* incremental.cc (Incremental_inputs::report_command_line): Ignore
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172         {
173           this->length_ = end;
174           p->end_ = end;
175         }
176       if (end <= p->end_)
177         {
178           if (p->start_ + 3 >= start && p->end_ <= end + 3)
179             this->list_.erase(p);
180           else if (p->start_ + 3 >= start)
181             p->start_ = end;
182           else if (p->end_ <= end + 3)
183             p->end_ = start;
184           else
185             {
186               Free_list_node newnode(p->start_, start);
187               p->start_ = end;
188               this->list_.insert(p, newnode);
189               ++Free_list::num_nodes;
190             }
191           return start;
192         }
193     }
194   if (this->extend_)
195     {
196       off_t start = align_address(this->length_, align);
197       this->length_ = start + len;
198       return start;
199     }
200   return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207   gold_info("Free list:\n     start      end   length\n");
208   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
210               static_cast<long>(p->end_),
211               static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218   fprintf(stderr, _("%s: total free lists: %u\n"),
219           program_name, Free_list::num_lists);
220   fprintf(stderr, _("%s: total free list nodes: %u\n"),
221           program_name, Free_list::num_nodes);
222   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223           program_name, Free_list::num_removes);
224   fprintf(stderr, _("%s: nodes visited: %u\n"),
225           program_name, Free_list::num_remove_visits);
226   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227           program_name, Free_list::num_allocates);
228   fprintf(stderr, _("%s: nodes visited: %u\n"),
229           program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240     const Layout::Section_list& sections,
241     const Layout::Data_list& special_outputs)
242 {
243   for(Layout::Section_list::const_iterator p = sections.begin();
244       p != sections.end();
245       ++p)
246     gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248   for(Layout::Data_list::const_iterator p = special_outputs.begin();
249       p != special_outputs.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253   
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258     const Layout::Section_list& sections)
259 {
260   for(Layout::Section_list::const_iterator p = sections.begin();
261       p != sections.end();
262       ++p)
263     {
264       Output_section* os = *p;
265       Section_info info;
266       info.output_section = os;
267       info.address = os->is_address_valid() ? os->address() : 0;
268       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269       info.offset = os->is_offset_valid()? os->offset() : -1 ;
270       this->section_infos_.push_back(info);
271     }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278     const Layout::Section_list& sections)
279 {
280   size_t i = 0;
281   for(Layout::Section_list::const_iterator p = sections.begin();
282       p != sections.end();
283       ++p, ++i)
284     {
285       Output_section* os = *p;
286       uint64_t address = os->is_address_valid() ? os->address() : 0;
287       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290       if (i >= this->section_infos_.size())
291         {
292           gold_fatal("Section_info of %s missing.\n", os->name());
293         }
294       const Section_info& info = this->section_infos_[i];
295       if (os != info.output_section)
296         gold_fatal("Section order changed.  Expecting %s but see %s\n",
297                    info.output_section->name(), os->name());
298       if (address != info.address
299           || data_size != info.data_size
300           || offset != info.offset)
301         gold_fatal("Section %s changed.\n", os->name());
302     }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections.  This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313   Layout* layout = this->layout_;
314   off_t file_size = layout->finalize(this->input_objects_,
315                                      this->symtab_,
316                                      this->target_,
317                                      task);
318
319   // Now we know the final size of the output file and we know where
320   // each piece of information goes.
321
322   if (this->mapfile_ != NULL)
323     {
324       this->mapfile_->print_discarded_sections(this->input_objects_);
325       layout->print_to_mapfile(this->mapfile_);
326     }
327
328   Output_file* of;
329   if (layout->incremental_base() == NULL)
330     {
331       of = new Output_file(parameters->options().output_file_name());
332       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333         of->set_is_temporary();
334       of->open(file_size);
335     }
336   else
337     {
338       of = layout->incremental_base()->output_file();
339
340       // Apply the incremental relocations for symbols whose values
341       // have changed.  We do this before we resize the file and start
342       // writing anything else to it, so that we can read the old
343       // incremental information from the file before (possibly)
344       // overwriting it.
345       if (parameters->incremental_update())
346         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347                                                              this->layout_,
348                                                              of);
349
350       of->resize(file_size);
351     }
352
353   // Queue up the final set of tasks.
354   gold::queue_final_tasks(this->options_, this->input_objects_,
355                           this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361   : number_of_input_files_(number_of_input_files),
362     script_options_(script_options),
363     namepool_(),
364     sympool_(),
365     dynpool_(),
366     signatures_(),
367     section_name_map_(),
368     segment_list_(),
369     section_list_(),
370     unattached_section_list_(),
371     special_output_list_(),
372     section_headers_(NULL),
373     tls_segment_(NULL),
374     relro_segment_(NULL),
375     interp_segment_(NULL),
376     increase_relro_(0),
377     symtab_section_(NULL),
378     symtab_xindex_(NULL),
379     dynsym_section_(NULL),
380     dynsym_xindex_(NULL),
381     dynamic_section_(NULL),
382     dynamic_symbol_(NULL),
383     dynamic_data_(NULL),
384     eh_frame_section_(NULL),
385     eh_frame_data_(NULL),
386     added_eh_frame_data_(false),
387     eh_frame_hdr_section_(NULL),
388     build_id_note_(NULL),
389     debug_abbrev_(NULL),
390     debug_info_(NULL),
391     group_signatures_(),
392     output_file_size_(-1),
393     have_added_input_section_(false),
394     sections_are_attached_(false),
395     input_requires_executable_stack_(false),
396     input_with_gnu_stack_note_(false),
397     input_without_gnu_stack_note_(false),
398     has_static_tls_(false),
399     any_postprocessing_sections_(false),
400     resized_signatures_(false),
401     have_stabstr_section_(false),
402     incremental_inputs_(NULL),
403     record_output_section_data_from_script_(false),
404     script_output_section_data_list_(),
405     segment_states_(NULL),
406     relaxation_debug_check_(NULL),
407     incremental_base_(NULL),
408     free_list_()
409 {
410   // Make space for more than enough segments for a typical file.
411   // This is just for efficiency--it's OK if we wind up needing more.
412   this->segment_list_.reserve(12);
413
414   // We expect two unattached Output_data objects: the file header and
415   // the segment headers.
416   this->special_output_list_.reserve(2);
417
418   // Initialize structure needed for an incremental build.
419   if (parameters->incremental())
420     this->incremental_inputs_ = new Incremental_inputs;
421
422   // The section name pool is worth optimizing in all cases, because
423   // it is small, but there are often overlaps due to .rel sections.
424   this->namepool_.set_optimize();
425 }
426
427 // For incremental links, record the base file to be modified.
428
429 void
430 Layout::set_incremental_base(Incremental_binary* base)
431 {
432   this->incremental_base_ = base;
433   this->free_list_.init(base->output_file()->filesize(), true);
434 }
435
436 // Hash a key we use to look up an output section mapping.
437
438 size_t
439 Layout::Hash_key::operator()(const Layout::Key& k) const
440 {
441  return k.first + k.second.first + k.second.second;
442 }
443
444 // Returns whether the given section is in the list of
445 // debug-sections-used-by-some-version-of-gdb.  Currently,
446 // we've checked versions of gdb up to and including 6.7.1.
447
448 static const char* gdb_sections[] =
449 { ".debug_abbrev",
450   // ".debug_aranges",   // not used by gdb as of 6.7.1
451   ".debug_frame",
452   ".debug_info",
453   ".debug_types",
454   ".debug_line",
455   ".debug_loc",
456   ".debug_macinfo",
457   // ".debug_pubnames",  // not used by gdb as of 6.7.1
458   ".debug_ranges",
459   ".debug_str",
460 };
461
462 static const char* lines_only_debug_sections[] =
463 { ".debug_abbrev",
464   // ".debug_aranges",   // not used by gdb as of 6.7.1
465   // ".debug_frame",
466   ".debug_info",
467   // ".debug_types",
468   ".debug_line",
469   // ".debug_loc",
470   // ".debug_macinfo",
471   // ".debug_pubnames",  // not used by gdb as of 6.7.1
472   // ".debug_ranges",
473   ".debug_str",
474 };
475
476 static inline bool
477 is_gdb_debug_section(const char* str)
478 {
479   // We can do this faster: binary search or a hashtable.  But why bother?
480   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
481     if (strcmp(str, gdb_sections[i]) == 0)
482       return true;
483   return false;
484 }
485
486 static inline bool
487 is_lines_only_debug_section(const char* str)
488 {
489   // We can do this faster: binary search or a hashtable.  But why bother?
490   for (size_t i = 0;
491        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
492        ++i)
493     if (strcmp(str, lines_only_debug_sections[i]) == 0)
494       return true;
495   return false;
496 }
497
498 // Sometimes we compress sections.  This is typically done for
499 // sections that are not part of normal program execution (such as
500 // .debug_* sections), and where the readers of these sections know
501 // how to deal with compressed sections.  This routine doesn't say for
502 // certain whether we'll compress -- it depends on commandline options
503 // as well -- just whether this section is a candidate for compression.
504 // (The Output_compressed_section class decides whether to compress
505 // a given section, and picks the name of the compressed section.)
506
507 static bool
508 is_compressible_debug_section(const char* secname)
509 {
510   return (is_prefix_of(".debug", secname));
511 }
512
513 // We may see compressed debug sections in input files.  Return TRUE
514 // if this is the name of a compressed debug section.
515
516 bool
517 is_compressed_debug_section(const char* secname)
518 {
519   return (is_prefix_of(".zdebug", secname));
520 }
521
522 // Whether to include this section in the link.
523
524 template<int size, bool big_endian>
525 bool
526 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
527                         const elfcpp::Shdr<size, big_endian>& shdr)
528 {
529   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
530     return false;
531
532   switch (shdr.get_sh_type())
533     {
534     case elfcpp::SHT_NULL:
535     case elfcpp::SHT_SYMTAB:
536     case elfcpp::SHT_DYNSYM:
537     case elfcpp::SHT_HASH:
538     case elfcpp::SHT_DYNAMIC:
539     case elfcpp::SHT_SYMTAB_SHNDX:
540       return false;
541
542     case elfcpp::SHT_STRTAB:
543       // Discard the sections which have special meanings in the ELF
544       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
545       // checking the sh_link fields of the appropriate sections.
546       return (strcmp(name, ".dynstr") != 0
547               && strcmp(name, ".strtab") != 0
548               && strcmp(name, ".shstrtab") != 0);
549
550     case elfcpp::SHT_RELA:
551     case elfcpp::SHT_REL:
552     case elfcpp::SHT_GROUP:
553       // If we are emitting relocations these should be handled
554       // elsewhere.
555       gold_assert(!parameters->options().relocatable()
556                   && !parameters->options().emit_relocs());
557       return false;
558
559     case elfcpp::SHT_PROGBITS:
560       if (parameters->options().strip_debug()
561           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
562         {
563           if (is_debug_info_section(name))
564             return false;
565         }
566       if (parameters->options().strip_debug_non_line()
567           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
568         {
569           // Debugging sections can only be recognized by name.
570           if (is_prefix_of(".debug", name)
571               && !is_lines_only_debug_section(name))
572             return false;
573         }
574       if (parameters->options().strip_debug_gdb()
575           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
576         {
577           // Debugging sections can only be recognized by name.
578           if (is_prefix_of(".debug", name)
579               && !is_gdb_debug_section(name))
580             return false;
581         }
582       if (parameters->options().strip_lto_sections()
583           && !parameters->options().relocatable()
584           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585         {
586           // Ignore LTO sections containing intermediate code.
587           if (is_prefix_of(".gnu.lto_", name))
588             return false;
589         }
590       // The GNU linker strips .gnu_debuglink sections, so we do too.
591       // This is a feature used to keep debugging information in
592       // separate files.
593       if (strcmp(name, ".gnu_debuglink") == 0)
594         return false;
595       return true;
596
597     default:
598       return true;
599     }
600 }
601
602 // Return an output section named NAME, or NULL if there is none.
603
604 Output_section*
605 Layout::find_output_section(const char* name) const
606 {
607   for (Section_list::const_iterator p = this->section_list_.begin();
608        p != this->section_list_.end();
609        ++p)
610     if (strcmp((*p)->name(), name) == 0)
611       return *p;
612   return NULL;
613 }
614
615 // Return an output segment of type TYPE, with segment flags SET set
616 // and segment flags CLEAR clear.  Return NULL if there is none.
617
618 Output_segment*
619 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
620                             elfcpp::Elf_Word clear) const
621 {
622   for (Segment_list::const_iterator p = this->segment_list_.begin();
623        p != this->segment_list_.end();
624        ++p)
625     if (static_cast<elfcpp::PT>((*p)->type()) == type
626         && ((*p)->flags() & set) == set
627         && ((*p)->flags() & clear) == 0)
628       return *p;
629   return NULL;
630 }
631
632 // When we put a .ctors or .dtors section with more than one word into
633 // a .init_array or .fini_array section, we need to reverse the words
634 // in the .ctors/.dtors section.  This is because .init_array executes
635 // constructors front to back, where .ctors executes them back to
636 // front, and vice-versa for .fini_array/.dtors.  Although we do want
637 // to remap .ctors/.dtors into .init_array/.fini_array because it can
638 // be more efficient, we don't want to change the order in which
639 // constructors/destructors are run.  This set just keeps track of
640 // these sections which need to be reversed.  It is only changed by
641 // Layout::layout.  It should be a private member of Layout, but that
642 // would require layout.h to #include object.h to get the definition
643 // of Section_id.
644 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
645
646 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
647 // .init_array/.fini_array section.
648
649 bool
650 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
651 {
652   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
653           != ctors_sections_in_init_array.end());
654 }
655
656 // Return the output section to use for section NAME with type TYPE
657 // and section flags FLAGS.  NAME must be canonicalized in the string
658 // pool, and NAME_KEY is the key.  ORDER is where this should appear
659 // in the output sections.  IS_RELRO is true for a relro section.
660
661 Output_section*
662 Layout::get_output_section(const char* name, Stringpool::Key name_key,
663                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
664                            Output_section_order order, bool is_relro)
665 {
666   elfcpp::Elf_Word lookup_type = type;
667
668   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
669   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
670   // .init_array, .fini_array, and .preinit_array sections by name
671   // whatever their type in the input file.  We do this because the
672   // types are not always right in the input files.
673   if (lookup_type == elfcpp::SHT_INIT_ARRAY
674       || lookup_type == elfcpp::SHT_FINI_ARRAY
675       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
676     lookup_type = elfcpp::SHT_PROGBITS;
677
678   elfcpp::Elf_Xword lookup_flags = flags;
679
680   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
681   // read-write with read-only sections.  Some other ELF linkers do
682   // not do this.  FIXME: Perhaps there should be an option
683   // controlling this.
684   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
685
686   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
687   const std::pair<Key, Output_section*> v(key, NULL);
688   std::pair<Section_name_map::iterator, bool> ins(
689     this->section_name_map_.insert(v));
690
691   if (!ins.second)
692     return ins.first->second;
693   else
694     {
695       // This is the first time we've seen this name/type/flags
696       // combination.  For compatibility with the GNU linker, we
697       // combine sections with contents and zero flags with sections
698       // with non-zero flags.  This is a workaround for cases where
699       // assembler code forgets to set section flags.  FIXME: Perhaps
700       // there should be an option to control this.
701       Output_section* os = NULL;
702
703       if (lookup_type == elfcpp::SHT_PROGBITS)
704         {
705           if (flags == 0)
706             {
707               Output_section* same_name = this->find_output_section(name);
708               if (same_name != NULL
709                   && (same_name->type() == elfcpp::SHT_PROGBITS
710                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
711                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
712                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
713                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
714                 os = same_name;
715             }
716           else if ((flags & elfcpp::SHF_TLS) == 0)
717             {
718               elfcpp::Elf_Xword zero_flags = 0;
719               const Key zero_key(name_key, std::make_pair(lookup_type,
720                                                           zero_flags));
721               Section_name_map::iterator p =
722                   this->section_name_map_.find(zero_key);
723               if (p != this->section_name_map_.end())
724                 os = p->second;
725             }
726         }
727
728       if (os == NULL)
729         os = this->make_output_section(name, type, flags, order, is_relro);
730
731       ins.first->second = os;
732       return os;
733     }
734 }
735
736 // Pick the output section to use for section NAME, in input file
737 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
738 // linker created section.  IS_INPUT_SECTION is true if we are
739 // choosing an output section for an input section found in a input
740 // file.  ORDER is where this section should appear in the output
741 // sections.  IS_RELRO is true for a relro section.  This will return
742 // NULL if the input section should be discarded.
743
744 Output_section*
745 Layout::choose_output_section(const Relobj* relobj, const char* name,
746                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
747                               bool is_input_section, Output_section_order order,
748                               bool is_relro)
749 {
750   // We should not see any input sections after we have attached
751   // sections to segments.
752   gold_assert(!is_input_section || !this->sections_are_attached_);
753
754   // Some flags in the input section should not be automatically
755   // copied to the output section.
756   flags &= ~ (elfcpp::SHF_INFO_LINK
757               | elfcpp::SHF_GROUP
758               | elfcpp::SHF_MERGE
759               | elfcpp::SHF_STRINGS);
760
761   // We only clear the SHF_LINK_ORDER flag in for
762   // a non-relocatable link.
763   if (!parameters->options().relocatable())
764     flags &= ~elfcpp::SHF_LINK_ORDER;
765
766   if (this->script_options_->saw_sections_clause())
767     {
768       // We are using a SECTIONS clause, so the output section is
769       // chosen based only on the name.
770
771       Script_sections* ss = this->script_options_->script_sections();
772       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
773       Output_section** output_section_slot;
774       Script_sections::Section_type script_section_type;
775       const char* orig_name = name;
776       name = ss->output_section_name(file_name, name, &output_section_slot,
777                                      &script_section_type);
778       if (name == NULL)
779         {
780           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
781                                      "because it is not allowed by the "
782                                      "SECTIONS clause of the linker script"),
783                      orig_name);
784           // The SECTIONS clause says to discard this input section.
785           return NULL;
786         }
787
788       // We can only handle script section types ST_NONE and ST_NOLOAD.
789       switch (script_section_type)
790         {
791         case Script_sections::ST_NONE:
792           break;
793         case Script_sections::ST_NOLOAD:
794           flags &= elfcpp::SHF_ALLOC;
795           break;
796         default:
797           gold_unreachable();
798         }
799
800       // If this is an orphan section--one not mentioned in the linker
801       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
802       // default processing below.
803
804       if (output_section_slot != NULL)
805         {
806           if (*output_section_slot != NULL)
807             {
808               (*output_section_slot)->update_flags_for_input_section(flags);
809               return *output_section_slot;
810             }
811
812           // We don't put sections found in the linker script into
813           // SECTION_NAME_MAP_.  That keeps us from getting confused
814           // if an orphan section is mapped to a section with the same
815           // name as one in the linker script.
816
817           name = this->namepool_.add(name, false, NULL);
818
819           Output_section* os = this->make_output_section(name, type, flags,
820                                                          order, is_relro);
821
822           os->set_found_in_sections_clause();
823
824           // Special handling for NOLOAD sections.
825           if (script_section_type == Script_sections::ST_NOLOAD)
826             {
827               os->set_is_noload();
828
829               // The constructor of Output_section sets addresses of non-ALLOC
830               // sections to 0 by default.  We don't want that for NOLOAD
831               // sections even if they have no SHF_ALLOC flag.
832               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
833                   && os->is_address_valid())
834                 {
835                   gold_assert(os->address() == 0
836                               && !os->is_offset_valid()
837                               && !os->is_data_size_valid());
838                   os->reset_address_and_file_offset();
839                 }
840             }
841
842           *output_section_slot = os;
843           return os;
844         }
845     }
846
847   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
848
849   size_t len = strlen(name);
850   char* uncompressed_name = NULL;
851
852   // Compressed debug sections should be mapped to the corresponding
853   // uncompressed section.
