gold/
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245  public:
246   Hash_task(const unsigned char* src,
247             size_t size,
248             unsigned char* dst,
249             Task_token* build_id_blocker,
250             Task_token* final_blocker)
251     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252       final_blocker_(final_blocker)
253   { }
254
255   void
256   run(Workqueue*)
257   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259   Task_token*
260   is_runnable();
261
262   // Unblock FINAL_BLOCKER_ when done.
263   void
264   locks(Task_locker* tl)
265   { tl->add(this, this->final_blocker_); }
266
267   std::string
268   get_name() const
269   { return "Hash_task"; }
270
271  private:
272   const unsigned char* const src_;
273   const size_t size_;
274   unsigned char* const dst_;
275   Task_token* const build_id_blocker_;
276   Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282   if (this->build_id_blocker_->is_blocked())
283     return this->build_id_blocker_;
284   return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295     const Layout::Section_list& sections,
296     const Layout::Data_list& special_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307 }
308
309 // Save information of SECTIONS for checking later.
310
311 void
312 Layout::Relaxation_debug_check::read_sections(
313     const Layout::Section_list& sections)
314 {
315   for(Layout::Section_list::const_iterator p = sections.begin();
316       p != sections.end();
317       ++p)
318     {
319       Output_section* os = *p;
320       Section_info info;
321       info.output_section = os;
322       info.address = os->is_address_valid() ? os->address() : 0;
323       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
324       info.offset = os->is_offset_valid()? os->offset() : -1 ;
325       this->section_infos_.push_back(info);
326     }
327 }
328
329 // Verify SECTIONS using previously recorded information.
330
331 void
332 Layout::Relaxation_debug_check::verify_sections(
333     const Layout::Section_list& sections)
334 {
335   size_t i = 0;
336   for(Layout::Section_list::const_iterator p = sections.begin();
337       p != sections.end();
338       ++p, ++i)
339     {
340       Output_section* os = *p;
341       uint64_t address = os->is_address_valid() ? os->address() : 0;
342       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
343       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
344
345       if (i >= this->section_infos_.size())
346         {
347           gold_fatal("Section_info of %s missing.\n", os->name());
348         }
349       const Section_info& info = this->section_infos_[i];
350       if (os != info.output_section)
351         gold_fatal("Section order changed.  Expecting %s but see %s\n",
352                    info.output_section->name(), os->name());
353       if (address != info.address
354           || data_size != info.data_size
355           || offset != info.offset)
356         gold_fatal("Section %s changed.\n", os->name());
357     }
358 }
359
360 // Layout_task_runner methods.
361
362 // Lay out the sections.  This is called after all the input objects
363 // have been read.
364
365 void
366 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
367 {
368   // See if any of the input definitions violate the One Definition Rule.
369   // TODO: if this is too slow, do this as a task, rather than inline.
370   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
371
372   Layout* layout = this->layout_;
373   off_t file_size = layout->finalize(this->input_objects_,
374                                      this->symtab_,
375                                      this->target_,
376                                      task);
377
378   // Now we know the final size of the output file and we know where
379   // each piece of information goes.
380
381   if (this->mapfile_ != NULL)
382     {
383       this->mapfile_->print_discarded_sections(this->input_objects_);
384       layout->print_to_mapfile(this->mapfile_);
385     }
386
387   Output_file* of;
388   if (layout->incremental_base() == NULL)
389     {
390       of = new Output_file(parameters->options().output_file_name());
391       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
392         of->set_is_temporary();
393       of->open(file_size);
394     }
395   else
396     {
397       of = layout->incremental_base()->output_file();
398
399       // Apply the incremental relocations for symbols whose values
400       // have changed.  We do this before we resize the file and start
401       // writing anything else to it, so that we can read the old
402       // incremental information from the file before (possibly)
403       // overwriting it.
404       if (parameters->incremental_update())
405         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
406                                                              this->layout_,
407                                                              of);
408
409       of->resize(file_size);
410     }
411
412   // Queue up the final set of tasks.
413   gold::queue_final_tasks(this->options_, this->input_objects_,
414                           this->symtab_, layout, workqueue, of);
415 }
416
417 // Layout methods.
418
419 Layout::Layout(int number_of_input_files, Script_options* script_options)
420   : number_of_input_files_(number_of_input_files),
421     script_options_(script_options),
422     namepool_(),
423     sympool_(),
424     dynpool_(),
425     signatures_(),
426     section_name_map_(),
427     segment_list_(),
428     section_list_(),
429     unattached_section_list_(),
430     special_output_list_(),
431     section_headers_(NULL),
432     tls_segment_(NULL),
433     relro_segment_(NULL),
434     interp_segment_(NULL),
435     increase_relro_(0),
436     symtab_section_(NULL),
437     symtab_xindex_(NULL),
438     dynsym_section_(NULL),
439     dynsym_xindex_(NULL),
440     dynamic_section_(NULL),
441     dynamic_symbol_(NULL),
442     dynamic_data_(NULL),
443     eh_frame_section_(NULL),
444     eh_frame_data_(NULL),
445     added_eh_frame_data_(false),
446     eh_frame_hdr_section_(NULL),
447     gdb_index_data_(NULL),
448     build_id_note_(NULL),
449     array_of_hashes_(NULL),
450     size_of_array_of_hashes_(0),
451     input_view_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "info",
525   "types",
526   "line",
527   "loc",
528   "macinfo",
529   "macro",
530   // "pubnames",  // not used by gdb as of 7.4
531   // "pubtypes",  // not used by gdb as of 7.4
532   "ranges",
533   "str",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   "info",
545   // "types",
546   "line",
547   // "loc",
548   // "macinfo",
549   // "macro",
550   // "pubnames",  // not used by gdb as of 7.4
551   // "pubtypes",  // not used by gdb as of 7.4
552   // "ranges",
553   "str",
554 };
555
556 // These sections are the DWARF fast-lookup tables, and are not needed
557 // when building a .gdb_index section.
558
559 static const char* gdb_fast_lookup_sections[] =
560 {
561   "aranges",
562   "pubnames",
563   "pubtypes",
564 };
565
566 // Returns whether the given debug section is in the list of
567 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
568 // portion of the name following ".debug_" or ".zdebug_".
569
570 static inline bool
571 is_gdb_debug_section(const char* suffix)
572 {
573   // We can do this faster: binary search or a hashtable.  But why bother?
574   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
575     if (strcmp(suffix, gdb_sections[i]) == 0)
576       return true;
577   return false;
578 }
579
580 // Returns whether the given section is needed for lines-only debugging.
581
582 static inline bool
583 is_lines_only_debug_section(const char* suffix)
584 {
585   // We can do this faster: binary search or a hashtable.  But why bother?
586   for (size_t i = 0;
587        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
588        ++i)
589     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
590       return true;
591   return false;
592 }
593
594 // Returns whether the given section is a fast-lookup section that
595 // will not be needed when building a .gdb_index section.
596
597 static inline bool
598 is_gdb_fast_lookup_section(const char* suffix)
599 {
600   // We can do this faster: binary search or a hashtable.  But why bother?
601   for (size_t i = 0;
602        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
603        ++i)
604     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
605       return true;
606   return false;
607 }
608
609 // Sometimes we compress sections.  This is typically done for
610 // sections that are not part of normal program execution (such as
611 // .debug_* sections), and where the readers of these sections know
612 // how to deal with compressed sections.  This routine doesn't say for
613 // certain whether we'll compress -- it depends on commandline options
614 // as well -- just whether this section is a candidate for compression.
615 // (The Output_compressed_section class decides whether to compress
616 // a given section, and picks the name of the compressed section.)
617
618 static bool
619 is_compressible_debug_section(const char* secname)
620 {
621   return (is_prefix_of(".debug", secname));
622 }
623
624 // We may see compressed debug sections in input files.  Return TRUE
625 // if this is the name of a compressed debug section.
626
627 bool
628 is_compressed_debug_section(const char* secname)
629 {
630   return (is_prefix_of(".zdebug", secname));
631 }
632
633 // Whether to include this section in the link.
634
635 template<int size, bool big_endian>
636 bool
637 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
638                         const elfcpp::Shdr<size, big_endian>& shdr)
639 {
640   if (!parameters->options().relocatable()
641       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
642     return false;
643
644   switch (shdr.get_sh_type())
645     {
646     case elfcpp::SHT_NULL:
647     case elfcpp::SHT_SYMTAB:
648     case elfcpp::SHT_DYNSYM:
649     case elfcpp::SHT_HASH:
650     case elfcpp::SHT_DYNAMIC:
651     case elfcpp::SHT_SYMTAB_SHNDX:
652       return false;
653
654     case elfcpp::SHT_STRTAB:
655       // Discard the sections which have special meanings in the ELF
656       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
657       // checking the sh_link fields of the appropriate sections.
658       return (strcmp(name, ".dynstr") != 0
659               && strcmp(name, ".strtab") != 0
660               && strcmp(name, ".shstrtab") != 0);
661
662     case elfcpp::SHT_RELA:
663     case elfcpp::SHT_REL:
664     case elfcpp::SHT_GROUP:
665       // If we are emitting relocations these should be handled
666       // elsewhere.
667       gold_assert(!parameters->options().relocatable());
668       return false;
669
670     case elfcpp::SHT_PROGBITS:
671       if (parameters->options().strip_debug()
672           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
673         {
674           if (is_debug_info_section(name))
675             return false;
676         }
677       if (parameters->options().strip_debug_non_line()
678           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
679         {
680           // Debugging sections can only be recognized by name.
681           if (is_prefix_of(".debug_", name)
682               && !is_lines_only_debug_section(name + 7))
683             return false;
684           if (is_prefix_of(".zdebug_", name)
685               && !is_lines_only_debug_section(name + 8))
686             return false;
687         }
688       if (parameters->options().strip_debug_gdb()
689           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690         {
691           // Debugging sections can only be recognized by name.
692           if (is_prefix_of(".debug_", name)
693               && !is_gdb_debug_section(name + 7))
694             return false;
695           if (is_prefix_of(".zdebug_", name)
696               && !is_gdb_debug_section(name + 8))
697             return false;
698         }
699       if (parameters->options().gdb_index()
700           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701         {
702           // When building .gdb_index, we can strip .debug_pubnames,
703           // .debug_pubtypes, and .debug_aranges sections.
704           if (is_prefix_of(".debug_", name)
705               && is_gdb_fast_lookup_section(name + 7))
706             return false;
707           if (is_prefix_of(".zdebug_", name)
708               && is_gdb_fast_lookup_section(name + 8))
709             return false;
710         }
711       if (parameters->options().strip_lto_sections()
712           && !parameters->options().relocatable()
713           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
714         {
715           // Ignore LTO sections containing intermediate code.
716           if (is_prefix_of(".gnu.lto_", name))
717             return false;
718         }
719       // The GNU linker strips .gnu_debuglink sections, so we do too.
720       // This is a feature used to keep debugging information in
721       // separate files.
722       if (strcmp(name, ".gnu_debuglink") == 0)
723         return false;
724       return true;
725
726     default:
727       return true;
728     }
729 }
730
731 // Return an output section named NAME, or NULL if there is none.
732
733 Output_section*
734 Layout::find_output_section(const char* name) const
735 {
736   for (Section_list::const_iterator p = this->section_list_.begin();
737        p != this->section_list_.end();
738        ++p)
739     if (strcmp((*p)->name(), name) == 0)
740       return *p;
741   return NULL;
742 }
743
744 // Return an output segment of type TYPE, with segment flags SET set
745 // and segment flags CLEAR clear.  Return NULL if there is none.
746
747 Output_segment*
748 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
749                             elfcpp::Elf_Word clear) const
750 {
751   for (Segment_list::const_iterator p = this->segment_list_.begin();
752        p != this->segment_list_.end();
753        ++p)
754     if (static_cast<elfcpp::PT>((*p)->type()) == type
755         && ((*p)->flags() & set) == set
756         && ((*p)->flags() & clear) == 0)
757       return *p;
758   return NULL;
759 }
760
761 // When we put a .ctors or .dtors section with more than one word into
762 // a .init_array or .fini_array section, we need to reverse the words
763 // in the .ctors/.dtors section.  This is because .init_array executes
764 // constructors front to back, where .ctors executes them back to
765 // front, and vice-versa for .fini_array/.dtors.  Although we do want
766 // to remap .ctors/.dtors into .init_array/.fini_array because it can
767 // be more efficient, we don't want to change the order in which
768 // constructors/destructors are run.  This set just keeps track of
769 // these sections which need to be reversed.  It is only changed by
770 // Layout::layout.  It should be a private member of Layout, but that
771 // would require layout.h to #include object.h to get the definition
772 // of Section_id.
773 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
774
775 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
776 // .init_array/.fini_array section.
777
778 bool
779 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
780 {
781   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
782           != ctors_sections_in_init_array.end());
783 }
784
785 // Return the output section to use for section NAME with type TYPE
786 // and section flags FLAGS.  NAME must be canonicalized in the string
787 // pool, and NAME_KEY is the key.  ORDER is where this should appear
788 // in the output sections.  IS_RELRO is true for a relro section.
789
790 Output_section*
791 Layout::get_output_section(const char* name, Stringpool::Key name_key,
792                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
793                            Output_section_order order, bool is_relro)
794 {
795   elfcpp::Elf_Word lookup_type = type;
796
797   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
798   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
799   // .init_array, .fini_array, and .preinit_array sections by name
800   // whatever their type in the input file.  We do this because the
801   // types are not always right in the input files.
802   if (lookup_type == elfcpp::SHT_INIT_ARRAY
803       || lookup_type == elfcpp::SHT_FINI_ARRAY
804       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
805     lookup_type = elfcpp::SHT_PROGBITS;
806
807   elfcpp::Elf_Xword lookup_flags = flags;
808
809   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
810   // read-write with read-only sections.  Some other ELF linkers do
811   // not do this.  FIXME: Perhaps there should be an option
812   // controlling this.
813   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
814
815   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
816   const std::pair<Key, Output_section*> v(key, NULL);
817   std::pair<Section_name_map::iterator, bool> ins(
818     this->section_name_map_.insert(v));
819
820   if (!ins.second)
821     return ins.first->second;
822   else
823     {
824       // This is the first time we've seen this name/type/flags
825       // combination.  For compatibility with the GNU linker, we
826       // combine sections with contents and zero flags with sections
827       // with non-zero flags.  This is a workaround for cases where
828       // assembler code forgets to set section flags.  FIXME: Perhaps
829       // there should be an option to control this.
830       Output_section* os = NULL;
831
832       if (lookup_type == elfcpp::SHT_PROGBITS)
833         {
834           if (flags == 0)
835             {
836               Output_section* same_name = this->find_output_section(name);
837               if (same_name != NULL
838                   && (same_name->type() == elfcpp::SHT_PROGBITS
839                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
840                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
841                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
842                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
843                 os = same_name;
844             }
845           else if ((flags & elfcpp::SHF_TLS) == 0)
846             {
847               elfcpp::Elf_Xword zero_flags = 0;
848               const Key zero_key(name_key, std::make_pair(lookup_type,
849                                                           zero_flags));
850               Section_name_map::iterator p =
851                   this->section_name_map_.find(zero_key);
852               if (p != this->section_name_map_.end())
853                 os = p->second;
854             }
855         }
856
857       if (os == NULL)
858         os = this->make_output_section(name, type, flags, order, is_relro);
859
860       ins.first->second = os;
861       return os;
862     }
863 }
864
865 // Returns TRUE iff NAME (an input section from RELOBJ) will
866 // be mapped to an output section that should be KEPT.
867
868 bool
869 Layout::keep_input_section(const Relobj* relobj, const char* name)
870 {
871   if (! this->script_options_->saw_sections_clause())
872     return false;
873
874   Script_sections* ss = this->script_options_->script_sections();
875   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
876   Output_section** output_section_slot;
877   Script_sections::Section_type script_section_type;
878   bool keep;
879
880   name = ss->output_section_name(file_name, name, &output_section_slot,
881                                  &script_section_type, &keep);
882   return name != NULL && keep;
883 }
884
885 // Clear the input section flags that should not be copied to the
886 // output section.
887
888 elfcpp::Elf_Xword
889 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
890 {
891   // Some flags in the input section should not be automatically
892   // copied to the output section.
893   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
894                             | elfcpp::SHF_GROUP
895                             | elfcpp::SHF_MERGE
896                             | elfcpp::SHF_STRINGS);
897
898   // We only clear the SHF_LINK_ORDER flag in for
899   // a non-relocatable link.
900   if (!parameters->options().relocatable())
901     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
902
903   return input_section_flags;
904 }
905
906 // Pick the output section to use for section NAME, in input file
907 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
908 // linker created section.  IS_INPUT_SECTION is true if we are
909 // choosing an output section for an input section found in a input
910 // file.  ORDER is where this section should appear in the output
911 // sections.  IS_RELRO is true for a relro section.  This will return
912 // NULL if the input section should be discarded.
913
914 Output_section*
915 Layout::choose_output_section(const Relobj* relobj, const char* name,
916                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
917                               bool is_input_section, Output_section_order order,
918                               bool is_relro)
919 {
920   // We should not see any input sections after we have attached
921   // sections to segments.
922   gold_assert(!is_input_section || !this->sections_are_attached_);
923
924   flags = this->get_output_section_flags(flags);
925
926   if (this->script_options_->saw_sections_clause())
927     {
928       // We are using a SECTIONS clause, so the output section is
929       // chosen based only on the name.
930
931       Script_sections* ss = this->script_options_->script_sections();
932       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
933       Output_section** output_section_slot;
934       Script_sections::Section_type script_section_type;
935       const char* orig_name = name;
936       bool keep;
937       name = ss->output_section_name(file_name, name, &output_section_slot,
938                                      &script_section_type, &keep);
939
940       if (name == NULL)
941         {
942           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
943                                      "because it is not allowed by the "
944                                      "SECTIONS clause of the linker script"),
945                      orig_name);
946           // The SECTIONS clause says to discard this input section.
947           return NULL;
948         }
949
950       // We can only handle script section types ST_NONE and ST_NOLOAD.
951       switch (script_section_type)
952         {
953         case Script_sections::ST_NONE:
954           break;
955         case Script_sections::ST_NOLOAD:
956           flags &= elfcpp::SHF_ALLOC;
957           break;
958         default:
959           gold_unreachable();
960         }
961
962       // If this is an orphan section--one not mentioned in the linker
963       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
964       // default processing below.
965
966       if (output_section_slot != NULL)
967         {
968           if (*output_section_slot != NULL)
969             {
970               (*output_section_slot)->update_flags_for_input_section(flags);
971               return *output_section_slot;
972             }
973
974           // We don't put sections found in the linker script into
975           // SECTION_NAME_MAP_.  That keeps us from getting confused
976           // if an orphan section is mapped to a section with the same
977           // name as one in the linker script.
978
979           name = this->namepool_.add(name, false, NULL);
980
981           Output_section* os = this->make_output_section(name, type, flags,
982                                                          order, is_relro);
983
984           os->set_found_in_sections_clause();
985
986           // Special handling for NOLOAD sections.
987           if (script_section_type == Script_sections::ST_NOLOAD)
988             {
989               os->set_is_noload();
990
991               // The constructor of Output_section sets addresses of non-ALLOC
992               // sections to 0 by default.  We don't want that for NOLOAD
993               // sections even if they have no SHF_ALLOC flag.
994               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
995                   && os->is_address_valid())
996                 {
997                   gold_assert(os->address() == 0
998                               && !os->is_offset_valid()
999                               && !os->is_data_size_valid());
1000                   os->reset_address_and_file_offset();
1001                 }
1002             }
1003
1004           *output_section_slot = os;
1005           return os;
1006         }
1007     }
1008
1009   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1010
1011   size_t len = strlen(name);
1012   char* uncompressed_name = NULL;
1013
1014   // Compressed debug sections should be mapped to the corresponding
1015   // uncompressed section.
1016   if (is_compressed_debug_section(name))
1017     {
1018       uncompressed_name = new char[len];
1019       uncompressed_name[0] = '.';
1020       gold_assert(name[0] == '.' && name[1] == 'z');
1021       strncpy(&uncompressed_name[1], &name[2], len - 2);
1022       uncompressed_name[len - 1] = '\0';
1023       len -= 1;
1024       name = uncompressed_name;
1025     }
1026
1027   // Turn NAME from the name of the input section into the name of the
1028   // output section.
1029   if (is_input_section
1030       && !this->script_options_->saw_sections_clause()
1031       && !parameters->options().relocatable())
1032     {
1033       const char *orig_name = name;
1034       name = parameters->target().output_section_name(relobj, name, &len);
1035       if (name == NULL)
1036         name = Layout::output_section_name(relobj, orig_name, &len);
1037     }
1038
1039   Stringpool::Key name_key;
1040   name = this->namepool_.add_with_length(name, len, true, &name_key);
1041
1042   if (uncompressed_name != NULL)
1043     delete[] uncompressed_name;
1044
1045   // Find or make the output section.  The output section is selected
1046   // based on the section name, type, and flags.
1047   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1048 }
1049
1050 // For incremental links, record the initial fixed layout of a section
1051 // from the base file, and return a pointer to the Output_section.
1052
1053 template<int size, bool big_endian>
1054 Output_section*
1055 Layout::init_fixed_output_section(const char* name,
1056                                   elfcpp::Shdr<size, big_endian>& shdr)
1057 {
1058   unsigned int sh_type = shdr.get_sh_type();
1059
1060   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1061   // PRE_INIT_ARRAY, and NOTE sections.
1062   // All others will be created from scratch and reallocated.
1063   if (!can_incremental_update(sh_type))
1064     return NULL;
1065
1066   // If we're generating a .gdb_index section, we need to regenerate
1067   // it from scratch.
1068   if (parameters->options().gdb_index()
1069       && sh_type == elfcpp::SHT_PROGBITS
1070       && strcmp(name, ".gdb_index") == 0)
1071     return NULL;
1072
1073   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1074   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1075   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1076   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1077   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1078       shdr.get_sh_addralign();
1079
1080   // Make the output section.
