Implement -s and -S options which strip symbols.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Return whether PREFIX is a prefix of STR.
90
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
93 {
94   return strncmp(prefix, str, strlen(prefix)) == 0;
95 }
96
97 // Whether to include this section in the link.
98
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102                         const elfcpp::Shdr<size, big_endian>& shdr)
103 {
104   // Some section types are never linked.  Some are only linked when
105   // doing a relocateable link.
106   switch (shdr.get_sh_type())
107     {
108     case elfcpp::SHT_NULL:
109     case elfcpp::SHT_SYMTAB:
110     case elfcpp::SHT_DYNSYM:
111     case elfcpp::SHT_STRTAB:
112     case elfcpp::SHT_HASH:
113     case elfcpp::SHT_DYNAMIC:
114     case elfcpp::SHT_SYMTAB_SHNDX:
115       return false;
116
117     case elfcpp::SHT_RELA:
118     case elfcpp::SHT_REL:
119     case elfcpp::SHT_GROUP:
120       return parameters->output_is_object();
121
122     case elfcpp::SHT_PROGBITS:
123       if (parameters->strip_debug()
124           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
125         {
126           // Debugging sections can only be recognized by name.
127           if (is_prefix_of(".debug", name)
128               || is_prefix_of(".gnu.linkonce.wi.", name)
129               || is_prefix_of(".line", name)
130               || is_prefix_of(".stab", name))
131             return false;
132         }
133       return true;
134
135     default:
136       return true;
137     }
138 }
139
140 // Return an output section named NAME, or NULL if there is none.
141
142 Output_section*
143 Layout::find_output_section(const char* name) const
144 {
145   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146        p != this->section_name_map_.end();
147        ++p)
148     if (strcmp(p->second->name(), name) == 0)
149       return p->second;
150   return NULL;
151 }
152
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear.  Return NULL if there is none.
155
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158                             elfcpp::Elf_Word clear) const
159 {
160   for (Segment_list::const_iterator p = this->segment_list_.begin();
161        p != this->segment_list_.end();
162        ++p)
163     if (static_cast<elfcpp::PT>((*p)->type()) == type
164         && ((*p)->flags() & set) == set
165         && ((*p)->flags() & clear) == 0)
166       return *p;
167   return NULL;
168 }
169
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
172
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
176 {
177   // We should ignore some flags.
178   flags &= ~ (elfcpp::SHF_INFO_LINK
179               | elfcpp::SHF_LINK_ORDER
180               | elfcpp::SHF_GROUP
181               | elfcpp::SHF_MERGE
182               | elfcpp::SHF_STRINGS);
183
184   const Key key(name_key, std::make_pair(type, flags));
185   const std::pair<Key, Output_section*> v(key, NULL);
186   std::pair<Section_name_map::iterator, bool> ins(
187     this->section_name_map_.insert(v));
188
189   if (!ins.second)
190     return ins.first->second;
191   else
192     {
193       // This is the first time we've seen this name/type/flags
194       // combination.
195       Output_section* os = this->make_output_section(name, type, flags);
196       ins.first->second = os;
197       return os;
198     }
199 }
200
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
203 // offset of this input section without the output section.
204
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
209 {
210   if (!this->include_section(object, name, shdr))
211     return NULL;
212
213   // If we are not doing a relocateable link, choose the name to use
214   // for the output section.
215   size_t len = strlen(name);
216   if (!parameters->output_is_object())
217     name = Layout::output_section_name(name, &len);
218
219   // FIXME: Handle SHF_OS_NONCONFORMING here.
220
221   // Canonicalize the section name.
222   Stringpool::Key name_key;
223   name = this->namepool_.add(name, len, &name_key);
224
225   // Find the output section.  The output section is selected based on
226   // the section name, type, and flags.
227   Output_section* os = this->get_output_section(name, name_key,
228                                                 shdr.get_sh_type(),
229                                                 shdr.get_sh_flags());
230
231   // Special GNU handling of sections named .eh_frame.
232   if (!parameters->output_is_object()
233       && strcmp(name, ".eh_frame") == 0
234       && shdr.get_sh_size() > 0
235       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
237     {
238       this->layout_eh_frame(object, shndx, name, shdr, os, off);
239       return os;
240     }
241
242   // FIXME: Handle SHF_LINK_ORDER somewhere.
243
244   *off = os->add_input_section(object, shndx, name, shdr);
245
246   return os;
247 }
248
249 // Special GNU handling of sections named .eh_frame.  They will
250 // normally hold exception frame data.
251
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255                         unsigned int shndx,
256                         const char* name,
257                         const elfcpp::Shdr<size, big_endian>& shdr,
258                         Output_section* os, off_t* off)
259 {
260   if (this->eh_frame_section_ == NULL)
261     {
262       this->eh_frame_section_ = os;
263
264       if (this->options_.create_eh_frame_hdr())
265         {
266           Stringpool::Key hdr_name_key;
267           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268                                                      &hdr_name_key);
269           Output_section* hdr_os =
270             this->get_output_section(hdr_name, hdr_name_key,
271                                      elfcpp::SHT_PROGBITS,
272                                      elfcpp::SHF_ALLOC);
273
274           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
275           hdr_os->add_output_section_data(hdr_posd);
276
277           Output_segment* hdr_oseg =
278             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
279           this->segment_list_.push_back(hdr_oseg);
280           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
281         }
282     }
283
284   gold_assert(this->eh_frame_section_ == os);
285
286   *off = os->add_input_section(object, shndx, name, shdr);
287 }
288
289 // Add POSD to an output section using NAME, TYPE, and FLAGS.
290
291 void
292 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
293                                 elfcpp::Elf_Xword flags,
294                                 Output_section_data* posd)
295 {
296   // Canonicalize the name.
297   Stringpool::Key name_key;
298   name = this->namepool_.add(name, &name_key);
299
300   Output_section* os = this->get_output_section(name, name_key, type, flags);
301   os->add_output_section_data(posd);
302 }
303
304 // Map section flags to segment flags.
305
306 elfcpp::Elf_Word
307 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
308 {
309   elfcpp::Elf_Word ret = elfcpp::PF_R;
310   if ((flags & elfcpp::SHF_WRITE) != 0)
311     ret |= elfcpp::PF_W;
312   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
313     ret |= elfcpp::PF_X;
314   return ret;
315 }
316
317 // Make a new Output_section, and attach it to segments as
318 // appropriate.