854   if (is_compressed_debug_section(name))
855     {
856       uncompressed_name = new char[len];
857       uncompressed_name[0] = '.';
858       gold_assert(name[0] == '.' && name[1] == 'z');
859       strncpy(&uncompressed_name[1], &name[2], len - 2);
860       uncompressed_name[len - 1] = '\0';
861       len -= 1;
862       name = uncompressed_name;
863     }
864
865   // Turn NAME from the name of the input section into the name of the
866   // output section.
867   if (is_input_section
868       && !this->script_options_->saw_sections_clause()
869       && !parameters->options().relocatable())
870     name = Layout::output_section_name(relobj, name, &len);
871
872   Stringpool::Key name_key;
873   name = this->namepool_.add_with_length(name, len, true, &name_key);
874
875   if (uncompressed_name != NULL)
876     delete[] uncompressed_name;
877
878   // Find or make the output section.  The output section is selected
879   // based on the section name, type, and flags.
880   return this->get_output_section(name, name_key, type, flags, order, is_relro);
881 }
882
883 // For incremental links, record the initial fixed layout of a section
884 // from the base file, and return a pointer to the Output_section.
885
886 template<int size, bool big_endian>
887 Output_section*
888 Layout::init_fixed_output_section(const char* name,
889                                   elfcpp::Shdr<size, big_endian>& shdr)
890 {
891   unsigned int sh_type = shdr.get_sh_type();
892
893   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
894   // All others will be created from scratch and reallocated.
895   if (sh_type != elfcpp::SHT_PROGBITS
896       && sh_type != elfcpp::SHT_NOBITS
897       && sh_type != elfcpp::SHT_NOTE)
898     return NULL;
899
900   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
901   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
902   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
903   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
904   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
905       shdr.get_sh_addralign();
906
907   // Make the output section.
908   Stringpool::Key name_key;
909   name = this->namepool_.add(name, true, &name_key);
910   Output_section* os = this->get_output_section(name, name_key, sh_type,
911                                                 sh_flags, ORDER_INVALID, false);
912   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
913   if (sh_type != elfcpp::SHT_NOBITS)
914     this->free_list_.remove(sh_offset, sh_offset + sh_size);
915   return os;
916 }
917
918 // Return the output section to use for input section SHNDX, with name
919 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
920 // index of a relocation section which applies to this section, or 0
921 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
922 // relocation section if there is one.  Set *OFF to the offset of this
923 // input section without the output section.  Return NULL if the
924 // section should be discarded.  Set *OFF to -1 if the section
925 // contents should not be written directly to the output file, but
926 // will instead receive special handling.
927
928 template<int size, bool big_endian>
929 Output_section*
930 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
931                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
932                unsigned int reloc_shndx, unsigned int, off_t* off)
933 {
934   *off = 0;
935
936   if (!this->include_section(object, name, shdr))
937     return NULL;
938
939   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
940
941   // In a relocatable link a grouped section must not be combined with
942   // any other sections.
943   Output_section* os;
944   if (parameters->options().relocatable()
945       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
946     {
947       name = this->namepool_.add(name, true, NULL);
948       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
949                                      ORDER_INVALID, false);
950     }
951   else
952     {
953       os = this->choose_output_section(object, name, sh_type,
954                                        shdr.get_sh_flags(), true,
955                                        ORDER_INVALID, false);
956       if (os == NULL)
957         return NULL;
958     }
959
960   // By default the GNU linker sorts input sections whose names match
961   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
962   // sections are sorted by name.  This is used to implement
963   // constructor priority ordering.  We are compatible.  When we put
964   // .ctor sections in .init_array and .dtor sections in .fini_array,
965   // we must also sort plain .ctor and .dtor sections.
966   if (!this->script_options_->saw_sections_clause()
967       && !parameters->options().relocatable()
968       && (is_prefix_of(".ctors.", name)
969           || is_prefix_of(".dtors.", name)
970           || is_prefix_of(".init_array.", name)
971           || is_prefix_of(".fini_array.", name)
972           || (parameters->options().ctors_in_init_array()
973               && (strcmp(name, ".ctors") == 0
974                   || strcmp(name, ".dtors") == 0))))
975     os->set_must_sort_attached_input_sections();
976
977   // If this is a .ctors or .ctors.* section being mapped to a
978   // .init_array section, or a .dtors or .dtors.* section being mapped
979   // to a .fini_array section, we will need to reverse the words if
980   // there is more than one.  Record this section for later.  See
981   // ctors_sections_in_init_array above.
982   if (!this->script_options_->saw_sections_clause()
983       && !parameters->options().relocatable()
984       && shdr.get_sh_size() > size / 8
985       && (((strcmp(name, ".ctors") == 0
986             || is_prefix_of(".ctors.", name))
987            && strcmp(os->name(), ".init_array") == 0)
988           || ((strcmp(name, ".dtors") == 0
989                || is_prefix_of(".dtors.", name))
990               && strcmp(os->name(), ".fini_array") == 0)))
991     ctors_sections_in_init_array.insert(Section_id(object, shndx));
992
993   // FIXME: Handle SHF_LINK_ORDER somewhere.
994
995   elfcpp::Elf_Xword orig_flags = os->flags();
996
997   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
998                                this->script_options_->saw_sections_clause());
999
1000   // If the flags changed, we may have to change the order.
1001   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1002     {
1003       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1004       elfcpp::Elf_Xword new_flags =
1005         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1006       if (orig_flags != new_flags)
1007         os->set_order(this->default_section_order(os, false));
1008     }
1009
1010   this->have_added_input_section_ = true;
1011
1012   return os;
1013 }
1014
1015 // Handle a relocation section when doing a relocatable link.
1016
1017 template<int size, bool big_endian>
1018 Output_section*
1019 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1020                      unsigned int,
1021                      const elfcpp::Shdr<size, big_endian>& shdr,
1022                      Output_section* data_section,
1023                      Relocatable_relocs* rr)
1024 {
1025   gold_assert(parameters->options().relocatable()
1026               || parameters->options().emit_relocs());
1027
1028   int sh_type = shdr.get_sh_type();
1029
1030   std::string name;
1031   if (sh_type == elfcpp::SHT_REL)
1032     name = ".rel";
1033   else if (sh_type == elfcpp::SHT_RELA)
1034     name = ".rela";
1035   else
1036     gold_unreachable();
1037   name += data_section->name();
1038
1039   // In a relocatable link relocs for a grouped section must not be
1040   // combined with other reloc sections.
1041   Output_section* os;
1042   if (!parameters->options().relocatable()
1043       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1044     os = this->choose_output_section(object, name.c_str(), sh_type,
1045                                      shdr.get_sh_flags(), false,
1046                                      ORDER_INVALID, false);
1047   else
1048     {
1049       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1050       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1051                                      ORDER_INVALID, false);
1052     }
1053
1054   os->set_should_link_to_symtab();
1055   os->set_info_section(data_section);
1056
1057   Output_section_data* posd;
1058   if (sh_type == elfcpp::SHT_REL)
1059     {
1060       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1061       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1062                                            size,
1063                                            big_endian>(rr);
1064     }
1065   else if (sh_type == elfcpp::SHT_RELA)
1066     {
1067       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1068       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1069                                            size,
1070                                            big_endian>(rr);
1071     }
1072   else
1073     gold_unreachable();
1074
1075   os->add_output_section_data(posd);
1076   rr->set_output_data(posd);
1077
1078   return os;
1079 }
1080
1081 // Handle a group section when doing a relocatable link.
1082
1083 template<int size, bool big_endian>
1084 void
1085 Layout::layout_group(Symbol_table* symtab,
1086                      Sized_relobj_file<size, big_endian>* object,
1087                      unsigned int,
1088                      const char* group_section_name,
1089                      const char* signature,
1090                      const elfcpp::Shdr<size, big_endian>& shdr,
1091                      elfcpp::Elf_Word flags,
1092                      std::vector<unsigned int>* shndxes)
1093 {
1094   gold_assert(parameters->options().relocatable());
1095   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1096   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1097   Output_section* os = this->make_output_section(group_section_name,
1098                                                  elfcpp::SHT_GROUP,
1099                                                  shdr.get_sh_flags(),
1100                                                  ORDER_INVALID, false);
1101
1102   // We need to find a symbol with the signature in the symbol table.
1103   // If we don't find one now, we need to look again later.
1104   Symbol* sym = symtab->lookup(signature, NULL);
1105   if (sym != NULL)
1106     os->set_info_symndx(sym);
1107   else
1108     {
1109       // Reserve some space to minimize reallocations.
1110       if (this->group_signatures_.empty())
1111         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1112
1113       // We will wind up using a symbol whose name is the signature.
1114       // So just put the signature in the symbol name pool to save it.
1115       signature = symtab->canonicalize_name(signature);
1116       this->group_signatures_.push_back(Group_signature(os, signature));
1117     }
1118
1119   os->set_should_link_to_symtab();
1120   os->set_entsize(4);
1121
1122   section_size_type entry_count =
1123     convert_to_section_size_type(shdr.get_sh_size() / 4);
1124   Output_section_data* posd =
1125     new Output_data_group<size, big_endian>(object, entry_count, flags,
1126                                             shndxes);
1127   os->add_output_section_data(posd);
1128 }
1129
1130 // Special GNU handling of sections name .eh_frame.  They will
1131 // normally hold exception frame data as defined by the C++ ABI
1132 // (http://codesourcery.com/cxx-abi/).
1133
1134 template<int size, bool big_endian>
1135 Output_section*
1136 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1137                         const unsigned char* symbols,
1138                         off_t symbols_size,
1139                         const unsigned char* symbol_names,
1140                         off_t symbol_names_size,
1141                         unsigned int shndx,
1142                         const elfcpp::Shdr<size, big_endian>& shdr,
1143                         unsigned int reloc_shndx, unsigned int reloc_type,
1144                         off_t* off)
1145 {
1146   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1147               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1148   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1149
1150   Output_section* os = this->make_eh_frame_section(object);
1151   if (os == NULL)
1152     return NULL;
1153
1154   gold_assert(this->eh_frame_section_ == os);
1155
1156   elfcpp::Elf_Xword orig_flags = os->flags();
1157
1158   if (!parameters->incremental()
1159       && this->eh_frame_data_->add_ehframe_input_section(object,
1160                                                          symbols,
1161                                                          symbols_size,
1162                                                          symbol_names,
1163                                                          symbol_names_size,
1164                                                          shndx,
1165                                                          reloc_shndx,
1166                                                          reloc_type))
1167     {
1168       os->update_flags_for_input_section(shdr.get_sh_flags());
1169
1170       // A writable .eh_frame section is a RELRO section.
1171       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1172           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1173         {
1174           os->set_is_relro();
1175           os->set_order(ORDER_RELRO);
1176         }
1177
1178       // We found a .eh_frame section we are going to optimize, so now
1179       // we can add the set of optimized sections to the output
1180       // section.  We need to postpone adding this until we've found a
1181       // section we can optimize so that the .eh_frame section in
1182       // crtbegin.o winds up at the start of the output section.
1183       if (!this->added_eh_frame_data_)
1184         {
1185           os->add_output_section_data(this->eh_frame_data_);
1186           this->added_eh_frame_data_ = true;
1187         }
1188       *off = -1;
1189     }
1190   else
1191     {
1192       // We couldn't handle this .eh_frame section for some reason.
1193       // Add it as a normal section.
1194       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1195       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1196                                    reloc_shndx, saw_sections_clause);
1197       this->have_added_input_section_ = true;
1198
1199       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1200           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1201         os->set_order(this->default_section_order(os, false));
1202     }
1203
1204   return os;
1205 }
1206
1207 // Create and return the magic .eh_frame section.  Create
1208 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1209 // input .eh_frame section; it may be NULL.
1210
1211 Output_section*
1212 Layout::make_eh_frame_section(const Relobj* object)
1213 {
1214   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1215   // SHT_PROGBITS.
1216   Output_section* os = this->choose_output_section(object, ".eh_frame",
1217                                                    elfcpp::SHT_PROGBITS,
1218                                                    elfcpp::SHF_ALLOC, false,
1219                                                    ORDER_EHFRAME, false);
1220   if (os == NULL)
1221     return NULL;
1222
1223   if (this->eh_frame_section_ == NULL)
1224     {
1225       this->eh_frame_section_ = os;
1226       this->eh_frame_data_ = new Eh_frame();
1227
1228       // For incremental linking, we do not optimize .eh_frame sections
1229       // or create a .eh_frame_hdr section.
1230       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1231         {
1232           Output_section* hdr_os =
1233             this->choose_output_section(NULL, ".eh_frame_hdr",
1234                                         elfcpp::SHT_PROGBITS,
1235                                         elfcpp::SHF_ALLOC, false,
1236                                         ORDER_EHFRAME, false);
1237
1238           if (hdr_os != NULL)
1239             {
1240               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1241                                                         this->eh_frame_data_);
1242               hdr_os->add_output_section_data(hdr_posd);
1243
1244               hdr_os->set_after_input_sections();
1245
1246               if (!this->script_options_->saw_phdrs_clause())
1247                 {
1248                   Output_segment* hdr_oseg;
1249                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1250                                                        elfcpp::PF_R);
1251                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1252                                                           elfcpp::PF_R);
1253                 }
1254
1255               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1256             }
1257         }
1258     }
1259
1260   return os;
1261 }
1262
1263 // Add an exception frame for a PLT.  This is called from target code.
1264
1265 void
1266 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1267                              size_t cie_length, const unsigned char* fde_data,
1268                              size_t fde_length)
1269 {
1270   if (parameters->incremental())
1271     {
1272       // FIXME: Maybe this could work some day....
1273       return;
1274     }
1275   Output_section* os = this->make_eh_frame_section(NULL);
1276   if (os == NULL)
1277     return;
1278   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1279                                             fde_data, fde_length);
1280   if (!this->added_eh_frame_data_)
1281     {
1282       os->add_output_section_data(this->eh_frame_data_);
1283       this->added_eh_frame_data_ = true;
1284     }
1285 }
1286
1287 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1288 // the output section.
1289
1290 Output_section*
1291 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1292                                 elfcpp::Elf_Xword flags,
1293                                 Output_section_data* posd,
1294                                 Output_section_order order, bool is_relro)
1295 {
1296   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1297                                                    false, order, is_relro);
1298   if (os != NULL)
1299     os->add_output_section_data(posd);
1300   return os;
1301 }
1302
1303 // Map section flags to segment flags.
1304
1305 elfcpp::Elf_Word
1306 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1307 {
1308   elfcpp::Elf_Word ret = elfcpp::PF_R;
1309   if ((flags & elfcpp::SHF_WRITE) != 0)
1310     ret |= elfcpp::PF_W;
1311   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1312     ret |= elfcpp::PF_X;
1313   return ret;
1314 }
1315
1316 // Make a new Output_section, and attach it to segments as
1317 // appropriate.  ORDER is the order in which this section should
1318 // appear in the output segment.  IS_RELRO is true if this is a relro
1319 // (read-only after relocations) section.
1320
1321 Output_section*
1322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1323                             elfcpp::Elf_Xword flags,
1324                             Output_section_order order, bool is_relro)
1325 {
1326   Output_section* os;
1327   if ((flags & elfcpp::SHF_ALLOC) == 0
1328       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1329       && is_compressible_debug_section(name))
1330     os = new Output_compressed_section(&parameters->options(), name, type,
1331                                        flags);
1332   else if ((flags & elfcpp::SHF_ALLOC) == 0
1333            && parameters->options().strip_debug_non_line()
1334            && strcmp(".debug_abbrev", name) == 0)
1335     {
1336       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1337           name, type, flags);
1338       if (this->debug_info_)
1339         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1340     }
1341   else if ((flags & elfcpp::SHF_ALLOC) == 0
1342            && parameters->options().strip_debug_non_line()
1343            && strcmp(".debug_info", name) == 0)
1344     {
1345       os = this->debug_info_ = new Output_reduced_debug_info_section(
1346           name, type, flags);
1347       if (this->debug_abbrev_)
1348         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1349     }
1350   else
1351     {
1352       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1353       // not have correct section types.  Force them here.
1354       if (type == elfcpp::SHT_PROGBITS)
1355         {
1356           if (is_prefix_of(".init_array", name))
1357             type = elfcpp::SHT_INIT_ARRAY;
1358           else if (is_prefix_of(".preinit_array", name))
1359             type = elfcpp::SHT_PREINIT_ARRAY;
1360           else if (is_prefix_of(".fini_array", name))
1361             type = elfcpp::SHT_FINI_ARRAY;
1362         }
1363
1364       // FIXME: const_cast is ugly.
1365       Target* target = const_cast<Target*>(&parameters->target());
1366       os = target->make_output_section(name, type, flags);
1367     }
1368
1369   // With -z relro, we have to recognize the special sections by name.
1370   // There is no other way.
1371   bool is_relro_local = false;
1372   if (!this->script_options_->saw_sections_clause()
1373       && parameters->options().relro()
1374       && type == elfcpp::SHT_PROGBITS
1375       && (flags & elfcpp::SHF_ALLOC) != 0
1376       && (flags & elfcpp::SHF_WRITE) != 0)
1377     {
1378       if (strcmp(name, ".data.rel.ro") == 0)
1379         is_relro = true;
1380       else if (strcmp(name, ".data.rel.ro.local") == 0)
1381         {
1382           is_relro = true;
1383           is_relro_local = true;
1384         }
1385       else if (type == elfcpp::SHT_INIT_ARRAY
1386                || type == elfcpp::SHT_FINI_ARRAY
1387                || type == elfcpp::SHT_PREINIT_ARRAY)
1388         is_relro = true;
1389       else if (strcmp(name, ".ctors") == 0
1390                || strcmp(name, ".dtors") == 0
1391                || strcmp(name, ".jcr") == 0)
1392         is_relro = true;
1393     }
1394
1395   if (is_relro)
1396     os->set_is_relro();
1397
1398   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1399     order = this->default_section_order(os, is_relro_local);
1400
1401   os->set_order(order);
1402
1403   parameters->target().new_output_section(os);
1404
1405   this->section_list_.push_back(os);
1406
1407   // The GNU linker by default sorts some sections by priority, so we
1408   // do the same.  We need to know that this might happen before we
1409   // attach any input sections.
1410   if (!this->script_options_->saw_sections_clause()
1411       && !parameters->options().relocatable()
1412       && (strcmp(name, ".init_array") == 0
1413           || strcmp(name, ".fini_array") == 0
1414           || (!parameters->options().ctors_in_init_array()
1415               && (strcmp(name, ".ctors") == 0
1416                   || strcmp(name, ".dtors") == 0))))
1417     os->set_may_sort_attached_input_sections();
1418
1419   // Check for .stab*str sections, as .stab* sections need to link to
1420   // them.
1421   if (type == elfcpp::SHT_STRTAB
1422       && !this->have_stabstr_section_
1423       && strncmp(name, ".stab", 5) == 0
1424       && strcmp(name + strlen(name) - 3, "str") == 0)
1425     this->have_stabstr_section_ = true;
1426
1427   // During a full incremental link, we add patch space to most
1428   // PROGBITS and NOBITS sections.  Flag those that may be
1429   // arbitrarily padded.
1430   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1431       && order != ORDER_INTERP
1432       && order != ORDER_INIT
1433       && order != ORDER_PLT
1434       && order != ORDER_FINI
1435       && order != ORDER_RELRO_LAST
1436       && order != ORDER_NON_RELRO_FIRST
1437       && strcmp(name, ".ctors") != 0
1438       && strcmp(name, ".dtors") != 0
1439       && strcmp(name, ".jcr") != 0)
1440     os->set_is_patch_space_allowed();
1441
1442   // If we have already attached the sections to segments, then we
1443   // need to attach this one now.  This happens for sections created
1444   // directly by the linker.
