PR 17819: Fix --build-id=tree when using --compress-debug-sections.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239
240 class Hash_task : public Task
241 {
242  public:
243   Hash_task(Output_file* of,
244             size_t offset,
245             size_t size,
246             unsigned char* dst,
247             Task_token* final_blocker)
248     : of_(of), offset_(offset), size_(size), dst_(dst),
249       final_blocker_(final_blocker)
250   { }
251
252   void
253   run(Workqueue*)
254   {
255     const unsigned char* iv =
256         this->of_->get_input_view(this->offset_, this->size_);
257     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
258     this->of_->free_input_view(this->offset_, this->size_, iv);
259   }
260
261   Task_token*
262   is_runnable()
263   { return NULL; }
264
265   // Unblock FINAL_BLOCKER_ when done.
266   void
267   locks(Task_locker* tl)
268   { tl->add(this, this->final_blocker_); }
269
270   std::string
271   get_name() const
272   { return "Hash_task"; }
273
274  private:
275   Output_file* of_;
276   const size_t offset_;
277   const size_t size_;
278   unsigned char* const dst_;
279   Task_token* const final_blocker_;
280 };
281
282 // Layout::Relaxation_debug_check methods.
283
284 // Check that sections and special data are in reset states.
285 // We do not save states for Output_sections and special Output_data.
286 // So we check that they have not assigned any addresses or offsets.
287 // clean_up_after_relaxation simply resets their addresses and offsets.
288 void
289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
290     const Layout::Section_list& sections,
291     const Layout::Data_list& special_outputs,
292     const Layout::Data_list& relax_outputs)
293 {
294   for(Layout::Section_list::const_iterator p = sections.begin();
295       p != sections.end();
296       ++p)
297     gold_assert((*p)->address_and_file_offset_have_reset_values());
298
299   for(Layout::Data_list::const_iterator p = special_outputs.begin();
300       p != special_outputs.end();
301       ++p)
302     gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304   gold_assert(relax_outputs.empty());
305 }
306
307 // Save information of SECTIONS for checking later.
308
309 void
310 Layout::Relaxation_debug_check::read_sections(
311     const Layout::Section_list& sections)
312 {
313   for(Layout::Section_list::const_iterator p = sections.begin();
314       p != sections.end();
315       ++p)
316     {
317       Output_section* os = *p;
318       Section_info info;
319       info.output_section = os;
320       info.address = os->is_address_valid() ? os->address() : 0;
321       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
322       info.offset = os->is_offset_valid()? os->offset() : -1 ;
323       this->section_infos_.push_back(info);
324     }
325 }
326
327 // Verify SECTIONS using previously recorded information.
328
329 void
330 Layout::Relaxation_debug_check::verify_sections(
331     const Layout::Section_list& sections)
332 {
333   size_t i = 0;
334   for(Layout::Section_list::const_iterator p = sections.begin();
335       p != sections.end();
336       ++p, ++i)
337     {
338       Output_section* os = *p;
339       uint64_t address = os->is_address_valid() ? os->address() : 0;
340       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
341       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
342
343       if (i >= this->section_infos_.size())
344         {
345           gold_fatal("Section_info of %s missing.\n", os->name());
346         }
347       const Section_info& info = this->section_infos_[i];
348       if (os != info.output_section)
349         gold_fatal("Section order changed.  Expecting %s but see %s\n",
350                    info.output_section->name(), os->name());
351       if (address != info.address
352           || data_size != info.data_size
353           || offset != info.offset)
354         gold_fatal("Section %s changed.\n", os->name());
355     }
356 }
357
358 // Layout_task_runner methods.
359
360 // Lay out the sections.  This is called after all the input objects
361 // have been read.
362
363 void
364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
365 {
366   // See if any of the input definitions violate the One Definition Rule.
367   // TODO: if this is too slow, do this as a task, rather than inline.
368   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
369
370   Layout* layout = this->layout_;
371   off_t file_size = layout->finalize(this->input_objects_,
372                                      this->symtab_,
373                                      this->target_,
374                                      task);
375
376   // Now we know the final size of the output file and we know where
377   // each piece of information goes.
378
379   if (this->mapfile_ != NULL)
380     {
381       this->mapfile_->print_discarded_sections(this->input_objects_);
382       layout->print_to_mapfile(this->mapfile_);
383     }
384
385   Output_file* of;
386   if (layout->incremental_base() == NULL)
387     {
388       of = new Output_file(parameters->options().output_file_name());
389       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
390         of->set_is_temporary();
391       of->open(file_size);
392     }
393   else
394     {
395       of = layout->incremental_base()->output_file();
396
397       // Apply the incremental relocations for symbols whose values
398       // have changed.  We do this before we resize the file and start
399       // writing anything else to it, so that we can read the old
400       // incremental information from the file before (possibly)
401       // overwriting it.
402       if (parameters->incremental_update())
403         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
404                                                              this->layout_,
405                                                              of);
406
407       of->resize(file_size);
408     }
409
410   // Queue up the final set of tasks.
411   gold::queue_final_tasks(this->options_, this->input_objects_,
412                           this->symtab_, layout, workqueue, of);
413 }
414
415 // Layout methods.
416
417 Layout::Layout(int number_of_input_files, Script_options* script_options)
418   : number_of_input_files_(number_of_input_files),
419     script_options_(script_options),
420     namepool_(),
421     sympool_(),
422     dynpool_(),
423     signatures_(),
424     section_name_map_(),
425     segment_list_(),
426     section_list_(),
427     unattached_section_list_(),
428     special_output_list_(),
429     relax_output_list_(),
430     section_headers_(NULL),
431     tls_segment_(NULL),
432     relro_segment_(NULL),
433     interp_segment_(NULL),
434     increase_relro_(0),
435     symtab_section_(NULL),
436     symtab_xindex_(NULL),
437     dynsym_section_(NULL),
438     dynsym_xindex_(NULL),
439     dynamic_section_(NULL),
440     dynamic_symbol_(NULL),
441     dynamic_data_(NULL),
442     eh_frame_section_(NULL),
443     eh_frame_data_(NULL),
444     added_eh_frame_data_(false),
445     eh_frame_hdr_section_(NULL),
446     gdb_index_data_(NULL),
447     build_id_note_(NULL),
448     debug_abbrev_(NULL),
449     debug_info_(NULL),
450     group_signatures_(),
451     output_file_size_(-1),
452     have_added_input_section_(false),
453     sections_are_attached_(false),
454     input_requires_executable_stack_(false),
455     input_with_gnu_stack_note_(false),
456     input_without_gnu_stack_note_(false),
457     has_static_tls_(false),
458     any_postprocessing_sections_(false),
459     resized_signatures_(false),
460     have_stabstr_section_(false),
461     section_ordering_specified_(false),
462     unique_segment_for_sections_specified_(false),
463     incremental_inputs_(NULL),
464     record_output_section_data_from_script_(false),
465     script_output_section_data_list_(),
466     segment_states_(NULL),
467     relaxation_debug_check_(NULL),
468     section_order_map_(),
469     section_segment_map_(),
470     input_section_position_(),
471     input_section_glob_(),
472     incremental_base_(NULL),
473     free_list_()
474 {
475   // Make space for more than enough segments for a typical file.
476   // This is just for efficiency--it's OK if we wind up needing more.
477   this->segment_list_.reserve(12);
478
479   // We expect two unattached Output_data objects: the file header and
480   // the segment headers.
481   this->special_output_list_.reserve(2);
482
483   // Initialize structure needed for an incremental build.
484   if (parameters->incremental())
485     this->incremental_inputs_ = new Incremental_inputs;
486
487   // The section name pool is worth optimizing in all cases, because
488   // it is small, but there are often overlaps due to .rel sections.
489   this->namepool_.set_optimize();
490 }
491
492 // For incremental links, record the base file to be modified.
493
494 void
495 Layout::set_incremental_base(Incremental_binary* base)
496 {
497   this->incremental_base_ = base;
498   this->free_list_.init(base->output_file()->filesize(), true);
499 }
500
501 // Hash a key we use to look up an output section mapping.
502
503 size_t
504 Layout::Hash_key::operator()(const Layout::Key& k) const
505 {
506  return k.first + k.second.first + k.second.second;
507 }
508
509 // These are the debug sections that are actually used by gdb.
510 // Currently, we've checked versions of gdb up to and including 7.4.
511 // We only check the part of the name that follows ".debug_" or
512 // ".zdebug_".
513
514 static const char* gdb_sections[] =
515 {
516   "abbrev",
517   "addr",         // Fission extension
518   // "aranges",   // not used by gdb as of 7.4
519   "frame",
520   "gdb_scripts",
521   "info",
522   "types",
523   "line",
524   "loc",
525   "macinfo",
526   "macro",
527   // "pubnames",  // not used by gdb as of 7.4
528   // "pubtypes",  // not used by gdb as of 7.4
529   // "gnu_pubnames",  // Fission extension
530   // "gnu_pubtypes",  // Fission extension
531   "ranges",
532   "str",
533   "str_offsets",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   // "gdb_scripts",
545   "info",
546   // "types",
547   "line",
548   // "loc",
549   // "macinfo",
550   // "macro",
551   // "pubnames",  // not used by gdb as of 7.4
552   // "pubtypes",  // not used by gdb as of 7.4
553   // "gnu_pubnames",  // Fission extension
554   // "gnu_pubtypes",  // Fission extension
555   // "ranges",
556   "str",
557   "str_offsets",  // Fission extension
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565   "aranges",
566   "pubnames",
567   "gnu_pubnames",
568   "pubtypes",
569   "gnu_pubtypes",
570 };
571
572 // Returns whether the given debug section is in the list of
573 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
574 // portion of the name following ".debug_" or ".zdebug_".
575
576 static inline bool
577 is_gdb_debug_section(const char* suffix)
578 {
579   // We can do this faster: binary search or a hashtable.  But why bother?
580   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
581     if (strcmp(suffix, gdb_sections[i]) == 0)
582       return true;
583   return false;
584 }
585
586 // Returns whether the given section is needed for lines-only debugging.
587
588 static inline bool
589 is_lines_only_debug_section(const char* suffix)
590 {
591   // We can do this faster: binary search or a hashtable.  But why bother?
592   for (size_t i = 0;
593        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594        ++i)
595     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
596       return true;
597   return false;
598 }
599
600 // Returns whether the given section is a fast-lookup section that
601 // will not be needed when building a .gdb_index section.
602
603 static inline bool
604 is_gdb_fast_lookup_section(const char* suffix)
605 {
606   // We can do this faster: binary search or a hashtable.  But why bother?
607   for (size_t i = 0;
608        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609        ++i)
610     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
611       return true;
612   return false;
613 }
614
615 // Sometimes we compress sections.  This is typically done for
616 // sections that are not part of normal program execution (such as
617 // .debug_* sections), and where the readers of these sections know
618 // how to deal with compressed sections.  This routine doesn't say for
619 // certain whether we'll compress -- it depends on commandline options
620 // as well -- just whether this section is a candidate for compression.
621 // (The Output_compressed_section class decides whether to compress
622 // a given section, and picks the name of the compressed section.)
623
624 static bool
625 is_compressible_debug_section(const char* secname)
626 {
627   return (is_prefix_of(".debug", secname));
628 }
629
630 // We may see compressed debug sections in input files.  Return TRUE
631 // if this is the name of a compressed debug section.
632
633 bool
634 is_compressed_debug_section(const char* secname)
635 {
636   return (is_prefix_of(".zdebug", secname));
637 }
638
639 // Whether to include this section in the link.
640
641 template<int size, bool big_endian>
642 bool
643 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
644                         const elfcpp::Shdr<size, big_endian>& shdr)
645 {
646   if (!parameters->options().relocatable()
647       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
648     return false;
649
650   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
651
652   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
653       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
654     return parameters->target().should_include_section(sh_type);
655
656   switch (sh_type)
657     {
658     case elfcpp::SHT_NULL:
659     case elfcpp::SHT_SYMTAB:
660     case elfcpp::SHT_DYNSYM:
661     case elfcpp::SHT_HASH:
662     case elfcpp::SHT_DYNAMIC:
663     case elfcpp::SHT_SYMTAB_SHNDX:
664       return false;
665
666     case elfcpp::SHT_STRTAB:
667       // Discard the sections which have special meanings in the ELF
668       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
669       // checking the sh_link fields of the appropriate sections.
670       return (strcmp(name, ".dynstr") != 0
671               && strcmp(name, ".strtab") != 0
672               && strcmp(name, ".shstrtab") != 0);
673
674     case elfcpp::SHT_RELA:
675     case elfcpp::SHT_REL:
676     case elfcpp::SHT_GROUP:
677       // If we are emitting relocations these should be handled
678       // elsewhere.
679       gold_assert(!parameters->options().relocatable());
680       return false;
681
682     case elfcpp::SHT_PROGBITS:
683       if (parameters->options().strip_debug()
684           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
685         {
686           if (is_debug_info_section(name))
687             return false;
688         }
689       if (parameters->options().strip_debug_non_line()
690           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
691         {
692           // Debugging sections can only be recognized by name.
693           if (is_prefix_of(".debug_", name)
694               && !is_lines_only_debug_section(name + 7))
695             return false;
696           if (is_prefix_of(".zdebug_", name)
697               && !is_lines_only_debug_section(name + 8))
698             return false;
699         }
700       if (parameters->options().strip_debug_gdb()
701           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
702         {
703           // Debugging sections can only be recognized by name.
704           if (is_prefix_of(".debug_", name)
705               && !is_gdb_debug_section(name + 7))
706             return false;
707           if (is_prefix_of(".zdebug_", name)
708               && !is_gdb_debug_section(name + 8))
709             return false;
710         }
711       if (parameters->options().gdb_index()
712           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
713         {
714           // When building .gdb_index, we can strip .debug_pubnames,
715           // .debug_pubtypes, and .debug_aranges sections.
716           if (is_prefix_of(".debug_", name)
717               && is_gdb_fast_lookup_section(name + 7))
718             return false;
719           if (is_prefix_of(".zdebug_", name)
720               && is_gdb_fast_lookup_section(name + 8))
721             return false;
722         }
723       if (parameters->options().strip_lto_sections()
724           && !parameters->options().relocatable()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // Ignore LTO sections containing intermediate code.
728           if (is_prefix_of(".gnu.lto_", name))
729             return false;
730         }
731       // The GNU linker strips .gnu_debuglink sections, so we do too.
732       // This is a feature used to keep debugging information in
733       // separate files.
734       if (strcmp(name, ".gnu_debuglink") == 0)
735         return false;
736       return true;
737
738     default:
739       return true;
740     }
741 }
742
743 // Return an output section named NAME, or NULL if there is none.
744
745 Output_section*
746 Layout::find_output_section(const char* name) const
747 {
748   for (Section_list::const_iterator p = this->section_list_.begin();
749        p != this->section_list_.end();
750        ++p)
751     if (strcmp((*p)->name(), name) == 0)
752       return *p;
753   return NULL;
754 }
755
756 // Return an output segment of type TYPE, with segment flags SET set
757 // and segment flags CLEAR clear.  Return NULL if there is none.
758
759 Output_segment*
760 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
761                             elfcpp::Elf_Word clear) const
762 {
763   for (Segment_list::const_iterator p = this->segment_list_.begin();
764        p != this->segment_list_.end();
765        ++p)
766     if (static_cast<elfcpp::PT>((*p)->type()) == type
767         && ((*p)->flags() & set) == set
768         && ((*p)->flags() & clear) == 0)
769       return *p;
770   return NULL;
771 }
772
773 // When we put a .ctors or .dtors section with more than one word into
774 // a .init_array or .fini_array section, we need to reverse the words
775 // in the .ctors/.dtors section.  This is because .init_array executes
776 // constructors front to back, where .ctors executes them back to
777 // front, and vice-versa for .fini_array/.dtors.  Although we do want
778 // to remap .ctors/.dtors into .init_array/.fini_array because it can
779 // be more efficient, we don't want to change the order in which
780 // constructors/destructors are run.  This set just keeps track of
781 // these sections which need to be reversed.  It is only changed by
782 // Layout::layout.  It should be a private member of Layout, but that
783 // would require layout.h to #include object.h to get the definition
784 // of Section_id.
785 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
786
787 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
788 // .init_array/.fini_array section.
789
790 bool
791 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
792 {
793   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
794           != ctors_sections_in_init_array.end());
795 }
796
797 // Return the output section to use for section NAME with type TYPE
798 // and section flags FLAGS.  NAME must be canonicalized in the string
799 // pool, and NAME_KEY is the key.  ORDER is where this should appear
800 // in the output sections.  IS_RELRO is true for a relro section.
801
802 Output_section*
803 Layout::get_output_section(const char* name, Stringpool::Key name_key,
804                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
805                            Output_section_order order, bool is_relro)
806 {
807   elfcpp::Elf_Word lookup_type = type;
808
809   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
810   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
811   // .init_array, .fini_array, and .preinit_array sections by name
812   // whatever their type in the input file.  We do this because the
813   // types are not always right in the input files.
814   if (lookup_type == elfcpp::SHT_INIT_ARRAY
815       || lookup_type == elfcpp::SHT_FINI_ARRAY
816       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
817     lookup_type = elfcpp::SHT_PROGBITS;
818
819   elfcpp::Elf_Xword lookup_flags = flags;
820
821   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
822   // read-write with read-only sections.  Some other ELF linkers do
823   // not do this.  FIXME: Perhaps there should be an option
824   // controlling this.
825   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
826
827   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
828   const std::pair<Key, Output_section*> v(key, NULL);
829   std::pair<Section_name_map::iterator, bool> ins(
830     this->section_name_map_.insert(v));
831
832   if (!ins.second)
833     return ins.first->second;
834   else
835     {
836       // This is the first time we've seen this name/type/flags
837       // combination.  For compatibility with the GNU linker, we
838       // combine sections with contents and zero flags with sections
839       // with non-zero flags.  This is a workaround for cases where
840       // assembler code forgets to set section flags.  FIXME: Perhaps
841       // there should be an option to control this.
