PR gold/15355
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   // See if any of the input definitions violate the One Definition Rule.
321   // TODO: if this is too slow, do this as a task, rather than inline.
322   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
323
324   Layout* layout = this->layout_;
325   off_t file_size = layout->finalize(this->input_objects_,
326                                      this->symtab_,
327                                      this->target_,
328                                      task);
329
330   // Now we know the final size of the output file and we know where
331   // each piece of information goes.
332
333   if (this->mapfile_ != NULL)
334     {
335       this->mapfile_->print_discarded_sections(this->input_objects_);
336       layout->print_to_mapfile(this->mapfile_);
337     }
338
339   Output_file* of;
340   if (layout->incremental_base() == NULL)
341     {
342       of = new Output_file(parameters->options().output_file_name());
343       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
344         of->set_is_temporary();
345       of->open(file_size);
346     }
347   else
348     {
349       of = layout->incremental_base()->output_file();
350
351       // Apply the incremental relocations for symbols whose values
352       // have changed.  We do this before we resize the file and start
353       // writing anything else to it, so that we can read the old
354       // incremental information from the file before (possibly)
355       // overwriting it.
356       if (parameters->incremental_update())
357         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
358                                                              this->layout_,
359                                                              of);
360
361       of->resize(file_size);
362     }
363
364   // Queue up the final set of tasks.
365   gold::queue_final_tasks(this->options_, this->input_objects_,
366                           this->symtab_, layout, workqueue, of);
367 }
368
369 // Layout methods.
370
371 Layout::Layout(int number_of_input_files, Script_options* script_options)
372   : number_of_input_files_(number_of_input_files),
373     script_options_(script_options),
374     namepool_(),
375     sympool_(),
376     dynpool_(),
377     signatures_(),
378     section_name_map_(),
379     segment_list_(),
380     section_list_(),
381     unattached_section_list_(),
382     special_output_list_(),
383     section_headers_(NULL),
384     tls_segment_(NULL),
385     relro_segment_(NULL),
386     interp_segment_(NULL),
387     increase_relro_(0),
388     symtab_section_(NULL),
389     symtab_xindex_(NULL),
390     dynsym_section_(NULL),
391     dynsym_xindex_(NULL),
392     dynamic_section_(NULL),
393     dynamic_symbol_(NULL),
394     dynamic_data_(NULL),
395     eh_frame_section_(NULL),
396     eh_frame_data_(NULL),
397     added_eh_frame_data_(false),
398     eh_frame_hdr_section_(NULL),
399     gdb_index_data_(NULL),
400     build_id_note_(NULL),
401     debug_abbrev_(NULL),
402     debug_info_(NULL),
403     group_signatures_(),
404     output_file_size_(-1),
405     have_added_input_section_(false),
406     sections_are_attached_(false),
407     input_requires_executable_stack_(false),
408     input_with_gnu_stack_note_(false),
409     input_without_gnu_stack_note_(false),
410     has_static_tls_(false),
411     any_postprocessing_sections_(false),
412     resized_signatures_(false),
413     have_stabstr_section_(false),
414     section_ordering_specified_(false),
415     unique_segment_for_sections_specified_(false),
416     incremental_inputs_(NULL),
417     record_output_section_data_from_script_(false),
418     script_output_section_data_list_(),
419     segment_states_(NULL),
420     relaxation_debug_check_(NULL),
421     section_order_map_(),
422     section_segment_map_(),
423     input_section_position_(),
424     input_section_glob_(),
425     incremental_base_(NULL),
426     free_list_()
427 {
428   // Make space for more than enough segments for a typical file.
429   // This is just for efficiency--it's OK if we wind up needing more.
430   this->segment_list_.reserve(12);
431
432   // We expect two unattached Output_data objects: the file header and
433   // the segment headers.
434   this->special_output_list_.reserve(2);
435
436   // Initialize structure needed for an incremental build.
437   if (parameters->incremental())
438     this->incremental_inputs_ = new Incremental_inputs;
439
440   // The section name pool is worth optimizing in all cases, because
441   // it is small, but there are often overlaps due to .rel sections.
442   this->namepool_.set_optimize();
443 }
444
445 // For incremental links, record the base file to be modified.
446
447 void
448 Layout::set_incremental_base(Incremental_binary* base)
449 {
450   this->incremental_base_ = base;
451   this->free_list_.init(base->output_file()->filesize(), true);
452 }
453
454 // Hash a key we use to look up an output section mapping.
455
456 size_t
457 Layout::Hash_key::operator()(const Layout::Key& k) const
458 {
459  return k.first + k.second.first + k.second.second;
460 }
461
462 // These are the debug sections that are actually used by gdb.
463 // Currently, we've checked versions of gdb up to and including 7.4.
464 // We only check the part of the name that follows ".debug_" or
465 // ".zdebug_".
466
467 static const char* gdb_sections[] =
468 {
469   "abbrev",
470   "addr",         // Fission extension
471   // "aranges",   // not used by gdb as of 7.4
472   "frame",
473   "info",
474   "types",
475   "line",
476   "loc",
477   "macinfo",
478   "macro",
479   // "pubnames",  // not used by gdb as of 7.4
480   // "pubtypes",  // not used by gdb as of 7.4
481   "ranges",
482   "str",
483 };
484
485 // This is the minimum set of sections needed for line numbers.
486
487 static const char* lines_only_debug_sections[] =
488 {
489   "abbrev",
490   // "addr",      // Fission extension
491   // "aranges",   // not used by gdb as of 7.4
492   // "frame",
493   "info",
494   // "types",
495   "line",
496   // "loc",
497   // "macinfo",
498   // "macro",
499   // "pubnames",  // not used by gdb as of 7.4
500   // "pubtypes",  // not used by gdb as of 7.4
501   // "ranges",
502   "str",
503 };
504
505 // These sections are the DWARF fast-lookup tables, and are not needed
506 // when building a .gdb_index section.
507
508 static const char* gdb_fast_lookup_sections[] =
509 {
510   "aranges",
511   "pubnames",
512   "pubtypes",
513 };
514
515 // Returns whether the given debug section is in the list of
516 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
517 // portion of the name following ".debug_" or ".zdebug_".
518
519 static inline bool
520 is_gdb_debug_section(const char* suffix)
521 {
522   // We can do this faster: binary search or a hashtable.  But why bother?
523   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
524     if (strcmp(suffix, gdb_sections[i]) == 0)
525       return true;
526   return false;
527 }
528
529 // Returns whether the given section is needed for lines-only debugging.
530
531 static inline bool
532 is_lines_only_debug_section(const char* suffix)
533 {
534   // We can do this faster: binary search or a hashtable.  But why bother?
535   for (size_t i = 0;
536        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
537        ++i)
538     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
539       return true;
540   return false;
541 }
542
543 // Returns whether the given section is a fast-lookup section that
544 // will not be needed when building a .gdb_index section.
545
546 static inline bool
547 is_gdb_fast_lookup_section(const char* suffix)
548 {
549   // We can do this faster: binary search or a hashtable.  But why bother?
550   for (size_t i = 0;
551        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
552        ++i)
553     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
554       return true;
555   return false;
556 }
557
558 // Sometimes we compress sections.  This is typically done for
559 // sections that are not part of normal program execution (such as
560 // .debug_* sections), and where the readers of these sections know
561 // how to deal with compressed sections.  This routine doesn't say for
562 // certain whether we'll compress -- it depends on commandline options
563 // as well -- just whether this section is a candidate for compression.
564 // (The Output_compressed_section class decides whether to compress
565 // a given section, and picks the name of the compressed section.)
566
567 static bool
568 is_compressible_debug_section(const char* secname)
569 {
570   return (is_prefix_of(".debug", secname));
571 }
572
573 // We may see compressed debug sections in input files.  Return TRUE
574 // if this is the name of a compressed debug section.
575
576 bool
577 is_compressed_debug_section(const char* secname)
578 {
579   return (is_prefix_of(".zdebug", secname));
580 }
581
582 // Whether to include this section in the link.
583
584 template<int size, bool big_endian>
585 bool
586 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
587                         const elfcpp::Shdr<size, big_endian>& shdr)
588 {
589   if (!parameters->options().relocatable()
590       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
591     return false;
592
593   switch (shdr.get_sh_type())
594     {
595     case elfcpp::SHT_NULL:
596     case elfcpp::SHT_SYMTAB:
597     case elfcpp::SHT_DYNSYM:
598     case elfcpp::SHT_HASH:
599     case elfcpp::SHT_DYNAMIC:
600     case elfcpp::SHT_SYMTAB_SHNDX:
601       return false;
602
603     case elfcpp::SHT_STRTAB:
604       // Discard the sections which have special meanings in the ELF
605       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
606       // checking the sh_link fields of the appropriate sections.
607       return (strcmp(name, ".dynstr") != 0
608               && strcmp(name, ".strtab") != 0
609               && strcmp(name, ".shstrtab") != 0);
610
611     case elfcpp::SHT_RELA:
612     case elfcpp::SHT_REL:
613     case elfcpp::SHT_GROUP:
614       // If we are emitting relocations these should be handled
615       // elsewhere.
616       gold_assert(!parameters->options().relocatable());
617       return false;
618
619     case elfcpp::SHT_PROGBITS:
620       if (parameters->options().strip_debug()
621           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622         {
623           if (is_debug_info_section(name))
624             return false;
625         }
626       if (parameters->options().strip_debug_non_line()
627           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
628         {
629           // Debugging sections can only be recognized by name.
630           if (is_prefix_of(".debug_", name)
631               && !is_lines_only_debug_section(name + 7))
632             return false;
633           if (is_prefix_of(".zdebug_", name)
634               && !is_lines_only_debug_section(name + 8))
635             return false;
636         }
637       if (parameters->options().strip_debug_gdb()
638           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
639         {
640           // Debugging sections can only be recognized by name.
641           if (is_prefix_of(".debug_", name)
642               && !is_gdb_debug_section(name + 7))
643             return false;
644           if (is_prefix_of(".zdebug_", name)
645               && !is_gdb_debug_section(name + 8))
646             return false;
647         }
648       if (parameters->options().gdb_index()
649           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
650         {
651           // When building .gdb_index, we can strip .debug_pubnames,
652           // .debug_pubtypes, and .debug_aranges sections.
653           if (is_prefix_of(".debug_", name)
654               && is_gdb_fast_lookup_section(name + 7))
655             return false;
656           if (is_prefix_of(".zdebug_", name)
657               && is_gdb_fast_lookup_section(name + 8))
658             return false;
659         }
660       if (parameters->options().strip_lto_sections()
661           && !parameters->options().relocatable()
662           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
663         {
664           // Ignore LTO sections containing intermediate code.
665           if (is_prefix_of(".gnu.lto_", name))
666             return false;
667         }
668       // The GNU linker strips .gnu_debuglink sections, so we do too.
669       // This is a feature used to keep debugging information in
670       // separate files.
671       if (strcmp(name, ".gnu_debuglink") == 0)
672         return false;
673       return true;
674
675     default:
676       return true;
677     }
678 }
679
680 // Return an output section named NAME, or NULL if there is none.
681
682 Output_section*
683 Layout::find_output_section(const char* name) const
684 {
685   for (Section_list::const_iterator p = this->section_list_.begin();
686        p != this->section_list_.end();
687        ++p)
688     if (strcmp((*p)->name(), name) == 0)
689       return *p;
690   return NULL;
691 }
692
693 // Return an output segment of type TYPE, with segment flags SET set
694 // and segment flags CLEAR clear.  Return NULL if there is none.
695
696 Output_segment*
697 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
698                             elfcpp::Elf_Word clear) const
699 {
700   for (Segment_list::const_iterator p = this->segment_list_.begin();
701        p != this->segment_list_.end();
702        ++p)
703     if (static_cast<elfcpp::PT>((*p)->type()) == type
704         && ((*p)->flags() & set) == set
705         && ((*p)->flags() & clear) == 0)
706       return *p;
707   return NULL;
708 }
709
710 // When we put a .ctors or .dtors section with more than one word into
711 // a .init_array or .fini_array section, we need to reverse the words
712 // in the .ctors/.dtors section.  This is because .init_array executes
713 // constructors front to back, where .ctors executes them back to
714 // front, and vice-versa for .fini_array/.dtors.  Although we do want
715 // to remap .ctors/.dtors into .init_array/.fini_array because it can
716 // be more efficient, we don't want to change the order in which
717 // constructors/destructors are run.  This set just keeps track of
718 // these sections which need to be reversed.  It is only changed by
719 // Layout::layout.  It should be a private member of Layout, but that
720 // would require layout.h to #include object.h to get the definition
721 // of Section_id.
722 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
723
724 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
725 // .init_array/.fini_array section.
726
727 bool
728 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
729 {
730   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
731           != ctors_sections_in_init_array.end());
732 }
733
734 // Return the output section to use for section NAME with type TYPE
735 // and section flags FLAGS.  NAME must be canonicalized in the string
736 // pool, and NAME_KEY is the key.  ORDER is where this should appear
737 // in the output sections.  IS_RELRO is true for a relro section.
738
739 Output_section*
740 Layout::get_output_section(const char* name, Stringpool::Key name_key,
741                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
742                            Output_section_order order, bool is_relro)
743 {
744   elfcpp::Elf_Word lookup_type = type;
745
746   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
747   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
748   // .init_array, .fini_array, and .preinit_array sections by name
749   // whatever their type in the input file.  We do this because the
750   // types are not always right in the input files.
751   if (lookup_type == elfcpp::SHT_INIT_ARRAY
752       || lookup_type == elfcpp::SHT_FINI_ARRAY
753       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
754     lookup_type = elfcpp::SHT_PROGBITS;
755
756   elfcpp::Elf_Xword lookup_flags = flags;
757
758   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
759   // read-write with read-only sections.  Some other ELF linkers do
760   // not do this.  FIXME: Perhaps there should be an option
761   // controlling this.
762   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
763
764   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
765   const std::pair<Key, Output_section*> v(key, NULL);
766   std::pair<Section_name_map::iterator, bool> ins(
767     this->section_name_map_.insert(v));
768
769   if (!ins.second)
770     return ins.first->second;
771   else
772     {
773       // This is the first time we've seen this name/type/flags
774       // combination.  For compatibility with the GNU linker, we
775       // combine sections with contents and zero flags with sections
776       // with non-zero flags.  This is a workaround for cases where
777       // assembler code forgets to set section flags.  FIXME: Perhaps
778       // there should be an option to control this.
779       Output_section* os = NULL;
780
781       if (lookup_type == elfcpp::SHT_PROGBITS)
782         {
783           if (flags == 0)
784             {
785               Output_section* same_name = this->find_output_section(name);
786               if (same_name != NULL
787                   && (same_name->type() == elfcpp::SHT_PROGBITS
788                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
789                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
790                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
791                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
792                 os = same_name;
793             }
794           else if ((flags & elfcpp::SHF_TLS) == 0)
795             {
796               elfcpp::Elf_Xword zero_flags = 0;
797               const Key zero_key(name_key, std::make_pair(lookup_type,
798                                                           zero_flags));
799               Section_name_map::iterator p =
800                   this->section_name_map_.find(zero_key);
801               if (p != this->section_name_map_.end())
802                 os = p->second;
803             }
804         }
805
806       if (os == NULL)
807         os = this->make_output_section(name, type, flags, order, is_relro);
808
809       ins.first->second = os;
810       return os;
811     }
812 }
813
814 // Returns TRUE iff NAME (an input section from RELOBJ) will
815 // be mapped to an output section that should be KEPT.
816
817 bool
818 Layout::keep_input_section(const Relobj* relobj, const char* name)
819 {
820   if (! this->script_options_->saw_sections_clause())
821     return false;
822
823   Script_sections* ss = this->script_options_->script_sections();
824   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
825   Output_section** output_section_slot;
826   Script_sections::Section_type script_section_type;
827   bool keep;
828
829   name = ss->output_section_name(file_name, name, &output_section_slot,
830                                  &script_section_type, &keep);
831   return name != NULL && keep;
832 }
833
834 // Clear the input section flags that should not be copied to the
835 // output section.
836
837 elfcpp::Elf_Xword
838 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
839 {
840   // Some flags in the input section should not be automatically
841   // copied to the output section.
842   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
843                             | elfcpp::SHF_GROUP
844                             | elfcpp::SHF_MERGE
845                             | elfcpp::SHF_STRINGS);
846
847   // We only clear the SHF_LINK_ORDER flag in for
848   // a non-relocatable link.
849   if (!parameters->options().relocatable())
850     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
851
852   return input_section_flags;
853 }
854
855 // Pick the output section to use for section NAME, in input file
856 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
857 // linker created section.  IS_INPUT_SECTION is true if we are
858 // choosing an output section for an input section found in a input
859 // file.  ORDER is where this section should appear in the output
860 // sections.  IS_RELRO is true for a relro section.  This will return
861 // NULL if the input section should be discarded.
862
863 Output_section*
864 Layout::choose_output_section(const Relobj* relobj, const char* name,
865                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
866                               bool is_input_section, Output_section_order order,
867                               bool is_relro)
868 {
869   // We should not see any input sections after we have attached
870   // sections to segments.
871   gold_assert(!is_input_section || !this->sections_are_attached_);
872
873   flags = this->get_output_section_flags(flags);
874
875   if (this->script_options_->saw_sections_clause())
876     {
877       // We are using a SECTIONS clause, so the output section is
878       // chosen based only on the name.
879
880       Script_sections* ss = this->script_options_->script_sections();
881       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
882       Output_section** output_section_slot;
883       Script_sections::Section_type script_section_type;
884       const char* orig_name = name;
885       bool keep;
886       name = ss->output_section_name(file_name, name, &output_section_slot,
887                                      &script_section_type, &keep);
888
889       if (name == NULL)
890         {
891           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
892                                      "because it is not allowed by the "
893                                      "SECTIONS clause of the linker script"),
894                      orig_name);
895           // The SECTIONS clause says to discard this input section.
896           return NULL;
897         }
898
899       // We can only handle script section types ST_NONE and ST_NOLOAD.
900       switch (script_section_type)
901         {
902         case Script_sections::ST_NONE:
903           break;
904         case Script_sections::ST_NOLOAD:
905           flags &= elfcpp::SHF_ALLOC;
906           break;
907         default:
908           gold_unreachable();
909         }
910
911       // If this is an orphan section--one not mentioned in the linker
912       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
913       // default processing below.
914
915       if (output_section_slot != NULL)
916         {
917           if (*output_section_slot != NULL)
918             {
919               (*output_section_slot)->update_flags_for_input_section(flags);
920               return *output_section_slot;
921             }
922
923           // We don't put sections found in the linker script into
924           // SECTION_NAME_MAP_.  That keeps us from getting confused
925           // if an orphan section is mapped to a section with the same
926           // name as one in the linker script.
927
928           name = this->namepool_.add(name, false, NULL);
929
930           Output_section* os = this->make_output_section(name, type, flags,
931                                                          order, is_relro);
932
933           os->set_found_in_sections_clause();
934
935           // Special handling for NOLOAD sections.
936           if (script_section_type == Script_sections::ST_NOLOAD)
937             {
938               os->set_is_noload();
939
940               // The constructor of Output_section sets addresses of non-ALLOC
941               // sections to 0 by default.  We don't want that for NOLOAD
942               // sections even if they have no SHF_ALLOC flag.
943               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
944                   && os->is_address_valid())
945                 {
946                   gold_assert(os->address() == 0
947                               && !os->is_offset_valid()
948                               && !os->is_data_size_valid());
949                   os->reset_address_and_file_offset();
950                 }
951             }
952
953           *output_section_slot = os;
954           return os;
955         }
956     }
957
958   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
959
960   size_t len = strlen(name);
961   char* uncompressed_name = NULL;
962
963   // Compressed debug sections should be mapped to the corresponding
964   // uncompressed section.
965   if (is_compressed_debug_section(name))
966     {
967       uncompressed_name = new char[len];
968       uncompressed_name[0] = '.';
969       gold_assert(name[0] == '.' && name[1] == 'z');
970       strncpy(&uncompressed_name[1], &name[2], len - 2);
971       uncompressed_name[len - 1] = '\0';
972       len -= 1;
973       name = uncompressed_name;
974     }
975
976   // Turn NAME from the name of the input section into the name of the
977   // output section.
978   if (is_input_section
979       && !this->script_options_->saw_sections_clause()
980       && !parameters->options().relocatable())
981     {
982       const char *orig_name = name;
983       name = parameters->target().output_section_name(relobj, name, &len);
984       if (name == NULL)
985         name = Layout::output_section_name(relobj, orig_name, &len);
986     }
987
988   Stringpool::Key name_key;
989   name = this->namepool_.add_with_length(name, len, true, &name_key);
990
991   if (uncompressed_name != NULL)
992     delete[] uncompressed_name;
993
994   // Find or make the output section.  The output section is selected
995   // based on the section name, type, and flags.
996   return this->get_output_section(name, name_key, type, flags, order, is_relro);
997 }
998
999 // For incremental links, record the initial fixed layout of a section
1000 // from the base file, and return a pointer to the Output_section.
1001
1002 template<int size, bool big_endian>
1003 Output_section*
1004 Layout::init_fixed_output_section(const char* name,
1005                                   elfcpp::Shdr<size, big_endian>& shdr)
1006 {
1007   unsigned int sh_type = shdr.get_sh_type();
1008
1009   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1010   // PRE_INIT_ARRAY, and NOTE sections.
1011   // All others will be created from scratch and reallocated.
1012   if (!can_incremental_update(sh_type))
1013     return NULL;
1014
1015   // If we're generating a .gdb_index section, we need to regenerate
1016   // it from scratch.
