Fully implement the SECTIONS clause.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "layout.h"
40
41 namespace gold
42 {
43
44 // Layout_task_runner methods.
45
46 // Lay out the sections.  This is called after all the input objects
47 // have been read.
48
49 void
50 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
51 {
52   off_t file_size = this->layout_->finalize(this->input_objects_,
53                                             this->symtab_,
54                                             task);
55
56   // Now we know the final size of the output file and we know where
57   // each piece of information goes.
58   Output_file* of = new Output_file(parameters->output_file_name());
59   of->open(file_size);
60
61   // Queue up the final set of tasks.
62   gold::queue_final_tasks(this->options_, this->input_objects_,
63                           this->symtab_, this->layout_, workqueue, of);
64 }
65
66 // Layout methods.
67
68 Layout::Layout(const General_options& options, Script_options* script_options)
69   : options_(options), script_options_(script_options), namepool_(),
70     sympool_(), dynpool_(), signatures_(),
71     section_name_map_(), segment_list_(), section_list_(),
72     unattached_section_list_(), special_output_list_(),
73     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
74     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
75     eh_frame_section_(NULL), output_file_size_(-1),
76     input_requires_executable_stack_(false),
77     input_with_gnu_stack_note_(false),
78     input_without_gnu_stack_note_(false),
79     has_static_tls_(false),
80     any_postprocessing_sections_(false)
81 {
82   // Make space for more than enough segments for a typical file.
83   // This is just for efficiency--it's OK if we wind up needing more.
84   this->segment_list_.reserve(12);
85
86   // We expect two unattached Output_data objects: the file header and
87   // the segment headers.
88   this->special_output_list_.reserve(2);
89 }
90
91 // Hash a key we use to look up an output section mapping.
92
93 size_t
94 Layout::Hash_key::operator()(const Layout::Key& k) const
95 {
96  return k.first + k.second.first + k.second.second;
97 }
98
99 // Return whether PREFIX is a prefix of STR.
100
101 static inline bool
102 is_prefix_of(const char* prefix, const char* str)
103 {
104   return strncmp(prefix, str, strlen(prefix)) == 0;
105 }
106
107 // Returns whether the given section is in the list of
108 // debug-sections-used-by-some-version-of-gdb.  Currently,
109 // we've checked versions of gdb up to and including 6.7.1.
110
111 static const char* gdb_sections[] =
112 { ".debug_abbrev",
113   // ".debug_aranges",   // not used by gdb as of 6.7.1
114   ".debug_frame",
115   ".debug_info",
116   ".debug_line",
117   ".debug_loc",
118   ".debug_macinfo",
119   // ".debug_pubnames",  // not used by gdb as of 6.7.1
120   ".debug_ranges",
121   ".debug_str",
122 };
123
124 static inline bool
125 is_gdb_debug_section(const char* str)
126 {
127   // We can do this faster: binary search or a hashtable.  But why bother?
128   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
129     if (strcmp(str, gdb_sections[i]) == 0)
130       return true;
131   return false;
132 }
133
134 // Whether to include this section in the link.
135
136 template<int size, bool big_endian>
137 bool
138 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
139                         const elfcpp::Shdr<size, big_endian>& shdr)
140 {
141   // Some section types are never linked.  Some are only linked when
142   // doing a relocateable link.
143   switch (shdr.get_sh_type())
144     {
145     case elfcpp::SHT_NULL:
146     case elfcpp::SHT_SYMTAB:
147     case elfcpp::SHT_DYNSYM:
148     case elfcpp::SHT_STRTAB:
149     case elfcpp::SHT_HASH:
150     case elfcpp::SHT_DYNAMIC:
151     case elfcpp::SHT_SYMTAB_SHNDX:
152       return false;
153
154     case elfcpp::SHT_RELA:
155     case elfcpp::SHT_REL:
156     case elfcpp::SHT_GROUP:
157       return parameters->output_is_object();
158
159     case elfcpp::SHT_PROGBITS:
160       if (parameters->strip_debug()
161           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
162         {
163           // Debugging sections can only be recognized by name.
164           if (is_prefix_of(".debug", name)
165               || is_prefix_of(".gnu.linkonce.wi.", name)
166               || is_prefix_of(".line", name)
167               || is_prefix_of(".stab", name))
168             return false;
169         }
170       if (parameters->strip_debug_gdb()
171           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
172         {
173           // Debugging sections can only be recognized by name.
174           if (is_prefix_of(".debug", name)
175               && !is_gdb_debug_section(name))
176             return false;
177         }
178       return true;
179
180     default:
181       return true;
182     }
183 }
184
185 // Return an output section named NAME, or NULL if there is none.
186
187 Output_section*
188 Layout::find_output_section(const char* name) const
189 {
190   for (Section_list::const_iterator p = this->section_list_.begin();
191        p != this->section_list_.end();
192        ++p)
193     if (strcmp((*p)->name(), name) == 0)
194       return *p;
195   return NULL;
196 }
197
198 // Return an output segment of type TYPE, with segment flags SET set
199 // and segment flags CLEAR clear.  Return NULL if there is none.
200
201 Output_segment*
202 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
203                             elfcpp::Elf_Word clear) const
204 {
205   for (Segment_list::const_iterator p = this->segment_list_.begin();
206        p != this->segment_list_.end();
207        ++p)
208     if (static_cast<elfcpp::PT>((*p)->type()) == type
209         && ((*p)->flags() & set) == set
210         && ((*p)->flags() & clear) == 0)
211       return *p;
212   return NULL;
213 }
214
215 // Return the output section to use for section NAME with type TYPE
216 // and section flags FLAGS.  NAME must be canonicalized in the string
217 // pool, and NAME_KEY is the key.
218
219 Output_section*
220 Layout::get_output_section(const char* name, Stringpool::Key name_key,
221                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
222 {
223   const Key key(name_key, std::make_pair(type, flags));
224   const std::pair<Key, Output_section*> v(key, NULL);
225   std::pair<Section_name_map::iterator, bool> ins(
226     this->section_name_map_.insert(v));
227
228   if (!ins.second)
229     return ins.first->second;
230   else
231     {
232       // This is the first time we've seen this name/type/flags
233       // combination.
234       Output_section* os = this->make_output_section(name, type, flags);
235       ins.first->second = os;
236       return os;
237     }
238 }
239
240 // Pick the output section to use for section NAME, in input file
241 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
242 // linker created section.  ADJUST_NAME is true if we should apply the
243 // standard name mappings in Layout::output_section_name.  This will
244 // return NULL if the input section should be discarded.
245
246 Output_section*
247 Layout::choose_output_section(const Relobj* relobj, const char* name,
248                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
249                               bool adjust_name)
250 {
251   // We should ignore some flags.  FIXME: This will need some
252   // adjustment for ld -r.
253   flags &= ~ (elfcpp::SHF_INFO_LINK
254               | elfcpp::SHF_LINK_ORDER
255               | elfcpp::SHF_GROUP
256               | elfcpp::SHF_MERGE
257               | elfcpp::SHF_STRINGS);
258
259   if (this->script_options_->saw_sections_clause())
260     {
261       // We are using a SECTIONS clause, so the output section is
262       // chosen based only on the name.
263
264       Script_sections* ss = this->script_options_->script_sections();
265       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
266       Output_section** output_section_slot;
267       name = ss->output_section_name(file_name, name, &output_section_slot);
268       if (name == NULL)
269         {
270           // The SECTIONS clause says to discard this input section.
271           return NULL;
272         }
273
274       // If this is an orphan section--one not mentioned in the linker
275       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
276       // default processing below.
277
278       if (output_section_slot != NULL)
279         {
280           if (*output_section_slot != NULL)
281             return *output_section_slot;
282
283           // We don't put sections found in the linker script into
284           // SECTION_NAME_MAP_.  That keeps us from getting confused
285           // if an orphan section is mapped to a section with the same
286           // name as one in the linker script.
287
288           name = this->namepool_.add(name, false, NULL);
289
290           Output_section* os = this->make_output_section(name, type, flags);
291           os->set_found_in_sections_clause();
292           *output_section_slot = os;
293           return os;
294         }
295     }
296
297   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
298
299   // Turn NAME from the name of the input section into the name of the
300   // output section.
301
302   size_t len = strlen(name);
303   if (adjust_name && !parameters->output_is_object())
304     name = Layout::output_section_name(name, &len);
305
306   Stringpool::Key name_key;
307   name = this->namepool_.add_with_length(name, len, true, &name_key);
308
309   // Find or make the output section.  The output section is selected
310   // based on the section name, type, and flags.
311   return this->get_output_section(name, name_key, type, flags);
312 }
313
314 // Return the output section to use for input section SHNDX, with name
315 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
316 // index of a relocation section which applies to this section, or 0
317 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
318 // relocation section if there is one.  Set *OFF to the offset of this
319 // input section without the output section.  Return NULL if the
320 // section should be discarded.  Set *OFF to -1 if the section
321 // contents should not be written directly to the output file, but
322 // will instead receive special handling.
323
324 template<int size, bool big_endian>
325 Output_section*
326 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
327                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
328                unsigned int reloc_shndx, unsigned int, off_t* off)
329 {
330   if (!this->include_section(object, name, shdr))
331     return NULL;
332
333   Output_section* os = this->choose_output_section(object,
334                                                    name,
335                                                    shdr.get_sh_type(),
336                                                    shdr.get_sh_flags(),
337                                                    true);
338   if (os == NULL)
339     return NULL;
340
341   // FIXME: Handle SHF_LINK_ORDER somewhere.