1081   Stringpool::Key name_key;
1082   name = this->namepool_.add(name, true, &name_key);
1083   Output_section* os = this->get_output_section(name, name_key, sh_type,
1084                                                 sh_flags, ORDER_INVALID, false);
1085   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1086   if (sh_type != elfcpp::SHT_NOBITS)
1087     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1088   return os;
1089 }
1090
1091 // Return the index by which an input section should be ordered.  This
1092 // is used to sort some .text sections, for compatibility with GNU ld.
1093
1094 int
1095 Layout::special_ordering_of_input_section(const char* name)
1096 {
1097   // The GNU linker has some special handling for some sections that
1098   // wind up in the .text section.  Sections that start with these
1099   // prefixes must appear first, and must appear in the order listed
1100   // here.
1101   static const char* const text_section_sort[] =
1102   {
1103     ".text.unlikely",
1104     ".text.exit",
1105     ".text.startup",
1106     ".text.hot"
1107   };
1108
1109   for (size_t i = 0;
1110        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1111        i++)
1112     if (is_prefix_of(text_section_sort[i], name))
1113       return i;
1114
1115   return -1;
1116 }
1117
1118 // Return the output section to use for input section SHNDX, with name
1119 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1120 // index of a relocation section which applies to this section, or 0
1121 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1122 // relocation section if there is one.  Set *OFF to the offset of this
1123 // input section without the output section.  Return NULL if the
1124 // section should be discarded.  Set *OFF to -1 if the section
1125 // contents should not be written directly to the output file, but
1126 // will instead receive special handling.
1127
1128 template<int size, bool big_endian>
1129 Output_section*
1130 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1131                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1132                unsigned int reloc_shndx, unsigned int, off_t* off)
1133 {
1134   *off = 0;
1135
1136   if (!this->include_section(object, name, shdr))
1137     return NULL;
1138
1139   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1140
1141   // In a relocatable link a grouped section must not be combined with
1142   // any other sections.
1143   Output_section* os;
1144   if (parameters->options().relocatable()
1145       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1146     {
1147       name = this->namepool_.add(name, true, NULL);
1148       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1149                                      ORDER_INVALID, false);
1150     }
1151   else
1152     {
1153       // Plugins can choose to place one or more subsets of sections in
1154       // unique segments and this is done by mapping these section subsets
1155       // to unique output sections.  Check if this section needs to be
1156       // remapped to a unique output section.
1157       Section_segment_map::iterator it
1158           = this->section_segment_map_.find(Const_section_id(object, shndx));
1159       if (it == this->section_segment_map_.end())
1160         {
1161           os = this->choose_output_section(object, name, sh_type,
1162                                            shdr.get_sh_flags(), true,
1163                                            ORDER_INVALID, false);
1164         }
1165       else
1166         {
1167           // We know the name of the output section, directly call
1168           // get_output_section here by-passing choose_output_section.
1169           elfcpp::Elf_Xword flags
1170             = this->get_output_section_flags(shdr.get_sh_flags());
1171
1172           const char* os_name = it->second->name;
1173           Stringpool::Key name_key;
1174           os_name = this->namepool_.add(os_name, true, &name_key);
1175           os = this->get_output_section(os_name, name_key, sh_type, flags,
1176                                         ORDER_INVALID, false);
1177           if (!os->is_unique_segment())
1178             {
1179               os->set_is_unique_segment();
1180               os->set_extra_segment_flags(it->second->flags);
1181               os->set_segment_alignment(it->second->align);
1182             }
1183         }
1184       if (os == NULL)
1185         return NULL;
1186     }
1187
1188   // By default the GNU linker sorts input sections whose names match
1189   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1190   // sections are sorted by name.  This is used to implement
1191   // constructor priority ordering.  We are compatible.  When we put
1192   // .ctor sections in .init_array and .dtor sections in .fini_array,
1193   // we must also sort plain .ctor and .dtor sections.
1194   if (!this->script_options_->saw_sections_clause()
1195       && !parameters->options().relocatable()
1196       && (is_prefix_of(".ctors.", name)
1197           || is_prefix_of(".dtors.", name)
1198           || is_prefix_of(".init_array.", name)
1199           || is_prefix_of(".fini_array.", name)
1200           || (parameters->options().ctors_in_init_array()
1201               && (strcmp(name, ".ctors") == 0
1202                   || strcmp(name, ".dtors") == 0))))
1203     os->set_must_sort_attached_input_sections();
1204
1205   // By default the GNU linker sorts some special text sections ahead
1206   // of others.  We are compatible.
1207   if (parameters->options().text_reorder()
1208       && !this->script_options_->saw_sections_clause()
1209       && !this->is_section_ordering_specified()
1210       && !parameters->options().relocatable()
1211       && Layout::special_ordering_of_input_section(name) >= 0)
1212     os->set_must_sort_attached_input_sections();
1213
1214   // If this is a .ctors or .ctors.* section being mapped to a
1215   // .init_array section, or a .dtors or .dtors.* section being mapped
1216   // to a .fini_array section, we will need to reverse the words if
1217   // there is more than one.  Record this section for later.  See
1218   // ctors_sections_in_init_array above.
1219   if (!this->script_options_->saw_sections_clause()
1220       && !parameters->options().relocatable()
1221       && shdr.get_sh_size() > size / 8
1222       && (((strcmp(name, ".ctors") == 0
1223             || is_prefix_of(".ctors.", name))
1224            && strcmp(os->name(), ".init_array") == 0)
1225           || ((strcmp(name, ".dtors") == 0
1226                || is_prefix_of(".dtors.", name))
1227               && strcmp(os->name(), ".fini_array") == 0)))
1228     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1229
1230   // FIXME: Handle SHF_LINK_ORDER somewhere.
1231
1232   elfcpp::Elf_Xword orig_flags = os->flags();
1233
1234   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1235                                this->script_options_->saw_sections_clause());
1236
1237   // If the flags changed, we may have to change the order.
1238   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1239     {
1240       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1241       elfcpp::Elf_Xword new_flags =
1242         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1243       if (orig_flags != new_flags)
1244         os->set_order(this->default_section_order(os, false));
1245     }
1246
1247   this->have_added_input_section_ = true;
1248
1249   return os;
1250 }
1251
1252 // Maps section SECN to SEGMENT s.
1253 void
1254 Layout::insert_section_segment_map(Const_section_id secn,
1255                                    Unique_segment_info *s)
1256 {
1257   gold_assert(this->unique_segment_for_sections_specified_);
1258   this->section_segment_map_[secn] = s;
1259 }
1260
1261 // Handle a relocation section when doing a relocatable link.
1262
1263 template<int size, bool big_endian>
1264 Output_section*
1265 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1266                      unsigned int,
1267                      const elfcpp::Shdr<size, big_endian>& shdr,
1268                      Output_section* data_section,
1269                      Relocatable_relocs* rr)
1270 {
1271   gold_assert(parameters->options().relocatable()
1272               || parameters->options().emit_relocs());
1273
1274   int sh_type = shdr.get_sh_type();
1275
1276   std::string name;
1277   if (sh_type == elfcpp::SHT_REL)
1278     name = ".rel";
1279   else if (sh_type == elfcpp::SHT_RELA)
1280     name = ".rela";
1281   else
1282     gold_unreachable();
1283   name += data_section->name();
1284
1285   // In a relocatable link relocs for a grouped section must not be
1286   // combined with other reloc sections.
1287   Output_section* os;
1288   if (!parameters->options().relocatable()
1289       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1290     os = this->choose_output_section(object, name.c_str(), sh_type,
1291                                      shdr.get_sh_flags(), false,
1292                                      ORDER_INVALID, false);
1293   else
1294     {
1295       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1296       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1297                                      ORDER_INVALID, false);
1298     }
1299
1300   os->set_should_link_to_symtab();
1301   os->set_info_section(data_section);
1302
1303   Output_section_data* posd;
1304   if (sh_type == elfcpp::SHT_REL)
1305     {
1306       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1307       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1308                                            size,
1309                                            big_endian>(rr);
1310     }
1311   else if (sh_type == elfcpp::SHT_RELA)
1312     {
1313       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1314       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1315                                            size,
1316                                            big_endian>(rr);
1317     }
1318   else
1319     gold_unreachable();
1320
1321   os->add_output_section_data(posd);
1322   rr->set_output_data(posd);
1323
1324   return os;
1325 }
1326
1327 // Handle a group section when doing a relocatable link.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Layout::layout_group(Symbol_table* symtab,
1332                      Sized_relobj_file<size, big_endian>* object,
1333                      unsigned int,
1334                      const char* group_section_name,
1335                      const char* signature,
1336                      const elfcpp::Shdr<size, big_endian>& shdr,
1337                      elfcpp::Elf_Word flags,
1338                      std::vector<unsigned int>* shndxes)
1339 {
1340   gold_assert(parameters->options().relocatable());
1341   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1342   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1343   Output_section* os = this->make_output_section(group_section_name,
1344                                                  elfcpp::SHT_GROUP,
1345                                                  shdr.get_sh_flags(),
1346                                                  ORDER_INVALID, false);
1347
1348   // We need to find a symbol with the signature in the symbol table.
1349   // If we don't find one now, we need to look again later.
1350   Symbol* sym = symtab->lookup(signature, NULL);
1351   if (sym != NULL)
1352     os->set_info_symndx(sym);
1353   else
1354     {
1355       // Reserve some space to minimize reallocations.
1356       if (this->group_signatures_.empty())
1357         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1358
1359       // We will wind up using a symbol whose name is the signature.
1360       // So just put the signature in the symbol name pool to save it.
1361       signature = symtab->canonicalize_name(signature);
1362       this->group_signatures_.push_back(Group_signature(os, signature));
1363     }
1364
1365   os->set_should_link_to_symtab();
1366   os->set_entsize(4);
1367
1368   section_size_type entry_count =
1369     convert_to_section_size_type(shdr.get_sh_size() / 4);
1370   Output_section_data* posd =
1371     new Output_data_group<size, big_endian>(object, entry_count, flags,
1372                                             shndxes);
1373   os->add_output_section_data(posd);
1374 }
1375
1376 // Special GNU handling of sections name .eh_frame.  They will
1377 // normally hold exception frame data as defined by the C++ ABI
1378 // (http://codesourcery.com/cxx-abi/).
1379
1380 template<int size, bool big_endian>
1381 Output_section*
1382 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1383                         const unsigned char* symbols,
1384                         off_t symbols_size,
1385                         const unsigned char* symbol_names,
1386                         off_t symbol_names_size,
1387                         unsigned int shndx,
1388                         const elfcpp::Shdr<size, big_endian>& shdr,
1389                         unsigned int reloc_shndx, unsigned int reloc_type,
1390                         off_t* off)
1391 {
1392   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1393               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1394   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1395
1396   Output_section* os = this->make_eh_frame_section(object);
1397   if (os == NULL)
1398     return NULL;
1399
1400   gold_assert(this->eh_frame_section_ == os);
1401
1402   elfcpp::Elf_Xword orig_flags = os->flags();
1403
1404   if (!parameters->incremental()
1405       && this->eh_frame_data_->add_ehframe_input_section(object,
1406                                                          symbols,
1407                                                          symbols_size,
1408                                                          symbol_names,
1409                                                          symbol_names_size,
1410                                                          shndx,
1411                                                          reloc_shndx,
1412                                                          reloc_type))
1413     {
1414       os->update_flags_for_input_section(shdr.get_sh_flags());
1415
1416       // A writable .eh_frame section is a RELRO section.
1417       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1418           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1419         {
1420           os->set_is_relro();
1421           os->set_order(ORDER_RELRO);
1422         }
1423
1424       // We found a .eh_frame section we are going to optimize, so now
1425       // we can add the set of optimized sections to the output
1426       // section.  We need to postpone adding this until we've found a
1427       // section we can optimize so that the .eh_frame section in
1428       // crtbegin.o winds up at the start of the output section.
1429       if (!this->added_eh_frame_data_)
1430         {
1431           os->add_output_section_data(this->eh_frame_data_);
1432           this->added_eh_frame_data_ = true;
1433         }
1434       *off = -1;
1435     }
1436   else
1437     {
1438       // We couldn't handle this .eh_frame section for some reason.
1439       // Add it as a normal section.
1440       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1441       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1442                                    reloc_shndx, saw_sections_clause);
1443       this->have_added_input_section_ = true;
1444
1445       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447         os->set_order(this->default_section_order(os, false));
1448     }
1449
1450   return os;
1451 }
1452
1453 // Create and return the magic .eh_frame section.  Create
1454 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1455 // input .eh_frame section; it may be NULL.
1456
1457 Output_section*
1458 Layout::make_eh_frame_section(const Relobj* object)
1459 {
1460   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1461   // SHT_PROGBITS.
1462   Output_section* os = this->choose_output_section(object, ".eh_frame",
1463                                                    elfcpp::SHT_PROGBITS,
1464                                                    elfcpp::SHF_ALLOC, false,
1465                                                    ORDER_EHFRAME, false);
1466   if (os == NULL)
1467     return NULL;
1468
1469   if (this->eh_frame_section_ == NULL)
1470     {
1471       this->eh_frame_section_ = os;
1472       this->eh_frame_data_ = new Eh_frame();
1473
1474       // For incremental linking, we do not optimize .eh_frame sections
1475       // or create a .eh_frame_hdr section.
1476       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1477         {
1478           Output_section* hdr_os =
1479             this->choose_output_section(NULL, ".eh_frame_hdr",
1480                                         elfcpp::SHT_PROGBITS,
1481                                         elfcpp::SHF_ALLOC, false,
1482                                         ORDER_EHFRAME, false);
1483
1484           if (hdr_os != NULL)
1485             {
1486               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1487                                                         this->eh_frame_data_);
1488               hdr_os->add_output_section_data(hdr_posd);
1489
1490               hdr_os->set_after_input_sections();
1491
1492               if (!this->script_options_->saw_phdrs_clause())
1493                 {
1494                   Output_segment* hdr_oseg;
1495                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1496                                                        elfcpp::PF_R);
1497                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1498                                                           elfcpp::PF_R);
1499                 }
1500
1501               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1502             }
1503         }
1504     }
1505
1506   return os;
1507 }
1508
1509 // Add an exception frame for a PLT.  This is called from target code.
1510
1511 void
1512 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1513                              size_t cie_length, const unsigned char* fde_data,
1514                              size_t fde_length)
1515 {
1516   if (parameters->incremental())
1517     {
1518       // FIXME: Maybe this could work some day....
1519       return;
1520     }
1521   Output_section* os = this->make_eh_frame_section(NULL);
1522   if (os == NULL)
1523     return;
1524   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1525                                             fde_data, fde_length);
1526   if (!this->added_eh_frame_data_)
1527     {
1528       os->add_output_section_data(this->eh_frame_data_);
1529       this->added_eh_frame_data_ = true;
1530     }
1531 }
1532
1533 // Scan a .debug_info or .debug_types section, and add summary
1534 // information to the .gdb_index section.
1535
1536 template<int size, bool big_endian>
1537 void
1538 Layout::add_to_gdb_index(bool is_type_unit,
1539                          Sized_relobj<size, big_endian>* object,
1540                          const unsigned char* symbols,
1541                          off_t symbols_size,
1542                          unsigned int shndx,
1543                          unsigned int reloc_shndx,
1544                          unsigned int reloc_type)
1545 {
1546   if (this->gdb_index_data_ == NULL)
1547     {
1548       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1549                                                        elfcpp::SHT_PROGBITS, 0,
1550                                                        false, ORDER_INVALID,
1551                                                        false);
1552       if (os == NULL)
1553         return;
1554
1555       this->gdb_index_data_ = new Gdb_index(os);
1556       os->add_output_section_data(this->gdb_index_data_);
1557       os->set_after_input_sections();
1558     }
1559
1560   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1561                                          symbols_size, shndx, reloc_shndx,
1562                                          reloc_type);
1563 }
1564
1565 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1566 // the output section.
1567
1568 Output_section*
1569 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1570                                 elfcpp::Elf_Xword flags,
1571                                 Output_section_data* posd,
1572                                 Output_section_order order, bool is_relro)
1573 {
1574   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1575                                                    false, order, is_relro);
1576   if (os != NULL)
1577     os->add_output_section_data(posd);
1578   return os;
1579 }
1580
1581 // Map section flags to segment flags.
1582
1583 elfcpp::Elf_Word
1584 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1585 {
1586   elfcpp::Elf_Word ret = elfcpp::PF_R;
1587   if ((flags & elfcpp::SHF_WRITE) != 0)
1588     ret |= elfcpp::PF_W;
1589   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1590     ret |= elfcpp::PF_X;
1591   return ret;
1592 }
1593
1594 // Make a new Output_section, and attach it to segments as
1595 // appropriate.  ORDER is the order in which this section should
1596 // appear in the output segment.  IS_RELRO is true if this is a relro
1597 // (read-only after relocations) section.
1598
1599 Output_section*
1600 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1601                             elfcpp::Elf_Xword flags,
1602                             Output_section_order order, bool is_relro)
1603 {
1604   Output_section* os;
1605   if ((flags & elfcpp::SHF_ALLOC) == 0
1606       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1607       && is_compressible_debug_section(name))
1608     os = new Output_compressed_section(&parameters->options(), name, type,
1609                                        flags);
1610   else if ((flags & elfcpp::SHF_ALLOC) == 0
1611            && parameters->options().strip_debug_non_line()
1612            && strcmp(".debug_abbrev", name) == 0)
1613     {
1614       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1615           name, type, flags);
1616       if (this->debug_info_)
1617         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1618     }
1619   else if ((flags & elfcpp::SHF_ALLOC) == 0
1620            && parameters->options().strip_debug_non_line()
1621            && strcmp(".debug_info", name) == 0)
1622     {
1623       os = this->debug_info_ = new Output_reduced_debug_info_section(
1624           name, type, flags);
1625       if (this->debug_abbrev_)
1626         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627     }
1628   else
1629     {
1630       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1631       // not have correct section types.  Force them here.
1632       if (type == elfcpp::SHT_PROGBITS)
1633         {
1634           if (is_prefix_of(".init_array", name))
1635             type = elfcpp::SHT_INIT_ARRAY;
1636           else if (is_prefix_of(".preinit_array", name))
1637             type = elfcpp::SHT_PREINIT_ARRAY;
1638           else if (is_prefix_of(".fini_array", name))
1639             type = elfcpp::SHT_FINI_ARRAY;
1640         }
1641
1642       // FIXME: const_cast is ugly.
1643       Target* target = const_cast<Target*>(&parameters->target());
1644       os = target->make_output_section(name, type, flags);
1645     }
1646
1647   // With -z relro, we have to recognize the special sections by name.
1648   // There is no other way.
1649   bool is_relro_local = false;
1650   if (!this->script_options_->saw_sections_clause()
1651       && parameters->options().relro()
1652       && (flags & elfcpp::SHF_ALLOC) != 0
1653       && (flags & elfcpp::SHF_WRITE) != 0)
1654     {
1655       if (type == elfcpp::SHT_PROGBITS)
1656         {
1657           if ((flags & elfcpp::SHF_TLS) != 0)
1658             is_relro = true;
1659           else if (strcmp(name, ".data.rel.ro") == 0)
1660             is_relro = true;
1661           else if (strcmp(name, ".data.rel.ro.local") == 0)
1662             {
1663               is_relro = true;
1664               is_relro_local = true;
1665             }
1666           else if (strcmp(name, ".ctors") == 0
1667                    || strcmp(name, ".dtors") == 0
1668                    || strcmp(name, ".jcr") == 0)
1669             is_relro = true;
1670         }
1671       else if (type == elfcpp::SHT_INIT_ARRAY
1672                || type == elfcpp::SHT_FINI_ARRAY
1673                || type == elfcpp::SHT_PREINIT_ARRAY)
1674         is_relro = true;
1675     }
1676
1677   if (is_relro)
1678     os->set_is_relro();
1679
1680   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1681     order = this->default_section_order(os, is_relro_local);
1682
1683   os->set_order(order);
1684
1685   parameters->target().new_output_section(os);
1686
1687   this->section_list_.push_back(os);
1688
1689   // The GNU linker by default sorts some sections by priority, so we
1690   // do the same.  We need to know that this might happen before we
1691   // attach any input sections.
1692   if (!this->script_options_->saw_sections_clause()
1693       && !parameters->options().relocatable()
1694       && (strcmp(name, ".init_array") == 0
1695           || strcmp(name, ".fini_array") == 0
1696           || (!parameters->options().ctors_in_init_array()
1697               && (strcmp(name, ".ctors") == 0
1698                   || strcmp(name, ".dtors") == 0))))
1699     os->set_may_sort_attached_input_sections();
1700
1701   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1702   // sections before other .text sections.  We are compatible.  We
1703   // need to know that this might happen before we attach any input
1704   // sections.
1705   if (parameters->options().text_reorder()
1706       && !this->script_options_->saw_sections_clause()
1707       && !this->is_section_ordering_specified()
1708       && !parameters->options().relocatable()
1709       && strcmp(name, ".text") == 0)
1710     os->set_may_sort_attached_input_sections();
1711
1712   // GNU linker sorts section by name with --sort-section=name.
1713   if (strcmp(parameters->options().sort_section(), "name") == 0)
1714       os->set_must_sort_attached_input_sections();
1715
1716   // Check for .stab*str sections, as .stab* sections need to link to
1717   // them.
1718   if (type == elfcpp::SHT_STRTAB
1719       && !this->have_stabstr_section_
1720       && strncmp(name, ".stab", 5) == 0
1721       && strcmp(name + strlen(name) - 3, "str") == 0)
1722     this->have_stabstr_section_ = true;
1723
1724   // During a full incremental link, we add patch space to most
1725   // PROGBITS and NOBITS sections.  Flag those that may be
1726   // arbitrarily padded.
1727   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1728       && order != ORDER_INTERP
1729       && order != ORDER_INIT
1730       && order != ORDER_PLT
1731       && order != ORDER_FINI
1732       && order != ORDER_RELRO_LAST
1733       && order != ORDER_NON_RELRO_FIRST
1734       && strcmp(name, ".eh_frame") != 0
1735       && strcmp(name, ".ctors") != 0
1736       && strcmp(name, ".dtors") != 0
1737       && strcmp(name, ".jcr") != 0)
1738     {
1739       os->set_is_patch_space_allowed();
1740
1741       // Certain sections require "holes" to be filled with
1742       // specific fill patterns.  These fill patterns may have
1743       // a minimum size, so we must prevent allocations from the
1744       // free list that leave a hole smaller than the minimum.