1445   if (this->sections_are_attached_)
1446     this->attach_section_to_segment(os);
1447
1448   return os;
1449 }
1450
1451 // Return the default order in which a section should be placed in an
1452 // output segment.  This function captures a lot of the ideas in
1453 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1454 // linker created section is normally set when the section is created;
1455 // this function is used for input sections.
1456
1457 Output_section_order
1458 Layout::default_section_order(Output_section* os, bool is_relro_local)
1459 {
1460   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1461   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1462   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1463   bool is_bss = false;
1464
1465   switch (os->type())
1466     {
1467     default:
1468     case elfcpp::SHT_PROGBITS:
1469       break;
1470     case elfcpp::SHT_NOBITS:
1471       is_bss = true;
1472       break;
1473     case elfcpp::SHT_RELA:
1474     case elfcpp::SHT_REL:
1475       if (!is_write)
1476         return ORDER_DYNAMIC_RELOCS;
1477       break;
1478     case elfcpp::SHT_HASH:
1479     case elfcpp::SHT_DYNAMIC:
1480     case elfcpp::SHT_SHLIB:
1481     case elfcpp::SHT_DYNSYM:
1482     case elfcpp::SHT_GNU_HASH:
1483     case elfcpp::SHT_GNU_verdef:
1484     case elfcpp::SHT_GNU_verneed:
1485     case elfcpp::SHT_GNU_versym:
1486       if (!is_write)
1487         return ORDER_DYNAMIC_LINKER;
1488       break;
1489     case elfcpp::SHT_NOTE:
1490       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1491     }
1492
1493   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1494     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1495
1496   if (!is_bss && !is_write)
1497     {
1498       if (is_execinstr)
1499         {
1500           if (strcmp(os->name(), ".init") == 0)
1501             return ORDER_INIT;
1502           else if (strcmp(os->name(), ".fini") == 0)
1503             return ORDER_FINI;
1504         }
1505       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1506     }
1507
1508   if (os->is_relro())
1509     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1510
1511   if (os->is_small_section())
1512     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1513   if (os->is_large_section())
1514     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1515
1516   return is_bss ? ORDER_BSS : ORDER_DATA;
1517 }
1518
1519 // Attach output sections to segments.  This is called after we have
1520 // seen all the input sections.
1521
1522 void
1523 Layout::attach_sections_to_segments()
1524 {
1525   for (Section_list::iterator p = this->section_list_.begin();
1526        p != this->section_list_.end();
1527        ++p)
1528     this->attach_section_to_segment(*p);
1529
1530   this->sections_are_attached_ = true;
1531 }
1532
1533 // Attach an output section to a segment.
1534
1535 void
1536 Layout::attach_section_to_segment(Output_section* os)
1537 {
1538   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1539     this->unattached_section_list_.push_back(os);
1540   else
1541     this->attach_allocated_section_to_segment(os);
1542 }
1543
1544 // Attach an allocated output section to a segment.
1545
1546 void
1547 Layout::attach_allocated_section_to_segment(Output_section* os)
1548 {
1549   elfcpp::Elf_Xword flags = os->flags();
1550   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1551
1552   if (parameters->options().relocatable())
1553     return;
1554
1555   // If we have a SECTIONS clause, we can't handle the attachment to
1556   // segments until after we've seen all the sections.
1557   if (this->script_options_->saw_sections_clause())
1558     return;
1559
1560   gold_assert(!this->script_options_->saw_phdrs_clause());
1561
1562   // This output section goes into a PT_LOAD segment.
1563
1564   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1565
1566   // Check for --section-start.
1567   uint64_t addr;
1568   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1569
1570   // In general the only thing we really care about for PT_LOAD
1571   // segments is whether or not they are writable or executable,
1572   // so that is how we search for them.
1573   // Large data sections also go into their own PT_LOAD segment.
1574   // People who need segments sorted on some other basis will
1575   // have to use a linker script.
1576
1577   Segment_list::const_iterator p;
1578   for (p = this->segment_list_.begin();
1579        p != this->segment_list_.end();
1580        ++p)
1581     {
1582       if ((*p)->type() != elfcpp::PT_LOAD)
1583         continue;
1584       if (!parameters->options().omagic()
1585           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1586         continue;
1587       if (parameters->options().rosegment()
1588           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1589         continue;
1590       // If -Tbss was specified, we need to separate the data and BSS
1591       // segments.
1592       if (parameters->options().user_set_Tbss())
1593         {
1594           if ((os->type() == elfcpp::SHT_NOBITS)
1595               == (*p)->has_any_data_sections())
1596             continue;
1597         }
1598       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1599         continue;
1600
1601       if (is_address_set)
1602         {
1603           if ((*p)->are_addresses_set())
1604             continue;
1605
1606           (*p)->add_initial_output_data(os);
1607           (*p)->update_flags_for_output_section(seg_flags);
1608           (*p)->set_addresses(addr, addr);
1609           break;
1610         }
1611
1612       (*p)->add_output_section_to_load(this, os, seg_flags);
1613       break;
1614     }
1615
1616   if (p == this->segment_list_.end())
1617     {
1618       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1619                                                        seg_flags);
1620       if (os->is_large_data_section())
1621         oseg->set_is_large_data_segment();
1622       oseg->add_output_section_to_load(this, os, seg_flags);
1623       if (is_address_set)
1624         oseg->set_addresses(addr, addr);
1625     }
1626
1627   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1628   // segment.
1629   if (os->type() == elfcpp::SHT_NOTE)
1630     {
1631       // See if we already have an equivalent PT_NOTE segment.
1632       for (p = this->segment_list_.begin();
1633            p != segment_list_.end();
1634            ++p)
1635         {
1636           if ((*p)->type() == elfcpp::PT_NOTE
1637               && (((*p)->flags() & elfcpp::PF_W)
1638                   == (seg_flags & elfcpp::PF_W)))
1639             {
1640               (*p)->add_output_section_to_nonload(os, seg_flags);
1641               break;
1642             }
1643         }
1644
1645       if (p == this->segment_list_.end())
1646         {
1647           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1648                                                            seg_flags);
1649           oseg->add_output_section_to_nonload(os, seg_flags);
1650         }
1651     }
1652
1653   // If we see a loadable SHF_TLS section, we create a PT_TLS
1654   // segment.  There can only be one such segment.
1655   if ((flags & elfcpp::SHF_TLS) != 0)
1656     {
1657       if (this->tls_segment_ == NULL)
1658         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1659       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1660     }
1661
1662   // If -z relro is in effect, and we see a relro section, we create a
1663   // PT_GNU_RELRO segment.  There can only be one such segment.
1664   if (os->is_relro() && parameters->options().relro())
1665     {
1666       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1667       if (this->relro_segment_ == NULL)
1668         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1669       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1670     }
1671
1672   // If we see a section named .interp, put it into a PT_INTERP
1673   // segment.  This seems broken to me, but this is what GNU ld does,
1674   // and glibc expects it.
1675   if (strcmp(os->name(), ".interp") == 0
1676       && !this->script_options_->saw_phdrs_clause())
1677     {
1678       if (this->interp_segment_ == NULL)
1679         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1680       else
1681         gold_warning(_("multiple '.interp' sections in input files "
1682                        "may cause confusing PT_INTERP segment"));
1683       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1684     }
1685 }
1686
1687 // Make an output section for a script.
1688
1689 Output_section*
1690 Layout::make_output_section_for_script(
1691     const char* name,
1692     Script_sections::Section_type section_type)
1693 {
1694   name = this->namepool_.add(name, false, NULL);
1695   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1696   if (section_type == Script_sections::ST_NOLOAD)
1697     sh_flags = 0;
1698   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1699                                                  sh_flags, ORDER_INVALID,
1700                                                  false);
1701   os->set_found_in_sections_clause();
1702   if (section_type == Script_sections::ST_NOLOAD)
1703     os->set_is_noload();
1704   return os;
1705 }
1706
1707 // Return the number of segments we expect to see.
1708
1709 size_t
1710 Layout::expected_segment_count() const
1711 {
1712   size_t ret = this->segment_list_.size();
1713
1714   // If we didn't see a SECTIONS clause in a linker script, we should
1715   // already have the complete list of segments.  Otherwise we ask the
1716   // SECTIONS clause how many segments it expects, and add in the ones
1717   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1718
1719   if (!this->script_options_->saw_sections_clause())
1720     return ret;
1721   else
1722     {
1723       const Script_sections* ss = this->script_options_->script_sections();
1724       return ret + ss->expected_segment_count(this);
1725     }
1726 }
1727
1728 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1729 // is whether we saw a .note.GNU-stack section in the object file.
1730 // GNU_STACK_FLAGS is the section flags.  The flags give the
1731 // protection required for stack memory.  We record this in an
1732 // executable as a PT_GNU_STACK segment.  If an object file does not
1733 // have a .note.GNU-stack segment, we must assume that it is an old
1734 // object.  On some targets that will force an executable stack.
1735
1736 void
1737 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1738                          const Object* obj)
1739 {
1740   if (!seen_gnu_stack)
1741     {
1742       this->input_without_gnu_stack_note_ = true;
1743       if (parameters->options().warn_execstack()
1744           && parameters->target().is_default_stack_executable())
1745         gold_warning(_("%s: missing .note.GNU-stack section"
1746                        " implies executable stack"),
1747                      obj->name().c_str());
1748     }
1749   else
1750     {
1751       this->input_with_gnu_stack_note_ = true;
1752       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1753         {
1754           this->input_requires_executable_stack_ = true;
1755           if (parameters->options().warn_execstack()
1756               || parameters->options().is_stack_executable())
1757             gold_warning(_("%s: requires executable stack"),
1758                          obj->name().c_str());
1759         }
1760     }
1761 }
1762
1763 // Create automatic note sections.
1764
1765 void
1766 Layout::create_notes()
1767 {
1768   this->create_gold_note();
1769   this->create_executable_stack_info();
1770   this->create_build_id();
1771 }
1772
1773 // Create the dynamic sections which are needed before we read the
1774 // relocs.
1775
1776 void
1777 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1778 {
1779   if (parameters->doing_static_link())
1780     return;
1781
1782   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1783                                                        elfcpp::SHT_DYNAMIC,
1784                                                        (elfcpp::SHF_ALLOC
1785                                                         | elfcpp::SHF_WRITE),
1786                                                        false, ORDER_RELRO,
1787                                                        true);
1788
1789   this->dynamic_symbol_ =
1790     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1791                                   this->dynamic_section_, 0, 0,
1792                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1793                                   elfcpp::STV_HIDDEN, 0, false, false);
1794
1795   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1796
1797   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1798 }
1799
1800 // For each output section whose name can be represented as C symbol,
1801 // define __start and __stop symbols for the section.  This is a GNU
1802 // extension.
1803
1804 void
1805 Layout::define_section_symbols(Symbol_table* symtab)
1806 {
1807   for (Section_list::const_iterator p = this->section_list_.begin();
1808        p != this->section_list_.end();
1809        ++p)
1810     {
1811       const char* const name = (*p)->name();
1812       if (is_cident(name))
1813         {
1814           const std::string name_string(name);
1815           const std::string start_name(cident_section_start_prefix
1816                                        + name_string);
1817           const std::string stop_name(cident_section_stop_prefix
1818                                       + name_string);
1819
1820           symtab->define_in_output_data(start_name.c_str(),
1821                                         NULL, // version
1822                                         Symbol_table::PREDEFINED,
1823                                         *p,
1824                                         0, // value
1825                                         0, // symsize
1826                                         elfcpp::STT_NOTYPE,
1827                                         elfcpp::STB_GLOBAL,
1828                                         elfcpp::STV_DEFAULT,
1829                                         0, // nonvis
1830                                         false, // offset_is_from_end
1831                                         true); // only_if_ref
1832
1833           symtab->define_in_output_data(stop_name.c_str(),
1834                                         NULL, // version
1835                                         Symbol_table::PREDEFINED,
1836                                         *p,
1837                                         0, // value
1838                                         0, // symsize
1839                                         elfcpp::STT_NOTYPE,
1840                                         elfcpp::STB_GLOBAL,
1841                                         elfcpp::STV_DEFAULT,
1842                                         0, // nonvis
1843                                         true, // offset_is_from_end
1844                                         true); // only_if_ref
1845         }
1846     }
1847 }
1848
1849 // Define symbols for group signatures.
1850
1851 void
1852 Layout::define_group_signatures(Symbol_table* symtab)
1853 {
1854   for (Group_signatures::iterator p = this->group_signatures_.begin();
1855        p != this->group_signatures_.end();
1856        ++p)
1857     {
1858       Symbol* sym = symtab->lookup(p->signature, NULL);
1859       if (sym != NULL)
1860         p->section->set_info_symndx(sym);
1861       else
1862         {
1863           // Force the name of the group section to the group
1864           // signature, and use the group's section symbol as the
1865           // signature symbol.
1866           if (strcmp(p->section->name(), p->signature) != 0)
1867             {
1868               const char* name = this->namepool_.add(p->signature,
1869                                                      true, NULL);
1870               p->section->set_name(name);
1871             }
1872           p->section->set_needs_symtab_index();
1873           p->section->set_info_section_symndx(p->section);
1874         }
1875     }
1876
1877   this->group_signatures_.clear();
1878 }
1879
1880 // Find the first read-only PT_LOAD segment, creating one if
1881 // necessary.
1882
1883 Output_segment*
1884 Layout::find_first_load_seg()
1885 {
1886   Output_segment* best = NULL;
1887   for (Segment_list::const_iterator p = this->segment_list_.begin();
1888        p != this->segment_list_.end();
1889        ++p)
1890     {
1891       if ((*p)->type() == elfcpp::PT_LOAD
1892           && ((*p)->flags() & elfcpp::PF_R) != 0
1893           && (parameters->options().omagic()
1894               || ((*p)->flags() & elfcpp::PF_W) == 0))
1895         {
1896           if (best == NULL || this->segment_precedes(*p, best))
1897             best = *p;
1898         }
1899     }
1900   if (best != NULL)
1901     return best;
1902
1903   gold_assert(!this->script_options_->saw_phdrs_clause());
1904
1905   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1906                                                        elfcpp::PF_R);
1907   return load_seg;
1908 }
1909
1910 // Save states of all current output segments.  Store saved states
1911 // in SEGMENT_STATES.
1912
1913 void
1914 Layout::save_segments(Segment_states* segment_states)
1915 {
1916   for (Segment_list::const_iterator p = this->segment_list_.begin();
1917        p != this->segment_list_.end();
1918        ++p)
1919     {
1920       Output_segment* segment = *p;
1921       // Shallow copy.
1922       Output_segment* copy = new Output_segment(*segment);
1923       (*segment_states)[segment] = copy;
1924     }
1925 }
1926
1927 // Restore states of output segments and delete any segment not found in
1928 // SEGMENT_STATES.
1929
1930 void
1931 Layout::restore_segments(const Segment_states* segment_states)
1932 {
1933   // Go through the segment list and remove any segment added in the
1934   // relaxation loop.
1935   this->tls_segment_ = NULL;
1936   this->relro_segment_ = NULL;
1937   Segment_list::iterator list_iter = this->segment_list_.begin();
1938   while (list_iter != this->segment_list_.end())
1939     {
1940       Output_segment* segment = *list_iter;
1941       Segment_states::const_iterator states_iter =
1942           segment_states->find(segment);
1943       if (states_iter != segment_states->end())
1944         {
1945           const Output_segment* copy = states_iter->second;
1946           // Shallow copy to restore states.
1947           *segment = *copy;
1948
1949           // Also fix up TLS and RELRO segment pointers as appropriate.
1950           if (segment->type() == elfcpp::PT_TLS)
1951             this->tls_segment_ = segment;
1952           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1953             this->relro_segment_ = segment;
1954
1955           ++list_iter;
1956         } 
1957       else
1958         {
1959           list_iter = this->segment_list_.erase(list_iter); 
1960           // This is a segment created during section layout.  It should be
1961           // safe to remove it since we should have removed all pointers to it.
1962           delete segment;
1963         }
1964     }
1965 }
1966
1967 // Clean up after relaxation so that sections can be laid out again.
1968
1969 void
1970 Layout::clean_up_after_relaxation()
1971 {
1972   // Restore the segments to point state just prior to the relaxation loop.
1973   Script_sections* script_section = this->script_options_->script_sections();
1974   script_section->release_segments();
1975   this->restore_segments(this->segment_states_);
1976
1977   // Reset section addresses and file offsets
1978   for (Section_list::iterator p = this->section_list_.begin();
1979        p != this->section_list_.end();
1980        ++p)
1981     {
1982       (*p)->restore_states();
1983
1984       // If an input section changes size because of relaxation,
1985       // we need to adjust the section offsets of all input sections.
1986       // after such a section.
1987       if ((*p)->section_offsets_need_adjustment())
1988         (*p)->adjust_section_offsets();
1989
1990       (*p)->reset_address_and_file_offset();
1991     }
1992   
1993   // Reset special output object address and file offsets.
1994   for (Data_list::iterator p = this->special_output_list_.begin();
1995        p != this->special_output_list_.end();
1996        ++p)
1997     (*p)->reset_address_and_file_offset();
1998
1999   // A linker script may have created some output section data objects.
2000   // They are useless now.
2001   for (Output_section_data_list::const_iterator p =
2002          this->script_output_section_data_list_.begin();
2003        p != this->script_output_section_data_list_.end();
2004        ++p)
2005     delete *p;
2006   this->script_output_section_data_list_.clear(); 
2007 }
2008
2009 // Prepare for relaxation.
2010
2011 void
2012 Layout::prepare_for_relaxation()
2013 {
2014   // Create an relaxation debug check if in debugging mode.
2015   if (is_debugging_enabled(DEBUG_RELAXATION))
2016     this->relaxation_debug_check_ = new Relaxation_debug_check();
2017
2018   // Save segment states.
2019   this->segment_states_ = new Segment_states();
2020   this->save_segments(this->segment_states_);
2021
2022   for(Section_list::const_iterator p = this->section_list_.begin();
2023       p != this->section_list_.end();
2024       ++p)
2025     (*p)->save_states();
2026
2027   if (is_debugging_enabled(DEBUG_RELAXATION))
2028     this->relaxation_debug_check_->check_output_data_for_reset_values(
2029         this->section_list_, this->special_output_list_);
2030
2031   // Also enable recording of output section data from scripts.
2032   this->record_output_section_data_from_script_ = true;
2033 }
2034
2035 // Relaxation loop body:  If target has no relaxation, this runs only once
2036 // Otherwise, the target relaxation hook is called at the end of
2037 // each iteration.  If the hook returns true, it means re-layout of
2038 // section is required.  
2039 //
2040 // The number of segments created by a linking script without a PHDRS
2041 // clause may be affected by section sizes and alignments.  There is
2042 // a remote chance that relaxation causes different number of PT_LOAD
2043 // segments are created and sections are attached to different segments.
2044 // Therefore, we always throw away all segments created during section
2045 // layout.  In order to be able to restart the section layout, we keep
2046 // a copy of the segment list right before the relaxation loop and use
2047 // that to restore the segments.
2048 // 
2049 // PASS is the current relaxation pass number. 
2050 // SYMTAB is a symbol table.
2051 // PLOAD_SEG is the address of a pointer for the load segment.
2052 // PHDR_SEG is a pointer to the PHDR segment.
2053 // SEGMENT_HEADERS points to the output segment header.
2054 // FILE_HEADER points to the output file header.
2055 // PSHNDX is the address to store the output section index.
2056
2057 off_t inline
2058 Layout::relaxation_loop_body(
2059     int pass,
2060     Target* target,
2061     Symbol_table* symtab,
2062     Output_segment** pload_seg,
2063     Output_segment* phdr_seg,
2064     Output_segment_headers* segment_headers,
2065     Output_file_header* file_header,
2066     unsigned int* pshndx)
2067 {
2068   // If this is not the first iteration, we need to clean up after
2069   // relaxation so that we can lay out the sections again.