342
343   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
344                                this->script_options_->saw_sections_clause());
345
346   return os;
347 }
348
349 // Special GNU handling of sections name .eh_frame.  They will
350 // normally hold exception frame data as defined by the C++ ABI
351 // (http://codesourcery.com/cxx-abi/).
352
353 template<int size, bool big_endian>
354 Output_section*
355 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
356                         const unsigned char* symbols,
357                         off_t symbols_size,
358                         const unsigned char* symbol_names,
359                         off_t symbol_names_size,
360                         unsigned int shndx,
361                         const elfcpp::Shdr<size, big_endian>& shdr,
362                         unsigned int reloc_shndx, unsigned int reloc_type,
363                         off_t* off)
364 {
365   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
366   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
367
368   const char* const name = ".eh_frame";
369   Output_section* os = this->choose_output_section(object,
370                                                    name,
371                                                    elfcpp::SHT_PROGBITS,
372                                                    elfcpp::SHF_ALLOC,
373                                                    false);
374   if (os == NULL)
375     return NULL;
376
377   if (this->eh_frame_section_ == NULL)
378     {
379       this->eh_frame_section_ = os;
380       this->eh_frame_data_ = new Eh_frame();
381       os->add_output_section_data(this->eh_frame_data_);
382
383       if (this->options_.create_eh_frame_hdr())
384         {
385           Output_section* hdr_os =
386             this->choose_output_section(NULL,
387                                         ".eh_frame_hdr",
388                                         elfcpp::SHT_PROGBITS,
389                                         elfcpp::SHF_ALLOC,
390                                         false);
391
392           if (hdr_os != NULL)
393             {
394               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
395                                                         this->eh_frame_data_);
396               hdr_os->add_output_section_data(hdr_posd);
397
398               hdr_os->set_after_input_sections();
399
400               Output_segment* hdr_oseg =
401                 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
402               this->segment_list_.push_back(hdr_oseg);
403               hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
404
405               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
406             }
407         }
408     }
409
410   gold_assert(this->eh_frame_section_ == os);
411
412   if (this->eh_frame_data_->add_ehframe_input_section(object,
413                                                       symbols,
414                                                       symbols_size,
415                                                       symbol_names,
416                                                       symbol_names_size,
417                                                       shndx,
418                                                       reloc_shndx,
419                                                       reloc_type))
420     *off = -1;
421   else
422     {
423       // We couldn't handle this .eh_frame section for some reason.
424       // Add it as a normal section.
425       bool saw_sections_clause = this->script_options_->saw_sections_clause();
426       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
427                                    saw_sections_clause);
428     }
429
430   return os;
431 }
432
433 // Add POSD to an output section using NAME, TYPE, and FLAGS.
434
435 void
436 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
437                                 elfcpp::Elf_Xword flags,
438                                 Output_section_data* posd)
439 {
440   Output_section* os = this->choose_output_section(NULL, name, type, flags,
441                                                    false);
442   if (os != NULL)
443     os->add_output_section_data(posd);
444 }
445
446 // Map section flags to segment flags.
447
448 elfcpp::Elf_Word
449 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
450 {
451   elfcpp::Elf_Word ret = elfcpp::PF_R;
452   if ((flags & elfcpp::SHF_WRITE) != 0)
453     ret |= elfcpp::PF_W;
454   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
455     ret |= elfcpp::PF_X;
456   return ret;
457 }
458
459 // Sometimes we compress sections.  This is typically done for
460 // sections that are not part of normal program execution (such as
461 // .debug_* sections), and where the readers of these sections know
462 // how to deal with compressed sections.  (To make it easier for them,
463 // we will rename the ouput section in such cases from .foo to
464 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
465 // doesn't say for certain whether we'll compress -- it depends on
466 // commandline options as well -- just whether this section is a
467 // candidate for compression.
468
469 static bool
470 is_compressible_debug_section(const char* secname)
471 {
472   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
473 }
474
475 // Make a new Output_section, and attach it to segments as
476 // appropriate.
477
478 Output_section*
479 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
480                             elfcpp::Elf_Xword flags)
481 {
482   Output_section* os;
483   if ((flags & elfcpp::SHF_ALLOC) == 0
484       && this->options_.compress_debug_sections()
485       && is_compressible_debug_section(name))
486     os = new Output_compressed_section(&this->options_, name, type, flags);
487   else
488     os = new Output_section(name, type, flags);
489
490   this->section_list_.push_back(os);
491
492   if ((flags & elfcpp::SHF_ALLOC) == 0)
493     this->unattached_section_list_.push_back(os);
494   else
495     {
496       // If we have a SECTIONS clause, we can't handle the attachment
497       // to segments until after we've seen all the sections.
498       if (this->script_options_->saw_sections_clause())
499         return os;
500
501       // This output section goes into a PT_LOAD segment.
502
503       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
504
505       // The only thing we really care about for PT_LOAD segments is
506       // whether or not they are writable, so that is how we search
507       // for them.  People who need segments sorted on some other
508       // basis will have to wait until we implement a mechanism for
509       // them to describe the segments they want.
510
511       Segment_list::const_iterator p;
512       for (p = this->segment_list_.begin();
513            p != this->segment_list_.end();
514            ++p)
515         {
516           if ((*p)->type() == elfcpp::PT_LOAD
517               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
518             {
519               (*p)->add_output_section(os, seg_flags);
520               break;
521             }
522         }
523
524       if (p == this->segment_list_.end())
525         {
526           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
527                                                     seg_flags);
528           this->segment_list_.push_back(oseg);
529           oseg->add_output_section(os, seg_flags);
530         }
531
532       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
533       // segment.
534       if (type == elfcpp::SHT_NOTE)
535         {
536           // See if we already have an equivalent PT_NOTE segment.
537           for (p = this->segment_list_.begin();
538                p != segment_list_.end();
539                ++p)
540             {
541               if ((*p)->type() == elfcpp::PT_NOTE
542                   && (((*p)->flags() & elfcpp::PF_W)
543                       == (seg_flags & elfcpp::PF_W)))
544                 {
545                   (*p)->add_output_section(os, seg_flags);
546                   break;
547                 }
548             }
549
550           if (p == this->segment_list_.end())
551             {
552               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
553                                                         seg_flags);
554               this->segment_list_.push_back(oseg);
555               oseg->add_output_section(os, seg_flags);
556             }
557         }
558
559       // If we see a loadable SHF_TLS section, we create a PT_TLS
560       // segment.  There can only be one such segment.
561       if ((flags & elfcpp::SHF_TLS) != 0)
562         {
563           if (this->tls_segment_ == NULL)
564             {
565               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
566                                                       seg_flags);
567               this->segment_list_.push_back(this->tls_segment_);
568             }
569           this->tls_segment_->add_output_section(os, seg_flags);
570         }
571     }
572
573   return os;
574 }
575
576 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
577 // is whether we saw a .note.GNU-stack section in the object file.
578 // GNU_STACK_FLAGS is the section flags.  The flags give the
579 // protection required for stack memory.  We record this in an
580 // executable as a PT_GNU_STACK segment.  If an object file does not
581 // have a .note.GNU-stack segment, we must assume that it is an old
582 // object.  On some targets that will force an executable stack.
583
584 void
585 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
586 {
587   if (!seen_gnu_stack)
588     this->input_without_gnu_stack_note_ = true;
589   else
590     {
591       this->input_with_gnu_stack_note_ = true;
592       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
593         this->input_requires_executable_stack_ = true;
594     }
595 }
596
597 // Create the dynamic sections which are needed before we read the
598 // relocs.
599
600 void
601 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
602 {
603   if (parameters->doing_static_link())
604     return;
605
606   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
607   this->dynamic_section_ = this->make_output_section(dynamic_name,
608                                                      elfcpp::SHT_DYNAMIC,
609                                                      (elfcpp::SHF_ALLOC
610                                                       | elfcpp::SHF_WRITE));
611
612   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
613                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
614                                 elfcpp::STV_HIDDEN, 0, false, false);
615
616   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
617
618   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
619 }
620
621 // For each output section whose name can be represented as C symbol,
622 // define __start and __stop symbols for the section.  This is a GNU
623 // extension.
624
625 void
626 Layout::define_section_symbols(Symbol_table* symtab)
627 {
628   for (Section_list::const_iterator p = this->section_list_.begin();
629        p != this->section_list_.end();
630        ++p)
631     {
632       const char* const name = (*p)->name();
633       if (name[strspn(name,
634                       ("0123456789"
635                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
636                        "abcdefghijklmnopqrstuvwxyz"
637                        "_"))]
638           == '\0')
639         {
640           const std::string name_string(name);
641           const std::string start_name("__start_" + name_string);
642           const std::string stop_name("__stop_" + name_string);
643
644           symtab->define_in_output_data(start_name.c_str(),
645                                         NULL, // version
646                                         *p,
647                                         0, // value
648                                         0, // symsize
649                                         elfcpp::STT_NOTYPE,
650                                         elfcpp::STB_GLOBAL,
651                                         elfcpp::STV_DEFAULT,
652                                         0, // nonvis
653                                         false, // offset_is_from_end
654                                         true); // only_if_ref
655
656           symtab->define_in_output_data(stop_name.c_str(),
657                                         NULL, // version
658                                         *p,
659                                         0, // value
660                                         0, // symsize
661                                         elfcpp::STT_NOTYPE,
662                                         elfcpp::STB_GLOBAL,
663                                         elfcpp::STV_DEFAULT,
664                                         0, // nonvis
665                                         true, // offset_is_from_end
666                                         true); // only_if_ref
667         }
668     }
669 }
670
671 // Find the first read-only PT_LOAD segment, creating one if
672 // necessary.