1017   if (parameters->options().gdb_index()
1018       && sh_type == elfcpp::SHT_PROGBITS
1019       && strcmp(name, ".gdb_index") == 0)
1020     return NULL;
1021
1022   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1023   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1024   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1025   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1026   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1027       shdr.get_sh_addralign();
1028
1029   // Make the output section.
1030   Stringpool::Key name_key;
1031   name = this->namepool_.add(name, true, &name_key);
1032   Output_section* os = this->get_output_section(name, name_key, sh_type,
1033                                                 sh_flags, ORDER_INVALID, false);
1034   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1035   if (sh_type != elfcpp::SHT_NOBITS)
1036     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1037   return os;
1038 }
1039
1040 // Return the index by which an input section should be ordered.  This
1041 // is used to sort some .text sections, for compatibility with GNU ld.
1042
1043 int
1044 Layout::special_ordering_of_input_section(const char* name)
1045 {
1046   // The GNU linker has some special handling for some sections that
1047   // wind up in the .text section.  Sections that start with these
1048   // prefixes must appear first, and must appear in the order listed
1049   // here.
1050   static const char* const text_section_sort[] = 
1051   {
1052     ".text.unlikely",
1053     ".text.exit",
1054     ".text.startup",
1055     ".text.hot"
1056   };
1057
1058   for (size_t i = 0;
1059        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1060        i++)
1061     if (is_prefix_of(text_section_sort[i], name))
1062       return i;
1063
1064   return -1;
1065 }
1066
1067 // Return the output section to use for input section SHNDX, with name
1068 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1069 // index of a relocation section which applies to this section, or 0
1070 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1071 // relocation section if there is one.  Set *OFF to the offset of this
1072 // input section without the output section.  Return NULL if the
1073 // section should be discarded.  Set *OFF to -1 if the section
1074 // contents should not be written directly to the output file, but
1075 // will instead receive special handling.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1080                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1081                unsigned int reloc_shndx, unsigned int, off_t* off)
1082 {
1083   *off = 0;
1084
1085   if (!this->include_section(object, name, shdr))
1086     return NULL;
1087
1088   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1089
1090   // In a relocatable link a grouped section must not be combined with
1091   // any other sections.
1092   Output_section* os;
1093   if (parameters->options().relocatable()
1094       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1095     {
1096       name = this->namepool_.add(name, true, NULL);
1097       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1098                                      ORDER_INVALID, false);
1099     }
1100   else
1101     {
1102       // Plugins can choose to place one or more subsets of sections in
1103       // unique segments and this is done by mapping these section subsets
1104       // to unique output sections.  Check if this section needs to be
1105       // remapped to a unique output section.
1106       Section_segment_map::iterator it
1107           = this->section_segment_map_.find(Const_section_id(object, shndx));
1108       if (it == this->section_segment_map_.end())
1109         {
1110           os = this->choose_output_section(object, name, sh_type,
1111                                            shdr.get_sh_flags(), true,
1112                                            ORDER_INVALID, false);
1113         }
1114       else
1115         {
1116           // We know the name of the output section, directly call
1117           // get_output_section here by-passing choose_output_section.
1118           elfcpp::Elf_Xword flags
1119             = this->get_output_section_flags(shdr.get_sh_flags());
1120
1121           const char* os_name = it->second->name;
1122           Stringpool::Key name_key;
1123           os_name = this->namepool_.add(os_name, true, &name_key);
1124           os = this->get_output_section(os_name, name_key, sh_type, flags,
1125                                         ORDER_INVALID, false);
1126           if (!os->is_unique_segment())
1127             {
1128               os->set_is_unique_segment();
1129               os->set_extra_segment_flags(it->second->flags);
1130               os->set_segment_alignment(it->second->align);
1131             }
1132         }
1133       if (os == NULL)
1134         return NULL;
1135     }
1136
1137   // By default the GNU linker sorts input sections whose names match
1138   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1139   // sections are sorted by name.  This is used to implement
1140   // constructor priority ordering.  We are compatible.  When we put
1141   // .ctor sections in .init_array and .dtor sections in .fini_array,
1142   // we must also sort plain .ctor and .dtor sections.
1143   if (!this->script_options_->saw_sections_clause()
1144       && !parameters->options().relocatable()
1145       && (is_prefix_of(".ctors.", name)
1146           || is_prefix_of(".dtors.", name)
1147           || is_prefix_of(".init_array.", name)
1148           || is_prefix_of(".fini_array.", name)
1149           || (parameters->options().ctors_in_init_array()
1150               && (strcmp(name, ".ctors") == 0
1151                   || strcmp(name, ".dtors") == 0))))
1152     os->set_must_sort_attached_input_sections();
1153
1154   // By default the GNU linker sorts some special text sections ahead
1155   // of others.  We are compatible.
1156   if (parameters->options().text_reorder()
1157       && !this->script_options_->saw_sections_clause()
1158       && !this->is_section_ordering_specified()
1159       && !parameters->options().relocatable()
1160       && Layout::special_ordering_of_input_section(name) >= 0)
1161     os->set_must_sort_attached_input_sections();
1162
1163   // If this is a .ctors or .ctors.* section being mapped to a
1164   // .init_array section, or a .dtors or .dtors.* section being mapped
1165   // to a .fini_array section, we will need to reverse the words if
1166   // there is more than one.  Record this section for later.  See
1167   // ctors_sections_in_init_array above.
1168   if (!this->script_options_->saw_sections_clause()
1169       && !parameters->options().relocatable()
1170       && shdr.get_sh_size() > size / 8
1171       && (((strcmp(name, ".ctors") == 0
1172             || is_prefix_of(".ctors.", name))
1173            && strcmp(os->name(), ".init_array") == 0)
1174           || ((strcmp(name, ".dtors") == 0
1175                || is_prefix_of(".dtors.", name))
1176               && strcmp(os->name(), ".fini_array") == 0)))
1177     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1178
1179   // FIXME: Handle SHF_LINK_ORDER somewhere.
1180
1181   elfcpp::Elf_Xword orig_flags = os->flags();
1182
1183   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1184                                this->script_options_->saw_sections_clause());
1185
1186   // If the flags changed, we may have to change the order.
1187   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1188     {
1189       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1190       elfcpp::Elf_Xword new_flags =
1191         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1192       if (orig_flags != new_flags)
1193         os->set_order(this->default_section_order(os, false));
1194     }
1195
1196   this->have_added_input_section_ = true;
1197
1198   return os;
1199 }
1200
1201 // Maps section SECN to SEGMENT s.
1202 void
1203 Layout::insert_section_segment_map(Const_section_id secn,
1204                                    Unique_segment_info *s)
1205 {
1206   gold_assert(this->unique_segment_for_sections_specified_); 
1207   this->section_segment_map_[secn] = s;
1208 }
1209
1210 // Handle a relocation section when doing a relocatable link.
1211
1212 template<int size, bool big_endian>
1213 Output_section*
1214 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1215                      unsigned int,
1216                      const elfcpp::Shdr<size, big_endian>& shdr,
1217                      Output_section* data_section,
1218                      Relocatable_relocs* rr)
1219 {
1220   gold_assert(parameters->options().relocatable()
1221               || parameters->options().emit_relocs());
1222
1223   int sh_type = shdr.get_sh_type();
1224
1225   std::string name;
1226   if (sh_type == elfcpp::SHT_REL)
1227     name = ".rel";
1228   else if (sh_type == elfcpp::SHT_RELA)
1229     name = ".rela";
1230   else
1231     gold_unreachable();
1232   name += data_section->name();
1233
1234   // In a relocatable link relocs for a grouped section must not be
1235   // combined with other reloc sections.
1236   Output_section* os;
1237   if (!parameters->options().relocatable()
1238       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1239     os = this->choose_output_section(object, name.c_str(), sh_type,
1240                                      shdr.get_sh_flags(), false,
1241                                      ORDER_INVALID, false);
1242   else
1243     {
1244       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1245       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1246                                      ORDER_INVALID, false);
1247     }
1248
1249   os->set_should_link_to_symtab();
1250   os->set_info_section(data_section);
1251
1252   Output_section_data* posd;
1253   if (sh_type == elfcpp::SHT_REL)
1254     {
1255       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1256       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1257                                            size,
1258                                            big_endian>(rr);
1259     }
1260   else if (sh_type == elfcpp::SHT_RELA)
1261     {
1262       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1263       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1264                                            size,
1265                                            big_endian>(rr);
1266     }
1267   else
1268     gold_unreachable();
1269
1270   os->add_output_section_data(posd);
1271   rr->set_output_data(posd);
1272
1273   return os;
1274 }
1275
1276 // Handle a group section when doing a relocatable link.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Layout::layout_group(Symbol_table* symtab,
1281                      Sized_relobj_file<size, big_endian>* object,
1282                      unsigned int,
1283                      const char* group_section_name,
1284                      const char* signature,
1285                      const elfcpp::Shdr<size, big_endian>& shdr,
1286                      elfcpp::Elf_Word flags,
1287                      std::vector<unsigned int>* shndxes)
1288 {
1289   gold_assert(parameters->options().relocatable());
1290   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1291   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1292   Output_section* os = this->make_output_section(group_section_name,
1293                                                  elfcpp::SHT_GROUP,
1294                                                  shdr.get_sh_flags(),
1295                                                  ORDER_INVALID, false);
1296
1297   // We need to find a symbol with the signature in the symbol table.
1298   // If we don't find one now, we need to look again later.
1299   Symbol* sym = symtab->lookup(signature, NULL);
1300   if (sym != NULL)
1301     os->set_info_symndx(sym);
1302   else
1303     {
1304       // Reserve some space to minimize reallocations.
1305       if (this->group_signatures_.empty())
1306         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1307
1308       // We will wind up using a symbol whose name is the signature.
1309       // So just put the signature in the symbol name pool to save it.
1310       signature = symtab->canonicalize_name(signature);
1311       this->group_signatures_.push_back(Group_signature(os, signature));
1312     }
1313
1314   os->set_should_link_to_symtab();
1315   os->set_entsize(4);
1316
1317   section_size_type entry_count =
1318     convert_to_section_size_type(shdr.get_sh_size() / 4);
1319   Output_section_data* posd =
1320     new Output_data_group<size, big_endian>(object, entry_count, flags,
1321                                             shndxes);
1322   os->add_output_section_data(posd);
1323 }
1324
1325 // Special GNU handling of sections name .eh_frame.  They will
1326 // normally hold exception frame data as defined by the C++ ABI
1327 // (http://codesourcery.com/cxx-abi/).
1328
1329 template<int size, bool big_endian>
1330 Output_section*
1331 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1332                         const unsigned char* symbols,
1333                         off_t symbols_size,
1334                         const unsigned char* symbol_names,
1335                         off_t symbol_names_size,
1336                         unsigned int shndx,
1337                         const elfcpp::Shdr<size, big_endian>& shdr,
1338                         unsigned int reloc_shndx, unsigned int reloc_type,
1339                         off_t* off)
1340 {
1341   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1342               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1343   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1344
1345   Output_section* os = this->make_eh_frame_section(object);
1346   if (os == NULL)
1347     return NULL;
1348
1349   gold_assert(this->eh_frame_section_ == os);
1350
1351   elfcpp::Elf_Xword orig_flags = os->flags();
1352
1353   if (!parameters->incremental()
1354       && this->eh_frame_data_->add_ehframe_input_section(object,
1355                                                          symbols,
1356                                                          symbols_size,
1357                                                          symbol_names,
1358                                                          symbol_names_size,
1359                                                          shndx,
1360                                                          reloc_shndx,
1361                                                          reloc_type))
1362     {
1363       os->update_flags_for_input_section(shdr.get_sh_flags());
1364
1365       // A writable .eh_frame section is a RELRO section.
1366       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1367           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1368         {
1369           os->set_is_relro();
1370           os->set_order(ORDER_RELRO);
1371         }
1372
1373       // We found a .eh_frame section we are going to optimize, so now
1374       // we can add the set of optimized sections to the output
1375       // section.  We need to postpone adding this until we've found a
1376       // section we can optimize so that the .eh_frame section in
1377       // crtbegin.o winds up at the start of the output section.
1378       if (!this->added_eh_frame_data_)
1379         {
1380           os->add_output_section_data(this->eh_frame_data_);
1381           this->added_eh_frame_data_ = true;
1382         }
1383       *off = -1;
1384     }
1385   else
1386     {
1387       // We couldn't handle this .eh_frame section for some reason.
1388       // Add it as a normal section.
1389       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1390       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1391                                    reloc_shndx, saw_sections_clause);
1392       this->have_added_input_section_ = true;
1393
1394       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1395           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1396         os->set_order(this->default_section_order(os, false));
1397     }
1398
1399   return os;
1400 }
1401
1402 // Create and return the magic .eh_frame section.  Create
1403 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1404 // input .eh_frame section; it may be NULL.
1405
1406 Output_section*
1407 Layout::make_eh_frame_section(const Relobj* object)
1408 {
1409   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1410   // SHT_PROGBITS.
1411   Output_section* os = this->choose_output_section(object, ".eh_frame",
1412                                                    elfcpp::SHT_PROGBITS,
1413                                                    elfcpp::SHF_ALLOC, false,
1414                                                    ORDER_EHFRAME, false);
1415   if (os == NULL)
1416     return NULL;
1417
1418   if (this->eh_frame_section_ == NULL)
1419     {
1420       this->eh_frame_section_ = os;
1421       this->eh_frame_data_ = new Eh_frame();
1422
1423       // For incremental linking, we do not optimize .eh_frame sections
1424       // or create a .eh_frame_hdr section.
1425       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1426         {
1427           Output_section* hdr_os =
1428             this->choose_output_section(NULL, ".eh_frame_hdr",
1429                                         elfcpp::SHT_PROGBITS,
1430                                         elfcpp::SHF_ALLOC, false,
1431                                         ORDER_EHFRAME, false);
1432
1433           if (hdr_os != NULL)
1434             {
1435               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1436                                                         this->eh_frame_data_);
1437               hdr_os->add_output_section_data(hdr_posd);
1438
1439               hdr_os->set_after_input_sections();
1440
1441               if (!this->script_options_->saw_phdrs_clause())
1442                 {
1443                   Output_segment* hdr_oseg;
1444                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1445                                                        elfcpp::PF_R);
1446                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1447                                                           elfcpp::PF_R);
1448                 }
1449
1450               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1451             }
1452         }
1453     }
1454
1455   return os;
1456 }
1457
1458 // Add an exception frame for a PLT.  This is called from target code.
1459
1460 void
1461 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1462                              size_t cie_length, const unsigned char* fde_data,
1463                              size_t fde_length)
1464 {
1465   if (parameters->incremental())
1466     {
1467       // FIXME: Maybe this could work some day....
1468       return;
1469     }
1470   Output_section* os = this->make_eh_frame_section(NULL);
1471   if (os == NULL)
1472     return;
1473   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1474                                             fde_data, fde_length);
1475   if (!this->added_eh_frame_data_)
1476     {
1477       os->add_output_section_data(this->eh_frame_data_);
1478       this->added_eh_frame_data_ = true;
1479     }
1480 }
1481
1482 // Scan a .debug_info or .debug_types section, and add summary
1483 // information to the .gdb_index section.
1484
1485 template<int size, bool big_endian>
1486 void
1487 Layout::add_to_gdb_index(bool is_type_unit,
1488                          Sized_relobj<size, big_endian>* object,
1489                          const unsigned char* symbols,
1490                          off_t symbols_size,
1491                          unsigned int shndx,
1492                          unsigned int reloc_shndx,
1493                          unsigned int reloc_type)
1494 {
1495   if (this->gdb_index_data_ == NULL)
1496     {
1497       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1498                                                        elfcpp::SHT_PROGBITS, 0,
1499                                                        false, ORDER_INVALID,
1500                                                        false);
1501       if (os == NULL)
1502         return;
1503
1504       this->gdb_index_data_ = new Gdb_index(os);
1505       os->add_output_section_data(this->gdb_index_data_);
1506       os->set_after_input_sections();
1507     }
1508
1509   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1510                                          symbols_size, shndx, reloc_shndx,
1511                                          reloc_type);
1512 }
1513
1514 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1515 // the output section.
1516
1517 Output_section*
1518 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1519                                 elfcpp::Elf_Xword flags,
1520                                 Output_section_data* posd,
1521                                 Output_section_order order, bool is_relro)
1522 {
1523   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1524                                                    false, order, is_relro);
1525   if (os != NULL)
1526     os->add_output_section_data(posd);
1527   return os;
1528 }
1529
1530 // Map section flags to segment flags.
1531
1532 elfcpp::Elf_Word
1533 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1534 {
1535   elfcpp::Elf_Word ret = elfcpp::PF_R;
1536   if ((flags & elfcpp::SHF_WRITE) != 0)
1537     ret |= elfcpp::PF_W;
1538   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1539     ret |= elfcpp::PF_X;
1540   return ret;
1541 }
1542
1543 // Make a new Output_section, and attach it to segments as
1544 // appropriate.  ORDER is the order in which this section should
1545 // appear in the output segment.  IS_RELRO is true if this is a relro
1546 // (read-only after relocations) section.
1547
1548 Output_section*
1549 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1550                             elfcpp::Elf_Xword flags,
1551                             Output_section_order order, bool is_relro)
1552 {
1553   Output_section* os;
1554   if ((flags & elfcpp::SHF_ALLOC) == 0
1555       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1556       && is_compressible_debug_section(name))
1557     os = new Output_compressed_section(&parameters->options(), name, type,
1558                                        flags);
1559   else if ((flags & elfcpp::SHF_ALLOC) == 0
1560            && parameters->options().strip_debug_non_line()
1561            && strcmp(".debug_abbrev", name) == 0)
1562     {
1563       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1564           name, type, flags);
1565       if (this->debug_info_)
1566         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1567     }
1568   else if ((flags & elfcpp::SHF_ALLOC) == 0
1569            && parameters->options().strip_debug_non_line()
1570            && strcmp(".debug_info", name) == 0)
1571     {
1572       os = this->debug_info_ = new Output_reduced_debug_info_section(
1573           name, type, flags);
1574       if (this->debug_abbrev_)
1575         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1576     }
1577   else
1578     {
1579       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1580       // not have correct section types.  Force them here.
1581       if (type == elfcpp::SHT_PROGBITS)
1582         {
1583           if (is_prefix_of(".init_array", name))
1584             type = elfcpp::SHT_INIT_ARRAY;
1585           else if (is_prefix_of(".preinit_array", name))
1586             type = elfcpp::SHT_PREINIT_ARRAY;
1587           else if (is_prefix_of(".fini_array", name))
1588             type = elfcpp::SHT_FINI_ARRAY;
1589         }
1590
1591       // FIXME: const_cast is ugly.
1592       Target* target = const_cast<Target*>(&parameters->target());
1593       os = target->make_output_section(name, type, flags);
1594     }
1595
1596   // With -z relro, we have to recognize the special sections by name.
1597   // There is no other way.
1598   bool is_relro_local = false;
1599   if (!this->script_options_->saw_sections_clause()
1600       && parameters->options().relro()
1601       && (flags & elfcpp::SHF_ALLOC) != 0
1602       && (flags & elfcpp::SHF_WRITE) != 0)
1603     {
1604       if (type == elfcpp::SHT_PROGBITS)
1605         {
1606           if ((flags & elfcpp::SHF_TLS) != 0)
1607             is_relro = true;
1608           else if (strcmp(name, ".data.rel.ro") == 0)
1609             is_relro = true;
1610           else if (strcmp(name, ".data.rel.ro.local") == 0)
1611             {
1612               is_relro = true;
1613               is_relro_local = true;
1614             }
1615           else if (strcmp(name, ".ctors") == 0
1616                    || strcmp(name, ".dtors") == 0
1617                    || strcmp(name, ".jcr") == 0)
1618             is_relro = true;
1619         }
1620       else if (type == elfcpp::SHT_INIT_ARRAY
1621                || type == elfcpp::SHT_FINI_ARRAY
1622                || type == elfcpp::SHT_PREINIT_ARRAY)
1623         is_relro = true;
1624     }
1625
1626   if (is_relro)
1627     os->set_is_relro();
1628
1629   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1630     order = this->default_section_order(os, is_relro_local);
1631
1632   os->set_order(order);
1633
1634   parameters->target().new_output_section(os);
1635
1636   this->section_list_.push_back(os);
1637
1638   // The GNU linker by default sorts some sections by priority, so we
1639   // do the same.  We need to know that this might happen before we
1640   // attach any input sections.
1641   if (!this->script_options_->saw_sections_clause()
1642       && !parameters->options().relocatable()
1643       && (strcmp(name, ".init_array") == 0
1644           || strcmp(name, ".fini_array") == 0
1645           || (!parameters->options().ctors_in_init_array()
1646               && (strcmp(name, ".ctors") == 0
1647                   || strcmp(name, ".dtors") == 0))))
1648     os->set_may_sort_attached_input_sections();
1649
1650   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1651   // sections before other .text sections.  We are compatible.  We
1652   // need to know that this might happen before we attach any input
1653   // sections.
1654   if (parameters->options().text_reorder()
1655       && !this->script_options_->saw_sections_clause()
1656       && !this->is_section_ordering_specified()
1657       && !parameters->options().relocatable()
1658       && strcmp(name, ".text") == 0)
1659     os->set_may_sort_attached_input_sections();
1660
1661   // Check for .stab*str sections, as .stab* sections need to link to
1662   // them.
1663   if (type == elfcpp::SHT_STRTAB
1664       && !this->have_stabstr_section_
1665       && strncmp(name, ".stab", 5) == 0
1666       && strcmp(name + strlen(name) - 3, "str") == 0)
1667     this->have_stabstr_section_ = true;
1668
1669   // During a full incremental link, we add patch space to most
1670   // PROGBITS and NOBITS sections.  Flag those that may be
1671   // arbitrarily padded.