2070   if (pass != 0)
2071     this->clean_up_after_relaxation();
2072
2073   // If there is a SECTIONS clause, put all the input sections into
2074   // the required order.
2075   Output_segment* load_seg;
2076   if (this->script_options_->saw_sections_clause())
2077     load_seg = this->set_section_addresses_from_script(symtab);
2078   else if (parameters->options().relocatable())
2079     load_seg = NULL;
2080   else
2081     load_seg = this->find_first_load_seg();
2082
2083   if (parameters->options().oformat_enum()
2084       != General_options::OBJECT_FORMAT_ELF)
2085     load_seg = NULL;
2086
2087   // If the user set the address of the text segment, that may not be
2088   // compatible with putting the segment headers and file headers into
2089   // that segment.
2090   if (parameters->options().user_set_Ttext())
2091     load_seg = NULL;
2092
2093   gold_assert(phdr_seg == NULL
2094               || load_seg != NULL
2095               || this->script_options_->saw_sections_clause());
2096
2097   // If the address of the load segment we found has been set by
2098   // --section-start rather than by a script, then adjust the VMA and
2099   // LMA downward if possible to include the file and section headers.
2100   uint64_t header_gap = 0;
2101   if (load_seg != NULL
2102       && load_seg->are_addresses_set()
2103       && !this->script_options_->saw_sections_clause()
2104       && !parameters->options().relocatable())
2105     {
2106       file_header->finalize_data_size();
2107       segment_headers->finalize_data_size();
2108       size_t sizeof_headers = (file_header->data_size()
2109                                + segment_headers->data_size());
2110       const uint64_t abi_pagesize = target->abi_pagesize();
2111       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2112       hdr_paddr &= ~(abi_pagesize - 1);
2113       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2114       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2115         load_seg = NULL;
2116       else
2117         {
2118           load_seg->set_addresses(load_seg->vaddr() - subtract,
2119                                   load_seg->paddr() - subtract);
2120           header_gap = subtract - sizeof_headers;
2121         }
2122     }
2123
2124   // Lay out the segment headers.
2125   if (!parameters->options().relocatable())
2126     {
2127       gold_assert(segment_headers != NULL);
2128       if (header_gap != 0 && load_seg != NULL)
2129         {
2130           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2131           load_seg->add_initial_output_data(z);
2132         }
2133       if (load_seg != NULL)
2134         load_seg->add_initial_output_data(segment_headers);
2135       if (phdr_seg != NULL)
2136         phdr_seg->add_initial_output_data(segment_headers);
2137     }
2138
2139   // Lay out the file header.
2140   if (load_seg != NULL)
2141     load_seg->add_initial_output_data(file_header);
2142
2143   if (this->script_options_->saw_phdrs_clause()
2144       && !parameters->options().relocatable())
2145     {
2146       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2147       // clause in a linker script.
2148       Script_sections* ss = this->script_options_->script_sections();
2149       ss->put_headers_in_phdrs(file_header, segment_headers);
2150     }
2151
2152   // We set the output section indexes in set_segment_offsets and
2153   // set_section_indexes.
2154   *pshndx = 1;
2155
2156   // Set the file offsets of all the segments, and all the sections
2157   // they contain.
2158   off_t off;
2159   if (!parameters->options().relocatable())
2160     off = this->set_segment_offsets(target, load_seg, pshndx);
2161   else
2162     off = this->set_relocatable_section_offsets(file_header, pshndx);
2163
2164    // Verify that the dummy relaxation does not change anything.
2165   if (is_debugging_enabled(DEBUG_RELAXATION))
2166     {
2167       if (pass == 0)
2168         this->relaxation_debug_check_->read_sections(this->section_list_);
2169       else
2170         this->relaxation_debug_check_->verify_sections(this->section_list_);
2171     }
2172
2173   *pload_seg = load_seg;
2174   return off;
2175 }
2176
2177 // Search the list of patterns and find the postion of the given section
2178 // name in the output section.  If the section name matches a glob
2179 // pattern and a non-glob name, then the non-glob position takes
2180 // precedence.  Return 0 if no match is found.
2181
2182 unsigned int
2183 Layout::find_section_order_index(const std::string& section_name)
2184 {
2185   Unordered_map<std::string, unsigned int>::iterator map_it;
2186   map_it = this->input_section_position_.find(section_name);
2187   if (map_it != this->input_section_position_.end())
2188     return map_it->second;
2189
2190   // Absolute match failed.  Linear search the glob patterns.
2191   std::vector<std::string>::iterator it;
2192   for (it = this->input_section_glob_.begin();
2193        it != this->input_section_glob_.end();
2194        ++it)
2195     {
2196        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2197          {
2198            map_it = this->input_section_position_.find(*it);
2199            gold_assert(map_it != this->input_section_position_.end());
2200            return map_it->second;
2201          }
2202     }
2203   return 0;
2204 }
2205
2206 // Read the sequence of input sections from the file specified with
2207 // --section-ordering-file.
2208
2209 void
2210 Layout::read_layout_from_file()
2211 {
2212   const char* filename = parameters->options().section_ordering_file();
2213   std::ifstream in;
2214   std::string line;
2215
2216   in.open(filename);
2217   if (!in)
2218     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2219                filename, strerror(errno));
2220
2221   std::getline(in, line);   // this chops off the trailing \n, if any
2222   unsigned int position = 1;
2223
2224   while (in)
2225     {
2226       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2227         line.resize(line.length() - 1);
2228       // Ignore comments, beginning with '#'
2229       if (line[0] == '#')
2230         {
2231           std::getline(in, line);
2232           continue;
2233         }
2234       this->input_section_position_[line] = position;
2235       // Store all glob patterns in a vector.
2236       if (is_wildcard_string(line.c_str()))
2237         this->input_section_glob_.push_back(line);
2238       position++;
2239       std::getline(in, line);
2240     }
2241 }
2242
2243 // Finalize the layout.  When this is called, we have created all the
2244 // output sections and all the output segments which are based on
2245 // input sections.  We have several things to do, and we have to do
2246 // them in the right order, so that we get the right results correctly
2247 // and efficiently.
2248
2249 // 1) Finalize the list of output segments and create the segment
2250 // table header.
2251
2252 // 2) Finalize the dynamic symbol table and associated sections.
2253
2254 // 3) Determine the final file offset of all the output segments.
2255
2256 // 4) Determine the final file offset of all the SHF_ALLOC output
2257 // sections.
2258
2259 // 5) Create the symbol table sections and the section name table
2260 // section.
2261
2262 // 6) Finalize the symbol table: set symbol values to their final
2263 // value and make a final determination of which symbols are going
2264 // into the output symbol table.
2265
2266 // 7) Create the section table header.
2267
2268 // 8) Determine the final file offset of all the output sections which
2269 // are not SHF_ALLOC, including the section table header.
2270
2271 // 9) Finalize the ELF file header.
2272
2273 // This function returns the size of the output file.
2274
2275 off_t
2276 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2277                  Target* target, const Task* task)
2278 {
2279   target->finalize_sections(this, input_objects, symtab);
2280
2281   this->count_local_symbols(task, input_objects);
2282
2283   this->link_stabs_sections();
2284
2285   Output_segment* phdr_seg = NULL;
2286   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2287     {
2288       // There was a dynamic object in the link.  We need to create
2289       // some information for the dynamic linker.
2290
2291       // Create the PT_PHDR segment which will hold the program
2292       // headers.
2293       if (!this->script_options_->saw_phdrs_clause())
2294         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2295
2296       // Create the dynamic symbol table, including the hash table.
2297       Output_section* dynstr;
2298       std::vector<Symbol*> dynamic_symbols;
2299       unsigned int local_dynamic_count;
2300       Versions versions(*this->script_options()->version_script_info(),
2301                         &this->dynpool_);
2302       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2303                                   &local_dynamic_count, &dynamic_symbols,
2304                                   &versions);
2305
2306       // Create the .interp section to hold the name of the
2307       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2308       // if we saw a .interp section in an input file.
2309       if ((!parameters->options().shared()
2310            || parameters->options().dynamic_linker() != NULL)
2311           && this->interp_segment_ == NULL)
2312         this->create_interp(target);
2313
2314       // Finish the .dynamic section to hold the dynamic data, and put
2315       // it in a PT_DYNAMIC segment.
2316       this->finish_dynamic_section(input_objects, symtab);
2317
2318       // We should have added everything we need to the dynamic string
2319       // table.
2320       this->dynpool_.set_string_offsets();
2321
2322       // Create the version sections.  We can't do this until the
2323       // dynamic string table is complete.
2324       this->create_version_sections(&versions, symtab, local_dynamic_count,
2325                                     dynamic_symbols, dynstr);
2326
2327       // Set the size of the _DYNAMIC symbol.  We can't do this until
2328       // after we call create_version_sections.
2329       this->set_dynamic_symbol_size(symtab);
2330     }
2331   
2332   // Create segment headers.
2333   Output_segment_headers* segment_headers =
2334     (parameters->options().relocatable()
2335      ? NULL
2336      : new Output_segment_headers(this->segment_list_));
2337
2338   // Lay out the file header.
2339   Output_file_header* file_header = new Output_file_header(target, symtab,
2340                                                            segment_headers);
2341
2342   this->special_output_list_.push_back(file_header);
2343   if (segment_headers != NULL)
2344     this->special_output_list_.push_back(segment_headers);
2345
2346   // Find approriate places for orphan output sections if we are using
2347   // a linker script.
2348   if (this->script_options_->saw_sections_clause())
2349     this->place_orphan_sections_in_script();
2350   
2351   Output_segment* load_seg;
2352   off_t off;
2353   unsigned int shndx;
2354   int pass = 0;
2355
2356   // Take a snapshot of the section layout as needed.
2357   if (target->may_relax())
2358     this->prepare_for_relaxation();
2359   
2360   // Run the relaxation loop to lay out sections.
2361   do
2362     {
2363       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2364                                        phdr_seg, segment_headers, file_header,
2365                                        &shndx);
2366       pass++;
2367     }
2368   while (target->may_relax()
2369          && target->relax(pass, input_objects, symtab, this, task));
2370
2371   // Set the file offsets of all the non-data sections we've seen so
2372   // far which don't have to wait for the input sections.  We need
2373   // this in order to finalize local symbols in non-allocated
2374   // sections.
2375   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2376
2377   // Set the section indexes of all unallocated sections seen so far,
2378   // in case any of them are somehow referenced by a symbol.
2379   shndx = this->set_section_indexes(shndx);
2380
2381   // Create the symbol table sections.
2382   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2383   if (!parameters->doing_static_link())
2384     this->assign_local_dynsym_offsets(input_objects);
2385
2386   // Process any symbol assignments from a linker script.  This must
2387   // be called after the symbol table has been finalized.
2388   this->script_options_->finalize_symbols(symtab, this);
2389
2390   // Create the incremental inputs sections.
2391   if (this->incremental_inputs_)
2392     {
2393       this->incremental_inputs_->finalize();
2394       this->create_incremental_info_sections(symtab);
2395     }
2396
2397   // Create the .shstrtab section.
2398   Output_section* shstrtab_section = this->create_shstrtab();
2399
2400   // Set the file offsets of the rest of the non-data sections which
2401   // don't have to wait for the input sections.
2402   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2403
2404   // Now that all sections have been created, set the section indexes
2405   // for any sections which haven't been done yet.
2406   shndx = this->set_section_indexes(shndx);
2407
2408   // Create the section table header.
2409   this->create_shdrs(shstrtab_section, &off);
2410
2411   // If there are no sections which require postprocessing, we can
2412   // handle the section names now, and avoid a resize later.
2413   if (!this->any_postprocessing_sections_)
2414     {
2415       off = this->set_section_offsets(off,
2416                                       POSTPROCESSING_SECTIONS_PASS);
2417       off =
2418           this->set_section_offsets(off,
2419                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2420     }
2421
2422   file_header->set_section_info(this->section_headers_, shstrtab_section);
2423
2424   // Now we know exactly where everything goes in the output file
2425   // (except for non-allocated sections which require postprocessing).
2426   Output_data::layout_complete();
2427
2428   this->output_file_size_ = off;
2429
2430   return off;
2431 }
2432
2433 // Create a note header following the format defined in the ELF ABI.
2434 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2435 // of the section to create, DESCSZ is the size of the descriptor.
2436 // ALLOCATE is true if the section should be allocated in memory.
2437 // This returns the new note section.  It sets *TRAILING_PADDING to
2438 // the number of trailing zero bytes required.
2439
2440 Output_section*
2441 Layout::create_note(const char* name, int note_type,
2442                     const char* section_name, size_t descsz,
2443                     bool allocate, size_t* trailing_padding)
2444 {
2445   // Authorities all agree that the values in a .note field should
2446   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2447   // they differ on what the alignment is for 64-bit binaries.
2448   // The GABI says unambiguously they take 8-byte alignment:
2449   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2450   // Other documentation says alignment should always be 4 bytes:
2451   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2452   // GNU ld and GNU readelf both support the latter (at least as of
2453   // version 2.16.91), and glibc always generates the latter for
2454   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2455   // here.
2456 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2457   const int size = parameters->target().get_size();
2458 #else
2459   const int size = 32;
2460 #endif
2461
2462   // The contents of the .note section.
2463   size_t namesz = strlen(name) + 1;
2464   size_t aligned_namesz = align_address(namesz, size / 8);
2465   size_t aligned_descsz = align_address(descsz, size / 8);
2466
2467   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2468
2469   unsigned char* buffer = new unsigned char[notehdrsz];
2470   memset(buffer, 0, notehdrsz);
2471
2472   bool is_big_endian = parameters->target().is_big_endian();
2473
2474   if (size == 32)
2475     {
2476       if (!is_big_endian)
2477         {
2478           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2479           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2480           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2481         }
2482       else
2483         {
2484           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2485           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2486           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2487         }
2488     }
2489   else if (size == 64)
2490     {
2491       if (!is_big_endian)
2492         {
2493           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2494           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2495           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2496         }
2497       else
2498         {
2499           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2500           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2501           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2502         }
2503     }
2504   else
2505     gold_unreachable();
2506
2507   memcpy(buffer + 3 * (size / 8), name, namesz);
2508
2509   elfcpp::Elf_Xword flags = 0;
2510   Output_section_order order = ORDER_INVALID;
2511   if (allocate)
2512     {
2513       flags = elfcpp::SHF_ALLOC;
2514       order = ORDER_RO_NOTE;
2515     }
2516   Output_section* os = this->choose_output_section(NULL, section_name,
2517                                                    elfcpp::SHT_NOTE,
2518                                                    flags, false, order, false);
2519   if (os == NULL)
2520     return NULL;
2521
2522   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2523                                                            size / 8,
2524                                                            "** note header");
2525   os->add_output_section_data(posd);
2526
2527   *trailing_padding = aligned_descsz - descsz;
2528
2529   return os;
2530 }
2531
2532 // For an executable or shared library, create a note to record the
2533 // version of gold used to create the binary.
2534
2535 void
2536 Layout::create_gold_note()
2537 {
2538   if (parameters->options().relocatable()
2539       || parameters->incremental_update())
2540     return;
2541
2542   std::string desc = std::string("gold ") + gold::get_version_string();
2543
2544   size_t trailing_padding;
2545   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2546                                          ".note.gnu.gold-version", desc.size(),
2547                                          false, &trailing_padding);
2548   if (os == NULL)
2549     return;
2550
2551   Output_section_data* posd = new Output_data_const(desc, 4);
2552   os->add_output_section_data(posd);
2553
2554   if (trailing_padding > 0)
2555     {
2556       posd = new Output_data_zero_fill(trailing_padding, 0);
2557       os->add_output_section_data(posd);
2558     }
2559 }
2560
2561 // Record whether the stack should be executable.  This can be set
2562 // from the command line using the -z execstack or -z noexecstack
2563 // options.  Otherwise, if any input file has a .note.GNU-stack
2564 // section with the SHF_EXECINSTR flag set, the stack should be
2565 // executable.  Otherwise, if at least one input file a
2566 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2567 // section, we use the target default for whether the stack should be
2568 // executable.  Otherwise, we don't generate a stack note.  When
2569 // generating a object file, we create a .note.GNU-stack section with
2570 // the appropriate marking.  When generating an executable or shared
2571 // library, we create a PT_GNU_STACK segment.
2572
2573 void
2574 Layout::create_executable_stack_info()
2575 {
2576   bool is_stack_executable;
2577   if (parameters->options().is_execstack_set())
2578     is_stack_executable = parameters->options().is_stack_executable();
2579   else if (!this->input_with_gnu_stack_note_)
2580     return;
2581   else
2582     {
2583       if (this->input_requires_executable_stack_)
2584         is_stack_executable = true;
2585       else if (this->input_without_gnu_stack_note_)
2586         is_stack_executable =
2587           parameters->target().is_default_stack_executable();
2588       else
2589         is_stack_executable = false;
2590     }
2591
2592   if (parameters->options().relocatable())
2593     {
2594       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2595       elfcpp::Elf_Xword flags = 0;
2596       if (is_stack_executable)
2597         flags |= elfcpp::SHF_EXECINSTR;
2598       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2599                                 ORDER_INVALID, false);
2600     }
2601   else
2602     {
2603       if (this->script_options_->saw_phdrs_clause())
2604         return;
2605       int flags = elfcpp::PF_R | elfcpp::PF_W;
2606       if (is_stack_executable)
2607         flags |= elfcpp::PF_X;
2608       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2609     }
2610 }
2611
2612 // If --build-id was used, set up the build ID note.
2613
2614 void
2615 Layout::create_build_id()
2616 {
2617   if (!parameters->options().user_set_build_id())
2618     return;
2619
2620   const char* style = parameters->options().build_id();
2621   if (strcmp(style, "none") == 0)
2622     return;
2623
2624   // Set DESCSZ to the size of the note descriptor.  When possible,
2625   // set DESC to the note descriptor contents.
2626   size_t descsz;
2627   std::string desc;
2628   if (strcmp(style, "md5") == 0)
2629     descsz = 128 / 8;
2630   else if (strcmp(style, "sha1") == 0)
2631     descsz = 160 / 8;
2632   else if (strcmp(style, "uuid") == 0)
2633     {
2634       const size_t uuidsz = 128 / 8;
2635
2636       char buffer[uuidsz];
2637       memset(buffer, 0, uuidsz);
2638
2639       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2640       if (descriptor < 0)
2641         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2642                    strerror(errno));
2643       else
2644         {
2645           ssize_t got = ::read(descriptor, buffer, uuidsz);
2646           release_descriptor(descriptor, true);
2647           if (got < 0)
2648             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2649           else if (static_cast<size_t>(got) != uuidsz)
2650             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2651                        uuidsz, got);
2652         }
2653
2654       desc.assign(buffer, uuidsz);
2655       descsz = uuidsz;
2656     }
2657   else if (strncmp(style, "0x", 2) == 0)
2658     {
2659       hex_init();
2660       const char* p = style + 2;
2661       while (*p != '\0')
2662         {
2663           if (hex_p(p[0]) && hex_p(p[1]))
2664             {
2665               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2666               desc += c;
2667               p += 2;
2668             }
2669           else if (*p == '-' || *p == ':')
2670             ++p;
2671           else
2672             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2673                        style);
2674         }
2675       descsz = desc.size();
2676     }
2677   else
2678     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2679
2680   // Create the note.
2681   size_t trailing_padding;
2682   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2683                                          ".note.gnu.build-id", descsz, true,
2684                                          &trailing_padding);
2685   if (os == NULL)
2686     return;
2687
2688   if (!desc.empty())
2689     {
2690       // We know the value already, so we fill it in now.
2691       gold_assert(desc.size() == descsz);
2692
2693       Output_section_data* posd = new Output_data_const(desc, 4);
2694       os->add_output_section_data(posd);
2695
2696       if (trailing_padding != 0)
2697         {
2698           posd = new Output_data_zero_fill(trailing_padding, 0);
2699           os->add_output_section_data(posd);
2700         }
2701     }
2702   else
2703     {
2704       // We need to compute a checksum after we have completed the
2705       // link.