319
320 Output_section*
321 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
322                             elfcpp::Elf_Xword flags)
323 {
324   Output_section* os = new Output_section(name, type, flags);
325   this->section_list_.push_back(os);
326
327   if ((flags & elfcpp::SHF_ALLOC) == 0)
328     this->unattached_section_list_.push_back(os);
329   else
330     {
331       // This output section goes into a PT_LOAD segment.
332
333       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
334
335       // The only thing we really care about for PT_LOAD segments is
336       // whether or not they are writable, so that is how we search
337       // for them.  People who need segments sorted on some other
338       // basis will have to wait until we implement a mechanism for
339       // them to describe the segments they want.
340
341       Segment_list::const_iterator p;
342       for (p = this->segment_list_.begin();
343            p != this->segment_list_.end();
344            ++p)
345         {
346           if ((*p)->type() == elfcpp::PT_LOAD
347               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
348             {
349               (*p)->add_output_section(os, seg_flags);
350               break;
351             }
352         }
353
354       if (p == this->segment_list_.end())
355         {
356           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
357                                                     seg_flags);
358           this->segment_list_.push_back(oseg);
359           oseg->add_output_section(os, seg_flags);
360         }
361
362       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
363       // segment.
364       if (type == elfcpp::SHT_NOTE)
365         {
366           // See if we already have an equivalent PT_NOTE segment.
367           for (p = this->segment_list_.begin();
368                p != segment_list_.end();
369                ++p)
370             {
371               if ((*p)->type() == elfcpp::PT_NOTE
372                   && (((*p)->flags() & elfcpp::PF_W)
373                       == (seg_flags & elfcpp::PF_W)))
374                 {
375                   (*p)->add_output_section(os, seg_flags);
376                   break;
377                 }
378             }
379
380           if (p == this->segment_list_.end())
381             {
382               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
383                                                         seg_flags);
384               this->segment_list_.push_back(oseg);
385               oseg->add_output_section(os, seg_flags);
386             }
387         }
388
389       // If we see a loadable SHF_TLS section, we create a PT_TLS
390       // segment.  There can only be one such segment.
391       if ((flags & elfcpp::SHF_TLS) != 0)
392         {
393           if (this->tls_segment_ == NULL)
394             {
395               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
396                                                       seg_flags);
397               this->segment_list_.push_back(this->tls_segment_);
398             }
399           this->tls_segment_->add_output_section(os, seg_flags);
400         }
401     }
402
403   return os;
404 }
405
406 // Create the dynamic sections which are needed before we read the
407 // relocs.
408
409 void
410 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
411                                         Symbol_table* symtab)
412 {
413   if (!input_objects->any_dynamic())
414     return;
415
416   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
417   this->dynamic_section_ = this->make_output_section(dynamic_name,
418                                                      elfcpp::SHT_DYNAMIC,
419                                                      (elfcpp::SHF_ALLOC
420                                                       | elfcpp::SHF_WRITE));
421
422   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
423                                 this->dynamic_section_, 0, 0,
424                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
425                                 elfcpp::STV_HIDDEN, 0, false, false);
426
427   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
428
429   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
430 }
431
432 // For each output section whose name can be represented as C symbol,
433 // define __start and __stop symbols for the section.  This is a GNU
434 // extension.
435
436 void
437 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
438 {
439   for (Section_list::const_iterator p = this->section_list_.begin();
440        p != this->section_list_.end();
441        ++p)
442     {
443       const char* const name = (*p)->name();
444       if (name[strspn(name,
445                       ("0123456789"
446                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
447                        "abcdefghijklmnopqrstuvwxyz"
448                        "_"))]
449           == '\0')
450         {
451           const std::string name_string(name);
452           const std::string start_name("__start_" + name_string);
453           const std::string stop_name("__stop_" + name_string);
454
455           symtab->define_in_output_data(target,
456                                         start_name.c_str(),
457                                         NULL, // version
458                                         *p,
459                                         0, // value
460                                         0, // symsize
461                                         elfcpp::STT_NOTYPE,
462                                         elfcpp::STB_GLOBAL,
463                                         elfcpp::STV_DEFAULT,
464                                         0, // nonvis
465                                         false, // offset_is_from_end
466                                         false); // only_if_ref
467
468           symtab->define_in_output_data(target,
469                                         stop_name.c_str(),
470                                         NULL, // version
471                                         *p,
472                                         0, // value
473                                         0, // symsize
474                                         elfcpp::STT_NOTYPE,
475                                         elfcpp::STB_GLOBAL,
476                                         elfcpp::STV_DEFAULT,
477                                         0, // nonvis
478                                         true, // offset_is_from_end
479                                         false); // only_if_ref
480         }
481     }
482 }
483
484 // Find the first read-only PT_LOAD segment, creating one if
485 // necessary.
486
487 Output_segment*
488 Layout::find_first_load_seg()
489 {
490   for (Segment_list::const_iterator p = this->segment_list_.begin();
491        p != this->segment_list_.end();
492        ++p)
493     {
494       if ((*p)->type() == elfcpp::PT_LOAD
495           && ((*p)->flags() & elfcpp::PF_R) != 0
496           && ((*p)->flags() & elfcpp::PF_W) == 0)
497         return *p;
498     }
499
500   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
501   this->segment_list_.push_back(load_seg);
502   return load_seg;
503 }
504
505 // Finalize the layout.  When this is called, we have created all the
506 // output sections and all the output segments which are based on
507 // input sections.  We have several things to do, and we have to do
508 // them in the right order, so that we get the right results correctly
509 // and efficiently.
510
511 // 1) Finalize the list of output segments and create the segment
512 // table header.
513
514 // 2) Finalize the dynamic symbol table and associated sections.
515
516 // 3) Determine the final file offset of all the output segments.
517
518 // 4) Determine the final file offset of all the SHF_ALLOC output
519 // sections.
520
521 // 5) Create the symbol table sections and the section name table
522 // section.
523
524 // 6) Finalize the symbol table: set symbol values to their final
525 // value and make a final determination of which symbols are going
526 // into the output symbol table.