1672   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1673       && order != ORDER_INTERP
1674       && order != ORDER_INIT
1675       && order != ORDER_PLT
1676       && order != ORDER_FINI
1677       && order != ORDER_RELRO_LAST
1678       && order != ORDER_NON_RELRO_FIRST
1679       && strcmp(name, ".eh_frame") != 0
1680       && strcmp(name, ".ctors") != 0
1681       && strcmp(name, ".dtors") != 0
1682       && strcmp(name, ".jcr") != 0)
1683     {
1684       os->set_is_patch_space_allowed();
1685
1686       // Certain sections require "holes" to be filled with
1687       // specific fill patterns.  These fill patterns may have
1688       // a minimum size, so we must prevent allocations from the
1689       // free list that leave a hole smaller than the minimum.
1690       if (strcmp(name, ".debug_info") == 0)
1691         os->set_free_space_fill(new Output_fill_debug_info(false));
1692       else if (strcmp(name, ".debug_types") == 0)
1693         os->set_free_space_fill(new Output_fill_debug_info(true));
1694       else if (strcmp(name, ".debug_line") == 0)
1695         os->set_free_space_fill(new Output_fill_debug_line());
1696     }
1697
1698   // If we have already attached the sections to segments, then we
1699   // need to attach this one now.  This happens for sections created
1700   // directly by the linker.
1701   if (this->sections_are_attached_)
1702     this->attach_section_to_segment(&parameters->target(), os);
1703
1704   return os;
1705 }
1706
1707 // Return the default order in which a section should be placed in an
1708 // output segment.  This function captures a lot of the ideas in
1709 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1710 // linker created section is normally set when the section is created;
1711 // this function is used for input sections.
1712
1713 Output_section_order
1714 Layout::default_section_order(Output_section* os, bool is_relro_local)
1715 {
1716   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1717   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1718   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1719   bool is_bss = false;
1720
1721   switch (os->type())
1722     {
1723     default:
1724     case elfcpp::SHT_PROGBITS:
1725       break;
1726     case elfcpp::SHT_NOBITS:
1727       is_bss = true;
1728       break;
1729     case elfcpp::SHT_RELA:
1730     case elfcpp::SHT_REL:
1731       if (!is_write)
1732         return ORDER_DYNAMIC_RELOCS;
1733       break;
1734     case elfcpp::SHT_HASH:
1735     case elfcpp::SHT_DYNAMIC:
1736     case elfcpp::SHT_SHLIB:
1737     case elfcpp::SHT_DYNSYM:
1738     case elfcpp::SHT_GNU_HASH:
1739     case elfcpp::SHT_GNU_verdef:
1740     case elfcpp::SHT_GNU_verneed:
1741     case elfcpp::SHT_GNU_versym:
1742       if (!is_write)
1743         return ORDER_DYNAMIC_LINKER;
1744       break;
1745     case elfcpp::SHT_NOTE:
1746       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1747     }
1748
1749   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1750     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1751
1752   if (!is_bss && !is_write)
1753     {
1754       if (is_execinstr)
1755         {
1756           if (strcmp(os->name(), ".init") == 0)
1757             return ORDER_INIT;
1758           else if (strcmp(os->name(), ".fini") == 0)
1759             return ORDER_FINI;
1760         }
1761       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1762     }
1763
1764   if (os->is_relro())
1765     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1766
1767   if (os->is_small_section())
1768     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1769   if (os->is_large_section())
1770     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1771
1772   return is_bss ? ORDER_BSS : ORDER_DATA;
1773 }
1774
1775 // Attach output sections to segments.  This is called after we have
1776 // seen all the input sections.
1777
1778 void
1779 Layout::attach_sections_to_segments(const Target* target)
1780 {
1781   for (Section_list::iterator p = this->section_list_.begin();
1782        p != this->section_list_.end();
1783        ++p)
1784     this->attach_section_to_segment(target, *p);
1785
1786   this->sections_are_attached_ = true;
1787 }
1788
1789 // Attach an output section to a segment.
1790
1791 void
1792 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1793 {
1794   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1795     this->unattached_section_list_.push_back(os);
1796   else
1797     this->attach_allocated_section_to_segment(target, os);
1798 }
1799
1800 // Attach an allocated output section to a segment.
1801
1802 void
1803 Layout::attach_allocated_section_to_segment(const Target* target,
1804                                             Output_section* os)
1805 {
1806   elfcpp::Elf_Xword flags = os->flags();
1807   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1808
1809   if (parameters->options().relocatable())
1810     return;
1811
1812   // If we have a SECTIONS clause, we can't handle the attachment to
1813   // segments until after we've seen all the sections.
1814   if (this->script_options_->saw_sections_clause())
1815     return;
1816
1817   gold_assert(!this->script_options_->saw_phdrs_clause());
1818
1819   // This output section goes into a PT_LOAD segment.
1820
1821   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1822
1823   // If this output section's segment has extra flags that need to be set,
1824   // coming from a linker plugin, do that.
1825   seg_flags |= os->extra_segment_flags();
1826
1827   // Check for --section-start.
1828   uint64_t addr;
1829   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1830
1831   // In general the only thing we really care about for PT_LOAD
1832   // segments is whether or not they are writable or executable,
1833   // so that is how we search for them.
1834   // Large data sections also go into their own PT_LOAD segment.
1835   // People who need segments sorted on some other basis will
1836   // have to use a linker script.
1837
1838   Segment_list::const_iterator p;
1839   if (!os->is_unique_segment())
1840     {
1841       for (p = this->segment_list_.begin();
1842            p != this->segment_list_.end();
1843            ++p)
1844         {
1845           if ((*p)->type() != elfcpp::PT_LOAD)                        
1846             continue;                        
1847           if ((*p)->is_unique_segment())                        
1848             continue;                        
1849           if (!parameters->options().omagic()                        
1850               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1851             continue;                        
1852           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1853               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1854             continue;                        
1855           // If -Tbss was specified, we need to separate the data and BSS                        
1856           // segments.                        
1857           if (parameters->options().user_set_Tbss())                        
1858             {                        
1859               if ((os->type() == elfcpp::SHT_NOBITS)                        
1860                   == (*p)->has_any_data_sections())                        
1861                 continue;                        
1862             }                        
1863           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1864             continue;                        
1865                             
1866           if (is_address_set)                        
1867             {                        
1868               if ((*p)->are_addresses_set())                        
1869                 continue;                        
1870                             
1871               (*p)->add_initial_output_data(os);                        
1872               (*p)->update_flags_for_output_section(seg_flags);                        
1873               (*p)->set_addresses(addr, addr);                        
1874               break;                        
1875             }                        
1876                             
1877           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1878           break;                        
1879         }                        
1880     }
1881
1882   if (p == this->segment_list_.end()
1883       || os->is_unique_segment())
1884     {
1885       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1886                                                        seg_flags);
1887       if (os->is_large_data_section())
1888         oseg->set_is_large_data_segment();
1889       oseg->add_output_section_to_load(this, os, seg_flags);
1890       if (is_address_set)
1891         oseg->set_addresses(addr, addr);
1892       // Check if segment should be marked unique.  For segments marked
1893       // unique by linker plugins, set the new alignment if specified.
1894       if (os->is_unique_segment())
1895         {
1896           oseg->set_is_unique_segment();
1897           if (os->segment_alignment() != 0)
1898             oseg->set_minimum_p_align(os->segment_alignment());
1899         }
1900     }
1901
1902   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1903   // segment.
1904   if (os->type() == elfcpp::SHT_NOTE)
1905     {
1906       // See if we already have an equivalent PT_NOTE segment.
1907       for (p = this->segment_list_.begin();
1908            p != segment_list_.end();
1909            ++p)
1910         {
1911           if ((*p)->type() == elfcpp::PT_NOTE
1912               && (((*p)->flags() & elfcpp::PF_W)
1913                   == (seg_flags & elfcpp::PF_W)))
1914             {
1915               (*p)->add_output_section_to_nonload(os, seg_flags);
1916               break;
1917             }
1918         }
1919
1920       if (p == this->segment_list_.end())
1921         {
1922           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1923                                                            seg_flags);
1924           oseg->add_output_section_to_nonload(os, seg_flags);
1925         }
1926     }
1927
1928   // If we see a loadable SHF_TLS section, we create a PT_TLS
1929   // segment.  There can only be one such segment.
1930   if ((flags & elfcpp::SHF_TLS) != 0)
1931     {
1932       if (this->tls_segment_ == NULL)
1933         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1934       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1935     }
1936
1937   // If -z relro is in effect, and we see a relro section, we create a
1938   // PT_GNU_RELRO segment.  There can only be one such segment.
1939   if (os->is_relro() && parameters->options().relro())
1940     {
1941       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1942       if (this->relro_segment_ == NULL)
1943         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1944       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1945     }
1946
1947   // If we see a section named .interp, put it into a PT_INTERP
1948   // segment.  This seems broken to me, but this is what GNU ld does,
1949   // and glibc expects it.
1950   if (strcmp(os->name(), ".interp") == 0
1951       && !this->script_options_->saw_phdrs_clause())
1952     {
1953       if (this->interp_segment_ == NULL)
1954         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1955       else
1956         gold_warning(_("multiple '.interp' sections in input files "
1957                        "may cause confusing PT_INTERP segment"));
1958       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1959     }
1960 }
1961
1962 // Make an output section for a script.
1963
1964 Output_section*
1965 Layout::make_output_section_for_script(
1966     const char* name,
1967     Script_sections::Section_type section_type)
1968 {
1969   name = this->namepool_.add(name, false, NULL);
1970   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1971   if (section_type == Script_sections::ST_NOLOAD)
1972     sh_flags = 0;
1973   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1974                                                  sh_flags, ORDER_INVALID,
1975                                                  false);
1976   os->set_found_in_sections_clause();
1977   if (section_type == Script_sections::ST_NOLOAD)
1978     os->set_is_noload();
1979   return os;
1980 }
1981
1982 // Return the number of segments we expect to see.
1983
1984 size_t
1985 Layout::expected_segment_count() const
1986 {
1987   size_t ret = this->segment_list_.size();
1988
1989   // If we didn't see a SECTIONS clause in a linker script, we should
1990   // already have the complete list of segments.  Otherwise we ask the
1991   // SECTIONS clause how many segments it expects, and add in the ones
1992   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1993
1994   if (!this->script_options_->saw_sections_clause())
1995     return ret;
1996   else
1997     {
1998       const Script_sections* ss = this->script_options_->script_sections();
1999       return ret + ss->expected_segment_count(this);
2000     }
2001 }
2002
2003 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2004 // is whether we saw a .note.GNU-stack section in the object file.
2005 // GNU_STACK_FLAGS is the section flags.  The flags give the
2006 // protection required for stack memory.  We record this in an
2007 // executable as a PT_GNU_STACK segment.  If an object file does not
2008 // have a .note.GNU-stack segment, we must assume that it is an old
2009 // object.  On some targets that will force an executable stack.
2010
2011 void
2012 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2013                          const Object* obj)
2014 {
2015   if (!seen_gnu_stack)
2016     {
2017       this->input_without_gnu_stack_note_ = true;
2018       if (parameters->options().warn_execstack()
2019           && parameters->target().is_default_stack_executable())
2020         gold_warning(_("%s: missing .note.GNU-stack section"
2021                        " implies executable stack"),
2022                      obj->name().c_str());
2023     }
2024   else
2025     {
2026       this->input_with_gnu_stack_note_ = true;
2027       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2028         {
2029           this->input_requires_executable_stack_ = true;
2030           if (parameters->options().warn_execstack()
2031               || parameters->options().is_stack_executable())
2032             gold_warning(_("%s: requires executable stack"),
2033                          obj->name().c_str());
2034         }
2035     }
2036 }
2037
2038 // Create automatic note sections.
2039
2040 void
2041 Layout::create_notes()
2042 {
2043   this->create_gold_note();
2044   this->create_executable_stack_info();
2045   this->create_build_id();
2046 }
2047
2048 // Create the dynamic sections which are needed before we read the
2049 // relocs.
2050
2051 void
2052 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2053 {
2054   if (parameters->doing_static_link())
2055     return;
2056
2057   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2058                                                        elfcpp::SHT_DYNAMIC,
2059                                                        (elfcpp::SHF_ALLOC
2060                                                         | elfcpp::SHF_WRITE),
2061                                                        false, ORDER_RELRO,
2062                                                        true);
2063
2064   // A linker script may discard .dynamic, so check for NULL.
2065   if (this->dynamic_section_ != NULL)
2066     {
2067       this->dynamic_symbol_ =
2068         symtab->define_in_output_data("_DYNAMIC", NULL,
2069                                       Symbol_table::PREDEFINED,
2070                                       this->dynamic_section_, 0, 0,
2071                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2072                                       elfcpp::STV_HIDDEN, 0, false, false);
2073
2074       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2075
2076       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2077     }
2078 }
2079
2080 // For each output section whose name can be represented as C symbol,
2081 // define __start and __stop symbols for the section.  This is a GNU
2082 // extension.
2083
2084 void
2085 Layout::define_section_symbols(Symbol_table* symtab)
2086 {
2087   for (Section_list::const_iterator p = this->section_list_.begin();
2088        p != this->section_list_.end();
2089        ++p)
2090     {
2091       const char* const name = (*p)->name();
2092       if (is_cident(name))
2093         {
2094           const std::string name_string(name);
2095           const std::string start_name(cident_section_start_prefix
2096                                        + name_string);
2097           const std::string stop_name(cident_section_stop_prefix
2098                                       + name_string);
2099
2100           symtab->define_in_output_data(start_name.c_str(),
2101                                         NULL, // version
2102                                         Symbol_table::PREDEFINED,
2103                                         *p,
2104                                         0, // value
2105                                         0, // symsize
2106                                         elfcpp::STT_NOTYPE,
2107                                         elfcpp::STB_GLOBAL,
2108                                         elfcpp::STV_DEFAULT,
2109                                         0, // nonvis
2110                                         false, // offset_is_from_end
2111                                         true); // only_if_ref
2112
2113           symtab->define_in_output_data(stop_name.c_str(),
2114                                         NULL, // version
2115                                         Symbol_table::PREDEFINED,
2116                                         *p,
2117                                         0, // value
2118                                         0, // symsize
2119                                         elfcpp::STT_NOTYPE,
2120                                         elfcpp::STB_GLOBAL,
2121                                         elfcpp::STV_DEFAULT,
2122                                         0, // nonvis
2123                                         true, // offset_is_from_end
2124                                         true); // only_if_ref
2125         }
2126     }
2127 }
2128
2129 // Define symbols for group signatures.
2130
2131 void
2132 Layout::define_group_signatures(Symbol_table* symtab)
2133 {
2134   for (Group_signatures::iterator p = this->group_signatures_.begin();
2135        p != this->group_signatures_.end();
2136        ++p)
2137     {
2138       Symbol* sym = symtab->lookup(p->signature, NULL);
2139       if (sym != NULL)
2140         p->section->set_info_symndx(sym);
2141       else
2142         {
2143           // Force the name of the group section to the group
2144           // signature, and use the group's section symbol as the
2145           // signature symbol.
2146           if (strcmp(p->section->name(), p->signature) != 0)
2147             {
2148               const char* name = this->namepool_.add(p->signature,
2149                                                      true, NULL);
2150               p->section->set_name(name);
2151             }
2152           p->section->set_needs_symtab_index();
2153           p->section->set_info_section_symndx(p->section);
2154         }
2155     }
2156
2157   this->group_signatures_.clear();
2158 }
2159
2160 // Find the first read-only PT_LOAD segment, creating one if
2161 // necessary.
2162
2163 Output_segment*
2164 Layout::find_first_load_seg(const Target* target)
2165 {
2166   Output_segment* best = NULL;
2167   for (Segment_list::const_iterator p = this->segment_list_.begin();
2168        p != this->segment_list_.end();
2169        ++p)
2170     {
2171       if ((*p)->type() == elfcpp::PT_LOAD
2172           && ((*p)->flags() & elfcpp::PF_R) != 0
2173           && (parameters->options().omagic()
2174               || ((*p)->flags() & elfcpp::PF_W) == 0)
2175           && (!target->isolate_execinstr()
2176               || ((*p)->flags() & elfcpp::PF_X) == 0))
2177         {
2178           if (best == NULL || this->segment_precedes(*p, best))
2179             best = *p;
2180         }
2181     }
2182   if (best != NULL)
2183     return best;
2184
2185   gold_assert(!this->script_options_->saw_phdrs_clause());
2186
2187   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2188                                                        elfcpp::PF_R);
2189   return load_seg;
2190 }
2191
2192 // Save states of all current output segments.  Store saved states
2193 // in SEGMENT_STATES.
2194
2195 void
2196 Layout::save_segments(Segment_states* segment_states)
2197 {
2198   for (Segment_list::const_iterator p = this->segment_list_.begin();
2199        p != this->segment_list_.end();
2200        ++p)
2201     {
2202       Output_segment* segment = *p;
2203       // Shallow copy.
2204       Output_segment* copy = new Output_segment(*segment);
2205       (*segment_states)[segment] = copy;
2206     }
2207 }
2208
2209 // Restore states of output segments and delete any segment not found in
2210 // SEGMENT_STATES.
2211
2212 void
2213 Layout::restore_segments(const Segment_states* segment_states)
2214 {
2215   // Go through the segment list and remove any segment added in the
2216   // relaxation loop.
2217   this->tls_segment_ = NULL;
2218   this->relro_segment_ = NULL;
2219   Segment_list::iterator list_iter = this->segment_list_.begin();
2220   while (list_iter != this->segment_list_.end())
2221     {
2222       Output_segment* segment = *list_iter;
2223       Segment_states::const_iterator states_iter =
2224           segment_states->find(segment);
2225       if (states_iter != segment_states->end())
2226         {
2227           const Output_segment* copy = states_iter->second;
2228           // Shallow copy to restore states.
2229           *segment = *copy;
2230
2231           // Also fix up TLS and RELRO segment pointers as appropriate.
2232           if (segment->type() == elfcpp::PT_TLS)
2233             this->tls_segment_ = segment;
2234           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2235             this->relro_segment_ = segment;
2236
2237           ++list_iter;
2238         }
2239       else
2240         {
2241           list_iter = this->segment_list_.erase(list_iter);
2242           // This is a segment created during section layout.  It should be
2243           // safe to remove it since we should have removed all pointers to it.
2244           delete segment;
2245         }
2246     }
2247 }
2248
2249 // Clean up after relaxation so that sections can be laid out again.
2250
2251 void
2252 Layout::clean_up_after_relaxation()
2253 {
2254   // Restore the segments to point state just prior to the relaxation loop.
2255   Script_sections* script_section = this->script_options_->script_sections();
2256   script_section->release_segments();
2257   this->restore_segments(this->segment_states_);
2258
2259   // Reset section addresses and file offsets
2260   for (Section_list::iterator p = this->section_list_.begin();
2261        p != this->section_list_.end();
2262        ++p)
2263     {
2264       (*p)->restore_states();
2265
2266       // If an input section changes size because of relaxation,
2267       // we need to adjust the section offsets of all input sections.
2268       // after such a section.
2269       if ((*p)->section_offsets_need_adjustment())
2270         (*p)->adjust_section_offsets();
2271
2272       (*p)->reset_address_and_file_offset();
2273     }
2274
2275   // Reset special output object address and file offsets.
2276   for (Data_list::iterator p = this->special_output_list_.begin();
2277        p != this->special_output_list_.end();
2278        ++p)
2279     (*p)->reset_address_and_file_offset();
2280
2281   // A linker script may have created some output section data objects.
2282   // They are useless now.
2283   for (Output_section_data_list::const_iterator p =
2284          this->script_output_section_data_list_.begin();
2285        p != this->script_output_section_data_list_.end();
2286        ++p)
2287     delete *p;
2288   this->script_output_section_data_list_.clear();
2289 }
2290
2291 // Prepare for relaxation.
2292
2293 void
2294 Layout::prepare_for_relaxation()
2295 {
2296   // Create an relaxation debug check if in debugging mode.
2297   if (is_debugging_enabled(DEBUG_RELAXATION))
2298     this->relaxation_debug_check_ = new Relaxation_debug_check();
2299
2300   // Save segment states.
2301   this->segment_states_ = new Segment_states();
2302   this->save_segments(this->segment_states_);
2303
2304   for(Section_list::const_iterator p = this->section_list_.begin();
2305       p != this->section_list_.end();
2306       ++p)
2307     (*p)->save_states();
2308
2309   if (is_debugging_enabled(DEBUG_RELAXATION))
2310     this->relaxation_debug_check_->check_output_data_for_reset_values(
2311         this->section_list_, this->special_output_list_);
2312
2313   // Also enable recording of output section data from scripts.
2314   this->record_output_section_data_from_script_ = true;
2315 }
2316
2317 // Relaxation loop body:  If target has no relaxation, this runs only once
2318 // Otherwise, the target relaxation hook is called at the end of
2319 // each iteration.  If the hook returns true, it means re-layout of
2320 // section is required.
2321 //
2322 // The number of segments created by a linking script without a PHDRS
2323 // clause may be affected by section sizes and alignments.  There is
2324 // a remote chance that relaxation causes different number of PT_LOAD
2325 // segments are created and sections are attached to different segments.
2326 // Therefore, we always throw away all segments created during section
2327 // layout.  In order to be able to restart the section layout, we keep
2328 // a copy of the segment list right before the relaxation loop and use
2329 // that to restore the segments.
2330 //
2331 // PASS is the current relaxation pass number.
2332 // SYMTAB is a symbol table.
