
4082   // Create the dynamic symbol table section.
4083
4084   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4085                                                        elfcpp::SHT_DYNSYM,
4086                                                        elfcpp::SHF_ALLOC,
4087                                                        false,
4088                                                        ORDER_DYNAMIC_LINKER,
4089                                                        false);
4090
4091   // Check for NULL as a linker script may discard .dynsym.
4092   if (dynsym != NULL)
4093     {
4094       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4095                                                                align,
4096                                                                "** dynsym");
4097       dynsym->add_output_section_data(odata);
4098
4099       dynsym->set_info(local_symcount);
4100       dynsym->set_entsize(symsize);
4101       dynsym->set_addralign(align);
4102
4103       this->dynsym_section_ = dynsym;
4104     }
4105
4106   Output_data_dynamic* const odyn = this->dynamic_data_;
4107   if (odyn != NULL)
4108     {
4109       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4110       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4111     }
4112
4113   // If there are more than SHN_LORESERVE allocated sections, we
4114   // create a .dynsym_shndx section.  It is possible that we don't
4115   // need one, because it is possible that there are no dynamic
4116   // symbols in any of the sections with indexes larger than
4117   // SHN_LORESERVE.  This is probably unusual, though, and at this
4118   // time we don't know the actual section indexes so it is
4119   // inconvenient to check.
4120   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4121     {
4122       Output_section* dynsym_xindex =
4123         this->choose_output_section(NULL, ".dynsym_shndx",
4124                                     elfcpp::SHT_SYMTAB_SHNDX,
4125                                     elfcpp::SHF_ALLOC,
4126                                     false, ORDER_DYNAMIC_LINKER, false);
4127
4128       if (dynsym_xindex != NULL)
4129         {
4130           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4131
4132           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4133
4134           dynsym_xindex->set_link_section(dynsym);
4135           dynsym_xindex->set_addralign(4);
4136           dynsym_xindex->set_entsize(4);
4137
4138           dynsym_xindex->set_after_input_sections();
4139
4140           // This tells the driver code to wait until the symbol table
4141           // has written out before writing out the postprocessing
4142           // sections, including the .dynsym_shndx section.
4143           this->any_postprocessing_sections_ = true;
4144         }
4145     }
4146
4147   // Create the dynamic string table section.
4148
4149   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4150                                                        elfcpp::SHT_STRTAB,
4151                                                        elfcpp::SHF_ALLOC,
4152                                                        false,
4153                                                        ORDER_DYNAMIC_LINKER,
4154                                                        false);
4155
4156   if (dynstr != NULL)
4157     {
4158       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4159       dynstr->add_output_section_data(strdata);
4160
4161       if (dynsym != NULL)
4162         dynsym->set_link_section(dynstr);
4163       if (this->dynamic_section_ != NULL)
4164         this->dynamic_section_->set_link_section(dynstr);
4165
4166       if (odyn != NULL)
4167         {
4168           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4169           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4170         }
4171
4172       *pdynstr = dynstr;
4173     }
4174
4175   // Create the hash tables.
4176
4177   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4178       || strcmp(parameters->options().hash_style(), "both") == 0)
4179     {
4180       unsigned char* phash;
4181       unsigned int hashlen;
4182       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4183                                     &phash, &hashlen);
4184
4185       Output_section* hashsec =
4186         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4187                                     elfcpp::SHF_ALLOC, false,
4188                                     ORDER_DYNAMIC_LINKER, false);
4189
4190       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4191                                                                    hashlen,
4192                                                                    align,
4193                                                                    "** hash");
4194       if (hashsec != NULL && hashdata != NULL)
4195         hashsec->add_output_section_data(hashdata);
4196
4197       if (hashsec != NULL)
4198         {
4199           if (dynsym != NULL)
4200             hashsec->set_link_section(dynsym);
4201           hashsec->set_entsize(4);
4202         }
4203
4204       if (odyn != NULL)
4205         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4206     }
4207
4208   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4209       || strcmp(parameters->options().hash_style(), "both") == 0)
4210     {
4211       unsigned char* phash;
4212       unsigned int hashlen;
4213       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4214                                     &phash, &hashlen);
4215
4216       Output_section* hashsec =
4217         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4218                                     elfcpp::SHF_ALLOC, false,
4219                                     ORDER_DYNAMIC_LINKER, false);
4220
4221       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4222                                                                    hashlen,
4223                                                                    align,
4224                                                                    "** hash");
4225       if (hashsec != NULL && hashdata != NULL)
4226         hashsec->add_output_section_data(hashdata);
4227
4228       if (hashsec != NULL)
4229         {
4230           if (dynsym != NULL)
4231             hashsec->set_link_section(dynsym);
4232
4233           // For a 64-bit target, the entries in .gnu.hash do not have
4234           // a uniform size, so we only set the entry size for a
4235           // 32-bit target.
4236           if (parameters->target().get_size() == 32)
4237             hashsec->set_entsize(4);
4238
4239           if (odyn != NULL)
4240             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4241         }
4242     }
4243 }
4244
4245 // Assign offsets to each local portion of the dynamic symbol table.
4246
4247 void
4248 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4249 {
4250   Output_section* dynsym = this->dynsym_section_;
4251   if (dynsym == NULL)
4252     return;
4253
4254   off_t off = dynsym->offset();
4255
4256   // Skip the dummy symbol at the start of the section.
4257   off += dynsym->entsize();
4258
4259   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4260        p != input_objects->relobj_end();
4261        ++p)
4262     {
4263       unsigned int count = (*p)->set_local_dynsym_offset(off);
4264       off += count * dynsym->entsize();
4265     }
4266 }
4267
4268 // Create the version sections.