673
674 Output_segment*
675 Layout::find_first_load_seg()
676 {
677   for (Segment_list::const_iterator p = this->segment_list_.begin();
678        p != this->segment_list_.end();
679        ++p)
680     {
681       if ((*p)->type() == elfcpp::PT_LOAD
682           && ((*p)->flags() & elfcpp::PF_R) != 0
683           && ((*p)->flags() & elfcpp::PF_W) == 0)
684         return *p;
685     }
686
687   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
688   this->segment_list_.push_back(load_seg);
689   return load_seg;
690 }
691
692 // Finalize the layout.  When this is called, we have created all the
693 // output sections and all the output segments which are based on
694 // input sections.  We have several things to do, and we have to do
695 // them in the right order, so that we get the right results correctly
696 // and efficiently.
697
698 // 1) Finalize the list of output segments and create the segment
699 // table header.
700
701 // 2) Finalize the dynamic symbol table and associated sections.
702
703 // 3) Determine the final file offset of all the output segments.
704
705 // 4) Determine the final file offset of all the SHF_ALLOC output
706 // sections.
707
708 // 5) Create the symbol table sections and the section name table
709 // section.
710
711 // 6) Finalize the symbol table: set symbol values to their final
712 // value and make a final determination of which symbols are going
713 // into the output symbol table.
714
715 // 7) Create the section table header.
716
717 // 8) Determine the final file offset of all the output sections which
718 // are not SHF_ALLOC, including the section table header.
719
720 // 9) Finalize the ELF file header.
721
722 // This function returns the size of the output file.
723
724 off_t
725 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
726                  const Task* task)
727 {
728   Target* const target = input_objects->target();
729
730   target->finalize_sections(this);
731
732   this->count_local_symbols(task, input_objects);
733
734   this->create_gold_note();
735   this->create_executable_stack_info(target);
736
737   if (!parameters->output_is_object() && !parameters->doing_static_link())
738     {
739       // There was a dynamic object in the link.  We need to create
740       // some information for the dynamic linker.
741
742       // Create the dynamic symbol table, including the hash table.
743       Output_section* dynstr;
744       std::vector<Symbol*> dynamic_symbols;
745       unsigned int local_dynamic_count;
746       Versions versions(this->options_, &this->dynpool_);
747       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
748                                   &local_dynamic_count, &dynamic_symbols,
749                                   &versions);
750
751       // Create the .interp section to hold the name of the
752       // interpreter, and put it in a PT_INTERP segment.
753       if (!parameters->output_is_shared())
754         this->create_interp(target);
755
756       // Finish the .dynamic section to hold the dynamic data, and put
757       // it in a PT_DYNAMIC segment.
758       this->finish_dynamic_section(input_objects, symtab);
759
760       // We should have added everything we need to the dynamic string
761       // table.
762       this->dynpool_.set_string_offsets();
763
764       // Create the version sections.  We can't do this until the
765       // dynamic string table is complete.
766       this->create_version_sections(&versions, symtab, local_dynamic_count,
767                                     dynamic_symbols, dynstr);
768     }
769
770   // If there is a SECTIONS clause, put all the input sections into
771   // the required order.
772   Output_segment* load_seg;
773   if (this->script_options_->saw_sections_clause())
774     load_seg = this->set_section_addresses_from_script(symtab);
775   else
776     load_seg = this->find_first_load_seg();
777
778   Output_segment* phdr_seg = NULL;
779   if (load_seg != NULL
780       && !parameters->output_is_object()
781       && !parameters->doing_static_link())
782     {
783       // Create the PT_PHDR segment which will hold the program
784       // headers.
785       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
786       this->segment_list_.push_back(phdr_seg);
787     }
788
789   // Lay out the segment headers.
790   Output_segment_headers* segment_headers;
791   segment_headers = new Output_segment_headers(this->segment_list_);
792   if (load_seg != NULL)
793     load_seg->add_initial_output_data(segment_headers);
794   if (phdr_seg != NULL)
795     phdr_seg->add_initial_output_data(segment_headers);
796
797   // Lay out the file header.
798   Output_file_header* file_header;
799   file_header = new Output_file_header(target, symtab, segment_headers,
800                                        this->script_options_->entry());
801   if (load_seg != NULL)
802     load_seg->add_initial_output_data(file_header);
803
804   this->special_output_list_.push_back(file_header);
805   this->special_output_list_.push_back(segment_headers);
806
807   // We set the output section indexes in set_segment_offsets and
808   // set_section_indexes.
809   unsigned int shndx = 1;
810
811   // Set the file offsets of all the segments, and all the sections
812   // they contain.
813   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
814
815   // Set the file offsets of all the non-data sections we've seen so
816   // far which don't have to wait for the input sections.  We need
817   // this in order to finalize local symbols in non-allocated
818   // sections.
819   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
820
821   // Create the symbol table sections.
822   this->create_symtab_sections(input_objects, symtab, &off);
823   if (!parameters->doing_static_link())
824     this->assign_local_dynsym_offsets(input_objects);
825
826   // Process any symbol assignments from a linker script.  This must
827   // be called after the symbol table has been finalized.
828   this->script_options_->finalize_symbols(symtab, this);
829
830   // Create the .shstrtab section.
831   Output_section* shstrtab_section = this->create_shstrtab();
832
833   // Set the file offsets of the rest of the non-data sections which
834   // don't have to wait for the input sections.
835   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
836
837   // Now that all sections have been created, set the section indexes.
838   shndx = this->set_section_indexes(shndx);
839
840   // Create the section table header.
841   this->create_shdrs(&off);
842
843   // If there are no sections which require postprocessing, we can
844   // handle the section names now, and avoid a resize later.
845   if (!this->any_postprocessing_sections_)
846     off = this->set_section_offsets(off,
847                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
848
849   file_header->set_section_info(this->section_headers_, shstrtab_section);
850
851   // Now we know exactly where everything goes in the output file
852   // (except for non-allocated sections which require postprocessing).
853   Output_data::layout_complete();
854
855   this->output_file_size_ = off;
856
857   return off;
858 }
859
860 // Create a .note section for an executable or shared library.  This
861 // records the version of gold used to create the binary.
862
863 void
864 Layout::create_gold_note()
865 {
866   if (parameters->output_is_object())
867     return;
868
869   // Authorities all agree that the values in a .note field should
870   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
871   // they differ on what the alignment is for 64-bit binaries.
872   // The GABI says unambiguously they take 8-byte alignment:
873   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
874   // Other documentation says alignment should always be 4 bytes:
875   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
876   // GNU ld and GNU readelf both support the latter (at least as of
877   // version 2.16.91), and glibc always generates the latter for
878   // .note.ABI-tag (as of version 1.6), so that's the one we go with
879   // here.
880 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
881   const int size = parameters->get_size();
882 #else
883   const int size = 32;
884 #endif
885
886   // The contents of the .note section.
887   const char* name = "GNU";
888   std::string desc(std::string("gold ") + gold::get_version_string());
889   size_t namesz = strlen(name) + 1;
890   size_t aligned_namesz = align_address(namesz, size / 8);
891   size_t descsz = desc.length() + 1;
892   size_t aligned_descsz = align_address(descsz, size / 8);
893   const int note_type = 4;
894
895   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
896
897   unsigned char buffer[128];
898   gold_assert(sizeof buffer >= notesz);
899   memset(buffer, 0, notesz);
900
901   bool is_big_endian = parameters->is_big_endian();
902
903   if (size == 32)
904     {
905       if (!is_big_endian)
906         {
907           elfcpp::Swap<32, false>::writeval(buffer, namesz);
908           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
909           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
910         }
911       else
912         {
913           elfcpp::Swap<32, true>::writeval(buffer, namesz);
914           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
915           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
916         }
917     }
918   else if (size == 64)
919     {
920       if (!is_big_endian)
921         {
922           elfcpp::Swap<64, false>::writeval(buffer, namesz);
923           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
924           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
925         }
926       else
927         {
928           elfcpp::Swap<64, true>::writeval(buffer, namesz);
929           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
930           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
931         }
932     }
933   else
934     gold_unreachable();
935
936   memcpy(buffer + 3 * (size / 8), name, namesz);
937   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
938
939   const char* note_name = this->namepool_.add(".note", false, NULL);
940   Output_section* os = this->make_output_section(note_name,
941                                                  elfcpp::SHT_NOTE,
942                                                  0);
943   Output_section_data* posd = new Output_data_const(buffer, notesz,
944                                                     size / 8);
945   os->add_output_section_data(posd);
946 }
947
948 // Record whether the stack should be executable.  This can be set
949 // from the command line using the -z execstack or -z noexecstack
950 // options.  Otherwise, if any input file has a .note.GNU-stack
951 // section with the SHF_EXECINSTR flag set, the stack should be
952 // executable.  Otherwise, if at least one input file a
953 // .note.GNU-stack section, and some input file has no .note.GNU-stack
954 // section, we use the target default for whether the stack should be
955 // executable.  Otherwise, we don't generate a stack note.  When
956 // generating a object file, we create a .note.GNU-stack section with
957 // the appropriate marking.  When generating an executable or shared
958 // library, we create a PT_GNU_STACK segment.