1745       if (strcmp(name, ".debug_info") == 0)
1746         os->set_free_space_fill(new Output_fill_debug_info(false));
1747       else if (strcmp(name, ".debug_types") == 0)
1748         os->set_free_space_fill(new Output_fill_debug_info(true));
1749       else if (strcmp(name, ".debug_line") == 0)
1750         os->set_free_space_fill(new Output_fill_debug_line());
1751     }
1752
1753   // If we have already attached the sections to segments, then we
1754   // need to attach this one now.  This happens for sections created
1755   // directly by the linker.
1756   if (this->sections_are_attached_)
1757     this->attach_section_to_segment(&parameters->target(), os);
1758
1759   return os;
1760 }
1761
1762 // Return the default order in which a section should be placed in an
1763 // output segment.  This function captures a lot of the ideas in
1764 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1765 // linker created section is normally set when the section is created;
1766 // this function is used for input sections.
1767
1768 Output_section_order
1769 Layout::default_section_order(Output_section* os, bool is_relro_local)
1770 {
1771   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1772   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1773   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1774   bool is_bss = false;
1775
1776   switch (os->type())
1777     {
1778     default:
1779     case elfcpp::SHT_PROGBITS:
1780       break;
1781     case elfcpp::SHT_NOBITS:
1782       is_bss = true;
1783       break;
1784     case elfcpp::SHT_RELA:
1785     case elfcpp::SHT_REL:
1786       if (!is_write)
1787         return ORDER_DYNAMIC_RELOCS;
1788       break;
1789     case elfcpp::SHT_HASH:
1790     case elfcpp::SHT_DYNAMIC:
1791     case elfcpp::SHT_SHLIB:
1792     case elfcpp::SHT_DYNSYM:
1793     case elfcpp::SHT_GNU_HASH:
1794     case elfcpp::SHT_GNU_verdef:
1795     case elfcpp::SHT_GNU_verneed:
1796     case elfcpp::SHT_GNU_versym:
1797       if (!is_write)
1798         return ORDER_DYNAMIC_LINKER;
1799       break;
1800     case elfcpp::SHT_NOTE:
1801       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1802     }
1803
1804   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1805     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1806
1807   if (!is_bss && !is_write)
1808     {
1809       if (is_execinstr)
1810         {
1811           if (strcmp(os->name(), ".init") == 0)
1812             return ORDER_INIT;
1813           else if (strcmp(os->name(), ".fini") == 0)
1814             return ORDER_FINI;
1815         }
1816       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1817     }
1818
1819   if (os->is_relro())
1820     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1821
1822   if (os->is_small_section())
1823     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1824   if (os->is_large_section())
1825     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1826
1827   return is_bss ? ORDER_BSS : ORDER_DATA;
1828 }
1829
1830 // Attach output sections to segments.  This is called after we have
1831 // seen all the input sections.
1832
1833 void
1834 Layout::attach_sections_to_segments(const Target* target)
1835 {
1836   for (Section_list::iterator p = this->section_list_.begin();
1837        p != this->section_list_.end();
1838        ++p)
1839     this->attach_section_to_segment(target, *p);
1840
1841   this->sections_are_attached_ = true;
1842 }
1843
1844 // Attach an output section to a segment.
1845
1846 void
1847 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1848 {
1849   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1850     this->unattached_section_list_.push_back(os);
1851   else
1852     this->attach_allocated_section_to_segment(target, os);
1853 }
1854
1855 // Attach an allocated output section to a segment.
1856
1857 void
1858 Layout::attach_allocated_section_to_segment(const Target* target,
1859                                             Output_section* os)
1860 {
1861   elfcpp::Elf_Xword flags = os->flags();
1862   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1863
1864   if (parameters->options().relocatable())
1865     return;
1866
1867   // If we have a SECTIONS clause, we can't handle the attachment to
1868   // segments until after we've seen all the sections.
1869   if (this->script_options_->saw_sections_clause())
1870     return;
1871
1872   gold_assert(!this->script_options_->saw_phdrs_clause());
1873
1874   // This output section goes into a PT_LOAD segment.
1875
1876   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1877
1878   // If this output section's segment has extra flags that need to be set,
1879   // coming from a linker plugin, do that.
1880   seg_flags |= os->extra_segment_flags();
1881
1882   // Check for --section-start.
1883   uint64_t addr;
1884   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1885
1886   // In general the only thing we really care about for PT_LOAD
1887   // segments is whether or not they are writable or executable,
1888   // so that is how we search for them.
1889   // Large data sections also go into their own PT_LOAD segment.
1890   // People who need segments sorted on some other basis will
1891   // have to use a linker script.
1892
1893   Segment_list::const_iterator p;
1894   if (!os->is_unique_segment())
1895     {
1896       for (p = this->segment_list_.begin();
1897            p != this->segment_list_.end();
1898            ++p)
1899         {
1900           if ((*p)->type() != elfcpp::PT_LOAD)
1901             continue;
1902           if ((*p)->is_unique_segment())
1903             continue;
1904           if (!parameters->options().omagic()
1905               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1906             continue;
1907           if ((target->isolate_execinstr() || parameters->options().rosegment())
1908               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1909             continue;
1910           // If -Tbss was specified, we need to separate the data and BSS
1911           // segments.
1912           if (parameters->options().user_set_Tbss())
1913             {
1914               if ((os->type() == elfcpp::SHT_NOBITS)
1915                   == (*p)->has_any_data_sections())
1916                 continue;
1917             }
1918           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1919             continue;
1920
1921           if (is_address_set)
1922             {
1923               if ((*p)->are_addresses_set())
1924                 continue;
1925
1926               (*p)->add_initial_output_data(os);
1927               (*p)->update_flags_for_output_section(seg_flags);
1928               (*p)->set_addresses(addr, addr);
1929               break;
1930             }
1931
1932           (*p)->add_output_section_to_load(this, os, seg_flags);
1933           break;
1934         }
1935     }
1936
1937   if (p == this->segment_list_.end()
1938       || os->is_unique_segment())
1939     {
1940       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1941                                                        seg_flags);
1942       if (os->is_large_data_section())
1943         oseg->set_is_large_data_segment();
1944       oseg->add_output_section_to_load(this, os, seg_flags);
1945       if (is_address_set)
1946         oseg->set_addresses(addr, addr);
1947       // Check if segment should be marked unique.  For segments marked
1948       // unique by linker plugins, set the new alignment if specified.
1949       if (os->is_unique_segment())
1950         {
1951           oseg->set_is_unique_segment();
1952           if (os->segment_alignment() != 0)
1953             oseg->set_minimum_p_align(os->segment_alignment());
1954         }
1955     }
1956
1957   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1958   // segment.
1959   if (os->type() == elfcpp::SHT_NOTE)
1960     {
1961       // See if we already have an equivalent PT_NOTE segment.
1962       for (p = this->segment_list_.begin();
1963            p != segment_list_.end();
1964            ++p)
1965         {
1966           if ((*p)->type() == elfcpp::PT_NOTE
1967               && (((*p)->flags() & elfcpp::PF_W)
1968                   == (seg_flags & elfcpp::PF_W)))
1969             {
1970               (*p)->add_output_section_to_nonload(os, seg_flags);
1971               break;
1972             }
1973         }
1974
1975       if (p == this->segment_list_.end())
1976         {
1977           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1978                                                            seg_flags);
1979           oseg->add_output_section_to_nonload(os, seg_flags);
1980         }
1981     }
1982
1983   // If we see a loadable SHF_TLS section, we create a PT_TLS
1984   // segment.  There can only be one such segment.
1985   if ((flags & elfcpp::SHF_TLS) != 0)
1986     {
1987       if (this->tls_segment_ == NULL)
1988         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1989       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1990     }
1991
1992   // If -z relro is in effect, and we see a relro section, we create a
1993   // PT_GNU_RELRO segment.  There can only be one such segment.
1994   if (os->is_relro() && parameters->options().relro())
1995     {
1996       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1997       if (this->relro_segment_ == NULL)
1998         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1999       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2000     }
2001
2002   // If we see a section named .interp, put it into a PT_INTERP
2003   // segment.  This seems broken to me, but this is what GNU ld does,
2004   // and glibc expects it.
2005   if (strcmp(os->name(), ".interp") == 0
2006       && !this->script_options_->saw_phdrs_clause())
2007     {
2008       if (this->interp_segment_ == NULL)
2009         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2010       else
2011         gold_warning(_("multiple '.interp' sections in input files "
2012                        "may cause confusing PT_INTERP segment"));
2013       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2014     }
2015 }
2016
2017 // Make an output section for a script.
2018
2019 Output_section*
2020 Layout::make_output_section_for_script(
2021     const char* name,
2022     Script_sections::Section_type section_type)
2023 {
2024   name = this->namepool_.add(name, false, NULL);
2025   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2026   if (section_type == Script_sections::ST_NOLOAD)
2027     sh_flags = 0;
2028   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2029                                                  sh_flags, ORDER_INVALID,
2030                                                  false);
2031   os->set_found_in_sections_clause();
2032   if (section_type == Script_sections::ST_NOLOAD)
2033     os->set_is_noload();
2034   return os;
2035 }
2036
2037 // Return the number of segments we expect to see.
2038
2039 size_t
2040 Layout::expected_segment_count() const
2041 {
2042   size_t ret = this->segment_list_.size();
2043
2044   // If we didn't see a SECTIONS clause in a linker script, we should
2045   // already have the complete list of segments.  Otherwise we ask the
2046   // SECTIONS clause how many segments it expects, and add in the ones
2047   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2048
2049   if (!this->script_options_->saw_sections_clause())
2050     return ret;
2051   else
2052     {
2053       const Script_sections* ss = this->script_options_->script_sections();
2054       return ret + ss->expected_segment_count(this);
2055     }
2056 }
2057
2058 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2059 // is whether we saw a .note.GNU-stack section in the object file.
2060 // GNU_STACK_FLAGS is the section flags.  The flags give the
2061 // protection required for stack memory.  We record this in an
2062 // executable as a PT_GNU_STACK segment.  If an object file does not
2063 // have a .note.GNU-stack segment, we must assume that it is an old
2064 // object.  On some targets that will force an executable stack.
2065
2066 void
2067 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2068                          const Object* obj)
2069 {
2070   if (!seen_gnu_stack)
2071     {
2072       this->input_without_gnu_stack_note_ = true;
2073       if (parameters->options().warn_execstack()
2074           && parameters->target().is_default_stack_executable())
2075         gold_warning(_("%s: missing .note.GNU-stack section"
2076                        " implies executable stack"),
2077                      obj->name().c_str());
2078     }
2079   else
2080     {
2081       this->input_with_gnu_stack_note_ = true;
2082       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2083         {
2084           this->input_requires_executable_stack_ = true;
2085           if (parameters->options().warn_execstack()
2086               || parameters->options().is_stack_executable())
2087             gold_warning(_("%s: requires executable stack"),
2088                          obj->name().c_str());
2089         }
2090     }
2091 }
2092
2093 // Create automatic note sections.
2094
2095 void
2096 Layout::create_notes()
2097 {
2098   this->create_gold_note();
2099   this->create_executable_stack_info();
2100   this->create_build_id();
2101 }
2102
2103 // Create the dynamic sections which are needed before we read the
2104 // relocs.
2105
2106 void
2107 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2108 {
2109   if (parameters->doing_static_link())
2110     return;
2111
2112   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2113                                                        elfcpp::SHT_DYNAMIC,
2114                                                        (elfcpp::SHF_ALLOC
2115                                                         | elfcpp::SHF_WRITE),
2116                                                        false, ORDER_RELRO,
2117                                                        true);
2118
2119   // A linker script may discard .dynamic, so check for NULL.
2120   if (this->dynamic_section_ != NULL)
2121     {
2122       this->dynamic_symbol_ =
2123         symtab->define_in_output_data("_DYNAMIC", NULL,
2124                                       Symbol_table::PREDEFINED,
2125                                       this->dynamic_section_, 0, 0,
2126                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2127                                       elfcpp::STV_HIDDEN, 0, false, false);
2128
2129       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2130
2131       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2132     }
2133 }
2134
2135 // For each output section whose name can be represented as C symbol,
2136 // define __start and __stop symbols for the section.  This is a GNU
2137 // extension.
2138
2139 void
2140 Layout::define_section_symbols(Symbol_table* symtab)
2141 {
2142   for (Section_list::const_iterator p = this->section_list_.begin();
2143        p != this->section_list_.end();
2144        ++p)
2145     {
2146       const char* const name = (*p)->name();
2147       if (is_cident(name))
2148         {
2149           const std::string name_string(name);
2150           const std::string start_name(cident_section_start_prefix
2151                                        + name_string);
2152           const std::string stop_name(cident_section_stop_prefix
2153                                       + name_string);
2154
2155           symtab->define_in_output_data(start_name.c_str(),
2156                                         NULL, // version
2157                                         Symbol_table::PREDEFINED,
2158                                         *p,
2159                                         0, // value
2160                                         0, // symsize
2161                                         elfcpp::STT_NOTYPE,
2162                                         elfcpp::STB_GLOBAL,
2163                                         elfcpp::STV_DEFAULT,
2164                                         0, // nonvis
2165                                         false, // offset_is_from_end
2166                                         true); // only_if_ref
2167
2168           symtab->define_in_output_data(stop_name.c_str(),
2169                                         NULL, // version
2170                                         Symbol_table::PREDEFINED,
2171                                         *p,
2172                                         0, // value
2173                                         0, // symsize
2174                                         elfcpp::STT_NOTYPE,
2175                                         elfcpp::STB_GLOBAL,
2176                                         elfcpp::STV_DEFAULT,
2177                                         0, // nonvis
2178                                         true, // offset_is_from_end
2179                                         true); // only_if_ref
2180         }
2181     }
2182 }
2183
2184 // Define symbols for group signatures.
2185
2186 void
2187 Layout::define_group_signatures(Symbol_table* symtab)
2188 {
2189   for (Group_signatures::iterator p = this->group_signatures_.begin();
2190        p != this->group_signatures_.end();
2191        ++p)
2192     {
2193       Symbol* sym = symtab->lookup(p->signature, NULL);
2194       if (sym != NULL)
2195         p->section->set_info_symndx(sym);
2196       else
2197         {
2198           // Force the name of the group section to the group
2199           // signature, and use the group's section symbol as the
2200           // signature symbol.
2201           if (strcmp(p->section->name(), p->signature) != 0)
2202             {
2203               const char* name = this->namepool_.add(p->signature,
2204                                                      true, NULL);
2205               p->section->set_name(name);
2206             }
2207           p->section->set_needs_symtab_index();
2208           p->section->set_info_section_symndx(p->section);
2209         }
2210     }
2211
2212   this->group_signatures_.clear();
2213 }
2214
2215 // Find the first read-only PT_LOAD segment, creating one if
2216 // necessary.
2217
2218 Output_segment*
2219 Layout::find_first_load_seg(const Target* target)
2220 {
2221   Output_segment* best = NULL;
2222   for (Segment_list::const_iterator p = this->segment_list_.begin();
2223        p != this->segment_list_.end();
2224        ++p)
2225     {
2226       if ((*p)->type() == elfcpp::PT_LOAD
2227           && ((*p)->flags() & elfcpp::PF_R) != 0
2228           && (parameters->options().omagic()
2229               || ((*p)->flags() & elfcpp::PF_W) == 0)
2230           && (!target->isolate_execinstr()
2231               || ((*p)->flags() & elfcpp::PF_X) == 0))
2232         {
2233           if (best == NULL || this->segment_precedes(*p, best))
2234             best = *p;
2235         }
2236     }
2237   if (best != NULL)
2238     return best;
2239
2240   gold_assert(!this->script_options_->saw_phdrs_clause());
2241
2242   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2243                                                        elfcpp::PF_R);
2244   return load_seg;
2245 }
2246
2247 // Save states of all current output segments.  Store saved states
2248 // in SEGMENT_STATES.
2249
2250 void
2251 Layout::save_segments(Segment_states* segment_states)
2252 {
2253   for (Segment_list::const_iterator p = this->segment_list_.begin();
2254        p != this->segment_list_.end();
2255        ++p)
2256     {
2257       Output_segment* segment = *p;
2258       // Shallow copy.
2259       Output_segment* copy = new Output_segment(*segment);
2260       (*segment_states)[segment] = copy;
2261     }
2262 }
2263
2264 // Restore states of output segments and delete any segment not found in
2265 // SEGMENT_STATES.
2266
2267 void
2268 Layout::restore_segments(const Segment_states* segment_states)
2269 {
2270   // Go through the segment list and remove any segment added in the
2271   // relaxation loop.
2272   this->tls_segment_ = NULL;
2273   this->relro_segment_ = NULL;
2274   Segment_list::iterator list_iter = this->segment_list_.begin();
2275   while (list_iter != this->segment_list_.end())
2276     {
2277       Output_segment* segment = *list_iter;
2278       Segment_states::const_iterator states_iter =
2279           segment_states->find(segment);
2280       if (states_iter != segment_states->end())
2281         {
2282           const Output_segment* copy = states_iter->second;
2283           // Shallow copy to restore states.
2284           *segment = *copy;
2285
2286           // Also fix up TLS and RELRO segment pointers as appropriate.
2287           if (segment->type() == elfcpp::PT_TLS)
2288             this->tls_segment_ = segment;
2289           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2290             this->relro_segment_ = segment;
2291
2292           ++list_iter;
2293         }
2294       else
2295         {
2296           list_iter = this->segment_list_.erase(list_iter);
2297           // This is a segment created during section layout.  It should be
2298           // safe to remove it since we should have removed all pointers to it.
2299           delete segment;
2300         }
2301     }
2302 }
2303
2304 // Clean up after relaxation so that sections can be laid out again.
2305
2306 void
2307 Layout::clean_up_after_relaxation()
2308 {
2309   // Restore the segments to point state just prior to the relaxation loop.
2310   Script_sections* script_section = this->script_options_->script_sections();
2311   script_section->release_segments();
2312   this->restore_segments(this->segment_states_);
2313
2314   // Reset section addresses and file offsets
2315   for (Section_list::iterator p = this->section_list_.begin();
2316        p != this->section_list_.end();
2317        ++p)
2318     {
2319       (*p)->restore_states();
2320
2321       // If an input section changes size because of relaxation,
2322       // we need to adjust the section offsets of all input sections.
2323       // after such a section.
2324       if ((*p)->section_offsets_need_adjustment())
2325         (*p)->adjust_section_offsets();
2326
2327       (*p)->reset_address_and_file_offset();
2328     }
2329
2330   // Reset special output object address and file offsets.
2331   for (Data_list::iterator p = this->special_output_list_.begin();
2332        p != this->special_output_list_.end();
2333        ++p)
2334     (*p)->reset_address_and_file_offset();
2335
2336   // A linker script may have created some output section data objects.
2337   // They are useless now.
2338   for (Output_section_data_list::const_iterator p =
2339          this->script_output_section_data_list_.begin();
2340        p != this->script_output_section_data_list_.end();
2341        ++p)
2342     delete *p;
2343   this->script_output_section_data_list_.clear();
2344 }
2345
2346 // Prepare for relaxation.
2347
2348 void
2349 Layout::prepare_for_relaxation()
2350 {
2351   // Create an relaxation debug check if in debugging mode.
2352   if (is_debugging_enabled(DEBUG_RELAXATION))
2353     this->relaxation_debug_check_ = new Relaxation_debug_check();
2354
2355   // Save segment states.
2356   this->segment_states_ = new Segment_states();
2357   this->save_segments(this->segment_states_);
2358
2359   for(Section_list::const_iterator p = this->section_list_.begin();
2360       p != this->section_list_.end();
2361       ++p)
2362     (*p)->save_states();
2363
2364   if (is_debugging_enabled(DEBUG_RELAXATION))
2365     this->relaxation_debug_check_->check_output_data_for_reset_values(
2366         this->section_list_, this->special_output_list_);
2367
2368   // Also enable recording of output section data from scripts.
2369   this->record_output_section_data_from_script_ = true;
2370 }
2371
2372 // If the user set the address of the text segment, that may not be
2373 // compatible with putting the segment headers and file headers into
2374 // that segment.  For isolate_execinstr() targets, it's the rodata
2375 // segment rather than text where we might put the headers.
2376 static inline bool
2377 load_seg_unusable_for_headers(const Target* target)
2378 {
2379   const General_options& options = parameters->options();
2380   if (target->isolate_execinstr())
2381     return (options.user_set_Trodata_segment()
2382             && options.Trodata_segment() % target->abi_pagesize() != 0);
2383   else
2384     return (options.user_set_Ttext()
2385             && options.Ttext() % target->abi_pagesize() != 0);
2386 }
2387
2388 // Relaxation loop body:  If target has no relaxation, this runs only once
2389 // Otherwise, the target relaxation hook is called at the end of
2390 // each iteration.  If the hook returns true, it means re-layout of
2391 // section is required.
2392 //
2393 // The number of segments created by a linking script without a PHDRS
2394 // clause may be affected by section sizes and alignments.  There is
2395 // a remote chance that relaxation causes different number of PT_LOAD
2396 // segments are created and sections are attached to different segments.
2397 // Therefore, we always throw away all segments created during section
2398 // layout.  In order to be able to restart the section layout, we keep
2399 // a copy of the segment list right before the relaxation loop and use
2400 // that to restore the segments.
2401 //
2402 // PASS is the current relaxation pass number.
2403 // SYMTAB is a symbol table.
2404 // PLOAD_SEG is the address of a pointer for the load segment.
2405 // PHDR_SEG is a pointer to the PHDR segment.
2406 // SEGMENT_HEADERS points to the output segment header.
2407 // FILE_HEADER points to the output file header.
2408 // PSHNDX is the address to store the output section index.