4269
4270 void
4271 Layout::create_version_sections(const Versions* versions,
4272                                 const Symbol_table* symtab,
4273                                 unsigned int local_symcount,
4274                                 const std::vector<Symbol*>& dynamic_symbols,
4275                                 const Output_section* dynstr)
4276 {
4277   if (!versions->any_defs() && !versions->any_needs())
4278     return;
4279
4280   switch (parameters->size_and_endianness())
4281     {
4282 #ifdef HAVE_TARGET_32_LITTLE
4283     case Parameters::TARGET_32_LITTLE:
4284       this->sized_create_version_sections<32, false>(versions, symtab,
4285                                                      local_symcount,
4286                                                      dynamic_symbols, dynstr);
4287       break;
4288 #endif
4289 #ifdef HAVE_TARGET_32_BIG
4290     case Parameters::TARGET_32_BIG:
4291       this->sized_create_version_sections<32, true>(versions, symtab,
4292                                                     local_symcount,
4293                                                     dynamic_symbols, dynstr);
4294       break;
4295 #endif
4296 #ifdef HAVE_TARGET_64_LITTLE
4297     case Parameters::TARGET_64_LITTLE:
4298       this->sized_create_version_sections<64, false>(versions, symtab,
4299                                                      local_symcount,
4300                                                      dynamic_symbols, dynstr);
4301       break;
4302 #endif
4303 #ifdef HAVE_TARGET_64_BIG
4304     case Parameters::TARGET_64_BIG:
4305       this->sized_create_version_sections<64, true>(versions, symtab,
4306                                                     local_symcount,
4307                                                     dynamic_symbols, dynstr);
4308       break;
4309 #endif
4310     default:
4311       gold_unreachable();
4312     }
4313 }
4314
4315 // Create the version sections, sized version.
4316
4317 template<int size, bool big_endian>
4318 void
4319 Layout::sized_create_version_sections(
4320     const Versions* versions,
4321     const Symbol_table* symtab,
4322     unsigned int local_symcount,
4323     const std::vector<Symbol*>& dynamic_symbols,
4324     const Output_section* dynstr)
4325 {
4326   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4327                                                      elfcpp::SHT_GNU_versym,
4328                                                      elfcpp::SHF_ALLOC,
4329                                                      false,
4330                                                      ORDER_DYNAMIC_LINKER,
4331                                                      false);
4332
4333   // Check for NULL since a linker script may discard this section.
4334   if (vsec != NULL)
4335     {
4336       unsigned char* vbuf;
4337       unsigned int vsize;
4338       versions->symbol_section_contents<size, big_endian>(symtab,
4339                                                           &this->dynpool_,
4340                                                           local_symcount,
4341                                                           dynamic_symbols,
4342                                                           &vbuf, &vsize);
4343
4344       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4345                                                                 "** versions");
4346
4347       vsec->add_output_section_data(vdata);
4348       vsec->set_entsize(2);
4349       vsec->set_link_section(this->dynsym_section_);
4350     }
4351
4352   Output_data_dynamic* const odyn = this->dynamic_data_;
4353   if (odyn != NULL && vsec != NULL)
4354     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4355
4356   if (versions->any_defs())
4357     {
4358       Output_section* vdsec;
4359       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4360                                           elfcpp::SHT_GNU_verdef,
4361                                           elfcpp::SHF_ALLOC,
4362                                           false, ORDER_DYNAMIC_LINKER, false);
4363
4364       if (vdsec != NULL)
4365         {
4366           unsigned char* vdbuf;
4367           unsigned int vdsize;
4368           unsigned int vdentries;
4369           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4370                                                            &vdbuf, &vdsize,
4371                                                            &vdentries);
4372
4373           Output_section_data* vddata =
4374             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4375
4376           vdsec->add_output_section_data(vddata);
4377           vdsec->set_link_section(dynstr);
4378           vdsec->set_info(vdentries);
4379
4380           if (odyn != NULL)
4381             {
4382               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4383               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4384             }
4385         }
4386     }
4387
4388   if (versions->any_needs())
4389     {
4390       Output_section* vnsec;
4391       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4392                                           elfcpp::SHT_GNU_verneed,
4393                                           elfcpp::SHF_ALLOC,
4394                                           false, ORDER_DYNAMIC_LINKER, false);
4395
4396       if (vnsec != NULL)
4397         {
4398           unsigned char* vnbuf;
4399           unsigned int vnsize;
4400           unsigned int vnentries;
4401           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4402                                                             &vnbuf, &vnsize,
4403                                                             &vnentries);
4404
4405           Output_section_data* vndata =
4406             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4407
4408           vnsec->add_output_section_data(vndata);
4409           vnsec->set_link_section(dynstr);
4410           vnsec->set_info(vnentries);
4411
4412           if (odyn != NULL)
4413             {
4414               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4415               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4416             }
4417         }
4418     }
4419 }
4420
4421 // Create the .interp section and PT_INTERP segment.
4422
4423 void
4424 Layout::create_interp(const Target* target)
4425 {
4426   gold_assert(this->interp_segment_ == NULL);
4427
4428   const char* interp = parameters->options().dynamic_linker();
4429   if (interp == NULL)
4430     {
4431       interp = target->dynamic_linker();
4432       gold_assert(interp != NULL);
4433     }
4434
4435   size_t len = strlen(interp) + 1;
4436
4437   Output_section_data* odata = new Output_data_const(interp, len, 1);
4438
4439   Output_section* osec = this->choose_output_section(NULL, ".interp",
4440                                                      elfcpp::SHT_PROGBITS,
4441                                                      elfcpp::SHF_ALLOC,
4442                                                      false, ORDER_INTERP,
4443                                                      false);
4444   if (osec != NULL)
4445     osec->add_output_section_data(odata);
4446 }
4447
4448 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4449 // called by the target-specific code.  This does nothing if not doing
4450 // a dynamic link.
4451
4452 // USE_REL is true for REL relocs rather than RELA relocs.
4453
4454 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4455
4456 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4457 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4458 // some targets have multiple reloc sections in PLT_REL.
4459
4460 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4461 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4462 // section.
4463
4464 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4465 // executable.