959
960 void
961 Layout::create_executable_stack_info(const Target* target)
962 {
963   bool is_stack_executable;
964   if (this->options_.is_execstack_set())
965     is_stack_executable = this->options_.is_stack_executable();
966   else if (!this->input_with_gnu_stack_note_)
967     return;
968   else
969     {
970       if (this->input_requires_executable_stack_)
971         is_stack_executable = true;
972       else if (this->input_without_gnu_stack_note_)
973         is_stack_executable = target->is_default_stack_executable();
974       else
975         is_stack_executable = false;
976     }
977
978   if (parameters->output_is_object())
979     {
980       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
981       elfcpp::Elf_Xword flags = 0;
982       if (is_stack_executable)
983         flags |= elfcpp::SHF_EXECINSTR;
984       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
985     }
986   else
987     {
988       int flags = elfcpp::PF_R | elfcpp::PF_W;
989       if (is_stack_executable)
990         flags |= elfcpp::PF_X;
991       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
992       this->segment_list_.push_back(oseg);
993     }
994 }
995
996 // Return whether SEG1 should be before SEG2 in the output file.  This
997 // is based entirely on the segment type and flags.  When this is
998 // called the segment addresses has normally not yet been set.
999
1000 bool
1001 Layout::segment_precedes(const Output_segment* seg1,
1002                          const Output_segment* seg2)
1003 {
1004   elfcpp::Elf_Word type1 = seg1->type();
1005   elfcpp::Elf_Word type2 = seg2->type();
1006
1007   // The single PT_PHDR segment is required to precede any loadable
1008   // segment.  We simply make it always first.
1009   if (type1 == elfcpp::PT_PHDR)
1010     {
1011       gold_assert(type2 != elfcpp::PT_PHDR);
1012       return true;
1013     }
1014   if (type2 == elfcpp::PT_PHDR)
1015     return false;
1016
1017   // The single PT_INTERP segment is required to precede any loadable
1018   // segment.  We simply make it always second.
1019   if (type1 == elfcpp::PT_INTERP)
1020     {
1021       gold_assert(type2 != elfcpp::PT_INTERP);
1022       return true;
1023     }
1024   if (type2 == elfcpp::PT_INTERP)
1025     return false;
1026
1027   // We then put PT_LOAD segments before any other segments.
1028   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1029     return true;
1030   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1031     return false;
1032
1033   // We put the PT_TLS segment last, because that is where the dynamic
1034   // linker expects to find it (this is just for efficiency; other
1035   // positions would also work correctly).
1036   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1037     return false;
1038   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1039     return true;
1040
1041   const elfcpp::Elf_Word flags1 = seg1->flags();
1042   const elfcpp::Elf_Word flags2 = seg2->flags();
1043
1044   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1045   // by the numeric segment type and flags values.  There should not
1046   // be more than one segment with the same type and flags.
1047   if (type1 != elfcpp::PT_LOAD)
1048     {
1049       if (type1 != type2)
1050         return type1 < type2;
1051       gold_assert(flags1 != flags2);
1052       return flags1 < flags2;
1053     }
1054
1055   // If the addresses are set already, sort by load address.
1056   if (seg1->are_addresses_set())
1057     {
1058       if (!seg2->are_addresses_set())
1059         return true;
1060
1061       unsigned int section_count1 = seg1->output_section_count();
1062       unsigned int section_count2 = seg2->output_section_count();
1063       if (section_count1 == 0 && section_count2 > 0)
1064         return true;
1065       if (section_count1 > 0 && section_count2 == 0)
1066         return false;
1067
1068       uint64_t paddr1 = seg1->first_section_load_address();
1069       uint64_t paddr2 = seg2->first_section_load_address();
1070       if (paddr1 != paddr2)
1071         return paddr1 < paddr2;
1072     }
1073   else if (seg2->are_addresses_set())
1074     return false;
1075
1076   // We sort PT_LOAD segments based on the flags.  Readonly segments
1077   // come before writable segments.  Then executable segments come
1078   // before non-executable segments.  Then the unlikely case of a
1079   // non-readable segment comes before the normal case of a readable
1080   // segment.  If there are multiple segments with the same type and
1081   // flags, we require that the address be set, and we sort by
1082   // virtual address and then physical address.
1083   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1084     return (flags1 & elfcpp::PF_W) == 0;
1085   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1086     return (flags1 & elfcpp::PF_X) != 0;
1087   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1088     return (flags1 & elfcpp::PF_R) == 0;
1089
1090   // We shouldn't get here--we shouldn't create segments which we
1091   // can't distinguish.
1092   gold_unreachable();
1093 }
1094
1095 // Set the file offsets of all the segments, and all the sections they
1096 // contain.  They have all been created.  LOAD_SEG must be be laid out
1097 // first.  Return the offset of the data to follow.
1098
1099 off_t
1100 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1101                             unsigned int *pshndx)
1102 {
1103   // Sort them into the final order.
1104   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1105             Layout::Compare_segments());
1106
1107   // Find the PT_LOAD segments, and set their addresses and offsets
1108   // and their section's addresses and offsets.
1109   uint64_t addr;
1110   if (this->options_.user_set_text_segment_address())
1111     addr = options_.text_segment_address();
1112   else if (parameters->output_is_shared())
1113     addr = 0;
1114   else
1115     addr = target->default_text_segment_address();
1116   off_t off = 0;
1117
1118   // If LOAD_SEG is NULL, then the file header and segment headers
1119   // will not be loadable.  But they still need to be at offset 0 in
1120   // the file.  Set their offsets now.
1121   if (load_seg == NULL)
1122     {
1123       for (Data_list::iterator p = this->special_output_list_.begin();
1124            p != this->special_output_list_.end();
1125            ++p)
1126         {
1127           off = align_address(off, (*p)->addralign());
1128           (*p)->set_address_and_file_offset(0, off);
1129           off += (*p)->data_size();
1130         }
1131     }
1132
1133   bool was_readonly = false;
1134   for (Segment_list::iterator p = this->segment_list_.begin();
1135        p != this->segment_list_.end();
1136        ++p)
1137     {
1138       if ((*p)->type() == elfcpp::PT_LOAD)
1139         {
1140           if (load_seg != NULL && load_seg != *p)
1141             gold_unreachable();
1142           load_seg = NULL;
1143
1144           uint64_t orig_addr = addr;
1145           uint64_t orig_off = off;
1146
1147           uint64_t aligned_addr = 0;
1148           uint64_t abi_pagesize = target->abi_pagesize();
1149
1150           // FIXME: This should depend on the -n and -N options.
1151           (*p)->set_minimum_p_align(target->common_pagesize());
1152
1153           bool are_addresses_set = (*p)->are_addresses_set();
1154           if (are_addresses_set)
1155             {
1156               // When it comes to setting file offsets, we care about
1157               // the physical address.
1158               addr = (*p)->paddr();
1159
1160               // Adjust the file offset to the same address modulo the
1161               // page size.
1162               uint64_t unsigned_off = off;
1163               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1164                                       | (addr & (abi_pagesize - 1)));
1165               if (aligned_off < unsigned_off)
1166                 aligned_off += abi_pagesize;
1167               off = aligned_off;
1168             }
1169           else
1170             {
1171               // If the last segment was readonly, and this one is
1172               // not, then skip the address forward one page,
1173               // maintaining the same position within the page.  This
1174               // lets us store both segments overlapping on a single
1175               // page in the file, but the loader will put them on
1176               // different pages in memory.
1177
1178               addr = align_address(addr, (*p)->maximum_alignment());
1179               aligned_addr = addr;
1180
1181               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1182                 {
1183                   if ((addr & (abi_pagesize - 1)) != 0)
1184                     addr = addr + abi_pagesize;
1185                 }
1186
1187               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1188             }
1189
1190           unsigned int shndx_hold = *pshndx;
1191           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1192                                                           pshndx);
1193
1194           // Now that we know the size of this segment, we may be able
1195           // to save a page in memory, at the cost of wasting some
1196           // file space, by instead aligning to the start of a new
1197           // page.  Here we use the real machine page size rather than
1198           // the ABI mandated page size.
1199
1200           if (!are_addresses_set && aligned_addr != addr)
1201             {
1202               uint64_t common_pagesize = target->common_pagesize();
1203               uint64_t first_off = (common_pagesize
1204                                     - (aligned_addr
1205                                        & (common_pagesize - 1)));
1206               uint64_t last_off = new_addr & (common_pagesize - 1);
1207               if (first_off > 0
1208                   && last_off > 0
1209                   && ((aligned_addr & ~ (common_pagesize - 1))
1210                       != (new_addr & ~ (common_pagesize - 1)))
1211                   && first_off + last_off <= common_pagesize)
1212                 {
1213                   *pshndx = shndx_hold;
1214                   addr = align_address(aligned_addr, common_pagesize);
1215                   addr = align_address(addr, (*p)->maximum_alignment());
1216                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1217                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1218                                                          pshndx);
1219                 }
1220             }
1221
1222           addr = new_addr;
1223
1224           if (((*p)->flags() & elfcpp::PF_W) == 0)
1225             was_readonly = true;
1226         }
1227     }
1228
1229   // Handle the non-PT_LOAD segments, setting their offsets from their
1230   // section's offsets.
1231   for (Segment_list::iterator p = this->segment_list_.begin();
1232        p != this->segment_list_.end();
1233        ++p)
1234     {
1235       if ((*p)->type() != elfcpp::PT_LOAD)
1236         (*p)->set_offset();
1237     }
1238
1239   // Set the TLS offsets for each section in the PT_TLS segment.