2333 // PLOAD_SEG is the address of a pointer for the load segment.
2334 // PHDR_SEG is a pointer to the PHDR segment.
2335 // SEGMENT_HEADERS points to the output segment header.
2336 // FILE_HEADER points to the output file header.
2337 // PSHNDX is the address to store the output section index.
2338
2339 off_t inline
2340 Layout::relaxation_loop_body(
2341     int pass,
2342     Target* target,
2343     Symbol_table* symtab,
2344     Output_segment** pload_seg,
2345     Output_segment* phdr_seg,
2346     Output_segment_headers* segment_headers,
2347     Output_file_header* file_header,
2348     unsigned int* pshndx)
2349 {
2350   // If this is not the first iteration, we need to clean up after
2351   // relaxation so that we can lay out the sections again.
2352   if (pass != 0)
2353     this->clean_up_after_relaxation();
2354
2355   // If there is a SECTIONS clause, put all the input sections into
2356   // the required order.
2357   Output_segment* load_seg;
2358   if (this->script_options_->saw_sections_clause())
2359     load_seg = this->set_section_addresses_from_script(symtab);
2360   else if (parameters->options().relocatable())
2361     load_seg = NULL;
2362   else
2363     load_seg = this->find_first_load_seg(target);
2364
2365   if (parameters->options().oformat_enum()
2366       != General_options::OBJECT_FORMAT_ELF)
2367     load_seg = NULL;
2368
2369   // If the user set the address of the text segment, that may not be
2370   // compatible with putting the segment headers and file headers into
2371   // that segment.
2372   if (parameters->options().user_set_Ttext()
2373       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2374     {
2375       load_seg = NULL;
2376       phdr_seg = NULL;
2377     }
2378
2379   gold_assert(phdr_seg == NULL
2380               || load_seg != NULL
2381               || this->script_options_->saw_sections_clause());
2382
2383   // If the address of the load segment we found has been set by
2384   // --section-start rather than by a script, then adjust the VMA and
2385   // LMA downward if possible to include the file and section headers.
2386   uint64_t header_gap = 0;
2387   if (load_seg != NULL
2388       && load_seg->are_addresses_set()
2389       && !this->script_options_->saw_sections_clause()
2390       && !parameters->options().relocatable())
2391     {
2392       file_header->finalize_data_size();
2393       segment_headers->finalize_data_size();
2394       size_t sizeof_headers = (file_header->data_size()
2395                                + segment_headers->data_size());
2396       const uint64_t abi_pagesize = target->abi_pagesize();
2397       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2398       hdr_paddr &= ~(abi_pagesize - 1);
2399       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2400       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2401         load_seg = NULL;
2402       else
2403         {
2404           load_seg->set_addresses(load_seg->vaddr() - subtract,
2405                                   load_seg->paddr() - subtract);
2406           header_gap = subtract - sizeof_headers;
2407         }
2408     }
2409
2410   // Lay out the segment headers.
2411   if (!parameters->options().relocatable())
2412     {
2413       gold_assert(segment_headers != NULL);
2414       if (header_gap != 0 && load_seg != NULL)
2415         {
2416           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2417           load_seg->add_initial_output_data(z);
2418         }
2419       if (load_seg != NULL)
2420         load_seg->add_initial_output_data(segment_headers);
2421       if (phdr_seg != NULL)
2422         phdr_seg->add_initial_output_data(segment_headers);
2423     }
2424
2425   // Lay out the file header.
2426   if (load_seg != NULL)
2427     load_seg->add_initial_output_data(file_header);
2428
2429   if (this->script_options_->saw_phdrs_clause()
2430       && !parameters->options().relocatable())
2431     {
2432       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2433       // clause in a linker script.
2434       Script_sections* ss = this->script_options_->script_sections();
2435       ss->put_headers_in_phdrs(file_header, segment_headers);
2436     }
2437
2438   // We set the output section indexes in set_segment_offsets and
2439   // set_section_indexes.
2440   *pshndx = 1;
2441
2442   // Set the file offsets of all the segments, and all the sections
2443   // they contain.
2444   off_t off;
2445   if (!parameters->options().relocatable())
2446     off = this->set_segment_offsets(target, load_seg, pshndx);
2447   else
2448     off = this->set_relocatable_section_offsets(file_header, pshndx);
2449
2450    // Verify that the dummy relaxation does not change anything.
2451   if (is_debugging_enabled(DEBUG_RELAXATION))
2452     {
2453       if (pass == 0)
2454         this->relaxation_debug_check_->read_sections(this->section_list_);
2455       else
2456         this->relaxation_debug_check_->verify_sections(this->section_list_);
2457     }
2458
2459   *pload_seg = load_seg;
2460   return off;
2461 }
2462
2463 // Search the list of patterns and find the postion of the given section
2464 // name in the output section.  If the section name matches a glob
2465 // pattern and a non-glob name, then the non-glob position takes
2466 // precedence.  Return 0 if no match is found.
2467
2468 unsigned int
2469 Layout::find_section_order_index(const std::string& section_name)
2470 {
2471   Unordered_map<std::string, unsigned int>::iterator map_it;
2472   map_it = this->input_section_position_.find(section_name);
2473   if (map_it != this->input_section_position_.end())
2474     return map_it->second;
2475
2476   // Absolute match failed.  Linear search the glob patterns.
2477   std::vector<std::string>::iterator it;
2478   for (it = this->input_section_glob_.begin();
2479        it != this->input_section_glob_.end();
2480        ++it)
2481     {
2482        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2483          {
2484            map_it = this->input_section_position_.find(*it);
2485            gold_assert(map_it != this->input_section_position_.end());
2486            return map_it->second;
2487          }
2488     }
2489   return 0;
2490 }
2491
2492 // Read the sequence of input sections from the file specified with
2493 // option --section-ordering-file.
2494
2495 void
2496 Layout::read_layout_from_file()
2497 {
2498   const char* filename = parameters->options().section_ordering_file();
2499   std::ifstream in;
2500   std::string line;
2501
2502   in.open(filename);
2503   if (!in)
2504     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2505                filename, strerror(errno));
2506
2507   std::getline(in, line);   // this chops off the trailing \n, if any
2508   unsigned int position = 1;
2509   this->set_section_ordering_specified();
2510
2511   while (in)
2512     {
2513       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2514         line.resize(line.length() - 1);
2515       // Ignore comments, beginning with '#'
2516       if (line[0] == '#')
2517         {
2518           std::getline(in, line);
2519           continue;
2520         }
2521       this->input_section_position_[line] = position;
2522       // Store all glob patterns in a vector.
2523       if (is_wildcard_string(line.c_str()))
2524         this->input_section_glob_.push_back(line);
2525       position++;
2526       std::getline(in, line);
2527     }
2528 }
2529
2530 // Finalize the layout.  When this is called, we have created all the
2531 // output sections and all the output segments which are based on
2532 // input sections.  We have several things to do, and we have to do
2533 // them in the right order, so that we get the right results correctly
2534 // and efficiently.
2535
2536 // 1) Finalize the list of output segments and create the segment
2537 // table header.
2538
2539 // 2) Finalize the dynamic symbol table and associated sections.
2540
2541 // 3) Determine the final file offset of all the output segments.
2542
2543 // 4) Determine the final file offset of all the SHF_ALLOC output
2544 // sections.
2545
2546 // 5) Create the symbol table sections and the section name table
2547 // section.
2548
2549 // 6) Finalize the symbol table: set symbol values to their final
2550 // value and make a final determination of which symbols are going
2551 // into the output symbol table.
2552
2553 // 7) Create the section table header.
2554
2555 // 8) Determine the final file offset of all the output sections which
2556 // are not SHF_ALLOC, including the section table header.
2557
2558 // 9) Finalize the ELF file header.
2559
2560 // This function returns the size of the output file.
2561
2562 off_t
2563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2564                  Target* target, const Task* task)
2565 {
2566   target->finalize_sections(this, input_objects, symtab);
2567
2568   this->count_local_symbols(task, input_objects);
2569
2570   this->link_stabs_sections();
2571
2572   Output_segment* phdr_seg = NULL;
2573   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2574     {
2575       // There was a dynamic object in the link.  We need to create
2576       // some information for the dynamic linker.
2577
2578       // Create the PT_PHDR segment which will hold the program
2579       // headers.
2580       if (!this->script_options_->saw_phdrs_clause())
2581         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2582
2583       // Create the dynamic symbol table, including the hash table.
2584       Output_section* dynstr;
2585       std::vector<Symbol*> dynamic_symbols;
2586       unsigned int local_dynamic_count;
2587       Versions versions(*this->script_options()->version_script_info(),
2588                         &this->dynpool_);
2589       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2590                                   &local_dynamic_count, &dynamic_symbols,
2591                                   &versions);
2592
2593       // Create the .interp section to hold the name of the
2594       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2595       // if we saw a .interp section in an input file.
2596       if ((!parameters->options().shared()
2597            || parameters->options().dynamic_linker() != NULL)
2598           && this->interp_segment_ == NULL)
2599         this->create_interp(target);
2600
2601       // Finish the .dynamic section to hold the dynamic data, and put
2602       // it in a PT_DYNAMIC segment.
2603       this->finish_dynamic_section(input_objects, symtab);
2604
2605       // We should have added everything we need to the dynamic string
2606       // table.
2607       this->dynpool_.set_string_offsets();
2608
2609       // Create the version sections.  We can't do this until the
2610       // dynamic string table is complete.
2611       this->create_version_sections(&versions, symtab, local_dynamic_count,
2612                                     dynamic_symbols, dynstr);
2613
2614       // Set the size of the _DYNAMIC symbol.  We can't do this until
2615       // after we call create_version_sections.
2616       this->set_dynamic_symbol_size(symtab);
2617     }
2618
2619   // Create segment headers.
2620   Output_segment_headers* segment_headers =
2621     (parameters->options().relocatable()
2622      ? NULL
2623      : new Output_segment_headers(this->segment_list_));
2624
2625   // Lay out the file header.
2626   Output_file_header* file_header = new Output_file_header(target, symtab,
2627                                                            segment_headers);
2628
2629   this->special_output_list_.push_back(file_header);
2630   if (segment_headers != NULL)
2631     this->special_output_list_.push_back(segment_headers);
2632
2633   // Find approriate places for orphan output sections if we are using
2634   // a linker script.
2635   if (this->script_options_->saw_sections_clause())
2636     this->place_orphan_sections_in_script();
2637
2638   Output_segment* load_seg;
2639   off_t off;
2640   unsigned int shndx;
2641   int pass = 0;
2642
2643   // Take a snapshot of the section layout as needed.
2644   if (target->may_relax())
2645     this->prepare_for_relaxation();
2646
2647   // Run the relaxation loop to lay out sections.
2648   do
2649     {
2650       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2651                                        phdr_seg, segment_headers, file_header,
2652                                        &shndx);
2653       pass++;
2654     }
2655   while (target->may_relax()
2656          && target->relax(pass, input_objects, symtab, this, task));
2657
2658   // If there is a load segment that contains the file and program headers,
2659   // provide a symbol __ehdr_start pointing there.
2660   // A program can use this to examine itself robustly.
2661   if (load_seg != NULL)
2662     symtab->define_in_output_segment("__ehdr_start", NULL,
2663                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2664                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2665                                      elfcpp::STV_DEFAULT, 0,
2666                                      Symbol::SEGMENT_START, true);
2667
2668   // Set the file offsets of all the non-data sections we've seen so
2669   // far which don't have to wait for the input sections.  We need
2670   // this in order to finalize local symbols in non-allocated
2671   // sections.
2672   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2673
2674   // Set the section indexes of all unallocated sections seen so far,
2675   // in case any of them are somehow referenced by a symbol.
2676   shndx = this->set_section_indexes(shndx);
2677
2678   // Create the symbol table sections.
2679   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2680   if (!parameters->doing_static_link())
2681     this->assign_local_dynsym_offsets(input_objects);
2682
2683   // Process any symbol assignments from a linker script.  This must
2684   // be called after the symbol table has been finalized.
2685   this->script_options_->finalize_symbols(symtab, this);
2686
2687   // Create the incremental inputs sections.
2688   if (this->incremental_inputs_)
2689     {
2690       this->incremental_inputs_->finalize();
2691       this->create_incremental_info_sections(symtab);
2692     }
2693
2694   // Create the .shstrtab section.
2695   Output_section* shstrtab_section = this->create_shstrtab();
2696
2697   // Set the file offsets of the rest of the non-data sections which
2698   // don't have to wait for the input sections.
2699   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2700
2701   // Now that all sections have been created, set the section indexes
2702   // for any sections which haven't been done yet.
2703   shndx = this->set_section_indexes(shndx);
2704
2705   // Create the section table header.
2706   this->create_shdrs(shstrtab_section, &off);
2707
2708   // If there are no sections which require postprocessing, we can
2709   // handle the section names now, and avoid a resize later.
2710   if (!this->any_postprocessing_sections_)
2711     {
2712       off = this->set_section_offsets(off,
2713                                       POSTPROCESSING_SECTIONS_PASS);
2714       off =
2715           this->set_section_offsets(off,
2716                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2717     }
2718
2719   file_header->set_section_info(this->section_headers_, shstrtab_section);
2720
2721   // Now we know exactly where everything goes in the output file
2722   // (except for non-allocated sections which require postprocessing).
2723   Output_data::layout_complete();
2724
2725   this->output_file_size_ = off;
2726
2727   return off;
2728 }
2729
2730 // Create a note header following the format defined in the ELF ABI.
2731 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2732 // of the section to create, DESCSZ is the size of the descriptor.
2733 // ALLOCATE is true if the section should be allocated in memory.
2734 // This returns the new note section.  It sets *TRAILING_PADDING to
2735 // the number of trailing zero bytes required.
2736
2737 Output_section*
2738 Layout::create_note(const char* name, int note_type,
2739                     const char* section_name, size_t descsz,
2740                     bool allocate, size_t* trailing_padding)
2741 {
2742   // Authorities all agree that the values in a .note field should
2743   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2744   // they differ on what the alignment is for 64-bit binaries.
2745   // The GABI says unambiguously they take 8-byte alignment:
2746   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2747   // Other documentation says alignment should always be 4 bytes:
2748   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2749   // GNU ld and GNU readelf both support the latter (at least as of
2750   // version 2.16.91), and glibc always generates the latter for
2751   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2752   // here.
2753 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2754   const int size = parameters->target().get_size();
2755 #else
2756   const int size = 32;
2757 #endif
2758
2759   // The contents of the .note section.
2760   size_t namesz = strlen(name) + 1;
2761   size_t aligned_namesz = align_address(namesz, size / 8);
2762   size_t aligned_descsz = align_address(descsz, size / 8);
2763
2764   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2765
2766   unsigned char* buffer = new unsigned char[notehdrsz];
2767   memset(buffer, 0, notehdrsz);
2768
2769   bool is_big_endian = parameters->target().is_big_endian();
2770
2771   if (size == 32)
2772     {
2773       if (!is_big_endian)
2774         {
2775           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2776           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2777           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2778         }
2779       else
2780         {
2781           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2782           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2783           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2784         }
2785     }
2786   else if (size == 64)
2787     {
2788       if (!is_big_endian)
2789         {
2790           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2791           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2792           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2793         }
2794       else
2795         {
2796           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2797           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2798           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2799         }
2800     }
2801   else
2802     gold_unreachable();
2803
2804   memcpy(buffer + 3 * (size / 8), name, namesz);
2805
2806   elfcpp::Elf_Xword flags = 0;
2807   Output_section_order order = ORDER_INVALID;
2808   if (allocate)
2809     {
2810       flags = elfcpp::SHF_ALLOC;
2811       order = ORDER_RO_NOTE;
2812     }
2813   Output_section* os = this->choose_output_section(NULL, section_name,
2814                                                    elfcpp::SHT_NOTE,
2815                                                    flags, false, order, false);
2816   if (os == NULL)
2817     return NULL;
2818
2819   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2820                                                            size / 8,
2821                                                            "** note header");
2822   os->add_output_section_data(posd);
2823
2824   *trailing_padding = aligned_descsz - descsz;
2825
2826   return os;
2827 }
2828
2829 // For an executable or shared library, create a note to record the
2830 // version of gold used to create the binary.
2831
2832 void
2833 Layout::create_gold_note()
2834 {
2835   if (parameters->options().relocatable()
2836       || parameters->incremental_update())
2837     return;
2838
2839   std::string desc = std::string("gold ") + gold::get_version_string();
2840
2841   size_t trailing_padding;
2842   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2843                                          ".note.gnu.gold-version", desc.size(),
2844                                          false, &trailing_padding);
2845   if (os == NULL)
2846     return;
2847
2848   Output_section_data* posd = new Output_data_const(desc, 4);
2849   os->add_output_section_data(posd);
2850
2851   if (trailing_padding > 0)
2852     {
2853       posd = new Output_data_zero_fill(trailing_padding, 0);
2854       os->add_output_section_data(posd);
2855     }
2856 }
2857
2858 // Record whether the stack should be executable.  This can be set
2859 // from the command line using the -z execstack or -z noexecstack
2860 // options.  Otherwise, if any input file has a .note.GNU-stack
2861 // section with the SHF_EXECINSTR flag set, the stack should be
2862 // executable.  Otherwise, if at least one input file a
2863 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2864 // section, we use the target default for whether the stack should be
2865 // executable.  Otherwise, we don't generate a stack note.  When
2866 // generating a object file, we create a .note.GNU-stack section with
2867 // the appropriate marking.  When generating an executable or shared
2868 // library, we create a PT_GNU_STACK segment.
2869
2870 void
2871 Layout::create_executable_stack_info()
2872 {
2873   bool is_stack_executable;
2874   if (parameters->options().is_execstack_set())
2875     is_stack_executable = parameters->options().is_stack_executable();
2876   else if (!this->input_with_gnu_stack_note_)
2877     return;
2878   else
2879     {
2880       if (this->input_requires_executable_stack_)
2881         is_stack_executable = true;
2882       else if (this->input_without_gnu_stack_note_)
2883         is_stack_executable =
2884           parameters->target().is_default_stack_executable();
2885       else
2886         is_stack_executable = false;
2887     }
2888
2889   if (parameters->options().relocatable())
2890     {
2891       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2892       elfcpp::Elf_Xword flags = 0;
2893       if (is_stack_executable)
2894         flags |= elfcpp::SHF_EXECINSTR;
2895       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2896                                 ORDER_INVALID, false);
2897     }
2898   else
2899     {
2900       if (this->script_options_->saw_phdrs_clause())
2901         return;
2902       int flags = elfcpp::PF_R | elfcpp::PF_W;
2903       if (is_stack_executable)
2904         flags |= elfcpp::PF_X;
2905       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2906     }
2907 }
2908
2909 // If --build-id was used, set up the build ID note.
2910
2911 void
2912 Layout::create_build_id()
2913 {
2914   if (!parameters->options().user_set_build_id())
2915     return;
2916
2917   const char* style = parameters->options().build_id();
2918   if (strcmp(style, "none") == 0)
2919     return;
2920
2921   // Set DESCSZ to the size of the note descriptor.  When possible,
2922   // set DESC to the note descriptor contents.
2923   size_t descsz;
2924   std::string desc;
2925   if (strcmp(style, "md5") == 0)
2926     descsz = 128 / 8;
2927   else if (strcmp(style, "sha1") == 0)
2928     descsz = 160 / 8;
2929   else if (strcmp(style, "uuid") == 0)
2930     {
2931       const size_t uuidsz = 128 / 8;
2932
2933       char buffer[uuidsz];
2934       memset(buffer, 0, uuidsz);
2935
2936       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2937       if (descriptor < 0)
2938         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2939                    strerror(errno));
2940       else
2941         {
2942           ssize_t got = ::read(descriptor, buffer, uuidsz);
2943           release_descriptor(descriptor, true);
2944           if (got < 0)
2945             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2946           else if (static_cast<size_t>(got) != uuidsz)
2947             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2948                        uuidsz, got);
2949         }
2950
2951       desc.assign(buffer, uuidsz);
2952       descsz = uuidsz;
2953     }
2954   else if (strncmp(style, "0x", 2) == 0)
2955     {
2956       hex_init();
2957       const char* p = style + 2;
2958       while (*p != '\0')
2959         {
2960           if (hex_p(p[0]) && hex_p(p[1]))
2961             {
2962               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2963               desc += c;
2964               p += 2;
2965             }
2966           else if (*p == '-' || *p == ':')
2967             ++p;
2968           else
2969             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2970                        style);
2971         }
2972       descsz = desc.size();
2973     }
2974   else
2975     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2976
2977   // Create the note.
2978   size_t trailing_padding;
2979   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2980                                          ".note.gnu.build-id", descsz, true,
2981                                          &trailing_padding);
2982   if (os == NULL)
2983     return;
2984
2985   if (!desc.empty())
2986     {
2987       // We know the value already, so we fill it in now.
2988       gold_assert(desc.size() == descsz);
2989
2990       Output_section_data* posd = new Output_data_const(desc, 4);
2991       os->add_output_section_data(posd);
2992
2993       if (trailing_padding != 0)
2994         {
2995           posd = new Output_data_zero_fill(trailing_padding, 0);
2996           os->add_output_section_data(posd);
2997         }
2998     }
2999   else
3000     {
3001       // We need to compute a checksum after we have completed the
3002       // link.
3003       gold_assert(trailing_padding == 0);
3004       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3005       os->add_output_section_data(this->build_id_note_);
3006     }
3007 }
3008
3009 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3010 // field of the former should point to the latter.  I'm not sure who
3011 // started this, but the GNU linker does it, and some tools depend
3012 // upon it.