842       Output_section* os = NULL;
843
844       if (lookup_type == elfcpp::SHT_PROGBITS)
845         {
846           if (flags == 0)
847             {
848               Output_section* same_name = this->find_output_section(name);
849               if (same_name != NULL
850                   && (same_name->type() == elfcpp::SHT_PROGBITS
851                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
852                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
853                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
854                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
855                 os = same_name;
856             }
857           else if ((flags & elfcpp::SHF_TLS) == 0)
858             {
859               elfcpp::Elf_Xword zero_flags = 0;
860               const Key zero_key(name_key, std::make_pair(lookup_type,
861                                                           zero_flags));
862               Section_name_map::iterator p =
863                   this->section_name_map_.find(zero_key);
864               if (p != this->section_name_map_.end())
865                 os = p->second;
866             }
867         }
868
869       if (os == NULL)
870         os = this->make_output_section(name, type, flags, order, is_relro);
871
872       ins.first->second = os;
873       return os;
874     }
875 }
876
877 // Returns TRUE iff NAME (an input section from RELOBJ) will
878 // be mapped to an output section that should be KEPT.
879
880 bool
881 Layout::keep_input_section(const Relobj* relobj, const char* name)
882 {
883   if (! this->script_options_->saw_sections_clause())
884     return false;
885
886   Script_sections* ss = this->script_options_->script_sections();
887   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
888   Output_section** output_section_slot;
889   Script_sections::Section_type script_section_type;
890   bool keep;
891
892   name = ss->output_section_name(file_name, name, &output_section_slot,
893                                  &script_section_type, &keep);
894   return name != NULL && keep;
895 }
896
897 // Clear the input section flags that should not be copied to the
898 // output section.
899
900 elfcpp::Elf_Xword
901 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
902 {
903   // Some flags in the input section should not be automatically
904   // copied to the output section.
905   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
906                             | elfcpp::SHF_GROUP
907                             | elfcpp::SHF_MERGE
908                             | elfcpp::SHF_STRINGS);
909
910   // We only clear the SHF_LINK_ORDER flag in for
911   // a non-relocatable link.
912   if (!parameters->options().relocatable())
913     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
914
915   return input_section_flags;
916 }
917
918 // Pick the output section to use for section NAME, in input file
919 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
920 // linker created section.  IS_INPUT_SECTION is true if we are
921 // choosing an output section for an input section found in a input
922 // file.  ORDER is where this section should appear in the output
923 // sections.  IS_RELRO is true for a relro section.  This will return
924 // NULL if the input section should be discarded.
925
926 Output_section*
927 Layout::choose_output_section(const Relobj* relobj, const char* name,
928                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
929                               bool is_input_section, Output_section_order order,
930                               bool is_relro)
931 {
932   // We should not see any input sections after we have attached
933   // sections to segments.
934   gold_assert(!is_input_section || !this->sections_are_attached_);
935
936   flags = this->get_output_section_flags(flags);
937
938   if (this->script_options_->saw_sections_clause())
939     {
940       // We are using a SECTIONS clause, so the output section is
941       // chosen based only on the name.
942
943       Script_sections* ss = this->script_options_->script_sections();
944       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
945       Output_section** output_section_slot;
946       Script_sections::Section_type script_section_type;
947       const char* orig_name = name;
948       bool keep;
949       name = ss->output_section_name(file_name, name, &output_section_slot,
950                                      &script_section_type, &keep);
951
952       if (name == NULL)
953         {
954           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
955                                      "because it is not allowed by the "
956                                      "SECTIONS clause of the linker script"),
957                      orig_name);
958           // The SECTIONS clause says to discard this input section.
959           return NULL;
960         }
961
962       // We can only handle script section types ST_NONE and ST_NOLOAD.
963       switch (script_section_type)
964         {
965         case Script_sections::ST_NONE:
966           break;
967         case Script_sections::ST_NOLOAD:
968           flags &= elfcpp::SHF_ALLOC;
969           break;
970         default:
971           gold_unreachable();
972         }
973
974       // If this is an orphan section--one not mentioned in the linker
975       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
976       // default processing below.
977
978       if (output_section_slot != NULL)
979         {
980           if (*output_section_slot != NULL)
981             {
982               (*output_section_slot)->update_flags_for_input_section(flags);
983               return *output_section_slot;
984             }
985
986           // We don't put sections found in the linker script into
987           // SECTION_NAME_MAP_.  That keeps us from getting confused
988           // if an orphan section is mapped to a section with the same
989           // name as one in the linker script.
990
991           name = this->namepool_.add(name, false, NULL);
992
993           Output_section* os = this->make_output_section(name, type, flags,
994                                                          order, is_relro);
995
996           os->set_found_in_sections_clause();
997
998           // Special handling for NOLOAD sections.
999           if (script_section_type == Script_sections::ST_NOLOAD)
1000             {
1001               os->set_is_noload();
1002
1003               // The constructor of Output_section sets addresses of non-ALLOC
1004               // sections to 0 by default.  We don't want that for NOLOAD
1005               // sections even if they have no SHF_ALLOC flag.
1006               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1007                   && os->is_address_valid())
1008                 {
1009                   gold_assert(os->address() == 0
1010                               && !os->is_offset_valid()
1011                               && !os->is_data_size_valid());
1012                   os->reset_address_and_file_offset();
1013                 }
1014             }
1015
1016           *output_section_slot = os;
1017           return os;
1018         }
1019     }
1020
1021   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1022
1023   size_t len = strlen(name);
1024   char* uncompressed_name = NULL;
1025
1026   // Compressed debug sections should be mapped to the corresponding
1027   // uncompressed section.
1028   if (is_compressed_debug_section(name))
1029     {
1030       uncompressed_name = new char[len];
1031       uncompressed_name[0] = '.';
1032       gold_assert(name[0] == '.' && name[1] == 'z');
1033       strncpy(&uncompressed_name[1], &name[2], len - 2);
1034       uncompressed_name[len - 1] = '\0';
1035       len -= 1;
1036       name = uncompressed_name;
1037     }
1038
1039   // Turn NAME from the name of the input section into the name of the
1040   // output section.
1041   if (is_input_section
1042       && !this->script_options_->saw_sections_clause()
1043       && !parameters->options().relocatable())
1044     {
1045       const char *orig_name = name;
1046       name = parameters->target().output_section_name(relobj, name, &len);
1047       if (name == NULL)
1048         name = Layout::output_section_name(relobj, orig_name, &len);
1049     }
1050
1051   Stringpool::Key name_key;
1052   name = this->namepool_.add_with_length(name, len, true, &name_key);
1053
1054   if (uncompressed_name != NULL)
1055     delete[] uncompressed_name;
1056
1057   // Find or make the output section.  The output section is selected
1058   // based on the section name, type, and flags.
1059   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1060 }
1061
1062 // For incremental links, record the initial fixed layout of a section
1063 // from the base file, and return a pointer to the Output_section.
1064
1065 template<int size, bool big_endian>
1066 Output_section*
1067 Layout::init_fixed_output_section(const char* name,
1068                                   elfcpp::Shdr<size, big_endian>& shdr)
1069 {
1070   unsigned int sh_type = shdr.get_sh_type();
1071
1072   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1073   // PRE_INIT_ARRAY, and NOTE sections.
1074   // All others will be created from scratch and reallocated.
1075   if (!can_incremental_update(sh_type))
1076     return NULL;
1077
1078   // If we're generating a .gdb_index section, we need to regenerate
1079   // it from scratch.
1080   if (parameters->options().gdb_index()
1081       && sh_type == elfcpp::SHT_PROGBITS
1082       && strcmp(name, ".gdb_index") == 0)
1083     return NULL;
1084
1085   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1086   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1087   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1088   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1089   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1090       shdr.get_sh_addralign();
1091
1092   // Make the output section.
1093   Stringpool::Key name_key;
1094   name = this->namepool_.add(name, true, &name_key);
1095   Output_section* os = this->get_output_section(name, name_key, sh_type,
1096                                                 sh_flags, ORDER_INVALID, false);
1097   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1098   if (sh_type != elfcpp::SHT_NOBITS)
1099     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1100   return os;
1101 }
1102
1103 // Return the index by which an input section should be ordered.  This
1104 // is used to sort some .text sections, for compatibility with GNU ld.
1105
1106 int
1107 Layout::special_ordering_of_input_section(const char* name)
1108 {
1109   // The GNU linker has some special handling for some sections that
1110   // wind up in the .text section.  Sections that start with these
1111   // prefixes must appear first, and must appear in the order listed
1112   // here.
1113   static const char* const text_section_sort[] =
1114   {
1115     ".text.unlikely",
1116     ".text.exit",
1117     ".text.startup",
1118     ".text.hot"
1119   };
1120
1121   for (size_t i = 0;
1122        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1123        i++)
1124     if (is_prefix_of(text_section_sort[i], name))
1125       return i;
1126
1127   return -1;
1128 }
1129
1130 // Return the output section to use for input section SHNDX, with name
1131 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1132 // index of a relocation section which applies to this section, or 0
1133 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1134 // relocation section if there is one.  Set *OFF to the offset of this
1135 // input section without the output section.  Return NULL if the
1136 // section should be discarded.  Set *OFF to -1 if the section
1137 // contents should not be written directly to the output file, but
1138 // will instead receive special handling.
1139
1140 template<int size, bool big_endian>
1141 Output_section*
1142 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1143                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1144                unsigned int reloc_shndx, unsigned int, off_t* off)
1145 {
1146   *off = 0;
1147
1148   if (!this->include_section(object, name, shdr))
1149     return NULL;
1150
1151   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1152
1153   // In a relocatable link a grouped section must not be combined with
1154   // any other sections.
1155   Output_section* os;
1156   if (parameters->options().relocatable()
1157       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1158     {
1159       name = this->namepool_.add(name, true, NULL);
1160       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1161                                      ORDER_INVALID, false);
1162     }
1163   else
1164     {
1165       // Plugins can choose to place one or more subsets of sections in
1166       // unique segments and this is done by mapping these section subsets
1167       // to unique output sections.  Check if this section needs to be
1168       // remapped to a unique output section.
1169       Section_segment_map::iterator it
1170           = this->section_segment_map_.find(Const_section_id(object, shndx));
1171       if (it == this->section_segment_map_.end())
1172         {
1173           os = this->choose_output_section(object, name, sh_type,
1174                                            shdr.get_sh_flags(), true,
1175                                            ORDER_INVALID, false);
1176         }
1177       else
1178         {
1179           // We know the name of the output section, directly call
1180           // get_output_section here by-passing choose_output_section.
1181           elfcpp::Elf_Xword flags
1182             = this->get_output_section_flags(shdr.get_sh_flags());
1183
1184           const char* os_name = it->second->name;
1185           Stringpool::Key name_key;
1186           os_name = this->namepool_.add(os_name, true, &name_key);
1187           os = this->get_output_section(os_name, name_key, sh_type, flags,
1188                                         ORDER_INVALID, false);
1189           if (!os->is_unique_segment())
1190             {
1191               os->set_is_unique_segment();
1192               os->set_extra_segment_flags(it->second->flags);
1193               os->set_segment_alignment(it->second->align);
1194             }
1195         }
1196       if (os == NULL)
1197         return NULL;
1198     }
1199
1200   // By default the GNU linker sorts input sections whose names match
1201   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1202   // sections are sorted by name.  This is used to implement
1203   // constructor priority ordering.  We are compatible.  When we put
1204   // .ctor sections in .init_array and .dtor sections in .fini_array,
1205   // we must also sort plain .ctor and .dtor sections.
1206   if (!this->script_options_->saw_sections_clause()
1207       && !parameters->options().relocatable()
1208       && (is_prefix_of(".ctors.", name)
1209           || is_prefix_of(".dtors.", name)
1210           || is_prefix_of(".init_array.", name)
1211           || is_prefix_of(".fini_array.", name)
1212           || (parameters->options().ctors_in_init_array()
1213               && (strcmp(name, ".ctors") == 0
1214                   || strcmp(name, ".dtors") == 0))))
1215     os->set_must_sort_attached_input_sections();
1216
1217   // By default the GNU linker sorts some special text sections ahead
1218   // of others.  We are compatible.
1219   if (parameters->options().text_reorder()
1220       && !this->script_options_->saw_sections_clause()
1221       && !this->is_section_ordering_specified()
1222       && !parameters->options().relocatable()
1223       && Layout::special_ordering_of_input_section(name) >= 0)
1224     os->set_must_sort_attached_input_sections();
1225
1226   // If this is a .ctors or .ctors.* section being mapped to a
1227   // .init_array section, or a .dtors or .dtors.* section being mapped
1228   // to a .fini_array section, we will need to reverse the words if
1229   // there is more than one.  Record this section for later.  See
1230   // ctors_sections_in_init_array above.
1231   if (!this->script_options_->saw_sections_clause()
1232       && !parameters->options().relocatable()
1233       && shdr.get_sh_size() > size / 8
1234       && (((strcmp(name, ".ctors") == 0
1235             || is_prefix_of(".ctors.", name))
1236            && strcmp(os->name(), ".init_array") == 0)
1237           || ((strcmp(name, ".dtors") == 0
1238                || is_prefix_of(".dtors.", name))
1239               && strcmp(os->name(), ".fini_array") == 0)))
1240     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1241
1242   // FIXME: Handle SHF_LINK_ORDER somewhere.
1243
1244   elfcpp::Elf_Xword orig_flags = os->flags();
1245
1246   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1247                                this->script_options_->saw_sections_clause());
1248
1249   // If the flags changed, we may have to change the order.
1250   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1251     {
1252       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1253       elfcpp::Elf_Xword new_flags =
1254         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1255       if (orig_flags != new_flags)
1256         os->set_order(this->default_section_order(os, false));
1257     }
1258
1259   this->have_added_input_section_ = true;
1260
1261   return os;
1262 }
1263
1264 // Maps section SECN to SEGMENT s.
1265 void
1266 Layout::insert_section_segment_map(Const_section_id secn,
1267                                    Unique_segment_info *s)
1268 {
1269   gold_assert(this->unique_segment_for_sections_specified_);
1270   this->section_segment_map_[secn] = s;
1271 }
1272
1273 // Handle a relocation section when doing a relocatable link.
1274
1275 template<int size, bool big_endian>
1276 Output_section*
1277 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1278                      unsigned int,
1279                      const elfcpp::Shdr<size, big_endian>& shdr,
1280                      Output_section* data_section,
1281                      Relocatable_relocs* rr)
1282 {
1283   gold_assert(parameters->options().relocatable()
1284               || parameters->options().emit_relocs());
1285
1286   int sh_type = shdr.get_sh_type();
1287
1288   std::string name;
1289   if (sh_type == elfcpp::SHT_REL)
1290     name = ".rel";
1291   else if (sh_type == elfcpp::SHT_RELA)
1292     name = ".rela";
1293   else
1294     gold_unreachable();
1295   name += data_section->name();
1296
1297   // In a relocatable link relocs for a grouped section must not be
1298   // combined with other reloc sections.
1299   Output_section* os;
1300   if (!parameters->options().relocatable()
1301       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1302     os = this->choose_output_section(object, name.c_str(), sh_type,
1303                                      shdr.get_sh_flags(), false,
1304                                      ORDER_INVALID, false);
1305   else
1306     {
1307       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1308       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1309                                      ORDER_INVALID, false);
1310     }
1311
1312   os->set_should_link_to_symtab();
1313   os->set_info_section(data_section);
1314
1315   Output_section_data* posd;
1316   if (sh_type == elfcpp::SHT_REL)
1317     {
1318       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1319       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1320                                            size,
1321                                            big_endian>(rr);
1322     }
1323   else if (sh_type == elfcpp::SHT_RELA)
1324     {
1325       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1326       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1327                                            size,
1328                                            big_endian>(rr);
1329     }
1330   else
1331     gold_unreachable();
1332
1333   os->add_output_section_data(posd);
1334   rr->set_output_data(posd);
1335
1336   return os;
1337 }
1338
1339 // Handle a group section when doing a relocatable link.
1340
1341 template<int size, bool big_endian>
1342 void
1343 Layout::layout_group(Symbol_table* symtab,
1344                      Sized_relobj_file<size, big_endian>* object,
1345                      unsigned int,
1346                      const char* group_section_name,
1347                      const char* signature,
1348                      const elfcpp::Shdr<size, big_endian>& shdr,
1349                      elfcpp::Elf_Word flags,
1350                      std::vector<unsigned int>* shndxes)
1351 {
1352   gold_assert(parameters->options().relocatable());
1353   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1354   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1355   Output_section* os = this->make_output_section(group_section_name,
1356                                                  elfcpp::SHT_GROUP,
1357                                                  shdr.get_sh_flags(),
1358                                                  ORDER_INVALID, false);
1359
1360   // We need to find a symbol with the signature in the symbol table.
1361   // If we don't find one now, we need to look again later.
1362   Symbol* sym = symtab->lookup(signature, NULL);
1363   if (sym != NULL)
1364     os->set_info_symndx(sym);
1365   else
1366     {
1367       // Reserve some space to minimize reallocations.
1368       if (this->group_signatures_.empty())
1369         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1370
1371       // We will wind up using a symbol whose name is the signature.
1372       // So just put the signature in the symbol name pool to save it.
1373       signature = symtab->canonicalize_name(signature);
1374       this->group_signatures_.push_back(Group_signature(os, signature));
1375     }
1376
1377   os->set_should_link_to_symtab();
1378   os->set_entsize(4);
1379
1380   section_size_type entry_count =
1381     convert_to_section_size_type(shdr.get_sh_size() / 4);
1382   Output_section_data* posd =
1383     new Output_data_group<size, big_endian>(object, entry_count, flags,
1384                                             shndxes);
1385   os->add_output_section_data(posd);
1386 }
1387
1388 // Special GNU handling of sections name .eh_frame.  They will
1389 // normally hold exception frame data as defined by the C++ ABI
1390 // (http://codesourcery.com/cxx-abi/).
1391
1392 template<int size, bool big_endian>
1393 Output_section*
1394 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1395                         const unsigned char* symbols,
1396                         off_t symbols_size,
1397                         const unsigned char* symbol_names,
1398                         off_t symbol_names_size,
1399                         unsigned int shndx,
1400                         const elfcpp::Shdr<size, big_endian>& shdr,
1401                         unsigned int reloc_shndx, unsigned int reloc_type,
1402                         off_t* off)
1403 {
1404   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1405               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1406   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1407
1408   Output_section* os = this->make_eh_frame_section(object);
1409   if (os == NULL)
1410     return NULL;
1411
1412   gold_assert(this->eh_frame_section_ == os);
1413
1414   elfcpp::Elf_Xword orig_flags = os->flags();
1415
1416   Eh_frame::Eh_frame_section_disposition disp =
1417       Eh_frame::EH_UNRECOGNIZED_SECTION;
1418   if (!parameters->incremental())
1419     {
1420       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1421                                                              symbols,
1422                                                              symbols_size,
1423                                                              symbol_names,
1424                                                              symbol_names_size,
1425                                                              shndx,
1426                                                              reloc_shndx,
1427                                                              reloc_type);
1428     }
1429
1430   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1431     {
1432       os->update_flags_for_input_section(shdr.get_sh_flags());
1433
1434       // A writable .eh_frame section is a RELRO section.