2409
2410 off_t inline
2411 Layout::relaxation_loop_body(
2412     int pass,
2413     Target* target,
2414     Symbol_table* symtab,
2415     Output_segment** pload_seg,
2416     Output_segment* phdr_seg,
2417     Output_segment_headers* segment_headers,
2418     Output_file_header* file_header,
2419     unsigned int* pshndx)
2420 {
2421   // If this is not the first iteration, we need to clean up after
2422   // relaxation so that we can lay out the sections again.
2423   if (pass != 0)
2424     this->clean_up_after_relaxation();
2425
2426   // If there is a SECTIONS clause, put all the input sections into
2427   // the required order.
2428   Output_segment* load_seg;
2429   if (this->script_options_->saw_sections_clause())
2430     load_seg = this->set_section_addresses_from_script(symtab);
2431   else if (parameters->options().relocatable())
2432     load_seg = NULL;
2433   else
2434     load_seg = this->find_first_load_seg(target);
2435
2436   if (parameters->options().oformat_enum()
2437       != General_options::OBJECT_FORMAT_ELF)
2438     load_seg = NULL;
2439
2440   if (load_seg_unusable_for_headers(target))
2441     {
2442       load_seg = NULL;
2443       phdr_seg = NULL;
2444     }
2445
2446   gold_assert(phdr_seg == NULL
2447               || load_seg != NULL
2448               || this->script_options_->saw_sections_clause());
2449
2450   // If the address of the load segment we found has been set by
2451   // --section-start rather than by a script, then adjust the VMA and
2452   // LMA downward if possible to include the file and section headers.
2453   uint64_t header_gap = 0;
2454   if (load_seg != NULL
2455       && load_seg->are_addresses_set()
2456       && !this->script_options_->saw_sections_clause()
2457       && !parameters->options().relocatable())
2458     {
2459       file_header->finalize_data_size();
2460       segment_headers->finalize_data_size();
2461       size_t sizeof_headers = (file_header->data_size()
2462                                + segment_headers->data_size());
2463       const uint64_t abi_pagesize = target->abi_pagesize();
2464       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2465       hdr_paddr &= ~(abi_pagesize - 1);
2466       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2467       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2468         load_seg = NULL;
2469       else
2470         {
2471           load_seg->set_addresses(load_seg->vaddr() - subtract,
2472                                   load_seg->paddr() - subtract);
2473           header_gap = subtract - sizeof_headers;
2474         }
2475     }
2476
2477   // Lay out the segment headers.
2478   if (!parameters->options().relocatable())
2479     {
2480       gold_assert(segment_headers != NULL);
2481       if (header_gap != 0 && load_seg != NULL)
2482         {
2483           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2484           load_seg->add_initial_output_data(z);
2485         }
2486       if (load_seg != NULL)
2487         load_seg->add_initial_output_data(segment_headers);
2488       if (phdr_seg != NULL)
2489         phdr_seg->add_initial_output_data(segment_headers);
2490     }
2491
2492   // Lay out the file header.
2493   if (load_seg != NULL)
2494     load_seg->add_initial_output_data(file_header);
2495
2496   if (this->script_options_->saw_phdrs_clause()
2497       && !parameters->options().relocatable())
2498     {
2499       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2500       // clause in a linker script.
2501       Script_sections* ss = this->script_options_->script_sections();
2502       ss->put_headers_in_phdrs(file_header, segment_headers);
2503     }
2504
2505   // We set the output section indexes in set_segment_offsets and
2506   // set_section_indexes.
2507   *pshndx = 1;
2508
2509   // Set the file offsets of all the segments, and all the sections
2510   // they contain.
2511   off_t off;
2512   if (!parameters->options().relocatable())
2513     off = this->set_segment_offsets(target, load_seg, pshndx);
2514   else
2515     off = this->set_relocatable_section_offsets(file_header, pshndx);
2516
2517    // Verify that the dummy relaxation does not change anything.
2518   if (is_debugging_enabled(DEBUG_RELAXATION))
2519     {
2520       if (pass == 0)
2521         this->relaxation_debug_check_->read_sections(this->section_list_);
2522       else
2523         this->relaxation_debug_check_->verify_sections(this->section_list_);
2524     }
2525
2526   *pload_seg = load_seg;
2527   return off;
2528 }
2529
2530 // Search the list of patterns and find the postion of the given section
2531 // name in the output section.  If the section name matches a glob
2532 // pattern and a non-glob name, then the non-glob position takes
2533 // precedence.  Return 0 if no match is found.
2534
2535 unsigned int
2536 Layout::find_section_order_index(const std::string& section_name)
2537 {
2538   Unordered_map<std::string, unsigned int>::iterator map_it;
2539   map_it = this->input_section_position_.find(section_name);
2540   if (map_it != this->input_section_position_.end())
2541     return map_it->second;
2542
2543   // Absolute match failed.  Linear search the glob patterns.
2544   std::vector<std::string>::iterator it;
2545   for (it = this->input_section_glob_.begin();
2546        it != this->input_section_glob_.end();
2547        ++it)
2548     {
2549        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2550          {
2551            map_it = this->input_section_position_.find(*it);
2552            gold_assert(map_it != this->input_section_position_.end());
2553            return map_it->second;
2554          }
2555     }
2556   return 0;
2557 }
2558
2559 // Read the sequence of input sections from the file specified with
2560 // option --section-ordering-file.
2561
2562 void
2563 Layout::read_layout_from_file()
2564 {
2565   const char* filename = parameters->options().section_ordering_file();
2566   std::ifstream in;
2567   std::string line;
2568
2569   in.open(filename);
2570   if (!in)
2571     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2572                filename, strerror(errno));
2573
2574   std::getline(in, line);   // this chops off the trailing \n, if any
2575   unsigned int position = 1;
2576   this->set_section_ordering_specified();
2577
2578   while (in)
2579     {
2580       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2581         line.resize(line.length() - 1);
2582       // Ignore comments, beginning with '#'
2583       if (line[0] == '#')
2584         {
2585           std::getline(in, line);
2586           continue;
2587         }
2588       this->input_section_position_[line] = position;
2589       // Store all glob patterns in a vector.
2590       if (is_wildcard_string(line.c_str()))
2591         this->input_section_glob_.push_back(line);
2592       position++;
2593       std::getline(in, line);
2594     }
2595 }
2596
2597 // Finalize the layout.  When this is called, we have created all the
2598 // output sections and all the output segments which are based on
2599 // input sections.  We have several things to do, and we have to do
2600 // them in the right order, so that we get the right results correctly
2601 // and efficiently.
2602
2603 // 1) Finalize the list of output segments and create the segment
2604 // table header.
2605
2606 // 2) Finalize the dynamic symbol table and associated sections.
2607
2608 // 3) Determine the final file offset of all the output segments.
2609
2610 // 4) Determine the final file offset of all the SHF_ALLOC output
2611 // sections.
2612
2613 // 5) Create the symbol table sections and the section name table
2614 // section.
2615
2616 // 6) Finalize the symbol table: set symbol values to their final
2617 // value and make a final determination of which symbols are going
2618 // into the output symbol table.
2619
2620 // 7) Create the section table header.
2621
2622 // 8) Determine the final file offset of all the output sections which
2623 // are not SHF_ALLOC, including the section table header.
2624
2625 // 9) Finalize the ELF file header.
2626
2627 // This function returns the size of the output file.
2628
2629 off_t
2630 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2631                  Target* target, const Task* task)
2632 {
2633   target->finalize_sections(this, input_objects, symtab);
2634
2635   this->count_local_symbols(task, input_objects);
2636
2637   this->link_stabs_sections();
2638
2639   Output_segment* phdr_seg = NULL;
2640   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2641     {
2642       // There was a dynamic object in the link.  We need to create
2643       // some information for the dynamic linker.
2644
2645       // Create the PT_PHDR segment which will hold the program
2646       // headers.
2647       if (!this->script_options_->saw_phdrs_clause())
2648         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2649
2650       // Create the dynamic symbol table, including the hash table.
2651       Output_section* dynstr;
2652       std::vector<Symbol*> dynamic_symbols;
2653       unsigned int local_dynamic_count;
2654       Versions versions(*this->script_options()->version_script_info(),
2655                         &this->dynpool_);
2656       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2657                                   &local_dynamic_count, &dynamic_symbols,
2658                                   &versions);
2659
2660       // Create the .interp section to hold the name of the
2661       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2662       // if we saw a .interp section in an input file.
2663       if ((!parameters->options().shared()
2664            || parameters->options().dynamic_linker() != NULL)
2665           && this->interp_segment_ == NULL)
2666         this->create_interp(target);
2667
2668       // Finish the .dynamic section to hold the dynamic data, and put
2669       // it in a PT_DYNAMIC segment.
2670       this->finish_dynamic_section(input_objects, symtab);
2671
2672       // We should have added everything we need to the dynamic string
2673       // table.
2674       this->dynpool_.set_string_offsets();
2675
2676       // Create the version sections.  We can't do this until the
2677       // dynamic string table is complete.
2678       this->create_version_sections(&versions, symtab, local_dynamic_count,
2679                                     dynamic_symbols, dynstr);
2680
2681       // Set the size of the _DYNAMIC symbol.  We can't do this until
2682       // after we call create_version_sections.
2683       this->set_dynamic_symbol_size(symtab);
2684     }
2685
2686   // Create segment headers.
2687   Output_segment_headers* segment_headers =
2688     (parameters->options().relocatable()
2689      ? NULL
2690      : new Output_segment_headers(this->segment_list_));
2691
2692   // Lay out the file header.
2693   Output_file_header* file_header = new Output_file_header(target, symtab,
2694                                                            segment_headers);
2695
2696   this->special_output_list_.push_back(file_header);
2697   if (segment_headers != NULL)
2698     this->special_output_list_.push_back(segment_headers);
2699
2700   // Find approriate places for orphan output sections if we are using
2701   // a linker script.
2702   if (this->script_options_->saw_sections_clause())
2703     this->place_orphan_sections_in_script();
2704
2705   Output_segment* load_seg;
2706   off_t off;
2707   unsigned int shndx;
2708   int pass = 0;
2709
2710   // Take a snapshot of the section layout as needed.
2711   if (target->may_relax())
2712     this->prepare_for_relaxation();
2713
2714   // Run the relaxation loop to lay out sections.
2715   do
2716     {
2717       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2718                                        phdr_seg, segment_headers, file_header,
2719                                        &shndx);
2720       pass++;
2721     }
2722   while (target->may_relax()
2723          && target->relax(pass, input_objects, symtab, this, task));
2724
2725   // If there is a load segment that contains the file and program headers,
2726   // provide a symbol __ehdr_start pointing there.
2727   // A program can use this to examine itself robustly.
2728   if (load_seg != NULL)
2729     symtab->define_in_output_segment("__ehdr_start", NULL,
2730                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2731                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2732                                      elfcpp::STV_HIDDEN, 0,
2733                                      Symbol::SEGMENT_START, true);
2734
2735   // Set the file offsets of all the non-data sections we've seen so
2736   // far which don't have to wait for the input sections.  We need
2737   // this in order to finalize local symbols in non-allocated
2738   // sections.
2739   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2740
2741   // Set the section indexes of all unallocated sections seen so far,
2742   // in case any of them are somehow referenced by a symbol.
2743   shndx = this->set_section_indexes(shndx);
2744
2745   // Create the symbol table sections.
2746   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2747   if (!parameters->doing_static_link())
2748     this->assign_local_dynsym_offsets(input_objects);
2749
2750   // Process any symbol assignments from a linker script.  This must
2751   // be called after the symbol table has been finalized.
2752   this->script_options_->finalize_symbols(symtab, this);
2753
2754   // Create the incremental inputs sections.
2755   if (this->incremental_inputs_)
2756     {
2757       this->incremental_inputs_->finalize();
2758       this->create_incremental_info_sections(symtab);
2759     }
2760
2761   // Create the .shstrtab section.
2762   Output_section* shstrtab_section = this->create_shstrtab();
2763
2764   // Set the file offsets of the rest of the non-data sections which
2765   // don't have to wait for the input sections.
2766   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2767
2768   // Now that all sections have been created, set the section indexes
2769   // for any sections which haven't been done yet.
2770   shndx = this->set_section_indexes(shndx);
2771
2772   // Create the section table header.
2773   this->create_shdrs(shstrtab_section, &off);
2774
2775   // If there are no sections which require postprocessing, we can
2776   // handle the section names now, and avoid a resize later.
2777   if (!this->any_postprocessing_sections_)
2778     {
2779       off = this->set_section_offsets(off,
2780                                       POSTPROCESSING_SECTIONS_PASS);
2781       off =
2782           this->set_section_offsets(off,
2783                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2784     }
2785
2786   file_header->set_section_info(this->section_headers_, shstrtab_section);
2787
2788   // Now we know exactly where everything goes in the output file
2789   // (except for non-allocated sections which require postprocessing).
2790   Output_data::layout_complete();
2791
2792   this->output_file_size_ = off;
2793
2794   return off;
2795 }
2796
2797 // Create a note header following the format defined in the ELF ABI.
2798 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2799 // of the section to create, DESCSZ is the size of the descriptor.
2800 // ALLOCATE is true if the section should be allocated in memory.
2801 // This returns the new note section.  It sets *TRAILING_PADDING to
2802 // the number of trailing zero bytes required.
2803
2804 Output_section*
2805 Layout::create_note(const char* name, int note_type,
2806                     const char* section_name, size_t descsz,
2807                     bool allocate, size_t* trailing_padding)
2808 {
2809   // Authorities all agree that the values in a .note field should
2810   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2811   // they differ on what the alignment is for 64-bit binaries.
2812   // The GABI says unambiguously they take 8-byte alignment:
2813   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2814   // Other documentation says alignment should always be 4 bytes:
2815   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2816   // GNU ld and GNU readelf both support the latter (at least as of
2817   // version 2.16.91), and glibc always generates the latter for
2818   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2819   // here.
2820 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2821   const int size = parameters->target().get_size();
2822 #else
2823   const int size = 32;
2824 #endif
2825
2826   // The contents of the .note section.
2827   size_t namesz = strlen(name) + 1;
2828   size_t aligned_namesz = align_address(namesz, size / 8);
2829   size_t aligned_descsz = align_address(descsz, size / 8);
2830
2831   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2832
2833   unsigned char* buffer = new unsigned char[notehdrsz];
2834   memset(buffer, 0, notehdrsz);
2835
2836   bool is_big_endian = parameters->target().is_big_endian();
2837
2838   if (size == 32)
2839     {
2840       if (!is_big_endian)
2841         {
2842           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2843           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2844           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2845         }
2846       else
2847         {
2848           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2849           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2850           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2851         }
2852     }
2853   else if (size == 64)
2854     {
2855       if (!is_big_endian)
2856         {
2857           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2858           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2859           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2860         }
2861       else
2862         {
2863           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2864           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2865           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2866         }
2867     }
2868   else
2869     gold_unreachable();
2870
2871   memcpy(buffer + 3 * (size / 8), name, namesz);
2872
2873   elfcpp::Elf_Xword flags = 0;
2874   Output_section_order order = ORDER_INVALID;
2875   if (allocate)
2876     {
2877       flags = elfcpp::SHF_ALLOC;
2878       order = ORDER_RO_NOTE;
2879     }
2880   Output_section* os = this->choose_output_section(NULL, section_name,
2881                                                    elfcpp::SHT_NOTE,
2882                                                    flags, false, order, false);
2883   if (os == NULL)
2884     return NULL;
2885
2886   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2887                                                            size / 8,
2888                                                            "** note header");
2889   os->add_output_section_data(posd);
2890
2891   *trailing_padding = aligned_descsz - descsz;
2892
2893   return os;
2894 }
2895
2896 // For an executable or shared library, create a note to record the
2897 // version of gold used to create the binary.
2898
2899 void
2900 Layout::create_gold_note()
2901 {
2902   if (parameters->options().relocatable()
2903       || parameters->incremental_update())
2904     return;
2905
2906   std::string desc = std::string("gold ") + gold::get_version_string();
2907
2908   size_t trailing_padding;
2909   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2910                                          ".note.gnu.gold-version", desc.size(),
2911                                          false, &trailing_padding);
2912   if (os == NULL)
2913     return;
2914
2915   Output_section_data* posd = new Output_data_const(desc, 4);
2916   os->add_output_section_data(posd);
2917
2918   if (trailing_padding > 0)
2919     {
2920       posd = new Output_data_zero_fill(trailing_padding, 0);
2921       os->add_output_section_data(posd);
2922     }
2923 }
2924
2925 // Record whether the stack should be executable.  This can be set
2926 // from the command line using the -z execstack or -z noexecstack
2927 // options.  Otherwise, if any input file has a .note.GNU-stack
2928 // section with the SHF_EXECINSTR flag set, the stack should be
2929 // executable.  Otherwise, if at least one input file a
2930 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2931 // section, we use the target default for whether the stack should be
2932 // executable.  Otherwise, we don't generate a stack note.  When
2933 // generating a object file, we create a .note.GNU-stack section with
2934 // the appropriate marking.  When generating an executable or shared
2935 // library, we create a PT_GNU_STACK segment.
2936
2937 void
2938 Layout::create_executable_stack_info()
2939 {
2940   bool is_stack_executable;
2941   if (parameters->options().is_execstack_set())
2942     is_stack_executable = parameters->options().is_stack_executable();
2943   else if (!this->input_with_gnu_stack_note_)
2944     return;
2945   else
2946     {
2947       if (this->input_requires_executable_stack_)
2948         is_stack_executable = true;
2949       else if (this->input_without_gnu_stack_note_)
2950         is_stack_executable =
2951           parameters->target().is_default_stack_executable();
2952       else
2953         is_stack_executable = false;
2954     }
2955
2956   if (parameters->options().relocatable())
2957     {
2958       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2959       elfcpp::Elf_Xword flags = 0;
2960       if (is_stack_executable)
2961         flags |= elfcpp::SHF_EXECINSTR;
2962       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2963                                 ORDER_INVALID, false);
2964     }
2965   else
2966     {
2967       if (this->script_options_->saw_phdrs_clause())
2968         return;
2969       int flags = elfcpp::PF_R | elfcpp::PF_W;
2970       if (is_stack_executable)
2971         flags |= elfcpp::PF_X;
2972       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2973     }
2974 }
2975
2976 // If --build-id was used, set up the build ID note.
2977
2978 void
2979 Layout::create_build_id()
2980 {
2981   if (!parameters->options().user_set_build_id())
2982     return;
2983
2984   const char* style = parameters->options().build_id();
2985   if (strcmp(style, "none") == 0)
2986     return;
2987
2988   // Set DESCSZ to the size of the note descriptor.  When possible,
2989   // set DESC to the note descriptor contents.
2990   size_t descsz;
2991   std::string desc;
2992   if (strcmp(style, "md5") == 0)
2993     descsz = 128 / 8;
2994   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
2995     descsz = 160 / 8;
2996   else if (strcmp(style, "uuid") == 0)
2997     {
2998       const size_t uuidsz = 128 / 8;
2999
3000       char buffer[uuidsz];
3001       memset(buffer, 0, uuidsz);
3002
3003       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3004       if (descriptor < 0)
3005         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3006                    strerror(errno));
3007       else
3008         {
3009           ssize_t got = ::read(descriptor, buffer, uuidsz);
3010           release_descriptor(descriptor, true);
3011           if (got < 0)
3012             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3013           else if (static_cast<size_t>(got) != uuidsz)
3014             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3015                        uuidsz, got);
3016         }
3017
3018       desc.assign(buffer, uuidsz);
3019       descsz = uuidsz;
3020     }
3021   else if (strncmp(style, "0x", 2) == 0)
3022     {
3023       hex_init();
3024       const char* p = style + 2;
3025       while (*p != '\0')
3026         {
3027           if (hex_p(p[0]) && hex_p(p[1]))
3028             {
3029               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3030               desc += c;
3031               p += 2;
3032             }
3033           else if (*p == '-' || *p == ':')
3034             ++p;
3035           else
3036             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3037                        style);
3038         }
3039       descsz = desc.size();
3040     }
3041   else
3042     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3043
3044   // Create the note.
3045   size_t trailing_padding;
3046   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3047                                          ".note.gnu.build-id", descsz, true,
3048                                          &trailing_padding);
3049   if (os == NULL)
3050     return;
3051
3052   if (!desc.empty())
3053     {
3054       // We know the value already, so we fill it in now.
3055       gold_assert(desc.size() == descsz);
3056
3057       Output_section_data* posd = new Output_data_const(desc, 4);
3058       os->add_output_section_data(posd);
3059
3060       if (trailing_padding != 0)
3061         {
3062           posd = new Output_data_zero_fill(trailing_padding, 0);
3063           os->add_output_section_data(posd);
3064         }
3065     }
3066   else
3067     {
3068       // We need to compute a checksum after we have completed the
3069       // link.
3070       gold_assert(trailing_padding == 0);
3071       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3072       os->add_output_section_data(this->build_id_note_);
3073     }
3074 }
3075
3076 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3077 // field of the former should point to the latter.  I'm not sure who
3078 // started this, but the GNU linker does it, and some tools depend
3079 // upon it.
3080
3081 void
3082 Layout::link_stabs_sections()
3083 {
3084   if (!this->have_stabstr_section_)
3085     return;
3086
3087   for (Section_list::iterator p = this->section_list_.begin();
3088        p != this->section_list_.end();
3089        ++p)
3090     {
3091       if ((*p)->type() != elfcpp::SHT_STRTAB)
3092         continue;
3093
3094       const char* name = (*p)->name();
3095       if (strncmp(name, ".stab", 5) != 0)
3096         continue;
3097
3098       size_t len = strlen(name);
3099       if (strcmp(name + len - 3, "str") != 0)
3100         continue;
3101
3102       std::string stab_name(name, len - 3);
3103       Output_section* stab_sec;
3104       stab_sec = this->find_output_section(stab_name.c_str());
3105       if (stab_sec != NULL)
3106         stab_sec->set_link_section(*p);
3107     }
3108 }
3109
3110 // Create .gnu_incremental_inputs and related sections needed
3111 // for the next run of incremental linking to check what has changed.
3112
3113 void
3114 Layout::create_incremental_info_sections(Symbol_table* symtab)
3115 {
3116   Incremental_inputs* incr = this->incremental_inputs_;
3117
3118   gold_assert(incr != NULL);
3119
3120   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3121   incr->create_data_sections(symtab);
3122
3123   // Add the .gnu_incremental_inputs section.