527
528 // 7) Create the section table header.
529
530 // 8) Determine the final file offset of all the output sections which
531 // are not SHF_ALLOC, including the section table header.
532
533 // 9) Finalize the ELF file header.
534
535 // This function returns the size of the output file.
536
537 off_t
538 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
539 {
540   Target* const target = input_objects->target();
541
542   target->finalize_sections(this);
543
544   this->create_note_section();
545
546   Output_segment* phdr_seg = NULL;
547   if (input_objects->any_dynamic())
548     {
549       // There was a dynamic object in the link.  We need to create
550       // some information for the dynamic linker.
551
552       // Create the PT_PHDR segment which will hold the program
553       // headers.
554       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
555       this->segment_list_.push_back(phdr_seg);
556
557       // Create the dynamic symbol table, including the hash table.
558       Output_section* dynstr;
559       std::vector<Symbol*> dynamic_symbols;
560       unsigned int local_dynamic_count;
561       Versions versions;
562       this->create_dynamic_symtab(target, symtab, &dynstr,
563                                   &local_dynamic_count, &dynamic_symbols,
564                                   &versions);
565
566       // Create the .interp section to hold the name of the
567       // interpreter, and put it in a PT_INTERP segment.
568       this->create_interp(target);
569
570       // Finish the .dynamic section to hold the dynamic data, and put
571       // it in a PT_DYNAMIC segment.
572       this->finish_dynamic_section(input_objects, symtab);
573
574       // We should have added everything we need to the dynamic string
575       // table.
576       this->dynpool_.set_string_offsets();
577
578       // Create the version sections.  We can't do this until the
579       // dynamic string table is complete.
580       this->create_version_sections(&versions, local_dynamic_count,
581                                     dynamic_symbols, dynstr);
582     }
583
584   // FIXME: Handle PT_GNU_STACK.
585
586   Output_segment* load_seg = this->find_first_load_seg();
587
588   // Lay out the segment headers.
589   Output_segment_headers* segment_headers;
590   segment_headers = new Output_segment_headers(this->segment_list_);
591   load_seg->add_initial_output_data(segment_headers);
592   this->special_output_list_.push_back(segment_headers);
593   if (phdr_seg != NULL)
594     phdr_seg->add_initial_output_data(segment_headers);
595
596   // Lay out the file header.
597   Output_file_header* file_header;
598   file_header = new Output_file_header(target, symtab, segment_headers);
599   load_seg->add_initial_output_data(file_header);
600   this->special_output_list_.push_back(file_header);
601
602   // We set the output section indexes in set_segment_offsets and
603   // set_section_offsets.
604   unsigned int shndx = 1;
605
606   // Set the file offsets of all the segments, and all the sections
607   // they contain.
608   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
609
610   // Create the symbol table sections.
611   this->create_symtab_sections(input_objects, symtab, &off);
612
613   // Create the .shstrtab section.
614   Output_section* shstrtab_section = this->create_shstrtab();
615
616   // Set the file offsets of all the sections not associated with
617   // segments.
618   off = this->set_section_offsets(off, &shndx);
619
620   // Create the section table header.
621   Output_section_headers* oshdrs = this->create_shdrs(&off);
622
623   file_header->set_section_info(oshdrs, shstrtab_section);
624
625   // Now we know exactly where everything goes in the output file.
626   Output_data::layout_complete();
627
628   return off;
629 }
630
631 // Create a .note section for an executable or shared library.  This
632 // records the version of gold used to create the binary.
633
634 void
635 Layout::create_note_section()
636 {
637   if (parameters->output_is_object())
638     return;
639
640   const int size = parameters->get_size();
641
642   // The contents of the .note section.
643   const char* name = "GNU";
644   std::string desc(std::string("gold ") + gold::get_version_string());
645   size_t namesz = strlen(name) + 1;
646   size_t aligned_namesz = align_address(namesz, size / 8);
647   size_t descsz = desc.length() + 1;
648   size_t aligned_descsz = align_address(descsz, size / 8);
649   const int note_type = 4;
650
651   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
652
653   unsigned char buffer[128];
654   gold_assert(sizeof buffer >= notesz);
655   memset(buffer, 0, notesz);
656
657   bool is_big_endian = parameters->is_big_endian();
658
659   if (size == 32)
660     {
661       if (!is_big_endian)
662         {
663           elfcpp::Swap<32, false>::writeval(buffer, namesz);
664           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
665           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
666         }
667       else
668         {
669           elfcpp::Swap<32, true>::writeval(buffer, namesz);
670           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
671           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
672         }
673     }
674   else if (size == 64)
675     {
676       if (!is_big_endian)
677         {
678           elfcpp::Swap<64, false>::writeval(buffer, namesz);
679           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
680           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
681         }
682       else
683         {
684           elfcpp::Swap<64, true>::writeval(buffer, namesz);
685           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
686           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
687         }
688     }
689   else
690     gold_unreachable();
691
692   memcpy(buffer + 3 * (size / 8), name, namesz);
693   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
694
695   const char* note_name = this->namepool_.add(".note", NULL);
696   Output_section* os = this->make_output_section(note_name,
697                                                  elfcpp::SHT_NOTE,
698                                                  0);
699   Output_section_data* posd = new Output_data_const(buffer, notesz,
700                                                     size / 8);
701   os->add_output_section_data(posd);
702 }
703
704 // Return whether SEG1 should be before SEG2 in the output file.  This
705 // is based entirely on the segment type and flags.  When this is
706 // called the segment addresses has normally not yet been set.
707
708 bool
709 Layout::segment_precedes(const Output_segment* seg1,
710                          const Output_segment* seg2)
711 {
712   elfcpp::Elf_Word type1 = seg1->type();
713   elfcpp::Elf_Word type2 = seg2->type();
714
715   // The single PT_PHDR segment is required to precede any loadable
716   // segment.  We simply make it always first.
717   if (type1 == elfcpp::PT_PHDR)
718     {
719       gold_assert(type2 != elfcpp::PT_PHDR);
720       return true;
721     }
722   if (type2 == elfcpp::PT_PHDR)
723     return false;
724
725   // The single PT_INTERP segment is required to precede any loadable
726   // segment.  We simply make it always second.