1435       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1436           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1437         {
1438           os->set_is_relro();
1439           os->set_order(ORDER_RELRO);
1440         }
1441
1442       *off = -1;
1443       return os;
1444     }
1445
1446   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1447     {
1448       // We found the end marker section, so now we can add the set of
1449       // optimized sections to the output section.  We need to postpone
1450       // adding this until we've found a section we can optimize so that
1451       // the .eh_frame section in crtbeginT.o winds up at the start of
1452       // the output section.
1453       os->add_output_section_data(this->eh_frame_data_);
1454       this->added_eh_frame_data_ = true;
1455      }
1456
1457   // We couldn't handle this .eh_frame section for some reason.
1458   // Add it as a normal section.
1459   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1460   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1461                                reloc_shndx, saw_sections_clause);
1462   this->have_added_input_section_ = true;
1463
1464   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1465       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1466     os->set_order(this->default_section_order(os, false));
1467
1468   return os;
1469 }
1470
1471 void
1472 Layout::finalize_eh_frame_section()
1473 {
1474   // If we never found an end marker section, we need to add the
1475   // optimized eh sections to the output section now.
1476   if (!parameters->incremental()
1477       && this->eh_frame_section_ != NULL
1478       && !this->added_eh_frame_data_)
1479     {
1480       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1481       this->added_eh_frame_data_ = true;
1482     }
1483 }
1484
1485 // Create and return the magic .eh_frame section.  Create
1486 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1487 // input .eh_frame section; it may be NULL.
1488
1489 Output_section*
1490 Layout::make_eh_frame_section(const Relobj* object)
1491 {
1492   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1493   // SHT_PROGBITS.
1494   Output_section* os = this->choose_output_section(object, ".eh_frame",
1495                                                    elfcpp::SHT_PROGBITS,
1496                                                    elfcpp::SHF_ALLOC, false,
1497                                                    ORDER_EHFRAME, false);
1498   if (os == NULL)
1499     return NULL;
1500
1501   if (this->eh_frame_section_ == NULL)
1502     {
1503       this->eh_frame_section_ = os;
1504       this->eh_frame_data_ = new Eh_frame();
1505
1506       // For incremental linking, we do not optimize .eh_frame sections
1507       // or create a .eh_frame_hdr section.
1508       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1509         {
1510           Output_section* hdr_os =
1511             this->choose_output_section(NULL, ".eh_frame_hdr",
1512                                         elfcpp::SHT_PROGBITS,
1513                                         elfcpp::SHF_ALLOC, false,
1514                                         ORDER_EHFRAME, false);
1515
1516           if (hdr_os != NULL)
1517             {
1518               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1519                                                         this->eh_frame_data_);
1520               hdr_os->add_output_section_data(hdr_posd);
1521
1522               hdr_os->set_after_input_sections();
1523
1524               if (!this->script_options_->saw_phdrs_clause())
1525                 {
1526                   Output_segment* hdr_oseg;
1527                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1528                                                        elfcpp::PF_R);
1529                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1530                                                           elfcpp::PF_R);
1531                 }
1532
1533               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1534             }
1535         }
1536     }
1537
1538   return os;
1539 }
1540
1541 // Add an exception frame for a PLT.  This is called from target code.
1542
1543 void
1544 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1545                              size_t cie_length, const unsigned char* fde_data,
1546                              size_t fde_length)
1547 {
1548   if (parameters->incremental())
1549     {
1550       // FIXME: Maybe this could work some day....
1551       return;
1552     }
1553   Output_section* os = this->make_eh_frame_section(NULL);
1554   if (os == NULL)
1555     return;
1556   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1557                                             fde_data, fde_length);
1558   if (!this->added_eh_frame_data_)
1559     {
1560       os->add_output_section_data(this->eh_frame_data_);
1561       this->added_eh_frame_data_ = true;
1562     }
1563 }
1564
1565 // Scan a .debug_info or .debug_types section, and add summary
1566 // information to the .gdb_index section.
1567
1568 template<int size, bool big_endian>
1569 void
1570 Layout::add_to_gdb_index(bool is_type_unit,
1571                          Sized_relobj<size, big_endian>* object,
1572                          const unsigned char* symbols,
1573                          off_t symbols_size,
1574                          unsigned int shndx,
1575                          unsigned int reloc_shndx,
1576                          unsigned int reloc_type)
1577 {
1578   if (this->gdb_index_data_ == NULL)
1579     {
1580       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1581                                                        elfcpp::SHT_PROGBITS, 0,
1582                                                        false, ORDER_INVALID,
1583                                                        false);
1584       if (os == NULL)
1585         return;
1586
1587       this->gdb_index_data_ = new Gdb_index(os);
1588       os->add_output_section_data(this->gdb_index_data_);
1589       os->set_after_input_sections();
1590     }
1591
1592   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1593                                          symbols_size, shndx, reloc_shndx,
1594                                          reloc_type);
1595 }
1596
1597 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1598 // the output section.
1599
1600 Output_section*
1601 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1602                                 elfcpp::Elf_Xword flags,
1603                                 Output_section_data* posd,
1604                                 Output_section_order order, bool is_relro)
1605 {
1606   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1607                                                    false, order, is_relro);
1608   if (os != NULL)
1609     os->add_output_section_data(posd);
1610   return os;
1611 }
1612
1613 // Map section flags to segment flags.
1614
1615 elfcpp::Elf_Word
1616 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1617 {
1618   elfcpp::Elf_Word ret = elfcpp::PF_R;
1619   if ((flags & elfcpp::SHF_WRITE) != 0)
1620     ret |= elfcpp::PF_W;
1621   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1622     ret |= elfcpp::PF_X;
1623   return ret;
1624 }
1625
1626 // Make a new Output_section, and attach it to segments as
1627 // appropriate.  ORDER is the order in which this section should
1628 // appear in the output segment.  IS_RELRO is true if this is a relro
1629 // (read-only after relocations) section.
1630
1631 Output_section*
1632 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1633                             elfcpp::Elf_Xword flags,
1634                             Output_section_order order, bool is_relro)
1635 {
1636   Output_section* os;
1637   if ((flags & elfcpp::SHF_ALLOC) == 0
1638       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1639       && is_compressible_debug_section(name))
1640     os = new Output_compressed_section(&parameters->options(), name, type,
1641                                        flags);
1642   else if ((flags & elfcpp::SHF_ALLOC) == 0
1643            && parameters->options().strip_debug_non_line()
1644            && strcmp(".debug_abbrev", name) == 0)
1645     {
1646       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1647           name, type, flags);
1648       if (this->debug_info_)
1649         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1650     }
1651   else if ((flags & elfcpp::SHF_ALLOC) == 0
1652            && parameters->options().strip_debug_non_line()
1653            && strcmp(".debug_info", name) == 0)
1654     {
1655       os = this->debug_info_ = new Output_reduced_debug_info_section(
1656           name, type, flags);
1657       if (this->debug_abbrev_)
1658         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1659     }
1660   else
1661     {
1662       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1663       // not have correct section types.  Force them here.
1664       if (type == elfcpp::SHT_PROGBITS)
1665         {
1666           if (is_prefix_of(".init_array", name))
1667             type = elfcpp::SHT_INIT_ARRAY;
1668           else if (is_prefix_of(".preinit_array", name))
1669             type = elfcpp::SHT_PREINIT_ARRAY;
1670           else if (is_prefix_of(".fini_array", name))
1671             type = elfcpp::SHT_FINI_ARRAY;
1672         }
1673
1674       // FIXME: const_cast is ugly.
1675       Target* target = const_cast<Target*>(&parameters->target());
1676       os = target->make_output_section(name, type, flags);
1677     }
1678
1679   // With -z relro, we have to recognize the special sections by name.
1680   // There is no other way.
1681   bool is_relro_local = false;
1682   if (!this->script_options_->saw_sections_clause()
1683       && parameters->options().relro()
1684       && (flags & elfcpp::SHF_ALLOC) != 0
1685       && (flags & elfcpp::SHF_WRITE) != 0)
1686     {
1687       if (type == elfcpp::SHT_PROGBITS)
1688         {
1689           if ((flags & elfcpp::SHF_TLS) != 0)
1690             is_relro = true;
1691           else if (strcmp(name, ".data.rel.ro") == 0)
1692             is_relro = true;
1693           else if (strcmp(name, ".data.rel.ro.local") == 0)
1694             {
1695               is_relro = true;
1696               is_relro_local = true;
1697             }
1698           else if (strcmp(name, ".ctors") == 0
1699                    || strcmp(name, ".dtors") == 0
1700                    || strcmp(name, ".jcr") == 0)
1701             is_relro = true;
1702         }
1703       else if (type == elfcpp::SHT_INIT_ARRAY
1704                || type == elfcpp::SHT_FINI_ARRAY
1705                || type == elfcpp::SHT_PREINIT_ARRAY)
1706         is_relro = true;
1707     }
1708
1709   if (is_relro)
1710     os->set_is_relro();
1711
1712   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1713     order = this->default_section_order(os, is_relro_local);
1714
1715   os->set_order(order);
1716
1717   parameters->target().new_output_section(os);
1718
1719   this->section_list_.push_back(os);
1720
1721   // The GNU linker by default sorts some sections by priority, so we
1722   // do the same.  We need to know that this might happen before we
1723   // attach any input sections.
1724   if (!this->script_options_->saw_sections_clause()
1725       && !parameters->options().relocatable()
1726       && (strcmp(name, ".init_array") == 0
1727           || strcmp(name, ".fini_array") == 0
1728           || (!parameters->options().ctors_in_init_array()
1729               && (strcmp(name, ".ctors") == 0
1730                   || strcmp(name, ".dtors") == 0))))
1731     os->set_may_sort_attached_input_sections();
1732
1733   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1734   // sections before other .text sections.  We are compatible.  We
1735   // need to know that this might happen before we attach any input
1736   // sections.
1737   if (parameters->options().text_reorder()
1738       && !this->script_options_->saw_sections_clause()
1739       && !this->is_section_ordering_specified()
1740       && !parameters->options().relocatable()
1741       && strcmp(name, ".text") == 0)
1742     os->set_may_sort_attached_input_sections();
1743
1744   // GNU linker sorts section by name with --sort-section=name.
1745   if (strcmp(parameters->options().sort_section(), "name") == 0)
1746       os->set_must_sort_attached_input_sections();
1747
1748   // Check for .stab*str sections, as .stab* sections need to link to
1749   // them.
1750   if (type == elfcpp::SHT_STRTAB
1751       && !this->have_stabstr_section_
1752       && strncmp(name, ".stab", 5) == 0
1753       && strcmp(name + strlen(name) - 3, "str") == 0)
1754     this->have_stabstr_section_ = true;
1755
1756   // During a full incremental link, we add patch space to most
1757   // PROGBITS and NOBITS sections.  Flag those that may be
1758   // arbitrarily padded.
1759   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1760       && order != ORDER_INTERP
1761       && order != ORDER_INIT
1762       && order != ORDER_PLT
1763       && order != ORDER_FINI
1764       && order != ORDER_RELRO_LAST
1765       && order != ORDER_NON_RELRO_FIRST
1766       && strcmp(name, ".eh_frame") != 0
1767       && strcmp(name, ".ctors") != 0
1768       && strcmp(name, ".dtors") != 0
1769       && strcmp(name, ".jcr") != 0)
1770     {
1771       os->set_is_patch_space_allowed();
1772
1773       // Certain sections require "holes" to be filled with
1774       // specific fill patterns.  These fill patterns may have
1775       // a minimum size, so we must prevent allocations from the
1776       // free list that leave a hole smaller than the minimum.
1777       if (strcmp(name, ".debug_info") == 0)
1778         os->set_free_space_fill(new Output_fill_debug_info(false));
1779       else if (strcmp(name, ".debug_types") == 0)
1780         os->set_free_space_fill(new Output_fill_debug_info(true));
1781       else if (strcmp(name, ".debug_line") == 0)
1782         os->set_free_space_fill(new Output_fill_debug_line());
1783     }
1784
1785   // If we have already attached the sections to segments, then we
1786   // need to attach this one now.  This happens for sections created
1787   // directly by the linker.
1788   if (this->sections_are_attached_)
1789     this->attach_section_to_segment(&parameters->target(), os);
1790
1791   return os;
1792 }
1793
1794 // Return the default order in which a section should be placed in an
1795 // output segment.  This function captures a lot of the ideas in
1796 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1797 // linker created section is normally set when the section is created;
1798 // this function is used for input sections.
1799
1800 Output_section_order
1801 Layout::default_section_order(Output_section* os, bool is_relro_local)
1802 {
1803   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1804   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1805   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1806   bool is_bss = false;
1807
1808   switch (os->type())
1809     {
1810     default:
1811     case elfcpp::SHT_PROGBITS:
1812       break;
1813     case elfcpp::SHT_NOBITS:
1814       is_bss = true;
1815       break;
1816     case elfcpp::SHT_RELA:
1817     case elfcpp::SHT_REL:
1818       if (!is_write)
1819         return ORDER_DYNAMIC_RELOCS;
1820       break;
1821     case elfcpp::SHT_HASH:
1822     case elfcpp::SHT_DYNAMIC:
1823     case elfcpp::SHT_SHLIB:
1824     case elfcpp::SHT_DYNSYM:
1825     case elfcpp::SHT_GNU_HASH:
1826     case elfcpp::SHT_GNU_verdef:
1827     case elfcpp::SHT_GNU_verneed:
1828     case elfcpp::SHT_GNU_versym:
1829       if (!is_write)
1830         return ORDER_DYNAMIC_LINKER;
1831       break;
1832     case elfcpp::SHT_NOTE:
1833       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1834     }
1835
1836   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1837     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1838
1839   if (!is_bss && !is_write)
1840     {
1841       if (is_execinstr)
1842         {
1843           if (strcmp(os->name(), ".init") == 0)
1844             return ORDER_INIT;
1845           else if (strcmp(os->name(), ".fini") == 0)
1846             return ORDER_FINI;
1847         }
1848       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1849     }
1850
1851   if (os->is_relro())
1852     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1853
1854   if (os->is_small_section())
1855     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1856   if (os->is_large_section())
1857     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1858
1859   return is_bss ? ORDER_BSS : ORDER_DATA;
1860 }
1861
1862 // Attach output sections to segments.  This is called after we have
1863 // seen all the input sections.
1864
1865 void
1866 Layout::attach_sections_to_segments(const Target* target)
1867 {
1868   for (Section_list::iterator p = this->section_list_.begin();
1869        p != this->section_list_.end();
1870        ++p)
1871     this->attach_section_to_segment(target, *p);
1872
1873   this->sections_are_attached_ = true;
1874 }
1875
1876 // Attach an output section to a segment.
1877
1878 void
1879 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1880 {
1881   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1882     this->unattached_section_list_.push_back(os);
1883   else
1884     this->attach_allocated_section_to_segment(target, os);
1885 }
1886
1887 // Attach an allocated output section to a segment.
1888
1889 void
1890 Layout::attach_allocated_section_to_segment(const Target* target,
1891                                             Output_section* os)
1892 {
1893   elfcpp::Elf_Xword flags = os->flags();
1894   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1895
1896   if (parameters->options().relocatable())
1897     return;
1898
1899   // If we have a SECTIONS clause, we can't handle the attachment to
1900   // segments until after we've seen all the sections.
1901   if (this->script_options_->saw_sections_clause())
1902     return;
1903
1904   gold_assert(!this->script_options_->saw_phdrs_clause());
1905
1906   // This output section goes into a PT_LOAD segment.
1907
1908   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1909
1910   // If this output section's segment has extra flags that need to be set,
1911   // coming from a linker plugin, do that.
1912   seg_flags |= os->extra_segment_flags();
1913
1914   // Check for --section-start.
1915   uint64_t addr;
1916   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1917
1918   // In general the only thing we really care about for PT_LOAD
1919   // segments is whether or not they are writable or executable,
1920   // so that is how we search for them.
1921   // Large data sections also go into their own PT_LOAD segment.
1922   // People who need segments sorted on some other basis will
1923   // have to use a linker script.
1924
1925   Segment_list::const_iterator p;
1926   if (!os->is_unique_segment())
1927     {
1928       for (p = this->segment_list_.begin();
1929            p != this->segment_list_.end();
1930            ++p)
1931         {
1932           if ((*p)->type() != elfcpp::PT_LOAD)
1933             continue;
1934           if ((*p)->is_unique_segment())
1935             continue;
1936           if (!parameters->options().omagic()
1937               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1938             continue;
1939           if ((target->isolate_execinstr() || parameters->options().rosegment())
1940               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1941             continue;
1942           // If -Tbss was specified, we need to separate the data and BSS
1943           // segments.
1944           if (parameters->options().user_set_Tbss())
1945             {
1946               if ((os->type() == elfcpp::SHT_NOBITS)
1947                   == (*p)->has_any_data_sections())
1948                 continue;
1949             }
1950           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1951             continue;
1952
1953           if (is_address_set)
1954             {
1955               if ((*p)->are_addresses_set())
1956                 continue;
1957
1958               (*p)->add_initial_output_data(os);
1959               (*p)->update_flags_for_output_section(seg_flags);
1960               (*p)->set_addresses(addr, addr);
1961               break;
1962             }
1963
1964           (*p)->add_output_section_to_load(this, os, seg_flags);
1965           break;
1966         }
1967     }
1968
1969   if (p == this->segment_list_.end()
1970       || os->is_unique_segment())
1971     {
1972       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1973                                                        seg_flags);
1974       if (os->is_large_data_section())
1975         oseg->set_is_large_data_segment();
1976       oseg->add_output_section_to_load(this, os, seg_flags);
1977       if (is_address_set)
1978         oseg->set_addresses(addr, addr);
1979       // Check if segment should be marked unique.  For segments marked
1980       // unique by linker plugins, set the new alignment if specified.