3124   const char* incremental_inputs_name =
3125     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3126   Output_section* incremental_inputs_os =
3127     this->make_output_section(incremental_inputs_name,
3128                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3129                               ORDER_INVALID, false);
3130   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3131
3132   // Add the .gnu_incremental_symtab section.
3133   const char* incremental_symtab_name =
3134     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3135   Output_section* incremental_symtab_os =
3136     this->make_output_section(incremental_symtab_name,
3137                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3138                               ORDER_INVALID, false);
3139   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3140   incremental_symtab_os->set_entsize(4);
3141
3142   // Add the .gnu_incremental_relocs section.
3143   const char* incremental_relocs_name =
3144     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3145   Output_section* incremental_relocs_os =
3146     this->make_output_section(incremental_relocs_name,
3147                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3148                               ORDER_INVALID, false);
3149   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3150   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3151
3152   // Add the .gnu_incremental_got_plt section.
3153   const char* incremental_got_plt_name =
3154     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3155   Output_section* incremental_got_plt_os =
3156     this->make_output_section(incremental_got_plt_name,
3157                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3158                               ORDER_INVALID, false);
3159   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3160
3161   // Add the .gnu_incremental_strtab section.
3162   const char* incremental_strtab_name =
3163     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3164   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3165                                                         elfcpp::SHT_STRTAB, 0,
3166                                                         ORDER_INVALID, false);
3167   Output_data_strtab* strtab_data =
3168       new Output_data_strtab(incr->get_stringpool());
3169   incremental_strtab_os->add_output_section_data(strtab_data);
3170
3171   incremental_inputs_os->set_after_input_sections();
3172   incremental_symtab_os->set_after_input_sections();
3173   incremental_relocs_os->set_after_input_sections();
3174   incremental_got_plt_os->set_after_input_sections();
3175
3176   incremental_inputs_os->set_link_section(incremental_strtab_os);
3177   incremental_symtab_os->set_link_section(incremental_inputs_os);
3178   incremental_relocs_os->set_link_section(incremental_inputs_os);
3179   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3180 }
3181
3182 // Return whether SEG1 should be before SEG2 in the output file.  This
3183 // is based entirely on the segment type and flags.  When this is
3184 // called the segment addresses have normally not yet been set.
3185
3186 bool
3187 Layout::segment_precedes(const Output_segment* seg1,
3188                          const Output_segment* seg2)
3189 {
3190   elfcpp::Elf_Word type1 = seg1->type();
3191   elfcpp::Elf_Word type2 = seg2->type();
3192
3193   // The single PT_PHDR segment is required to precede any loadable
3194   // segment.  We simply make it always first.
3195   if (type1 == elfcpp::PT_PHDR)
3196     {
3197       gold_assert(type2 != elfcpp::PT_PHDR);
3198       return true;
3199     }
3200   if (type2 == elfcpp::PT_PHDR)
3201     return false;
3202
3203   // The single PT_INTERP segment is required to precede any loadable
3204   // segment.  We simply make it always second.
3205   if (type1 == elfcpp::PT_INTERP)
3206     {
3207       gold_assert(type2 != elfcpp::PT_INTERP);
3208       return true;
3209     }
3210   if (type2 == elfcpp::PT_INTERP)
3211     return false;
3212
3213   // We then put PT_LOAD segments before any other segments.
3214   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3215     return true;
3216   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3217     return false;
3218
3219   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3220   // segment, because that is where the dynamic linker expects to find
3221   // it (this is just for efficiency; other positions would also work
3222   // correctly).
3223   if (type1 == elfcpp::PT_TLS
3224       && type2 != elfcpp::PT_TLS
3225       && type2 != elfcpp::PT_GNU_RELRO)
3226     return false;
3227   if (type2 == elfcpp::PT_TLS
3228       && type1 != elfcpp::PT_TLS
3229       && type1 != elfcpp::PT_GNU_RELRO)
3230     return true;
3231
3232   // We put the PT_GNU_RELRO segment last, because that is where the
3233   // dynamic linker expects to find it (as with PT_TLS, this is just
3234   // for efficiency).
3235   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3236     return false;
3237   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3238     return true;
3239
3240   const elfcpp::Elf_Word flags1 = seg1->flags();
3241   const elfcpp::Elf_Word flags2 = seg2->flags();
3242
3243   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3244   // by the numeric segment type and flags values.  There should not
3245   // be more than one segment with the same type and flags, except
3246   // when a linker script specifies such.
3247   if (type1 != elfcpp::PT_LOAD)
3248     {
3249       if (type1 != type2)
3250         return type1 < type2;
3251       gold_assert(flags1 != flags2
3252                   || this->script_options_->saw_phdrs_clause());
3253       return flags1 < flags2;
3254     }
3255
3256   // If the addresses are set already, sort by load address.
3257   if (seg1->are_addresses_set())
3258     {
3259       if (!seg2->are_addresses_set())
3260         return true;
3261
3262       unsigned int section_count1 = seg1->output_section_count();
3263       unsigned int section_count2 = seg2->output_section_count();
3264       if (section_count1 == 0 && section_count2 > 0)
3265         return true;
3266       if (section_count1 > 0 && section_count2 == 0)
3267         return false;
3268
3269       uint64_t paddr1 = (seg1->are_addresses_set()
3270                          ? seg1->paddr()
3271                          : seg1->first_section_load_address());
3272       uint64_t paddr2 = (seg2->are_addresses_set()
3273                          ? seg2->paddr()
3274                          : seg2->first_section_load_address());
3275
3276       if (paddr1 != paddr2)
3277         return paddr1 < paddr2;
3278     }
3279   else if (seg2->are_addresses_set())
3280     return false;
3281
3282   // A segment which holds large data comes after a segment which does
3283   // not hold large data.
3284   if (seg1->is_large_data_segment())
3285     {
3286       if (!seg2->is_large_data_segment())
3287         return false;
3288     }
3289   else if (seg2->is_large_data_segment())
3290     return true;
3291
3292   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3293   // segments come before writable segments.  Then writable segments
3294   // with data come before writable segments without data.  Then
3295   // executable segments come before non-executable segments.  Then
3296   // the unlikely case of a non-readable segment comes before the
3297   // normal case of a readable segment.  If there are multiple
3298   // segments with the same type and flags, we require that the
3299   // address be set, and we sort by virtual address and then physical
3300   // address.
3301   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3302     return (flags1 & elfcpp::PF_W) == 0;
3303   if ((flags1 & elfcpp::PF_W) != 0
3304       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3305     return seg1->has_any_data_sections();
3306   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3307     return (flags1 & elfcpp::PF_X) != 0;
3308   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3309     return (flags1 & elfcpp::PF_R) == 0;
3310
3311   // We shouldn't get here--we shouldn't create segments which we
3312   // can't distinguish.  Unless of course we are using a weird linker
3313   // script or overlapping --section-start options.  We could also get
3314   // here if plugins want unique segments for subsets of sections.
3315   gold_assert(this->script_options_->saw_phdrs_clause()
3316               || parameters->options().any_section_start()
3317               || this->is_unique_segment_for_sections_specified());
3318   return false;
3319 }
3320
3321 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3322
3323 static off_t
3324 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3325 {
3326   uint64_t unsigned_off = off;
3327   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3328                           | (addr & (abi_pagesize - 1)));
3329   if (aligned_off < unsigned_off)
3330     aligned_off += abi_pagesize;
3331   return aligned_off;
3332 }
3333
3334 // On targets where the text segment contains only executable code,
3335 // a non-executable segment is never the text segment.
3336
3337 static inline bool
3338 is_text_segment(const Target* target, const Output_segment* seg)
3339 {
3340   elfcpp::Elf_Xword flags = seg->flags();
3341   if ((flags & elfcpp::PF_W) != 0)
3342     return false;
3343   if ((flags & elfcpp::PF_X) == 0)
3344     return !target->isolate_execinstr();
3345   return true;
3346 }
3347
3348 // Set the file offsets of all the segments, and all the sections they
3349 // contain.  They have all been created.  LOAD_SEG must be be laid out
3350 // first.  Return the offset of the data to follow.
3351
3352 off_t
3353 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3354                             unsigned int* pshndx)
3355 {
3356   // Sort them into the final order.  We use a stable sort so that we
3357   // don't randomize the order of indistinguishable segments created
3358   // by linker scripts.
3359   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3360                    Layout::Compare_segments(this));
3361
3362   // Find the PT_LOAD segments, and set their addresses and offsets
3363   // and their section's addresses and offsets.
3364   uint64_t start_addr;
3365   if (parameters->options().user_set_Ttext())
3366     start_addr = parameters->options().Ttext();
3367   else if (parameters->options().output_is_position_independent())
3368     start_addr = 0;
3369   else
3370     start_addr = target->default_text_segment_address();
3371
3372   uint64_t addr = start_addr;
3373   off_t off = 0;
3374
3375   // If LOAD_SEG is NULL, then the file header and segment headers
3376   // will not be loadable.  But they still need to be at offset 0 in
3377   // the file.  Set their offsets now.
3378   if (load_seg == NULL)
3379     {
3380       for (Data_list::iterator p = this->special_output_list_.begin();
3381            p != this->special_output_list_.end();
3382            ++p)
3383         {
3384           off = align_address(off, (*p)->addralign());
3385           (*p)->set_address_and_file_offset(0, off);
3386           off += (*p)->data_size();
3387         }
3388     }
3389
3390   unsigned int increase_relro = this->increase_relro_;
3391   if (this->script_options_->saw_sections_clause())
3392     increase_relro = 0;
3393
3394   const bool check_sections = parameters->options().check_sections();
3395   Output_segment* last_load_segment = NULL;
3396
3397   unsigned int shndx_begin = *pshndx;
3398   unsigned int shndx_load_seg = *pshndx;
3399
3400   for (Segment_list::iterator p = this->segment_list_.begin();
3401        p != this->segment_list_.end();
3402        ++p)
3403     {
3404       if ((*p)->type() == elfcpp::PT_LOAD)
3405         {
3406           if (target->isolate_execinstr())
3407             {
3408               // When we hit the segment that should contain the
3409               // file headers, reset the file offset so we place
3410               // it and subsequent segments appropriately.
3411               // We'll fix up the preceding segments below.
3412               if (load_seg == *p)
3413                 {
3414                   if (off == 0)
3415                     load_seg = NULL;
3416                   else
3417                     {
3418                       off = 0;
3419                       shndx_load_seg = *pshndx;
3420                     }
3421                 }
3422             }
3423           else
3424             {
3425               // Verify that the file headers fall into the first segment.
3426               if (load_seg != NULL && load_seg != *p)
3427                 gold_unreachable();
3428               load_seg = NULL;
3429             }
3430
3431           bool are_addresses_set = (*p)->are_addresses_set();
3432           if (are_addresses_set)
3433             {
3434               // When it comes to setting file offsets, we care about
3435               // the physical address.
3436               addr = (*p)->paddr();
3437             }
3438           else if (parameters->options().user_set_Ttext()
3439                    && (parameters->options().omagic()
3440                        || is_text_segment(target, *p)))
3441             {
3442               are_addresses_set = true;
3443             }
3444           else if (parameters->options().user_set_Trodata_segment()
3445                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3446             {
3447               addr = parameters->options().Trodata_segment();
3448               are_addresses_set = true;
3449             }
3450           else if (parameters->options().user_set_Tdata()
3451                    && ((*p)->flags() & elfcpp::PF_W) != 0
3452                    && (!parameters->options().user_set_Tbss()
3453                        || (*p)->has_any_data_sections()))
3454             {
3455               addr = parameters->options().Tdata();
3456               are_addresses_set = true;
3457             }
3458           else if (parameters->options().user_set_Tbss()
3459                    && ((*p)->flags() & elfcpp::PF_W) != 0
3460                    && !(*p)->has_any_data_sections())
3461             {
3462               addr = parameters->options().Tbss();
3463               are_addresses_set = true;
3464             }
3465
3466           uint64_t orig_addr = addr;
3467           uint64_t orig_off = off;
3468
3469           uint64_t aligned_addr = 0;
3470           uint64_t abi_pagesize = target->abi_pagesize();
3471           uint64_t common_pagesize = target->common_pagesize();
3472
3473           if (!parameters->options().nmagic()
3474               && !parameters->options().omagic())
3475             (*p)->set_minimum_p_align(abi_pagesize);
3476
3477           if (!are_addresses_set)
3478             {
3479               // Skip the address forward one page, maintaining the same
3480               // position within the page.  This lets us store both segments
3481               // overlapping on a single page in the file, but the loader will
3482               // put them on different pages in memory. We will revisit this
3483               // decision once we know the size of the segment.
3484
3485               addr = align_address(addr, (*p)->maximum_alignment());
3486               aligned_addr = addr;
3487
3488               if (load_seg == *p)
3489                 {
3490                   // This is the segment that will contain the file
3491                   // headers, so its offset will have to be exactly zero.
3492                   gold_assert(orig_off == 0);
3493
3494                   // If the target wants a fixed minimum distance from the
3495                   // text segment to the read-only segment, move up now.
3496                   uint64_t min_addr =
3497                     start_addr + (parameters->options().user_set_rosegment_gap()
3498                                   ? parameters->options().rosegment_gap()
3499                                   : target->rosegment_gap());
3500                   if (addr < min_addr)
3501                     addr = min_addr;
3502
3503                   // But this is not the first segment!  To make its
3504                   // address congruent with its offset, that address better
3505                   // be aligned to the ABI-mandated page size.
3506                   addr = align_address(addr, abi_pagesize);
3507                   aligned_addr = addr;
3508                 }
3509               else
3510                 {
3511                   if ((addr & (abi_pagesize - 1)) != 0)
3512                     addr = addr + abi_pagesize;
3513
3514                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3515                 }
3516             }
3517
3518           if (!parameters->options().nmagic()
3519               && !parameters->options().omagic())
3520             {
3521               // Here we are also taking care of the case when
3522               // the maximum segment alignment is larger than the page size.
3523               off = align_file_offset(off, addr,
3524                                       std::max(abi_pagesize,
3525                                                (*p)->maximum_alignment()));
3526             }
3527           else
3528             {
3529               // This is -N or -n with a section script which prevents
3530               // us from using a load segment.  We need to ensure that
3531               // the file offset is aligned to the alignment of the
3532               // segment.  This is because the linker script
3533               // implicitly assumed a zero offset.  If we don't align
3534               // here, then the alignment of the sections in the
3535               // linker script may not match the alignment of the
3536               // sections in the set_section_addresses call below,
3537               // causing an error about dot moving backward.
3538               off = align_address(off, (*p)->maximum_alignment());
3539             }
3540
3541           unsigned int shndx_hold = *pshndx;
3542           bool has_relro = false;
3543           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3544                                                           &increase_relro,
3545                                                           &has_relro,
3546                                                           &off, pshndx);
3547
3548           // Now that we know the size of this segment, we may be able
3549           // to save a page in memory, at the cost of wasting some
3550           // file space, by instead aligning to the start of a new
3551           // page.  Here we use the real machine page size rather than
3552           // the ABI mandated page size.  If the segment has been
3553           // aligned so that the relro data ends at a page boundary,
3554           // we do not try to realign it.
3555
3556           if (!are_addresses_set
3557               && !has_relro
3558               && aligned_addr != addr
3559               && !parameters->incremental())
3560             {
3561               uint64_t first_off = (common_pagesize
3562                                     - (aligned_addr
3563                                        & (common_pagesize - 1)));
3564               uint64_t last_off = new_addr & (common_pagesize - 1);
3565               if (first_off > 0
3566                   && last_off > 0
3567                   && ((aligned_addr & ~ (common_pagesize - 1))
3568                       != (new_addr & ~ (common_pagesize - 1)))
3569                   && first_off + last_off <= common_pagesize)
3570                 {
3571                   *pshndx = shndx_hold;
3572                   addr = align_address(aligned_addr, common_pagesize);
3573                   addr = align_address(addr, (*p)->maximum_alignment());
3574                   if ((addr & (abi_pagesize - 1)) != 0)
3575                     addr = addr + abi_pagesize;
3576                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3577                   off = align_file_offset(off, addr, abi_pagesize);
3578
3579                   increase_relro = this->increase_relro_;
3580                   if (this->script_options_->saw_sections_clause())
3581                     increase_relro = 0;
3582                   has_relro = false;
3583
3584                   new_addr = (*p)->set_section_addresses(this, true, addr,
3585                                                          &increase_relro,
3586                                                          &has_relro,
3587                                                          &off, pshndx);
3588                 }
3589             }
3590
3591           addr = new_addr;
3592
3593           // Implement --check-sections.  We know that the segments
3594           // are sorted by LMA.
3595           if (check_sections && last_load_segment != NULL)
3596             {
3597               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3598               if (last_load_segment->paddr() + last_load_segment->memsz()
3599                   > (*p)->paddr())
3600                 {
3601                   unsigned long long lb1 = last_load_segment->paddr();
3602                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3603                   unsigned long long lb2 = (*p)->paddr();
3604                   unsigned long long le2 = lb2 + (*p)->memsz();
3605                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3606                                "[0x%llx -> 0x%llx]"),
3607                              lb1, le1, lb2, le2);
3608                 }
3609             }
3610           last_load_segment = *p;
3611         }
3612     }
3613
3614   if (load_seg != NULL && target->isolate_execinstr())
3615     {
3616       // Process the early segments again, setting their file offsets
3617       // so they land after the segments starting at LOAD_SEG.
3618       off = align_file_offset(off, 0, target->abi_pagesize());
3619
3620       for (Segment_list::iterator p = this->segment_list_.begin();
3621            *p != load_seg;
3622            ++p)
3623         {
3624           if ((*p)->type() == elfcpp::PT_LOAD)
3625             {
3626               // We repeat the whole job of assigning addresses and
3627               // offsets, but we really only want to change the offsets and
3628               // must ensure that the addresses all come out the same as
3629               // they did the first time through.
3630               bool has_relro = false;
3631               const uint64_t old_addr = (*p)->vaddr();
3632               const uint64_t old_end = old_addr + (*p)->memsz();
3633               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3634                                                               old_addr,
3635                                                               &increase_relro,
3636                                                               &has_relro,
3637                                                               &off,
3638                                                               &shndx_begin);
3639               gold_assert(new_addr == old_end);
3640             }
3641         }
3642
3643       gold_assert(shndx_begin == shndx_load_seg);
3644     }
3645
3646   // Handle the non-PT_LOAD segments, setting their offsets from their
3647   // section's offsets.
3648   for (Segment_list::iterator p = this->segment_list_.begin();
3649        p != this->segment_list_.end();
3650        ++p)
3651     {
3652       if ((*p)->type() != elfcpp::PT_LOAD)
3653         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3654                          ? increase_relro
3655                          : 0);
3656     }
3657
3658   // Set the TLS offsets for each section in the PT_TLS segment.
3659   if (this->tls_segment_ != NULL)
3660     this->tls_segment_->set_tls_offsets();
3661
3662   return off;
3663 }
3664
3665 // Set the offsets of all the allocated sections when doing a
3666 // relocatable link.  This does the same jobs as set_segment_offsets,
3667 // only for a relocatable link.
3668
3669 off_t
3670 Layout::set_relocatable_section_offsets(Output_data* file_header,
3671                                         unsigned int* pshndx)
3672 {
3673   off_t off = 0;
3674
3675   file_header->set_address_and_file_offset(0, 0);
3676   off += file_header->data_size();
3677
3678   for (Section_list::iterator p = this->section_list_.begin();
3679        p != this->section_list_.end();
3680        ++p)
3681     {
3682       // We skip unallocated sections here, except that group sections
3683       // have to come first.
3684       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3685           && (*p)->type() != elfcpp::SHT_GROUP)
3686         continue;
3687
3688       off = align_address(off, (*p)->addralign());
3689
3690       // The linker script might have set the address.
3691       if (!(*p)->is_address_valid())
3692         (*p)->set_address(0);
3693       (*p)->set_file_offset(off);
3694       (*p)->finalize_data_size();
3695       if ((*p)->type() != elfcpp::SHT_NOBITS)
3696         off += (*p)->data_size();
3697
3698       (*p)->set_out_shndx(*pshndx);
3699       ++*pshndx;
3700     }
3701
3702   return off;
3703 }
3704
3705 // Set the file offset of all the sections not associated with a
3706 // segment.
3707
3708 off_t
3709 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3710 {
3711   off_t startoff = off;
3712   off_t maxoff = off;
3713
3714   for (Section_list::iterator p = this->unattached_section_list_.begin();
3715        p != this->unattached_section_list_.end();
3716        ++p)
3717     {
3718       // The symtab section is handled in create_symtab_sections.
3719       if (*p == this->symtab_section_)
3720         continue;
3721
3722       // If we've already set the data size, don't set it again.
3723       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3724         continue;
3725
3726       if (pass == BEFORE_INPUT_SECTIONS_PASS
3727           && (*p)->requires_postprocessing())
3728         {
3729           (*p)->create_postprocessing_buffer();
3730           this->any_postprocessing_sections_ = true;
3731         }
3732
3733       if (pass == BEFORE_INPUT_SECTIONS_PASS
3734           && (*p)->after_input_sections())
3735         continue;
3736       else if (pass == POSTPROCESSING_SECTIONS_PASS
3737                && (!(*p)->after_input_sections()
3738                    || (*p)->type() == elfcpp::SHT_STRTAB))
3739         continue;
3740       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3741                && (!(*p)->after_input_sections()
3742                    || (*p)->type() != elfcpp::SHT_STRTAB))
3743         continue;
3744
3745       if (!parameters->incremental_update())
3746         {
3747           off = align_address(off, (*p)->addralign());
3748           (*p)->set_file_offset(off);
3749           (*p)->finalize_data_size();
3750         }
3751       else
3752         {
3753           // Incremental update: allocate file space from free list.