3013
3014 void
3015 Layout::link_stabs_sections()
3016 {
3017   if (!this->have_stabstr_section_)
3018     return;
3019
3020   for (Section_list::iterator p = this->section_list_.begin();
3021        p != this->section_list_.end();
3022        ++p)
3023     {
3024       if ((*p)->type() != elfcpp::SHT_STRTAB)
3025         continue;
3026
3027       const char* name = (*p)->name();
3028       if (strncmp(name, ".stab", 5) != 0)
3029         continue;
3030
3031       size_t len = strlen(name);
3032       if (strcmp(name + len - 3, "str") != 0)
3033         continue;
3034
3035       std::string stab_name(name, len - 3);
3036       Output_section* stab_sec;
3037       stab_sec = this->find_output_section(stab_name.c_str());
3038       if (stab_sec != NULL)
3039         stab_sec->set_link_section(*p);
3040     }
3041 }
3042
3043 // Create .gnu_incremental_inputs and related sections needed
3044 // for the next run of incremental linking to check what has changed.
3045
3046 void
3047 Layout::create_incremental_info_sections(Symbol_table* symtab)
3048 {
3049   Incremental_inputs* incr = this->incremental_inputs_;
3050
3051   gold_assert(incr != NULL);
3052
3053   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3054   incr->create_data_sections(symtab);
3055
3056   // Add the .gnu_incremental_inputs section.
3057   const char* incremental_inputs_name =
3058     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3059   Output_section* incremental_inputs_os =
3060     this->make_output_section(incremental_inputs_name,
3061                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3062                               ORDER_INVALID, false);
3063   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3064
3065   // Add the .gnu_incremental_symtab section.
3066   const char* incremental_symtab_name =
3067     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3068   Output_section* incremental_symtab_os =
3069     this->make_output_section(incremental_symtab_name,
3070                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3071                               ORDER_INVALID, false);
3072   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3073   incremental_symtab_os->set_entsize(4);
3074
3075   // Add the .gnu_incremental_relocs section.
3076   const char* incremental_relocs_name =
3077     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3078   Output_section* incremental_relocs_os =
3079     this->make_output_section(incremental_relocs_name,
3080                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3081                               ORDER_INVALID, false);
3082   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3083   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3084
3085   // Add the .gnu_incremental_got_plt section.
3086   const char* incremental_got_plt_name =
3087     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3088   Output_section* incremental_got_plt_os =
3089     this->make_output_section(incremental_got_plt_name,
3090                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3091                               ORDER_INVALID, false);
3092   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3093
3094   // Add the .gnu_incremental_strtab section.
3095   const char* incremental_strtab_name =
3096     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3097   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3098                                                         elfcpp::SHT_STRTAB, 0,
3099                                                         ORDER_INVALID, false);
3100   Output_data_strtab* strtab_data =
3101       new Output_data_strtab(incr->get_stringpool());
3102   incremental_strtab_os->add_output_section_data(strtab_data);
3103
3104   incremental_inputs_os->set_after_input_sections();
3105   incremental_symtab_os->set_after_input_sections();
3106   incremental_relocs_os->set_after_input_sections();
3107   incremental_got_plt_os->set_after_input_sections();
3108
3109   incremental_inputs_os->set_link_section(incremental_strtab_os);
3110   incremental_symtab_os->set_link_section(incremental_inputs_os);
3111   incremental_relocs_os->set_link_section(incremental_inputs_os);
3112   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3113 }
3114
3115 // Return whether SEG1 should be before SEG2 in the output file.  This
3116 // is based entirely on the segment type and flags.  When this is
3117 // called the segment addresses have normally not yet been set.
3118
3119 bool
3120 Layout::segment_precedes(const Output_segment* seg1,
3121                          const Output_segment* seg2)
3122 {
3123   elfcpp::Elf_Word type1 = seg1->type();
3124   elfcpp::Elf_Word type2 = seg2->type();
3125
3126   // The single PT_PHDR segment is required to precede any loadable
3127   // segment.  We simply make it always first.
3128   if (type1 == elfcpp::PT_PHDR)
3129     {
3130       gold_assert(type2 != elfcpp::PT_PHDR);
3131       return true;
3132     }
3133   if (type2 == elfcpp::PT_PHDR)
3134     return false;
3135
3136   // The single PT_INTERP segment is required to precede any loadable
3137   // segment.  We simply make it always second.
3138   if (type1 == elfcpp::PT_INTERP)
3139     {
3140       gold_assert(type2 != elfcpp::PT_INTERP);
3141       return true;
3142     }
3143   if (type2 == elfcpp::PT_INTERP)
3144     return false;
3145
3146   // We then put PT_LOAD segments before any other segments.
3147   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3148     return true;
3149   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3150     return false;
3151
3152   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3153   // segment, because that is where the dynamic linker expects to find
3154   // it (this is just for efficiency; other positions would also work
3155   // correctly).
3156   if (type1 == elfcpp::PT_TLS
3157       && type2 != elfcpp::PT_TLS
3158       && type2 != elfcpp::PT_GNU_RELRO)
3159     return false;
3160   if (type2 == elfcpp::PT_TLS
3161       && type1 != elfcpp::PT_TLS
3162       && type1 != elfcpp::PT_GNU_RELRO)
3163     return true;
3164
3165   // We put the PT_GNU_RELRO segment last, because that is where the
3166   // dynamic linker expects to find it (as with PT_TLS, this is just
3167   // for efficiency).
3168   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3169     return false;
3170   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3171     return true;
3172
3173   const elfcpp::Elf_Word flags1 = seg1->flags();
3174   const elfcpp::Elf_Word flags2 = seg2->flags();
3175
3176   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3177   // by the numeric segment type and flags values.  There should not
3178   // be more than one segment with the same type and flags, except
3179   // when a linker script specifies such.
3180   if (type1 != elfcpp::PT_LOAD)
3181     {
3182       if (type1 != type2)
3183         return type1 < type2;
3184       gold_assert(flags1 != flags2
3185                   || this->script_options_->saw_phdrs_clause());
3186       return flags1 < flags2;
3187     }
3188
3189   // If the addresses are set already, sort by load address.
3190   if (seg1->are_addresses_set())
3191     {
3192       if (!seg2->are_addresses_set())
3193         return true;
3194
3195       unsigned int section_count1 = seg1->output_section_count();
3196       unsigned int section_count2 = seg2->output_section_count();
3197       if (section_count1 == 0 && section_count2 > 0)
3198         return true;
3199       if (section_count1 > 0 && section_count2 == 0)
3200         return false;
3201
3202       uint64_t paddr1 = (seg1->are_addresses_set()
3203                          ? seg1->paddr()
3204                          : seg1->first_section_load_address());
3205       uint64_t paddr2 = (seg2->are_addresses_set()
3206                          ? seg2->paddr()
3207                          : seg2->first_section_load_address());
3208
3209       if (paddr1 != paddr2)
3210         return paddr1 < paddr2;
3211     }
3212   else if (seg2->are_addresses_set())
3213     return false;
3214
3215   // A segment which holds large data comes after a segment which does
3216   // not hold large data.
3217   if (seg1->is_large_data_segment())
3218     {
3219       if (!seg2->is_large_data_segment())
3220         return false;
3221     }
3222   else if (seg2->is_large_data_segment())
3223     return true;
3224
3225   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3226   // segments come before writable segments.  Then writable segments
3227   // with data come before writable segments without data.  Then
3228   // executable segments come before non-executable segments.  Then
3229   // the unlikely case of a non-readable segment comes before the
3230   // normal case of a readable segment.  If there are multiple
3231   // segments with the same type and flags, we require that the
3232   // address be set, and we sort by virtual address and then physical
3233   // address.
3234   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3235     return (flags1 & elfcpp::PF_W) == 0;
3236   if ((flags1 & elfcpp::PF_W) != 0
3237       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3238     return seg1->has_any_data_sections();
3239   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3240     return (flags1 & elfcpp::PF_X) != 0;
3241   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3242     return (flags1 & elfcpp::PF_R) == 0;
3243
3244   // We shouldn't get here--we shouldn't create segments which we
3245   // can't distinguish.  Unless of course we are using a weird linker
3246   // script or overlapping --section-start options.  We could also get
3247   // here if plugins want unique segments for subsets of sections.
3248   gold_assert(this->script_options_->saw_phdrs_clause()
3249               || parameters->options().any_section_start()
3250               || this->is_unique_segment_for_sections_specified());
3251   return false;
3252 }
3253
3254 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3255
3256 static off_t
3257 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3258 {
3259   uint64_t unsigned_off = off;
3260   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3261                           | (addr & (abi_pagesize - 1)));
3262   if (aligned_off < unsigned_off)
3263     aligned_off += abi_pagesize;
3264   return aligned_off;
3265 }
3266
3267 // Set the file offsets of all the segments, and all the sections they
3268 // contain.  They have all been created.  LOAD_SEG must be be laid out
3269 // first.  Return the offset of the data to follow.
3270
3271 off_t
3272 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3273                             unsigned int* pshndx)
3274 {
3275   // Sort them into the final order.  We use a stable sort so that we
3276   // don't randomize the order of indistinguishable segments created
3277   // by linker scripts.
3278   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3279                    Layout::Compare_segments(this));
3280
3281   // Find the PT_LOAD segments, and set their addresses and offsets
3282   // and their section's addresses and offsets.
3283   uint64_t start_addr;
3284   if (parameters->options().user_set_Ttext())
3285     start_addr = parameters->options().Ttext();
3286   else if (parameters->options().output_is_position_independent())
3287     start_addr = 0;
3288   else
3289     start_addr = target->default_text_segment_address();
3290
3291   uint64_t addr = start_addr;
3292   off_t off = 0;
3293
3294   // If LOAD_SEG is NULL, then the file header and segment headers
3295   // will not be loadable.  But they still need to be at offset 0 in
3296   // the file.  Set their offsets now.
3297   if (load_seg == NULL)
3298     {
3299       for (Data_list::iterator p = this->special_output_list_.begin();
3300            p != this->special_output_list_.end();
3301            ++p)
3302         {
3303           off = align_address(off, (*p)->addralign());
3304           (*p)->set_address_and_file_offset(0, off);
3305           off += (*p)->data_size();
3306         }
3307     }
3308
3309   unsigned int increase_relro = this->increase_relro_;
3310   if (this->script_options_->saw_sections_clause())
3311     increase_relro = 0;
3312
3313   const bool check_sections = parameters->options().check_sections();
3314   Output_segment* last_load_segment = NULL;
3315
3316   unsigned int shndx_begin = *pshndx;
3317   unsigned int shndx_load_seg = *pshndx;
3318
3319   for (Segment_list::iterator p = this->segment_list_.begin();
3320        p != this->segment_list_.end();
3321        ++p)
3322     {
3323       if ((*p)->type() == elfcpp::PT_LOAD)
3324         {
3325           if (target->isolate_execinstr())
3326             {
3327               // When we hit the segment that should contain the
3328               // file headers, reset the file offset so we place
3329               // it and subsequent segments appropriately.
3330               // We'll fix up the preceding segments below.
3331               if (load_seg == *p)
3332                 {
3333                   if (off == 0)
3334                     load_seg = NULL;
3335                   else
3336                     {
3337                       off = 0;
3338                       shndx_load_seg = *pshndx;
3339                     }
3340                 }
3341             }
3342           else
3343             {
3344               // Verify that the file headers fall into the first segment.
3345               if (load_seg != NULL && load_seg != *p)
3346                 gold_unreachable();
3347               load_seg = NULL;
3348             }
3349
3350           bool are_addresses_set = (*p)->are_addresses_set();
3351           if (are_addresses_set)
3352             {
3353               // When it comes to setting file offsets, we care about
3354               // the physical address.
3355               addr = (*p)->paddr();
3356             }
3357           else if (parameters->options().user_set_Ttext()
3358                    && (parameters->options().omagic()
3359                        || ((*p)->flags() & elfcpp::PF_W) == 0))
3360             {
3361               are_addresses_set = true;
3362             }
3363           else if (parameters->options().user_set_Tdata()
3364                    && ((*p)->flags() & elfcpp::PF_W) != 0
3365                    && (!parameters->options().user_set_Tbss()
3366                        || (*p)->has_any_data_sections()))
3367             {
3368               addr = parameters->options().Tdata();
3369               are_addresses_set = true;
3370             }
3371           else if (parameters->options().user_set_Tbss()
3372                    && ((*p)->flags() & elfcpp::PF_W) != 0
3373                    && !(*p)->has_any_data_sections())
3374             {
3375               addr = parameters->options().Tbss();
3376               are_addresses_set = true;
3377             }
3378
3379           uint64_t orig_addr = addr;
3380           uint64_t orig_off = off;
3381
3382           uint64_t aligned_addr = 0;
3383           uint64_t abi_pagesize = target->abi_pagesize();
3384           uint64_t common_pagesize = target->common_pagesize();
3385
3386           if (!parameters->options().nmagic()
3387               && !parameters->options().omagic())
3388             (*p)->set_minimum_p_align(abi_pagesize);
3389
3390           if (!are_addresses_set)
3391             {
3392               // Skip the address forward one page, maintaining the same
3393               // position within the page.  This lets us store both segments
3394               // overlapping on a single page in the file, but the loader will
3395               // put them on different pages in memory. We will revisit this
3396               // decision once we know the size of the segment.
3397
3398               addr = align_address(addr, (*p)->maximum_alignment());
3399               aligned_addr = addr;
3400
3401               if (load_seg == *p)
3402                 {
3403                   // This is the segment that will contain the file
3404                   // headers, so its offset will have to be exactly zero.
3405                   gold_assert(orig_off == 0);
3406
3407                   // If the target wants a fixed minimum distance from the
3408                   // text segment to the read-only segment, move up now.
3409                   uint64_t min_addr = start_addr + target->rosegment_gap();
3410                   if (addr < min_addr)
3411                     addr = min_addr;
3412
3413                   // But this is not the first segment!  To make its
3414                   // address congruent with its offset, that address better
3415                   // be aligned to the ABI-mandated page size.
3416                   addr = align_address(addr, abi_pagesize);
3417                   aligned_addr = addr;
3418                 }
3419               else
3420                 {
3421                   if ((addr & (abi_pagesize - 1)) != 0)
3422                     addr = addr + abi_pagesize;
3423
3424                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3425                 }
3426             }
3427
3428           if (!parameters->options().nmagic()
3429               && !parameters->options().omagic())
3430             off = align_file_offset(off, addr, abi_pagesize);
3431           else
3432             {
3433               // This is -N or -n with a section script which prevents
3434               // us from using a load segment.  We need to ensure that
3435               // the file offset is aligned to the alignment of the
3436               // segment.  This is because the linker script
3437               // implicitly assumed a zero offset.  If we don't align
3438               // here, then the alignment of the sections in the
3439               // linker script may not match the alignment of the
3440               // sections in the set_section_addresses call below,
3441               // causing an error about dot moving backward.
3442               off = align_address(off, (*p)->maximum_alignment());
3443             }
3444
3445           unsigned int shndx_hold = *pshndx;
3446           bool has_relro = false;
3447           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3448                                                           &increase_relro,
3449                                                           &has_relro,
3450                                                           &off, pshndx);
3451
3452           // Now that we know the size of this segment, we may be able
3453           // to save a page in memory, at the cost of wasting some
3454           // file space, by instead aligning to the start of a new
3455           // page.  Here we use the real machine page size rather than
3456           // the ABI mandated page size.  If the segment has been
3457           // aligned so that the relro data ends at a page boundary,
3458           // we do not try to realign it.
3459
3460           if (!are_addresses_set
3461               && !has_relro
3462               && aligned_addr != addr
3463               && !parameters->incremental())
3464             {
3465               uint64_t first_off = (common_pagesize
3466                                     - (aligned_addr
3467                                        & (common_pagesize - 1)));
3468               uint64_t last_off = new_addr & (common_pagesize - 1);
3469               if (first_off > 0
3470                   && last_off > 0
3471                   && ((aligned_addr & ~ (common_pagesize - 1))
3472                       != (new_addr & ~ (common_pagesize - 1)))
3473                   && first_off + last_off <= common_pagesize)
3474                 {
3475                   *pshndx = shndx_hold;
3476                   addr = align_address(aligned_addr, common_pagesize);
3477                   addr = align_address(addr, (*p)->maximum_alignment());
3478                   if ((addr & (abi_pagesize - 1)) != 0)
3479                     addr = addr + abi_pagesize;
3480                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3481                   off = align_file_offset(off, addr, abi_pagesize);
3482
3483                   increase_relro = this->increase_relro_;
3484                   if (this->script_options_->saw_sections_clause())
3485                     increase_relro = 0;
3486                   has_relro = false;
3487
3488                   new_addr = (*p)->set_section_addresses(this, true, addr,
3489                                                          &increase_relro,
3490                                                          &has_relro,
3491                                                          &off, pshndx);
3492                 }
3493             }
3494
3495           addr = new_addr;
3496
3497           // Implement --check-sections.  We know that the segments
3498           // are sorted by LMA.
3499           if (check_sections && last_load_segment != NULL)
3500             {
3501               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3502               if (last_load_segment->paddr() + last_load_segment->memsz()
3503                   > (*p)->paddr())
3504                 {
3505                   unsigned long long lb1 = last_load_segment->paddr();
3506                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3507                   unsigned long long lb2 = (*p)->paddr();
3508                   unsigned long long le2 = lb2 + (*p)->memsz();
3509                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3510                                "[0x%llx -> 0x%llx]"),
3511                              lb1, le1, lb2, le2);
3512                 }
3513             }
3514           last_load_segment = *p;
3515         }
3516     }
3517
3518   if (load_seg != NULL && target->isolate_execinstr())
3519     {
3520       // Process the early segments again, setting their file offsets
3521       // so they land after the segments starting at LOAD_SEG.
3522       off = align_file_offset(off, 0, target->abi_pagesize());
3523
3524       for (Segment_list::iterator p = this->segment_list_.begin();
3525            *p != load_seg;
3526            ++p)
3527         {
3528           if ((*p)->type() == elfcpp::PT_LOAD)
3529             {
3530               // We repeat the whole job of assigning addresses and
3531               // offsets, but we really only want to change the offsets and
3532               // must ensure that the addresses all come out the same as
3533               // they did the first time through.
3534               bool has_relro = false;
3535               const uint64_t old_addr = (*p)->vaddr();
3536               const uint64_t old_end = old_addr + (*p)->memsz();
3537               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3538                                                               old_addr,
3539                                                               &increase_relro,
3540                                                               &has_relro,
3541                                                               &off,
3542                                                               &shndx_begin);
3543               gold_assert(new_addr == old_end);
3544             }
3545         }
3546
3547       gold_assert(shndx_begin == shndx_load_seg);
3548     }
3549
3550   // Handle the non-PT_LOAD segments, setting their offsets from their
3551   // section's offsets.
3552   for (Segment_list::iterator p = this->segment_list_.begin();
3553        p != this->segment_list_.end();
3554        ++p)
3555     {
3556       if ((*p)->type() != elfcpp::PT_LOAD)
3557         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3558                          ? increase_relro
3559                          : 0);
3560     }
3561
3562   // Set the TLS offsets for each section in the PT_TLS segment.
3563   if (this->tls_segment_ != NULL)
3564     this->tls_segment_->set_tls_offsets();
3565
3566   return off;
3567 }
3568
3569 // Set the offsets of all the allocated sections when doing a
3570 // relocatable link.  This does the same jobs as set_segment_offsets,
3571 // only for a relocatable link.
3572
3573 off_t
3574 Layout::set_relocatable_section_offsets(Output_data* file_header,
3575                                         unsigned int* pshndx)
3576 {
3577   off_t off = 0;
3578
3579   file_header->set_address_and_file_offset(0, 0);
3580   off += file_header->data_size();
3581
3582   for (Section_list::iterator p = this->section_list_.begin();
3583        p != this->section_list_.end();
3584        ++p)
3585     {
3586       // We skip unallocated sections here, except that group sections
3587       // have to come first.
3588       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3589           && (*p)->type() != elfcpp::SHT_GROUP)
3590         continue;
3591
3592       off = align_address(off, (*p)->addralign());
3593
3594       // The linker script might have set the address.
3595       if (!(*p)->is_address_valid())
3596         (*p)->set_address(0);
3597       (*p)->set_file_offset(off);
3598       (*p)->finalize_data_size();
3599       if ((*p)->type() != elfcpp::SHT_NOBITS)
3600         off += (*p)->data_size();
3601
3602       (*p)->set_out_shndx(*pshndx);
3603       ++*pshndx;
3604     }
3605
3606   return off;
3607 }
3608
3609 // Set the file offset of all the sections not associated with a
3610 // segment.
3611
3612 off_t
3613 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3614 {
3615   off_t startoff = off;
3616   off_t maxoff = off;
3617
3618   for (Section_list::iterator p = this->unattached_section_list_.begin();
3619        p != this->unattached_section_list_.end();
3620        ++p)
3621     {
3622       // The symtab section is handled in create_symtab_sections.
3623       if (*p == this->symtab_section_)
3624         continue;
3625
3626       // If we've already set the data size, don't set it again.
3627       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3628         continue;
3629
3630       if (pass == BEFORE_INPUT_SECTIONS_PASS
3631           && (*p)->requires_postprocessing())
3632         {
3633           (*p)->create_postprocessing_buffer();
3634           this->any_postprocessing_sections_ = true;
3635         }
3636
3637       if (pass == BEFORE_INPUT_SECTIONS_PASS
3638           && (*p)->after_input_sections())
3639         continue;
3640       else if (pass == POSTPROCESSING_SECTIONS_PASS
3641                && (!(*p)->after_input_sections()
3642                    || (*p)->type() == elfcpp::SHT_STRTAB))
3643         continue;
3644       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3645                && (!(*p)->after_input_sections()
3646                    || (*p)->type() != elfcpp::SHT_STRTAB))
3647         continue;
3648
3649       if (!parameters->incremental_update())
3650         {
3651           off = align_address(off, (*p)->addralign());
3652           (*p)->set_file_offset(off);
3653           (*p)->finalize_data_size();
3654         }
3655       else
3656         {
3657           // Incremental update: allocate file space from free list.