727   if (type1 == elfcpp::PT_INTERP)
728     {
729       gold_assert(type2 != elfcpp::PT_INTERP);
730       return true;
731     }
732   if (type2 == elfcpp::PT_INTERP)
733     return false;
734
735   // We then put PT_LOAD segments before any other segments.
736   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
737     return true;
738   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
739     return false;
740
741   // We put the PT_TLS segment last, because that is where the dynamic
742   // linker expects to find it (this is just for efficiency; other
743   // positions would also work correctly).
744   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
745     return false;
746   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
747     return true;
748
749   const elfcpp::Elf_Word flags1 = seg1->flags();
750   const elfcpp::Elf_Word flags2 = seg2->flags();
751
752   // The order of non-PT_LOAD segments is unimportant.  We simply sort
753   // by the numeric segment type and flags values.  There should not
754   // be more than one segment with the same type and flags.
755   if (type1 != elfcpp::PT_LOAD)
756     {
757       if (type1 != type2)
758         return type1 < type2;
759       gold_assert(flags1 != flags2);
760       return flags1 < flags2;
761     }
762
763   // We sort PT_LOAD segments based on the flags.  Readonly segments
764   // come before writable segments.  Then executable segments come
765   // before non-executable segments.  Then the unlikely case of a
766   // non-readable segment comes before the normal case of a readable
767   // segment.  If there are multiple segments with the same type and
768   // flags, we require that the address be set, and we sort by
769   // virtual address and then physical address.
770   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
771     return (flags1 & elfcpp::PF_W) == 0;
772   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
773     return (flags1 & elfcpp::PF_X) != 0;
774   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
775     return (flags1 & elfcpp::PF_R) == 0;
776
777   uint64_t vaddr1 = seg1->vaddr();
778   uint64_t vaddr2 = seg2->vaddr();
779   if (vaddr1 != vaddr2)
780     return vaddr1 < vaddr2;
781
782   uint64_t paddr1 = seg1->paddr();
783   uint64_t paddr2 = seg2->paddr();
784   gold_assert(paddr1 != paddr2);
785   return paddr1 < paddr2;
786 }
787
788 // Set the file offsets of all the segments, and all the sections they
789 // contain.  They have all been created.  LOAD_SEG must be be laid out
790 // first.  Return the offset of the data to follow.
791
792 off_t
793 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
794                             unsigned int *pshndx)
795 {
796   // Sort them into the final order.
797   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
798             Layout::Compare_segments());
799
800   // Find the PT_LOAD segments, and set their addresses and offsets
801   // and their section's addresses and offsets.
802   uint64_t addr = target->text_segment_address();
803   off_t off = 0;
804   bool was_readonly = false;
805   for (Segment_list::iterator p = this->segment_list_.begin();
806        p != this->segment_list_.end();
807        ++p)
808     {
809       if ((*p)->type() == elfcpp::PT_LOAD)
810         {
811           if (load_seg != NULL && load_seg != *p)
812             gold_unreachable();
813           load_seg = NULL;
814
815           // If the last segment was readonly, and this one is not,
816           // then skip the address forward one page, maintaining the
817           // same position within the page.  This lets us store both
818           // segments overlapping on a single page in the file, but
819           // the loader will put them on different pages in memory.
820
821           uint64_t orig_addr = addr;
822           uint64_t orig_off = off;
823
824           uint64_t aligned_addr = addr;
825           uint64_t abi_pagesize = target->abi_pagesize();
826
827           // FIXME: This should depend on the -n and -N options.
828           (*p)->set_minimum_addralign(target->common_pagesize());
829
830           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
831             {
832               uint64_t align = (*p)->addralign();
833
834               addr = align_address(addr, align);
835               aligned_addr = addr;
836               if ((addr & (abi_pagesize - 1)) != 0)
837                 addr = addr + abi_pagesize;
838             }
839
840           unsigned int shndx_hold = *pshndx;
841           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
842           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
843
844           // Now that we know the size of this segment, we may be able
845           // to save a page in memory, at the cost of wasting some
846           // file space, by instead aligning to the start of a new
847           // page.  Here we use the real machine page size rather than
848           // the ABI mandated page size.
849
850           if (aligned_addr != addr)
851             {
852               uint64_t common_pagesize = target->common_pagesize();
853               uint64_t first_off = (common_pagesize
854                                     - (aligned_addr
855                                        & (common_pagesize - 1)));
856               uint64_t last_off = new_addr & (common_pagesize - 1);
857               if (first_off > 0
858                   && last_off > 0
859                   && ((aligned_addr & ~ (common_pagesize - 1))
860                       != (new_addr & ~ (common_pagesize - 1)))
861                   && first_off + last_off <= common_pagesize)
862                 {
863                   *pshndx = shndx_hold;
864                   addr = align_address(aligned_addr, common_pagesize);
865                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
866                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
867                 }
868             }
869
870           addr = new_addr;
871
872           if (((*p)->flags() & elfcpp::PF_W) == 0)
873             was_readonly = true;
874         }
875     }
876
877   // Handle the non-PT_LOAD segments, setting their offsets from their
878   // section's offsets.
879   for (Segment_list::iterator p = this->segment_list_.begin();
880        p != this->segment_list_.end();
881        ++p)
882     {
883       if ((*p)->type() != elfcpp::PT_LOAD)
884         (*p)->set_offset();
885     }
886
887   return off;
888 }
889
890 // Set the file offset of all the sections not associated with a
891 // segment.
892
893 off_t
894 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
895 {
896   for (Section_list::iterator p = this->unattached_section_list_.begin();
897        p != this->unattached_section_list_.end();
898        ++p)
899     {
900       (*p)->set_out_shndx(*pshndx);
901       ++*pshndx;
902       if ((*p)->offset() != -1)
903         continue;
904       off = align_address(off, (*p)->addralign());
905       (*p)->set_address(0, off);
906       off += (*p)->data_size();
907     }
908   return off;
909 }
910
911 // Create the symbol table sections.  Here we also set the final
912 // values of the symbols.  At this point all the loadable sections are
913 // fully laid out.