2706       gold_assert(trailing_padding == 0);
2707       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2708       os->add_output_section_data(this->build_id_note_);
2709     }
2710 }
2711
2712 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2713 // field of the former should point to the latter.  I'm not sure who
2714 // started this, but the GNU linker does it, and some tools depend
2715 // upon it.
2716
2717 void
2718 Layout::link_stabs_sections()
2719 {
2720   if (!this->have_stabstr_section_)
2721     return;
2722
2723   for (Section_list::iterator p = this->section_list_.begin();
2724        p != this->section_list_.end();
2725        ++p)
2726     {
2727       if ((*p)->type() != elfcpp::SHT_STRTAB)
2728         continue;
2729
2730       const char* name = (*p)->name();
2731       if (strncmp(name, ".stab", 5) != 0)
2732         continue;
2733
2734       size_t len = strlen(name);
2735       if (strcmp(name + len - 3, "str") != 0)
2736         continue;
2737
2738       std::string stab_name(name, len - 3);
2739       Output_section* stab_sec;
2740       stab_sec = this->find_output_section(stab_name.c_str());
2741       if (stab_sec != NULL)
2742         stab_sec->set_link_section(*p);
2743     }
2744 }
2745
2746 // Create .gnu_incremental_inputs and related sections needed
2747 // for the next run of incremental linking to check what has changed.
2748
2749 void
2750 Layout::create_incremental_info_sections(Symbol_table* symtab)
2751 {
2752   Incremental_inputs* incr = this->incremental_inputs_;
2753
2754   gold_assert(incr != NULL);
2755
2756   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2757   incr->create_data_sections(symtab);
2758
2759   // Add the .gnu_incremental_inputs section.
2760   const char* incremental_inputs_name =
2761     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2762   Output_section* incremental_inputs_os =
2763     this->make_output_section(incremental_inputs_name,
2764                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2765                               ORDER_INVALID, false);
2766   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2767
2768   // Add the .gnu_incremental_symtab section.
2769   const char* incremental_symtab_name =
2770     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2771   Output_section* incremental_symtab_os =
2772     this->make_output_section(incremental_symtab_name,
2773                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2774                               ORDER_INVALID, false);
2775   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2776   incremental_symtab_os->set_entsize(4);
2777
2778   // Add the .gnu_incremental_relocs section.
2779   const char* incremental_relocs_name =
2780     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2781   Output_section* incremental_relocs_os =
2782     this->make_output_section(incremental_relocs_name,
2783                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2784                               ORDER_INVALID, false);
2785   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2786   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2787
2788   // Add the .gnu_incremental_got_plt section.
2789   const char* incremental_got_plt_name =
2790     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2791   Output_section* incremental_got_plt_os =
2792     this->make_output_section(incremental_got_plt_name,
2793                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2794                               ORDER_INVALID, false);
2795   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2796
2797   // Add the .gnu_incremental_strtab section.
2798   const char* incremental_strtab_name =
2799     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2800   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2801                                                         elfcpp::SHT_STRTAB, 0,
2802                                                         ORDER_INVALID, false);
2803   Output_data_strtab* strtab_data =
2804       new Output_data_strtab(incr->get_stringpool());
2805   incremental_strtab_os->add_output_section_data(strtab_data);
2806
2807   incremental_inputs_os->set_after_input_sections();
2808   incremental_symtab_os->set_after_input_sections();
2809   incremental_relocs_os->set_after_input_sections();
2810   incremental_got_plt_os->set_after_input_sections();
2811
2812   incremental_inputs_os->set_link_section(incremental_strtab_os);
2813   incremental_symtab_os->set_link_section(incremental_inputs_os);
2814   incremental_relocs_os->set_link_section(incremental_inputs_os);
2815   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2816 }
2817
2818 // Return whether SEG1 should be before SEG2 in the output file.  This
2819 // is based entirely on the segment type and flags.  When this is
2820 // called the segment addresses have normally not yet been set.
2821
2822 bool
2823 Layout::segment_precedes(const Output_segment* seg1,
2824                          const Output_segment* seg2)
2825 {
2826   elfcpp::Elf_Word type1 = seg1->type();
2827   elfcpp::Elf_Word type2 = seg2->type();
2828
2829   // The single PT_PHDR segment is required to precede any loadable
2830   // segment.  We simply make it always first.
2831   if (type1 == elfcpp::PT_PHDR)
2832     {
2833       gold_assert(type2 != elfcpp::PT_PHDR);
2834       return true;
2835     }
2836   if (type2 == elfcpp::PT_PHDR)
2837     return false;
2838
2839   // The single PT_INTERP segment is required to precede any loadable
2840   // segment.  We simply make it always second.
2841   if (type1 == elfcpp::PT_INTERP)
2842     {
2843       gold_assert(type2 != elfcpp::PT_INTERP);
2844       return true;
2845     }
2846   if (type2 == elfcpp::PT_INTERP)
2847     return false;
2848
2849   // We then put PT_LOAD segments before any other segments.
2850   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2851     return true;
2852   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2853     return false;
2854
2855   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2856   // segment, because that is where the dynamic linker expects to find
2857   // it (this is just for efficiency; other positions would also work
2858   // correctly).
2859   if (type1 == elfcpp::PT_TLS
2860       && type2 != elfcpp::PT_TLS
2861       && type2 != elfcpp::PT_GNU_RELRO)
2862     return false;
2863   if (type2 == elfcpp::PT_TLS
2864       && type1 != elfcpp::PT_TLS
2865       && type1 != elfcpp::PT_GNU_RELRO)
2866     return true;
2867
2868   // We put the PT_GNU_RELRO segment last, because that is where the
2869   // dynamic linker expects to find it (as with PT_TLS, this is just
2870   // for efficiency).
2871   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2872     return false;
2873   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2874     return true;
2875
2876   const elfcpp::Elf_Word flags1 = seg1->flags();
2877   const elfcpp::Elf_Word flags2 = seg2->flags();
2878
2879   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2880   // by the numeric segment type and flags values.  There should not
2881   // be more than one segment with the same type and flags.
2882   if (type1 != elfcpp::PT_LOAD)
2883     {
2884       if (type1 != type2)
2885         return type1 < type2;
2886       gold_assert(flags1 != flags2);
2887       return flags1 < flags2;
2888     }
2889
2890   // If the addresses are set already, sort by load address.
2891   if (seg1->are_addresses_set())
2892     {
2893       if (!seg2->are_addresses_set())
2894         return true;
2895
2896       unsigned int section_count1 = seg1->output_section_count();
2897       unsigned int section_count2 = seg2->output_section_count();
2898       if (section_count1 == 0 && section_count2 > 0)
2899         return true;
2900       if (section_count1 > 0 && section_count2 == 0)
2901         return false;
2902
2903       uint64_t paddr1 = (seg1->are_addresses_set()
2904                          ? seg1->paddr()
2905                          : seg1->first_section_load_address());
2906       uint64_t paddr2 = (seg2->are_addresses_set()
2907                          ? seg2->paddr()
2908                          : seg2->first_section_load_address());
2909
2910       if (paddr1 != paddr2)
2911         return paddr1 < paddr2;
2912     }
2913   else if (seg2->are_addresses_set())
2914     return false;
2915
2916   // A segment which holds large data comes after a segment which does
2917   // not hold large data.
2918   if (seg1->is_large_data_segment())
2919     {
2920       if (!seg2->is_large_data_segment())
2921         return false;
2922     }
2923   else if (seg2->is_large_data_segment())
2924     return true;
2925
2926   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2927   // segments come before writable segments.  Then writable segments
2928   // with data come before writable segments without data.  Then
2929   // executable segments come before non-executable segments.  Then
2930   // the unlikely case of a non-readable segment comes before the
2931   // normal case of a readable segment.  If there are multiple
2932   // segments with the same type and flags, we require that the
2933   // address be set, and we sort by virtual address and then physical
2934   // address.
2935   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2936     return (flags1 & elfcpp::PF_W) == 0;
2937   if ((flags1 & elfcpp::PF_W) != 0
2938       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2939     return seg1->has_any_data_sections();
2940   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2941     return (flags1 & elfcpp::PF_X) != 0;
2942   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2943     return (flags1 & elfcpp::PF_R) == 0;
2944
2945   // We shouldn't get here--we shouldn't create segments which we
2946   // can't distinguish.  Unless of course we are using a weird linker
2947   // script.
2948   gold_assert(this->script_options_->saw_phdrs_clause());
2949   return false;
2950 }
2951
2952 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2953
2954 static off_t
2955 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2956 {
2957   uint64_t unsigned_off = off;
2958   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2959                           | (addr & (abi_pagesize - 1)));
2960   if (aligned_off < unsigned_off)
2961     aligned_off += abi_pagesize;
2962   return aligned_off;
2963 }
2964
2965 // Set the file offsets of all the segments, and all the sections they
2966 // contain.  They have all been created.  LOAD_SEG must be be laid out
2967 // first.  Return the offset of the data to follow.
2968
2969 off_t
2970 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2971                             unsigned int* pshndx)
2972 {
2973   // Sort them into the final order.  We use a stable sort so that we
2974   // don't randomize the order of indistinguishable segments created
2975   // by linker scripts.
2976   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2977                    Layout::Compare_segments(this));
2978
2979   // Find the PT_LOAD segments, and set their addresses and offsets
2980   // and their section's addresses and offsets.
2981   uint64_t addr;
2982   if (parameters->options().user_set_Ttext())
2983     addr = parameters->options().Ttext();
2984   else if (parameters->options().output_is_position_independent())
2985     addr = 0;
2986   else
2987     addr = target->default_text_segment_address();
2988   off_t off = 0;
2989
2990   // If LOAD_SEG is NULL, then the file header and segment headers
2991   // will not be loadable.  But they still need to be at offset 0 in
2992   // the file.  Set their offsets now.
2993   if (load_seg == NULL)
2994     {
2995       for (Data_list::iterator p = this->special_output_list_.begin();
2996            p != this->special_output_list_.end();
2997            ++p)
2998         {
2999           off = align_address(off, (*p)->addralign());
3000           (*p)->set_address_and_file_offset(0, off);
3001           off += (*p)->data_size();
3002         }
3003     }
3004
3005   unsigned int increase_relro = this->increase_relro_;
3006   if (this->script_options_->saw_sections_clause())
3007     increase_relro = 0;
3008
3009   const bool check_sections = parameters->options().check_sections();
3010   Output_segment* last_load_segment = NULL;
3011
3012   for (Segment_list::iterator p = this->segment_list_.begin();
3013        p != this->segment_list_.end();
3014        ++p)
3015     {
3016       if ((*p)->type() == elfcpp::PT_LOAD)
3017         {
3018           if (load_seg != NULL && load_seg != *p)
3019             gold_unreachable();
3020           load_seg = NULL;
3021
3022           bool are_addresses_set = (*p)->are_addresses_set();
3023           if (are_addresses_set)
3024             {
3025               // When it comes to setting file offsets, we care about
3026               // the physical address.
3027               addr = (*p)->paddr();
3028             }
3029           else if (parameters->options().user_set_Tdata()
3030                    && ((*p)->flags() & elfcpp::PF_W) != 0
3031                    && (!parameters->options().user_set_Tbss()
3032                        || (*p)->has_any_data_sections()))
3033             {
3034               addr = parameters->options().Tdata();
3035               are_addresses_set = true;
3036             }
3037           else if (parameters->options().user_set_Tbss()
3038                    && ((*p)->flags() & elfcpp::PF_W) != 0
3039                    && !(*p)->has_any_data_sections())
3040             {
3041               addr = parameters->options().Tbss();
3042               are_addresses_set = true;
3043             }
3044
3045           uint64_t orig_addr = addr;
3046           uint64_t orig_off = off;
3047
3048           uint64_t aligned_addr = 0;
3049           uint64_t abi_pagesize = target->abi_pagesize();
3050           uint64_t common_pagesize = target->common_pagesize();
3051
3052           if (!parameters->options().nmagic()
3053               && !parameters->options().omagic())
3054             (*p)->set_minimum_p_align(common_pagesize);
3055
3056           if (!are_addresses_set)
3057             {
3058               // Skip the address forward one page, maintaining the same
3059               // position within the page.  This lets us store both segments
3060               // overlapping on a single page in the file, but the loader will
3061               // put them on different pages in memory. We will revisit this
3062               // decision once we know the size of the segment.
3063
3064               addr = align_address(addr, (*p)->maximum_alignment());
3065               aligned_addr = addr;
3066
3067               if ((addr & (abi_pagesize - 1)) != 0)
3068                 addr = addr + abi_pagesize;
3069
3070               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3071             }
3072
3073           if (!parameters->options().nmagic()
3074               && !parameters->options().omagic())
3075             off = align_file_offset(off, addr, abi_pagesize);
3076           else if (load_seg == NULL)
3077             {
3078               // This is -N or -n with a section script which prevents
3079               // us from using a load segment.  We need to ensure that
3080               // the file offset is aligned to the alignment of the
3081               // segment.  This is because the linker script
3082               // implicitly assumed a zero offset.  If we don't align
3083               // here, then the alignment of the sections in the
3084               // linker script may not match the alignment of the
3085               // sections in the set_section_addresses call below,
3086               // causing an error about dot moving backward.
3087               off = align_address(off, (*p)->maximum_alignment());
3088             }
3089
3090           unsigned int shndx_hold = *pshndx;
3091           bool has_relro = false;
3092           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3093                                                           &increase_relro,
3094                                                           &has_relro,
3095                                                           &off, pshndx);
3096
3097           // Now that we know the size of this segment, we may be able
3098           // to save a page in memory, at the cost of wasting some
3099           // file space, by instead aligning to the start of a new
3100           // page.  Here we use the real machine page size rather than
3101           // the ABI mandated page size.  If the segment has been
3102           // aligned so that the relro data ends at a page boundary,
3103           // we do not try to realign it.
3104
3105           if (!are_addresses_set
3106               && !has_relro
3107               && aligned_addr != addr
3108               && !parameters->incremental())
3109             {
3110               uint64_t first_off = (common_pagesize
3111                                     - (aligned_addr
3112                                        & (common_pagesize - 1)));
3113               uint64_t last_off = new_addr & (common_pagesize - 1);
3114               if (first_off > 0
3115                   && last_off > 0
3116                   && ((aligned_addr & ~ (common_pagesize - 1))
3117                       != (new_addr & ~ (common_pagesize - 1)))
3118                   && first_off + last_off <= common_pagesize)
3119                 {
3120                   *pshndx = shndx_hold;
3121                   addr = align_address(aligned_addr, common_pagesize);
3122                   addr = align_address(addr, (*p)->maximum_alignment());
3123                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3124                   off = align_file_offset(off, addr, abi_pagesize);
3125
3126                   increase_relro = this->increase_relro_;
3127                   if (this->script_options_->saw_sections_clause())
3128                     increase_relro = 0;
3129                   has_relro = false;
3130
3131                   new_addr = (*p)->set_section_addresses(this, true, addr,
3132                                                          &increase_relro,
3133                                                          &has_relro,
3134                                                          &off, pshndx);
3135                 }
3136             }
3137
3138           addr = new_addr;
3139
3140           // Implement --check-sections.  We know that the segments
3141           // are sorted by LMA.
3142           if (check_sections && last_load_segment != NULL)
3143             {
3144               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3145               if (last_load_segment->paddr() + last_load_segment->memsz()
3146                   > (*p)->paddr())
3147                 {
3148                   unsigned long long lb1 = last_load_segment->paddr();
3149                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3150                   unsigned long long lb2 = (*p)->paddr();
3151                   unsigned long long le2 = lb2 + (*p)->memsz();
3152                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3153                                "[0x%llx -> 0x%llx]"),
3154                              lb1, le1, lb2, le2);
3155                 }
3156             }
3157           last_load_segment = *p;
3158         }
3159     }
3160
3161   // Handle the non-PT_LOAD segments, setting their offsets from their
3162   // section's offsets.
3163   for (Segment_list::iterator p = this->segment_list_.begin();
3164        p != this->segment_list_.end();
3165        ++p)
3166     {
3167       if ((*p)->type() != elfcpp::PT_LOAD)
3168         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3169                          ? increase_relro
3170                          : 0);
3171     }
3172
3173   // Set the TLS offsets for each section in the PT_TLS segment.
3174   if (this->tls_segment_ != NULL)
3175     this->tls_segment_->set_tls_offsets();
3176
3177   return off;
3178 }
3179
3180 // Set the offsets of all the allocated sections when doing a
3181 // relocatable link.  This does the same jobs as set_segment_offsets,
3182 // only for a relocatable link.
3183
3184 off_t
3185 Layout::set_relocatable_section_offsets(Output_data* file_header,
3186                                         unsigned int* pshndx)
3187 {
3188   off_t off = 0;
3189
3190   file_header->set_address_and_file_offset(0, 0);
3191   off += file_header->data_size();
3192
3193   for (Section_list::iterator p = this->section_list_.begin();
3194        p != this->section_list_.end();
3195        ++p)
3196     {
3197       // We skip unallocated sections here, except that group sections
3198       // have to come first.
3199       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3200           && (*p)->type() != elfcpp::SHT_GROUP)
3201         continue;
3202
3203       off = align_address(off, (*p)->addralign());
3204
3205       // The linker script might have set the address.
3206       if (!(*p)->is_address_valid())
3207         (*p)->set_address(0);
3208       (*p)->set_file_offset(off);
3209       (*p)->finalize_data_size();
3210       off += (*p)->data_size();
3211
3212       (*p)->set_out_shndx(*pshndx);
3213       ++*pshndx;
3214     }
3215
3216   return off;
3217 }
3218
3219 // Set the file offset of all the sections not associated with a
3220 // segment.
3221
3222 off_t
3223 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3224 {
3225   off_t startoff = off;
3226   off_t maxoff = off;
3227
3228   for (Section_list::iterator p = this->unattached_section_list_.begin();
3229        p != this->unattached_section_list_.end();
3230        ++p)
3231     {
3232       // The symtab section is handled in create_symtab_sections.
3233       if (*p == this->symtab_section_)
3234         continue;
3235
3236       // If we've already set the data size, don't set it again.
3237       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3238         continue;
3239
3240       if (pass == BEFORE_INPUT_SECTIONS_PASS
3241           && (*p)->requires_postprocessing())
3242         {
3243           (*p)->create_postprocessing_buffer();
3244           this->any_postprocessing_sections_ = true;
3245         }
3246
3247       if (pass == BEFORE_INPUT_SECTIONS_PASS
3248           && (*p)->after_input_sections())
3249         continue;
3250       else if (pass == POSTPROCESSING_SECTIONS_PASS
3251                && (!(*p)->after_input_sections()
3252                    || (*p)->type() == elfcpp::SHT_STRTAB))
3253         continue;
3254       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3255                && (!(*p)->after_input_sections()
3256                    || (*p)->type() != elfcpp::SHT_STRTAB))
3257         continue;
3258
3259       if (!parameters->incremental_update())
3260         {
3261           off = align_address(off, (*p)->addralign());
3262           (*p)->set_file_offset(off);
3263           (*p)->finalize_data_size();
3264         }
3265       else
3266         {
3267           // Incremental update: allocate file space from free list.