3658           (*p)->pre_finalize_data_size();
3659           off_t current_size = (*p)->current_data_size();
3660           off = this->allocate(current_size, (*p)->addralign(), startoff);
3661           if (off == -1)
3662             {
3663               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3664                 this->free_list_.dump();
3665               gold_assert((*p)->output_section() != NULL);
3666               gold_fallback(_("out of patch space for section %s; "
3667                               "relink with --incremental-full"),
3668                             (*p)->output_section()->name());
3669             }
3670           (*p)->set_file_offset(off);
3671           (*p)->finalize_data_size();
3672           if ((*p)->data_size() > current_size)
3673             {
3674               gold_assert((*p)->output_section() != NULL);
3675               gold_fallback(_("%s: section changed size; "
3676                               "relink with --incremental-full"),
3677                             (*p)->output_section()->name());
3678             }
3679           gold_debug(DEBUG_INCREMENTAL,
3680                      "set_section_offsets: %08lx %08lx %s",
3681                      static_cast<long>(off),
3682                      static_cast<long>((*p)->data_size()),
3683                      ((*p)->output_section() != NULL
3684                       ? (*p)->output_section()->name() : "(special)"));
3685         }
3686
3687       off += (*p)->data_size();
3688       if (off > maxoff)
3689         maxoff = off;
3690
3691       // At this point the name must be set.
3692       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3693         this->namepool_.add((*p)->name(), false, NULL);
3694     }
3695   return maxoff;
3696 }
3697
3698 // Set the section indexes of all the sections not associated with a
3699 // segment.
3700
3701 unsigned int
3702 Layout::set_section_indexes(unsigned int shndx)
3703 {
3704   for (Section_list::iterator p = this->unattached_section_list_.begin();
3705        p != this->unattached_section_list_.end();
3706        ++p)
3707     {
3708       if (!(*p)->has_out_shndx())
3709         {
3710           (*p)->set_out_shndx(shndx);
3711           ++shndx;
3712         }
3713     }
3714   return shndx;
3715 }
3716
3717 // Set the section addresses according to the linker script.  This is
3718 // only called when we see a SECTIONS clause.  This returns the
3719 // program segment which should hold the file header and segment
3720 // headers, if any.  It will return NULL if they should not be in a
3721 // segment.
3722
3723 Output_segment*
3724 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3725 {
3726   Script_sections* ss = this->script_options_->script_sections();
3727   gold_assert(ss->saw_sections_clause());
3728   return this->script_options_->set_section_addresses(symtab, this);
3729 }
3730
3731 // Place the orphan sections in the linker script.
3732
3733 void
3734 Layout::place_orphan_sections_in_script()
3735 {
3736   Script_sections* ss = this->script_options_->script_sections();
3737   gold_assert(ss->saw_sections_clause());
3738
3739   // Place each orphaned output section in the script.
3740   for (Section_list::iterator p = this->section_list_.begin();
3741        p != this->section_list_.end();
3742        ++p)
3743     {
3744       if (!(*p)->found_in_sections_clause())
3745         ss->place_orphan(*p);
3746     }
3747 }
3748
3749 // Count the local symbols in the regular symbol table and the dynamic
3750 // symbol table, and build the respective string pools.
3751
3752 void
3753 Layout::count_local_symbols(const Task* task,
3754                             const Input_objects* input_objects)
3755 {
3756   // First, figure out an upper bound on the number of symbols we'll
3757   // be inserting into each pool.  This helps us create the pools with
3758   // the right size, to avoid unnecessary hashtable resizing.
3759   unsigned int symbol_count = 0;
3760   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3761        p != input_objects->relobj_end();
3762        ++p)
3763     symbol_count += (*p)->local_symbol_count();
3764
3765   // Go from "upper bound" to "estimate."  We overcount for two
3766   // reasons: we double-count symbols that occur in more than one
3767   // object file, and we count symbols that are dropped from the
3768   // output.  Add it all together and assume we overcount by 100%.
3769   symbol_count /= 2;
3770
3771   // We assume all symbols will go into both the sympool and dynpool.
3772   this->sympool_.reserve(symbol_count);
3773   this->dynpool_.reserve(symbol_count);
3774
3775   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3776        p != input_objects->relobj_end();
3777        ++p)
3778     {
3779       Task_lock_obj<Object> tlo(task, *p);
3780       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3781     }
3782 }
3783
3784 // Create the symbol table sections.  Here we also set the final
3785 // values of the symbols.  At this point all the loadable sections are
3786 // fully laid out.  SHNUM is the number of sections so far.
3787
3788 void
3789 Layout::create_symtab_sections(const Input_objects* input_objects,
3790                                Symbol_table* symtab,
3791                                unsigned int shnum,
3792                                off_t* poff)
3793 {
3794   int symsize;
3795   unsigned int align;
3796   if (parameters->target().get_size() == 32)
3797     {
3798       symsize = elfcpp::Elf_sizes<32>::sym_size;
3799       align = 4;
3800     }
3801   else if (parameters->target().get_size() == 64)
3802     {
3803       symsize = elfcpp::Elf_sizes<64>::sym_size;
3804       align = 8;
3805     }
3806   else
3807     gold_unreachable();
3808
3809   // Compute file offsets relative to the start of the symtab section.
3810   off_t off = 0;
3811
3812   // Save space for the dummy symbol at the start of the section.  We
3813   // never bother to write this out--it will just be left as zero.
3814   off += symsize;
3815   unsigned int local_symbol_index = 1;
3816
3817   // Add STT_SECTION symbols for each Output section which needs one.
3818   for (Section_list::iterator p = this->section_list_.begin();
3819        p != this->section_list_.end();
3820        ++p)
3821     {
3822       if (!(*p)->needs_symtab_index())
3823         (*p)->set_symtab_index(-1U);
3824       else
3825         {
3826           (*p)->set_symtab_index(local_symbol_index);
3827           ++local_symbol_index;
3828           off += symsize;
3829         }
3830     }
3831
3832   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3833        p != input_objects->relobj_end();
3834        ++p)
3835     {
3836       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3837                                                         off, symtab);
3838       off += (index - local_symbol_index) * symsize;
3839       local_symbol_index = index;
3840     }
3841
3842   unsigned int local_symcount = local_symbol_index;
3843   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3844
3845   off_t dynoff;
3846   size_t dyn_global_index;
3847   size_t dyncount;
3848   if (this->dynsym_section_ == NULL)
3849     {
3850       dynoff = 0;
3851       dyn_global_index = 0;
3852       dyncount = 0;
3853     }
3854   else
3855     {
3856       dyn_global_index = this->dynsym_section_->info();
3857       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3858       dynoff = this->dynsym_section_->offset() + locsize;
3859       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3860       gold_assert(static_cast<off_t>(dyncount * symsize)
3861                   == this->dynsym_section_->data_size() - locsize);
3862     }
3863
3864   off_t global_off = off;
3865   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3866                          &this->sympool_, &local_symcount);
3867
3868   if (!parameters->options().strip_all())
3869     {
3870       this->sympool_.set_string_offsets();
3871
3872       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3873       Output_section* osymtab = this->make_output_section(symtab_name,
3874                                                           elfcpp::SHT_SYMTAB,
3875                                                           0, ORDER_INVALID,
3876                                                           false);
3877       this->symtab_section_ = osymtab;
3878
3879       Output_section_data* pos = new Output_data_fixed_space(off, align,
3880                                                              "** symtab");
3881       osymtab->add_output_section_data(pos);
3882
3883       // We generate a .symtab_shndx section if we have more than
3884       // SHN_LORESERVE sections.  Technically it is possible that we
3885       // don't need one, because it is possible that there are no
3886       // symbols in any of sections with indexes larger than
3887       // SHN_LORESERVE.  That is probably unusual, though, and it is
3888       // easier to always create one than to compute section indexes
3889       // twice (once here, once when writing out the symbols).
3890       if (shnum >= elfcpp::SHN_LORESERVE)
3891         {
3892           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3893                                                                false, NULL);
3894           Output_section* osymtab_xindex =
3895             this->make_output_section(symtab_xindex_name,
3896                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3897                                       ORDER_INVALID, false);
3898
3899           size_t symcount = off / symsize;
3900           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3901
3902           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3903
3904           osymtab_xindex->set_link_section(osymtab);
3905           osymtab_xindex->set_addralign(4);
3906           osymtab_xindex->set_entsize(4);
3907
3908           osymtab_xindex->set_after_input_sections();
3909
3910           // This tells the driver code to wait until the symbol table
3911           // has written out before writing out the postprocessing
3912           // sections, including the .symtab_shndx section.
3913           this->any_postprocessing_sections_ = true;
3914         }
3915
3916       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3917       Output_section* ostrtab = this->make_output_section(strtab_name,
3918                                                           elfcpp::SHT_STRTAB,
3919                                                           0, ORDER_INVALID,
3920                                                           false);
3921
3922       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3923       ostrtab->add_output_section_data(pstr);
3924
3925       off_t symtab_off;
3926       if (!parameters->incremental_update())
3927         symtab_off = align_address(*poff, align);
3928       else
3929         {
3930           symtab_off = this->allocate(off, align, *poff);
3931           if (off == -1)
3932             gold_fallback(_("out of patch space for symbol table; "
3933                             "relink with --incremental-full"));
3934           gold_debug(DEBUG_INCREMENTAL,
3935                      "create_symtab_sections: %08lx %08lx .symtab",
3936                      static_cast<long>(symtab_off),
3937                      static_cast<long>(off));
3938         }
3939
3940       symtab->set_file_offset(symtab_off + global_off);
3941       osymtab->set_file_offset(symtab_off);
3942       osymtab->finalize_data_size();
3943       osymtab->set_link_section(ostrtab);
3944       osymtab->set_info(local_symcount);
3945       osymtab->set_entsize(symsize);
3946
3947       if (symtab_off + off > *poff)
3948         *poff = symtab_off + off;
3949     }
3950 }
3951
3952 // Create the .shstrtab section, which holds the names of the
3953 // sections.  At the time this is called, we have created all the
3954 // output sections except .shstrtab itself.
3955
3956 Output_section*
3957 Layout::create_shstrtab()
3958 {
3959   // FIXME: We don't need to create a .shstrtab section if we are
3960   // stripping everything.
3961
3962   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3963
3964   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3965                                                  ORDER_INVALID, false);
3966
3967   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3968     {
3969       // We can't write out this section until we've set all the
3970       // section names, and we don't set the names of compressed
3971       // output sections until relocations are complete.  FIXME: With
3972       // the current names we use, this is unnecessary.
3973       os->set_after_input_sections();
3974     }
3975
3976   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3977   os->add_output_section_data(posd);
3978
3979   return os;
3980 }
3981
3982 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3983 // offset.
3984
3985 void
3986 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3987 {
3988   Output_section_headers* oshdrs;
3989   oshdrs = new Output_section_headers(this,
3990                                       &this->segment_list_,
3991                                       &this->section_list_,
3992                                       &this->unattached_section_list_,
3993                                       &this->namepool_,
3994                                       shstrtab_section);
3995   off_t off;
3996   if (!parameters->incremental_update())
3997     off = align_address(*poff, oshdrs->addralign());
3998   else
3999     {
4000       oshdrs->pre_finalize_data_size();
4001       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4002       if (off == -1)
4003           gold_fallback(_("out of patch space for section header table; "
4004                           "relink with --incremental-full"));
4005       gold_debug(DEBUG_INCREMENTAL,
4006                  "create_shdrs: %08lx %08lx (section header table)",
4007                  static_cast<long>(off),
4008                  static_cast<long>(off + oshdrs->data_size()));
4009     }
4010   oshdrs->set_address_and_file_offset(0, off);
4011   off += oshdrs->data_size();
4012   if (off > *poff)
4013     *poff = off;
4014   this->section_headers_ = oshdrs;
4015 }
4016
4017 // Count the allocated sections.
4018
4019 size_t
4020 Layout::allocated_output_section_count() const
4021 {
4022   size_t section_count = 0;
4023   for (Segment_list::const_iterator p = this->segment_list_.begin();
4024        p != this->segment_list_.end();
4025        ++p)
4026     section_count += (*p)->output_section_count();
4027   return section_count;
4028 }
4029
4030 // Create the dynamic symbol table.
4031
4032 void
4033 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4034                               Symbol_table* symtab,
4035                               Output_section** pdynstr,
4036                               unsigned int* plocal_dynamic_count,
4037                               std::vector<Symbol*>* pdynamic_symbols,
4038                               Versions* pversions)
4039 {
4040   // Count all the symbols in the dynamic symbol table, and set the
4041   // dynamic symbol indexes.
4042
4043   // Skip symbol 0, which is always all zeroes.
4044   unsigned int index = 1;
4045
4046   // Add STT_SECTION symbols for each Output section which needs one.
4047   for (Section_list::iterator p = this->section_list_.begin();
4048        p != this->section_list_.end();
4049        ++p)
4050     {
4051       if (!(*p)->needs_dynsym_index())
4052         (*p)->set_dynsym_index(-1U);
4053       else
4054         {
4055           (*p)->set_dynsym_index(index);
4056           ++index;
4057         }
4058     }
4059
4060   // Count the local symbols that need to go in the dynamic symbol table,
4061   // and set the dynamic symbol indexes.
4062   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4063        p != input_objects->relobj_end();
4064        ++p)
4065     {
4066       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4067       index = new_index;
4068     }
4069
4070   unsigned int local_symcount = index;
4071   *plocal_dynamic_count = local_symcount;
4072
4073   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4074                                      &this->dynpool_, pversions);
4075
4076   int symsize;
4077   unsigned int align;
4078   const int size = parameters->target().get_size();
4079   if (size == 32)
4080     {
4081       symsize = elfcpp::Elf_sizes<32>::sym_size;
4082       align = 4;
4083     }
4084   else if (size == 64)
4085     {
4086       symsize = elfcpp::Elf_sizes<64>::sym_size;
4087       align = 8;
4088     }
4089   else
4090     gold_unreachable();
4091
4092   // Create the dynamic symbol table section.
4093
4094   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4095                                                        elfcpp::SHT_DYNSYM,
4096                                                        elfcpp::SHF_ALLOC,
4097                                                        false,
4098                                                        ORDER_DYNAMIC_LINKER,
4099                                                        false);
4100
4101   // Check for NULL as a linker script may discard .dynsym.
4102   if (dynsym != NULL)
4103     {
4104       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4105                                                                align,
4106                                                                "** dynsym");
4107       dynsym->add_output_section_data(odata);
4108
4109       dynsym->set_info(local_symcount);
4110       dynsym->set_entsize(symsize);
4111       dynsym->set_addralign(align);
4112
4113       this->dynsym_section_ = dynsym;
4114     }
4115
4116   Output_data_dynamic* const odyn = this->dynamic_data_;
4117   if (odyn != NULL)
4118     {
4119       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4120       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4121     }
4122
4123   // If there are more than SHN_LORESERVE allocated sections, we
4124   // create a .dynsym_shndx section.  It is possible that we don't
4125   // need one, because it is possible that there are no dynamic
4126   // symbols in any of the sections with indexes larger than
4127   // SHN_LORESERVE.  This is probably unusual, though, and at this
4128   // time we don't know the actual section indexes so it is
4129   // inconvenient to check.
4130   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4131     {
4132       Output_section* dynsym_xindex =
4133         this->choose_output_section(NULL, ".dynsym_shndx",
4134                                     elfcpp::SHT_SYMTAB_SHNDX,
4135                                     elfcpp::SHF_ALLOC,
4136                                     false, ORDER_DYNAMIC_LINKER, false);
4137
4138       if (dynsym_xindex != NULL)
4139         {
4140           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4141
4142           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4143
4144           dynsym_xindex->set_link_section(dynsym);
4145           dynsym_xindex->set_addralign(4);
4146           dynsym_xindex->set_entsize(4);
4147
4148           dynsym_xindex->set_after_input_sections();
4149
4150           // This tells the driver code to wait until the symbol table
4151           // has written out before writing out the postprocessing
4152           // sections, including the .dynsym_shndx section.
4153           this->any_postprocessing_sections_ = true;
4154         }
4155     }
4156
4157   // Create the dynamic string table section.
4158
4159   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4160                                                        elfcpp::SHT_STRTAB,
4161                                                        elfcpp::SHF_ALLOC,
4162                                                        false,
4163                                                        ORDER_DYNAMIC_LINKER,
4164                                                        false);
4165   *pdynstr = dynstr;
4166   if (dynstr != NULL)
4167     {
4168       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4169       dynstr->add_output_section_data(strdata);
4170
4171       if (dynsym != NULL)
4172         dynsym->set_link_section(dynstr);
4173       if (this->dynamic_section_ != NULL)
4174         this->dynamic_section_->set_link_section(dynstr);
4175
4176       if (odyn != NULL)
4177         {
4178           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4179           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4180         }
4181     }
4182
4183   // Create the hash tables.
4184
4185   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4186       || strcmp(parameters->options().hash_style(), "both") == 0)
4187     {
4188       unsigned char* phash;
4189       unsigned int hashlen;
4190       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4191                                     &phash, &hashlen);
4192
4193       Output_section* hashsec =
4194         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4195                                     elfcpp::SHF_ALLOC, false,
4196                                     ORDER_DYNAMIC_LINKER, false);
4197
4198       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4199                                                                    hashlen,
4200                                                                    align,
4201                                                                    "** hash");
4202       if (hashsec != NULL && hashdata != NULL)
4203         hashsec->add_output_section_data(hashdata);
4204
4205       if (hashsec != NULL)
4206         {
4207           if (dynsym != NULL)
4208             hashsec->set_link_section(dynsym);
4209           hashsec->set_entsize(4);
4210         }
4211
4212       if (odyn != NULL)
4213         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4214     }
4215
4216   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4217       || strcmp(parameters->options().hash_style(), "both") == 0)
4218     {
4219       unsigned char* phash;
4220       unsigned int hashlen;
4221       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4222                                     &phash, &hashlen);
4223
4224       Output_section* hashsec =
4225         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4226                                     elfcpp::SHF_ALLOC, false,
4227                                     ORDER_DYNAMIC_LINKER, false);
4228
4229       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4230                                                                    hashlen,
4231                                                                    align,
4232                                                                    "** hash");
4233       if (hashsec != NULL && hashdata != NULL)
4234         hashsec->add_output_section_data(hashdata);
4235
4236       if (hashsec != NULL)
4237         {
4238           if (dynsym != NULL)
4239             hashsec->set_link_section(dynsym);
4240
4241           // For a 64-bit target, the entries in .gnu.hash do not have
4242           // a uniform size, so we only set the entry size for a
4243           // 32-bit target.
4244           if (parameters->target().get_size() == 32)
4245             hashsec->set_entsize(4);
4246
4247           if (odyn != NULL)
4248             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4249         }
4250     }
4251 }
4252
4253 // Assign offsets to each local portion of the dynamic symbol table.
4254
4255 void
4256 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4257 {
4258   Output_section* dynsym = this->dynsym_section_;
4259   if (dynsym == NULL)
4260     return;
4261
4262   off_t off = dynsym->offset();
4263
4264   // Skip the dummy symbol at the start of the section.
4265   off += dynsym->entsize();
4266
4267   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4268        p != input_objects->relobj_end();
4269        ++p)
4270     {
4271       unsigned int count = (*p)->set_local_dynsym_offset(off);
4272       off += count * dynsym->entsize();
4273     }
4274 }
4275
4276 // Create the version sections.
4277
4278 void
4279 Layout::create_version_sections(const Versions* versions,
4280                                 const Symbol_table* symtab,
4281                                 unsigned int local_symcount,
4282                                 const std::vector<Symbol*>& dynamic_symbols,
4283                                 const Output_section* dynstr)
4284 {
4285   if (!versions->any_defs() && !versions->any_needs())
4286     return;
4287
4288   switch (parameters->size_and_endianness())
4289     {
4290 #ifdef HAVE_TARGET_32_LITTLE
4291     case Parameters::TARGET_32_LITTLE:
4292       this->sized_create_version_sections<32, false>(versions, symtab,
4293                                                      local_symcount,
4294                                                      dynamic_symbols, dynstr);
4295       break;
4296 #endif
4297 #ifdef HAVE_TARGET_32_BIG
4298     case Parameters::TARGET_32_BIG:
4299       this->sized_create_version_sections<32, true>(versions, symtab,
4300                                                     local_symcount,
4301                                                     dynamic_symbols, dynstr);
4302       break;
4303 #endif
4304 #ifdef HAVE_TARGET_64_LITTLE
4305     case Parameters::TARGET_64_LITTLE:
4306       this->sized_create_version_sections<64, false>(versions, symtab,
4307                                                      local_symcount,
4308                                                      dynamic_symbols, dynstr);
4309       break;
4310 #endif
4311 #ifdef HAVE_TARGET_64_BIG
4312     case Parameters::TARGET_64_BIG:
4313       this->sized_create_version_sections<64, true>(versions, symtab,
4314                                                     local_symcount,
4315                                                     dynamic_symbols, dynstr);
4316       break;
4317 #endif
4318     default:
4319       gold_unreachable();
4320     }
4321 }
4322
4323 // Create the version sections, sized version.