914
915 void
916 Layout::create_symtab_sections(const Input_objects* input_objects,
917                                Symbol_table* symtab,
918                                off_t* poff)
919 {
920   int symsize;
921   unsigned int align;
922   if (parameters->get_size() == 32)
923     {
924       symsize = elfcpp::Elf_sizes<32>::sym_size;
925       align = 4;
926     }
927   else if (parameters->get_size() == 64)
928     {
929       symsize = elfcpp::Elf_sizes<64>::sym_size;
930       align = 8;
931     }
932   else
933     gold_unreachable();
934
935   off_t off = *poff;
936   off = align_address(off, align);
937   off_t startoff = off;
938
939   // Save space for the dummy symbol at the start of the section.  We
940   // never bother to write this out--it will just be left as zero.
941   off += symsize;
942   unsigned int local_symbol_index = 1;
943
944   // Add STT_SECTION symbols for each Output section which needs one.
945   for (Section_list::iterator p = this->section_list_.begin();
946        p != this->section_list_.end();
947        ++p)
948     {
949       if (!(*p)->needs_symtab_index())
950         (*p)->set_symtab_index(-1U);
951       else
952         {
953           (*p)->set_symtab_index(local_symbol_index);
954           ++local_symbol_index;
955           off += symsize;
956         }
957     }
958
959   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
960        p != input_objects->relobj_end();
961        ++p)
962     {
963       Task_lock_obj<Object> tlo(**p);
964       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
965                                                         off,
966                                                         &this->sympool_);
967       off += (index - local_symbol_index) * symsize;
968       local_symbol_index = index;
969     }
970
971   unsigned int local_symcount = local_symbol_index;
972   gold_assert(local_symcount * symsize == off - startoff);
973
974   off_t dynoff;
975   size_t dyn_global_index;
976   size_t dyncount;
977   if (this->dynsym_section_ == NULL)
978     {
979       dynoff = 0;
980       dyn_global_index = 0;
981       dyncount = 0;
982     }
983   else
984     {
985       dyn_global_index = this->dynsym_section_->info();
986       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
987       dynoff = this->dynsym_section_->offset() + locsize;
988       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
989       gold_assert(static_cast<off_t>(dyncount * symsize)
990                   == this->dynsym_section_->data_size() - locsize);
991     }
992
993   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
994                          dyncount, &this->sympool_);
995
996   if (!parameters->strip_all())
997     {
998       this->sympool_.set_string_offsets();
999
1000       const char* symtab_name = this->namepool_.add(".symtab", NULL);
1001       Output_section* osymtab = this->make_output_section(symtab_name,
1002                                                           elfcpp::SHT_SYMTAB,
1003                                                           0);
1004       this->symtab_section_ = osymtab;
1005
1006       Output_section_data* pos = new Output_data_space(off - startoff,
1007                                                        align);
1008       osymtab->add_output_section_data(pos);
1009
1010       const char* strtab_name = this->namepool_.add(".strtab", NULL);
1011       Output_section* ostrtab = this->make_output_section(strtab_name,
1012                                                           elfcpp::SHT_STRTAB,
1013                                                           0);
1014
1015       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1016       ostrtab->add_output_section_data(pstr);
1017
1018       osymtab->set_address(0, startoff);
1019       osymtab->set_link_section(ostrtab);
1020       osymtab->set_info(local_symcount);
1021       osymtab->set_entsize(symsize);
1022
1023       *poff = off;
1024     }
1025 }
1026
1027 // Create the .shstrtab section, which holds the names of the
1028 // sections.  At the time this is called, we have created all the
1029 // output sections except .shstrtab itself.
1030
1031 Output_section*
1032 Layout::create_shstrtab()
1033 {
1034   // FIXME: We don't need to create a .shstrtab section if we are
1035   // stripping everything.
1036
1037   const char* name = this->namepool_.add(".shstrtab", NULL);
1038
1039   this->namepool_.set_string_offsets();
1040
1041   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1042
1043   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1044   os->add_output_section_data(posd);
1045
1046   return os;
1047 }
1048
1049 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1050 // offset.
1051
1052 Output_section_headers*
1053 Layout::create_shdrs(off_t* poff)
1054 {
1055   Output_section_headers* oshdrs;
1056   oshdrs = new Output_section_headers(this,
1057                                       &this->segment_list_,
1058                                       &this->unattached_section_list_,
1059                                       &this->namepool_);
1060   off_t off = align_address(*poff, oshdrs->addralign());
1061   oshdrs->set_address(0, off);
1062   off += oshdrs->data_size();
1063   *poff = off;
1064   this->special_output_list_.push_back(oshdrs);
1065   return oshdrs;
1066 }
1067
1068 // Create the dynamic symbol table.
1069
1070 void
1071 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1072                               Output_section **pdynstr,
1073                               unsigned int* plocal_dynamic_count,
1074                               std::vector<Symbol*>* pdynamic_symbols,
1075                               Versions* pversions)
1076 {
1077   // Count all the symbols in the dynamic symbol table, and set the
1078   // dynamic symbol indexes.
1079
1080   // Skip symbol 0, which is always all zeroes.
1081   unsigned int index = 1;
1082
1083   // Add STT_SECTION symbols for each Output section which needs one.
1084   for (Section_list::iterator p = this->section_list_.begin();
1085        p != this->section_list_.end();
1086        ++p)
1087     {
1088       if (!(*p)->needs_dynsym_index())
1089         (*p)->set_dynsym_index(-1U);
1090       else
1091         {
1092           (*p)->set_dynsym_index(index);
1093           ++index;
1094         }
1095     }
1096
1097   // FIXME: Some targets apparently require local symbols in the
1098   // dynamic symbol table.  Here is where we will have to count them,
1099   // and set the dynamic symbol indexes, and add the names to
1100   // this->dynpool_.
1101
1102   unsigned int local_symcount = index;
1103   *plocal_dynamic_count = local_symcount;
1104
1105   // FIXME: We have to tell set_dynsym_indexes whether the
1106   // -E/--export-dynamic option was used.
1107   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1108                                      pdynamic_symbols, &this->dynpool_,
1109                                      pversions);
1110
1111   int symsize;
1112   unsigned int align;
1113   const int size = parameters->get_size();
1114   if (size == 32)
1115     {
1116       symsize = elfcpp::Elf_sizes<32>::sym_size;
1117       align = 4;
1118     }
1119   else if (size == 64)
1120     {
1121       symsize = elfcpp::Elf_sizes<64>::sym_size;
1122       align = 8;
1123     }
1124   else
1125     gold_unreachable();
1126
1127   // Create the dynamic symbol table section.