3268           (*p)->pre_finalize_data_size();
3269           off_t current_size = (*p)->current_data_size();
3270           off = this->allocate(current_size, (*p)->addralign(), startoff);
3271           if (off == -1)
3272             {
3273               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3274                 this->free_list_.dump();
3275               gold_assert((*p)->output_section() != NULL);
3276               gold_fallback(_("out of patch space for section %s; "
3277                               "relink with --incremental-full"),
3278                             (*p)->output_section()->name());
3279             }
3280           (*p)->set_file_offset(off);
3281           (*p)->finalize_data_size();
3282           if ((*p)->data_size() > current_size)
3283             {
3284               gold_assert((*p)->output_section() != NULL);
3285               gold_fallback(_("%s: section changed size; "
3286                               "relink with --incremental-full"),
3287                             (*p)->output_section()->name());
3288             }
3289           gold_debug(DEBUG_INCREMENTAL,
3290                      "set_section_offsets: %08lx %08lx %s",
3291                      static_cast<long>(off),
3292                      static_cast<long>((*p)->data_size()),
3293                      ((*p)->output_section() != NULL
3294                       ? (*p)->output_section()->name() : "(special)"));
3295         }
3296
3297       off += (*p)->data_size();
3298       if (off > maxoff)
3299         maxoff = off;
3300
3301       // At this point the name must be set.
3302       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3303         this->namepool_.add((*p)->name(), false, NULL);
3304     }
3305   return maxoff;
3306 }
3307
3308 // Set the section indexes of all the sections not associated with a
3309 // segment.
3310
3311 unsigned int
3312 Layout::set_section_indexes(unsigned int shndx)
3313 {
3314   for (Section_list::iterator p = this->unattached_section_list_.begin();
3315        p != this->unattached_section_list_.end();
3316        ++p)
3317     {
3318       if (!(*p)->has_out_shndx())
3319         {
3320           (*p)->set_out_shndx(shndx);
3321           ++shndx;
3322         }
3323     }
3324   return shndx;
3325 }
3326
3327 // Set the section addresses according to the linker script.  This is
3328 // only called when we see a SECTIONS clause.  This returns the
3329 // program segment which should hold the file header and segment
3330 // headers, if any.  It will return NULL if they should not be in a
3331 // segment.
3332
3333 Output_segment*
3334 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3335 {
3336   Script_sections* ss = this->script_options_->script_sections();
3337   gold_assert(ss->saw_sections_clause());
3338   return this->script_options_->set_section_addresses(symtab, this);
3339 }
3340
3341 // Place the orphan sections in the linker script.
3342
3343 void
3344 Layout::place_orphan_sections_in_script()
3345 {
3346   Script_sections* ss = this->script_options_->script_sections();
3347   gold_assert(ss->saw_sections_clause());
3348
3349   // Place each orphaned output section in the script.
3350   for (Section_list::iterator p = this->section_list_.begin();
3351        p != this->section_list_.end();
3352        ++p)
3353     {
3354       if (!(*p)->found_in_sections_clause())
3355         ss->place_orphan(*p);
3356     }
3357 }
3358
3359 // Count the local symbols in the regular symbol table and the dynamic
3360 // symbol table, and build the respective string pools.
3361
3362 void
3363 Layout::count_local_symbols(const Task* task,
3364                             const Input_objects* input_objects)
3365 {
3366   // First, figure out an upper bound on the number of symbols we'll
3367   // be inserting into each pool.  This helps us create the pools with
3368   // the right size, to avoid unnecessary hashtable resizing.
3369   unsigned int symbol_count = 0;
3370   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3371        p != input_objects->relobj_end();
3372        ++p)
3373     symbol_count += (*p)->local_symbol_count();
3374
3375   // Go from "upper bound" to "estimate."  We overcount for two
3376   // reasons: we double-count symbols that occur in more than one
3377   // object file, and we count symbols that are dropped from the
3378   // output.  Add it all together and assume we overcount by 100%.
3379   symbol_count /= 2;
3380
3381   // We assume all symbols will go into both the sympool and dynpool.
3382   this->sympool_.reserve(symbol_count);
3383   this->dynpool_.reserve(symbol_count);
3384
3385   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3386        p != input_objects->relobj_end();
3387        ++p)
3388     {
3389       Task_lock_obj<Object> tlo(task, *p);
3390       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3391     }
3392 }
3393
3394 // Create the symbol table sections.  Here we also set the final
3395 // values of the symbols.  At this point all the loadable sections are
3396 // fully laid out.  SHNUM is the number of sections so far.
3397
3398 void
3399 Layout::create_symtab_sections(const Input_objects* input_objects,
3400                                Symbol_table* symtab,
3401                                unsigned int shnum,
3402                                off_t* poff)
3403 {
3404   int symsize;
3405   unsigned int align;
3406   if (parameters->target().get_size() == 32)
3407     {
3408       symsize = elfcpp::Elf_sizes<32>::sym_size;
3409       align = 4;
3410     }
3411   else if (parameters->target().get_size() == 64)
3412     {
3413       symsize = elfcpp::Elf_sizes<64>::sym_size;
3414       align = 8;
3415     }
3416   else
3417     gold_unreachable();
3418
3419   // Compute file offsets relative to the start of the symtab section.
3420   off_t off = 0;
3421
3422   // Save space for the dummy symbol at the start of the section.  We
3423   // never bother to write this out--it will just be left as zero.
3424   off += symsize;
3425   unsigned int local_symbol_index = 1;
3426
3427   // Add STT_SECTION symbols for each Output section which needs one.
3428   for (Section_list::iterator p = this->section_list_.begin();
3429        p != this->section_list_.end();
3430        ++p)
3431     {
3432       if (!(*p)->needs_symtab_index())
3433         (*p)->set_symtab_index(-1U);
3434       else
3435         {
3436           (*p)->set_symtab_index(local_symbol_index);
3437           ++local_symbol_index;
3438           off += symsize;
3439         }
3440     }
3441
3442   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3443        p != input_objects->relobj_end();
3444        ++p)
3445     {
3446       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3447                                                         off, symtab);
3448       off += (index - local_symbol_index) * symsize;
3449       local_symbol_index = index;
3450     }
3451
3452   unsigned int local_symcount = local_symbol_index;
3453   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3454
3455   off_t dynoff;
3456   size_t dyn_global_index;
3457   size_t dyncount;
3458   if (this->dynsym_section_ == NULL)
3459     {
3460       dynoff = 0;
3461       dyn_global_index = 0;
3462       dyncount = 0;
3463     }
3464   else
3465     {
3466       dyn_global_index = this->dynsym_section_->info();
3467       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3468       dynoff = this->dynsym_section_->offset() + locsize;
3469       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3470       gold_assert(static_cast<off_t>(dyncount * symsize)
3471                   == this->dynsym_section_->data_size() - locsize);
3472     }
3473
3474   off_t global_off = off;
3475   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3476                          &this->sympool_, &local_symcount);
3477
3478   if (!parameters->options().strip_all())
3479     {
3480       this->sympool_.set_string_offsets();
3481
3482       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3483       Output_section* osymtab = this->make_output_section(symtab_name,
3484                                                           elfcpp::SHT_SYMTAB,
3485                                                           0, ORDER_INVALID,
3486                                                           false);
3487       this->symtab_section_ = osymtab;
3488
3489       Output_section_data* pos = new Output_data_fixed_space(off, align,
3490                                                              "** symtab");
3491       osymtab->add_output_section_data(pos);
3492
3493       // We generate a .symtab_shndx section if we have more than
3494       // SHN_LORESERVE sections.  Technically it is possible that we
3495       // don't need one, because it is possible that there are no
3496       // symbols in any of sections with indexes larger than
3497       // SHN_LORESERVE.  That is probably unusual, though, and it is
3498       // easier to always create one than to compute section indexes
3499       // twice (once here, once when writing out the symbols).
3500       if (shnum >= elfcpp::SHN_LORESERVE)
3501         {
3502           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3503                                                                false, NULL);
3504           Output_section* osymtab_xindex =
3505             this->make_output_section(symtab_xindex_name,
3506                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3507                                       ORDER_INVALID, false);
3508
3509           size_t symcount = off / symsize;
3510           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3511
3512           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3513
3514           osymtab_xindex->set_link_section(osymtab);
3515           osymtab_xindex->set_addralign(4);
3516           osymtab_xindex->set_entsize(4);
3517
3518           osymtab_xindex->set_after_input_sections();
3519
3520           // This tells the driver code to wait until the symbol table
3521           // has written out before writing out the postprocessing
3522           // sections, including the .symtab_shndx section.
3523           this->any_postprocessing_sections_ = true;
3524         }
3525
3526       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3527       Output_section* ostrtab = this->make_output_section(strtab_name,
3528                                                           elfcpp::SHT_STRTAB,
3529                                                           0, ORDER_INVALID,
3530                                                           false);
3531
3532       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3533       ostrtab->add_output_section_data(pstr);
3534
3535       off_t symtab_off;
3536       if (!parameters->incremental_update())
3537         symtab_off = align_address(*poff, align);
3538       else
3539         {
3540           symtab_off = this->allocate(off, align, *poff);
3541           if (off == -1)
3542             gold_fallback(_("out of patch space for symbol table; "
3543                             "relink with --incremental-full"));
3544           gold_debug(DEBUG_INCREMENTAL,
3545                      "create_symtab_sections: %08lx %08lx .symtab",
3546                      static_cast<long>(symtab_off),
3547                      static_cast<long>(off));
3548         }
3549
3550       symtab->set_file_offset(symtab_off + global_off);
3551       osymtab->set_file_offset(symtab_off);
3552       osymtab->finalize_data_size();
3553       osymtab->set_link_section(ostrtab);
3554       osymtab->set_info(local_symcount);
3555       osymtab->set_entsize(symsize);
3556
3557       if (symtab_off + off > *poff)
3558         *poff = symtab_off + off;
3559     }
3560 }
3561
3562 // Create the .shstrtab section, which holds the names of the
3563 // sections.  At the time this is called, we have created all the
3564 // output sections except .shstrtab itself.
3565
3566 Output_section*
3567 Layout::create_shstrtab()
3568 {
3569   // FIXME: We don't need to create a .shstrtab section if we are
3570   // stripping everything.
3571
3572   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3573
3574   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3575                                                  ORDER_INVALID, false);
3576
3577   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3578     {
3579       // We can't write out this section until we've set all the
3580       // section names, and we don't set the names of compressed
3581       // output sections until relocations are complete.  FIXME: With
3582       // the current names we use, this is unnecessary.
3583       os->set_after_input_sections();
3584     }
3585
3586   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3587   os->add_output_section_data(posd);
3588
3589   return os;
3590 }
3591
3592 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3593 // offset.
3594
3595 void
3596 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3597 {
3598   Output_section_headers* oshdrs;
3599   oshdrs = new Output_section_headers(this,
3600                                       &this->segment_list_,
3601                                       &this->section_list_,
3602                                       &this->unattached_section_list_,
3603                                       &this->namepool_,
3604                                       shstrtab_section);
3605   off_t off;
3606   if (!parameters->incremental_update())
3607     off = align_address(*poff, oshdrs->addralign());
3608   else
3609     {
3610       oshdrs->pre_finalize_data_size();
3611       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3612       if (off == -1)
3613           gold_fallback(_("out of patch space for section header table; "
3614                           "relink with --incremental-full"));
3615       gold_debug(DEBUG_INCREMENTAL,
3616                  "create_shdrs: %08lx %08lx (section header table)",
3617                  static_cast<long>(off),
3618                  static_cast<long>(off + oshdrs->data_size()));
3619     }
3620   oshdrs->set_address_and_file_offset(0, off);
3621   off += oshdrs->data_size();
3622   if (off > *poff)
3623     *poff = off;
3624   this->section_headers_ = oshdrs;
3625 }
3626
3627 // Count the allocated sections.
3628
3629 size_t
3630 Layout::allocated_output_section_count() const
3631 {
3632   size_t section_count = 0;
3633   for (Segment_list::const_iterator p = this->segment_list_.begin();
3634        p != this->segment_list_.end();
3635        ++p)
3636     section_count += (*p)->output_section_count();
3637   return section_count;
3638 }
3639
3640 // Create the dynamic symbol table.
3641
3642 void
3643 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3644                               Symbol_table* symtab,
3645                               Output_section** pdynstr,
3646                               unsigned int* plocal_dynamic_count,
3647                               std::vector<Symbol*>* pdynamic_symbols,
3648                               Versions* pversions)
3649 {
3650   // Count all the symbols in the dynamic symbol table, and set the
3651   // dynamic symbol indexes.
3652
3653   // Skip symbol 0, which is always all zeroes.
3654   unsigned int index = 1;
3655
3656   // Add STT_SECTION symbols for each Output section which needs one.
3657   for (Section_list::iterator p = this->section_list_.begin();
3658        p != this->section_list_.end();
3659        ++p)
3660     {
3661       if (!(*p)->needs_dynsym_index())
3662         (*p)->set_dynsym_index(-1U);
3663       else
3664         {
3665           (*p)->set_dynsym_index(index);
3666           ++index;
3667         }
3668     }
3669
3670   // Count the local symbols that need to go in the dynamic symbol table,
3671   // and set the dynamic symbol indexes.
3672   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3673        p != input_objects->relobj_end();
3674        ++p)
3675     {
3676       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3677       index = new_index;
3678     }
3679
3680   unsigned int local_symcount = index;
3681   *plocal_dynamic_count = local_symcount;
3682
3683   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3684                                      &this->dynpool_, pversions);
3685
3686   int symsize;
3687   unsigned int align;
3688   const int size = parameters->target().get_size();
3689   if (size == 32)
3690     {
3691       symsize = elfcpp::Elf_sizes<32>::sym_size;
3692       align = 4;
3693     }
3694   else if (size == 64)
3695     {
3696       symsize = elfcpp::Elf_sizes<64>::sym_size;
3697       align = 8;
3698     }
3699   else
3700     gold_unreachable();
3701
3702   // Create the dynamic symbol table section.
3703
3704   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3705                                                        elfcpp::SHT_DYNSYM,
3706                                                        elfcpp::SHF_ALLOC,
3707                                                        false,
3708                                                        ORDER_DYNAMIC_LINKER,
3709                                                        false);
3710
3711   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3712                                                            align,
3713                                                            "** dynsym");
3714   dynsym->add_output_section_data(odata);
3715
3716   dynsym->set_info(local_symcount);
3717   dynsym->set_entsize(symsize);
3718   dynsym->set_addralign(align);
3719
3720   this->dynsym_section_ = dynsym;
3721
3722   Output_data_dynamic* const odyn = this->dynamic_data_;
3723   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3724   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3725
3726   // If there are more than SHN_LORESERVE allocated sections, we
3727   // create a .dynsym_shndx section.  It is possible that we don't
3728   // need one, because it is possible that there are no dynamic
3729   // symbols in any of the sections with indexes larger than
3730   // SHN_LORESERVE.  This is probably unusual, though, and at this
3731   // time we don't know the actual section indexes so it is
3732   // inconvenient to check.
3733   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3734     {
3735       Output_section* dynsym_xindex =
3736         this->choose_output_section(NULL, ".dynsym_shndx",
3737                                     elfcpp::SHT_SYMTAB_SHNDX,
3738                                     elfcpp::SHF_ALLOC,
3739                                     false, ORDER_DYNAMIC_LINKER, false);
3740
3741       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3742
3743       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3744
3745       dynsym_xindex->set_link_section(dynsym);
3746       dynsym_xindex->set_addralign(4);
3747       dynsym_xindex->set_entsize(4);
3748
3749       dynsym_xindex->set_after_input_sections();
3750
3751       // This tells the driver code to wait until the symbol table has
3752       // written out before writing out the postprocessing sections,
3753       // including the .dynsym_shndx section.
3754       this->any_postprocessing_sections_ = true;
3755     }
3756
3757   // Create the dynamic string table section.
3758
3759   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3760                                                        elfcpp::SHT_STRTAB,
3761                                                        elfcpp::SHF_ALLOC,
3762                                                        false,
3763                                                        ORDER_DYNAMIC_LINKER,
3764                                                        false);
3765
3766   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3767   dynstr->add_output_section_data(strdata);
3768
3769   dynsym->set_link_section(dynstr);
3770   this->dynamic_section_->set_link_section(dynstr);
3771
3772   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3773   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3774
3775   *pdynstr = dynstr;
3776
3777   // Create the hash tables.
3778
3779   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3780       || strcmp(parameters->options().hash_style(), "both") == 0)
3781     {
3782       unsigned char* phash;
3783       unsigned int hashlen;
3784       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3785                                     &phash, &hashlen);
3786
3787       Output_section* hashsec =
3788         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3789                                     elfcpp::SHF_ALLOC, false,
3790                                     ORDER_DYNAMIC_LINKER, false);
3791
3792       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3793                                                                    hashlen,
3794                                                                    align,
3795                                                                    "** hash");
3796       hashsec->add_output_section_data(hashdata);
3797
3798       hashsec->set_link_section(dynsym);
3799       hashsec->set_entsize(4);
3800
3801       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3802     }
3803
3804   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3805       || strcmp(parameters->options().hash_style(), "both") == 0)
3806     {
3807       unsigned char* phash;
3808       unsigned int hashlen;
3809       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3810                                     &phash, &hashlen);
3811
3812       Output_section* hashsec =
3813         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3814                                     elfcpp::SHF_ALLOC, false,
3815                                     ORDER_DYNAMIC_LINKER, false);
3816
3817       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3818                                                                    hashlen,
3819                                                                    align,
3820                                                                    "** hash");
3821       hashsec->add_output_section_data(hashdata);
3822
3823       hashsec->set_link_section(dynsym);
3824
3825       // For a 64-bit target, the entries in .gnu.hash do not have a
3826       // uniform size, so we only set the entry size for a 32-bit
3827       // target.
3828       if (parameters->target().get_size() == 32)
3829         hashsec->set_entsize(4);
3830
3831       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3832     }
3833 }
3834
3835 // Assign offsets to each local portion of the dynamic symbol table.
3836
3837 void
3838 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3839 {
3840   Output_section* dynsym = this->dynsym_section_;
3841   gold_assert(dynsym != NULL);
3842
3843   off_t off = dynsym->offset();
3844
3845   // Skip the dummy symbol at the start of the section.
3846   off += dynsym->entsize();
3847
3848   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3849        p != input_objects->relobj_end();
3850        ++p)
3851     {
3852       unsigned int count = (*p)->set_local_dynsym_offset(off);
3853       off += count * dynsym->entsize();
3854     }
3855 }
3856
3857 // Create the version sections.
3858
3859 void
3860 Layout::create_version_sections(const Versions* versions,
3861                                 const Symbol_table* symtab,
3862                                 unsigned int local_symcount,
3863                                 const std::vector<Symbol*>& dynamic_symbols,
3864                                 const Output_section* dynstr)
3865 {
3866   if (!versions->any_defs() && !versions->any_needs())
3867     return;
3868
3869   switch (parameters->size_and_endianness())
3870     {
3871 #ifdef HAVE_TARGET_32_LITTLE
3872     case Parameters::TARGET_32_LITTLE:
3873       this->sized_create_version_sections<32, false>(versions, symtab,
3874                                                      local_symcount,
3875                                                      dynamic_symbols, dynstr);
3876       break;
3877 #endif
3878 #ifdef HAVE_TARGET_32_BIG
3879     case Parameters::TARGET_32_BIG:
3880       this->sized_create_version_sections<32, true>(versions, symtab,
3881                                                     local_symcount,
3882                                                     dynamic_symbols, dynstr);
3883       break;
3884 #endif
3885 #ifdef HAVE_TARGET_64_LITTLE
3886     case Parameters::TARGET_64_LITTLE:
3887       this->sized_create_version_sections<64, false>(versions, symtab,
3888                                                      local_symcount,
3889                                                      dynamic_symbols, dynstr);
3890       break;
3891 #endif
3892 #ifdef HAVE_TARGET_64_BIG
3893     case Parameters::TARGET_64_BIG:
3894       this->sized_create_version_sections<64, true>(versions, symtab,
3895                                                     local_symcount,
3896                                                     dynamic_symbols, dynstr);
3897       break;
3898 #endif
3899     default:
3900       gold_unreachable();
3901     }
3902 }
3903
3904 // Create the version sections, sized version.