4466
4467 void
4468 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4469                                 const Output_data* plt_rel,
4470                                 const Output_data_reloc_generic* dyn_rel,
4471                                 bool add_debug, bool dynrel_includes_plt)
4472 {
4473   Output_data_dynamic* odyn = this->dynamic_data_;
4474   if (odyn == NULL)
4475     return;
4476
4477   if (plt_got != NULL && plt_got->output_section() != NULL)
4478     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4479
4480   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4481     {
4482       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4483       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4484       odyn->add_constant(elfcpp::DT_PLTREL,
4485                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4486     }
4487
4488   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4489       || (dynrel_includes_plt
4490           && plt_rel != NULL
4491           && plt_rel->output_section() != NULL))
4492     {
4493       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4494       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4495       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4496                                 (have_dyn_rel
4497                                  ? dyn_rel->output_section()
4498                                  : plt_rel->output_section()));
4499       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4500       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4501         odyn->add_section_size(size_tag,
4502                                dyn_rel->output_section(),
4503                                plt_rel->output_section());
4504       else if (have_dyn_rel)
4505         odyn->add_section_size(size_tag, dyn_rel->output_section());
4506       else
4507         odyn->add_section_size(size_tag, plt_rel->output_section());
4508       const int size = parameters->target().get_size();
4509       elfcpp::DT rel_tag;
4510       int rel_size;
4511       if (use_rel)
4512         {
4513           rel_tag = elfcpp::DT_RELENT;
4514           if (size == 32)
4515             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4516           else if (size == 64)
4517             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4518           else
4519             gold_unreachable();
4520         }
4521       else
4522         {
4523           rel_tag = elfcpp::DT_RELAENT;
4524           if (size == 32)
4525             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4526           else if (size == 64)
4527             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4528           else
4529             gold_unreachable();
4530         }
4531       odyn->add_constant(rel_tag, rel_size);
4532
4533       if (parameters->options().combreloc() && have_dyn_rel)
4534         {
4535           size_t c = dyn_rel->relative_reloc_count();
4536           if (c > 0)
4537             odyn->add_constant((use_rel
4538                                 ? elfcpp::DT_RELCOUNT
4539                                 : elfcpp::DT_RELACOUNT),
4540                                c);
4541         }
4542     }
4543
4544   if (add_debug && !parameters->options().shared())
4545     {
4546       // The value of the DT_DEBUG tag is filled in by the dynamic
4547       // linker at run time, and used by the debugger.
4548       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4549     }
4550 }
4551
4552 // Finish the .dynamic section and PT_DYNAMIC segment.
4553
4554 void
4555 Layout::finish_dynamic_section(const Input_objects* input_objects,
4556                                const Symbol_table* symtab)
4557 {
4558   if (!this->script_options_->saw_phdrs_clause()
4559       && this->dynamic_section_ != NULL)
4560     {
4561       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4562                                                        (elfcpp::PF_R
4563                                                         | elfcpp::PF_W));
4564       oseg->add_output_section_to_nonload(this->dynamic_section_,
4565                                           elfcpp::PF_R | elfcpp::PF_W);
4566     }
4567
4568   Output_data_dynamic* const odyn = this->dynamic_data_;
4569   if (odyn == NULL)
4570     return;
4571
4572   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4573        p != input_objects->dynobj_end();
4574        ++p)
4575     {
4576       if (!(*p)->is_needed() && (*p)->as_needed())
4577         {
4578           // This dynamic object was linked with --as-needed, but it
4579           // is not needed.
4580           continue;
4581         }
4582
4583       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4584     }
4585
4586   if (parameters->options().shared())
4587     {
4588       const char* soname = parameters->options().soname();
4589       if (soname != NULL)
4590         odyn->add_string(elfcpp::DT_SONAME, soname);
4591     }
4592
4593   Symbol* sym = symtab->lookup(parameters->options().init());
4594   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4595     odyn->add_symbol(elfcpp::DT_INIT, sym);
4596
4597   sym = symtab->lookup(parameters->options().fini());
4598   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4599     odyn->add_symbol(elfcpp::DT_FINI, sym);
4600
4601   // Look for .init_array, .preinit_array and .fini_array by checking
4602   // section types.
4603   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4604       p != this->section_list_.end();
4605       ++p)
4606     switch((*p)->type())
4607       {
4608       case elfcpp::SHT_FINI_ARRAY:
4609         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4610         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4611         break;
4612       case elfcpp::SHT_INIT_ARRAY:
4613         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4614         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4615         break;
4616       case elfcpp::SHT_PREINIT_ARRAY:
4617         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4618         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4619         break;
4620       default:
4621         break;
4622       }
4623
4624   // Add a DT_RPATH entry if needed.
4625   const General_options::Dir_list& rpath(parameters->options().rpath());
4626   if (!rpath.empty())
4627     {
4628       std::string rpath_val;
4629       for (General_options::Dir_list::const_iterator p = rpath.begin();
4630            p != rpath.end();
4631            ++p)
4632         {
4633           if (rpath_val.empty())
4634             rpath_val = p->name();
4635           else
4636             {
4637               // Eliminate duplicates.
4638               General_options::Dir_list::const_iterator q;
4639               for (q = rpath.begin(); q != p; ++q)
4640                 if (q->name() == p->name())
4641                   break;
4642               if (q == p)
4643                 {
4644                   rpath_val += ':';
4645                   rpath_val += p->name();
4646                 }
4647             }
4648         }
4649
4650       if (!parameters->options().enable_new_dtags())
4651         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4652       else
4653         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4654     }
4655
4656   // Look for text segments that have dynamic relocations.
4657   bool have_textrel = false;
4658   if (!this->script_options_->saw_sections_clause())
4659     {
4660       for (Segment_list::const_iterator p = this->segment_list_.begin();
4661            p != this->segment_list_.end();
4662            ++p)
4663         {
4664           if ((*p)->type() == elfcpp::PT_LOAD
4665               && ((*p)->flags() & elfcpp::PF_W) == 0
4666               && (*p)->has_dynamic_reloc())
4667             {
4668               have_textrel = true;
4669               break;
4670             }
4671         }
4672     }
4673   else
4674     {
4675       // We don't know the section -> segment mapping, so we are
4676       // conservative and just look for readonly sections with
4677       // relocations.  If those sections wind up in writable segments,
4678       // then we have created an unnecessary DT_TEXTREL entry.
4679       for (Section_list::const_iterator p = this->section_list_.begin();
4680            p != this->section_list_.end();
4681            ++p)
4682         {
4683           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4684               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4685               && (*p)->has_dynamic_reloc())
4686             {
4687               have_textrel = true;
4688               break;
4689             }
4690         }
4691     }
4692
4693   if (parameters->options().filter() != NULL)
4694     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4695   if (parameters->options().any_auxiliary())
4696     {
4697       for (options::String_set::const_iterator p =
4698              parameters->options().auxiliary_begin();
4699            p != parameters->options().auxiliary_end();
4700            ++p)
4701         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4702     }
4703
4704   // Add a DT_FLAGS entry if necessary.
4705   unsigned int flags = 0;
4706   if (have_textrel)
4707     {
4708       // Add a DT_TEXTREL for compatibility with older loaders.