1128
1129   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
1130   Output_section* dynsym = this->make_output_section(dynsym_name,
1131                                                      elfcpp::SHT_DYNSYM,
1132                                                      elfcpp::SHF_ALLOC);
1133
1134   Output_section_data* odata = new Output_data_space(index * symsize,
1135                                                      align);
1136   dynsym->add_output_section_data(odata);
1137
1138   dynsym->set_info(local_symcount);
1139   dynsym->set_entsize(symsize);
1140   dynsym->set_addralign(align);
1141
1142   this->dynsym_section_ = dynsym;
1143
1144   Output_data_dynamic* const odyn = this->dynamic_data_;
1145   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1146   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1147
1148   // Create the dynamic string table section.
1149
1150   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1151   Output_section* dynstr = this->make_output_section(dynstr_name,
1152                                                      elfcpp::SHT_STRTAB,
1153                                                      elfcpp::SHF_ALLOC);
1154
1155   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1156   dynstr->add_output_section_data(strdata);
1157
1158   dynsym->set_link_section(dynstr);
1159   this->dynamic_section_->set_link_section(dynstr);
1160
1161   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1162   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1163
1164   *pdynstr = dynstr;
1165
1166   // Create the hash tables.
1167
1168   // FIXME: We need an option to create a GNU hash table.
1169
1170   unsigned char* phash;
1171   unsigned int hashlen;
1172   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1173                                 &phash, &hashlen);
1174
1175   const char* hash_name = this->namepool_.add(".hash", NULL);
1176   Output_section* hashsec = this->make_output_section(hash_name,
1177                                                       elfcpp::SHT_HASH,
1178                                                       elfcpp::SHF_ALLOC);
1179
1180   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1181                                                                hashlen,
1182                                                                align);
1183   hashsec->add_output_section_data(hashdata);
1184
1185   hashsec->set_link_section(dynsym);
1186   hashsec->set_entsize(4);
1187
1188   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1189 }
1190
1191 // Create the version sections.
1192
1193 void
1194 Layout::create_version_sections(const Versions* versions,
1195                                 unsigned int local_symcount,
1196                                 const std::vector<Symbol*>& dynamic_symbols,
1197                                 const Output_section* dynstr)
1198 {
1199   if (!versions->any_defs() && !versions->any_needs())
1200     return;
1201
1202   if (parameters->get_size() == 32)
1203     {
1204       if (parameters->is_big_endian())
1205         {
1206 #ifdef HAVE_TARGET_32_BIG
1207           this->sized_create_version_sections
1208               SELECT_SIZE_ENDIAN_NAME(32, true)(
1209                   versions, local_symcount, dynamic_symbols, dynstr
1210                   SELECT_SIZE_ENDIAN(32, true));
1211 #else
1212           gold_unreachable();
1213 #endif
1214         }
1215       else
1216         {
1217 #ifdef HAVE_TARGET_32_LITTLE
1218           this->sized_create_version_sections
1219               SELECT_SIZE_ENDIAN_NAME(32, false)(
1220                   versions, local_symcount, dynamic_symbols, dynstr
1221                   SELECT_SIZE_ENDIAN(32, false));
1222 #else
1223           gold_unreachable();
1224 #endif
1225         }
1226     }
1227   else if (parameters->get_size() == 64)
1228     {
1229       if (parameters->is_big_endian())
1230         {
1231 #ifdef HAVE_TARGET_64_BIG
1232           this->sized_create_version_sections
1233               SELECT_SIZE_ENDIAN_NAME(64, true)(
1234                   versions, local_symcount, dynamic_symbols, dynstr
1235                   SELECT_SIZE_ENDIAN(64, true));
1236 #else
1237           gold_unreachable();
1238 #endif
1239         }
1240       else
1241         {
1242 #ifdef HAVE_TARGET_64_LITTLE
1243           this->sized_create_version_sections
1244               SELECT_SIZE_ENDIAN_NAME(64, false)(
1245                   versions, local_symcount, dynamic_symbols, dynstr
1246                   SELECT_SIZE_ENDIAN(64, false));
1247 #else
1248           gold_unreachable();
1249 #endif
1250         }
1251     }
1252   else
1253     gold_unreachable();
1254 }
1255
1256 // Create the version sections, sized version.
1257
1258 template<int size, bool big_endian>
1259 void
1260 Layout::sized_create_version_sections(
1261     const Versions* versions,
1262     unsigned int local_symcount,
1263     const std::vector<Symbol*>& dynamic_symbols,
1264     const Output_section* dynstr
1265     ACCEPT_SIZE_ENDIAN)
1266 {
1267   const char* vname = this->namepool_.add(".gnu.version", NULL);
1268   Output_section* vsec = this->make_output_section(vname,
1269                                                    elfcpp::SHT_GNU_versym,
1270                                                    elfcpp::SHF_ALLOC);
1271
1272   unsigned char* vbuf;
1273   unsigned int vsize;
1274   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1275       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1276       SELECT_SIZE_ENDIAN(size, big_endian));
1277
1278   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1279
1280   vsec->add_output_section_data(vdata);
1281   vsec->set_entsize(2);
1282   vsec->set_link_section(this->dynsym_section_);
1283
1284   Output_data_dynamic* const odyn = this->dynamic_data_;
1285   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1286
1287   if (versions->any_defs())
1288     {
1289       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1290       Output_section *vdsec;
1291       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1292                                         elfcpp::SHF_ALLOC);
1293
1294       unsigned char* vdbuf;
1295       unsigned int vdsize;
1296       unsigned int vdentries;
1297       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1298           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1299           SELECT_SIZE_ENDIAN(size, big_endian));
1300
1301       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1302                                                                  vdsize,
1303                                                                  4);
1304
1305       vdsec->add_output_section_data(vddata);
1306       vdsec->set_link_section(dynstr);
1307       vdsec->set_info(vdentries);
1308
1309       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1310       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1311     }
1312
1313   if (versions->any_needs())
1314     {
1315       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1316       Output_section* vnsec;
1317       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1318                                         elfcpp::SHF_ALLOC);
1319
1320       unsigned char* vnbuf;
1321       unsigned int vnsize;
1322       unsigned int vnentries;
1323       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1324         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1325          SELECT_SIZE_ENDIAN(size, big_endian));
1326
1327       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1328                                                                  vnsize,
1329                                                                  4);
1330
1331       vnsec->add_output_section_data(vndata);
1332       vnsec->set_link_section(dynstr);
1333       vnsec->set_info(vnentries);
1334
1335       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1336       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1337     }
1338 }
1339
1340 // Create the .interp section and PT_INTERP segment.