1240   if (this->tls_segment_ != NULL)
1241     this->tls_segment_->set_tls_offsets();
1242
1243   return off;
1244 }
1245
1246 // Set the file offset of all the sections not associated with a
1247 // segment.
1248
1249 off_t
1250 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1251 {
1252   for (Section_list::iterator p = this->unattached_section_list_.begin();
1253        p != this->unattached_section_list_.end();
1254        ++p)
1255     {
1256       // The symtab section is handled in create_symtab_sections.
1257       if (*p == this->symtab_section_)
1258         continue;
1259
1260       // If we've already set the data size, don't set it again.
1261       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1262         continue;
1263
1264       if (pass == BEFORE_INPUT_SECTIONS_PASS
1265           && (*p)->requires_postprocessing())
1266         {
1267           (*p)->create_postprocessing_buffer();
1268           this->any_postprocessing_sections_ = true;
1269         }
1270
1271       if (pass == BEFORE_INPUT_SECTIONS_PASS
1272           && (*p)->after_input_sections())
1273         continue;
1274       else if (pass == POSTPROCESSING_SECTIONS_PASS
1275                && (!(*p)->after_input_sections()
1276                    || (*p)->type() == elfcpp::SHT_STRTAB))
1277         continue;
1278       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1279                && (!(*p)->after_input_sections()
1280                    || (*p)->type() != elfcpp::SHT_STRTAB))
1281         continue;
1282
1283       off = align_address(off, (*p)->addralign());
1284       (*p)->set_file_offset(off);
1285       (*p)->finalize_data_size();
1286       off += (*p)->data_size();
1287
1288       // At this point the name must be set.
1289       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1290         this->namepool_.add((*p)->name(), false, NULL);
1291     }
1292   return off;
1293 }
1294
1295 // Set the section indexes of all the sections not associated with a
1296 // segment.
1297
1298 unsigned int
1299 Layout::set_section_indexes(unsigned int shndx)
1300 {
1301   for (Section_list::iterator p = this->unattached_section_list_.begin();
1302        p != this->unattached_section_list_.end();
1303        ++p)
1304     {
1305       (*p)->set_out_shndx(shndx);
1306       ++shndx;
1307     }
1308   return shndx;
1309 }
1310
1311 // Set the section addresses according to the linker script.  This is
1312 // only called when we see a SECTIONS clause.  This returns the
1313 // program segment which should hold the file header and segment
1314 // headers, if any.  It will return NULL if they should not be in a
1315 // segment.
1316
1317 Output_segment*
1318 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1319 {
1320   Script_sections* ss = this->script_options_->script_sections();
1321   gold_assert(ss->saw_sections_clause());
1322
1323   // Place each orphaned output section in the script.
1324   for (Section_list::iterator p = this->section_list_.begin();
1325        p != this->section_list_.end();
1326        ++p)
1327     {
1328       if (!(*p)->found_in_sections_clause())
1329         ss->place_orphan(*p);
1330     }
1331
1332   return this->script_options_->set_section_addresses(symtab, this);
1333 }
1334
1335 // Count the local symbols in the regular symbol table and the dynamic
1336 // symbol table, and build the respective string pools.
1337
1338 void
1339 Layout::count_local_symbols(const Task* task,
1340                             const Input_objects* input_objects)
1341 {
1342   // First, figure out an upper bound on the number of symbols we'll
1343   // be inserting into each pool.  This helps us create the pools with
1344   // the right size, to avoid unnecessary hashtable resizing.
1345   unsigned int symbol_count = 0;
1346   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1347        p != input_objects->relobj_end();
1348        ++p)
1349     symbol_count += (*p)->local_symbol_count();
1350
1351   // Go from "upper bound" to "estimate."  We overcount for two
1352   // reasons: we double-count symbols that occur in more than one
1353   // object file, and we count symbols that are dropped from the
1354   // output.  Add it all together and assume we overcount by 100%.
1355   symbol_count /= 2;
1356
1357   // We assume all symbols will go into both the sympool and dynpool.
1358   this->sympool_.reserve(symbol_count);
1359   this->dynpool_.reserve(symbol_count);
1360
1361   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1362        p != input_objects->relobj_end();
1363        ++p)
1364     {
1365       Task_lock_obj<Object> tlo(task, *p);
1366       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1367     }
1368 }
1369
1370 // Create the symbol table sections.  Here we also set the final
1371 // values of the symbols.  At this point all the loadable sections are
1372 // fully laid out.
1373
1374 void
1375 Layout::create_symtab_sections(const Input_objects* input_objects,
1376                                Symbol_table* symtab,
1377                                off_t* poff)
1378 {
1379   int symsize;
1380   unsigned int align;
1381   if (parameters->get_size() == 32)
1382     {
1383       symsize = elfcpp::Elf_sizes<32>::sym_size;
1384       align = 4;
1385     }
1386   else if (parameters->get_size() == 64)
1387     {
1388       symsize = elfcpp::Elf_sizes<64>::sym_size;
1389       align = 8;
1390     }
1391   else
1392     gold_unreachable();
1393
1394   off_t off = *poff;
1395   off = align_address(off, align);
1396   off_t startoff = off;
1397
1398   // Save space for the dummy symbol at the start of the section.  We
1399   // never bother to write this out--it will just be left as zero.
1400   off += symsize;
1401   unsigned int local_symbol_index = 1;
1402
1403   // Add STT_SECTION symbols for each Output section which needs one.
1404   for (Section_list::iterator p = this->section_list_.begin();
1405        p != this->section_list_.end();
1406        ++p)
1407     {
1408       if (!(*p)->needs_symtab_index())
1409         (*p)->set_symtab_index(-1U);
1410       else
1411         {
1412           (*p)->set_symtab_index(local_symbol_index);
1413           ++local_symbol_index;
1414           off += symsize;
1415         }
1416     }
1417
1418   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1419        p != input_objects->relobj_end();
1420        ++p)
1421     {
1422       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1423                                                         off);
1424       off += (index - local_symbol_index) * symsize;
1425       local_symbol_index = index;
1426     }
1427
1428   unsigned int local_symcount = local_symbol_index;
1429   gold_assert(local_symcount * symsize == off - startoff);
1430
1431   off_t dynoff;
1432   size_t dyn_global_index;
1433   size_t dyncount;
1434   if (this->dynsym_section_ == NULL)
1435     {
1436       dynoff = 0;
1437       dyn_global_index = 0;
1438       dyncount = 0;
1439     }
1440   else
1441     {
1442       dyn_global_index = this->dynsym_section_->info();
1443       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1444       dynoff = this->dynsym_section_->offset() + locsize;
1445       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1446       gold_assert(static_cast<off_t>(dyncount * symsize)
1447                   == this->dynsym_section_->data_size() - locsize);
1448     }
1449
1450   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1451                          &this->sympool_, &local_symcount);
1452
1453   if (!parameters->strip_all())
1454     {
1455       this->sympool_.set_string_offsets();
1456
1457       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1458       Output_section* osymtab = this->make_output_section(symtab_name,
1459                                                           elfcpp::SHT_SYMTAB,
1460                                                           0);
1461       this->symtab_section_ = osymtab;
1462
1463       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1464                                                              align);
1465       osymtab->add_output_section_data(pos);
1466
1467       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1468       Output_section* ostrtab = this->make_output_section(strtab_name,
1469                                                           elfcpp::SHT_STRTAB,
1470                                                           0);
1471
1472       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1473       ostrtab->add_output_section_data(pstr);
1474
1475       osymtab->set_file_offset(startoff);
1476       osymtab->finalize_data_size();
1477       osymtab->set_link_section(ostrtab);
1478       osymtab->set_info(local_symcount);
1479       osymtab->set_entsize(symsize);
1480
1481       *poff = off;
1482     }
1483 }
1484
1485 // Create the .shstrtab section, which holds the names of the
1486 // sections.  At the time this is called, we have created all the
1487 // output sections except .shstrtab itself.
1488
1489 Output_section*
1490 Layout::create_shstrtab()
1491 {
1492   // FIXME: We don't need to create a .shstrtab section if we are
1493   // stripping everything.
1494
1495   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1496
1497   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1498
1499   // We can't write out this section until we've set all the section
1500   // names, and we don't set the names of compressed output sections
1501   // until relocations are complete.
1502   os->set_after_input_sections();
1503
1504   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1505   os->add_output_section_data(posd);
1506
1507   return os;
1508 }
1509
1510 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1511 // offset.
1512
1513 void
1514 Layout::create_shdrs(off_t* poff)
1515 {
1516   Output_section_headers* oshdrs;
1517   oshdrs = new Output_section_headers(this,
1518                                       &this->segment_list_,
1519                                       &this->unattached_section_list_,
1520                                       &this->namepool_);
1521   off_t off = align_address(*poff, oshdrs->addralign());
1522   oshdrs->set_address_and_file_offset(0, off);
1523   off += oshdrs->data_size();
1524   *poff = off;
1525   this->section_headers_ = oshdrs;
1526 }
1527
1528 // Create the dynamic symbol table.
1529
1530 void
1531 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1532                               Symbol_table* symtab,
1533                               Output_section **pdynstr,
1534                               unsigned int* plocal_dynamic_count,
1535                               std::vector<Symbol*>* pdynamic_symbols,
1536                               Versions* pversions)
1537 {
1538   // Count all the symbols in the dynamic symbol table, and set the
1539   // dynamic symbol indexes.