4709       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4710       flags |= elfcpp::DF_TEXTREL;
4711
4712       if (parameters->options().text())
4713         gold_error(_("read-only segment has dynamic relocations"));
4714       else if (parameters->options().warn_shared_textrel()
4715                && parameters->options().shared())
4716         gold_warning(_("shared library text segment is not shareable"));
4717     }
4718   if (parameters->options().shared() && this->has_static_tls())
4719     flags |= elfcpp::DF_STATIC_TLS;
4720   if (parameters->options().origin())
4721     flags |= elfcpp::DF_ORIGIN;
4722   if (parameters->options().Bsymbolic())
4723     {
4724       flags |= elfcpp::DF_SYMBOLIC;
4725       // Add DT_SYMBOLIC for compatibility with older loaders.
4726       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4727     }
4728   if (parameters->options().now())
4729     flags |= elfcpp::DF_BIND_NOW;
4730   if (flags != 0)
4731     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4732
4733   flags = 0;
4734   if (parameters->options().initfirst())
4735     flags |= elfcpp::DF_1_INITFIRST;
4736   if (parameters->options().interpose())
4737     flags |= elfcpp::DF_1_INTERPOSE;
4738   if (parameters->options().loadfltr())
4739     flags |= elfcpp::DF_1_LOADFLTR;
4740   if (parameters->options().nodefaultlib())
4741     flags |= elfcpp::DF_1_NODEFLIB;
4742   if (parameters->options().nodelete())
4743     flags |= elfcpp::DF_1_NODELETE;
4744   if (parameters->options().nodlopen())
4745     flags |= elfcpp::DF_1_NOOPEN;
4746   if (parameters->options().nodump())
4747     flags |= elfcpp::DF_1_NODUMP;
4748   if (!parameters->options().shared())
4749     flags &= ~(elfcpp::DF_1_INITFIRST
4750                | elfcpp::DF_1_NODELETE
4751                | elfcpp::DF_1_NOOPEN);
4752   if (parameters->options().origin())
4753     flags |= elfcpp::DF_1_ORIGIN;
4754   if (parameters->options().now())
4755     flags |= elfcpp::DF_1_NOW;
4756   if (parameters->options().Bgroup())
4757     flags |= elfcpp::DF_1_GROUP;
4758   if (flags != 0)
4759     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4760 }
4761
4762 // Set the size of the _DYNAMIC symbol table to be the size of the
4763 // dynamic data.
4764
4765 void
4766 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4767 {
4768   Output_data_dynamic* const odyn = this->dynamic_data_;
4769   if (odyn == NULL)
4770     return;
4771   odyn->finalize_data_size();
4772   if (this->dynamic_symbol_ == NULL)
4773     return;
4774   off_t data_size = odyn->data_size();
4775   const int size = parameters->target().get_size();
4776   if (size == 32)
4777     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4778   else if (size == 64)
4779     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4780   else
4781     gold_unreachable();
4782 }
4783
4784 // The mapping of input section name prefixes to output section names.
4785 // In some cases one prefix is itself a prefix of another prefix; in
4786 // such a case the longer prefix must come first.  These prefixes are
4787 // based on the GNU linker default ELF linker script.
4788
4789 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4790 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4791 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4792 {
4793   MAPPING_INIT(".text.", ".text"),
4794   MAPPING_INIT(".rodata.", ".rodata"),
4795   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4796   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4797   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4798   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4799   MAPPING_INIT(".data.", ".data"),
4800   MAPPING_INIT(".bss.", ".bss"),
4801   MAPPING_INIT(".tdata.", ".tdata"),
4802   MAPPING_INIT(".tbss.", ".tbss"),
4803   MAPPING_INIT(".init_array.", ".init_array"),
4804   MAPPING_INIT(".fini_array.", ".fini_array"),
4805   MAPPING_INIT(".sdata.", ".sdata"),
4806   MAPPING_INIT(".sbss.", ".sbss"),
4807   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4808   // differently depending on whether it is creating a shared library.
4809   MAPPING_INIT(".sdata2.", ".sdata"),
4810   MAPPING_INIT(".sbss2.", ".sbss"),
4811   MAPPING_INIT(".lrodata.", ".lrodata"),
4812   MAPPING_INIT(".ldata.", ".ldata"),
4813   MAPPING_INIT(".lbss.", ".lbss"),
4814   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4815   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4816   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4817   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4818   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4819   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4820   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4821   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4822   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4823   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4824   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4825   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4826   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4827   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4828   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4829   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4830   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4831   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4832   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4833   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4834   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4835 };
4836 #undef MAPPING_INIT
4837 #undef MAPPING_INIT_EXACT
4838
4839 const int Layout::section_name_mapping_count =
4840   (sizeof(Layout::section_name_mapping)
4841    / sizeof(Layout::section_name_mapping[0]));
4842
4843 // Choose the output section name to use given an input section name.
4844 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4845 // length of NAME.
4846
4847 const char*
4848 Layout::output_section_name(const Relobj* relobj, const char* name,
4849                             size_t* plen)
4850 {
4851   // gcc 4.3 generates the following sorts of section names when it
4852   // needs a section name specific to a function:
4853   //   .text.FN
4854   //   .rodata.FN
4855   //   .sdata2.FN
4856   //   .data.FN
4857   //   .data.rel.FN
4858   //   .data.rel.local.FN
4859   //   .data.rel.ro.FN
4860   //   .data.rel.ro.local.FN
4861   //   .sdata.FN
4862   //   .bss.FN
4863   //   .sbss.FN
4864   //   .tdata.FN
4865   //   .tbss.FN
4866
4867   // The GNU linker maps all of those to the part before the .FN,
4868   // except that .data.rel.local.FN is mapped to .data, and
4869   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4870   // beginning with .data.rel.ro.local are grouped together.
4871
4872   // For an anonymous namespace, the string FN can contain a '.'.
4873
4874   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4875   // GNU linker maps to .rodata.
4876
4877   // The .data.rel.ro sections are used with -z relro.  The sections
4878   // are recognized by name.  We use the same names that the GNU
4879   // linker does for these sections.
4880
4881   // It is hard to handle this in a principled way, so we don't even
4882   // try.  We use a table of mappings.  If the input section name is
4883   // not found in the table, we simply use it as the output section
4884   // name.
4885
4886   const Section_name_mapping* psnm = section_name_mapping;
4887   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4888     {
4889       if (psnm->fromlen > 0)
4890         {
4891           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4892             {
4893               *plen = psnm->tolen;
4894               return psnm->to;
4895             }
4896         }
4897       else
4898         {
4899           if (strcmp(name, psnm->from) == 0)
4900             {
4901               *plen = psnm->tolen;
4902               return psnm->to;
4903             }
4904         }
4905     }
4906
4907   // As an additional complication, .ctors sections are output in
4908   // either .ctors or .init_array sections, and .dtors sections are
4909   // output in either .dtors or .fini_array sections.