4324
4325 template<int size, bool big_endian>
4326 void
4327 Layout::sized_create_version_sections(
4328     const Versions* versions,
4329     const Symbol_table* symtab,
4330     unsigned int local_symcount,
4331     const std::vector<Symbol*>& dynamic_symbols,
4332     const Output_section* dynstr)
4333 {
4334   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4335                                                      elfcpp::SHT_GNU_versym,
4336                                                      elfcpp::SHF_ALLOC,
4337                                                      false,
4338                                                      ORDER_DYNAMIC_LINKER,
4339                                                      false);
4340
4341   // Check for NULL since a linker script may discard this section.
4342   if (vsec != NULL)
4343     {
4344       unsigned char* vbuf;
4345       unsigned int vsize;
4346       versions->symbol_section_contents<size, big_endian>(symtab,
4347                                                           &this->dynpool_,
4348                                                           local_symcount,
4349                                                           dynamic_symbols,
4350                                                           &vbuf, &vsize);
4351
4352       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4353                                                                 "** versions");
4354
4355       vsec->add_output_section_data(vdata);
4356       vsec->set_entsize(2);
4357       vsec->set_link_section(this->dynsym_section_);
4358     }
4359
4360   Output_data_dynamic* const odyn = this->dynamic_data_;
4361   if (odyn != NULL && vsec != NULL)
4362     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4363
4364   if (versions->any_defs())
4365     {
4366       Output_section* vdsec;
4367       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4368                                           elfcpp::SHT_GNU_verdef,
4369                                           elfcpp::SHF_ALLOC,
4370                                           false, ORDER_DYNAMIC_LINKER, false);
4371
4372       if (vdsec != NULL)
4373         {
4374           unsigned char* vdbuf;
4375           unsigned int vdsize;
4376           unsigned int vdentries;
4377           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4378                                                            &vdbuf, &vdsize,
4379                                                            &vdentries);
4380
4381           Output_section_data* vddata =
4382             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4383
4384           vdsec->add_output_section_data(vddata);
4385           vdsec->set_link_section(dynstr);
4386           vdsec->set_info(vdentries);
4387
4388           if (odyn != NULL)
4389             {
4390               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4391               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4392             }
4393         }
4394     }
4395
4396   if (versions->any_needs())
4397     {
4398       Output_section* vnsec;
4399       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4400                                           elfcpp::SHT_GNU_verneed,
4401                                           elfcpp::SHF_ALLOC,
4402                                           false, ORDER_DYNAMIC_LINKER, false);
4403
4404       if (vnsec != NULL)
4405         {
4406           unsigned char* vnbuf;
4407           unsigned int vnsize;
4408           unsigned int vnentries;
4409           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4410                                                             &vnbuf, &vnsize,
4411                                                             &vnentries);
4412
4413           Output_section_data* vndata =
4414             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4415
4416           vnsec->add_output_section_data(vndata);
4417           vnsec->set_link_section(dynstr);
4418           vnsec->set_info(vnentries);
4419
4420           if (odyn != NULL)
4421             {
4422               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4423               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4424             }
4425         }
4426     }
4427 }
4428
4429 // Create the .interp section and PT_INTERP segment.
4430
4431 void
4432 Layout::create_interp(const Target* target)
4433 {
4434   gold_assert(this->interp_segment_ == NULL);
4435
4436   const char* interp = parameters->options().dynamic_linker();
4437   if (interp == NULL)
4438     {
4439       interp = target->dynamic_linker();
4440       gold_assert(interp != NULL);
4441     }
4442
4443   size_t len = strlen(interp) + 1;
4444
4445   Output_section_data* odata = new Output_data_const(interp, len, 1);
4446
4447   Output_section* osec = this->choose_output_section(NULL, ".interp",
4448                                                      elfcpp::SHT_PROGBITS,
4449                                                      elfcpp::SHF_ALLOC,
4450                                                      false, ORDER_INTERP,
4451                                                      false);
4452   if (osec != NULL)
4453     osec->add_output_section_data(odata);
4454 }
4455
4456 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4457 // called by the target-specific code.  This does nothing if not doing
4458 // a dynamic link.
4459
4460 // USE_REL is true for REL relocs rather than RELA relocs.
4461
4462 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4463
4464 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4465 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4466 // some targets have multiple reloc sections in PLT_REL.
4467
4468 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4469 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4470 // section.
4471
4472 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4473 // executable.
4474
4475 void
4476 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4477                                 const Output_data* plt_rel,
4478                                 const Output_data_reloc_generic* dyn_rel,
4479                                 bool add_debug, bool dynrel_includes_plt)
4480 {
4481   Output_data_dynamic* odyn = this->dynamic_data_;
4482   if (odyn == NULL)
4483     return;
4484
4485   if (plt_got != NULL && plt_got->output_section() != NULL)
4486     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4487
4488   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4489     {
4490       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4491       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4492       odyn->add_constant(elfcpp::DT_PLTREL,
4493                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4494     }
4495
4496   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4497       || (dynrel_includes_plt
4498           && plt_rel != NULL
4499           && plt_rel->output_section() != NULL))
4500     {
4501       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4502       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4503       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4504                                 (have_dyn_rel
4505                                  ? dyn_rel->output_section()
4506                                  : plt_rel->output_section()));
4507       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4508       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4509         odyn->add_section_size(size_tag,
4510                                dyn_rel->output_section(),
4511                                plt_rel->output_section());
4512       else if (have_dyn_rel)
4513         odyn->add_section_size(size_tag, dyn_rel->output_section());
4514       else
4515         odyn->add_section_size(size_tag, plt_rel->output_section());
4516       const int size = parameters->target().get_size();
4517       elfcpp::DT rel_tag;
4518       int rel_size;
4519       if (use_rel)
4520         {
4521           rel_tag = elfcpp::DT_RELENT;
4522           if (size == 32)
4523             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4524           else if (size == 64)
4525             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4526           else
4527             gold_unreachable();
4528         }
4529       else
4530         {
4531           rel_tag = elfcpp::DT_RELAENT;
4532           if (size == 32)
4533             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4534           else if (size == 64)
4535             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4536           else
4537             gold_unreachable();
4538         }
4539       odyn->add_constant(rel_tag, rel_size);
4540
4541       if (parameters->options().combreloc() && have_dyn_rel)
4542         {
4543           size_t c = dyn_rel->relative_reloc_count();
4544           if (c > 0)
4545             odyn->add_constant((use_rel
4546                                 ? elfcpp::DT_RELCOUNT
4547                                 : elfcpp::DT_RELACOUNT),
4548                                c);
4549         }
4550     }
4551
4552   if (add_debug && !parameters->options().shared())
4553     {
4554       // The value of the DT_DEBUG tag is filled in by the dynamic
4555       // linker at run time, and used by the debugger.
4556       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4557     }
4558 }
4559
4560 // Finish the .dynamic section and PT_DYNAMIC segment.
4561
4562 void
4563 Layout::finish_dynamic_section(const Input_objects* input_objects,
4564                                const Symbol_table* symtab)
4565 {
4566   if (!this->script_options_->saw_phdrs_clause()
4567       && this->dynamic_section_ != NULL)
4568     {
4569       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4570                                                        (elfcpp::PF_R
4571                                                         | elfcpp::PF_W));
4572       oseg->add_output_section_to_nonload(this->dynamic_section_,
4573                                           elfcpp::PF_R | elfcpp::PF_W);
4574     }
4575
4576   Output_data_dynamic* const odyn = this->dynamic_data_;
4577   if (odyn == NULL)
4578     return;
4579
4580   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4581        p != input_objects->dynobj_end();
4582        ++p)
4583     {
4584       if (!(*p)->is_needed() && (*p)->as_needed())
4585         {
4586           // This dynamic object was linked with --as-needed, but it
4587           // is not needed.
4588           continue;
4589         }
4590
4591       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4592     }
4593
4594   if (parameters->options().shared())
4595     {
4596       const char* soname = parameters->options().soname();
4597       if (soname != NULL)
4598         odyn->add_string(elfcpp::DT_SONAME, soname);
4599     }
4600
4601   Symbol* sym = symtab->lookup(parameters->options().init());
4602   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4603     odyn->add_symbol(elfcpp::DT_INIT, sym);
4604
4605   sym = symtab->lookup(parameters->options().fini());
4606   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4607     odyn->add_symbol(elfcpp::DT_FINI, sym);
4608
4609   // Look for .init_array, .preinit_array and .fini_array by checking
4610   // section types.
4611   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4612       p != this->section_list_.end();
4613       ++p)
4614     switch((*p)->type())
4615       {
4616       case elfcpp::SHT_FINI_ARRAY:
4617         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4618         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4619         break;
4620       case elfcpp::SHT_INIT_ARRAY:
4621         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4622         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4623         break;
4624       case elfcpp::SHT_PREINIT_ARRAY:
4625         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4626         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4627         break;
4628       default:
4629         break;
4630       }
4631
4632   // Add a DT_RPATH entry if needed.
4633   const General_options::Dir_list& rpath(parameters->options().rpath());
4634   if (!rpath.empty())
4635     {
4636       std::string rpath_val;
4637       for (General_options::Dir_list::const_iterator p = rpath.begin();
4638            p != rpath.end();
4639            ++p)
4640         {
4641           if (rpath_val.empty())
4642             rpath_val = p->name();
4643           else
4644             {
4645               // Eliminate duplicates.
4646               General_options::Dir_list::const_iterator q;
4647               for (q = rpath.begin(); q != p; ++q)
4648                 if (q->name() == p->name())
4649                   break;
4650               if (q == p)
4651                 {
4652                   rpath_val += ':';
4653                   rpath_val += p->name();
4654                 }
4655             }
4656         }
4657
4658       if (!parameters->options().enable_new_dtags())
4659         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4660       else
4661         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4662     }
4663
4664   // Look for text segments that have dynamic relocations.
4665   bool have_textrel = false;
4666   if (!this->script_options_->saw_sections_clause())
4667     {
4668       for (Segment_list::const_iterator p = this->segment_list_.begin();
4669            p != this->segment_list_.end();
4670            ++p)
4671         {
4672           if ((*p)->type() == elfcpp::PT_LOAD
4673               && ((*p)->flags() & elfcpp::PF_W) == 0
4674               && (*p)->has_dynamic_reloc())
4675             {
4676               have_textrel = true;
4677               break;
4678             }
4679         }
4680     }
4681   else
4682     {
4683       // We don't know the section -> segment mapping, so we are
4684       // conservative and just look for readonly sections with
4685       // relocations.  If those sections wind up in writable segments,
4686       // then we have created an unnecessary DT_TEXTREL entry.
4687       for (Section_list::const_iterator p = this->section_list_.begin();
4688            p != this->section_list_.end();
4689            ++p)
4690         {
4691           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4692               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4693               && (*p)->has_dynamic_reloc())
4694             {
4695               have_textrel = true;
4696               break;
4697             }
4698         }
4699     }
4700
4701   if (parameters->options().filter() != NULL)
4702     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4703   if (parameters->options().any_auxiliary())
4704     {
4705       for (options::String_set::const_iterator p =
4706              parameters->options().auxiliary_begin();
4707            p != parameters->options().auxiliary_end();
4708            ++p)
4709         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4710     }
4711
4712   // Add a DT_FLAGS entry if necessary.
4713   unsigned int flags = 0;
4714   if (have_textrel)
4715     {
4716       // Add a DT_TEXTREL for compatibility with older loaders.
4717       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4718       flags |= elfcpp::DF_TEXTREL;
4719
4720       if (parameters->options().text())
4721         gold_error(_("read-only segment has dynamic relocations"));
4722       else if (parameters->options().warn_shared_textrel()
4723                && parameters->options().shared())
4724         gold_warning(_("shared library text segment is not shareable"));
4725     }
4726   if (parameters->options().shared() && this->has_static_tls())
4727     flags |= elfcpp::DF_STATIC_TLS;
4728   if (parameters->options().origin())
4729     flags |= elfcpp::DF_ORIGIN;
4730   if (parameters->options().Bsymbolic())
4731     {
4732       flags |= elfcpp::DF_SYMBOLIC;
4733       // Add DT_SYMBOLIC for compatibility with older loaders.
4734       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4735     }
4736   if (parameters->options().now())
4737     flags |= elfcpp::DF_BIND_NOW;
4738   if (flags != 0)
4739     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4740
4741   flags = 0;
4742   if (parameters->options().initfirst())
4743     flags |= elfcpp::DF_1_INITFIRST;
4744   if (parameters->options().interpose())
4745     flags |= elfcpp::DF_1_INTERPOSE;
4746   if (parameters->options().loadfltr())
4747     flags |= elfcpp::DF_1_LOADFLTR;
4748   if (parameters->options().nodefaultlib())
4749     flags |= elfcpp::DF_1_NODEFLIB;
4750   if (parameters->options().nodelete())
4751     flags |= elfcpp::DF_1_NODELETE;
4752   if (parameters->options().nodlopen())
4753     flags |= elfcpp::DF_1_NOOPEN;
4754   if (parameters->options().nodump())
4755     flags |= elfcpp::DF_1_NODUMP;
4756   if (!parameters->options().shared())
4757     flags &= ~(elfcpp::DF_1_INITFIRST
4758                | elfcpp::DF_1_NODELETE
4759                | elfcpp::DF_1_NOOPEN);
4760   if (parameters->options().origin())
4761     flags |= elfcpp::DF_1_ORIGIN;
4762   if (parameters->options().now())
4763     flags |= elfcpp::DF_1_NOW;
4764   if (parameters->options().Bgroup())
4765     flags |= elfcpp::DF_1_GROUP;
4766   if (flags != 0)
4767     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4768 }
4769
4770 // Set the size of the _DYNAMIC symbol table to be the size of the
4771 // dynamic data.
4772
4773 void
4774 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4775 {
4776   Output_data_dynamic* const odyn = this->dynamic_data_;
4777   if (odyn == NULL)
4778     return;
4779   odyn->finalize_data_size();
4780   if (this->dynamic_symbol_ == NULL)
4781     return;
4782   off_t data_size = odyn->data_size();
4783   const int size = parameters->target().get_size();
4784   if (size == 32)
4785     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4786   else if (size == 64)
4787     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4788   else
4789     gold_unreachable();
4790 }
4791
4792 // The mapping of input section name prefixes to output section names.
4793 // In some cases one prefix is itself a prefix of another prefix; in
4794 // such a case the longer prefix must come first.  These prefixes are
4795 // based on the GNU linker default ELF linker script.
4796
4797 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4798 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4799 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4800 {
4801   MAPPING_INIT(".text.", ".text"),
4802   MAPPING_INIT(".rodata.", ".rodata"),
4803   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4804   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4805   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4806   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4807   MAPPING_INIT(".data.", ".data"),
4808   MAPPING_INIT(".bss.", ".bss"),
4809   MAPPING_INIT(".tdata.", ".tdata"),
4810   MAPPING_INIT(".tbss.", ".tbss"),
4811   MAPPING_INIT(".init_array.", ".init_array"),
4812   MAPPING_INIT(".fini_array.", ".fini_array"),
4813   MAPPING_INIT(".sdata.", ".sdata"),
4814   MAPPING_INIT(".sbss.", ".sbss"),
4815   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4816   // differently depending on whether it is creating a shared library.
4817   MAPPING_INIT(".sdata2.", ".sdata"),
4818   MAPPING_INIT(".sbss2.", ".sbss"),
4819   MAPPING_INIT(".lrodata.", ".lrodata"),
4820   MAPPING_INIT(".ldata.", ".ldata"),
4821   MAPPING_INIT(".lbss.", ".lbss"),
4822   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4823   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4824   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4825   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4826   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4827   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4828   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4829   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4830   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4831   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4832   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4833   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4834   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4835   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4836   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4837   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4838   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4839   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4840   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4841   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4842   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4843 };
4844 #undef MAPPING_INIT
4845 #undef MAPPING_INIT_EXACT
4846
4847 const int Layout::section_name_mapping_count =
4848   (sizeof(Layout::section_name_mapping)
4849    / sizeof(Layout::section_name_mapping[0]));
4850
4851 // Choose the output section name to use given an input section name.
4852 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4853 // length of NAME.
4854
4855 const char*
4856 Layout::output_section_name(const Relobj* relobj, const char* name,
4857                             size_t* plen)
4858 {
4859   // gcc 4.3 generates the following sorts of section names when it
4860   // needs a section name specific to a function:
4861   //   .text.FN
4862   //   .rodata.FN
4863   //   .sdata2.FN
4864   //   .data.FN
4865   //   .data.rel.FN
4866   //   .data.rel.local.FN
4867   //   .data.rel.ro.FN
4868   //   .data.rel.ro.local.FN
4869   //   .sdata.FN
4870   //   .bss.FN
4871   //   .sbss.FN
4872   //   .tdata.FN
4873   //   .tbss.FN
4874
4875   // The GNU linker maps all of those to the part before the .FN,
4876   // except that .data.rel.local.FN is mapped to .data, and
4877   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4878   // beginning with .data.rel.ro.local are grouped together.
4879
4880   // For an anonymous namespace, the string FN can contain a '.'.
4881
4882   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4883   // GNU linker maps to .rodata.
4884
4885   // The .data.rel.ro sections are used with -z relro.  The sections
4886   // are recognized by name.  We use the same names that the GNU
4887   // linker does for these sections.
4888
4889   // It is hard to handle this in a principled way, so we don't even
4890   // try.  We use a table of mappings.  If the input section name is
4891   // not found in the table, we simply use it as the output section
4892   // name.
4893
4894   const Section_name_mapping* psnm = section_name_mapping;
4895   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4896     {
4897       if (psnm->fromlen > 0)
4898         {
4899           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4900             {
4901               *plen = psnm->tolen;
4902               return psnm->to;
4903             }
4904         }
4905       else
4906         {
4907           if (strcmp(name, psnm->from) == 0)
4908             {
4909               *plen = psnm->tolen;
4910               return psnm->to;
4911             }
4912         }
4913     }
4914
4915   // As an additional complication, .ctors sections are output in
4916   // either .ctors or .init_array sections, and .dtors sections are
4917   // output in either .dtors or .fini_array sections.
4918   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4919     {
4920       if (parameters->options().ctors_in_init_array())
4921         {
4922           *plen = 11;
4923           return name[1] == 'c' ? ".init_array" : ".fini_array";
4924         }
4925       else
4926         {
4927           *plen = 6;
4928           return name[1] == 'c' ? ".ctors" : ".dtors";
4929         }
4930     }
4931   if (parameters->options().ctors_in_init_array()
4932       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4933     {
4934       // To make .init_array/.fini_array work with gcc we must exclude
4935       // .ctors and .dtors sections from the crtbegin and crtend
4936       // files.
4937       if (relobj == NULL
4938           || (!Layout::match_file_name(relobj, "crtbegin")
4939               && !Layout::match_file_name(relobj, "crtend")))
4940         {
4941           *plen = 11;
4942           return name[1] == 'c' ? ".init_array" : ".fini_array";
4943         }
4944     }
4945
4946   return name;
4947 }
4948
4949 // Return true if RELOBJ is an input file whose base name matches
4950 // FILE_NAME.  The base name must have an extension of ".o", and must
4951 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4952 // to match crtbegin.o as well as crtbeginS.o without getting confused
4953 // by other possibilities.  Overall matching the file name this way is
4954 // a dreadful hack, but the GNU linker does it in order to better
4955 // support gcc, and we need to be compatible.
4956
4957 bool
4958 Layout::match_file_name(const Relobj* relobj, const char* match)
4959 {
4960   const std::string& file_name(relobj->name());
4961   const char* base_name = lbasename(file_name.c_str());
4962   size_t match_len = strlen(match);
4963   if (strncmp(base_name, match, match_len) != 0)
4964     return false;
4965   size_t base_len = strlen(base_name);
4966   if (base_len != match_len + 2 && base_len != match_len + 3)
4967     return false;
4968   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4969 }
4970
4971 // Check if a comdat group or .gnu.linkonce section with the given
4972 // NAME is selected for the link.  If there is already a section,
4973 // *KEPT_SECTION is set to point to the existing section and the
4974 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4975 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4976 // *KEPT_SECTION is set to the internal copy and the function returns
4977 // true.
4978
4979 bool
4980 Layout::find_or_add_kept_section(const std::string& name,
4981                                  Relobj* object,
4982                                  unsigned int shndx,
4983                                  bool is_comdat,
4984                                  bool is_group_name,
4985                                  Kept_section** kept_section)
4986 {
4987   // It's normal to see a couple of entries here, for the x86 thunk
4988   // sections.  If we see more than a few, we're linking a C++
4989   // program, and we resize to get more space to minimize rehashing.
4990   if (this->signatures_.size() > 4
4991       && !this->resized_signatures_)
4992     {
4993       reserve_unordered_map(&this->signatures_,
4994                             this->number_of_input_files_ * 64);
4995       this->resized_signatures_ = true;
4996     }
4997
4998   Kept_section candidate;
4999   std::pair<Signatures::iterator, bool> ins =
5000     this->signatures_.insert(std::make_pair(name, candidate));
5001
5002   if (kept_section != NULL)
5003     *kept_section = &ins.first->second;
5004   if (ins.second)
5005     {
5006       // This is the first time we've seen this signature.
5007       ins.first->second.set_object(object);
5008       ins.first->second.set_shndx(shndx);
5009       if (is_comdat)
5010         ins.first->second.set_is_comdat();
5011       if (is_group_name)
5012         ins.first->second.set_is_group_name();
5013       return true;
5014     }
5015
5016   // We have already seen this signature.
5017
5018   if (ins.first->second.is_group_name())
5019     {
5020       // We've already seen a real section group with this signature.
5021       // If the kept group is from a plugin object, and we're in the
5022       // replacement phase, accept the new one as a replacement.