1981       if (os->is_unique_segment())
1982         {
1983           oseg->set_is_unique_segment();
1984           if (os->segment_alignment() != 0)
1985             oseg->set_minimum_p_align(os->segment_alignment());
1986         }
1987     }
1988
1989   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1990   // segment.
1991   if (os->type() == elfcpp::SHT_NOTE)
1992     {
1993       // See if we already have an equivalent PT_NOTE segment.
1994       for (p = this->segment_list_.begin();
1995            p != segment_list_.end();
1996            ++p)
1997         {
1998           if ((*p)->type() == elfcpp::PT_NOTE
1999               && (((*p)->flags() & elfcpp::PF_W)
2000                   == (seg_flags & elfcpp::PF_W)))
2001             {
2002               (*p)->add_output_section_to_nonload(os, seg_flags);
2003               break;
2004             }
2005         }
2006
2007       if (p == this->segment_list_.end())
2008         {
2009           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2010                                                            seg_flags);
2011           oseg->add_output_section_to_nonload(os, seg_flags);
2012         }
2013     }
2014
2015   // If we see a loadable SHF_TLS section, we create a PT_TLS
2016   // segment.  There can only be one such segment.
2017   if ((flags & elfcpp::SHF_TLS) != 0)
2018     {
2019       if (this->tls_segment_ == NULL)
2020         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2021       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2022     }
2023
2024   // If -z relro is in effect, and we see a relro section, we create a
2025   // PT_GNU_RELRO segment.  There can only be one such segment.
2026   if (os->is_relro() && parameters->options().relro())
2027     {
2028       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2029       if (this->relro_segment_ == NULL)
2030         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2031       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2032     }
2033
2034   // If we see a section named .interp, put it into a PT_INTERP
2035   // segment.  This seems broken to me, but this is what GNU ld does,
2036   // and glibc expects it.
2037   if (strcmp(os->name(), ".interp") == 0
2038       && !this->script_options_->saw_phdrs_clause())
2039     {
2040       if (this->interp_segment_ == NULL)
2041         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2042       else
2043         gold_warning(_("multiple '.interp' sections in input files "
2044                        "may cause confusing PT_INTERP segment"));
2045       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2046     }
2047 }
2048
2049 // Make an output section for a script.
2050
2051 Output_section*
2052 Layout::make_output_section_for_script(
2053     const char* name,
2054     Script_sections::Section_type section_type)
2055 {
2056   name = this->namepool_.add(name, false, NULL);
2057   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2058   if (section_type == Script_sections::ST_NOLOAD)
2059     sh_flags = 0;
2060   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2061                                                  sh_flags, ORDER_INVALID,
2062                                                  false);
2063   os->set_found_in_sections_clause();
2064   if (section_type == Script_sections::ST_NOLOAD)
2065     os->set_is_noload();
2066   return os;
2067 }
2068
2069 // Return the number of segments we expect to see.
2070
2071 size_t
2072 Layout::expected_segment_count() const
2073 {
2074   size_t ret = this->segment_list_.size();
2075
2076   // If we didn't see a SECTIONS clause in a linker script, we should
2077   // already have the complete list of segments.  Otherwise we ask the
2078   // SECTIONS clause how many segments it expects, and add in the ones
2079   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2080
2081   if (!this->script_options_->saw_sections_clause())
2082     return ret;
2083   else
2084     {
2085       const Script_sections* ss = this->script_options_->script_sections();
2086       return ret + ss->expected_segment_count(this);
2087     }
2088 }
2089
2090 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2091 // is whether we saw a .note.GNU-stack section in the object file.
2092 // GNU_STACK_FLAGS is the section flags.  The flags give the
2093 // protection required for stack memory.  We record this in an
2094 // executable as a PT_GNU_STACK segment.  If an object file does not
2095 // have a .note.GNU-stack segment, we must assume that it is an old
2096 // object.  On some targets that will force an executable stack.
2097
2098 void
2099 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2100                          const Object* obj)
2101 {
2102   if (!seen_gnu_stack)
2103     {
2104       this->input_without_gnu_stack_note_ = true;
2105       if (parameters->options().warn_execstack()
2106           && parameters->target().is_default_stack_executable())
2107         gold_warning(_("%s: missing .note.GNU-stack section"
2108                        " implies executable stack"),
2109                      obj->name().c_str());
2110     }
2111   else
2112     {
2113       this->input_with_gnu_stack_note_ = true;
2114       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2115         {
2116           this->input_requires_executable_stack_ = true;
2117           if (parameters->options().warn_execstack())
2118             gold_warning(_("%s: requires executable stack"),
2119                          obj->name().c_str());
2120         }
2121     }
2122 }
2123
2124 // Create automatic note sections.
2125
2126 void
2127 Layout::create_notes()
2128 {
2129   this->create_gold_note();
2130   this->create_executable_stack_info();
2131   this->create_build_id();
2132 }
2133
2134 // Create the dynamic sections which are needed before we read the
2135 // relocs.
2136
2137 void
2138 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2139 {
2140   if (parameters->doing_static_link())
2141     return;
2142
2143   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2144                                                        elfcpp::SHT_DYNAMIC,
2145                                                        (elfcpp::SHF_ALLOC
2146                                                         | elfcpp::SHF_WRITE),
2147                                                        false, ORDER_RELRO,
2148                                                        true);
2149
2150   // A linker script may discard .dynamic, so check for NULL.
2151   if (this->dynamic_section_ != NULL)
2152     {
2153       this->dynamic_symbol_ =
2154         symtab->define_in_output_data("_DYNAMIC", NULL,
2155                                       Symbol_table::PREDEFINED,
2156                                       this->dynamic_section_, 0, 0,
2157                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2158                                       elfcpp::STV_HIDDEN, 0, false, false);
2159
2160       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2161
2162       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2163     }
2164 }
2165
2166 // For each output section whose name can be represented as C symbol,
2167 // define __start and __stop symbols for the section.  This is a GNU
2168 // extension.
2169
2170 void
2171 Layout::define_section_symbols(Symbol_table* symtab)
2172 {
2173   for (Section_list::const_iterator p = this->section_list_.begin();
2174        p != this->section_list_.end();
2175        ++p)
2176     {
2177       const char* const name = (*p)->name();
2178       if (is_cident(name))
2179         {
2180           const std::string name_string(name);
2181           const std::string start_name(cident_section_start_prefix
2182                                        + name_string);
2183           const std::string stop_name(cident_section_stop_prefix
2184                                       + name_string);
2185
2186           symtab->define_in_output_data(start_name.c_str(),
2187                                         NULL, // version
2188                                         Symbol_table::PREDEFINED,
2189                                         *p,
2190                                         0, // value
2191                                         0, // symsize
2192                                         elfcpp::STT_NOTYPE,
2193                                         elfcpp::STB_GLOBAL,
2194                                         elfcpp::STV_DEFAULT,
2195                                         0, // nonvis
2196                                         false, // offset_is_from_end
2197                                         true); // only_if_ref
2198
2199           symtab->define_in_output_data(stop_name.c_str(),
2200                                         NULL, // version
2201                                         Symbol_table::PREDEFINED,
2202                                         *p,
2203                                         0, // value
2204                                         0, // symsize
2205                                         elfcpp::STT_NOTYPE,
2206                                         elfcpp::STB_GLOBAL,
2207                                         elfcpp::STV_DEFAULT,
2208                                         0, // nonvis
2209                                         true, // offset_is_from_end
2210                                         true); // only_if_ref
2211         }
2212     }
2213 }
2214
2215 // Define symbols for group signatures.
2216
2217 void
2218 Layout::define_group_signatures(Symbol_table* symtab)
2219 {
2220   for (Group_signatures::iterator p = this->group_signatures_.begin();
2221        p != this->group_signatures_.end();
2222        ++p)
2223     {
2224       Symbol* sym = symtab->lookup(p->signature, NULL);
2225       if (sym != NULL)
2226         p->section->set_info_symndx(sym);
2227       else
2228         {
2229           // Force the name of the group section to the group
2230           // signature, and use the group's section symbol as the
2231           // signature symbol.
2232           if (strcmp(p->section->name(), p->signature) != 0)
2233             {
2234               const char* name = this->namepool_.add(p->signature,
2235                                                      true, NULL);
2236               p->section->set_name(name);
2237             }
2238           p->section->set_needs_symtab_index();
2239           p->section->set_info_section_symndx(p->section);
2240         }
2241     }
2242
2243   this->group_signatures_.clear();
2244 }
2245
2246 // Find the first read-only PT_LOAD segment, creating one if
2247 // necessary.
2248
2249 Output_segment*
2250 Layout::find_first_load_seg(const Target* target)
2251 {
2252   Output_segment* best = NULL;
2253   for (Segment_list::const_iterator p = this->segment_list_.begin();
2254        p != this->segment_list_.end();
2255        ++p)
2256     {
2257       if ((*p)->type() == elfcpp::PT_LOAD
2258           && ((*p)->flags() & elfcpp::PF_R) != 0
2259           && (parameters->options().omagic()
2260               || ((*p)->flags() & elfcpp::PF_W) == 0)
2261           && (!target->isolate_execinstr()
2262               || ((*p)->flags() & elfcpp::PF_X) == 0))
2263         {
2264           if (best == NULL || this->segment_precedes(*p, best))
2265             best = *p;
2266         }
2267     }
2268   if (best != NULL)
2269     return best;
2270
2271   gold_assert(!this->script_options_->saw_phdrs_clause());
2272
2273   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2274                                                        elfcpp::PF_R);
2275   return load_seg;
2276 }
2277
2278 // Save states of all current output segments.  Store saved states
2279 // in SEGMENT_STATES.
2280
2281 void
2282 Layout::save_segments(Segment_states* segment_states)
2283 {
2284   for (Segment_list::const_iterator p = this->segment_list_.begin();
2285        p != this->segment_list_.end();
2286        ++p)
2287     {
2288       Output_segment* segment = *p;
2289       // Shallow copy.
2290       Output_segment* copy = new Output_segment(*segment);
2291       (*segment_states)[segment] = copy;
2292     }
2293 }
2294
2295 // Restore states of output segments and delete any segment not found in
2296 // SEGMENT_STATES.
2297
2298 void
2299 Layout::restore_segments(const Segment_states* segment_states)
2300 {
2301   // Go through the segment list and remove any segment added in the
2302   // relaxation loop.
2303   this->tls_segment_ = NULL;
2304   this->relro_segment_ = NULL;
2305   Segment_list::iterator list_iter = this->segment_list_.begin();
2306   while (list_iter != this->segment_list_.end())
2307     {
2308       Output_segment* segment = *list_iter;
2309       Segment_states::const_iterator states_iter =
2310           segment_states->find(segment);
2311       if (states_iter != segment_states->end())
2312         {
2313           const Output_segment* copy = states_iter->second;
2314           // Shallow copy to restore states.
2315           *segment = *copy;
2316
2317           // Also fix up TLS and RELRO segment pointers as appropriate.
2318           if (segment->type() == elfcpp::PT_TLS)
2319             this->tls_segment_ = segment;
2320           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2321             this->relro_segment_ = segment;
2322
2323           ++list_iter;
2324         }
2325       else
2326         {
2327           list_iter = this->segment_list_.erase(list_iter);
2328           // This is a segment created during section layout.  It should be
2329           // safe to remove it since we should have removed all pointers to it.
2330           delete segment;
2331         }
2332     }
2333 }
2334
2335 // Clean up after relaxation so that sections can be laid out again.
2336
2337 void
2338 Layout::clean_up_after_relaxation()
2339 {
2340   // Restore the segments to point state just prior to the relaxation loop.
2341   Script_sections* script_section = this->script_options_->script_sections();
2342   script_section->release_segments();
2343   this->restore_segments(this->segment_states_);
2344
2345   // Reset section addresses and file offsets
2346   for (Section_list::iterator p = this->section_list_.begin();
2347        p != this->section_list_.end();
2348        ++p)
2349     {
2350       (*p)->restore_states();
2351
2352       // If an input section changes size because of relaxation,
2353       // we need to adjust the section offsets of all input sections.
2354       // after such a section.
2355       if ((*p)->section_offsets_need_adjustment())
2356         (*p)->adjust_section_offsets();
2357
2358       (*p)->reset_address_and_file_offset();
2359     }
2360
2361   // Reset special output object address and file offsets.
2362   for (Data_list::iterator p = this->special_output_list_.begin();
2363        p != this->special_output_list_.end();
2364        ++p)
2365     (*p)->reset_address_and_file_offset();
2366
2367   // A linker script may have created some output section data objects.
2368   // They are useless now.
2369   for (Output_section_data_list::const_iterator p =
2370          this->script_output_section_data_list_.begin();
2371        p != this->script_output_section_data_list_.end();
2372        ++p)
2373     delete *p;
2374   this->script_output_section_data_list_.clear();
2375
2376   // Special-case fill output objects are recreated each time through
2377   // the relaxation loop.
2378   this->reset_relax_output();
2379 }
2380
2381 void
2382 Layout::reset_relax_output()
2383 {
2384   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2385        p != this->relax_output_list_.end();
2386        ++p)
2387     delete *p;
2388   this->relax_output_list_.clear();
2389 }
2390
2391 // Prepare for relaxation.
2392
2393 void
2394 Layout::prepare_for_relaxation()
2395 {
2396   // Create an relaxation debug check if in debugging mode.
2397   if (is_debugging_enabled(DEBUG_RELAXATION))
2398     this->relaxation_debug_check_ = new Relaxation_debug_check();
2399
2400   // Save segment states.
2401   this->segment_states_ = new Segment_states();
2402   this->save_segments(this->segment_states_);
2403
2404   for(Section_list::const_iterator p = this->section_list_.begin();
2405       p != this->section_list_.end();
2406       ++p)
2407     (*p)->save_states();
2408
2409   if (is_debugging_enabled(DEBUG_RELAXATION))
2410     this->relaxation_debug_check_->check_output_data_for_reset_values(
2411         this->section_list_, this->special_output_list_,
2412         this->relax_output_list_);
2413
2414   // Also enable recording of output section data from scripts.
2415   this->record_output_section_data_from_script_ = true;
2416 }
2417
2418 // If the user set the address of the text segment, that may not be
2419 // compatible with putting the segment headers and file headers into
2420 // that segment.  For isolate_execinstr() targets, it's the rodata
2421 // segment rather than text where we might put the headers.
2422 static inline bool
2423 load_seg_unusable_for_headers(const Target* target)
2424 {
2425   const General_options& options = parameters->options();
2426   if (target->isolate_execinstr())
2427     return (options.user_set_Trodata_segment()
2428             && options.Trodata_segment() % target->abi_pagesize() != 0);
2429   else
2430     return (options.user_set_Ttext()
2431             && options.Ttext() % target->abi_pagesize() != 0);
2432 }
2433
2434 // Relaxation loop body:  If target has no relaxation, this runs only once
2435 // Otherwise, the target relaxation hook is called at the end of
2436 // each iteration.  If the hook returns true, it means re-layout of
2437 // section is required.
2438 //
2439 // The number of segments created by a linking script without a PHDRS
2440 // clause may be affected by section sizes and alignments.  There is
2441 // a remote chance that relaxation causes different number of PT_LOAD
2442 // segments are created and sections are attached to different segments.
2443 // Therefore, we always throw away all segments created during section
2444 // layout.  In order to be able to restart the section layout, we keep
2445 // a copy of the segment list right before the relaxation loop and use
2446 // that to restore the segments.
2447 //
2448 // PASS is the current relaxation pass number.
2449 // SYMTAB is a symbol table.
2450 // PLOAD_SEG is the address of a pointer for the load segment.
2451 // PHDR_SEG is a pointer to the PHDR segment.
2452 // SEGMENT_HEADERS points to the output segment header.
2453 // FILE_HEADER points to the output file header.
2454 // PSHNDX is the address to store the output section index.
2455
2456 off_t inline
2457 Layout::relaxation_loop_body(
2458     int pass,
2459     Target* target,
2460     Symbol_table* symtab,
2461     Output_segment** pload_seg,
2462     Output_segment* phdr_seg,
2463     Output_segment_headers* segment_headers,
2464     Output_file_header* file_header,
2465     unsigned int* pshndx)
2466 {
2467   // If this is not the first iteration, we need to clean up after
2468   // relaxation so that we can lay out the sections again.
2469   if (pass != 0)
2470     this->clean_up_after_relaxation();
2471
2472   // If there is a SECTIONS clause, put all the input sections into
2473   // the required order.
2474   Output_segment* load_seg;
2475   if (this->script_options_->saw_sections_clause())
2476     load_seg = this->set_section_addresses_from_script(symtab);
2477   else if (parameters->options().relocatable())
2478     load_seg = NULL;
2479   else
2480     load_seg = this->find_first_load_seg(target);
2481
2482   if (parameters->options().oformat_enum()
2483       != General_options::OBJECT_FORMAT_ELF)
2484     load_seg = NULL;
2485
2486   if (load_seg_unusable_for_headers(target))
2487     {
2488       load_seg = NULL;
2489       phdr_seg = NULL;
2490     }
2491
2492   gold_assert(phdr_seg == NULL
2493               || load_seg != NULL
2494               || this->script_options_->saw_sections_clause());
2495
2496   // If the address of the load segment we found has been set by
2497   // --section-start rather than by a script, then adjust the VMA and
2498   // LMA downward if possible to include the file and section headers.
2499   uint64_t header_gap = 0;
2500   if (load_seg != NULL
2501       && load_seg->are_addresses_set()
2502       && !this->script_options_->saw_sections_clause()
2503       && !parameters->options().relocatable())
2504     {
2505       file_header->finalize_data_size();
2506       segment_headers->finalize_data_size();
2507       size_t sizeof_headers = (file_header->data_size()
2508                                + segment_headers->data_size());
2509       const uint64_t abi_pagesize = target->abi_pagesize();
2510       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2511       hdr_paddr &= ~(abi_pagesize - 1);
2512       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2513       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2514         load_seg = NULL;
2515       else
2516         {
2517           load_seg->set_addresses(load_seg->vaddr() - subtract,
2518                                   load_seg->paddr() - subtract);
2519           header_gap = subtract - sizeof_headers;
2520         }
2521     }
2522
2523   // Lay out the segment headers.