4910   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4911     {
4912       if (parameters->options().ctors_in_init_array())
4913         {
4914           *plen = 11;
4915           return name[1] == 'c' ? ".init_array" : ".fini_array";
4916         }
4917       else
4918         {
4919           *plen = 6;
4920           return name[1] == 'c' ? ".ctors" : ".dtors";
4921         }
4922     }
4923   if (parameters->options().ctors_in_init_array()
4924       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4925     {
4926       // To make .init_array/.fini_array work with gcc we must exclude
4927       // .ctors and .dtors sections from the crtbegin and crtend
4928       // files.
4929       if (relobj == NULL
4930           || (!Layout::match_file_name(relobj, "crtbegin")
4931               && !Layout::match_file_name(relobj, "crtend")))
4932         {
4933           *plen = 11;
4934           return name[1] == 'c' ? ".init_array" : ".fini_array";
4935         }
4936     }
4937
4938   return name;
4939 }
4940
4941 // Return true if RELOBJ is an input file whose base name matches
4942 // FILE_NAME.  The base name must have an extension of ".o", and must
4943 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4944 // to match crtbegin.o as well as crtbeginS.o without getting confused
4945 // by other possibilities.  Overall matching the file name this way is
4946 // a dreadful hack, but the GNU linker does it in order to better
4947 // support gcc, and we need to be compatible.
4948
4949 bool
4950 Layout::match_file_name(const Relobj* relobj, const char* match)
4951 {
4952   const std::string& file_name(relobj->name());
4953   const char* base_name = lbasename(file_name.c_str());
4954   size_t match_len = strlen(match);
4955   if (strncmp(base_name, match, match_len) != 0)
4956     return false;
4957   size_t base_len = strlen(base_name);
4958   if (base_len != match_len + 2 && base_len != match_len + 3)
4959     return false;
4960   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4961 }
4962
4963 // Check if a comdat group or .gnu.linkonce section with the given
4964 // NAME is selected for the link.  If there is already a section,
4965 // *KEPT_SECTION is set to point to the existing section and the
4966 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4967 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4968 // *KEPT_SECTION is set to the internal copy and the function returns
4969 // true.
4970
4971 bool
4972 Layout::find_or_add_kept_section(const std::string& name,
4973                                  Relobj* object,
4974                                  unsigned int shndx,
4975                                  bool is_comdat,
4976                                  bool is_group_name,
4977                                  Kept_section** kept_section)
4978 {
4979   // It's normal to see a couple of entries here, for the x86 thunk
4980   // sections.  If we see more than a few, we're linking a C++
4981   // program, and we resize to get more space to minimize rehashing.
4982   if (this->signatures_.size() > 4
4983       && !this->resized_signatures_)
4984     {
4985       reserve_unordered_map(&this->signatures_,
4986                             this->number_of_input_files_ * 64);
4987       this->resized_signatures_ = true;
4988     }
4989
4990   Kept_section candidate;
4991   std::pair<Signatures::iterator, bool> ins =
4992     this->signatures_.insert(std::make_pair(name, candidate));
4993
4994   if (kept_section != NULL)
4995     *kept_section = &ins.first->second;
4996   if (ins.second)
4997     {
4998       // This is the first time we've seen this signature.
4999       ins.first->second.set_object(object);
5000       ins.first->second.set_shndx(shndx);
5001       if (is_comdat)
5002         ins.first->second.set_is_comdat();
5003       if (is_group_name)
5004         ins.first->second.set_is_group_name();
5005       return true;
5006     }
5007
5008   // We have already seen this signature.
5009
5010   if (ins.first->second.is_group_name())
5011     {
5012       // We've already seen a real section group with this signature.
5013       // If the kept group is from a plugin object, and we're in the
5014       // replacement phase, accept the new one as a replacement.
5015       if (ins.first->second.object() == NULL
5016           && parameters->options().plugins()->in_replacement_phase())
5017         {
5018           ins.first->second.set_object(object);
5019           ins.first->second.set_shndx(shndx);
5020           return true;
5021         }
5022       return false;
5023     }
5024   else if (is_group_name)
5025     {
5026       // This is a real section group, and we've already seen a
5027       // linkonce section with this signature.  Record that we've seen
5028       // a section group, and don't include this section group.
5029       ins.first->second.set_is_group_name();
5030       return false;
5031     }
5032   else
5033     {
5034       // We've already seen a linkonce section and this is a linkonce
5035       // section.  These don't block each other--this may be the same
5036       // symbol name with different section types.
5037       return true;
5038     }
5039 }
5040
5041 // Store the allocated sections into the section list.
5042
5043 void
5044 Layout::get_allocated_sections(Section_list* section_list) const
5045 {
5046   for (Section_list::const_iterator p = this->section_list_.begin();
5047        p != this->section_list_.end();
5048        ++p)
5049     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5050       section_list->push_back(*p);
5051 }
5052
5053 // Store the executable sections into the section list.
5054
5055 void
5056 Layout::get_executable_sections(Section_list* section_list) const
5057 {
5058   for (Section_list::const_iterator p = this->section_list_.begin();
5059        p != this->section_list_.end();
5060        ++p)
5061     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5062         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5063       section_list->push_back(*p);
5064 }
5065
5066 // Create an output segment.
5067
5068 Output_segment*
5069 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5070 {
5071   gold_assert(!parameters->options().relocatable());
5072   Output_segment* oseg = new Output_segment(type, flags);
5073   this->segment_list_.push_back(oseg);
5074
5075   if (type == elfcpp::PT_TLS)
5076     this->tls_segment_ = oseg;
5077   else if (type == elfcpp::PT_GNU_RELRO)
5078     this->relro_segment_ = oseg;
5079   else if (type == elfcpp::PT_INTERP)
5080     this->interp_segment_ = oseg;
5081
5082   return oseg;
5083 }
5084
5085 // Return the file offset of the normal symbol table.
5086
5087 off_t
5088 Layout::symtab_section_offset() const
5089 {
5090   if (this->symtab_section_ != NULL)
5091     return this->symtab_section_->offset();
5092   return 0;
5093 }
5094
5095 // Return the section index of the normal symbol table.  It may have
5096 // been stripped by the -s/--strip-all option.