1540
1541   // Skip symbol 0, which is always all zeroes.
1542   unsigned int index = 1;
1543
1544   // Add STT_SECTION symbols for each Output section which needs one.
1545   for (Section_list::iterator p = this->section_list_.begin();
1546        p != this->section_list_.end();
1547        ++p)
1548     {
1549       if (!(*p)->needs_dynsym_index())
1550         (*p)->set_dynsym_index(-1U);
1551       else
1552         {
1553           (*p)->set_dynsym_index(index);
1554           ++index;
1555         }
1556     }
1557
1558   // Count the local symbols that need to go in the dynamic symbol table,
1559   // and set the dynamic symbol indexes.
1560   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1561        p != input_objects->relobj_end();
1562        ++p)
1563     {
1564       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1565       index = new_index;
1566     }
1567
1568   unsigned int local_symcount = index;
1569   *plocal_dynamic_count = local_symcount;
1570
1571   // FIXME: We have to tell set_dynsym_indexes whether the
1572   // -E/--export-dynamic option was used.
1573   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1574                                      &this->dynpool_, pversions);
1575
1576   int symsize;
1577   unsigned int align;
1578   const int size = parameters->get_size();
1579   if (size == 32)
1580     {
1581       symsize = elfcpp::Elf_sizes<32>::sym_size;
1582       align = 4;
1583     }
1584   else if (size == 64)
1585     {
1586       symsize = elfcpp::Elf_sizes<64>::sym_size;
1587       align = 8;
1588     }
1589   else
1590     gold_unreachable();
1591
1592   // Create the dynamic symbol table section.
1593
1594   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1595   Output_section* dynsym = this->make_output_section(dynsym_name,
1596                                                      elfcpp::SHT_DYNSYM,
1597                                                      elfcpp::SHF_ALLOC);
1598
1599   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1600                                                            align);
1601   dynsym->add_output_section_data(odata);
1602
1603   dynsym->set_info(local_symcount);
1604   dynsym->set_entsize(symsize);
1605   dynsym->set_addralign(align);
1606
1607   this->dynsym_section_ = dynsym;
1608
1609   Output_data_dynamic* const odyn = this->dynamic_data_;
1610   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1611   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1612
1613   // Create the dynamic string table section.
1614
1615   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1616   Output_section* dynstr = this->make_output_section(dynstr_name,
1617                                                      elfcpp::SHT_STRTAB,
1618                                                      elfcpp::SHF_ALLOC);
1619
1620   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1621   dynstr->add_output_section_data(strdata);
1622
1623   dynsym->set_link_section(dynstr);
1624   this->dynamic_section_->set_link_section(dynstr);
1625
1626   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1627   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1628
1629   *pdynstr = dynstr;
1630
1631   // Create the hash tables.
1632
1633   // FIXME: We need an option to create a GNU hash table.
1634
1635   unsigned char* phash;
1636   unsigned int hashlen;
1637   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1638                                 &phash, &hashlen);
1639
1640   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1641   Output_section* hashsec = this->make_output_section(hash_name,
1642                                                       elfcpp::SHT_HASH,
1643                                                       elfcpp::SHF_ALLOC);
1644
1645   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1646                                                                hashlen,
1647                                                                align);
1648   hashsec->add_output_section_data(hashdata);
1649
1650   hashsec->set_link_section(dynsym);
1651   hashsec->set_entsize(4);
1652
1653   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1654 }
1655
1656 // Assign offsets to each local portion of the dynamic symbol table.
1657
1658 void
1659 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1660 {
1661   Output_section* dynsym = this->dynsym_section_;
1662   gold_assert(dynsym != NULL);
1663
1664   off_t off = dynsym->offset();
1665
1666   // Skip the dummy symbol at the start of the section.
1667   off += dynsym->entsize();
1668
1669   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1670        p != input_objects->relobj_end();
1671        ++p)
1672     {
1673       unsigned int count = (*p)->set_local_dynsym_offset(off);
1674       off += count * dynsym->entsize();
1675     }
1676 }
1677
1678 // Create the version sections.
1679
1680 void
1681 Layout::create_version_sections(const Versions* versions,
1682                                 const Symbol_table* symtab,
1683                                 unsigned int local_symcount,
1684                                 const std::vector<Symbol*>& dynamic_symbols,
1685                                 const Output_section* dynstr)
1686 {
1687   if (!versions->any_defs() && !versions->any_needs())
1688     return;
1689
1690   if (parameters->get_size() == 32)
1691     {
1692       if (parameters->is_big_endian())
1693         {
1694 #ifdef HAVE_TARGET_32_BIG
1695           this->sized_create_version_sections
1696               SELECT_SIZE_ENDIAN_NAME(32, true)(
1697                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1698                   SELECT_SIZE_ENDIAN(32, true));
1699 #else
1700           gold_unreachable();
1701 #endif
1702         }
1703       else
1704         {
1705 #ifdef HAVE_TARGET_32_LITTLE
1706           this->sized_create_version_sections
1707               SELECT_SIZE_ENDIAN_NAME(32, false)(
1708                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1709                   SELECT_SIZE_ENDIAN(32, false));
1710 #else
1711           gold_unreachable();
1712 #endif
1713         }
1714     }
1715   else if (parameters->get_size() == 64)
1716     {
1717       if (parameters->is_big_endian())
1718         {
1719 #ifdef HAVE_TARGET_64_BIG
1720           this->sized_create_version_sections
1721               SELECT_SIZE_ENDIAN_NAME(64, true)(
1722                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1723                   SELECT_SIZE_ENDIAN(64, true));
1724 #else
1725           gold_unreachable();
1726 #endif
1727         }
1728       else
1729         {
1730 #ifdef HAVE_TARGET_64_LITTLE
1731           this->sized_create_version_sections
1732               SELECT_SIZE_ENDIAN_NAME(64, false)(
1733                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1734                   SELECT_SIZE_ENDIAN(64, false));
1735 #else
1736           gold_unreachable();
1737 #endif
1738         }
1739     }
1740   else
1741     gold_unreachable();
1742 }
1743
1744 // Create the version sections, sized version.
1745
1746 template<int size, bool big_endian>
1747 void
1748 Layout::sized_create_version_sections(
1749     const Versions* versions,
1750     const Symbol_table* symtab,
1751     unsigned int local_symcount,
1752     const std::vector<Symbol*>& dynamic_symbols,
1753     const Output_section* dynstr
1754     ACCEPT_SIZE_ENDIAN)
1755 {
1756   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1757   Output_section* vsec = this->make_output_section(vname,
1758                                                    elfcpp::SHT_GNU_versym,
1759                                                    elfcpp::SHF_ALLOC);
1760
1761   unsigned char* vbuf;
1762   unsigned int vsize;
1763   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1764       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1765       SELECT_SIZE_ENDIAN(size, big_endian));
1766
1767   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1768
1769   vsec->add_output_section_data(vdata);
1770   vsec->set_entsize(2);
1771   vsec->set_link_section(this->dynsym_section_);
1772
1773   Output_data_dynamic* const odyn = this->dynamic_data_;
1774   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1775
1776   if (versions->any_defs())
1777     {
1778       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1779       Output_section *vdsec;
1780       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1781                                         elfcpp::SHF_ALLOC);
1782
1783       unsigned char* vdbuf;
1784       unsigned int vdsize;
1785       unsigned int vdentries;
1786       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1787           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1788           SELECT_SIZE_ENDIAN(size, big_endian));
1789
1790       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1791                                                                  vdsize,
1792                                                                  4);
1793
1794       vdsec->add_output_section_data(vddata);
1795       vdsec->set_link_section(dynstr);
1796       vdsec->set_info(vdentries);
1797
1798       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1799       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1800     }
1801
1802   if (versions->any_needs())
1803     {
1804       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1805       Output_section* vnsec;
1806       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1807                                         elfcpp::SHF_ALLOC);
1808
1809       unsigned char* vnbuf;
1810       unsigned int vnsize;
1811       unsigned int vnentries;
1812       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1813         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1814          SELECT_SIZE_ENDIAN(size, big_endian));
1815
1816       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1817                                                                  vnsize,
1818                                                                  4);
1819
1820       vnsec->add_output_section_data(vndata);
1821       vnsec->set_link_section(dynstr);
1822       vnsec->set_info(vnentries);
1823
1824       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1825       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1826     }
1827 }
1828
1829 // Create the .interp section and PT_INTERP segment.
1830
1831 void
1832 Layout::create_interp(const Target* target)
1833 {
1834   const char* interp = this->options_.dynamic_linker();
1835   if (interp == NULL)
1836     {
1837       interp = target->dynamic_linker();
1838       gold_assert(interp != NULL);
1839     }
1840
1841   size_t len = strlen(interp) + 1;
1842
1843   Output_section_data* odata = new Output_data_const(interp, len, 1);
1844
1845   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1846   Output_section* osec = this->make_output_section(interp_name,
1847                                                    elfcpp::SHT_PROGBITS,
1848                                                    elfcpp::SHF_ALLOC);
1849   osec->add_output_section_data(odata);
1850
1851   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1852   this->segment_list_.push_back(oseg);
1853   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1854 }
1855
1856 // Finish the .dynamic section and PT_DYNAMIC segment.