2524   if (!parameters->options().relocatable())
2525     {
2526       gold_assert(segment_headers != NULL);
2527       if (header_gap != 0 && load_seg != NULL)
2528         {
2529           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2530           load_seg->add_initial_output_data(z);
2531         }
2532       if (load_seg != NULL)
2533         load_seg->add_initial_output_data(segment_headers);
2534       if (phdr_seg != NULL)
2535         phdr_seg->add_initial_output_data(segment_headers);
2536     }
2537
2538   // Lay out the file header.
2539   if (load_seg != NULL)
2540     load_seg->add_initial_output_data(file_header);
2541
2542   if (this->script_options_->saw_phdrs_clause()
2543       && !parameters->options().relocatable())
2544     {
2545       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2546       // clause in a linker script.
2547       Script_sections* ss = this->script_options_->script_sections();
2548       ss->put_headers_in_phdrs(file_header, segment_headers);
2549     }
2550
2551   // We set the output section indexes in set_segment_offsets and
2552   // set_section_indexes.
2553   *pshndx = 1;
2554
2555   // Set the file offsets of all the segments, and all the sections
2556   // they contain.
2557   off_t off;
2558   if (!parameters->options().relocatable())
2559     off = this->set_segment_offsets(target, load_seg, pshndx);
2560   else
2561     off = this->set_relocatable_section_offsets(file_header, pshndx);
2562
2563    // Verify that the dummy relaxation does not change anything.
2564   if (is_debugging_enabled(DEBUG_RELAXATION))
2565     {
2566       if (pass == 0)
2567         this->relaxation_debug_check_->read_sections(this->section_list_);
2568       else
2569         this->relaxation_debug_check_->verify_sections(this->section_list_);
2570     }
2571
2572   *pload_seg = load_seg;
2573   return off;
2574 }
2575
2576 // Search the list of patterns and find the postion of the given section
2577 // name in the output section.  If the section name matches a glob
2578 // pattern and a non-glob name, then the non-glob position takes
2579 // precedence.  Return 0 if no match is found.
2580
2581 unsigned int
2582 Layout::find_section_order_index(const std::string& section_name)
2583 {
2584   Unordered_map<std::string, unsigned int>::iterator map_it;
2585   map_it = this->input_section_position_.find(section_name);
2586   if (map_it != this->input_section_position_.end())
2587     return map_it->second;
2588
2589   // Absolute match failed.  Linear search the glob patterns.
2590   std::vector<std::string>::iterator it;
2591   for (it = this->input_section_glob_.begin();
2592        it != this->input_section_glob_.end();
2593        ++it)
2594     {
2595        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2596          {
2597            map_it = this->input_section_position_.find(*it);
2598            gold_assert(map_it != this->input_section_position_.end());
2599            return map_it->second;
2600          }
2601     }
2602   return 0;
2603 }
2604
2605 // Read the sequence of input sections from the file specified with
2606 // option --section-ordering-file.
2607
2608 void
2609 Layout::read_layout_from_file()
2610 {
2611   const char* filename = parameters->options().section_ordering_file();
2612   std::ifstream in;
2613   std::string line;
2614
2615   in.open(filename);
2616   if (!in)
2617     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2618                filename, strerror(errno));
2619
2620   std::getline(in, line);   // this chops off the trailing \n, if any
2621   unsigned int position = 1;
2622   this->set_section_ordering_specified();
2623
2624   while (in)
2625     {
2626       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2627         line.resize(line.length() - 1);
2628       // Ignore comments, beginning with '#'
2629       if (line[0] == '#')
2630         {
2631           std::getline(in, line);
2632           continue;
2633         }
2634       this->input_section_position_[line] = position;
2635       // Store all glob patterns in a vector.
2636       if (is_wildcard_string(line.c_str()))
2637         this->input_section_glob_.push_back(line);
2638       position++;
2639       std::getline(in, line);
2640     }
2641 }
2642
2643 // Finalize the layout.  When this is called, we have created all the
2644 // output sections and all the output segments which are based on
2645 // input sections.  We have several things to do, and we have to do
2646 // them in the right order, so that we get the right results correctly
2647 // and efficiently.
2648
2649 // 1) Finalize the list of output segments and create the segment
2650 // table header.
2651
2652 // 2) Finalize the dynamic symbol table and associated sections.
2653
2654 // 3) Determine the final file offset of all the output segments.
2655
2656 // 4) Determine the final file offset of all the SHF_ALLOC output
2657 // sections.
2658
2659 // 5) Create the symbol table sections and the section name table
2660 // section.
2661
2662 // 6) Finalize the symbol table: set symbol values to their final
2663 // value and make a final determination of which symbols are going
2664 // into the output symbol table.
2665
2666 // 7) Create the section table header.
2667
2668 // 8) Determine the final file offset of all the output sections which
2669 // are not SHF_ALLOC, including the section table header.
2670
2671 // 9) Finalize the ELF file header.
2672
2673 // This function returns the size of the output file.
2674
2675 off_t
2676 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2677                  Target* target, const Task* task)
2678 {
2679   target->finalize_sections(this, input_objects, symtab);
2680
2681   this->count_local_symbols(task, input_objects);
2682
2683   this->link_stabs_sections();
2684
2685   Output_segment* phdr_seg = NULL;
2686   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2687     {
2688       // There was a dynamic object in the link.  We need to create
2689       // some information for the dynamic linker.
2690
2691       // Create the PT_PHDR segment which will hold the program
2692       // headers.
2693       if (!this->script_options_->saw_phdrs_clause())
2694         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2695
2696       // Create the dynamic symbol table, including the hash table.
2697       Output_section* dynstr;
2698       std::vector<Symbol*> dynamic_symbols;
2699       unsigned int local_dynamic_count;
2700       Versions versions(*this->script_options()->version_script_info(),
2701                         &this->dynpool_);
2702       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2703                                   &local_dynamic_count, &dynamic_symbols,
2704                                   &versions);
2705
2706       // Create the .interp section to hold the name of the
2707       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2708       // if we saw a .interp section in an input file.
2709       if ((!parameters->options().shared()
2710            || parameters->options().dynamic_linker() != NULL)
2711           && this->interp_segment_ == NULL)
2712         this->create_interp(target);
2713
2714       // Finish the .dynamic section to hold the dynamic data, and put
2715       // it in a PT_DYNAMIC segment.
2716       this->finish_dynamic_section(input_objects, symtab);
2717
2718       // We should have added everything we need to the dynamic string
2719       // table.
2720       this->dynpool_.set_string_offsets();
2721
2722       // Create the version sections.  We can't do this until the
2723       // dynamic string table is complete.
2724       this->create_version_sections(&versions, symtab, local_dynamic_count,
2725                                     dynamic_symbols, dynstr);
2726
2727       // Set the size of the _DYNAMIC symbol.  We can't do this until
2728       // after we call create_version_sections.
2729       this->set_dynamic_symbol_size(symtab);
2730     }
2731
2732   // Create segment headers.
2733   Output_segment_headers* segment_headers =
2734     (parameters->options().relocatable()
2735      ? NULL
2736      : new Output_segment_headers(this->segment_list_));
2737
2738   // Lay out the file header.
2739   Output_file_header* file_header = new Output_file_header(target, symtab,
2740                                                            segment_headers);
2741
2742   this->special_output_list_.push_back(file_header);
2743   if (segment_headers != NULL)
2744     this->special_output_list_.push_back(segment_headers);
2745
2746   // Find approriate places for orphan output sections if we are using
2747   // a linker script.
2748   if (this->script_options_->saw_sections_clause())
2749     this->place_orphan_sections_in_script();
2750
2751   Output_segment* load_seg;
2752   off_t off;
2753   unsigned int shndx;
2754   int pass = 0;
2755
2756   // Take a snapshot of the section layout as needed.
2757   if (target->may_relax())
2758     this->prepare_for_relaxation();
2759
2760   // Run the relaxation loop to lay out sections.
2761   do
2762     {
2763       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2764                                        phdr_seg, segment_headers, file_header,
2765                                        &shndx);
2766       pass++;
2767     }
2768   while (target->may_relax()
2769          && target->relax(pass, input_objects, symtab, this, task));
2770
2771   // If there is a load segment that contains the file and program headers,
2772   // provide a symbol __ehdr_start pointing there.
2773   // A program can use this to examine itself robustly.
2774   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2775   if (ehdr_start != NULL && ehdr_start->is_predefined())
2776     {
2777       if (load_seg != NULL)
2778         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2779       else
2780         ehdr_start->set_undefined();
2781     }
2782
2783   // Set the file offsets of all the non-data sections we've seen so
2784   // far which don't have to wait for the input sections.  We need
2785   // this in order to finalize local symbols in non-allocated
2786   // sections.
2787   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2788
2789   // Set the section indexes of all unallocated sections seen so far,
2790   // in case any of them are somehow referenced by a symbol.
2791   shndx = this->set_section_indexes(shndx);
2792
2793   // Create the symbol table sections.
2794   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2795   if (!parameters->doing_static_link())
2796     this->assign_local_dynsym_offsets(input_objects);
2797
2798   // Process any symbol assignments from a linker script.  This must
2799   // be called after the symbol table has been finalized.
2800   this->script_options_->finalize_symbols(symtab, this);
2801
2802   // Create the incremental inputs sections.
2803   if (this->incremental_inputs_)
2804     {
2805       this->incremental_inputs_->finalize();
2806       this->create_incremental_info_sections(symtab);
2807     }
2808
2809   // Create the .shstrtab section.
2810   Output_section* shstrtab_section = this->create_shstrtab();
2811
2812   // Set the file offsets of the rest of the non-data sections which
2813   // don't have to wait for the input sections.
2814   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2815
2816   // Now that all sections have been created, set the section indexes
2817   // for any sections which haven't been done yet.
2818   shndx = this->set_section_indexes(shndx);
2819
2820   // Create the section table header.
2821   this->create_shdrs(shstrtab_section, &off);
2822
2823   // If there are no sections which require postprocessing, we can
2824   // handle the section names now, and avoid a resize later.
2825   if (!this->any_postprocessing_sections_)
2826     {
2827       off = this->set_section_offsets(off,
2828                                       POSTPROCESSING_SECTIONS_PASS);
2829       off =
2830           this->set_section_offsets(off,
2831                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2832     }
2833
2834   file_header->set_section_info(this->section_headers_, shstrtab_section);
2835
2836   // Now we know exactly where everything goes in the output file
2837   // (except for non-allocated sections which require postprocessing).
2838   Output_data::layout_complete();
2839
2840   this->output_file_size_ = off;
2841
2842   return off;
2843 }
2844
2845 // Create a note header following the format defined in the ELF ABI.
2846 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2847 // of the section to create, DESCSZ is the size of the descriptor.
2848 // ALLOCATE is true if the section should be allocated in memory.
2849 // This returns the new note section.  It sets *TRAILING_PADDING to
2850 // the number of trailing zero bytes required.
2851
2852 Output_section*
2853 Layout::create_note(const char* name, int note_type,
2854                     const char* section_name, size_t descsz,
2855                     bool allocate, size_t* trailing_padding)
2856 {
2857   // Authorities all agree that the values in a .note field should
2858   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2859   // they differ on what the alignment is for 64-bit binaries.
2860   // The GABI says unambiguously they take 8-byte alignment:
2861   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2862   // Other documentation says alignment should always be 4 bytes:
2863   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2864   // GNU ld and GNU readelf both support the latter (at least as of
2865   // version 2.16.91), and glibc always generates the latter for
2866   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2867   // here.
2868 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2869   const int size = parameters->target().get_size();
2870 #else
2871   const int size = 32;
2872 #endif
2873
2874   // The contents of the .note section.
2875   size_t namesz = strlen(name) + 1;
2876   size_t aligned_namesz = align_address(namesz, size / 8);
2877   size_t aligned_descsz = align_address(descsz, size / 8);
2878
2879   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2880
2881   unsigned char* buffer = new unsigned char[notehdrsz];
2882   memset(buffer, 0, notehdrsz);
2883
2884   bool is_big_endian = parameters->target().is_big_endian();
2885
2886   if (size == 32)
2887     {
2888       if (!is_big_endian)
2889         {
2890           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2891           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2892           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2893         }
2894       else
2895         {
2896           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2897           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2898           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2899         }
2900     }
2901   else if (size == 64)
2902     {
2903       if (!is_big_endian)
2904         {
2905           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2906           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2907           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2908         }
2909       else
2910         {
2911           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2912           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2913           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2914         }
2915     }
2916   else
2917     gold_unreachable();
2918
2919   memcpy(buffer + 3 * (size / 8), name, namesz);
2920
2921   elfcpp::Elf_Xword flags = 0;
2922   Output_section_order order = ORDER_INVALID;
2923   if (allocate)
2924     {
2925       flags = elfcpp::SHF_ALLOC;
2926       order = ORDER_RO_NOTE;
2927     }
2928   Output_section* os = this->choose_output_section(NULL, section_name,
2929                                                    elfcpp::SHT_NOTE,
2930                                                    flags, false, order, false);
2931   if (os == NULL)
2932     return NULL;
2933
2934   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2935                                                            size / 8,
2936                                                            "** note header");
2937   os->add_output_section_data(posd);
2938
2939   *trailing_padding = aligned_descsz - descsz;
2940
2941   return os;
2942 }
2943
2944 // For an executable or shared library, create a note to record the
2945 // version of gold used to create the binary.
2946
2947 void
2948 Layout::create_gold_note()
2949 {
2950   if (parameters->options().relocatable()
2951       || parameters->incremental_update())
2952     return;
2953
2954   std::string desc = std::string("gold ") + gold::get_version_string();
2955
2956   size_t trailing_padding;
2957   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2958                                          ".note.gnu.gold-version", desc.size(),
2959                                          false, &trailing_padding);
2960   if (os == NULL)
2961     return;
2962
2963   Output_section_data* posd = new Output_data_const(desc, 4);
2964   os->add_output_section_data(posd);
2965
2966   if (trailing_padding > 0)
2967     {
2968       posd = new Output_data_zero_fill(trailing_padding, 0);
2969       os->add_output_section_data(posd);
2970     }
2971 }
2972
2973 // Record whether the stack should be executable.  This can be set
2974 // from the command line using the -z execstack or -z noexecstack
2975 // options.  Otherwise, if any input file has a .note.GNU-stack
2976 // section with the SHF_EXECINSTR flag set, the stack should be
2977 // executable.  Otherwise, if at least one input file a
2978 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2979 // section, we use the target default for whether the stack should be
2980 // executable.  Otherwise, we don't generate a stack note.  When
2981 // generating a object file, we create a .note.GNU-stack section with
2982 // the appropriate marking.  When generating an executable or shared
2983 // library, we create a PT_GNU_STACK segment.
2984
2985 void
2986 Layout::create_executable_stack_info()
2987 {
2988   bool is_stack_executable;
2989   if (parameters->options().is_execstack_set())
2990     {
2991       is_stack_executable = parameters->options().is_stack_executable();
2992       if (!is_stack_executable
2993           && this->input_requires_executable_stack_
2994           && parameters->options().warn_execstack())
2995         gold_warning(_("one or more inputs require executable stack, "
2996                        "but -z noexecstack was given"));
2997     }
2998   else if (!this->input_with_gnu_stack_note_)
2999     return;
3000   else
3001     {
3002       if (this->input_requires_executable_stack_)
3003         is_stack_executable = true;
3004       else if (this->input_without_gnu_stack_note_)
3005         is_stack_executable =
3006           parameters->target().is_default_stack_executable();
3007       else
3008         is_stack_executable = false;
3009     }
3010
3011   if (parameters->options().relocatable())
3012     {
3013       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3014       elfcpp::Elf_Xword flags = 0;
3015       if (is_stack_executable)
3016         flags |= elfcpp::SHF_EXECINSTR;
3017       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3018                                 ORDER_INVALID, false);
3019     }
3020   else
3021     {
3022       if (this->script_options_->saw_phdrs_clause())
3023         return;
3024       int flags = elfcpp::PF_R | elfcpp::PF_W;
3025       if (is_stack_executable)
3026         flags |= elfcpp::PF_X;
3027       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3028     }
3029 }
3030
3031 // If --build-id was used, set up the build ID note.
3032
3033 void
3034 Layout::create_build_id()
3035 {
3036   if (!parameters->options().user_set_build_id())
3037     return;
3038
3039   const char* style = parameters->options().build_id();
3040   if (strcmp(style, "none") == 0)
3041     return;
3042
3043   // Set DESCSZ to the size of the note descriptor.  When possible,
3044   // set DESC to the note descriptor contents.
3045   size_t descsz;
3046   std::string desc;
3047   if (strcmp(style, "md5") == 0)
3048     descsz = 128 / 8;
3049   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3050     descsz = 160 / 8;
3051   else if (strcmp(style, "uuid") == 0)
3052     {
3053       const size_t uuidsz = 128 / 8;
3054
3055       char buffer[uuidsz];
3056       memset(buffer, 0, uuidsz);
3057
3058       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3059       if (descriptor < 0)
3060         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3061                    strerror(errno));
3062       else
3063         {
3064           ssize_t got = ::read(descriptor, buffer, uuidsz);
3065           release_descriptor(descriptor, true);
3066           if (got < 0)
3067             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3068           else if (static_cast<size_t>(got) != uuidsz)
3069             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3070                        uuidsz, got);
3071         }
3072
3073       desc.assign(buffer, uuidsz);
3074       descsz = uuidsz;
3075     }
3076   else if (strncmp(style, "0x", 2) == 0)
3077     {
3078       hex_init();
3079       const char* p = style + 2;
3080       while (*p != '\0')
3081         {
3082           if (hex_p(p[0]) && hex_p(p[1]))
3083             {
3084               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3085               desc += c;
3086               p += 2;
3087             }
3088           else if (*p == '-' || *p == ':')
3089             ++p;
3090           else
3091             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3092                        style);
3093         }
3094       descsz = desc.size();
3095     }
3096   else
3097     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3098
3099   // Create the note.
3100   size_t trailing_padding;
3101   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3102                                          ".note.gnu.build-id", descsz, true,
3103                                          &trailing_padding);
3104   if (os == NULL)
3105     return;
3106
3107   if (!desc.empty())
3108     {
3109       // We know the value already, so we fill it in now.