5097
5098 unsigned int
5099 Layout::symtab_section_shndx() const
5100 {
5101   if (this->symtab_section_ != NULL)
5102     return this->symtab_section_->out_shndx();
5103   return 0;
5104 }
5105
5106 // Write out the Output_sections.  Most won't have anything to write,
5107 // since most of the data will come from input sections which are
5108 // handled elsewhere.  But some Output_sections do have Output_data.
5109
5110 void
5111 Layout::write_output_sections(Output_file* of) const
5112 {
5113   for (Section_list::const_iterator p = this->section_list_.begin();
5114        p != this->section_list_.end();
5115        ++p)
5116     {
5117       if (!(*p)->after_input_sections())
5118         (*p)->write(of);
5119     }
5120 }
5121
5122 // Write out data not associated with a section or the symbol table.
5123
5124 void
5125 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5126 {
5127   if (!parameters->options().strip_all())
5128     {
5129       const Output_section* symtab_section = this->symtab_section_;
5130       for (Section_list::const_iterator p = this->section_list_.begin();
5131            p != this->section_list_.end();
5132            ++p)
5133         {
5134           if ((*p)->needs_symtab_index())
5135             {
5136               gold_assert(symtab_section != NULL);
5137               unsigned int index = (*p)->symtab_index();
5138               gold_assert(index > 0 && index != -1U);
5139               off_t off = (symtab_section->offset()
5140                            + index * symtab_section->entsize());
5141               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5142             }
5143         }
5144     }
5145
5146   const Output_section* dynsym_section = this->dynsym_section_;
5147   for (Section_list::const_iterator p = this->section_list_.begin();
5148        p != this->section_list_.end();
5149        ++p)
5150     {
5151       if ((*p)->needs_dynsym_index())
5152         {
5153           gold_assert(dynsym_section != NULL);
5154           unsigned int index = (*p)->dynsym_index();
5155           gold_assert(index > 0 && index != -1U);
5156           off_t off = (dynsym_section->offset()
5157                        + index * dynsym_section->entsize());
5158           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5159         }
5160     }
5161
5162   // Write out the Output_data which are not in an Output_section.
5163   for (Data_list::const_iterator p = this->special_output_list_.begin();
5164        p != this->special_output_list_.end();
5165        ++p)
5166     (*p)->write(of);
5167 }
5168
5169 // Write out the Output_sections which can only be written after the
5170 // input sections are complete.
5171
5172 void
5173 Layout::write_sections_after_input_sections(Output_file* of)
5174 {
5175   // Determine the final section offsets, and thus the final output
5176   // file size.  Note we finalize the .shstrab last, to allow the
5177   // after_input_section sections to modify their section-names before
5178   // writing.
5179   if (this->any_postprocessing_sections_)
5180     {
5181       off_t off = this->output_file_size_;
5182       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5183
5184       // Now that we've finalized the names, we can finalize the shstrab.
5185       off =
5186         this->set_section_offsets(off,
5187                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5188
5189       if (off > this->output_file_size_)
5190         {
5191           of->resize(off);
5192           this->output_file_size_ = off;
5193         }
5194     }
5195
5196   for (Section_list::const_iterator p = this->section_list_.begin();
5197        p != this->section_list_.end();
5198        ++p)
5199     {
5200       if ((*p)->after_input_sections())
5201         (*p)->write(of);
5202     }
5203
5204   this->section_headers_->write(of);
5205 }
5206
5207 // If the build ID requires computing a checksum, do so here, and
5208 // write it out.  We compute a checksum over the entire file because
5209 // that is simplest.
5210
5211 void
5212 Layout::write_build_id(Output_file* of) const
5213 {
5214   if (this->build_id_note_ == NULL)
5215     return;
5216
5217   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5218
5219   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5220                                           this->build_id_note_->data_size());
5221
5222   const char* style = parameters->options().build_id();
5223   if (strcmp(style, "sha1") == 0)
5224     {
5225       sha1_ctx ctx;
5226       sha1_init_ctx(&ctx);
5227       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5228       sha1_finish_ctx(&ctx, ov);
5229     }
5230   else if (strcmp(style, "md5") == 0)
5231     {
5232       md5_ctx ctx;
5233       md5_init_ctx(&ctx);
5234       md5_process_bytes(iv, this->output_file_size_, &ctx);
5235       md5_finish_ctx(&ctx, ov);
5236     }
5237   else
5238     gold_unreachable();
5239
5240   of->write_output_view(this->build_id_note_->offset(),
5241                         this->build_id_note_->data_size(),
5242                         ov);
5243
5244   of->free_input_view(0, this->output_file_size_, iv);
5245 }
5246
5247 // Write out a binary file.  This is called after the link is
5248 // complete.  IN is the temporary output file we used to generate the
5249 // ELF code.  We simply walk through the segments, read them from
5250 // their file offset in IN, and write them to their load address in
5251 // the output file.  FIXME: with a bit more work, we could support
5252 // S-records and/or Intel hex format here.
5253
5254 void
5255 Layout::write_binary(Output_file* in) const
5256 {
5257   gold_assert(parameters->options().oformat_enum()
5258               == General_options::OBJECT_FORMAT_BINARY);
5259
5260   // Get the size of the binary file.
5261   uint64_t max_load_address = 0;
5262   for (Segment_list::const_iterator p = this->segment_list_.begin();
5263        p != this->segment_list_.end();
5264        ++p)
5265     {
5266       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5267         {
5268           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5269           if (max_paddr > max_load_address)
5270             max_load_address = max_paddr;
5271         }
5272     }
5273
5274   Output_file out(parameters->options().output_file_name());
5275   out.open(max_load_address);
5276
5277   for (Segment_list::const_iterator p = this->segment_list_.begin();
5278        p != this->segment_list_.end();
5279        ++p)
5280     {
5281       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5282         {
5283           const unsigned char* vin = in->get_input_view((*p)->offset(),
5284                                                         (*p)->filesz());
5285           unsigned char* vout = out.get_output_view((*p)->paddr(),
5286                                                     (*p)->filesz());
5287           memcpy(vout, vin, (*p)->filesz());
5288           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5289           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5290         }
5291     }
5292
5293   out.close();
5294 }
5295
5296 // Print the output sections to the map file.
5297
5298 void
5299 Layout::print_to_mapfile(Mapfile* mapfile) const
5300 {
5301   for (Segment_list::const_iterator p = this->segment_list_.begin();
5302        p != this->segment_list_.end();
5303        ++p)
5304     (*p)->print_sections_to_mapfile(mapfile);
5305 }
5306
5307 // Print statistical information to stderr.  This is used for --stats.