1857
1858 void
1859 Layout::finish_dynamic_section(const Input_objects* input_objects,
1860                                const Symbol_table* symtab)
1861 {
1862   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1863                                             elfcpp::PF_R | elfcpp::PF_W);
1864   this->segment_list_.push_back(oseg);
1865   oseg->add_initial_output_section(this->dynamic_section_,
1866                                    elfcpp::PF_R | elfcpp::PF_W);
1867
1868   Output_data_dynamic* const odyn = this->dynamic_data_;
1869
1870   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1871        p != input_objects->dynobj_end();
1872        ++p)
1873     {
1874       // FIXME: Handle --as-needed.
1875       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1876     }
1877
1878   if (parameters->output_is_shared())
1879     {
1880       const char* soname = this->options_.soname();
1881       if (soname != NULL)
1882         odyn->add_string(elfcpp::DT_SONAME, soname);
1883     }
1884
1885   // FIXME: Support --init and --fini.
1886   Symbol* sym = symtab->lookup("_init");
1887   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1888     odyn->add_symbol(elfcpp::DT_INIT, sym);
1889
1890   sym = symtab->lookup("_fini");
1891   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1892     odyn->add_symbol(elfcpp::DT_FINI, sym);
1893
1894   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1895
1896   // Add a DT_RPATH entry if needed.
1897   const General_options::Dir_list& rpath(this->options_.rpath());
1898   if (!rpath.empty())
1899     {
1900       std::string rpath_val;
1901       for (General_options::Dir_list::const_iterator p = rpath.begin();
1902            p != rpath.end();
1903            ++p)
1904         {
1905           if (rpath_val.empty())
1906             rpath_val = p->name();
1907           else
1908             {
1909               // Eliminate duplicates.
1910               General_options::Dir_list::const_iterator q;
1911               for (q = rpath.begin(); q != p; ++q)
1912                 if (q->name() == p->name())
1913                   break;
1914               if (q == p)
1915                 {
1916                   rpath_val += ':';
1917                   rpath_val += p->name();
1918                 }
1919             }
1920         }
1921
1922       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1923     }
1924
1925   // Look for text segments that have dynamic relocations.
1926   bool have_textrel = false;
1927   for (Segment_list::const_iterator p = this->segment_list_.begin();
1928        p != this->segment_list_.end();
1929        ++p)
1930     {
1931       if (((*p)->flags() & elfcpp::PF_W) == 0
1932           && (*p)->dynamic_reloc_count() > 0)
1933         {
1934           have_textrel = true;
1935           break;
1936         }
1937     }
1938
1939   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1940   // post-link tools can easily modify these flags if desired.
1941   unsigned int flags = 0;
1942   if (have_textrel)
1943     {
1944       // Add a DT_TEXTREL for compatibility with older loaders.
1945       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1946       flags |= elfcpp::DF_TEXTREL;
1947     }
1948   if (parameters->output_is_shared() && this->has_static_tls())
1949     flags |= elfcpp::DF_STATIC_TLS;
1950   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1951 }
1952
1953 // The mapping of .gnu.linkonce section names to real section names.
1954
1955 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1956 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1957 {
1958   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1959   MAPPING_INIT("t", ".text"),
1960   MAPPING_INIT("r", ".rodata"),
1961   MAPPING_INIT("d", ".data"),
1962   MAPPING_INIT("b", ".bss"),
1963   MAPPING_INIT("s", ".sdata"),
1964   MAPPING_INIT("sb", ".sbss"),
1965   MAPPING_INIT("s2", ".sdata2"),
1966   MAPPING_INIT("sb2", ".sbss2"),
1967   MAPPING_INIT("wi", ".debug_info"),
1968   MAPPING_INIT("td", ".tdata"),
1969   MAPPING_INIT("tb", ".tbss"),
1970   MAPPING_INIT("lr", ".lrodata"),
1971   MAPPING_INIT("l", ".ldata"),
1972   MAPPING_INIT("lb", ".lbss"),
1973 };
1974 #undef MAPPING_INIT
1975
1976 const int Layout::linkonce_mapping_count =
1977   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1978
1979 // Return the name of the output section to use for a .gnu.linkonce
1980 // section.  This is based on the default ELF linker script of the old
1981 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1982 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1983 // initialized to the length of NAME.
1984
1985 const char*
1986 Layout::linkonce_output_name(const char* name, size_t *plen)
1987 {
1988   const char* s = name + sizeof(".gnu.linkonce") - 1;
1989   if (*s != '.')
1990     return name;
1991   ++s;
1992   const Linkonce_mapping* plm = linkonce_mapping;
1993   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1994     {
1995       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1996         {
1997           *plen = plm->tolen;
1998           return plm->to;
1999         }
2000     }
2001   return name;
2002 }
2003
2004 // Choose the output section name to use given an input section name.
2005 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2006 // length of NAME.
2007
2008 const char*
2009 Layout::output_section_name(const char* name, size_t* plen)
2010 {
2011   if (Layout::is_linkonce(name))
2012     {
2013       // .gnu.linkonce sections are laid out as though they were named
2014       // for the sections are placed into.
2015       return Layout::linkonce_output_name(name, plen);
2016     }
2017
2018   // gcc 4.3 generates the following sorts of section names when it
2019   // needs a section name specific to a function:
2020   //   .text.FN
2021   //   .rodata.FN
2022   //   .sdata2.FN
2023   //   .data.FN
2024   //   .data.rel.FN
2025   //   .data.rel.local.FN
2026   //   .data.rel.ro.FN
2027   //   .data.rel.ro.local.FN
2028   //   .sdata.FN
2029   //   .bss.FN
2030   //   .sbss.FN
2031   //   .tdata.FN
2032   //   .tbss.FN
2033
2034   // The GNU linker maps all of those to the part before the .FN,
2035   // except that .data.rel.local.FN is mapped to .data, and
2036   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2037   // beginning with .data.rel.ro.local are grouped together.
2038
2039   // For an anonymous namespace, the string FN can contain a '.'.
2040
2041   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2042   // GNU linker maps to .rodata.
2043
2044   // The .data.rel.ro sections enable a security feature triggered by
2045   // the -z relro option.  Section which need to be relocated at
2046   // program startup time but which may be readonly after startup are
2047   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2048   // segment.  The dynamic linker will make that segment writable,
2049   // perform relocations, and then make it read-only.  FIXME: We do
2050   // not yet implement this optimization.
2051
2052   // It is hard to handle this in a principled way.
2053
2054   // These are the rules we follow:
2055
2056   // If the section name has no initial '.', or no dot other than an
2057   // initial '.', we use the name unchanged (i.e., "mysection" and
2058   // ".text" are unchanged).
2059
2060   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2061
2062   // Otherwise, we drop the second '.' and everything that comes after
2063   // it (i.e., ".text.XXX" becomes ".text").
2064
2065   const char* s = name;
2066   if (*s != '.')
2067     return name;
2068   ++s;
2069   const char* sdot = strchr(s, '.');
2070   if (sdot == NULL)
2071     return name;
2072
2073   const char* const data_rel_ro = ".data.rel.ro";
2074   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2075     {
2076       *plen = strlen(data_rel_ro);
2077       return data_rel_ro;
2078     }
2079
2080   *plen = sdot - name;
2081   return name;
2082 }
2083
2084 // Record the signature of a comdat section, and return whether to
2085 // include it in the link.  If GROUP is true, this is a regular
2086 // section group.  If GROUP is false, this is a group signature
2087 // derived from the name of a linkonce section.  We want linkonce
2088 // signatures and group signatures to block each other, but we don't
2089 // want a linkonce signature to block another linkonce signature.
2090
2091 bool
2092 Layout::add_comdat(const char* signature, bool group)
2093 {
2094   std::string sig(signature);
2095   std::pair<Signatures::iterator, bool> ins(
2096     this->signatures_.insert(std::make_pair(sig, group)));
2097
2098   if (ins.second)
2099     {
2100       // This is the first time we've seen this signature.
2101       return true;
2102     }
2103
2104   if (ins.first->second)
2105     {
2106       // We've already seen a real section group with this signature.
2107       return false;
2108     }
2109   else if (group)
2110     {
2111       // This is a real section group, and we've already seen a
2112       // linkonce section with this signature.  Record that we've seen
2113       // a section group, and don't include this section group.
2114       ins.first->second = true;
2115       return false;
2116     }
2117   else
2118     {
2119       // We've already seen a linkonce section and this is a linkonce
2120       // section.  These don't block each other--this may be the same
2121       // symbol name with different section types.
2122       return true;
2123     }
2124 }
2125
2126 // Store the allocated sections into the section list.
2127
2128 void
2129 Layout::get_allocated_sections(Section_list* section_list) const
2130 {
2131   for (Section_list::const_iterator p = this->section_list_.begin();
2132        p != this->section_list_.end();
2133        ++p)
2134     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2135       section_list->push_back(*p);
2136 }
2137
2138 // Create an output segment.
2139
2140 Output_segment*
2141 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2142 {
2143   Output_segment* oseg = new Output_segment(type, flags);
2144   this->segment_list_.push_back(oseg);
2145   return oseg;
2146 }
2147
2148 // Write out the Output_sections.  Most won't have anything to write,
2149 // since most of the data will come from input sections which are
2150 // handled elsewhere.  But some Output_sections do have Output_data.
2151
2152 void
2153 Layout::write_output_sections(Output_file* of) const
2154 {
2155   for (Section_list::const_iterator p = this->section_list_.begin();
2156        p != this->section_list_.end();
2157        ++p)
2158     {
2159       if (!(*p)->after_input_sections())
2160         (*p)->write(of);
2161     }
2162 }
2163
2164 // Write out data not associated with a section or the symbol table.