3110       gold_assert(desc.size() == descsz);
3111
3112       Output_section_data* posd = new Output_data_const(desc, 4);
3113       os->add_output_section_data(posd);
3114
3115       if (trailing_padding != 0)
3116         {
3117           posd = new Output_data_zero_fill(trailing_padding, 0);
3118           os->add_output_section_data(posd);
3119         }
3120     }
3121   else
3122     {
3123       // We need to compute a checksum after we have completed the
3124       // link.
3125       gold_assert(trailing_padding == 0);
3126       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3127       os->add_output_section_data(this->build_id_note_);
3128     }
3129 }
3130
3131 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3132 // field of the former should point to the latter.  I'm not sure who
3133 // started this, but the GNU linker does it, and some tools depend
3134 // upon it.
3135
3136 void
3137 Layout::link_stabs_sections()
3138 {
3139   if (!this->have_stabstr_section_)
3140     return;
3141
3142   for (Section_list::iterator p = this->section_list_.begin();
3143        p != this->section_list_.end();
3144        ++p)
3145     {
3146       if ((*p)->type() != elfcpp::SHT_STRTAB)
3147         continue;
3148
3149       const char* name = (*p)->name();
3150       if (strncmp(name, ".stab", 5) != 0)
3151         continue;
3152
3153       size_t len = strlen(name);
3154       if (strcmp(name + len - 3, "str") != 0)
3155         continue;
3156
3157       std::string stab_name(name, len - 3);
3158       Output_section* stab_sec;
3159       stab_sec = this->find_output_section(stab_name.c_str());
3160       if (stab_sec != NULL)
3161         stab_sec->set_link_section(*p);
3162     }
3163 }
3164
3165 // Create .gnu_incremental_inputs and related sections needed
3166 // for the next run of incremental linking to check what has changed.
3167
3168 void
3169 Layout::create_incremental_info_sections(Symbol_table* symtab)
3170 {
3171   Incremental_inputs* incr = this->incremental_inputs_;
3172
3173   gold_assert(incr != NULL);
3174
3175   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3176   incr->create_data_sections(symtab);
3177
3178   // Add the .gnu_incremental_inputs section.
3179   const char* incremental_inputs_name =
3180     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3181   Output_section* incremental_inputs_os =
3182     this->make_output_section(incremental_inputs_name,
3183                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3184                               ORDER_INVALID, false);
3185   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3186
3187   // Add the .gnu_incremental_symtab section.
3188   const char* incremental_symtab_name =
3189     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3190   Output_section* incremental_symtab_os =
3191     this->make_output_section(incremental_symtab_name,
3192                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3193                               ORDER_INVALID, false);
3194   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3195   incremental_symtab_os->set_entsize(4);
3196
3197   // Add the .gnu_incremental_relocs section.
3198   const char* incremental_relocs_name =
3199     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3200   Output_section* incremental_relocs_os =
3201     this->make_output_section(incremental_relocs_name,
3202                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3203                               ORDER_INVALID, false);
3204   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3205   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3206
3207   // Add the .gnu_incremental_got_plt section.
3208   const char* incremental_got_plt_name =
3209     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3210   Output_section* incremental_got_plt_os =
3211     this->make_output_section(incremental_got_plt_name,
3212                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3213                               ORDER_INVALID, false);
3214   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3215
3216   // Add the .gnu_incremental_strtab section.
3217   const char* incremental_strtab_name =
3218     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3219   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3220                                                         elfcpp::SHT_STRTAB, 0,
3221                                                         ORDER_INVALID, false);
3222   Output_data_strtab* strtab_data =
3223       new Output_data_strtab(incr->get_stringpool());
3224   incremental_strtab_os->add_output_section_data(strtab_data);
3225
3226   incremental_inputs_os->set_after_input_sections();
3227   incremental_symtab_os->set_after_input_sections();
3228   incremental_relocs_os->set_after_input_sections();
3229   incremental_got_plt_os->set_after_input_sections();
3230
3231   incremental_inputs_os->set_link_section(incremental_strtab_os);
3232   incremental_symtab_os->set_link_section(incremental_inputs_os);
3233   incremental_relocs_os->set_link_section(incremental_inputs_os);
3234   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3235 }
3236
3237 // Return whether SEG1 should be before SEG2 in the output file.  This
3238 // is based entirely on the segment type and flags.  When this is
3239 // called the segment addresses have normally not yet been set.
3240
3241 bool
3242 Layout::segment_precedes(const Output_segment* seg1,
3243                          const Output_segment* seg2)
3244 {
3245   elfcpp::Elf_Word type1 = seg1->type();
3246   elfcpp::Elf_Word type2 = seg2->type();
3247
3248   // The single PT_PHDR segment is required to precede any loadable
3249   // segment.  We simply make it always first.
3250   if (type1 == elfcpp::PT_PHDR)
3251     {
3252       gold_assert(type2 != elfcpp::PT_PHDR);
3253       return true;
3254     }
3255   if (type2 == elfcpp::PT_PHDR)
3256     return false;
3257
3258   // The single PT_INTERP segment is required to precede any loadable
3259   // segment.  We simply make it always second.
3260   if (type1 == elfcpp::PT_INTERP)
3261     {
3262       gold_assert(type2 != elfcpp::PT_INTERP);
3263       return true;
3264     }
3265   if (type2 == elfcpp::PT_INTERP)
3266     return false;
3267
3268   // We then put PT_LOAD segments before any other segments.
3269   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3270     return true;
3271   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3272     return false;
3273
3274   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3275   // segment, because that is where the dynamic linker expects to find
3276   // it (this is just for efficiency; other positions would also work
3277   // correctly).
3278   if (type1 == elfcpp::PT_TLS
3279       && type2 != elfcpp::PT_TLS
3280       && type2 != elfcpp::PT_GNU_RELRO)
3281     return false;
3282   if (type2 == elfcpp::PT_TLS
3283       && type1 != elfcpp::PT_TLS
3284       && type1 != elfcpp::PT_GNU_RELRO)
3285     return true;
3286
3287   // We put the PT_GNU_RELRO segment last, because that is where the
3288   // dynamic linker expects to find it (as with PT_TLS, this is just
3289   // for efficiency).
3290   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3291     return false;
3292   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3293     return true;
3294
3295   const elfcpp::Elf_Word flags1 = seg1->flags();
3296   const elfcpp::Elf_Word flags2 = seg2->flags();
3297
3298   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3299   // by the numeric segment type and flags values.  There should not
3300   // be more than one segment with the same type and flags, except
3301   // when a linker script specifies such.
3302   if (type1 != elfcpp::PT_LOAD)
3303     {
3304       if (type1 != type2)
3305         return type1 < type2;
3306       gold_assert(flags1 != flags2
3307                   || this->script_options_->saw_phdrs_clause());
3308       return flags1 < flags2;
3309     }
3310
3311   // If the addresses are set already, sort by load address.
3312   if (seg1->are_addresses_set())
3313     {
3314       if (!seg2->are_addresses_set())
3315         return true;
3316
3317       unsigned int section_count1 = seg1->output_section_count();
3318       unsigned int section_count2 = seg2->output_section_count();
3319       if (section_count1 == 0 && section_count2 > 0)
3320         return true;
3321       if (section_count1 > 0 && section_count2 == 0)
3322         return false;
3323
3324       uint64_t paddr1 = (seg1->are_addresses_set()
3325                          ? seg1->paddr()
3326                          : seg1->first_section_load_address());
3327       uint64_t paddr2 = (seg2->are_addresses_set()
3328                          ? seg2->paddr()
3329                          : seg2->first_section_load_address());
3330
3331       if (paddr1 != paddr2)
3332         return paddr1 < paddr2;
3333     }
3334   else if (seg2->are_addresses_set())
3335     return false;
3336
3337   // A segment which holds large data comes after a segment which does
3338   // not hold large data.
3339   if (seg1->is_large_data_segment())
3340     {
3341       if (!seg2->is_large_data_segment())
3342         return false;
3343     }
3344   else if (seg2->is_large_data_segment())
3345     return true;
3346
3347   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3348   // segments come before writable segments.  Then writable segments
3349   // with data come before writable segments without data.  Then
3350   // executable segments come before non-executable segments.  Then
3351   // the unlikely case of a non-readable segment comes before the
3352   // normal case of a readable segment.  If there are multiple
3353   // segments with the same type and flags, we require that the
3354   // address be set, and we sort by virtual address and then physical
3355   // address.
3356   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3357     return (flags1 & elfcpp::PF_W) == 0;
3358   if ((flags1 & elfcpp::PF_W) != 0
3359       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3360     return seg1->has_any_data_sections();
3361   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3362     return (flags1 & elfcpp::PF_X) != 0;
3363   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3364     return (flags1 & elfcpp::PF_R) == 0;
3365
3366   // We shouldn't get here--we shouldn't create segments which we
3367   // can't distinguish.  Unless of course we are using a weird linker
3368   // script or overlapping --section-start options.  We could also get
3369   // here if plugins want unique segments for subsets of sections.
3370   gold_assert(this->script_options_->saw_phdrs_clause()
3371               || parameters->options().any_section_start()
3372               || this->is_unique_segment_for_sections_specified());
3373   return false;
3374 }
3375
3376 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3377
3378 static off_t
3379 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3380 {
3381   uint64_t unsigned_off = off;
3382   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3383                           | (addr & (abi_pagesize - 1)));
3384   if (aligned_off < unsigned_off)
3385     aligned_off += abi_pagesize;
3386   return aligned_off;
3387 }
3388
3389 // On targets where the text segment contains only executable code,
3390 // a non-executable segment is never the text segment.
3391
3392 static inline bool
3393 is_text_segment(const Target* target, const Output_segment* seg)
3394 {
3395   elfcpp::Elf_Xword flags = seg->flags();
3396   if ((flags & elfcpp::PF_W) != 0)
3397     return false;
3398   if ((flags & elfcpp::PF_X) == 0)
3399     return !target->isolate_execinstr();
3400   return true;
3401 }
3402
3403 // Set the file offsets of all the segments, and all the sections they
3404 // contain.  They have all been created.  LOAD_SEG must be be laid out
3405 // first.  Return the offset of the data to follow.
3406
3407 off_t
3408 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3409                             unsigned int* pshndx)
3410 {
3411   // Sort them into the final order.  We use a stable sort so that we
3412   // don't randomize the order of indistinguishable segments created
3413   // by linker scripts.
3414   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3415                    Layout::Compare_segments(this));
3416
3417   // Find the PT_LOAD segments, and set their addresses and offsets
3418   // and their section's addresses and offsets.
3419   uint64_t start_addr;
3420   if (parameters->options().user_set_Ttext())
3421     start_addr = parameters->options().Ttext();
3422   else if (parameters->options().output_is_position_independent())
3423     start_addr = 0;
3424   else
3425     start_addr = target->default_text_segment_address();
3426
3427   uint64_t addr = start_addr;
3428   off_t off = 0;
3429
3430   // If LOAD_SEG is NULL, then the file header and segment headers
3431   // will not be loadable.  But they still need to be at offset 0 in
3432   // the file.  Set their offsets now.
3433   if (load_seg == NULL)
3434     {
3435       for (Data_list::iterator p = this->special_output_list_.begin();
3436            p != this->special_output_list_.end();
3437            ++p)
3438         {
3439           off = align_address(off, (*p)->addralign());
3440           (*p)->set_address_and_file_offset(0, off);
3441           off += (*p)->data_size();
3442         }
3443     }
3444
3445   unsigned int increase_relro = this->increase_relro_;
3446   if (this->script_options_->saw_sections_clause())
3447     increase_relro = 0;
3448
3449   const bool check_sections = parameters->options().check_sections();
3450   Output_segment* last_load_segment = NULL;
3451
3452   unsigned int shndx_begin = *pshndx;
3453   unsigned int shndx_load_seg = *pshndx;
3454
3455   for (Segment_list::iterator p = this->segment_list_.begin();
3456        p != this->segment_list_.end();
3457        ++p)
3458     {
3459       if ((*p)->type() == elfcpp::PT_LOAD)
3460         {
3461           if (target->isolate_execinstr())
3462             {
3463               // When we hit the segment that should contain the
3464               // file headers, reset the file offset so we place
3465               // it and subsequent segments appropriately.
3466               // We'll fix up the preceding segments below.
3467               if (load_seg == *p)
3468                 {
3469                   if (off == 0)
3470                     load_seg = NULL;
3471                   else
3472                     {
3473                       off = 0;
3474                       shndx_load_seg = *pshndx;
3475                     }
3476                 }
3477             }
3478           else
3479             {
3480               // Verify that the file headers fall into the first segment.
3481               if (load_seg != NULL && load_seg != *p)
3482                 gold_unreachable();
3483               load_seg = NULL;
3484             }
3485
3486           bool are_addresses_set = (*p)->are_addresses_set();
3487           if (are_addresses_set)
3488             {
3489               // When it comes to setting file offsets, we care about
3490               // the physical address.
3491               addr = (*p)->paddr();
3492             }
3493           else if (parameters->options().user_set_Ttext()
3494                    && (parameters->options().omagic()
3495                        || is_text_segment(target, *p)))
3496             {
3497               are_addresses_set = true;
3498             }
3499           else if (parameters->options().user_set_Trodata_segment()
3500                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3501             {
3502               addr = parameters->options().Trodata_segment();
3503               are_addresses_set = true;
3504             }
3505           else if (parameters->options().user_set_Tdata()
3506                    && ((*p)->flags() & elfcpp::PF_W) != 0
3507                    && (!parameters->options().user_set_Tbss()
3508                        || (*p)->has_any_data_sections()))
3509             {
3510               addr = parameters->options().Tdata();
3511               are_addresses_set = true;
3512             }
3513           else if (parameters->options().user_set_Tbss()
3514                    && ((*p)->flags() & elfcpp::PF_W) != 0
3515                    && !(*p)->has_any_data_sections())
3516             {
3517               addr = parameters->options().Tbss();
3518               are_addresses_set = true;
3519             }
3520
3521           uint64_t orig_addr = addr;
3522           uint64_t orig_off = off;
3523
3524           uint64_t aligned_addr = 0;
3525           uint64_t abi_pagesize = target->abi_pagesize();
3526           uint64_t common_pagesize = target->common_pagesize();
3527
3528           if (!parameters->options().nmagic()
3529               && !parameters->options().omagic())
3530             (*p)->set_minimum_p_align(abi_pagesize);
3531
3532           if (!are_addresses_set)
3533             {
3534               // Skip the address forward one page, maintaining the same
3535               // position within the page.  This lets us store both segments
3536               // overlapping on a single page in the file, but the loader will
3537               // put them on different pages in memory. We will revisit this
3538               // decision once we know the size of the segment.
3539
3540               uint64_t max_align = (*p)->maximum_alignment();
3541               if (max_align > abi_pagesize)
3542                 addr = align_address(addr, max_align);
3543               aligned_addr = addr;
3544
3545               if (load_seg == *p)
3546                 {
3547                   // This is the segment that will contain the file
3548                   // headers, so its offset will have to be exactly zero.
3549                   gold_assert(orig_off == 0);
3550
3551                   // If the target wants a fixed minimum distance from the
3552                   // text segment to the read-only segment, move up now.
3553                   uint64_t min_addr =
3554                     start_addr + (parameters->options().user_set_rosegment_gap()
3555                                   ? parameters->options().rosegment_gap()
3556                                   : target->rosegment_gap());
3557                   if (addr < min_addr)
3558                     addr = min_addr;
3559
3560                   // But this is not the first segment!  To make its
3561                   // address congruent with its offset, that address better
3562                   // be aligned to the ABI-mandated page size.
3563                   addr = align_address(addr, abi_pagesize);
3564                   aligned_addr = addr;
3565                 }
3566               else
3567                 {
3568                   if ((addr & (abi_pagesize - 1)) != 0)
3569                     addr = addr + abi_pagesize;
3570
3571                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3572                 }
3573             }
3574
3575           if (!parameters->options().nmagic()
3576               && !parameters->options().omagic())
3577             {
3578               // Here we are also taking care of the case when
3579               // the maximum segment alignment is larger than the page size.
3580               off = align_file_offset(off, addr,
3581                                       std::max(abi_pagesize,
3582                                                (*p)->maximum_alignment()));
3583             }
3584           else
3585             {
3586               // This is -N or -n with a section script which prevents
3587               // us from using a load segment.  We need to ensure that
3588               // the file offset is aligned to the alignment of the
3589               // segment.  This is because the linker script
3590               // implicitly assumed a zero offset.  If we don't align
3591               // here, then the alignment of the sections in the
3592               // linker script may not match the alignment of the
3593               // sections in the set_section_addresses call below,
3594               // causing an error about dot moving backward.
3595               off = align_address(off, (*p)->maximum_alignment());
3596             }
3597
3598           unsigned int shndx_hold = *pshndx;
3599           bool has_relro = false;
3600           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3601                                                           false, addr,
3602                                                           &increase_relro,
3603                                                           &has_relro,
3604                                                           &off, pshndx);
3605
3606           // Now that we know the size of this segment, we may be able
3607           // to save a page in memory, at the cost of wasting some
3608           // file space, by instead aligning to the start of a new
3609           // page.  Here we use the real machine page size rather than
3610           // the ABI mandated page size.  If the segment has been
3611           // aligned so that the relro data ends at a page boundary,
3612           // we do not try to realign it.
3613
3614           if (!are_addresses_set
3615               && !has_relro
3616               && aligned_addr != addr
3617               && !parameters->incremental())
3618             {
3619               uint64_t first_off = (common_pagesize
3620                                     - (aligned_addr
3621                                        & (common_pagesize - 1)));
3622               uint64_t last_off = new_addr & (common_pagesize - 1);
3623               if (first_off > 0
3624                   && last_off > 0
3625                   && ((aligned_addr & ~ (common_pagesize - 1))
3626                       != (new_addr & ~ (common_pagesize - 1)))
3627                   && first_off + last_off <= common_pagesize)
3628                 {
3629                   *pshndx = shndx_hold;
3630                   addr = align_address(aligned_addr, common_pagesize);
3631                   addr = align_address(addr, (*p)->maximum_alignment());
3632                   if ((addr & (abi_pagesize - 1)) != 0)
3633                     addr = addr + abi_pagesize;
3634                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3635                   off = align_file_offset(off, addr, abi_pagesize);
3636
3637                   increase_relro = this->increase_relro_;
3638                   if (this->script_options_->saw_sections_clause())
3639                     increase_relro = 0;
3640                   has_relro = false;
3641
3642                   new_addr = (*p)->set_section_addresses(target, this,
3643                                                          true, addr,
3644                                                          &increase_relro,
3645                                                          &has_relro,
3646                                                          &off, pshndx);
3647                 }
3648             }
3649
3650           addr = new_addr;
3651
3652           // Implement --check-sections.  We know that the segments
3653           // are sorted by LMA.