5308
5309 void
5310 Layout::print_stats() const
5311 {
5312   this->namepool_.print_stats("section name pool");
5313   this->sympool_.print_stats("output symbol name pool");
5314   this->dynpool_.print_stats("dynamic name pool");
5315
5316   for (Section_list::const_iterator p = this->section_list_.begin();
5317        p != this->section_list_.end();
5318        ++p)
5319     (*p)->print_merge_stats();
5320 }
5321
5322 // Write_sections_task methods.
5323
5324 // We can always run this task.
5325
5326 Task_token*
5327 Write_sections_task::is_runnable()
5328 {
5329   return NULL;
5330 }
5331
5332 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5333 // when finished.
5334
5335 void
5336 Write_sections_task::locks(Task_locker* tl)
5337 {
5338   tl->add(this, this->output_sections_blocker_);
5339   tl->add(this, this->final_blocker_);
5340 }
5341
5342 // Run the task--write out the data.
5343
5344 void
5345 Write_sections_task::run(Workqueue*)
5346 {
5347   this->layout_->write_output_sections(this->of_);
5348 }
5349
5350 // Write_data_task methods.
5351
5352 // We can always run this task.
5353
5354 Task_token*
5355 Write_data_task::is_runnable()
5356 {
5357   return NULL;
5358 }
5359
5360 // We need to unlock FINAL_BLOCKER when finished.
5361
5362 void
5363 Write_data_task::locks(Task_locker* tl)
5364 {
5365   tl->add(this, this->final_blocker_);
5366 }
5367
5368 // Run the task--write out the data.
5369
5370 void
5371 Write_data_task::run(Workqueue*)
5372 {
5373   this->layout_->write_data(this->symtab_, this->of_);
5374 }
5375
5376 // Write_symbols_task methods.
5377
5378 // We can always run this task.
5379
5380 Task_token*
5381 Write_symbols_task::is_runnable()
5382 {
5383   return NULL;
5384 }
5385
5386 // We need to unlock FINAL_BLOCKER when finished.
5387
5388 void
5389 Write_symbols_task::locks(Task_locker* tl)
5390 {
5391   tl->add(this, this->final_blocker_);
5392 }
5393
5394 // Run the task--write out the symbols.
5395
5396 void
5397 Write_symbols_task::run(Workqueue*)
5398 {
5399   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5400                                this->layout_->symtab_xindex(),
5401                                this->layout_->dynsym_xindex(), this->of_);
5402 }
5403
5404 // Write_after_input_sections_task methods.
5405
5406 // We can only run this task after the input sections have completed.
5407
5408 Task_token*
5409 Write_after_input_sections_task::is_runnable()
5410 {
5411   if (this->input_sections_blocker_->is_blocked())
5412     return this->input_sections_blocker_;
5413   return NULL;
5414 }
5415
5416 // We need to unlock FINAL_BLOCKER when finished.
5417
5418 void
5419 Write_after_input_sections_task::locks(Task_locker* tl)
5420 {
5421   tl->add(this, this->final_blocker_);
5422 }
5423
5424 // Run the task.
5425
5426 void
5427 Write_after_input_sections_task::run(Workqueue*)
5428 {
5429   this->layout_->write_sections_after_input_sections(this->of_);
5430 }
5431
5432 // Close_task_runner methods.
5433
5434 // Run the task--close the file.
5435
5436 void
5437 Close_task_runner::run(Workqueue*, const Task*)
5438 {
5439   // If we need to compute a checksum for the BUILD if, we do so here.
5440   this->layout_->write_build_id(this->of_);
5441
5442   // If we've been asked to create a binary file, we do so here.
5443   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5444     this->layout_->write_binary(this->of_);
5445
5446   this->of_->close();
5447 }
5448
5449 // Instantiate the templates we need.  We could use the configure
5450 // script to restrict this to only the ones for implemented targets.
5451
5452 #ifdef HAVE_TARGET_32_LITTLE
5453 template
5454 Output_section*
5455 Layout::init_fixed_output_section<32, false>(
5456     const char* name,
5457     elfcpp::Shdr<32, false>& shdr);
5458 #endif
5459
5460 #ifdef HAVE_TARGET_32_BIG
5461 template
5462 Output_section*
5463 Layout::init_fixed_output_section<32, true>(
5464     const char* name,
5465     elfcpp::Shdr<32, true>& shdr);
5466 #endif
5467
5468 #ifdef HAVE_TARGET_64_LITTLE
5469 template
5470 Output_section*
5471 Layout::init_fixed_output_section<64, false>(
5472     const char* name,
5473     elfcpp::Shdr<64, false>& shdr);
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_BIG
5477 template
5478 Output_section*
5479 Layout::init_fixed_output_section<64, true>(
5480     const char* name,
5481     elfcpp::Shdr<64, true>& shdr);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_32_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5488                           unsigned int shndx,
5489                           const char* name,
5490                           const elfcpp::Shdr<32, false>& shdr,
5491                           unsigned int, unsigned int, off_t*);
5492 #endif
5493
5494 #ifdef HAVE_TARGET_32_BIG
5495 template
5496 Output_section*
5497 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5498                          unsigned int shndx,
5499                          const char* name,
5500                          const elfcpp::Shdr<32, true>& shdr,
5501                          unsigned int, unsigned int, off_t*);
5502 #endif
5503
5504 #ifdef HAVE_TARGET_64_LITTLE
5505 template
5506 Output_section*
5507 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5508                           unsigned int shndx,
5509                           const char* name,
5510                           const elfcpp::Shdr<64, false>& shdr,
5511                           unsigned int, unsigned int, off_t*);
5512 #endif
5513
5514 #ifdef HAVE_TARGET_64_BIG
5515 template
5516 Output_section*
5517 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5518                          unsigned int shndx,
5519                          const char* name,
5520                          const elfcpp::Shdr<64, true>& shdr,
5521                          unsigned int, unsigned int, off_t*);
5522 #endif
5523
5524 #ifdef HAVE_TARGET_32_LITTLE
5525 template
5526 Output_section*
5527 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5528                                 unsigned int reloc_shndx,
5529                                 const elfcpp::Shdr<32, false>& shdr,
5530                                 Output_section* data_section,
5531                                 Relocatable_relocs* rr);
5532 #endif
5533
5534 #ifdef HAVE_TARGET_32_BIG
5535 template
5536 Output_section*
5537 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5538                                unsigned int reloc_shndx,
5539                                const elfcpp::Shdr<32, true>& shdr,
5540                                Output_section* data_section,
5541                                Relocatable_relocs* rr);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_64_LITTLE
5545 template
5546 Output_section*
5547 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5548                                 unsigned int reloc_shndx,
5549                                 const elfcpp::Shdr<64, false>& shdr,
5550                                 Output_section* data_section,
5551                                 Relocatable_relocs* rr);
5552 #endif
5553
5554 #ifdef HAVE_TARGET_64_BIG
5555 template
5556 Output_section*
5557 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5558                                unsigned int reloc_shndx,