3754           (*p)->pre_finalize_data_size();
3755           off_t current_size = (*p)->current_data_size();
3756           off = this->allocate(current_size, (*p)->addralign(), startoff);
3757           if (off == -1)
3758             {
3759               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3760                 this->free_list_.dump();
3761               gold_assert((*p)->output_section() != NULL);
3762               gold_fallback(_("out of patch space for section %s; "
3763                               "relink with --incremental-full"),
3764                             (*p)->output_section()->name());
3765             }
3766           (*p)->set_file_offset(off);
3767           (*p)->finalize_data_size();
3768           if ((*p)->data_size() > current_size)
3769             {
3770               gold_assert((*p)->output_section() != NULL);
3771               gold_fallback(_("%s: section changed size; "
3772                               "relink with --incremental-full"),
3773                             (*p)->output_section()->name());
3774             }
3775           gold_debug(DEBUG_INCREMENTAL,
3776                      "set_section_offsets: %08lx %08lx %s",
3777                      static_cast<long>(off),
3778                      static_cast<long>((*p)->data_size()),
3779                      ((*p)->output_section() != NULL
3780                       ? (*p)->output_section()->name() : "(special)"));
3781         }
3782
3783       off += (*p)->data_size();
3784       if (off > maxoff)
3785         maxoff = off;
3786
3787       // At this point the name must be set.
3788       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3789         this->namepool_.add((*p)->name(), false, NULL);
3790     }
3791   return maxoff;
3792 }
3793
3794 // Set the section indexes of all the sections not associated with a
3795 // segment.
3796
3797 unsigned int
3798 Layout::set_section_indexes(unsigned int shndx)
3799 {
3800   for (Section_list::iterator p = this->unattached_section_list_.begin();
3801        p != this->unattached_section_list_.end();
3802        ++p)
3803     {
3804       if (!(*p)->has_out_shndx())
3805         {
3806           (*p)->set_out_shndx(shndx);
3807           ++shndx;
3808         }
3809     }
3810   return shndx;
3811 }
3812
3813 // Set the section addresses according to the linker script.  This is
3814 // only called when we see a SECTIONS clause.  This returns the
3815 // program segment which should hold the file header and segment
3816 // headers, if any.  It will return NULL if they should not be in a
3817 // segment.
3818
3819 Output_segment*
3820 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3821 {
3822   Script_sections* ss = this->script_options_->script_sections();
3823   gold_assert(ss->saw_sections_clause());
3824   return this->script_options_->set_section_addresses(symtab, this);
3825 }
3826
3827 // Place the orphan sections in the linker script.
3828
3829 void
3830 Layout::place_orphan_sections_in_script()
3831 {
3832   Script_sections* ss = this->script_options_->script_sections();
3833   gold_assert(ss->saw_sections_clause());
3834
3835   // Place each orphaned output section in the script.
3836   for (Section_list::iterator p = this->section_list_.begin();
3837        p != this->section_list_.end();
3838        ++p)
3839     {
3840       if (!(*p)->found_in_sections_clause())
3841         ss->place_orphan(*p);
3842     }
3843 }
3844
3845 // Count the local symbols in the regular symbol table and the dynamic
3846 // symbol table, and build the respective string pools.
3847
3848 void
3849 Layout::count_local_symbols(const Task* task,
3850                             const Input_objects* input_objects)
3851 {
3852   // First, figure out an upper bound on the number of symbols we'll
3853   // be inserting into each pool.  This helps us create the pools with
3854   // the right size, to avoid unnecessary hashtable resizing.
3855   unsigned int symbol_count = 0;
3856   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3857        p != input_objects->relobj_end();
3858        ++p)
3859     symbol_count += (*p)->local_symbol_count();
3860
3861   // Go from "upper bound" to "estimate."  We overcount for two
3862   // reasons: we double-count symbols that occur in more than one
3863   // object file, and we count symbols that are dropped from the
3864   // output.  Add it all together and assume we overcount by 100%.
3865   symbol_count /= 2;
3866
3867   // We assume all symbols will go into both the sympool and dynpool.
3868   this->sympool_.reserve(symbol_count);
3869   this->dynpool_.reserve(symbol_count);
3870
3871   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3872        p != input_objects->relobj_end();
3873        ++p)
3874     {
3875       Task_lock_obj<Object> tlo(task, *p);
3876       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3877     }
3878 }
3879
3880 // Create the symbol table sections.  Here we also set the final
3881 // values of the symbols.  At this point all the loadable sections are
3882 // fully laid out.  SHNUM is the number of sections so far.
3883
3884 void
3885 Layout::create_symtab_sections(const Input_objects* input_objects,
3886                                Symbol_table* symtab,
3887                                unsigned int shnum,
3888                                off_t* poff)
3889 {
3890   int symsize;
3891   unsigned int align;
3892   if (parameters->target().get_size() == 32)
3893     {
3894       symsize = elfcpp::Elf_sizes<32>::sym_size;
3895       align = 4;
3896     }
3897   else if (parameters->target().get_size() == 64)
3898     {
3899       symsize = elfcpp::Elf_sizes<64>::sym_size;
3900       align = 8;
3901     }
3902   else
3903     gold_unreachable();
3904
3905   // Compute file offsets relative to the start of the symtab section.
3906   off_t off = 0;
3907
3908   // Save space for the dummy symbol at the start of the section.  We
3909   // never bother to write this out--it will just be left as zero.
3910   off += symsize;
3911   unsigned int local_symbol_index = 1;
3912
3913   // Add STT_SECTION symbols for each Output section which needs one.
3914   for (Section_list::iterator p = this->section_list_.begin();
3915        p != this->section_list_.end();
3916        ++p)
3917     {
3918       if (!(*p)->needs_symtab_index())
3919         (*p)->set_symtab_index(-1U);
3920       else
3921         {
3922           (*p)->set_symtab_index(local_symbol_index);
3923           ++local_symbol_index;
3924           off += symsize;
3925         }
3926     }
3927
3928   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3929        p != input_objects->relobj_end();
3930        ++p)
3931     {
3932       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3933                                                         off, symtab);
3934       off += (index - local_symbol_index) * symsize;
3935       local_symbol_index = index;
3936     }
3937
3938   unsigned int local_symcount = local_symbol_index;
3939   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3940
3941   off_t dynoff;
3942   size_t dyn_global_index;
3943   size_t dyncount;
3944   if (this->dynsym_section_ == NULL)
3945     {
3946       dynoff = 0;
3947       dyn_global_index = 0;
3948       dyncount = 0;
3949     }
3950   else
3951     {
3952       dyn_global_index = this->dynsym_section_->info();
3953       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3954       dynoff = this->dynsym_section_->offset() + locsize;
3955       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3956       gold_assert(static_cast<off_t>(dyncount * symsize)
3957                   == this->dynsym_section_->data_size() - locsize);
3958     }
3959
3960   off_t global_off = off;
3961   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3962                          &this->sympool_, &local_symcount);
3963
3964   if (!parameters->options().strip_all())
3965     {
3966       this->sympool_.set_string_offsets();
3967
3968       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3969       Output_section* osymtab = this->make_output_section(symtab_name,
3970                                                           elfcpp::SHT_SYMTAB,
3971                                                           0, ORDER_INVALID,
3972                                                           false);
3973       this->symtab_section_ = osymtab;
3974
3975       Output_section_data* pos = new Output_data_fixed_space(off, align,
3976                                                              "** symtab");
3977       osymtab->add_output_section_data(pos);
3978
3979       // We generate a .symtab_shndx section if we have more than
3980       // SHN_LORESERVE sections.  Technically it is possible that we
3981       // don't need one, because it is possible that there are no
3982       // symbols in any of sections with indexes larger than
3983       // SHN_LORESERVE.  That is probably unusual, though, and it is
3984       // easier to always create one than to compute section indexes
3985       // twice (once here, once when writing out the symbols).
3986       if (shnum >= elfcpp::SHN_LORESERVE)
3987         {
3988           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3989                                                                false, NULL);
3990           Output_section* osymtab_xindex =
3991             this->make_output_section(symtab_xindex_name,
3992                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3993                                       ORDER_INVALID, false);
3994
3995           size_t symcount = off / symsize;
3996           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3997
3998           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3999
4000           osymtab_xindex->set_link_section(osymtab);
4001           osymtab_xindex->set_addralign(4);
4002           osymtab_xindex->set_entsize(4);
4003
4004           osymtab_xindex->set_after_input_sections();
4005
4006           // This tells the driver code to wait until the symbol table
4007           // has written out before writing out the postprocessing
4008           // sections, including the .symtab_shndx section.
4009           this->any_postprocessing_sections_ = true;
4010         }
4011
4012       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4013       Output_section* ostrtab = this->make_output_section(strtab_name,
4014                                                           elfcpp::SHT_STRTAB,
4015                                                           0, ORDER_INVALID,
4016                                                           false);
4017
4018       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4019       ostrtab->add_output_section_data(pstr);
4020
4021       off_t symtab_off;
4022       if (!parameters->incremental_update())
4023         symtab_off = align_address(*poff, align);
4024       else
4025         {
4026           symtab_off = this->allocate(off, align, *poff);
4027           if (off == -1)
4028             gold_fallback(_("out of patch space for symbol table; "
4029                             "relink with --incremental-full"));
4030           gold_debug(DEBUG_INCREMENTAL,
4031                      "create_symtab_sections: %08lx %08lx .symtab",
4032                      static_cast<long>(symtab_off),
4033                      static_cast<long>(off));
4034         }
4035
4036       symtab->set_file_offset(symtab_off + global_off);
4037       osymtab->set_file_offset(symtab_off);
4038       osymtab->finalize_data_size();
4039       osymtab->set_link_section(ostrtab);
4040       osymtab->set_info(local_symcount);
4041       osymtab->set_entsize(symsize);
4042
4043       if (symtab_off + off > *poff)
4044         *poff = symtab_off + off;
4045     }
4046 }
4047
4048 // Create the .shstrtab section, which holds the names of the
4049 // sections.  At the time this is called, we have created all the
4050 // output sections except .shstrtab itself.
4051
4052 Output_section*
4053 Layout::create_shstrtab()
4054 {
4055   // FIXME: We don't need to create a .shstrtab section if we are
4056   // stripping everything.
4057
4058   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4059
4060   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4061                                                  ORDER_INVALID, false);
4062
4063   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4064     {
4065       // We can't write out this section until we've set all the
4066       // section names, and we don't set the names of compressed
4067       // output sections until relocations are complete.  FIXME: With
4068       // the current names we use, this is unnecessary.
4069       os->set_after_input_sections();
4070     }
4071
4072   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4073   os->add_output_section_data(posd);
4074
4075   return os;
4076 }
4077
4078 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4079 // offset.
4080
4081 void
4082 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4083 {
4084   Output_section_headers* oshdrs;
4085   oshdrs = new Output_section_headers(this,
4086                                       &this->segment_list_,
4087                                       &this->section_list_,
4088                                       &this->unattached_section_list_,
4089                                       &this->namepool_,
4090                                       shstrtab_section);
4091   off_t off;
4092   if (!parameters->incremental_update())
4093     off = align_address(*poff, oshdrs->addralign());
4094   else
4095     {
4096       oshdrs->pre_finalize_data_size();
4097       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4098       if (off == -1)
4099           gold_fallback(_("out of patch space for section header table; "
4100                           "relink with --incremental-full"));
4101       gold_debug(DEBUG_INCREMENTAL,
4102                  "create_shdrs: %08lx %08lx (section header table)",
4103                  static_cast<long>(off),
4104                  static_cast<long>(off + oshdrs->data_size()));
4105     }
4106   oshdrs->set_address_and_file_offset(0, off);
4107   off += oshdrs->data_size();
4108   if (off > *poff)
4109     *poff = off;
4110   this->section_headers_ = oshdrs;
4111 }
4112
4113 // Count the allocated sections.
4114
4115 size_t
4116 Layout::allocated_output_section_count() const
4117 {
4118   size_t section_count = 0;
4119   for (Segment_list::const_iterator p = this->segment_list_.begin();
4120        p != this->segment_list_.end();
4121        ++p)
4122     section_count += (*p)->output_section_count();
4123   return section_count;
4124 }
4125
4126 // Create the dynamic symbol table.
4127
4128 void
4129 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4130                               Symbol_table* symtab,
4131                               Output_section** pdynstr,
4132                               unsigned int* plocal_dynamic_count,
4133                               std::vector<Symbol*>* pdynamic_symbols,
4134                               Versions* pversions)
4135 {
4136   // Count all the symbols in the dynamic symbol table, and set the
4137   // dynamic symbol indexes.
4138
4139   // Skip symbol 0, which is always all zeroes.
4140   unsigned int index = 1;
4141
4142   // Add STT_SECTION symbols for each Output section which needs one.
4143   for (Section_list::iterator p = this->section_list_.begin();
4144        p != this->section_list_.end();
4145        ++p)
4146     {
4147       if (!(*p)->needs_dynsym_index())
4148         (*p)->set_dynsym_index(-1U);
4149       else
4150         {
4151           (*p)->set_dynsym_index(index);
4152           ++index;
4153         }
4154     }
4155
4156   // Count the local symbols that need to go in the dynamic symbol table,
4157   // and set the dynamic symbol indexes.
4158   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4159        p != input_objects->relobj_end();
4160        ++p)
4161     {
4162       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4163       index = new_index;
4164     }
4165
4166   unsigned int local_symcount = index;
4167   *plocal_dynamic_count = local_symcount;
4168
4169   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4170                                      &this->dynpool_, pversions);
4171
4172   int symsize;
4173   unsigned int align;
4174   const int size = parameters->target().get_size();
4175   if (size == 32)
4176     {
4177       symsize = elfcpp::Elf_sizes<32>::sym_size;
4178       align = 4;
4179     }
4180   else if (size == 64)
4181     {
4182       symsize = elfcpp::Elf_sizes<64>::sym_size;
4183       align = 8;
4184     }
4185   else
4186     gold_unreachable();
4187
4188   // Create the dynamic symbol table section.
4189
4190   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4191                                                        elfcpp::SHT_DYNSYM,
4192                                                        elfcpp::SHF_ALLOC,
4193                                                        false,
4194                                                        ORDER_DYNAMIC_LINKER,
4195                                                        false);
4196
4197   // Check for NULL as a linker script may discard .dynsym.
4198   if (dynsym != NULL)
4199     {
4200       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4201                                                                align,
4202                                                                "** dynsym");
4203       dynsym->add_output_section_data(odata);
4204
4205       dynsym->set_info(local_symcount);
4206       dynsym->set_entsize(symsize);
4207       dynsym->set_addralign(align);
4208
4209       this->dynsym_section_ = dynsym;
4210     }
4211
4212   Output_data_dynamic* const odyn = this->dynamic_data_;
4213   if (odyn != NULL)
4214     {
4215       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4216       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4217     }
4218
4219   // If there are more than SHN_LORESERVE allocated sections, we
4220   // create a .dynsym_shndx section.  It is possible that we don't
4221   // need one, because it is possible that there are no dynamic
4222   // symbols in any of the sections with indexes larger than
4223   // SHN_LORESERVE.  This is probably unusual, though, and at this
4224   // time we don't know the actual section indexes so it is
4225   // inconvenient to check.
4226   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4227     {
4228       Output_section* dynsym_xindex =
4229         this->choose_output_section(NULL, ".dynsym_shndx",
4230                                     elfcpp::SHT_SYMTAB_SHNDX,
4231                                     elfcpp::SHF_ALLOC,
4232                                     false, ORDER_DYNAMIC_LINKER, false);
4233
4234       if (dynsym_xindex != NULL)
4235         {
4236           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4237
4238           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4239
4240           dynsym_xindex->set_link_section(dynsym);
4241           dynsym_xindex->set_addralign(4);
4242           dynsym_xindex->set_entsize(4);
4243
4244           dynsym_xindex->set_after_input_sections();
4245
4246           // This tells the driver code to wait until the symbol table
4247           // has written out before writing out the postprocessing
4248           // sections, including the .dynsym_shndx section.
4249           this->any_postprocessing_sections_ = true;
4250         }
4251     }
4252
4253   // Create the dynamic string table section.
4254
4255   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4256                                                        elfcpp::SHT_STRTAB,
4257                                                        elfcpp::SHF_ALLOC,
4258                                                        false,
4259                                                        ORDER_DYNAMIC_LINKER,
4260                                                        false);
4261   *pdynstr = dynstr;
4262   if (dynstr != NULL)
4263     {
4264       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4265       dynstr->add_output_section_data(strdata);
4266
4267       if (dynsym != NULL)
4268         dynsym->set_link_section(dynstr);
4269       if (this->dynamic_section_ != NULL)
4270         this->dynamic_section_->set_link_section(dynstr);
4271
4272       if (odyn != NULL)
4273         {
4274           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4275           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4276         }
4277     }
4278
4279   // Create the hash tables.
4280
4281   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4282       || strcmp(parameters->options().hash_style(), "both") == 0)
4283     {
4284       unsigned char* phash;
4285       unsigned int hashlen;
4286       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4287                                     &phash, &hashlen);
4288
4289       Output_section* hashsec =
4290         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4291                                     elfcpp::SHF_ALLOC, false,
4292                                     ORDER_DYNAMIC_LINKER, false);
4293
4294       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4295                                                                    hashlen,
4296                                                                    align,
4297                                                                    "** hash");
4298       if (hashsec != NULL && hashdata != NULL)
4299         hashsec->add_output_section_data(hashdata);
4300
4301       if (hashsec != NULL)
4302         {
4303           if (dynsym != NULL)
4304             hashsec->set_link_section(dynsym);
4305           hashsec->set_entsize(4);
4306         }
4307
4308       if (odyn != NULL)
4309         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4310     }
4311
4312   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4313       || strcmp(parameters->options().hash_style(), "both") == 0)
4314     {
4315       unsigned char* phash;
4316       unsigned int hashlen;
4317       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4318                                     &phash, &hashlen);
4319
4320       Output_section* hashsec =
4321         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4322                                     elfcpp::SHF_ALLOC, false,
4323                                     ORDER_DYNAMIC_LINKER, false);
4324
4325       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4326                                                                    hashlen,
4327                                                                    align,
4328                                                                    "** hash");
4329       if (hashsec != NULL && hashdata != NULL)
4330         hashsec->add_output_section_data(hashdata);
4331
4332       if (hashsec != NULL)
4333         {
4334           if (dynsym != NULL)
4335             hashsec->set_link_section(dynsym);
4336
4337           // For a 64-bit target, the entries in .gnu.hash do not have
4338           // a uniform size, so we only set the entry size for a
4339           // 32-bit target.
4340           if (parameters->target().get_size() == 32)
4341             hashsec->set_entsize(4);
4342
4343           if (odyn != NULL)
4344             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4345         }
4346     }
4347 }
4348
4349 // Assign offsets to each local portion of the dynamic symbol table.
4350
4351 void
4352 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4353 {
4354   Output_section* dynsym = this->dynsym_section_;
4355   if (dynsym == NULL)
4356     return;
4357
4358   off_t off = dynsym->offset();
4359
4360   // Skip the dummy symbol at the start of the section.
4361   off += dynsym->entsize();
4362
4363   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4364        p != input_objects->relobj_end();
4365        ++p)
4366     {
4367       unsigned int count = (*p)->set_local_dynsym_offset(off);
4368       off += count * dynsym->entsize();
4369     }
4370 }
4371
4372 // Create the version sections.
4373
4374 void
4375 Layout::create_version_sections(const Versions* versions,
4376                                 const Symbol_table* symtab,
4377                                 unsigned int local_symcount,
4378                                 const std::vector<Symbol*>& dynamic_symbols,
4379                                 const Output_section* dynstr)
4380 {
4381   if (!versions->any_defs() && !versions->any_needs())
4382     return;
4383
4384   switch (parameters->size_and_endianness())
4385     {
4386 #ifdef HAVE_TARGET_32_LITTLE
4387     case Parameters::TARGET_32_LITTLE:
4388       this->sized_create_version_sections<32, false>(versions, symtab,
4389                                                      local_symcount,
4390                                                      dynamic_symbols, dynstr);
4391       break;
4392 #endif
4393 #ifdef HAVE_TARGET_32_BIG
4394     case Parameters::TARGET_32_BIG:
4395       this->sized_create_version_sections<32, true>(versions, symtab,
4396                                                     local_symcount,
4397                                                     dynamic_symbols, dynstr);
4398       break;
4399 #endif
4400 #ifdef HAVE_TARGET_64_LITTLE
4401     case Parameters::TARGET_64_LITTLE:
4402       this->sized_create_version_sections<64, false>(versions, symtab,
4403                                                      local_symcount,
4404                                                      dynamic_symbols, dynstr);
4405       break;
4406 #endif
4407 #ifdef HAVE_TARGET_64_BIG
4408     case Parameters::TARGET_64_BIG:
4409       this->sized_create_version_sections<64, true>(versions, symtab,
4410                                                     local_symcount,
4411                                                     dynamic_symbols, dynstr);
4412       break;
4413 #endif
4414     default:
4415       gold_unreachable();
4416     }
4417 }
4418
4419 // Create the version sections, sized version.
4420
4421 template<int size, bool big_endian>
4422 void
4423 Layout::sized_create_version_sections(
4424     const Versions* versions,
4425     const Symbol_table* symtab,
4426     unsigned int local_symcount,
4427     const std::vector<Symbol*>& dynamic_symbols,
4428     const Output_section* dynstr)
4429 {
4430   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4431                                                      elfcpp::SHT_GNU_versym,
4432                                                      elfcpp::SHF_ALLOC,
4433                                                      false,
4434                                                      ORDER_DYNAMIC_LINKER,
4435                                                      false);
4436
4437   // Check for NULL since a linker script may discard this section.