3905
3906 template<int size, bool big_endian>
3907 void
3908 Layout::sized_create_version_sections(
3909     const Versions* versions,
3910     const Symbol_table* symtab,
3911     unsigned int local_symcount,
3912     const std::vector<Symbol*>& dynamic_symbols,
3913     const Output_section* dynstr)
3914 {
3915   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3916                                                      elfcpp::SHT_GNU_versym,
3917                                                      elfcpp::SHF_ALLOC,
3918                                                      false,
3919                                                      ORDER_DYNAMIC_LINKER,
3920                                                      false);
3921
3922   unsigned char* vbuf;
3923   unsigned int vsize;
3924   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3925                                                       local_symcount,
3926                                                       dynamic_symbols,
3927                                                       &vbuf, &vsize);
3928
3929   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3930                                                             "** versions");
3931
3932   vsec->add_output_section_data(vdata);
3933   vsec->set_entsize(2);
3934   vsec->set_link_section(this->dynsym_section_);
3935
3936   Output_data_dynamic* const odyn = this->dynamic_data_;
3937   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3938
3939   if (versions->any_defs())
3940     {
3941       Output_section* vdsec;
3942       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3943                                          elfcpp::SHT_GNU_verdef,
3944                                          elfcpp::SHF_ALLOC,
3945                                          false, ORDER_DYNAMIC_LINKER, false);
3946
3947       unsigned char* vdbuf;
3948       unsigned int vdsize;
3949       unsigned int vdentries;
3950       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3951                                                        &vdsize, &vdentries);
3952
3953       Output_section_data* vddata =
3954         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3955
3956       vdsec->add_output_section_data(vddata);
3957       vdsec->set_link_section(dynstr);
3958       vdsec->set_info(vdentries);
3959
3960       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3961       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3962     }
3963
3964   if (versions->any_needs())
3965     {
3966       Output_section* vnsec;
3967       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3968                                           elfcpp::SHT_GNU_verneed,
3969                                           elfcpp::SHF_ALLOC,
3970                                           false, ORDER_DYNAMIC_LINKER, false);
3971
3972       unsigned char* vnbuf;
3973       unsigned int vnsize;
3974       unsigned int vnentries;
3975       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3976                                                         &vnbuf, &vnsize,
3977                                                         &vnentries);
3978
3979       Output_section_data* vndata =
3980         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3981
3982       vnsec->add_output_section_data(vndata);
3983       vnsec->set_link_section(dynstr);
3984       vnsec->set_info(vnentries);
3985
3986       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3987       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3988     }
3989 }
3990
3991 // Create the .interp section and PT_INTERP segment.
3992
3993 void
3994 Layout::create_interp(const Target* target)
3995 {
3996   gold_assert(this->interp_segment_ == NULL);
3997
3998   const char* interp = parameters->options().dynamic_linker();
3999   if (interp == NULL)
4000     {
4001       interp = target->dynamic_linker();
4002       gold_assert(interp != NULL);
4003     }
4004
4005   size_t len = strlen(interp) + 1;
4006
4007   Output_section_data* odata = new Output_data_const(interp, len, 1);
4008
4009   Output_section* osec = this->choose_output_section(NULL, ".interp",
4010                                                      elfcpp::SHT_PROGBITS,
4011                                                      elfcpp::SHF_ALLOC,
4012                                                      false, ORDER_INTERP,
4013                                                      false);
4014   osec->add_output_section_data(odata);
4015 }
4016
4017 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4018 // called by the target-specific code.  This does nothing if not doing
4019 // a dynamic link.
4020
4021 // USE_REL is true for REL relocs rather than RELA relocs.
4022
4023 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4024
4025 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4026 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4027 // some targets have multiple reloc sections in PLT_REL.
4028
4029 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4030 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
4031
4032 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4033 // executable.
4034
4035 void
4036 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4037                                 const Output_data* plt_rel,
4038                                 const Output_data_reloc_generic* dyn_rel,
4039                                 bool add_debug, bool dynrel_includes_plt)
4040 {
4041   Output_data_dynamic* odyn = this->dynamic_data_;
4042   if (odyn == NULL)
4043     return;
4044
4045   if (plt_got != NULL && plt_got->output_section() != NULL)
4046     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4047
4048   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4049     {
4050       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4051       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4052       odyn->add_constant(elfcpp::DT_PLTREL,
4053                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4054     }
4055
4056   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4057     {
4058       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4059                                 dyn_rel);
4060       if (plt_rel != NULL && dynrel_includes_plt)
4061         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4062                                dyn_rel, plt_rel);
4063       else
4064         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4065                                dyn_rel);
4066       const int size = parameters->target().get_size();
4067       elfcpp::DT rel_tag;
4068       int rel_size;
4069       if (use_rel)
4070         {
4071           rel_tag = elfcpp::DT_RELENT;
4072           if (size == 32)
4073             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4074           else if (size == 64)
4075             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4076           else
4077             gold_unreachable();
4078         }
4079       else
4080         {
4081           rel_tag = elfcpp::DT_RELAENT;
4082           if (size == 32)
4083             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4084           else if (size == 64)
4085             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4086           else
4087             gold_unreachable();
4088         }
4089       odyn->add_constant(rel_tag, rel_size);
4090
4091       if (parameters->options().combreloc())
4092         {
4093           size_t c = dyn_rel->relative_reloc_count();
4094           if (c > 0)
4095             odyn->add_constant((use_rel
4096                                 ? elfcpp::DT_RELCOUNT
4097                                 : elfcpp::DT_RELACOUNT),
4098                                c);
4099         }
4100     }
4101
4102   if (add_debug && !parameters->options().shared())
4103     {
4104       // The value of the DT_DEBUG tag is filled in by the dynamic
4105       // linker at run time, and used by the debugger.
4106       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4107     }
4108 }
4109
4110 // Finish the .dynamic section and PT_DYNAMIC segment.
4111
4112 void
4113 Layout::finish_dynamic_section(const Input_objects* input_objects,
4114                                const Symbol_table* symtab)
4115 {
4116   if (!this->script_options_->saw_phdrs_clause())
4117     {
4118       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4119                                                        (elfcpp::PF_R
4120                                                         | elfcpp::PF_W));
4121       oseg->add_output_section_to_nonload(this->dynamic_section_,
4122                                           elfcpp::PF_R | elfcpp::PF_W);
4123     }
4124
4125   Output_data_dynamic* const odyn = this->dynamic_data_;
4126
4127   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4128        p != input_objects->dynobj_end();
4129        ++p)
4130     {
4131       if (!(*p)->is_needed() && (*p)->as_needed())
4132         {
4133           // This dynamic object was linked with --as-needed, but it
4134           // is not needed.
4135           continue;
4136         }
4137
4138       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4139     }
4140
4141   if (parameters->options().shared())
4142     {
4143       const char* soname = parameters->options().soname();
4144       if (soname != NULL)
4145         odyn->add_string(elfcpp::DT_SONAME, soname);
4146     }
4147
4148   Symbol* sym = symtab->lookup(parameters->options().init());
4149   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4150     odyn->add_symbol(elfcpp::DT_INIT, sym);
4151
4152   sym = symtab->lookup(parameters->options().fini());
4153   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4154     odyn->add_symbol(elfcpp::DT_FINI, sym);
4155
4156   // Look for .init_array, .preinit_array and .fini_array by checking
4157   // section types.
4158   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4159       p != this->section_list_.end();
4160       ++p)
4161     switch((*p)->type())
4162       {
4163       case elfcpp::SHT_FINI_ARRAY:
4164         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4165         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4166         break;
4167       case elfcpp::SHT_INIT_ARRAY:
4168         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4169         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4170         break;
4171       case elfcpp::SHT_PREINIT_ARRAY:
4172         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4173         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4174         break;
4175       default:
4176         break;
4177       }
4178   
4179   // Add a DT_RPATH entry if needed.
4180   const General_options::Dir_list& rpath(parameters->options().rpath());
4181   if (!rpath.empty())
4182     {
4183       std::string rpath_val;
4184       for (General_options::Dir_list::const_iterator p = rpath.begin();
4185            p != rpath.end();
4186            ++p)
4187         {
4188           if (rpath_val.empty())
4189             rpath_val = p->name();
4190           else
4191             {
4192               // Eliminate duplicates.
4193               General_options::Dir_list::const_iterator q;
4194               for (q = rpath.begin(); q != p; ++q)
4195                 if (q->name() == p->name())
4196                   break;
4197               if (q == p)
4198                 {
4199                   rpath_val += ':';
4200                   rpath_val += p->name();
4201                 }
4202             }
4203         }
4204
4205       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4206       if (parameters->options().enable_new_dtags())
4207         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4208     }
4209
4210   // Look for text segments that have dynamic relocations.
4211   bool have_textrel = false;
4212   if (!this->script_options_->saw_sections_clause())
4213     {
4214       for (Segment_list::const_iterator p = this->segment_list_.begin();
4215            p != this->segment_list_.end();
4216            ++p)
4217         {
4218           if ((*p)->type() == elfcpp::PT_LOAD
4219               && ((*p)->flags() & elfcpp::PF_W) == 0
4220               && (*p)->has_dynamic_reloc())
4221             {
4222               have_textrel = true;
4223               break;
4224             }
4225         }
4226     }
4227   else
4228     {
4229       // We don't know the section -> segment mapping, so we are
4230       // conservative and just look for readonly sections with
4231       // relocations.  If those sections wind up in writable segments,
4232       // then we have created an unnecessary DT_TEXTREL entry.
4233       for (Section_list::const_iterator p = this->section_list_.begin();
4234            p != this->section_list_.end();
4235            ++p)
4236         {
4237           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4238               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4239               && (*p)->has_dynamic_reloc())
4240             {
4241               have_textrel = true;
4242               break;
4243             }
4244         }
4245     }
4246
4247   if (parameters->options().filter() != NULL)
4248     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4249   if (parameters->options().any_auxiliary())
4250     {
4251       for (options::String_set::const_iterator p =
4252              parameters->options().auxiliary_begin();
4253            p != parameters->options().auxiliary_end();
4254            ++p)
4255         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4256     }
4257
4258   // Add a DT_FLAGS entry if necessary.
4259   unsigned int flags = 0;
4260   if (have_textrel)
4261     {
4262       // Add a DT_TEXTREL for compatibility with older loaders.
4263       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4264       flags |= elfcpp::DF_TEXTREL;
4265
4266       if (parameters->options().text())
4267         gold_error(_("read-only segment has dynamic relocations"));
4268       else if (parameters->options().warn_shared_textrel()
4269                && parameters->options().shared())
4270         gold_warning(_("shared library text segment is not shareable"));
4271     }
4272   if (parameters->options().shared() && this->has_static_tls())
4273     flags |= elfcpp::DF_STATIC_TLS;
4274   if (parameters->options().origin())
4275     flags |= elfcpp::DF_ORIGIN;
4276   if (parameters->options().Bsymbolic())
4277     {
4278       flags |= elfcpp::DF_SYMBOLIC;
4279       // Add DT_SYMBOLIC for compatibility with older loaders.
4280       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4281     }
4282   if (parameters->options().now())
4283     flags |= elfcpp::DF_BIND_NOW;
4284   if (flags != 0)
4285     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4286
4287   flags = 0;
4288   if (parameters->options().initfirst())
4289     flags |= elfcpp::DF_1_INITFIRST;
4290   if (parameters->options().interpose())
4291     flags |= elfcpp::DF_1_INTERPOSE;
4292   if (parameters->options().loadfltr())
4293     flags |= elfcpp::DF_1_LOADFLTR;
4294   if (parameters->options().nodefaultlib())
4295     flags |= elfcpp::DF_1_NODEFLIB;
4296   if (parameters->options().nodelete())
4297     flags |= elfcpp::DF_1_NODELETE;
4298   if (parameters->options().nodlopen())
4299     flags |= elfcpp::DF_1_NOOPEN;
4300   if (parameters->options().nodump())
4301     flags |= elfcpp::DF_1_NODUMP;
4302   if (!parameters->options().shared())
4303     flags &= ~(elfcpp::DF_1_INITFIRST
4304                | elfcpp::DF_1_NODELETE
4305                | elfcpp::DF_1_NOOPEN);
4306   if (parameters->options().origin())
4307     flags |= elfcpp::DF_1_ORIGIN;
4308   if (parameters->options().now())
4309     flags |= elfcpp::DF_1_NOW;
4310   if (flags != 0)
4311     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4312 }
4313
4314 // Set the size of the _DYNAMIC symbol table to be the size of the
4315 // dynamic data.
4316
4317 void
4318 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4319 {
4320   Output_data_dynamic* const odyn = this->dynamic_data_;
4321   odyn->finalize_data_size();
4322   off_t data_size = odyn->data_size();
4323   const int size = parameters->target().get_size();
4324   if (size == 32)
4325     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4326   else if (size == 64)
4327     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4328   else
4329     gold_unreachable();
4330 }
4331
4332 // The mapping of input section name prefixes to output section names.
4333 // In some cases one prefix is itself a prefix of another prefix; in
4334 // such a case the longer prefix must come first.  These prefixes are
4335 // based on the GNU linker default ELF linker script.
4336
4337 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4338 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4339 {
4340   MAPPING_INIT(".text.", ".text"),
4341   MAPPING_INIT(".rodata.", ".rodata"),
4342   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4343   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4344   MAPPING_INIT(".data.", ".data"),
4345   MAPPING_INIT(".bss.", ".bss"),
4346   MAPPING_INIT(".tdata.", ".tdata"),
4347   MAPPING_INIT(".tbss.", ".tbss"),
4348   MAPPING_INIT(".init_array.", ".init_array"),
4349   MAPPING_INIT(".fini_array.", ".fini_array"),
4350   MAPPING_INIT(".sdata.", ".sdata"),
4351   MAPPING_INIT(".sbss.", ".sbss"),
4352   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4353   // differently depending on whether it is creating a shared library.
4354   MAPPING_INIT(".sdata2.", ".sdata"),
4355   MAPPING_INIT(".sbss2.", ".sbss"),
4356   MAPPING_INIT(".lrodata.", ".lrodata"),
4357   MAPPING_INIT(".ldata.", ".ldata"),
4358   MAPPING_INIT(".lbss.", ".lbss"),
4359   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4360   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4361   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4362   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4363   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4364   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4365   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4366   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4367   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4368   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4369   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4370   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4371   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4372   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4373   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4374   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4375   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4376   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4377   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4378   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4379   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4380 };
4381 #undef MAPPING_INIT
4382
4383 const int Layout::section_name_mapping_count =
4384   (sizeof(Layout::section_name_mapping)
4385    / sizeof(Layout::section_name_mapping[0]));
4386
4387 // Choose the output section name to use given an input section name.
4388 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4389 // length of NAME.
4390
4391 const char*
4392 Layout::output_section_name(const Relobj* relobj, const char* name,
4393                             size_t* plen)
4394 {
4395   // gcc 4.3 generates the following sorts of section names when it
4396   // needs a section name specific to a function:
4397   //   .text.FN
4398   //   .rodata.FN
4399   //   .sdata2.FN
4400   //   .data.FN
4401   //   .data.rel.FN
4402   //   .data.rel.local.FN
4403   //   .data.rel.ro.FN
4404   //   .data.rel.ro.local.FN
4405   //   .sdata.FN
4406   //   .bss.FN
4407   //   .sbss.FN
4408   //   .tdata.FN
4409   //   .tbss.FN
4410
4411   // The GNU linker maps all of those to the part before the .FN,
4412   // except that .data.rel.local.FN is mapped to .data, and
4413   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4414   // beginning with .data.rel.ro.local are grouped together.
4415
4416   // For an anonymous namespace, the string FN can contain a '.'.
4417
4418   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4419   // GNU linker maps to .rodata.
4420
4421   // The .data.rel.ro sections are used with -z relro.  The sections
4422   // are recognized by name.  We use the same names that the GNU
4423   // linker does for these sections.
4424
4425   // It is hard to handle this in a principled way, so we don't even
4426   // try.  We use a table of mappings.  If the input section name is
4427   // not found in the table, we simply use it as the output section
4428   // name.
4429
4430   const Section_name_mapping* psnm = section_name_mapping;
4431   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4432     {
4433       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4434         {
4435           *plen = psnm->tolen;
4436           return psnm->to;
4437         }
4438     }
4439
4440   // As an additional complication, .ctors sections are output in
4441   // either .ctors or .init_array sections, and .dtors sections are
4442   // output in either .dtors or .fini_array sections.
4443   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4444     {
4445       if (parameters->options().ctors_in_init_array())
4446         {
4447           *plen = 11;
4448           return name[1] == 'c' ? ".init_array" : ".fini_array";
4449         }
4450       else
4451         {
4452           *plen = 6;
4453           return name[1] == 'c' ? ".ctors" : ".dtors";
4454         }
4455     }
4456   if (parameters->options().ctors_in_init_array()
4457       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4458     {
4459       // To make .init_array/.fini_array work with gcc we must exclude
4460       // .ctors and .dtors sections from the crtbegin and crtend
4461       // files.
4462       if (relobj == NULL
4463           || (!Layout::match_file_name(relobj, "crtbegin")
4464               && !Layout::match_file_name(relobj, "crtend")))
4465         {
4466           *plen = 11;
4467           return name[1] == 'c' ? ".init_array" : ".fini_array";
4468         }
4469     }
4470
4471   return name;
4472 }
4473
4474 // Return true if RELOBJ is an input file whose base name matches
4475 // FILE_NAME.  The base name must have an extension of ".o", and must
4476 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4477 // to match crtbegin.o as well as crtbeginS.o without getting confused
4478 // by other possibilities.  Overall matching the file name this way is
4479 // a dreadful hack, but the GNU linker does it in order to better
4480 // support gcc, and we need to be compatible.
4481
4482 bool
4483 Layout::match_file_name(const Relobj* relobj, const char* match)
4484 {
4485   const std::string& file_name(relobj->name());
4486   const char* base_name = lbasename(file_name.c_str());
4487   size_t match_len = strlen(match);
4488   if (strncmp(base_name, match, match_len) != 0)
4489     return false;
4490   size_t base_len = strlen(base_name);
4491   if (base_len != match_len + 2 && base_len != match_len + 3)
4492     return false;
4493   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4494 }
4495
4496 // Check if a comdat group or .gnu.linkonce section with the given
4497 // NAME is selected for the link.  If there is already a section,
4498 // *KEPT_SECTION is set to point to the existing section and the
4499 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4500 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4501 // *KEPT_SECTION is set to the internal copy and the function returns
4502 // true.
4503
4504 bool
4505 Layout::find_or_add_kept_section(const std::string& name,
4506                                  Relobj* object,
4507                                  unsigned int shndx,
4508                                  bool is_comdat,
4509                                  bool is_group_name,
4510                                  Kept_section** kept_section)
4511 {
4512   // It's normal to see a couple of entries here, for the x86 thunk
4513   // sections.  If we see more than a few, we're linking a C++
4514   // program, and we resize to get more space to minimize rehashing.
4515   if (this->signatures_.size() > 4
4516       && !this->resized_signatures_)
4517     {
4518       reserve_unordered_map(&this->signatures_,
4519                             this->number_of_input_files_ * 64);
4520       this->resized_signatures_ = true;
4521     }
4522
4523   Kept_section candidate;
4524   std::pair<Signatures::iterator, bool> ins =
4525     this->signatures_.insert(std::make_pair(name, candidate));
4526
4527   if (kept_section != NULL)
4528     *kept_section = &ins.first->second;
4529   if (ins.second)
4530     {
4531       // This is the first time we've seen this signature.
4532       ins.first->second.set_object(object);
4533       ins.first->second.set_shndx(shndx);
4534       if (is_comdat)
4535         ins.first->second.set_is_comdat();
4536       if (is_group_name)
4537         ins.first->second.set_is_group_name();
4538       return true;
4539     }
4540
4541   // We have already seen this signature.