5559                                const elfcpp::Shdr<64, true>& shdr,
5560                                Output_section* data_section,
5561                                Relocatable_relocs* rr);
5562 #endif
5563
5564 #ifdef HAVE_TARGET_32_LITTLE
5565 template
5566 void
5567 Layout::layout_group<32, false>(Symbol_table* symtab,
5568                                 Sized_relobj_file<32, false>* object,
5569                                 unsigned int,
5570                                 const char* group_section_name,
5571                                 const char* signature,
5572                                 const elfcpp::Shdr<32, false>& shdr,
5573                                 elfcpp::Elf_Word flags,
5574                                 std::vector<unsigned int>* shndxes);
5575 #endif
5576
5577 #ifdef HAVE_TARGET_32_BIG
5578 template
5579 void
5580 Layout::layout_group<32, true>(Symbol_table* symtab,
5581                                Sized_relobj_file<32, true>* object,
5582                                unsigned int,
5583                                const char* group_section_name,
5584                                const char* signature,
5585                                const elfcpp::Shdr<32, true>& shdr,
5586                                elfcpp::Elf_Word flags,
5587                                std::vector<unsigned int>* shndxes);
5588 #endif
5589
5590 #ifdef HAVE_TARGET_64_LITTLE
5591 template
5592 void
5593 Layout::layout_group<64, false>(Symbol_table* symtab,
5594                                 Sized_relobj_file<64, false>* object,
5595                                 unsigned int,
5596                                 const char* group_section_name,
5597                                 const char* signature,
5598                                 const elfcpp::Shdr<64, false>& shdr,
5599                                 elfcpp::Elf_Word flags,
5600                                 std::vector<unsigned int>* shndxes);
5601 #endif
5602
5603 #ifdef HAVE_TARGET_64_BIG
5604 template
5605 void
5606 Layout::layout_group<64, true>(Symbol_table* symtab,
5607                                Sized_relobj_file<64, true>* object,
5608                                unsigned int,
5609                                const char* group_section_name,
5610                                const char* signature,
5611                                const elfcpp::Shdr<64, true>& shdr,
5612                                elfcpp::Elf_Word flags,
5613                                std::vector<unsigned int>* shndxes);
5614 #endif
5615
5616 #ifdef HAVE_TARGET_32_LITTLE
5617 template
5618 Output_section*
5619 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5620                                    const unsigned char* symbols,
5621                                    off_t symbols_size,
5622                                    const unsigned char* symbol_names,
5623                                    off_t symbol_names_size,
5624                                    unsigned int shndx,
5625                                    const elfcpp::Shdr<32, false>& shdr,
5626                                    unsigned int reloc_shndx,
5627                                    unsigned int reloc_type,
5628                                    off_t* off);
5629 #endif
5630
5631 #ifdef HAVE_TARGET_32_BIG
5632 template
5633 Output_section*
5634 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5635                                   const unsigned char* symbols,
5636                                   off_t symbols_size,
5637                                   const unsigned char* symbol_names,
5638                                   off_t symbol_names_size,
5639                                   unsigned int shndx,
5640                                   const elfcpp::Shdr<32, true>& shdr,
5641                                   unsigned int reloc_shndx,
5642                                   unsigned int reloc_type,
5643                                   off_t* off);
5644 #endif
5645
5646 #ifdef HAVE_TARGET_64_LITTLE
5647 template
5648 Output_section*
5649 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5650                                    const unsigned char* symbols,
5651                                    off_t symbols_size,
5652                                    const unsigned char* symbol_names,
5653                                    off_t symbol_names_size,
5654                                    unsigned int shndx,
5655                                    const elfcpp::Shdr<64, false>& shdr,
5656                                    unsigned int reloc_shndx,
5657                                    unsigned int reloc_type,
5658                                    off_t* off);
5659 #endif
5660
5661 #ifdef HAVE_TARGET_64_BIG
5662 template
5663 Output_section*
5664 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5665                                   const unsigned char* symbols,
5666                                   off_t symbols_size,
5667                                   const unsigned char* symbol_names,
5668                                   off_t symbol_names_size,
5669                                   unsigned int shndx,
5670                                   const elfcpp::Shdr<64, true>& shdr,
5671                                   unsigned int reloc_shndx,
5672                                   unsigned int reloc_type,
5673                                   off_t* off);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_LITTLE
5677 template
5678 void
5679 Layout::add_to_gdb_index(bool is_type_unit,
5680                          Sized_relobj<32, false>* object,
5681                          const unsigned char* symbols,
5682                          off_t symbols_size,
5683                          unsigned int shndx,
5684                          unsigned int reloc_shndx,
5685                          unsigned int reloc_type);
5686 #endif
5687
5688 #ifdef HAVE_TARGET_32_BIG
5689 template
5690 void
5691 Layout::add_to_gdb_index(bool is_type_unit,
5692                          Sized_relobj<32, true>* object,
5693                          const unsigned char* symbols,
5694                          off_t symbols_size,
5695                          unsigned int shndx,
5696                          unsigned int reloc_shndx,
5697                          unsigned int reloc_type);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_64_LITTLE
5701 template
5702 void
5703 Layout::add_to_gdb_index(bool is_type_unit,
5704                          Sized_relobj<64, false>* object,
5705                          const unsigned char* symbols,
5706                          off_t symbols_size,
5707                          unsigned int shndx,
5708                          unsigned int reloc_shndx,
5709                          unsigned int reloc_type);
5710 #endif
5711
5712 #ifdef HAVE_TARGET_64_BIG
5713 template
5714 void
5715 Layout::add_to_gdb_index(bool is_type_unit,
5716                          Sized_relobj<64, true>* object,
5717                          const unsigned char* symbols,
5718                          off_t symbols_size,
5719                          unsigned int shndx,
5720                          unsigned int reloc_shndx,
5721                          unsigned int reloc_type);
5722 #endif
5723
5724 } // End namespace gold.