4438   if (vsec != NULL)
4439     {
4440       unsigned char* vbuf;
4441       unsigned int vsize;
4442       versions->symbol_section_contents<size, big_endian>(symtab,
4443                                                           &this->dynpool_,
4444                                                           local_symcount,
4445                                                           dynamic_symbols,
4446                                                           &vbuf, &vsize);
4447
4448       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4449                                                                 "** versions");
4450
4451       vsec->add_output_section_data(vdata);
4452       vsec->set_entsize(2);
4453       vsec->set_link_section(this->dynsym_section_);
4454     }
4455
4456   Output_data_dynamic* const odyn = this->dynamic_data_;
4457   if (odyn != NULL && vsec != NULL)
4458     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4459
4460   if (versions->any_defs())
4461     {
4462       Output_section* vdsec;
4463       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4464                                           elfcpp::SHT_GNU_verdef,
4465                                           elfcpp::SHF_ALLOC,
4466                                           false, ORDER_DYNAMIC_LINKER, false);
4467
4468       if (vdsec != NULL)
4469         {
4470           unsigned char* vdbuf;
4471           unsigned int vdsize;
4472           unsigned int vdentries;
4473           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4474                                                            &vdbuf, &vdsize,
4475                                                            &vdentries);
4476
4477           Output_section_data* vddata =
4478             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4479
4480           vdsec->add_output_section_data(vddata);
4481           vdsec->set_link_section(dynstr);
4482           vdsec->set_info(vdentries);
4483
4484           if (odyn != NULL)
4485             {
4486               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4487               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4488             }
4489         }
4490     }
4491
4492   if (versions->any_needs())
4493     {
4494       Output_section* vnsec;
4495       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4496                                           elfcpp::SHT_GNU_verneed,
4497                                           elfcpp::SHF_ALLOC,
4498                                           false, ORDER_DYNAMIC_LINKER, false);
4499
4500       if (vnsec != NULL)
4501         {
4502           unsigned char* vnbuf;
4503           unsigned int vnsize;
4504           unsigned int vnentries;
4505           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4506                                                             &vnbuf, &vnsize,
4507                                                             &vnentries);
4508
4509           Output_section_data* vndata =
4510             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4511
4512           vnsec->add_output_section_data(vndata);
4513           vnsec->set_link_section(dynstr);
4514           vnsec->set_info(vnentries);
4515
4516           if (odyn != NULL)
4517             {
4518               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4519               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4520             }
4521         }
4522     }
4523 }
4524
4525 // Create the .interp section and PT_INTERP segment.
4526
4527 void
4528 Layout::create_interp(const Target* target)
4529 {
4530   gold_assert(this->interp_segment_ == NULL);
4531
4532   const char* interp = parameters->options().dynamic_linker();
4533   if (interp == NULL)
4534     {
4535       interp = target->dynamic_linker();
4536       gold_assert(interp != NULL);
4537     }
4538
4539   size_t len = strlen(interp) + 1;
4540
4541   Output_section_data* odata = new Output_data_const(interp, len, 1);
4542
4543   Output_section* osec = this->choose_output_section(NULL, ".interp",
4544                                                      elfcpp::SHT_PROGBITS,
4545                                                      elfcpp::SHF_ALLOC,
4546                                                      false, ORDER_INTERP,
4547                                                      false);
4548   if (osec != NULL)
4549     osec->add_output_section_data(odata);
4550 }
4551
4552 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4553 // called by the target-specific code.  This does nothing if not doing
4554 // a dynamic link.
4555
4556 // USE_REL is true for REL relocs rather than RELA relocs.
4557
4558 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4559
4560 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4561 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4562 // some targets have multiple reloc sections in PLT_REL.
4563
4564 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4565 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4566 // section.
4567
4568 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4569 // executable.
4570
4571 void
4572 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4573                                 const Output_data* plt_rel,
4574                                 const Output_data_reloc_generic* dyn_rel,
4575                                 bool add_debug, bool dynrel_includes_plt)
4576 {
4577   Output_data_dynamic* odyn = this->dynamic_data_;
4578   if (odyn == NULL)
4579     return;
4580
4581   if (plt_got != NULL && plt_got->output_section() != NULL)
4582     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4583
4584   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4585     {
4586       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4587       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4588       odyn->add_constant(elfcpp::DT_PLTREL,
4589                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4590     }
4591
4592   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4593       || (dynrel_includes_plt
4594           && plt_rel != NULL
4595           && plt_rel->output_section() != NULL))
4596     {
4597       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4598       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4599       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4600                                 (have_dyn_rel
4601                                  ? dyn_rel->output_section()
4602                                  : plt_rel->output_section()));
4603       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4604       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4605         odyn->add_section_size(size_tag,
4606                                dyn_rel->output_section(),
4607                                plt_rel->output_section());
4608       else if (have_dyn_rel)
4609         odyn->add_section_size(size_tag, dyn_rel->output_section());
4610       else
4611         odyn->add_section_size(size_tag, plt_rel->output_section());
4612       const int size = parameters->target().get_size();
4613       elfcpp::DT rel_tag;
4614       int rel_size;
4615       if (use_rel)
4616         {
4617           rel_tag = elfcpp::DT_RELENT;
4618           if (size == 32)
4619             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4620           else if (size == 64)
4621             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4622           else
4623             gold_unreachable();
4624         }
4625       else
4626         {
4627           rel_tag = elfcpp::DT_RELAENT;
4628           if (size == 32)
4629             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4630           else if (size == 64)
4631             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4632           else
4633             gold_unreachable();
4634         }
4635       odyn->add_constant(rel_tag, rel_size);
4636
4637       if (parameters->options().combreloc() && have_dyn_rel)
4638         {
4639           size_t c = dyn_rel->relative_reloc_count();
4640           if (c > 0)
4641             odyn->add_constant((use_rel
4642                                 ? elfcpp::DT_RELCOUNT
4643                                 : elfcpp::DT_RELACOUNT),
4644                                c);
4645         }
4646     }
4647
4648   if (add_debug && !parameters->options().shared())
4649     {
4650       // The value of the DT_DEBUG tag is filled in by the dynamic
4651       // linker at run time, and used by the debugger.
4652       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4653     }
4654 }
4655
4656 // Finish the .dynamic section and PT_DYNAMIC segment.
4657
4658 void
4659 Layout::finish_dynamic_section(const Input_objects* input_objects,
4660                                const Symbol_table* symtab)
4661 {
4662   if (!this->script_options_->saw_phdrs_clause()
4663       && this->dynamic_section_ != NULL)
4664     {
4665       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4666                                                        (elfcpp::PF_R
4667                                                         | elfcpp::PF_W));
4668       oseg->add_output_section_to_nonload(this->dynamic_section_,
4669                                           elfcpp::PF_R | elfcpp::PF_W);
4670     }
4671
4672   Output_data_dynamic* const odyn = this->dynamic_data_;
4673   if (odyn == NULL)
4674     return;
4675
4676   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4677        p != input_objects->dynobj_end();
4678        ++p)
4679     {
4680       if (!(*p)->is_needed() && (*p)->as_needed())
4681         {
4682           // This dynamic object was linked with --as-needed, but it
4683           // is not needed.
4684           continue;
4685         }
4686
4687       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4688     }
4689
4690   if (parameters->options().shared())
4691     {
4692       const char* soname = parameters->options().soname();
4693       if (soname != NULL)
4694         odyn->add_string(elfcpp::DT_SONAME, soname);
4695     }
4696
4697   Symbol* sym = symtab->lookup(parameters->options().init());
4698   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4699     odyn->add_symbol(elfcpp::DT_INIT, sym);
4700
4701   sym = symtab->lookup(parameters->options().fini());
4702   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4703     odyn->add_symbol(elfcpp::DT_FINI, sym);
4704
4705   // Look for .init_array, .preinit_array and .fini_array by checking
4706   // section types.
4707   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4708       p != this->section_list_.end();
4709       ++p)
4710     switch((*p)->type())
4711       {
4712       case elfcpp::SHT_FINI_ARRAY:
4713         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4714         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4715         break;
4716       case elfcpp::SHT_INIT_ARRAY:
4717         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4718         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4719         break;
4720       case elfcpp::SHT_PREINIT_ARRAY:
4721         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4722         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4723         break;
4724       default:
4725         break;
4726       }
4727
4728   // Add a DT_RPATH entry if needed.
4729   const General_options::Dir_list& rpath(parameters->options().rpath());
4730   if (!rpath.empty())
4731     {
4732       std::string rpath_val;
4733       for (General_options::Dir_list::const_iterator p = rpath.begin();
4734            p != rpath.end();
4735            ++p)
4736         {
4737           if (rpath_val.empty())
4738             rpath_val = p->name();
4739           else
4740             {
4741               // Eliminate duplicates.
4742               General_options::Dir_list::const_iterator q;
4743               for (q = rpath.begin(); q != p; ++q)
4744                 if (q->name() == p->name())
4745                   break;
4746               if (q == p)
4747                 {
4748                   rpath_val += ':';
4749                   rpath_val += p->name();
4750                 }
4751             }
4752         }
4753
4754       if (!parameters->options().enable_new_dtags())
4755         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4756       else
4757         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4758     }
4759
4760   // Look for text segments that have dynamic relocations.
4761   bool have_textrel = false;
4762   if (!this->script_options_->saw_sections_clause())
4763     {
4764       for (Segment_list::const_iterator p = this->segment_list_.begin();
4765            p != this->segment_list_.end();
4766            ++p)
4767         {
4768           if ((*p)->type() == elfcpp::PT_LOAD
4769               && ((*p)->flags() & elfcpp::PF_W) == 0
4770               && (*p)->has_dynamic_reloc())
4771             {
4772               have_textrel = true;
4773               break;
4774             }
4775         }
4776     }
4777   else
4778     {
4779       // We don't know the section -> segment mapping, so we are
4780       // conservative and just look for readonly sections with
4781       // relocations.  If those sections wind up in writable segments,
4782       // then we have created an unnecessary DT_TEXTREL entry.
4783       for (Section_list::const_iterator p = this->section_list_.begin();
4784            p != this->section_list_.end();
4785            ++p)
4786         {
4787           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4788               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4789               && (*p)->has_dynamic_reloc())
4790             {
4791               have_textrel = true;
4792               break;
4793             }
4794         }
4795     }
4796
4797   if (parameters->options().filter() != NULL)
4798     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4799   if (parameters->options().any_auxiliary())
4800     {
4801       for (options::String_set::const_iterator p =
4802              parameters->options().auxiliary_begin();
4803            p != parameters->options().auxiliary_end();
4804            ++p)
4805         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4806     }
4807
4808   // Add a DT_FLAGS entry if necessary.
4809   unsigned int flags = 0;
4810   if (have_textrel)
4811     {
4812       // Add a DT_TEXTREL for compatibility with older loaders.
4813       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4814       flags |= elfcpp::DF_TEXTREL;
4815
4816       if (parameters->options().text())
4817         gold_error(_("read-only segment has dynamic relocations"));
4818       else if (parameters->options().warn_shared_textrel()
4819                && parameters->options().shared())
4820         gold_warning(_("shared library text segment is not shareable"));
4821     }
4822   if (parameters->options().shared() && this->has_static_tls())
4823     flags |= elfcpp::DF_STATIC_TLS;
4824   if (parameters->options().origin())
4825     flags |= elfcpp::DF_ORIGIN;
4826   if (parameters->options().Bsymbolic())
4827     {
4828       flags |= elfcpp::DF_SYMBOLIC;
4829       // Add DT_SYMBOLIC for compatibility with older loaders.
4830       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4831     }
4832   if (parameters->options().now())
4833     flags |= elfcpp::DF_BIND_NOW;
4834   if (flags != 0)
4835     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4836
4837   flags = 0;
4838   if (parameters->options().initfirst())
4839     flags |= elfcpp::DF_1_INITFIRST;
4840   if (parameters->options().interpose())
4841     flags |= elfcpp::DF_1_INTERPOSE;
4842   if (parameters->options().loadfltr())
4843     flags |= elfcpp::DF_1_LOADFLTR;
4844   if (parameters->options().nodefaultlib())
4845     flags |= elfcpp::DF_1_NODEFLIB;
4846   if (parameters->options().nodelete())
4847     flags |= elfcpp::DF_1_NODELETE;
4848   if (parameters->options().nodlopen())
4849     flags |= elfcpp::DF_1_NOOPEN;
4850   if (parameters->options().nodump())
4851     flags |= elfcpp::DF_1_NODUMP;
4852   if (!parameters->options().shared())
4853     flags &= ~(elfcpp::DF_1_INITFIRST
4854                | elfcpp::DF_1_NODELETE
4855                | elfcpp::DF_1_NOOPEN);
4856   if (parameters->options().origin())
4857     flags |= elfcpp::DF_1_ORIGIN;
4858   if (parameters->options().now())
4859     flags |= elfcpp::DF_1_NOW;
4860   if (parameters->options().Bgroup())
4861     flags |= elfcpp::DF_1_GROUP;
4862   if (flags != 0)
4863     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4864 }
4865
4866 // Set the size of the _DYNAMIC symbol table to be the size of the
4867 // dynamic data.
4868
4869 void
4870 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4871 {
4872   Output_data_dynamic* const odyn = this->dynamic_data_;
4873   if (odyn == NULL)
4874     return;
4875   odyn->finalize_data_size();
4876   if (this->dynamic_symbol_ == NULL)
4877     return;
4878   off_t data_size = odyn->data_size();
4879   const int size = parameters->target().get_size();
4880   if (size == 32)
4881     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4882   else if (size == 64)
4883     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4884   else
4885     gold_unreachable();
4886 }
4887
4888 // The mapping of input section name prefixes to output section names.
4889 // In some cases one prefix is itself a prefix of another prefix; in
4890 // such a case the longer prefix must come first.  These prefixes are
4891 // based on the GNU linker default ELF linker script.
4892
4893 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4894 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4895 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4896 {
4897   MAPPING_INIT(".text.", ".text"),
4898   MAPPING_INIT(".rodata.", ".rodata"),
4899   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4900   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4901   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4902   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4903   MAPPING_INIT(".data.", ".data"),
4904   MAPPING_INIT(".bss.", ".bss"),
4905   MAPPING_INIT(".tdata.", ".tdata"),
4906   MAPPING_INIT(".tbss.", ".tbss"),
4907   MAPPING_INIT(".init_array.", ".init_array"),
4908   MAPPING_INIT(".fini_array.", ".fini_array"),
4909   MAPPING_INIT(".sdata.", ".sdata"),
4910   MAPPING_INIT(".sbss.", ".sbss"),
4911   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4912   // differently depending on whether it is creating a shared library.
4913   MAPPING_INIT(".sdata2.", ".sdata"),
4914   MAPPING_INIT(".sbss2.", ".sbss"),
4915   MAPPING_INIT(".lrodata.", ".lrodata"),
4916   MAPPING_INIT(".ldata.", ".ldata"),
4917   MAPPING_INIT(".lbss.", ".lbss"),
4918   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4919   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4920   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4921   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4922   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4923   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4924   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4925   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4926   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4927   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4928   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4929   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4930   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4931   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4932   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4933   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4934   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4935   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4936   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4937   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4938   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4939 };
4940 #undef MAPPING_INIT
4941 #undef MAPPING_INIT_EXACT
4942
4943 const int Layout::section_name_mapping_count =
4944   (sizeof(Layout::section_name_mapping)
4945    / sizeof(Layout::section_name_mapping[0]));
4946
4947 // Choose the output section name to use given an input section name.
4948 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4949 // length of NAME.
4950
4951 const char*
4952 Layout::output_section_name(const Relobj* relobj, const char* name,
4953                             size_t* plen)
4954 {
4955   // gcc 4.3 generates the following sorts of section names when it
4956   // needs a section name specific to a function:
4957   //   .text.FN
4958   //   .rodata.FN
4959   //   .sdata2.FN
4960   //   .data.FN
4961   //   .data.rel.FN
4962   //   .data.rel.local.FN
4963   //   .data.rel.ro.FN
4964   //   .data.rel.ro.local.FN
4965   //   .sdata.FN
4966   //   .bss.FN
4967   //   .sbss.FN
4968   //   .tdata.FN
4969   //   .tbss.FN
4970
4971   // The GNU linker maps all of those to the part before the .FN,
4972   // except that .data.rel.local.FN is mapped to .data, and
4973   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4974   // beginning with .data.rel.ro.local are grouped together.
4975
4976   // For an anonymous namespace, the string FN can contain a '.'.
4977
4978   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4979   // GNU linker maps to .rodata.
4980
4981   // The .data.rel.ro sections are used with -z relro.  The sections
4982   // are recognized by name.  We use the same names that the GNU
4983   // linker does for these sections.
4984
4985   // It is hard to handle this in a principled way, so we don't even
4986   // try.  We use a table of mappings.  If the input section name is
4987   // not found in the table, we simply use it as the output section
4988   // name.
4989
4990   const Section_name_mapping* psnm = section_name_mapping;
4991   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4992     {
4993       if (psnm->fromlen > 0)
4994         {
4995           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4996             {
4997               *plen = psnm->tolen;
4998               return psnm->to;
4999             }
5000         }
5001       else
5002         {
5003           if (strcmp(name, psnm->from) == 0)
5004             {
5005               *plen = psnm->tolen;
5006               return psnm->to;
5007             }
5008         }
5009     }
5010
5011   // As an additional complication, .ctors sections are output in
5012   // either .ctors or .init_array sections, and .dtors sections are
5013   // output in either .dtors or .fini_array sections.
5014   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5015     {
5016       if (parameters->options().ctors_in_init_array())
5017         {
5018           *plen = 11;
5019           return name[1] == 'c' ? ".init_array" : ".fini_array";
5020         }
5021       else
5022         {
5023           *plen = 6;
5024           return name[1] == 'c' ? ".ctors" : ".dtors";
5025         }
5026     }
5027   if (parameters->options().ctors_in_init_array()
5028       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5029     {
5030       // To make .init_array/.fini_array work with gcc we must exclude
5031       // .ctors and .dtors sections from the crtbegin and crtend
5032       // files.
5033       if (relobj == NULL
5034           || (!Layout::match_file_name(relobj, "crtbegin")
5035               && !Layout::match_file_name(relobj, "crtend")))
5036         {
5037           *plen = 11;
5038           return name[1] == 'c' ? ".init_array" : ".fini_array";
5039         }
5040     }
5041
5042   return name;
5043 }
5044
5045 // Return true if RELOBJ is an input file whose base name matches
5046 // FILE_NAME.  The base name must have an extension of ".o", and must
5047 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5048 // to match crtbegin.o as well as crtbeginS.o without getting confused
5049 // by other possibilities.  Overall matching the file name this way is
5050 // a dreadful hack, but the GNU linker does it in order to better
5051 // support gcc, and we need to be compatible.
5052
5053 bool
5054 Layout::match_file_name(const Relobj* relobj, const char* match)
5055 {
5056   const std::string& file_name(relobj->name());
5057   const char* base_name = lbasename(file_name.c_str());
5058   size_t match_len = strlen(match);
5059   if (strncmp(base_name, match, match_len) != 0)
5060     return false;
5061   size_t base_len = strlen(base_name);
5062   if (base_len != match_len + 2 && base_len != match_len + 3)
5063     return false;
5064   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5065 }
5066
5067 // Check if a comdat group or .gnu.linkonce section with the given
5068 // NAME is selected for the link.  If there is already a section,
5069 // *KEPT_SECTION is set to point to the existing section and the
5070 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5071 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5072 // *KEPT_SECTION is set to the internal copy and the function returns
5073 // true.
5074
5075 bool
5076 Layout::find_or_add_kept_section(const std::string& name,
5077                                  Relobj* object,
5078                                  unsigned int shndx,
5079                                  bool is_comdat,
5080                                  bool is_group_name,
5081                                  Kept_section** kept_section)
5082 {
5083   // It's normal to see a couple of entries here, for the x86 thunk
5084   // sections.  If we see more than a few, we're linking a C++
5085   // program, and we resize to get more space to minimize rehashing.
5086   if (this->signatures_.size() > 4
5087       && !this->resized_signatures_)
5088     {
5089       reserve_unordered_map(&this->signatures_,
5090                             this->number_of_input_files_ * 64);
5091       this->resized_signatures_ = true;
5092     }
5093
5094   Kept_section candidate;
5095   std::pair<Signatures::iterator, bool> ins =
5096     this->signatures_.insert(std::make_pair(name, candidate));
5097
5098   if (kept_section != NULL)
5099     *kept_section = &ins.first->second;
5100   if (ins.second)
5101     {
5102       // This is the first time we've seen this signature.
5103       ins.first->second.set_object(object);
5104       ins.first->second.set_shndx(shndx);
5105       if (is_comdat)
5106         ins.first->second.set_is_comdat();
5107       if (is_group_name)
5108         ins.first->second.set_is_group_name();
5109       return true;
5110     }
5111
5112   // We have already seen this signature.
5113
5114   if (ins.first->second.is_group_name())
5115     {
5116       // We've already seen a real section group with this signature.
5117       // If the kept group is from a plugin object, and we're in the
5118       // replacement phase, accept the new one as a replacement.
5119       if (ins.first->second.object() == NULL
5120           && parameters->options().plugins()->in_replacement_phase())
5121         {
5122           ins.first->second.set_object(object);
5123           ins.first->second.set_shndx(shndx);
5124           return true;
5125         }
5126       return false;
5127     }
5128   else if (is_group_name)
5129     {
5130       // This is a real section group, and we've already seen a
5131       // linkonce section with this signature.  Record that we've seen
5132       // a section group, and don't include this section group.
5133       ins.first->second.set_is_group_name();
5134       return false;
5135     }
5136   else
5137     {
5138       // We've already seen a linkonce section and this is a linkonce
5139       // section.  These don't block each other--this may be the same
5140       // symbol name with different section types.
5141       return true;
5142     }
5143 }
5144
5145 // Store the allocated sections into the section list.
5146
5147 void
5148 Layout::get_allocated_sections(Section_list* section_list) const
5149 {
5150   for (Section_list::const_iterator p = this->section_list_.begin();
5151        p != this->section_list_.end();
5152        ++p)
5153     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5154       section_list->push_back(*p);
5155 }
5156
5157 // Store the executable sections into the section list.
5158
5159 void
5160 Layout::get_executable_sections(Section_list* section_list) const
5161 {
5162   for (Section_list::const_iterator p = this->section_list_.begin();
5163        p != this->section_list_.end();
5164        ++p)
5165     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5166         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5167       section_list->push_back(*p);
5168 }
5169
5170 // Create an output segment.