5023       if (ins.first->second.object() == NULL
5024           && parameters->options().plugins()->in_replacement_phase())
5025         {
5026           ins.first->second.set_object(object);
5027           ins.first->second.set_shndx(shndx);
5028           return true;
5029         }
5030       return false;
5031     }
5032   else if (is_group_name)
5033     {
5034       // This is a real section group, and we've already seen a
5035       // linkonce section with this signature.  Record that we've seen
5036       // a section group, and don't include this section group.
5037       ins.first->second.set_is_group_name();
5038       return false;
5039     }
5040   else
5041     {
5042       // We've already seen a linkonce section and this is a linkonce
5043       // section.  These don't block each other--this may be the same
5044       // symbol name with different section types.
5045       return true;
5046     }
5047 }
5048
5049 // Store the allocated sections into the section list.
5050
5051 void
5052 Layout::get_allocated_sections(Section_list* section_list) const
5053 {
5054   for (Section_list::const_iterator p = this->section_list_.begin();
5055        p != this->section_list_.end();
5056        ++p)
5057     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5058       section_list->push_back(*p);
5059 }
5060
5061 // Store the executable sections into the section list.
5062
5063 void
5064 Layout::get_executable_sections(Section_list* section_list) const
5065 {
5066   for (Section_list::const_iterator p = this->section_list_.begin();
5067        p != this->section_list_.end();
5068        ++p)
5069     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5070         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5071       section_list->push_back(*p);
5072 }
5073
5074 // Create an output segment.
5075
5076 Output_segment*
5077 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5078 {
5079   gold_assert(!parameters->options().relocatable());
5080   Output_segment* oseg = new Output_segment(type, flags);
5081   this->segment_list_.push_back(oseg);
5082
5083   if (type == elfcpp::PT_TLS)
5084     this->tls_segment_ = oseg;
5085   else if (type == elfcpp::PT_GNU_RELRO)
5086     this->relro_segment_ = oseg;
5087   else if (type == elfcpp::PT_INTERP)
5088     this->interp_segment_ = oseg;
5089
5090   return oseg;
5091 }
5092
5093 // Return the file offset of the normal symbol table.
5094
5095 off_t
5096 Layout::symtab_section_offset() const
5097 {
5098   if (this->symtab_section_ != NULL)
5099     return this->symtab_section_->offset();
5100   return 0;
5101 }
5102
5103 // Return the section index of the normal symbol table.  It may have
5104 // been stripped by the -s/--strip-all option.
5105
5106 unsigned int
5107 Layout::symtab_section_shndx() const
5108 {
5109   if (this->symtab_section_ != NULL)
5110     return this->symtab_section_->out_shndx();
5111   return 0;
5112 }
5113
5114 // Write out the Output_sections.  Most won't have anything to write,
5115 // since most of the data will come from input sections which are
5116 // handled elsewhere.  But some Output_sections do have Output_data.
5117
5118 void
5119 Layout::write_output_sections(Output_file* of) const
5120 {
5121   for (Section_list::const_iterator p = this->section_list_.begin();
5122        p != this->section_list_.end();
5123        ++p)
5124     {
5125       if (!(*p)->after_input_sections())
5126         (*p)->write(of);
5127     }
5128 }
5129
5130 // Write out data not associated with a section or the symbol table.
5131
5132 void
5133 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5134 {
5135   if (!parameters->options().strip_all())
5136     {
5137       const Output_section* symtab_section = this->symtab_section_;
5138       for (Section_list::const_iterator p = this->section_list_.begin();
5139            p != this->section_list_.end();
5140            ++p)
5141         {
5142           if ((*p)->needs_symtab_index())
5143             {
5144               gold_assert(symtab_section != NULL);
5145               unsigned int index = (*p)->symtab_index();
5146               gold_assert(index > 0 && index != -1U);
5147               off_t off = (symtab_section->offset()
5148                            + index * symtab_section->entsize());
5149               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5150             }
5151         }
5152     }
5153
5154   const Output_section* dynsym_section = this->dynsym_section_;
5155   for (Section_list::const_iterator p = this->section_list_.begin();
5156        p != this->section_list_.end();
5157        ++p)
5158     {
5159       if ((*p)->needs_dynsym_index())
5160         {
5161           gold_assert(dynsym_section != NULL);
5162           unsigned int index = (*p)->dynsym_index();
5163           gold_assert(index > 0 && index != -1U);
5164           off_t off = (dynsym_section->offset()
5165                        + index * dynsym_section->entsize());
5166           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5167         }
5168     }
5169
5170   // Write out the Output_data which are not in an Output_section.
5171   for (Data_list::const_iterator p = this->special_output_list_.begin();
5172        p != this->special_output_list_.end();
5173        ++p)
5174     (*p)->write(of);
5175 }
5176
5177 // Write out the Output_sections which can only be written after the
5178 // input sections are complete.
5179
5180 void
5181 Layout::write_sections_after_input_sections(Output_file* of)
5182 {
5183   // Determine the final section offsets, and thus the final output
5184   // file size.  Note we finalize the .shstrab last, to allow the
5185   // after_input_section sections to modify their section-names before
5186   // writing.
5187   if (this->any_postprocessing_sections_)
5188     {
5189       off_t off = this->output_file_size_;
5190       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5191
5192       // Now that we've finalized the names, we can finalize the shstrab.
5193       off =
5194         this->set_section_offsets(off,
5195                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5196
5197       if (off > this->output_file_size_)
5198         {
5199           of->resize(off);
5200           this->output_file_size_ = off;
5201         }
5202     }
5203
5204   for (Section_list::const_iterator p = this->section_list_.begin();
5205        p != this->section_list_.end();
5206        ++p)
5207     {
5208       if ((*p)->after_input_sections())
5209         (*p)->write(of);
5210     }
5211
5212   this->section_headers_->write(of);
5213 }
5214
5215 // If the build ID requires computing a checksum, do so here, and
5216 // write it out.  We compute a checksum over the entire file because
5217 // that is simplest.
5218
5219 void
5220 Layout::write_build_id(Output_file* of) const
5221 {
5222   if (this->build_id_note_ == NULL)
5223     return;
5224
5225   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5226
5227   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5228                                           this->build_id_note_->data_size());
5229
5230   const char* style = parameters->options().build_id();
5231   if (strcmp(style, "sha1") == 0)
5232     {
5233       sha1_ctx ctx;
5234       sha1_init_ctx(&ctx);
5235       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5236       sha1_finish_ctx(&ctx, ov);
5237     }
5238   else if (strcmp(style, "md5") == 0)
5239     {
5240       md5_ctx ctx;
5241       md5_init_ctx(&ctx);
5242       md5_process_bytes(iv, this->output_file_size_, &ctx);
5243       md5_finish_ctx(&ctx, ov);
5244     }
5245   else
5246     gold_unreachable();
5247
5248   of->write_output_view(this->build_id_note_->offset(),
5249                         this->build_id_note_->data_size(),
5250                         ov);
5251
5252   of->free_input_view(0, this->output_file_size_, iv);
5253 }
5254
5255 // Write out a binary file.  This is called after the link is
5256 // complete.  IN is the temporary output file we used to generate the
5257 // ELF code.  We simply walk through the segments, read them from
5258 // their file offset in IN, and write them to their load address in
5259 // the output file.  FIXME: with a bit more work, we could support
5260 // S-records and/or Intel hex format here.
5261
5262 void
5263 Layout::write_binary(Output_file* in) const
5264 {
5265   gold_assert(parameters->options().oformat_enum()
5266               == General_options::OBJECT_FORMAT_BINARY);
5267
5268   // Get the size of the binary file.
5269   uint64_t max_load_address = 0;
5270   for (Segment_list::const_iterator p = this->segment_list_.begin();
5271        p != this->segment_list_.end();
5272        ++p)
5273     {
5274       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5275         {
5276           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5277           if (max_paddr > max_load_address)
5278             max_load_address = max_paddr;
5279         }
5280     }
5281
5282   Output_file out(parameters->options().output_file_name());
5283   out.open(max_load_address);
5284
5285   for (Segment_list::const_iterator p = this->segment_list_.begin();
5286        p != this->segment_list_.end();
5287        ++p)
5288     {
5289       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5290         {
5291           const unsigned char* vin = in->get_input_view((*p)->offset(),
5292                                                         (*p)->filesz());
5293           unsigned char* vout = out.get_output_view((*p)->paddr(),
5294                                                     (*p)->filesz());
5295           memcpy(vout, vin, (*p)->filesz());
5296           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5297           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5298         }
5299     }
5300
5301   out.close();
5302 }
5303
5304 // Print the output sections to the map file.
5305
5306 void
5307 Layout::print_to_mapfile(Mapfile* mapfile) const
5308 {
5309   for (Segment_list::const_iterator p = this->segment_list_.begin();
5310        p != this->segment_list_.end();
5311        ++p)
5312     (*p)->print_sections_to_mapfile(mapfile);
5313 }
5314
5315 // Print statistical information to stderr.  This is used for --stats.
5316
5317 void
5318 Layout::print_stats() const
5319 {
5320   this->namepool_.print_stats("section name pool");
5321   this->sympool_.print_stats("output symbol name pool");
5322   this->dynpool_.print_stats("dynamic name pool");
5323
5324   for (Section_list::const_iterator p = this->section_list_.begin();
5325        p != this->section_list_.end();
5326        ++p)
5327     (*p)->print_merge_stats();
5328 }
5329
5330 // Write_sections_task methods.
5331
5332 // We can always run this task.
5333
5334 Task_token*
5335 Write_sections_task::is_runnable()
5336 {
5337   return NULL;
5338 }
5339
5340 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5341 // when finished.
5342
5343 void
5344 Write_sections_task::locks(Task_locker* tl)
5345 {
5346   tl->add(this, this->output_sections_blocker_);
5347   tl->add(this, this->final_blocker_);
5348 }
5349
5350 // Run the task--write out the data.
5351
5352 void
5353 Write_sections_task::run(Workqueue*)
5354 {
5355   this->layout_->write_output_sections(this->of_);
5356 }
5357
5358 // Write_data_task methods.
5359
5360 // We can always run this task.
5361
5362 Task_token*
5363 Write_data_task::is_runnable()
5364 {
5365   return NULL;
5366 }
5367
5368 // We need to unlock FINAL_BLOCKER when finished.
5369
5370 void
5371 Write_data_task::locks(Task_locker* tl)
5372 {
5373   tl->add(this, this->final_blocker_);
5374 }
5375
5376 // Run the task--write out the data.
5377
5378 void
5379 Write_data_task::run(Workqueue*)
5380 {
5381   this->layout_->write_data(this->symtab_, this->of_);
5382 }
5383
5384 // Write_symbols_task methods.
5385
5386 // We can always run this task.
5387
5388 Task_token*
5389 Write_symbols_task::is_runnable()
5390 {
5391   return NULL;
5392 }
5393
5394 // We need to unlock FINAL_BLOCKER when finished.
5395
5396 void
5397 Write_symbols_task::locks(Task_locker* tl)
5398 {
5399   tl->add(this, this->final_blocker_);
5400 }
5401
5402 // Run the task--write out the symbols.
5403
5404 void
5405 Write_symbols_task::run(Workqueue*)
5406 {
5407   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5408                                this->layout_->symtab_xindex(),
5409                                this->layout_->dynsym_xindex(), this->of_);
5410 }
5411
5412 // Write_after_input_sections_task methods.
5413
5414 // We can only run this task after the input sections have completed.
5415
5416 Task_token*
5417 Write_after_input_sections_task::is_runnable()
5418 {
5419   if (this->input_sections_blocker_->is_blocked())
5420     return this->input_sections_blocker_;
5421   return NULL;
5422 }
5423
5424 // We need to unlock FINAL_BLOCKER when finished.
5425
5426 void
5427 Write_after_input_sections_task::locks(Task_locker* tl)
5428 {
5429   tl->add(this, this->final_blocker_);
5430 }
5431
5432 // Run the task.
5433
5434 void
5435 Write_after_input_sections_task::run(Workqueue*)
5436 {
5437   this->layout_->write_sections_after_input_sections(this->of_);
5438 }
5439
5440 // Close_task_runner methods.
5441
5442 // Run the task--close the file.
5443
5444 void
5445 Close_task_runner::run(Workqueue*, const Task*)
5446 {
5447   // If we need to compute a checksum for the BUILD if, we do so here.
5448   this->layout_->write_build_id(this->of_);
5449
5450   // If we've been asked to create a binary file, we do so here.
5451   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5452     this->layout_->write_binary(this->of_);
5453
5454   this->of_->close();
5455 }
5456
5457 // Instantiate the templates we need.  We could use the configure
5458 // script to restrict this to only the ones for implemented targets.
5459
5460 #ifdef HAVE_TARGET_32_LITTLE
5461 template
5462 Output_section*
5463 Layout::init_fixed_output_section<32, false>(
5464     const char* name,
5465     elfcpp::Shdr<32, false>& shdr);
5466 #endif
5467
5468 #ifdef HAVE_TARGET_32_BIG
5469 template
5470 Output_section*
5471 Layout::init_fixed_output_section<32, true>(
5472     const char* name,
5473     elfcpp::Shdr<32, true>& shdr);
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_LITTLE
5477 template
5478 Output_section*
5479 Layout::init_fixed_output_section<64, false>(
5480     const char* name,
5481     elfcpp::Shdr<64, false>& shdr);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_64_BIG
5485 template
5486 Output_section*
5487 Layout::init_fixed_output_section<64, true>(
5488     const char* name,
5489     elfcpp::Shdr<64, true>& shdr);
5490 #endif
5491
5492 #ifdef HAVE_TARGET_32_LITTLE
5493 template
5494 Output_section*
5495 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5496                           unsigned int shndx,
5497                           const char* name,
5498                           const elfcpp::Shdr<32, false>& shdr,
5499                           unsigned int, unsigned int, off_t*);
5500 #endif
5501
5502 #ifdef HAVE_TARGET_32_BIG
5503 template
5504 Output_section*
5505 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5506                          unsigned int shndx,
5507                          const char* name,
5508                          const elfcpp::Shdr<32, true>& shdr,
5509                          unsigned int, unsigned int, off_t*);
5510 #endif
5511
5512 #ifdef HAVE_TARGET_64_LITTLE
5513 template
5514 Output_section*
5515 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5516                           unsigned int shndx,
5517                           const char* name,
5518                           const elfcpp::Shdr<64, false>& shdr,
5519                           unsigned int, unsigned int, off_t*);
5520 #endif
5521
5522 #ifdef HAVE_TARGET_64_BIG
5523 template
5524 Output_section*
5525 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5526                          unsigned int shndx,
5527                          const char* name,
5528                          const elfcpp::Shdr<64, true>& shdr,
5529                          unsigned int, unsigned int, off_t*);
5530 #endif
5531
5532 #ifdef HAVE_TARGET_32_LITTLE
5533 template
5534 Output_section*
5535 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5536                                 unsigned int reloc_shndx,
5537                                 const elfcpp::Shdr<32, false>& shdr,
5538                                 Output_section* data_section,
5539                                 Relocatable_relocs* rr);
5540 #endif
5541
5542 #ifdef HAVE_TARGET_32_BIG
5543 template
5544 Output_section*
5545 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5546                                unsigned int reloc_shndx,
5547                                const elfcpp::Shdr<32, true>& shdr,
5548                                Output_section* data_section,
5549                                Relocatable_relocs* rr);
5550 #endif
5551
5552 #ifdef HAVE_TARGET_64_LITTLE
5553 template
5554 Output_section*
5555 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5556                                 unsigned int reloc_shndx,
5557                                 const elfcpp::Shdr<64, false>& shdr,
5558                                 Output_section* data_section,
5559                                 Relocatable_relocs* rr);
5560 #endif
5561
5562 #ifdef HAVE_TARGET_64_BIG
5563 template
5564 Output_section*
5565 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5566                                unsigned int reloc_shndx,
5567                                const elfcpp::Shdr<64, true>& shdr,
5568                                Output_section* data_section,
5569                                Relocatable_relocs* rr);
5570 #endif
5571
5572 #ifdef HAVE_TARGET_32_LITTLE
5573 template
5574 void
5575 Layout::layout_group<32, false>(Symbol_table* symtab,
5576                                 Sized_relobj_file<32, false>* object,
5577                                 unsigned int,
5578                                 const char* group_section_name,
5579                                 const char* signature,
5580                                 const elfcpp::Shdr<32, false>& shdr,
5581                                 elfcpp::Elf_Word flags,
5582                                 std::vector<unsigned int>* shndxes);
5583 #endif
5584
5585 #ifdef HAVE_TARGET_32_BIG
5586 template
5587 void
5588 Layout::layout_group<32, true>(Symbol_table* symtab,
5589                                Sized_relobj_file<32, true>* object,
5590                                unsigned int,
5591                                const char* group_section_name,
5592                                const char* signature,
5593                                const elfcpp::Shdr<32, true>& shdr,
5594                                elfcpp::Elf_Word flags,
5595                                std::vector<unsigned int>* shndxes);
5596 #endif
5597
5598 #ifdef HAVE_TARGET_64_LITTLE
5599 template
5600 void
5601 Layout::layout_group<64, false>(Symbol_table* symtab,
5602                                 Sized_relobj_file<64, false>* object,
5603                                 unsigned int,
5604                                 const char* group_section_name,
5605                                 const char* signature,
5606                                 const elfcpp::Shdr<64, false>& shdr,
5607                                 elfcpp::Elf_Word flags,
5608                                 std::vector<unsigned int>* shndxes);
5609 #endif
5610
5611 #ifdef HAVE_TARGET_64_BIG
5612 template
5613 void
5614 Layout::layout_group<64, true>(Symbol_table* symtab,
5615                                Sized_relobj_file<64, true>* object,
5616                                unsigned int,
5617                                const char* group_section_name,
5618                                const char* signature,
5619                                const elfcpp::Shdr<64, true>& shdr,
5620                                elfcpp::Elf_Word flags,
5621                                std::vector<unsigned int>* shndxes);
5622 #endif
5623
5624 #ifdef HAVE_TARGET_32_LITTLE
5625 template
5626 Output_section*
5627 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5628                                    const unsigned char* symbols,
5629                                    off_t symbols_size,
5630                                    const unsigned char* symbol_names,
5631                                    off_t symbol_names_size,
5632                                    unsigned int shndx,
5633                                    const elfcpp::Shdr<32, false>& shdr,
5634                                    unsigned int reloc_shndx,
5635                                    unsigned int reloc_type,
5636                                    off_t* off);
5637 #endif
5638
5639 #ifdef HAVE_TARGET_32_BIG
5640 template
5641 Output_section*
5642 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5643                                   const unsigned char* symbols,
5644                                   off_t symbols_size,
5645                                   const unsigned char* symbol_names,
5646                                   off_t symbol_names_size,
5647                                   unsigned int shndx,
5648                                   const elfcpp::Shdr<32, true>& shdr,
5649                                   unsigned int reloc_shndx,
5650                                   unsigned int reloc_type,
5651                                   off_t* off);
5652 #endif
5653
5654 #ifdef HAVE_TARGET_64_LITTLE
5655 template
5656 Output_section*
5657 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5658                                    const unsigned char* symbols,
5659                                    off_t symbols_size,
5660                                    const unsigned char* symbol_names,
5661                                    off_t symbol_names_size,
5662                                    unsigned int shndx,
5663                                    const elfcpp::Shdr<64, false>& shdr,
5664                                    unsigned int reloc_shndx,
5665                                    unsigned int reloc_type,
5666                                    off_t* off);
5667 #endif
5668
5669 #ifdef HAVE_TARGET_64_BIG
5670 template
5671 Output_section*
5672 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5673                                   const unsigned char* symbols,
5674                                   off_t symbols_size,
5675                                   const unsigned char* symbol_names,
5676                                   off_t symbol_names_size,
5677                                   unsigned int shndx,
5678                                   const elfcpp::Shdr<64, true>& shdr,
5679                                   unsigned int reloc_shndx,
5680                                   unsigned int reloc_type,
5681                                   off_t* off);
5682 #endif
5683
5684 #ifdef HAVE_TARGET_32_LITTLE
5685 template
5686 void
5687 Layout::add_to_gdb_index(bool is_type_unit,
5688                          Sized_relobj<32, false>* object,
5689                          const unsigned char* symbols,
5690                          off_t symbols_size,
5691                          unsigned int shndx,
5692                          unsigned int reloc_shndx,
5693                          unsigned int reloc_type);
5694 #endif
5695
5696 #ifdef HAVE_TARGET_32_BIG
5697 template
5698 void
5699 Layout::add_to_gdb_index(bool is_type_unit,
5700                          Sized_relobj<32, true>* object,
5701                          const unsigned char* symbols,
5702                          off_t symbols_size,
5703                          unsigned int shndx,
5704                          unsigned int reloc_shndx,
5705                          unsigned int reloc_type);
5706 #endif
5707
5708 #ifdef HAVE_TARGET_64_LITTLE
5709 template
5710 void
5711 Layout::add_to_gdb_index(bool is_type_unit,
5712                          Sized_relobj<64, false>* object,
5713                          const unsigned char* symbols,
5714                          off_t symbols_size,
5715                          unsigned int shndx,
5716                          unsigned int reloc_shndx,
5717                          unsigned int reloc_type);
5718 #endif
5719
5720 #ifdef HAVE_TARGET_64_BIG
5721 template
5722 void
5723 Layout::add_to_gdb_index(bool is_type_unit,
5724                          Sized_relobj<64, true>* object,
5725                          const unsigned char* symbols,
5726                          off_t symbols_size,
5727                          unsigned int shndx,
5728                          unsigned int reloc_shndx,
5729                          unsigned int reloc_type);
5730 #endif
5731
5732 } // End namespace gold.