1341
1342 void
1343 Layout::create_interp(const Target* target)
1344 {
1345   const char* interp = this->options_.dynamic_linker();
1346   if (interp == NULL)
1347     {
1348       interp = target->dynamic_linker();
1349       gold_assert(interp != NULL);
1350     }
1351
1352   size_t len = strlen(interp) + 1;
1353
1354   Output_section_data* odata = new Output_data_const(interp, len, 1);
1355
1356   const char* interp_name = this->namepool_.add(".interp", NULL);
1357   Output_section* osec = this->make_output_section(interp_name,
1358                                                    elfcpp::SHT_PROGBITS,
1359                                                    elfcpp::SHF_ALLOC);
1360   osec->add_output_section_data(odata);
1361
1362   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1363   this->segment_list_.push_back(oseg);
1364   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1365 }
1366
1367 // Finish the .dynamic section and PT_DYNAMIC segment.
1368
1369 void
1370 Layout::finish_dynamic_section(const Input_objects* input_objects,
1371                                const Symbol_table* symtab)
1372 {
1373   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1374                                             elfcpp::PF_R | elfcpp::PF_W);
1375   this->segment_list_.push_back(oseg);
1376   oseg->add_initial_output_section(this->dynamic_section_,
1377                                    elfcpp::PF_R | elfcpp::PF_W);
1378
1379   Output_data_dynamic* const odyn = this->dynamic_data_;
1380
1381   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1382        p != input_objects->dynobj_end();
1383        ++p)
1384     {
1385       // FIXME: Handle --as-needed.
1386       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1387     }
1388
1389   // FIXME: Support --init and --fini.
1390   Symbol* sym = symtab->lookup("_init");
1391   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1392     odyn->add_symbol(elfcpp::DT_INIT, sym);
1393
1394   sym = symtab->lookup("_fini");
1395   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1396     odyn->add_symbol(elfcpp::DT_FINI, sym);
1397
1398   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1399
1400   // Add a DT_RPATH entry if needed.
1401   const General_options::Dir_list& rpath(this->options_.rpath());
1402   if (!rpath.empty())
1403     {
1404       std::string rpath_val;
1405       for (General_options::Dir_list::const_iterator p = rpath.begin();
1406            p != rpath.end();
1407            ++p)
1408         {
1409           if (rpath_val.empty())
1410             rpath_val = p->name();
1411           else
1412             {
1413               // Eliminate duplicates.
1414               General_options::Dir_list::const_iterator q;
1415               for (q = rpath.begin(); q != p; ++q)
1416                 if (q->name() == p->name())
1417                   break;
1418               if (q == p)
1419                 {
1420                   rpath_val += ':';
1421                   rpath_val += p->name();
1422                 }
1423             }
1424         }
1425
1426       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1427     }
1428 }
1429
1430 // The mapping of .gnu.linkonce section names to real section names.
1431
1432 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1433 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1434 {
1435   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1436   MAPPING_INIT("t", ".text"),
1437   MAPPING_INIT("r", ".rodata"),
1438   MAPPING_INIT("d", ".data"),
1439   MAPPING_INIT("b", ".bss"),
1440   MAPPING_INIT("s", ".sdata"),
1441   MAPPING_INIT("sb", ".sbss"),
1442   MAPPING_INIT("s2", ".sdata2"),
1443   MAPPING_INIT("sb2", ".sbss2"),
1444   MAPPING_INIT("wi", ".debug_info"),
1445   MAPPING_INIT("td", ".tdata"),
1446   MAPPING_INIT("tb", ".tbss"),
1447   MAPPING_INIT("lr", ".lrodata"),
1448   MAPPING_INIT("l", ".ldata"),
1449   MAPPING_INIT("lb", ".lbss"),
1450 };
1451 #undef MAPPING_INIT
1452
1453 const int Layout::linkonce_mapping_count =
1454   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1455
1456 // Return the name of the output section to use for a .gnu.linkonce
1457 // section.  This is based on the default ELF linker script of the old
1458 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1459 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1460 // initialized to the length of NAME.
1461
1462 const char*
1463 Layout::linkonce_output_name(const char* name, size_t *plen)
1464 {
1465   const char* s = name + sizeof(".gnu.linkonce") - 1;
1466   if (*s != '.')
1467     return name;
1468   ++s;
1469   const Linkonce_mapping* plm = linkonce_mapping;
1470   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1471     {
1472       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1473         {
1474           *plen = plm->tolen;
1475           return plm->to;
1476         }
1477     }
1478   return name;
1479 }
1480
1481 // Choose the output section name to use given an input section name.
1482 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1483 // length of NAME.
1484
1485 const char*
1486 Layout::output_section_name(const char* name, size_t* plen)
1487 {
1488   if (Layout::is_linkonce(name))
1489     {
1490       // .gnu.linkonce sections are laid out as though they were named
1491       // for the sections are placed into.
1492       return Layout::linkonce_output_name(name, plen);
1493     }
1494
1495   // If the section name has no '.', or only an initial '.', we use
1496   // the name unchanged (i.e., ".text" is unchanged).
1497
1498   // Otherwise, if the section name does not include ".rel", we drop
1499   // the last '.'  and everything that follows (i.e., ".text.XXX"
1500   // becomes ".text").
1501
1502   // Otherwise, if the section name has zero or one '.' after the
1503   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1504   // unchanged).
1505
1506   // Otherwise, we drop the last '.' and everything that follows
1507   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1508
1509   const char* s = name;
1510   if (*s == '.')