2165
2166 void
2167 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2168 {
2169   if (!parameters->strip_all())
2170     {
2171       const Output_section* symtab_section = this->symtab_section_;
2172       for (Section_list::const_iterator p = this->section_list_.begin();
2173            p != this->section_list_.end();
2174            ++p)
2175         {
2176           if ((*p)->needs_symtab_index())
2177             {
2178               gold_assert(symtab_section != NULL);
2179               unsigned int index = (*p)->symtab_index();
2180               gold_assert(index > 0 && index != -1U);
2181               off_t off = (symtab_section->offset()
2182                            + index * symtab_section->entsize());
2183               symtab->write_section_symbol(*p, of, off);
2184             }
2185         }
2186     }
2187
2188   const Output_section* dynsym_section = this->dynsym_section_;
2189   for (Section_list::const_iterator p = this->section_list_.begin();
2190        p != this->section_list_.end();
2191        ++p)
2192     {
2193       if ((*p)->needs_dynsym_index())
2194         {
2195           gold_assert(dynsym_section != NULL);
2196           unsigned int index = (*p)->dynsym_index();
2197           gold_assert(index > 0 && index != -1U);
2198           off_t off = (dynsym_section->offset()
2199                        + index * dynsym_section->entsize());
2200           symtab->write_section_symbol(*p, of, off);
2201         }
2202     }
2203
2204   // Write out the Output_data which are not in an Output_section.
2205   for (Data_list::const_iterator p = this->special_output_list_.begin();
2206        p != this->special_output_list_.end();
2207        ++p)
2208     (*p)->write(of);
2209 }
2210
2211 // Write out the Output_sections which can only be written after the
2212 // input sections are complete.
2213
2214 void
2215 Layout::write_sections_after_input_sections(Output_file* of)
2216 {
2217   // Determine the final section offsets, and thus the final output
2218   // file size.  Note we finalize the .shstrab last, to allow the
2219   // after_input_section sections to modify their section-names before
2220   // writing.
2221   if (this->any_postprocessing_sections_)
2222     {
2223       off_t off = this->output_file_size_;
2224       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2225       
2226       // Now that we've finalized the names, we can finalize the shstrab.
2227       off =
2228         this->set_section_offsets(off,
2229                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2230
2231       if (off > this->output_file_size_)
2232         {
2233           of->resize(off);
2234           this->output_file_size_ = off;
2235         }
2236     }
2237
2238   for (Section_list::const_iterator p = this->section_list_.begin();
2239        p != this->section_list_.end();
2240        ++p)
2241     {
2242       if ((*p)->after_input_sections())
2243         (*p)->write(of);
2244     }
2245
2246   this->section_headers_->write(of);
2247 }
2248
2249 // Print statistical information to stderr.  This is used for --stats.
2250
2251 void
2252 Layout::print_stats() const
2253 {
2254   this->namepool_.print_stats("section name pool");
2255   this->sympool_.print_stats("output symbol name pool");
2256   this->dynpool_.print_stats("dynamic name pool");
2257
2258   for (Section_list::const_iterator p = this->section_list_.begin();
2259        p != this->section_list_.end();
2260        ++p)
2261     (*p)->print_merge_stats();
2262 }
2263
2264 // Write_sections_task methods.
2265
2266 // We can always run this task.
2267
2268 Task_token*
2269 Write_sections_task::is_runnable()
2270 {
2271   return NULL;
2272 }
2273
2274 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2275 // when finished.
2276
2277 void
2278 Write_sections_task::locks(Task_locker* tl)
2279 {
2280   tl->add(this, this->output_sections_blocker_);
2281   tl->add(this, this->final_blocker_);
2282 }
2283
2284 // Run the task--write out the data.
2285
2286 void
2287 Write_sections_task::run(Workqueue*)
2288 {
2289   this->layout_->write_output_sections(this->of_);
2290 }
2291
2292 // Write_data_task methods.
2293
2294 // We can always run this task.
2295
2296 Task_token*
2297 Write_data_task::is_runnable()
2298 {
2299   return NULL;
2300 }
2301
2302 // We need to unlock FINAL_BLOCKER when finished.
2303
2304 void
2305 Write_data_task::locks(Task_locker* tl)
2306 {
2307   tl->add(this, this->final_blocker_);
2308 }
2309
2310 // Run the task--write out the data.
2311
2312 void
2313 Write_data_task::run(Workqueue*)
2314 {
2315   this->layout_->write_data(this->symtab_, this->of_);
2316 }
2317
2318 // Write_symbols_task methods.
2319
2320 // We can always run this task.
2321
2322 Task_token*
2323 Write_symbols_task::is_runnable()
2324 {
2325   return NULL;
2326 }
2327
2328 // We need to unlock FINAL_BLOCKER when finished.
2329
2330 void
2331 Write_symbols_task::locks(Task_locker* tl)
2332 {
2333   tl->add(this, this->final_blocker_);
2334 }
2335
2336 // Run the task--write out the symbols.
2337
2338 void
2339 Write_symbols_task::run(Workqueue*)
2340 {
2341   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2342                                this->dynpool_, this->of_);
2343 }
2344
2345 // Write_after_input_sections_task methods.
2346
2347 // We can only run this task after the input sections have completed.
2348
2349 Task_token*
2350 Write_after_input_sections_task::is_runnable()
2351 {
2352   if (this->input_sections_blocker_->is_blocked())
2353     return this->input_sections_blocker_;
2354   return NULL;
2355 }
2356
2357 // We need to unlock FINAL_BLOCKER when finished.
2358
2359 void
2360 Write_after_input_sections_task::locks(Task_locker* tl)
2361 {
2362   tl->add(this, this->final_blocker_);
2363 }
2364
2365 // Run the task.
2366
2367 void
2368 Write_after_input_sections_task::run(Workqueue*)
2369 {
2370   this->layout_->write_sections_after_input_sections(this->of_);
2371 }
2372
2373 // Close_task_runner methods.
2374
2375 // Run the task--close the file.
2376
2377 void
2378 Close_task_runner::run(Workqueue*, const Task*)
2379 {
2380   this->of_->close();
2381 }
2382
2383 // Instantiate the templates we need.  We could use the configure
2384 // script to restrict this to only the ones for implemented targets.
2385
2386 #ifdef HAVE_TARGET_32_LITTLE
2387 template
2388 Output_section*
2389 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2390                           const char* name,
2391                           const elfcpp::Shdr<32, false>& shdr,
2392                           unsigned int, unsigned int, off_t*);
2393 #endif
2394
2395 #ifdef HAVE_TARGET_32_BIG
2396 template
2397 Output_section*
2398 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2399                          const char* name,
2400                          const elfcpp::Shdr<32, true>& shdr,
2401                          unsigned int, unsigned int, off_t*);
2402 #endif
2403
2404 #ifdef HAVE_TARGET_64_LITTLE
2405 template
2406 Output_section*
2407 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2408                           const char* name,
2409                           const elfcpp::Shdr<64, false>& shdr,
2410                           unsigned int, unsigned int, off_t*);
2411 #endif
2412
2413 #ifdef HAVE_TARGET_64_BIG
2414 template
2415 Output_section*
2416 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2417                          const char* name,
2418                          const elfcpp::Shdr<64, true>& shdr,
2419                          unsigned int, unsigned int, off_t*);
2420 #endif
2421
2422 #ifdef HAVE_TARGET_32_LITTLE
2423 template
2424 Output_section*
2425 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2426                                    const unsigned char* symbols,
2427                                    off_t symbols_size,
2428                                    const unsigned char* symbol_names,
2429                                    off_t symbol_names_size,
2430                                    unsigned int shndx,
2431                                    const elfcpp::Shdr<32, false>& shdr,
2432                                    unsigned int reloc_shndx,
2433                                    unsigned int reloc_type,
2434                                    off_t* off);
2435 #endif
2436
2437 #ifdef HAVE_TARGET_32_BIG
2438 template
2439 Output_section*
2440 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2441                                    const unsigned char* symbols,
2442                                    off_t symbols_size,
2443                                   const unsigned char* symbol_names,
2444                                   off_t symbol_names_size,
2445                                   unsigned int shndx,
2446                                   const elfcpp::Shdr<32, true>& shdr,
2447                                   unsigned int reloc_shndx,
2448                                   unsigned int reloc_type,
2449                                   off_t* off);
2450 #endif
2451
2452 #ifdef HAVE_TARGET_64_LITTLE
2453 template
2454 Output_section*
2455 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2456                                    const unsigned char* symbols,
2457                                    off_t symbols_size,
2458                                    const unsigned char* symbol_names,
2459                                    off_t symbol_names_size,
2460                                    unsigned int shndx,
2461                                    const elfcpp::Shdr<64, false>& shdr,
2462                                    unsigned int reloc_shndx,
2463                                    unsigned int reloc_type,
2464                                    off_t* off);
2465 #endif
2466
2467 #ifdef HAVE_TARGET_64_BIG
2468 template
2469 Output_section*
2470 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2471                                    const unsigned char* symbols,
2472                                    off_t symbols_size,
2473                                   const unsigned char* symbol_names,
2474                                   off_t symbol_names_size,
2475                                   unsigned int shndx,
2476                                   const elfcpp::Shdr<64, true>& shdr,
2477                                   unsigned int reloc_shndx,
2478                                   unsigned int reloc_type,
2479                                   off_t* off);
2480 #endif
2481
2482 } // End namespace gold.