4542
4543   if (ins.first->second.is_group_name())
4544     {
4545       // We've already seen a real section group with this signature.
4546       // If the kept group is from a plugin object, and we're in the
4547       // replacement phase, accept the new one as a replacement.
4548       if (ins.first->second.object() == NULL
4549           && parameters->options().plugins()->in_replacement_phase())
4550         {
4551           ins.first->second.set_object(object);
4552           ins.first->second.set_shndx(shndx);
4553           return true;
4554         }
4555       return false;
4556     }
4557   else if (is_group_name)
4558     {
4559       // This is a real section group, and we've already seen a
4560       // linkonce section with this signature.  Record that we've seen
4561       // a section group, and don't include this section group.
4562       ins.first->second.set_is_group_name();
4563       return false;
4564     }
4565   else
4566     {
4567       // We've already seen a linkonce section and this is a linkonce
4568       // section.  These don't block each other--this may be the same
4569       // symbol name with different section types.
4570       return true;
4571     }
4572 }
4573
4574 // Store the allocated sections into the section list.
4575
4576 void
4577 Layout::get_allocated_sections(Section_list* section_list) const
4578 {
4579   for (Section_list::const_iterator p = this->section_list_.begin();
4580        p != this->section_list_.end();
4581        ++p)
4582     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4583       section_list->push_back(*p);
4584 }
4585
4586 // Create an output segment.
4587
4588 Output_segment*
4589 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4590 {
4591   gold_assert(!parameters->options().relocatable());
4592   Output_segment* oseg = new Output_segment(type, flags);
4593   this->segment_list_.push_back(oseg);
4594
4595   if (type == elfcpp::PT_TLS)
4596     this->tls_segment_ = oseg;
4597   else if (type == elfcpp::PT_GNU_RELRO)
4598     this->relro_segment_ = oseg;
4599   else if (type == elfcpp::PT_INTERP)
4600     this->interp_segment_ = oseg;
4601
4602   return oseg;
4603 }
4604
4605 // Return the file offset of the normal symbol table.
4606
4607 off_t
4608 Layout::symtab_section_offset() const
4609 {
4610   if (this->symtab_section_ != NULL)
4611     return this->symtab_section_->offset();
4612   return 0;
4613 }
4614
4615 // Return the section index of the normal symbol table.  It may have
4616 // been stripped by the -s/--strip-all option.
4617
4618 unsigned int
4619 Layout::symtab_section_shndx() const
4620 {
4621   if (this->symtab_section_ != NULL)
4622     return this->symtab_section_->out_shndx();
4623   return 0;
4624 }
4625
4626 // Write out the Output_sections.  Most won't have anything to write,
4627 // since most of the data will come from input sections which are
4628 // handled elsewhere.  But some Output_sections do have Output_data.
4629
4630 void
4631 Layout::write_output_sections(Output_file* of) const
4632 {
4633   for (Section_list::const_iterator p = this->section_list_.begin();
4634        p != this->section_list_.end();
4635        ++p)
4636     {
4637       if (!(*p)->after_input_sections())
4638         (*p)->write(of);
4639     }
4640 }
4641
4642 // Write out data not associated with a section or the symbol table.
4643
4644 void
4645 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4646 {
4647   if (!parameters->options().strip_all())
4648     {
4649       const Output_section* symtab_section = this->symtab_section_;
4650       for (Section_list::const_iterator p = this->section_list_.begin();
4651            p != this->section_list_.end();
4652            ++p)
4653         {
4654           if ((*p)->needs_symtab_index())
4655             {
4656               gold_assert(symtab_section != NULL);
4657               unsigned int index = (*p)->symtab_index();
4658               gold_assert(index > 0 && index != -1U);
4659               off_t off = (symtab_section->offset()
4660                            + index * symtab_section->entsize());
4661               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4662             }
4663         }
4664     }
4665
4666   const Output_section* dynsym_section = this->dynsym_section_;
4667   for (Section_list::const_iterator p = this->section_list_.begin();
4668        p != this->section_list_.end();
4669        ++p)
4670     {
4671       if ((*p)->needs_dynsym_index())
4672         {
4673           gold_assert(dynsym_section != NULL);
4674           unsigned int index = (*p)->dynsym_index();
4675           gold_assert(index > 0 && index != -1U);
4676           off_t off = (dynsym_section->offset()
4677                        + index * dynsym_section->entsize());
4678           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4679         }
4680     }
4681
4682   // Write out the Output_data which are not in an Output_section.
4683   for (Data_list::const_iterator p = this->special_output_list_.begin();
4684        p != this->special_output_list_.end();
4685        ++p)
4686     (*p)->write(of);
4687 }
4688
4689 // Write out the Output_sections which can only be written after the
4690 // input sections are complete.
4691
4692 void
4693 Layout::write_sections_after_input_sections(Output_file* of)
4694 {
4695   // Determine the final section offsets, and thus the final output
4696   // file size.  Note we finalize the .shstrab last, to allow the
4697   // after_input_section sections to modify their section-names before
4698   // writing.
4699   if (this->any_postprocessing_sections_)
4700     {
4701       off_t off = this->output_file_size_;
4702       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4703
4704       // Now that we've finalized the names, we can finalize the shstrab.
4705       off =
4706         this->set_section_offsets(off,
4707                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4708
4709       if (off > this->output_file_size_)
4710         {
4711           of->resize(off);
4712           this->output_file_size_ = off;
4713         }
4714     }
4715
4716   for (Section_list::const_iterator p = this->section_list_.begin();
4717        p != this->section_list_.end();
4718        ++p)
4719     {
4720       if ((*p)->after_input_sections())
4721         (*p)->write(of);
4722     }
4723
4724   this->section_headers_->write(of);
4725 }
4726
4727 // If the build ID requires computing a checksum, do so here, and
4728 // write it out.  We compute a checksum over the entire file because
4729 // that is simplest.
4730
4731 void
4732 Layout::write_build_id(Output_file* of) const
4733 {
4734   if (this->build_id_note_ == NULL)
4735     return;
4736
4737   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4738
4739   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4740                                           this->build_id_note_->data_size());
4741
4742   const char* style = parameters->options().build_id();
4743   if (strcmp(style, "sha1") == 0)
4744     {
4745       sha1_ctx ctx;
4746       sha1_init_ctx(&ctx);
4747       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4748       sha1_finish_ctx(&ctx, ov);
4749     }
4750   else if (strcmp(style, "md5") == 0)
4751     {
4752       md5_ctx ctx;
4753       md5_init_ctx(&ctx);
4754       md5_process_bytes(iv, this->output_file_size_, &ctx);
4755       md5_finish_ctx(&ctx, ov);
4756     }
4757   else
4758     gold_unreachable();
4759
4760   of->write_output_view(this->build_id_note_->offset(),
4761                         this->build_id_note_->data_size(),
4762                         ov);
4763
4764   of->free_input_view(0, this->output_file_size_, iv);
4765 }
4766
4767 // Write out a binary file.  This is called after the link is
4768 // complete.  IN is the temporary output file we used to generate the
4769 // ELF code.  We simply walk through the segments, read them from
4770 // their file offset in IN, and write them to their load address in
4771 // the output file.  FIXME: with a bit more work, we could support
4772 // S-records and/or Intel hex format here.
4773
4774 void
4775 Layout::write_binary(Output_file* in) const
4776 {
4777   gold_assert(parameters->options().oformat_enum()
4778               == General_options::OBJECT_FORMAT_BINARY);
4779
4780   // Get the size of the binary file.
4781   uint64_t max_load_address = 0;
4782   for (Segment_list::const_iterator p = this->segment_list_.begin();
4783        p != this->segment_list_.end();
4784        ++p)
4785     {
4786       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4787         {
4788           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4789           if (max_paddr > max_load_address)
4790             max_load_address = max_paddr;
4791         }
4792     }
4793
4794   Output_file out(parameters->options().output_file_name());
4795   out.open(max_load_address);
4796
4797   for (Segment_list::const_iterator p = this->segment_list_.begin();
4798        p != this->segment_list_.end();
4799        ++p)
4800     {
4801       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4802         {
4803           const unsigned char* vin = in->get_input_view((*p)->offset(),
4804                                                         (*p)->filesz());
4805           unsigned char* vout = out.get_output_view((*p)->paddr(),
4806                                                     (*p)->filesz());
4807           memcpy(vout, vin, (*p)->filesz());
4808           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4809           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4810         }
4811     }
4812
4813   out.close();
4814 }
4815
4816 // Print the output sections to the map file.
4817
4818 void
4819 Layout::print_to_mapfile(Mapfile* mapfile) const
4820 {
4821   for (Segment_list::const_iterator p = this->segment_list_.begin();
4822        p != this->segment_list_.end();
4823        ++p)
4824     (*p)->print_sections_to_mapfile(mapfile);
4825 }
4826
4827 // Print statistical information to stderr.  This is used for --stats.
4828
4829 void
4830 Layout::print_stats() const
4831 {
4832   this->namepool_.print_stats("section name pool");
4833   this->sympool_.print_stats("output symbol name pool");
4834   this->dynpool_.print_stats("dynamic name pool");
4835
4836   for (Section_list::const_iterator p = this->section_list_.begin();
4837        p != this->section_list_.end();
4838        ++p)
4839     (*p)->print_merge_stats();
4840 }
4841
4842 // Write_sections_task methods.
4843
4844 // We can always run this task.
4845
4846 Task_token*
4847 Write_sections_task::is_runnable()
4848 {
4849   return NULL;
4850 }
4851
4852 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4853 // when finished.
4854
4855 void
4856 Write_sections_task::locks(Task_locker* tl)
4857 {
4858   tl->add(this, this->output_sections_blocker_);
4859   tl->add(this, this->final_blocker_);
4860 }
4861
4862 // Run the task--write out the data.
4863
4864 void
4865 Write_sections_task::run(Workqueue*)
4866 {
4867   this->layout_->write_output_sections(this->of_);
4868 }
4869
4870 // Write_data_task methods.
4871
4872 // We can always run this task.
4873
4874 Task_token*
4875 Write_data_task::is_runnable()
4876 {
4877   return NULL;
4878 }
4879
4880 // We need to unlock FINAL_BLOCKER when finished.
4881
4882 void
4883 Write_data_task::locks(Task_locker* tl)
4884 {
4885   tl->add(this, this->final_blocker_);
4886 }
4887
4888 // Run the task--write out the data.
4889
4890 void
4891 Write_data_task::run(Workqueue*)
4892 {
4893   this->layout_->write_data(this->symtab_, this->of_);
4894 }
4895
4896 // Write_symbols_task methods.
4897
4898 // We can always run this task.
4899
4900 Task_token*
4901 Write_symbols_task::is_runnable()
4902 {
4903   return NULL;
4904 }
4905
4906 // We need to unlock FINAL_BLOCKER when finished.
4907
4908 void
4909 Write_symbols_task::locks(Task_locker* tl)
4910 {
4911   tl->add(this, this->final_blocker_);
4912 }
4913
4914 // Run the task--write out the symbols.
4915
4916 void
4917 Write_symbols_task::run(Workqueue*)
4918 {
4919   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4920                                this->layout_->symtab_xindex(),
4921                                this->layout_->dynsym_xindex(), this->of_);
4922 }
4923
4924 // Write_after_input_sections_task methods.
4925
4926 // We can only run this task after the input sections have completed.
4927
4928 Task_token*
4929 Write_after_input_sections_task::is_runnable()
4930 {
4931   if (this->input_sections_blocker_->is_blocked())
4932     return this->input_sections_blocker_;
4933   return NULL;
4934 }
4935
4936 // We need to unlock FINAL_BLOCKER when finished.
4937
4938 void
4939 Write_after_input_sections_task::locks(Task_locker* tl)
4940 {
4941   tl->add(this, this->final_blocker_);
4942 }
4943
4944 // Run the task.
4945
4946 void
4947 Write_after_input_sections_task::run(Workqueue*)
4948 {
4949   this->layout_->write_sections_after_input_sections(this->of_);
4950 }
4951
4952 // Close_task_runner methods.
4953
4954 // Run the task--close the file.
4955
4956 void
4957 Close_task_runner::run(Workqueue*, const Task*)
4958 {
4959   // If we need to compute a checksum for the BUILD if, we do so here.
4960   this->layout_->write_build_id(this->of_);
4961
4962   // If we've been asked to create a binary file, we do so here.
4963   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4964     this->layout_->write_binary(this->of_);
4965
4966   this->of_->close();
4967 }
4968
4969 // Instantiate the templates we need.  We could use the configure
4970 // script to restrict this to only the ones for implemented targets.
4971
4972 #ifdef HAVE_TARGET_32_LITTLE
4973 template
4974 Output_section*
4975 Layout::init_fixed_output_section<32, false>(
4976     const char* name,
4977     elfcpp::Shdr<32, false>& shdr);
4978 #endif
4979
4980 #ifdef HAVE_TARGET_32_BIG
4981 template
4982 Output_section*
4983 Layout::init_fixed_output_section<32, true>(
4984     const char* name,
4985     elfcpp::Shdr<32, true>& shdr);
4986 #endif
4987
4988 #ifdef HAVE_TARGET_64_LITTLE
4989 template
4990 Output_section*
4991 Layout::init_fixed_output_section<64, false>(
4992     const char* name,
4993     elfcpp::Shdr<64, false>& shdr);
4994 #endif
4995
4996 #ifdef HAVE_TARGET_64_BIG
4997 template
4998 Output_section*
4999 Layout::init_fixed_output_section<64, true>(
5000     const char* name,
5001     elfcpp::Shdr<64, true>& shdr);
5002 #endif
5003
5004 #ifdef HAVE_TARGET_32_LITTLE
5005 template
5006 Output_section*
5007 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5008                           unsigned int shndx,
5009                           const char* name,
5010                           const elfcpp::Shdr<32, false>& shdr,
5011                           unsigned int, unsigned int, off_t*);
5012 #endif
5013
5014 #ifdef HAVE_TARGET_32_BIG
5015 template
5016 Output_section*
5017 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5018                          unsigned int shndx,
5019                          const char* name,
5020                          const elfcpp::Shdr<32, true>& shdr,
5021                          unsigned int, unsigned int, off_t*);
5022 #endif
5023
5024 #ifdef HAVE_TARGET_64_LITTLE
5025 template
5026 Output_section*
5027 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5028                           unsigned int shndx,
5029                           const char* name,
5030                           const elfcpp::Shdr<64, false>& shdr,
5031                           unsigned int, unsigned int, off_t*);
5032 #endif
5033
5034 #ifdef HAVE_TARGET_64_BIG
5035 template
5036 Output_section*
5037 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5038                          unsigned int shndx,
5039                          const char* name,
5040                          const elfcpp::Shdr<64, true>& shdr,
5041                          unsigned int, unsigned int, off_t*);
5042 #endif
5043
5044 #ifdef HAVE_TARGET_32_LITTLE
5045 template
5046 Output_section*
5047 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5048                                 unsigned int reloc_shndx,
5049                                 const elfcpp::Shdr<32, false>& shdr,
5050                                 Output_section* data_section,
5051                                 Relocatable_relocs* rr);
5052 #endif
5053
5054 #ifdef HAVE_TARGET_32_BIG
5055 template
5056 Output_section*
5057 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5058                                unsigned int reloc_shndx,
5059                                const elfcpp::Shdr<32, true>& shdr,
5060                                Output_section* data_section,
5061                                Relocatable_relocs* rr);
5062 #endif
5063
5064 #ifdef HAVE_TARGET_64_LITTLE
5065 template
5066 Output_section*
5067 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5068                                 unsigned int reloc_shndx,
5069                                 const elfcpp::Shdr<64, false>& shdr,
5070                                 Output_section* data_section,
5071                                 Relocatable_relocs* rr);
5072 #endif
5073
5074 #ifdef HAVE_TARGET_64_BIG
5075 template
5076 Output_section*
5077 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5078                                unsigned int reloc_shndx,
5079                                const elfcpp::Shdr<64, true>& shdr,
5080                                Output_section* data_section,
5081                                Relocatable_relocs* rr);
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_LITTLE
5085 template
5086 void
5087 Layout::layout_group<32, false>(Symbol_table* symtab,
5088                                 Sized_relobj_file<32, false>* object,
5089                                 unsigned int,
5090                                 const char* group_section_name,
5091                                 const char* signature,
5092                                 const elfcpp::Shdr<32, false>& shdr,
5093                                 elfcpp::Elf_Word flags,
5094                                 std::vector<unsigned int>* shndxes);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_32_BIG
5098 template
5099 void
5100 Layout::layout_group<32, true>(Symbol_table* symtab,
5101                                Sized_relobj_file<32, true>* object,
5102                                unsigned int,
5103                                const char* group_section_name,
5104                                const char* signature,
5105                                const elfcpp::Shdr<32, true>& shdr,
5106                                elfcpp::Elf_Word flags,
5107                                std::vector<unsigned int>* shndxes);
5108 #endif
5109
5110 #ifdef HAVE_TARGET_64_LITTLE
5111 template
5112 void
5113 Layout::layout_group<64, false>(Symbol_table* symtab,
5114                                 Sized_relobj_file<64, false>* object,
5115                                 unsigned int,
5116                                 const char* group_section_name,
5117                                 const char* signature,
5118                                 const elfcpp::Shdr<64, false>& shdr,
5119                                 elfcpp::Elf_Word flags,
5120                                 std::vector<unsigned int>* shndxes);
5121 #endif
5122
5123 #ifdef HAVE_TARGET_64_BIG
5124 template
5125 void
5126 Layout::layout_group<64, true>(Symbol_table* symtab,
5127                                Sized_relobj_file<64, true>* object,
5128                                unsigned int,
5129                                const char* group_section_name,
5130                                const char* signature,
5131                                const elfcpp::Shdr<64, true>& shdr,
5132                                elfcpp::Elf_Word flags,
5133                                std::vector<unsigned int>* shndxes);
5134 #endif
5135
5136 #ifdef HAVE_TARGET_32_LITTLE
5137 template
5138 Output_section*
5139 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5140                                    const unsigned char* symbols,
5141                                    off_t symbols_size,
5142                                    const unsigned char* symbol_names,
5143                                    off_t symbol_names_size,
5144                                    unsigned int shndx,
5145                                    const elfcpp::Shdr<32, false>& shdr,
5146                                    unsigned int reloc_shndx,
5147                                    unsigned int reloc_type,
5148                                    off_t* off);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_32_BIG
5152 template
5153 Output_section*
5154 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5155                                   const unsigned char* symbols,
5156                                   off_t symbols_size,
5157                                   const unsigned char* symbol_names,
5158                                   off_t symbol_names_size,
5159                                   unsigned int shndx,
5160                                   const elfcpp::Shdr<32, true>& shdr,
5161                                   unsigned int reloc_shndx,
5162                                   unsigned int reloc_type,
5163                                   off_t* off);
5164 #endif
5165
5166 #ifdef HAVE_TARGET_64_LITTLE
5167 template
5168 Output_section*
5169 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5170                                    const unsigned char* symbols,
5171                                    off_t symbols_size,
5172                                    const unsigned char* symbol_names,
5173                                    off_t symbol_names_size,
5174                                    unsigned int shndx,
5175                                    const elfcpp::Shdr<64, false>& shdr,
5176                                    unsigned int reloc_shndx,
5177                                    unsigned int reloc_type,
5178                                    off_t* off);
5179 #endif
5180
5181 #ifdef HAVE_TARGET_64_BIG
5182 template
5183 Output_section*
5184 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5185                                   const unsigned char* symbols,
5186                                   off_t symbols_size,
5187                                   const unsigned char* symbol_names,
5188                                   off_t symbol_names_size,
5189                                   unsigned int shndx,
5190                                   const elfcpp::Shdr<64, true>& shdr,
5191                                   unsigned int reloc_shndx,
5192                                   unsigned int reloc_type,
5193                                   off_t* off);
5194 #endif
5195
5196 } // End namespace gold.