1511     ++s;
1512   const char* sdot = strchr(s, '.');
1513   if (sdot == NULL)
1514     return name;
1515
1516   const char* srel = strstr(s, ".rel");
1517   if (srel == NULL)
1518     {
1519       *plen = sdot - name;
1520       return name;
1521     }
1522
1523   sdot = strchr(srel + 1, '.');
1524   if (sdot == NULL)
1525     return name;
1526   sdot = strchr(sdot + 1, '.');
1527   if (sdot == NULL)
1528     return name;
1529
1530   *plen = sdot - name;
1531   return name;
1532 }
1533
1534 // Record the signature of a comdat section, and return whether to
1535 // include it in the link.  If GROUP is true, this is a regular
1536 // section group.  If GROUP is false, this is a group signature
1537 // derived from the name of a linkonce section.  We want linkonce
1538 // signatures and group signatures to block each other, but we don't
1539 // want a linkonce signature to block another linkonce signature.
1540
1541 bool
1542 Layout::add_comdat(const char* signature, bool group)
1543 {
1544   std::string sig(signature);
1545   std::pair<Signatures::iterator, bool> ins(
1546     this->signatures_.insert(std::make_pair(sig, group)));
1547
1548   if (ins.second)
1549     {
1550       // This is the first time we've seen this signature.
1551       return true;
1552     }
1553
1554   if (ins.first->second)
1555     {
1556       // We've already seen a real section group with this signature.
1557       return false;
1558     }
1559   else if (group)
1560     {
1561       // This is a real section group, and we've already seen a
1562       // linkonce section with this signature.  Record that we've seen
1563       // a section group, and don't include this section group.
1564       ins.first->second = true;
1565       return false;
1566     }
1567   else
1568     {
1569       // We've already seen a linkonce section and this is a linkonce
1570       // section.  These don't block each other--this may be the same
1571       // symbol name with different section types.
1572       return true;
1573     }
1574 }
1575
1576 // Write out data not associated with a section or the symbol table.
1577
1578 void
1579 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1580 {
1581   if (!parameters->strip_all())
1582     {
1583       const Output_section* symtab_section = this->symtab_section_;
1584       for (Section_list::const_iterator p = this->section_list_.begin();
1585            p != this->section_list_.end();
1586            ++p)
1587         {
1588           if ((*p)->needs_symtab_index())
1589             {
1590               gold_assert(symtab_section != NULL);
1591               unsigned int index = (*p)->symtab_index();
1592               gold_assert(index > 0 && index != -1U);
1593               off_t off = (symtab_section->offset()
1594                            + index * symtab_section->entsize());
1595               symtab->write_section_symbol(*p, of, off);
1596             }
1597         }
1598     }
1599
1600   const Output_section* dynsym_section = this->dynsym_section_;
1601   for (Section_list::const_iterator p = this->section_list_.begin();
1602        p != this->section_list_.end();
1603        ++p)
1604     {
1605       if ((*p)->needs_dynsym_index())
1606         {
1607           gold_assert(dynsym_section != NULL);
1608           unsigned int index = (*p)->dynsym_index();
1609           gold_assert(index > 0 && index != -1U);
1610           off_t off = (dynsym_section->offset()
1611                        + index * dynsym_section->entsize());
1612           symtab->write_section_symbol(*p, of, off);
1613         }
1614     }
1615
1616   // Write out the Output_sections.  Most won't have anything to
1617   // write, since most of the data will come from input sections which
1618   // are handled elsewhere.  But some Output_sections do have
1619   // Output_data.
1620   for (Section_list::const_iterator p = this->section_list_.begin();
1621        p != this->section_list_.end();
1622        ++p)
1623     (*p)->write(of);
1624
1625   // Write out the Output_data which are not in an Output_section.
1626   for (Data_list::const_iterator p = this->special_output_list_.begin();
1627        p != this->special_output_list_.end();
1628        ++p)
1629     (*p)->write(of);
1630 }
1631
1632 // Write_data_task methods.
1633
1634 // We can always run this task.
1635
1636 Task::Is_runnable_type
1637 Write_data_task::is_runnable(Workqueue*)
1638 {
1639   return IS_RUNNABLE;
1640 }
1641
1642 // We need to unlock FINAL_BLOCKER when finished.
1643
1644 Task_locker*
1645 Write_data_task::locks(Workqueue* workqueue)
1646 {
1647   return new Task_locker_block(*this->final_blocker_, workqueue);
1648 }
1649
1650 // Run the task--write out the data.
1651
1652 void
1653 Write_data_task::run(Workqueue*)
1654 {
1655   this->layout_->write_data(this->symtab_, this->of_);
1656 }
1657
1658 // Write_symbols_task methods.
1659
1660 // We can always run this task.
1661
1662 Task::Is_runnable_type
1663 Write_symbols_task::is_runnable(Workqueue*)
1664 {
1665   return IS_RUNNABLE;
1666 }
1667
1668 // We need to unlock FINAL_BLOCKER when finished.
1669
1670 Task_locker*
1671 Write_symbols_task::locks(Workqueue* workqueue)
1672 {
1673   return new Task_locker_block(*this->final_blocker_, workqueue);
1674 }
1675
1676 // Run the task--write out the symbols.
1677
1678 void
1679 Write_symbols_task::run(Workqueue*)
1680 {
1681   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1682                                this->of_);
1683 }
1684
1685 // Close_task_runner methods.
1686
1687 // Run the task--close the file.
1688
1689 void
1690 Close_task_runner::run(Workqueue*)
1691 {
1692   this->of_->close();
1693 }
1694
1695 // Instantiate the templates we need.  We could use the configure
1696 // script to restrict this to only the ones for implemented targets.
1697
1698 #ifdef HAVE_TARGET_32_LITTLE
1699 template
1700 Output_section*
1701 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1702                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1703 #endif
1704
1705 #ifdef HAVE_TARGET_32_BIG
1706 template
1707 Output_section*
1708 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1709                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1710 #endif
1711
1712 #ifdef HAVE_TARGET_64_LITTLE
1713 template
1714 Output_section*
1715 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1716                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1717 #endif
1718
1719 #ifdef HAVE_TARGET_64_BIG
1720 template
1721 Output_section*
1722 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1723                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1724 #endif
1725
1726
1727 } // End namespace gold.