3654           if (check_sections && last_load_segment != NULL)
3655             {
3656               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3657               if (last_load_segment->paddr() + last_load_segment->memsz()
3658                   > (*p)->paddr())
3659                 {
3660                   unsigned long long lb1 = last_load_segment->paddr();
3661                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3662                   unsigned long long lb2 = (*p)->paddr();
3663                   unsigned long long le2 = lb2 + (*p)->memsz();
3664                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3665                                "[0x%llx -> 0x%llx]"),
3666                              lb1, le1, lb2, le2);
3667                 }
3668             }
3669           last_load_segment = *p;
3670         }
3671     }
3672
3673   if (load_seg != NULL && target->isolate_execinstr())
3674     {
3675       // Process the early segments again, setting their file offsets
3676       // so they land after the segments starting at LOAD_SEG.
3677       off = align_file_offset(off, 0, target->abi_pagesize());
3678
3679       this->reset_relax_output();
3680
3681       for (Segment_list::iterator p = this->segment_list_.begin();
3682            *p != load_seg;
3683            ++p)
3684         {
3685           if ((*p)->type() == elfcpp::PT_LOAD)
3686             {
3687               // We repeat the whole job of assigning addresses and
3688               // offsets, but we really only want to change the offsets and
3689               // must ensure that the addresses all come out the same as
3690               // they did the first time through.
3691               bool has_relro = false;
3692               const uint64_t old_addr = (*p)->vaddr();
3693               const uint64_t old_end = old_addr + (*p)->memsz();
3694               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3695                                                               true, old_addr,
3696                                                               &increase_relro,
3697                                                               &has_relro,
3698                                                               &off,
3699                                                               &shndx_begin);
3700               gold_assert(new_addr == old_end);
3701             }
3702         }
3703
3704       gold_assert(shndx_begin == shndx_load_seg);
3705     }
3706
3707   // Handle the non-PT_LOAD segments, setting their offsets from their
3708   // section's offsets.
3709   for (Segment_list::iterator p = this->segment_list_.begin();
3710        p != this->segment_list_.end();
3711        ++p)
3712     {
3713       if ((*p)->type() != elfcpp::PT_LOAD)
3714         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3715                          ? increase_relro
3716                          : 0);
3717     }
3718
3719   // Set the TLS offsets for each section in the PT_TLS segment.
3720   if (this->tls_segment_ != NULL)
3721     this->tls_segment_->set_tls_offsets();
3722
3723   return off;
3724 }
3725
3726 // Set the offsets of all the allocated sections when doing a
3727 // relocatable link.  This does the same jobs as set_segment_offsets,
3728 // only for a relocatable link.
3729
3730 off_t
3731 Layout::set_relocatable_section_offsets(Output_data* file_header,
3732                                         unsigned int* pshndx)
3733 {
3734   off_t off = 0;
3735
3736   file_header->set_address_and_file_offset(0, 0);
3737   off += file_header->data_size();
3738
3739   for (Section_list::iterator p = this->section_list_.begin();
3740        p != this->section_list_.end();
3741        ++p)
3742     {
3743       // We skip unallocated sections here, except that group sections
3744       // have to come first.
3745       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3746           && (*p)->type() != elfcpp::SHT_GROUP)
3747         continue;
3748
3749       off = align_address(off, (*p)->addralign());
3750
3751       // The linker script might have set the address.
3752       if (!(*p)->is_address_valid())
3753         (*p)->set_address(0);
3754       (*p)->set_file_offset(off);
3755       (*p)->finalize_data_size();
3756       if ((*p)->type() != elfcpp::SHT_NOBITS)
3757         off += (*p)->data_size();
3758
3759       (*p)->set_out_shndx(*pshndx);
3760       ++*pshndx;
3761     }
3762
3763   return off;
3764 }
3765
3766 // Set the file offset of all the sections not associated with a
3767 // segment.
3768
3769 off_t
3770 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3771 {
3772   off_t startoff = off;
3773   off_t maxoff = off;
3774
3775   for (Section_list::iterator p = this->unattached_section_list_.begin();
3776        p != this->unattached_section_list_.end();
3777        ++p)
3778     {
3779       // The symtab section is handled in create_symtab_sections.
3780       if (*p == this->symtab_section_)
3781         continue;
3782
3783       // If we've already set the data size, don't set it again.
3784       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3785         continue;
3786
3787       if (pass == BEFORE_INPUT_SECTIONS_PASS
3788           && (*p)->requires_postprocessing())
3789         {
3790           (*p)->create_postprocessing_buffer();
3791           this->any_postprocessing_sections_ = true;
3792         }
3793
3794       if (pass == BEFORE_INPUT_SECTIONS_PASS
3795           && (*p)->after_input_sections())
3796         continue;
3797       else if (pass == POSTPROCESSING_SECTIONS_PASS
3798                && (!(*p)->after_input_sections()
3799                    || (*p)->type() == elfcpp::SHT_STRTAB))
3800         continue;
3801       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3802                && (!(*p)->after_input_sections()
3803                    || (*p)->type() != elfcpp::SHT_STRTAB))
3804         continue;
3805
3806       if (!parameters->incremental_update())
3807         {
3808           off = align_address(off, (*p)->addralign());
3809           (*p)->set_file_offset(off);
3810           (*p)->finalize_data_size();
3811         }
3812       else
3813         {
3814           // Incremental update: allocate file space from free list.
3815           (*p)->pre_finalize_data_size();
3816           off_t current_size = (*p)->current_data_size();
3817           off = this->allocate(current_size, (*p)->addralign(), startoff);
3818           if (off == -1)
3819             {
3820               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3821                 this->free_list_.dump();
3822               gold_assert((*p)->output_section() != NULL);
3823               gold_fallback(_("out of patch space for section %s; "
3824                               "relink with --incremental-full"),
3825                             (*p)->output_section()->name());
3826             }
3827           (*p)->set_file_offset(off);
3828           (*p)->finalize_data_size();
3829           if ((*p)->data_size() > current_size)
3830             {
3831               gold_assert((*p)->output_section() != NULL);
3832               gold_fallback(_("%s: section changed size; "
3833                               "relink with --incremental-full"),
3834                             (*p)->output_section()->name());
3835             }
3836           gold_debug(DEBUG_INCREMENTAL,
3837                      "set_section_offsets: %08lx %08lx %s",
3838                      static_cast<long>(off),
3839                      static_cast<long>((*p)->data_size()),
3840                      ((*p)->output_section() != NULL
3841                       ? (*p)->output_section()->name() : "(special)"));
3842         }
3843
3844       off += (*p)->data_size();
3845       if (off > maxoff)
3846         maxoff = off;
3847
3848       // At this point the name must be set.
3849       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3850         this->namepool_.add((*p)->name(), false, NULL);
3851     }
3852   return maxoff;
3853 }
3854
3855 // Set the section indexes of all the sections not associated with a
3856 // segment.
3857
3858 unsigned int
3859 Layout::set_section_indexes(unsigned int shndx)
3860 {
3861   for (Section_list::iterator p = this->unattached_section_list_.begin();
3862        p != this->unattached_section_list_.end();
3863        ++p)
3864     {
3865       if (!(*p)->has_out_shndx())
3866         {
3867           (*p)->set_out_shndx(shndx);
3868           ++shndx;
3869         }
3870     }
3871   return shndx;
3872 }
3873
3874 // Set the section addresses according to the linker script.  This is
3875 // only called when we see a SECTIONS clause.  This returns the
3876 // program segment which should hold the file header and segment
3877 // headers, if any.  It will return NULL if they should not be in a
3878 // segment.
3879
3880 Output_segment*
3881 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3882 {
3883   Script_sections* ss = this->script_options_->script_sections();
3884   gold_assert(ss->saw_sections_clause());
3885   return this->script_options_->set_section_addresses(symtab, this);
3886 }
3887
3888 // Place the orphan sections in the linker script.
3889
3890 void
3891 Layout::place_orphan_sections_in_script()
3892 {
3893   Script_sections* ss = this->script_options_->script_sections();
3894   gold_assert(ss->saw_sections_clause());
3895
3896   // Place each orphaned output section in the script.
3897   for (Section_list::iterator p = this->section_list_.begin();
3898        p != this->section_list_.end();
3899        ++p)
3900     {
3901       if (!(*p)->found_in_sections_clause())
3902         ss->place_orphan(*p);
3903     }
3904 }
3905
3906 // Count the local symbols in the regular symbol table and the dynamic
3907 // symbol table, and build the respective string pools.
3908
3909 void
3910 Layout::count_local_symbols(const Task* task,
3911                             const Input_objects* input_objects)
3912 {
3913   // First, figure out an upper bound on the number of symbols we'll
3914   // be inserting into each pool.  This helps us create the pools with
3915   // the right size, to avoid unnecessary hashtable resizing.
3916   unsigned int symbol_count = 0;
3917   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3918        p != input_objects->relobj_end();
3919        ++p)
3920     symbol_count += (*p)->local_symbol_count();
3921
3922   // Go from "upper bound" to "estimate."  We overcount for two
3923   // reasons: we double-count symbols that occur in more than one
3924   // object file, and we count symbols that are dropped from the
3925   // output.  Add it all together and assume we overcount by 100%.
3926   symbol_count /= 2;
3927
3928   // We assume all symbols will go into both the sympool and dynpool.
3929   this->sympool_.reserve(symbol_count);
3930   this->dynpool_.reserve(symbol_count);
3931
3932   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3933        p != input_objects->relobj_end();
3934        ++p)
3935     {
3936       Task_lock_obj<Object> tlo(task, *p);
3937       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3938     }
3939 }
3940
3941 // Create the symbol table sections.  Here we also set the final
3942 // values of the symbols.  At this point all the loadable sections are
3943 // fully laid out.  SHNUM is the number of sections so far.
3944
3945 void
3946 Layout::create_symtab_sections(const Input_objects* input_objects,
3947                                Symbol_table* symtab,
3948                                unsigned int shnum,
3949                                off_t* poff)
3950 {
3951   int symsize;
3952   unsigned int align;
3953   if (parameters->target().get_size() == 32)
3954     {
3955       symsize = elfcpp::Elf_sizes<32>::sym_size;
3956       align = 4;
3957     }
3958   else if (parameters->target().get_size() == 64)
3959     {
3960       symsize = elfcpp::Elf_sizes<64>::sym_size;
3961       align = 8;
3962     }
3963   else
3964     gold_unreachable();
3965
3966   // Compute file offsets relative to the start of the symtab section.
3967   off_t off = 0;
3968
3969   // Save space for the dummy symbol at the start of the section.  We
3970   // never bother to write this out--it will just be left as zero.
3971   off += symsize;
3972   unsigned int local_symbol_index = 1;
3973
3974   // Add STT_SECTION symbols for each Output section which needs one.
3975   for (Section_list::iterator p = this->section_list_.begin();
3976        p != this->section_list_.end();
3977        ++p)
3978     {
3979       if (!(*p)->needs_symtab_index())
3980         (*p)->set_symtab_index(-1U);
3981       else
3982         {
3983           (*p)->set_symtab_index(local_symbol_index);
3984           ++local_symbol_index;
3985           off += symsize;
3986         }
3987     }
3988
3989   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3990        p != input_objects->relobj_end();
3991        ++p)
3992     {
3993       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3994                                                         off, symtab);
3995       off += (index - local_symbol_index) * symsize;
3996       local_symbol_index = index;
3997     }
3998
3999   unsigned int local_symcount = local_symbol_index;
4000   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4001
4002   off_t dynoff;
4003   size_t dyn_global_index;
4004   size_t dyncount;
4005   if (this->dynsym_section_ == NULL)
4006     {
4007       dynoff = 0;
4008       dyn_global_index = 0;
4009       dyncount = 0;
4010     }
4011   else
4012     {
4013       dyn_global_index = this->dynsym_section_->info();
4014       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4015       dynoff = this->dynsym_section_->offset() + locsize;
4016       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4017       gold_assert(static_cast<off_t>(dyncount * symsize)
4018                   == this->dynsym_section_->data_size() - locsize);
4019     }
4020
4021   off_t global_off = off;
4022   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4023                          &this->sympool_, &local_symcount);
4024
4025   if (!parameters->options().strip_all())
4026     {
4027       this->sympool_.set_string_offsets();
4028
4029       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4030       Output_section* osymtab = this->make_output_section(symtab_name,
4031                                                           elfcpp::SHT_SYMTAB,
4032                                                           0, ORDER_INVALID,
4033                                                           false);
4034       this->symtab_section_ = osymtab;
4035
4036       Output_section_data* pos = new Output_data_fixed_space(off, align,
4037                                                              "** symtab");
4038       osymtab->add_output_section_data(pos);
4039
4040       // We generate a .symtab_shndx section if we have more than
4041       // SHN_LORESERVE sections.  Technically it is possible that we
4042       // don't need one, because it is possible that there are no
4043       // symbols in any of sections with indexes larger than
4044       // SHN_LORESERVE.  That is probably unusual, though, and it is
4045       // easier to always create one than to compute section indexes
4046       // twice (once here, once when writing out the symbols).
4047       if (shnum >= elfcpp::SHN_LORESERVE)
4048         {
4049           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4050                                                                false, NULL);
4051           Output_section* osymtab_xindex =
4052             this->make_output_section(symtab_xindex_name,
4053                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4054                                       ORDER_INVALID, false);
4055
4056           size_t symcount = off / symsize;
4057           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4058
4059           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4060
4061           osymtab_xindex->set_link_section(osymtab);
4062           osymtab_xindex->set_addralign(4);
4063           osymtab_xindex->set_entsize(4);
4064
4065           osymtab_xindex->set_after_input_sections();
4066
4067           // This tells the driver code to wait until the symbol table
4068           // has written out before writing out the postprocessing
4069           // sections, including the .symtab_shndx section.
4070           this->any_postprocessing_sections_ = true;
4071         }
4072
4073       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4074       Output_section* ostrtab = this->make_output_section(strtab_name,
4075                                                           elfcpp::SHT_STRTAB,
4076                                                           0, ORDER_INVALID,
4077                                                           false);
4078
4079       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4080       ostrtab->add_output_section_data(pstr);
4081
4082       off_t symtab_off;
4083       if (!parameters->incremental_update())
4084         symtab_off = align_address(*poff, align);
4085       else
4086         {
4087           symtab_off = this->allocate(off, align, *poff);
4088           if (off == -1)
4089             gold_fallback(_("out of patch space for symbol table; "
4090                             "relink with --incremental-full"));
4091           gold_debug(DEBUG_INCREMENTAL,
4092                      "create_symtab_sections: %08lx %08lx .symtab",
4093                      static_cast<long>(symtab_off),
4094                      static_cast<long>(off));
4095         }
4096
4097       symtab->set_file_offset(symtab_off + global_off);
4098       osymtab->set_file_offset(symtab_off);
4099       osymtab->finalize_data_size();
4100       osymtab->set_link_section(ostrtab);
4101       osymtab->set_info(local_symcount);
4102       osymtab->set_entsize(symsize);
4103
4104       if (symtab_off + off > *poff)
4105         *poff = symtab_off + off;
4106     }
4107 }
4108
4109 // Create the .shstrtab section, which holds the names of the
4110 // sections.  At the time this is called, we have created all the
4111 // output sections except .shstrtab itself.
4112
4113 Output_section*
4114 Layout::create_shstrtab()
4115 {
4116   // FIXME: We don't need to create a .shstrtab section if we are
4117   // stripping everything.
4118
4119   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4120
4121   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4122                                                  ORDER_INVALID, false);
4123
4124   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4125     {
4126       // We can't write out this section until we've set all the
4127       // section names, and we don't set the names of compressed
4128       // output sections until relocations are complete.  FIXME: With
4129       // the current names we use, this is unnecessary.
4130       os->set_after_input_sections();
4131     }
4132
4133   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4134   os->add_output_section_data(posd);
4135
4136   return os;
4137 }
4138
4139 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4140 // offset.
4141
4142 void
4143 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4144 {
4145   Output_section_headers* oshdrs;
4146   oshdrs = new Output_section_headers(this,
4147                                       &this->segment_list_,
4148                                       &this->section_list_,
4149                                       &this->unattached_section_list_,
4150                                       &this->namepool_,
4151                                       shstrtab_section);
4152   off_t off;
4153   if (!parameters->incremental_update())
4154     off = align_address(*poff, oshdrs->addralign());
4155   else
4156     {
4157       oshdrs->pre_finalize_data_size();
4158       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4159       if (off == -1)
4160           gold_fallback(_("out of patch space for section header table; "
4161                           "relink with --incremental-full"));
4162       gold_debug(DEBUG_INCREMENTAL,
4163                  "create_shdrs: %08lx %08lx (section header table)",
4164                  static_cast<long>(off),
4165                  static_cast<long>(off + oshdrs->data_size()));
4166     }
4167   oshdrs->set_address_and_file_offset(0, off);
4168   off += oshdrs->data_size();
4169   if (off > *poff)
4170     *poff = off;
4171   this->section_headers_ = oshdrs;
4172 }
4173
4174 // Count the allocated sections.
4175
4176 size_t
4177 Layout::allocated_output_section_count() const
4178 {
4179   size_t section_count = 0;
4180   for (Segment_list::const_iterator p = this->segment_list_.begin();
4181        p != this->segment_list_.end();
4182        ++p)
4183     section_count += (*p)->output_section_count();
4184   return section_count;
4185 }
4186
4187 // Create the dynamic symbol table.
4188
4189 void
4190 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4191                               Symbol_table* symtab,
4192                               Output_section** pdynstr,
4193                               unsigned int* plocal_dynamic_count,
4194                               std::vector<Symbol*>* pdynamic_symbols,
4195                               Versions* pversions)
4196 {
4197   // Count all the symbols in the dynamic symbol table, and set the
4198   // dynamic symbol indexes.
4199
4200   // Skip symbol 0, which is always all zeroes.