5171
5172 Output_segment*
5173 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5174 {
5175   gold_assert(!parameters->options().relocatable());
5176   Output_segment* oseg = new Output_segment(type, flags);
5177   this->segment_list_.push_back(oseg);
5178
5179   if (type == elfcpp::PT_TLS)
5180     this->tls_segment_ = oseg;
5181   else if (type == elfcpp::PT_GNU_RELRO)
5182     this->relro_segment_ = oseg;
5183   else if (type == elfcpp::PT_INTERP)
5184     this->interp_segment_ = oseg;
5185
5186   return oseg;
5187 }
5188
5189 // Return the file offset of the normal symbol table.
5190
5191 off_t
5192 Layout::symtab_section_offset() const
5193 {
5194   if (this->symtab_section_ != NULL)
5195     return this->symtab_section_->offset();
5196   return 0;
5197 }
5198
5199 // Return the section index of the normal symbol table.  It may have
5200 // been stripped by the -s/--strip-all option.
5201
5202 unsigned int
5203 Layout::symtab_section_shndx() const
5204 {
5205   if (this->symtab_section_ != NULL)
5206     return this->symtab_section_->out_shndx();
5207   return 0;
5208 }
5209
5210 // Write out the Output_sections.  Most won't have anything to write,
5211 // since most of the data will come from input sections which are
5212 // handled elsewhere.  But some Output_sections do have Output_data.
5213
5214 void
5215 Layout::write_output_sections(Output_file* of) const
5216 {
5217   for (Section_list::const_iterator p = this->section_list_.begin();
5218        p != this->section_list_.end();
5219        ++p)
5220     {
5221       if (!(*p)->after_input_sections())
5222         (*p)->write(of);
5223     }
5224 }
5225
5226 // Write out data not associated with a section or the symbol table.
5227
5228 void
5229 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5230 {
5231   if (!parameters->options().strip_all())
5232     {
5233       const Output_section* symtab_section = this->symtab_section_;
5234       for (Section_list::const_iterator p = this->section_list_.begin();
5235            p != this->section_list_.end();
5236            ++p)
5237         {
5238           if ((*p)->needs_symtab_index())
5239             {
5240               gold_assert(symtab_section != NULL);
5241               unsigned int index = (*p)->symtab_index();
5242               gold_assert(index > 0 && index != -1U);
5243               off_t off = (symtab_section->offset()
5244                            + index * symtab_section->entsize());
5245               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5246             }
5247         }
5248     }
5249
5250   const Output_section* dynsym_section = this->dynsym_section_;
5251   for (Section_list::const_iterator p = this->section_list_.begin();
5252        p != this->section_list_.end();
5253        ++p)
5254     {
5255       if ((*p)->needs_dynsym_index())
5256         {
5257           gold_assert(dynsym_section != NULL);
5258           unsigned int index = (*p)->dynsym_index();
5259           gold_assert(index > 0 && index != -1U);
5260           off_t off = (dynsym_section->offset()
5261                        + index * dynsym_section->entsize());
5262           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5263         }
5264     }
5265
5266   // Write out the Output_data which are not in an Output_section.
5267   for (Data_list::const_iterator p = this->special_output_list_.begin();
5268        p != this->special_output_list_.end();
5269        ++p)
5270     (*p)->write(of);
5271 }
5272
5273 // Write out the Output_sections which can only be written after the
5274 // input sections are complete.
5275
5276 void
5277 Layout::write_sections_after_input_sections(Output_file* of)
5278 {
5279   // Determine the final section offsets, and thus the final output
5280   // file size.  Note we finalize the .shstrab last, to allow the
5281   // after_input_section sections to modify their section-names before
5282   // writing.
5283   if (this->any_postprocessing_sections_)
5284     {
5285       off_t off = this->output_file_size_;
5286       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5287
5288       // Now that we've finalized the names, we can finalize the shstrab.
5289       off =
5290         this->set_section_offsets(off,
5291                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5292
5293       if (off > this->output_file_size_)
5294         {
5295           of->resize(off);
5296           this->output_file_size_ = off;
5297         }
5298     }
5299
5300   for (Section_list::const_iterator p = this->section_list_.begin();
5301        p != this->section_list_.end();
5302        ++p)
5303     {
5304       if ((*p)->after_input_sections())
5305         (*p)->write(of);
5306     }
5307
5308   this->section_headers_->write(of);
5309 }
5310
5311 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5312 // or as a "tree" where each chunk of the string is hashed and then those
5313 // hashes are put into a (much smaller) string which is hashed with sha1.
5314 // We compute a checksum over the entire file because that is simplest.
5315
5316 Task_token*
5317 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5318                              Output_file* of)
5319 {
5320   const size_t filesize = (this->output_file_size() <= 0 ? 0
5321                            : static_cast<size_t>(this->output_file_size()));
5322   if (this->build_id_note_ != NULL
5323       && strcmp(parameters->options().build_id(), "tree") == 0
5324       && parameters->options().build_id_chunk_size_for_treehash() > 0
5325       && filesize > 0
5326       && (filesize >=
5327           parameters->options().build_id_min_file_size_for_treehash()))
5328     {
5329       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5330       const size_t chunk_size =
5331           parameters->options().build_id_chunk_size_for_treehash();
5332       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5333       Task_token* post_hash_tasks_blocker = new Task_token(true);
5334       post_hash_tasks_blocker->add_blockers(num_hashes);
5335       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5336       const unsigned char* src = of->get_input_view(0, filesize);
5337       this->input_view_ = src;
5338       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5339       this->array_of_hashes_ = dst;
5340       for (size_t i = 0, src_offset = 0; i < num_hashes;
5341            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5342         {
5343           size_t size = std::min(chunk_size, filesize - src_offset);
5344           workqueue->queue(new Hash_task(src + src_offset,
5345                                          size,
5346                                          dst,
5347                                          build_id_blocker,
5348                                          post_hash_tasks_blocker));
5349         }
5350       return post_hash_tasks_blocker;
5351     }
5352   return build_id_blocker;
5353 }
5354
5355 // If a tree-style build ID was requested, the parallel part of that computation
5356 // is already done, and the final hash-of-hashes is computed here.  For other
5357 // types of build IDs, all the work is done here.
5358
5359 void
5360 Layout::write_build_id(Output_file* of) const
5361 {
5362   if (this->build_id_note_ == NULL)
5363     return;
5364
5365   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5366                                           this->build_id_note_->data_size());
5367
5368   if (this->array_of_hashes_ == NULL)
5369     {
5370       const size_t output_file_size = this->output_file_size();
5371       const unsigned char* iv = of->get_input_view(0, output_file_size);
5372       const char* style = parameters->options().build_id();
5373
5374       // If we get here with style == "tree" then the output must be
5375       // too small for chunking, and we use SHA-1 in that case.
5376       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5377         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5378       else if (strcmp(style, "md5") == 0)
5379         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5380       else
5381         gold_unreachable();
5382
5383       of->free_input_view(0, output_file_size, iv);
5384     }
5385   else
5386     {
5387       // Non-overlapping substrings of the output file have been hashed.
5388       // Compute SHA-1 hash of the hashes.
5389       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5390                   this->size_of_array_of_hashes_, ov);
5391       delete[] this->array_of_hashes_;
5392       of->free_input_view(0, this->output_file_size(), this->input_view_);
5393     }
5394
5395   of->write_output_view(this->build_id_note_->offset(),
5396                         this->build_id_note_->data_size(),
5397                         ov);
5398 }
5399
5400 // Write out a binary file.  This is called after the link is
5401 // complete.  IN is the temporary output file we used to generate the
5402 // ELF code.  We simply walk through the segments, read them from
5403 // their file offset in IN, and write them to their load address in
5404 // the output file.  FIXME: with a bit more work, we could support
5405 // S-records and/or Intel hex format here.
5406
5407 void
5408 Layout::write_binary(Output_file* in) const
5409 {
5410   gold_assert(parameters->options().oformat_enum()
5411               == General_options::OBJECT_FORMAT_BINARY);
5412
5413   // Get the size of the binary file.
5414   uint64_t max_load_address = 0;
5415   for (Segment_list::const_iterator p = this->segment_list_.begin();
5416        p != this->segment_list_.end();
5417        ++p)
5418     {
5419       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5420         {
5421           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5422           if (max_paddr > max_load_address)
5423             max_load_address = max_paddr;
5424         }
5425     }
5426
5427   Output_file out(parameters->options().output_file_name());
5428   out.open(max_load_address);
5429
5430   for (Segment_list::const_iterator p = this->segment_list_.begin();
5431        p != this->segment_list_.end();
5432        ++p)
5433     {
5434       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5435         {
5436           const unsigned char* vin = in->get_input_view((*p)->offset(),
5437                                                         (*p)->filesz());
5438           unsigned char* vout = out.get_output_view((*p)->paddr(),
5439                                                     (*p)->filesz());
5440           memcpy(vout, vin, (*p)->filesz());
5441           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5442           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5443         }
5444     }
5445
5446   out.close();
5447 }
5448
5449 // Print the output sections to the map file.
5450
5451 void
5452 Layout::print_to_mapfile(Mapfile* mapfile) const
5453 {
5454   for (Segment_list::const_iterator p = this->segment_list_.begin();
5455        p != this->segment_list_.end();
5456        ++p)
5457     (*p)->print_sections_to_mapfile(mapfile);
5458 }
5459
5460 // Print statistical information to stderr.  This is used for --stats.
5461
5462 void
5463 Layout::print_stats() const
5464 {
5465   this->namepool_.print_stats("section name pool");
5466   this->sympool_.print_stats("output symbol name pool");
5467   this->dynpool_.print_stats("dynamic name pool");
5468
5469   for (Section_list::const_iterator p = this->section_list_.begin();
5470        p != this->section_list_.end();
5471        ++p)
5472     (*p)->print_merge_stats();
5473 }
5474
5475 // Write_sections_task methods.
5476
5477 // We can always run this task.
5478
5479 Task_token*
5480 Write_sections_task::is_runnable()
5481 {
5482   return NULL;
5483 }
5484
5485 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5486 // when finished.
5487
5488 void
5489 Write_sections_task::locks(Task_locker* tl)
5490 {
5491   tl->add(this, this->output_sections_blocker_);
5492   tl->add(this, this->final_blocker_);
5493 }
5494
5495 // Run the task--write out the data.
5496
5497 void
5498 Write_sections_task::run(Workqueue*)
5499 {
5500   this->layout_->write_output_sections(this->of_);
5501 }
5502
5503 // Write_data_task methods.
5504
5505 // We can always run this task.
5506
5507 Task_token*
5508 Write_data_task::is_runnable()
5509 {
5510   return NULL;
5511 }
5512
5513 // We need to unlock FINAL_BLOCKER when finished.
5514
5515 void
5516 Write_data_task::locks(Task_locker* tl)
5517 {
5518   tl->add(this, this->final_blocker_);
5519 }
5520
5521 // Run the task--write out the data.
5522
5523 void
5524 Write_data_task::run(Workqueue*)
5525 {
5526   this->layout_->write_data(this->symtab_, this->of_);
5527 }
5528
5529 // Write_symbols_task methods.
5530
5531 // We can always run this task.
5532
5533 Task_token*
5534 Write_symbols_task::is_runnable()
5535 {
5536   return NULL;
5537 }
5538
5539 // We need to unlock FINAL_BLOCKER when finished.
5540
5541 void
5542 Write_symbols_task::locks(Task_locker* tl)
5543 {
5544   tl->add(this, this->final_blocker_);
5545 }
5546
5547 // Run the task--write out the symbols.
5548
5549 void
5550 Write_symbols_task::run(Workqueue*)
5551 {
5552   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5553                                this->layout_->symtab_xindex(),
5554                                this->layout_->dynsym_xindex(), this->of_);
5555 }
5556
5557 // Write_after_input_sections_task methods.
5558
5559 // We can only run this task after the input sections have completed.
5560
5561 Task_token*
5562 Write_after_input_sections_task::is_runnable()
5563 {
5564   if (this->input_sections_blocker_->is_blocked())
5565     return this->input_sections_blocker_;
5566   return NULL;
5567 }
5568
5569 // We need to unlock FINAL_BLOCKER when finished.
5570
5571 void
5572 Write_after_input_sections_task::locks(Task_locker* tl)
5573 {
5574   tl->add(this, this->final_blocker_);
5575 }
5576
5577 // Run the task.
5578
5579 void
5580 Write_after_input_sections_task::run(Workqueue*)
5581 {
5582   this->layout_->write_sections_after_input_sections(this->of_);
5583 }
5584
5585 // Close_task_runner methods.
5586
5587 // Finish up the build ID computation, if necessary, and write a binary file,
5588 // if necessary.  Then close the output file.
5589
5590 void
5591 Close_task_runner::run(Workqueue*, const Task*)
5592 {
5593   // At this point the multi-threaded part of the build ID computation,
5594   // if any, is done.  See queue_build_id_tasks().
5595   this->layout_->write_build_id(this->of_);
5596
5597   // If we've been asked to create a binary file, we do so here.
5598   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5599     this->layout_->write_binary(this->of_);
5600
5601   this->of_->close();
5602 }
5603
5604 // Instantiate the templates we need.  We could use the configure
5605 // script to restrict this to only the ones for implemented targets.
5606
5607 #ifdef HAVE_TARGET_32_LITTLE
5608 template
5609 Output_section*
5610 Layout::init_fixed_output_section<32, false>(
5611     const char* name,
5612     elfcpp::Shdr<32, false>& shdr);
5613 #endif
5614
5615 #ifdef HAVE_TARGET_32_BIG
5616 template
5617 Output_section*
5618 Layout::init_fixed_output_section<32, true>(
5619     const char* name,
5620     elfcpp::Shdr<32, true>& shdr);
5621 #endif
5622
5623 #ifdef HAVE_TARGET_64_LITTLE
5624 template
5625 Output_section*
5626 Layout::init_fixed_output_section<64, false>(
5627     const char* name,
5628     elfcpp::Shdr<64, false>& shdr);
5629 #endif
5630
5631 #ifdef HAVE_TARGET_64_BIG
5632 template
5633 Output_section*
5634 Layout::init_fixed_output_section<64, true>(
5635     const char* name,
5636     elfcpp::Shdr<64, true>& shdr);
5637 #endif
5638
5639 #ifdef HAVE_TARGET_32_LITTLE
5640 template
5641 Output_section*
5642 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5643                           unsigned int shndx,
5644                           const char* name,
5645                           const elfcpp::Shdr<32, false>& shdr,
5646                           unsigned int, unsigned int, off_t*);
5647 #endif
5648
5649 #ifdef HAVE_TARGET_32_BIG
5650 template
5651 Output_section*
5652 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5653                          unsigned int shndx,
5654                          const char* name,
5655                          const elfcpp::Shdr<32, true>& shdr,
5656                          unsigned int, unsigned int, off_t*);
5657 #endif
5658
5659 #ifdef HAVE_TARGET_64_LITTLE
5660 template
5661 Output_section*
5662 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5663                           unsigned int shndx,
5664                           const char* name,
5665                           const elfcpp::Shdr<64, false>& shdr,
5666                           unsigned int, unsigned int, off_t*);
5667 #endif
5668
5669 #ifdef HAVE_TARGET_64_BIG
5670 template
5671 Output_section*
5672 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5673                          unsigned int shndx,
5674                          const char* name,
5675                          const elfcpp::Shdr<64, true>& shdr,
5676                          unsigned int, unsigned int, off_t*);
5677 #endif
5678
5679 #ifdef HAVE_TARGET_32_LITTLE
5680 template
5681 Output_section*
5682 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5683                                 unsigned int reloc_shndx,
5684                                 const elfcpp::Shdr<32, false>& shdr,
5685                                 Output_section* data_section,
5686                                 Relocatable_relocs* rr);
5687 #endif
5688
5689 #ifdef HAVE_TARGET_32_BIG
5690 template
5691 Output_section*
5692 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5693                                unsigned int reloc_shndx,
5694                                const elfcpp::Shdr<32, true>& shdr,
5695                                Output_section* data_section,
5696                                Relocatable_relocs* rr);
5697 #endif
5698
5699 #ifdef HAVE_TARGET_64_LITTLE
5700 template
5701 Output_section*
5702 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5703                                 unsigned int reloc_shndx,
5704                                 const elfcpp::Shdr<64, false>& shdr,
5705                                 Output_section* data_section,
5706                                 Relocatable_relocs* rr);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_64_BIG
5710 template
5711 Output_section*
5712 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5713                                unsigned int reloc_shndx,
5714                                const elfcpp::Shdr<64, true>& shdr,
5715                                Output_section* data_section,
5716                                Relocatable_relocs* rr);
5717 #endif
5718
5719 #ifdef HAVE_TARGET_32_LITTLE
5720 template
5721 void
5722 Layout::layout_group<32, false>(Symbol_table* symtab,
5723                                 Sized_relobj_file<32, false>* object,
5724                                 unsigned int,
5725                                 const char* group_section_name,
5726                                 const char* signature,
5727                                 const elfcpp::Shdr<32, false>& shdr,
5728                                 elfcpp::Elf_Word flags,
5729                                 std::vector<unsigned int>* shndxes);
5730 #endif
5731
5732 #ifdef HAVE_TARGET_32_BIG
5733 template
5734 void
5735 Layout::layout_group<32, true>(Symbol_table* symtab,
5736                                Sized_relobj_file<32, true>* object,
5737                                unsigned int,
5738                                const char* group_section_name,
5739                                const char* signature,
5740                                const elfcpp::Shdr<32, true>& shdr,
5741                                elfcpp::Elf_Word flags,
5742                                std::vector<unsigned int>* shndxes);
5743 #endif
5744
5745 #ifdef HAVE_TARGET_64_LITTLE
5746 template
5747 void
5748 Layout::layout_group<64, false>(Symbol_table* symtab,
5749                                 Sized_relobj_file<64, false>* object,
5750                                 unsigned int,
5751                                 const char* group_section_name,
5752                                 const char* signature,
5753                                 const elfcpp::Shdr<64, false>& shdr,
5754                                 elfcpp::Elf_Word flags,
5755                                 std::vector<unsigned int>* shndxes);
5756 #endif
5757
5758 #ifdef HAVE_TARGET_64_BIG
5759 template
5760 void
5761 Layout::layout_group<64, true>(Symbol_table* symtab,
5762                                Sized_relobj_file<64, true>* object,
5763                                unsigned int,
5764                                const char* group_section_name,
5765                                const char* signature,
5766                                const elfcpp::Shdr<64, true>& shdr,
5767                                elfcpp::Elf_Word flags,
5768                                std::vector<unsigned int>* shndxes);
5769 #endif
5770
5771 #ifdef HAVE_TARGET_32_LITTLE
5772 template
5773 Output_section*
5774 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5775                                    const unsigned char* symbols,
5776                                    off_t symbols_size,
5777                                    const unsigned char* symbol_names,
5778                                    off_t symbol_names_size,
5779                                    unsigned int shndx,
5780                                    const elfcpp::Shdr<32, false>& shdr,
5781                                    unsigned int reloc_shndx,
5782                                    unsigned int reloc_type,
5783                                    off_t* off);
5784 #endif
5785
5786 #ifdef HAVE_TARGET_32_BIG
5787 template
5788 Output_section*
5789 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5790                                   const unsigned char* symbols,
5791                                   off_t symbols_size,
5792                                   const unsigned char* symbol_names,
5793                                   off_t symbol_names_size,
5794                                   unsigned int shndx,
5795                                   const elfcpp::Shdr<32, true>& shdr,
5796                                   unsigned int reloc_shndx,
5797                                   unsigned int reloc_type,
5798                                   off_t* off);
5799 #endif
5800
5801 #ifdef HAVE_TARGET_64_LITTLE
5802 template
5803 Output_section*
5804 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5805                                    const unsigned char* symbols,
5806                                    off_t symbols_size,
5807                                    const unsigned char* symbol_names,
5808                                    off_t symbol_names_size,
5809                                    unsigned int shndx,
5810                                    const elfcpp::Shdr<64, false>& shdr,
5811                                    unsigned int reloc_shndx,
5812                                    unsigned int reloc_type,
5813                                    off_t* off);
5814 #endif
5815
5816 #ifdef HAVE_TARGET_64_BIG
5817 template
5818 Output_section*
5819 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5820                                   const unsigned char* symbols,
5821                                   off_t symbols_size,
5822                                   const unsigned char* symbol_names,
5823                                   off_t symbol_names_size,
5824                                   unsigned int shndx,
5825                                   const elfcpp::Shdr<64, true>& shdr,
5826                                   unsigned int reloc_shndx,
5827                                   unsigned int reloc_type,
5828                                   off_t* off);
5829 #endif
5830
5831 #ifdef HAVE_TARGET_32_LITTLE
5832 template
5833 void
5834 Layout::add_to_gdb_index(bool is_type_unit,
5835                          Sized_relobj<32, false>* object,
5836                          const unsigned char* symbols,
5837                          off_t symbols_size,
5838                          unsigned int shndx,
5839                          unsigned int reloc_shndx,
5840                          unsigned int reloc_type);
5841 #endif
5842
5843 #ifdef HAVE_TARGET_32_BIG
5844 template
5845 void
5846 Layout::add_to_gdb_index(bool is_type_unit,
5847                          Sized_relobj<32, true>* object,
5848                          const unsigned char* symbols,
5849                          off_t symbols_size,
5850                          unsigned int shndx,
5851                          unsigned int reloc_shndx,
5852                          unsigned int reloc_type);
5853 #endif
5854
5855 #ifdef HAVE_TARGET_64_LITTLE
5856 template
5857 void
5858 Layout::add_to_gdb_index(bool is_type_unit,
5859                          Sized_relobj<64, false>* object,
5860                          const unsigned char* symbols,
5861                          off_t symbols_size,
5862                          unsigned int shndx,
5863                          unsigned int reloc_shndx,
5864                          unsigned int reloc_type);
5865 #endif
5866
5867 #ifdef HAVE_TARGET_64_BIG
5868 template
5869 void
5870 Layout::add_to_gdb_index(bool is_type_unit,
5871                          Sized_relobj<64, true>* object,
5872                          const unsigned char* symbols,
5873                          off_t symbols_size,
5874                          unsigned int shndx,
5875                          unsigned int reloc_shndx,
5876                          unsigned int reloc_type);
5877 #endif
5878
5879 } // End namespace gold.