4201   unsigned int index = 1;
4202
4203   // Add STT_SECTION symbols for each Output section which needs one.
4204   for (Section_list::iterator p = this->section_list_.begin();
4205        p != this->section_list_.end();
4206        ++p)
4207     {
4208       if (!(*p)->needs_dynsym_index())
4209         (*p)->set_dynsym_index(-1U);
4210       else
4211         {
4212           (*p)->set_dynsym_index(index);
4213           ++index;
4214         }
4215     }
4216
4217   // Count the local symbols that need to go in the dynamic symbol table,
4218   // and set the dynamic symbol indexes.
4219   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4220        p != input_objects->relobj_end();
4221        ++p)
4222     {
4223       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4224       index = new_index;
4225     }
4226
4227   unsigned int local_symcount = index;
4228   *plocal_dynamic_count = local_symcount;
4229
4230   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4231                                      &this->dynpool_, pversions);
4232
4233   int symsize;
4234   unsigned int align;
4235   const int size = parameters->target().get_size();
4236   if (size == 32)
4237     {
4238       symsize = elfcpp::Elf_sizes<32>::sym_size;
4239       align = 4;
4240     }
4241   else if (size == 64)
4242     {
4243       symsize = elfcpp::Elf_sizes<64>::sym_size;
4244       align = 8;
4245     }
4246   else
4247     gold_unreachable();
4248
4249   // Create the dynamic symbol table section.
4250
4251   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4252                                                        elfcpp::SHT_DYNSYM,
4253                                                        elfcpp::SHF_ALLOC,
4254                                                        false,
4255                                                        ORDER_DYNAMIC_LINKER,
4256                                                        false);
4257
4258   // Check for NULL as a linker script may discard .dynsym.
4259   if (dynsym != NULL)
4260     {
4261       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4262                                                                align,
4263                                                                "** dynsym");
4264       dynsym->add_output_section_data(odata);
4265
4266       dynsym->set_info(local_symcount);
4267       dynsym->set_entsize(symsize);
4268       dynsym->set_addralign(align);
4269
4270       this->dynsym_section_ = dynsym;
4271     }
4272
4273   Output_data_dynamic* const odyn = this->dynamic_data_;
4274   if (odyn != NULL)
4275     {
4276       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4277       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4278     }
4279
4280   // If there are more than SHN_LORESERVE allocated sections, we
4281   // create a .dynsym_shndx section.  It is possible that we don't
4282   // need one, because it is possible that there are no dynamic
4283   // symbols in any of the sections with indexes larger than
4284   // SHN_LORESERVE.  This is probably unusual, though, and at this
4285   // time we don't know the actual section indexes so it is
4286   // inconvenient to check.
4287   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4288     {
4289       Output_section* dynsym_xindex =
4290         this->choose_output_section(NULL, ".dynsym_shndx",
4291                                     elfcpp::SHT_SYMTAB_SHNDX,
4292                                     elfcpp::SHF_ALLOC,
4293                                     false, ORDER_DYNAMIC_LINKER, false);
4294
4295       if (dynsym_xindex != NULL)
4296         {
4297           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4298
4299           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4300
4301           dynsym_xindex->set_link_section(dynsym);
4302           dynsym_xindex->set_addralign(4);
4303           dynsym_xindex->set_entsize(4);
4304
4305           dynsym_xindex->set_after_input_sections();
4306
4307           // This tells the driver code to wait until the symbol table
4308           // has written out before writing out the postprocessing
4309           // sections, including the .dynsym_shndx section.
4310           this->any_postprocessing_sections_ = true;
4311         }
4312     }
4313
4314   // Create the dynamic string table section.
4315
4316   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4317                                                        elfcpp::SHT_STRTAB,
4318                                                        elfcpp::SHF_ALLOC,
4319                                                        false,
4320                                                        ORDER_DYNAMIC_LINKER,
4321                                                        false);
4322   *pdynstr = dynstr;
4323   if (dynstr != NULL)
4324     {
4325       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4326       dynstr->add_output_section_data(strdata);
4327
4328       if (dynsym != NULL)
4329         dynsym->set_link_section(dynstr);
4330       if (this->dynamic_section_ != NULL)
4331         this->dynamic_section_->set_link_section(dynstr);
4332
4333       if (odyn != NULL)
4334         {
4335           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4336           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4337         }
4338     }
4339
4340   // Create the hash tables.  The Gnu-style hash table must be
4341   // built first, because it changes the order of the symbols
4342   // in the dynamic symbol table.
4343
4344   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4345       || strcmp(parameters->options().hash_style(), "both") == 0)
4346     {
4347       unsigned char* phash;
4348       unsigned int hashlen;
4349       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4350                                     &phash, &hashlen);
4351
4352       Output_section* hashsec =
4353         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4354                                     elfcpp::SHF_ALLOC, false,
4355                                     ORDER_DYNAMIC_LINKER, false);
4356
4357       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4358                                                                    hashlen,
4359                                                                    align,
4360                                                                    "** hash");
4361       if (hashsec != NULL && hashdata != NULL)
4362         hashsec->add_output_section_data(hashdata);
4363
4364       if (hashsec != NULL)
4365         {
4366           if (dynsym != NULL)
4367             hashsec->set_link_section(dynsym);
4368
4369           // For a 64-bit target, the entries in .gnu.hash do not have
4370           // a uniform size, so we only set the entry size for a
4371           // 32-bit target.
4372           if (parameters->target().get_size() == 32)
4373             hashsec->set_entsize(4);
4374
4375           if (odyn != NULL)
4376             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4377         }
4378     }
4379
4380   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4381       || strcmp(parameters->options().hash_style(), "both") == 0)
4382     {
4383       unsigned char* phash;
4384       unsigned int hashlen;
4385       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4386                                     &phash, &hashlen);
4387
4388       Output_section* hashsec =
4389         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4390                                     elfcpp::SHF_ALLOC, false,
4391                                     ORDER_DYNAMIC_LINKER, false);
4392
4393       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4394                                                                    hashlen,
4395                                                                    align,
4396                                                                    "** hash");
4397       if (hashsec != NULL && hashdata != NULL)
4398         hashsec->add_output_section_data(hashdata);
4399
4400       if (hashsec != NULL)
4401         {
4402           if (dynsym != NULL)
4403             hashsec->set_link_section(dynsym);
4404           hashsec->set_entsize(4);
4405         }
4406
4407       if (odyn != NULL)
4408         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4409     }
4410 }
4411
4412 // Assign offsets to each local portion of the dynamic symbol table.
4413
4414 void
4415 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4416 {
4417   Output_section* dynsym = this->dynsym_section_;
4418   if (dynsym == NULL)
4419     return;
4420
4421   off_t off = dynsym->offset();
4422
4423   // Skip the dummy symbol at the start of the section.
4424   off += dynsym->entsize();
4425
4426   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4427        p != input_objects->relobj_end();
4428        ++p)
4429     {
4430       unsigned int count = (*p)->set_local_dynsym_offset(off);
4431       off += count * dynsym->entsize();
4432     }
4433 }
4434
4435 // Create the version sections.
4436
4437 void
4438 Layout::create_version_sections(const Versions* versions,
4439                                 const Symbol_table* symtab,
4440                                 unsigned int local_symcount,
4441                                 const std::vector<Symbol*>& dynamic_symbols,
4442                                 const Output_section* dynstr)
4443 {
4444   if (!versions->any_defs() && !versions->any_needs())
4445     return;
4446
4447   switch (parameters->size_and_endianness())
4448     {
4449 #ifdef HAVE_TARGET_32_LITTLE
4450     case Parameters::TARGET_32_LITTLE:
4451       this->sized_create_version_sections<32, false>(versions, symtab,
4452                                                      local_symcount,
4453                                                      dynamic_symbols, dynstr);
4454       break;
4455 #endif
4456 #ifdef HAVE_TARGET_32_BIG
4457     case Parameters::TARGET_32_BIG:
4458       this->sized_create_version_sections<32, true>(versions, symtab,
4459                                                     local_symcount,
4460                                                     dynamic_symbols, dynstr);
4461       break;
4462 #endif
4463 #ifdef HAVE_TARGET_64_LITTLE
4464     case Parameters::TARGET_64_LITTLE:
4465       this->sized_create_version_sections<64, false>(versions, symtab,
4466                                                      local_symcount,
4467                                                      dynamic_symbols, dynstr);
4468       break;
4469 #endif
4470 #ifdef HAVE_TARGET_64_BIG
4471     case Parameters::TARGET_64_BIG:
4472       this->sized_create_version_sections<64, true>(versions, symtab,
4473                                                     local_symcount,
4474                                                     dynamic_symbols, dynstr);
4475       break;
4476 #endif
4477     default:
4478       gold_unreachable();
4479     }
4480 }
4481
4482 // Create the version sections, sized version.
4483
4484 template<int size, bool big_endian>
4485 void
4486 Layout::sized_create_version_sections(
4487     const Versions* versions,
4488     const Symbol_table* symtab,
4489     unsigned int local_symcount,
4490     const std::vector<Symbol*>& dynamic_symbols,
4491     const Output_section* dynstr)
4492 {
4493   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4494                                                      elfcpp::SHT_GNU_versym,
4495                                                      elfcpp::SHF_ALLOC,
4496                                                      false,
4497                                                      ORDER_DYNAMIC_LINKER,
4498                                                      false);
4499
4500   // Check for NULL since a linker script may discard this section.
4501   if (vsec != NULL)
4502     {
4503       unsigned char* vbuf;
4504       unsigned int vsize;
4505       versions->symbol_section_contents<size, big_endian>(symtab,
4506                                                           &this->dynpool_,
4507                                                           local_symcount,
4508                                                           dynamic_symbols,
4509                                                           &vbuf, &vsize);
4510
4511       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4512                                                                 "** versions");
4513
4514       vsec->add_output_section_data(vdata);
4515       vsec->set_entsize(2);
4516       vsec->set_link_section(this->dynsym_section_);
4517     }
4518
4519   Output_data_dynamic* const odyn = this->dynamic_data_;
4520   if (odyn != NULL && vsec != NULL)
4521     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4522
4523   if (versions->any_defs())
4524     {
4525       Output_section* vdsec;
4526       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4527                                           elfcpp::SHT_GNU_verdef,
4528                                           elfcpp::SHF_ALLOC,
4529                                           false, ORDER_DYNAMIC_LINKER, false);
4530
4531       if (vdsec != NULL)
4532         {
4533           unsigned char* vdbuf;
4534           unsigned int vdsize;
4535           unsigned int vdentries;
4536           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4537                                                            &vdbuf, &vdsize,
4538                                                            &vdentries);
4539
4540           Output_section_data* vddata =
4541             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4542
4543           vdsec->add_output_section_data(vddata);
4544           vdsec->set_link_section(dynstr);
4545           vdsec->set_info(vdentries);
4546
4547           if (odyn != NULL)
4548             {
4549               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4550               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4551             }
4552         }
4553     }
4554
4555   if (versions->any_needs())
4556     {
4557       Output_section* vnsec;
4558       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4559                                           elfcpp::SHT_GNU_verneed,
4560                                           elfcpp::SHF_ALLOC,
4561                                           false, ORDER_DYNAMIC_LINKER, false);
4562
4563       if (vnsec != NULL)
4564         {
4565           unsigned char* vnbuf;
4566           unsigned int vnsize;
4567           unsigned int vnentries;
4568           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4569                                                             &vnbuf, &vnsize,
4570                                                             &vnentries);
4571
4572           Output_section_data* vndata =
4573             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4574
4575           vnsec->add_output_section_data(vndata);
4576           vnsec->set_link_section(dynstr);
4577           vnsec->set_info(vnentries);
4578
4579           if (odyn != NULL)
4580             {
4581               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4582               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4583             }
4584         }
4585     }
4586 }
4587
4588 // Create the .interp section and PT_INTERP segment.
4589
4590 void
4591 Layout::create_interp(const Target* target)
4592 {
4593   gold_assert(this->interp_segment_ == NULL);
4594
4595   const char* interp = parameters->options().dynamic_linker();
4596   if (interp == NULL)
4597     {
4598       interp = target->dynamic_linker();
4599       gold_assert(interp != NULL);
4600     }
4601
4602   size_t len = strlen(interp) + 1;
4603
4604   Output_section_data* odata = new Output_data_const(interp, len, 1);
4605
4606   Output_section* osec = this->choose_output_section(NULL, ".interp",
4607                                                      elfcpp::SHT_PROGBITS,
4608                                                      elfcpp::SHF_ALLOC,
4609                                                      false, ORDER_INTERP,
4610                                                      false);
4611   if (osec != NULL)
4612     osec->add_output_section_data(odata);
4613 }
4614
4615 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4616 // called by the target-specific code.  This does nothing if not doing
4617 // a dynamic link.
4618
4619 // USE_REL is true for REL relocs rather than RELA relocs.
4620
4621 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4622
4623 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4624 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4625 // some targets have multiple reloc sections in PLT_REL.
4626
4627 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4628 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4629 // section.
4630
4631 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4632 // executable.
4633
4634 void
4635 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4636                                 const Output_data* plt_rel,
4637                                 const Output_data_reloc_generic* dyn_rel,
4638                                 bool add_debug, bool dynrel_includes_plt)
4639 {
4640   Output_data_dynamic* odyn = this->dynamic_data_;
4641   if (odyn == NULL)
4642     return;
4643
4644   if (plt_got != NULL && plt_got->output_section() != NULL)
4645     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4646
4647   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4648     {
4649       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4650       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4651       odyn->add_constant(elfcpp::DT_PLTREL,
4652                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4653     }
4654
4655   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4656       || (dynrel_includes_plt
4657           && plt_rel != NULL
4658           && plt_rel->output_section() != NULL))
4659     {
4660       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4661       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4662       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4663                                 (have_dyn_rel
4664                                  ? dyn_rel->output_section()
4665                                  : plt_rel->output_section()));
4666       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4667       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4668         odyn->add_section_size(size_tag,
4669                                dyn_rel->output_section(),
4670                                plt_rel->output_section());
4671       else if (have_dyn_rel)
4672         odyn->add_section_size(size_tag, dyn_rel->output_section());
4673       else
4674         odyn->add_section_size(size_tag, plt_rel->output_section());
4675       const int size = parameters->target().get_size();
4676       elfcpp::DT rel_tag;
4677       int rel_size;
4678       if (use_rel)
4679         {
4680           rel_tag = elfcpp::DT_RELENT;
4681           if (size == 32)
4682             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4683           else if (size == 64)
4684             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4685           else
4686             gold_unreachable();
4687         }
4688       else
4689         {
4690           rel_tag = elfcpp::DT_RELAENT;
4691           if (size == 32)
4692             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4693           else if (size == 64)
4694             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4695           else
4696             gold_unreachable();
4697         }
4698       odyn->add_constant(rel_tag, rel_size);
4699
4700       if (parameters->options().combreloc() && have_dyn_rel)
4701         {
4702           size_t c = dyn_rel->relative_reloc_count();
4703           if (c > 0)
4704             odyn->add_constant((use_rel
4705                                 ? elfcpp::DT_RELCOUNT
4706                                 : elfcpp::DT_RELACOUNT),
4707                                c);
4708         }
4709     }
4710
4711   if (add_debug && !parameters->options().shared())
4712     {
4713       // The value of the DT_DEBUG tag is filled in by the dynamic
4714       // linker at run time, and used by the debugger.
4715       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4716     }
4717 }
4718
4719 // Finish the .dynamic section and PT_DYNAMIC segment.
4720
4721 void
4722 Layout::finish_dynamic_section(const Input_objects* input_objects,
4723                                const Symbol_table* symtab)
4724 {
4725   if (!this->script_options_->saw_phdrs_clause()
4726       && this->dynamic_section_ != NULL)
4727     {
4728       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4729                                                        (elfcpp::PF_R
4730                                                         | elfcpp::PF_W));
4731       oseg->add_output_section_to_nonload(this->dynamic_section_,
4732                                           elfcpp::PF_R | elfcpp::PF_W);
4733     }
4734
4735   Output_data_dynamic* const odyn = this->dynamic_data_;
4736   if (odyn == NULL)
4737     return;
4738
4739   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4740        p != input_objects->dynobj_end();
4741        ++p)
4742     {
4743       if (!(*p)->is_needed() && (*p)->as_needed())
4744         {
4745           // This dynamic object was linked with --as-needed, but it
4746           // is not needed.
4747           continue;
4748         }
4749
4750       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4751     }
4752
4753   if (parameters->options().shared())
4754     {
4755       const char* soname = parameters->options().soname();
4756       if (soname != NULL)
4757         odyn->add_string(elfcpp::DT_SONAME, soname);
4758     }
4759
4760   Symbol* sym = symtab->lookup(parameters->options().init());
4761   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4762     odyn->add_symbol(elfcpp::DT_INIT, sym);
4763
4764   sym = symtab->lookup(parameters->options().fini());
4765   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4766     odyn->add_symbol(elfcpp::DT_FINI, sym);
4767
4768   // Look for .init_array, .preinit_array and .fini_array by checking
4769   // section types.
4770   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4771       p != this->section_list_.end();
4772       ++p)
4773     switch((*p)->type())
4774       {
4775       case elfcpp::SHT_FINI_ARRAY:
4776         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4777         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4778         break;
4779       case elfcpp::SHT_INIT_ARRAY:
4780         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4781         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4782         break;
4783       case elfcpp::SHT_PREINIT_ARRAY:
4784         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4785         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4786         break;
4787       default:
4788         break;
4789       }
4790
4791   // Add a DT_RPATH entry if needed.
4792   const General_options::Dir_list& rpath(parameters->options().rpath());
4793   if (!rpath.empty())
4794     {
4795       std::string rpath_val;
4796       for (General_options::Dir_list::const_iterator p = rpath.begin();
4797            p != rpath.end();
4798            ++p)
4799         {
4800           if (rpath_val.empty())
4801             rpath_val = p->name();
4802           else
4803             {
4804               // Eliminate duplicates.
4805               General_options::Dir_list::const_iterator q;
4806               for (q = rpath.begin(); q != p; ++q)
4807                 if (q->name() == p->name())
4808                   break;
4809               if (q == p)
4810                 {
4811                   rpath_val += ':';
4812                   rpath_val += p->name();
4813                 }
4814             }
4815         }
4816
4817       if (!parameters->options().enable_new_dtags())
4818         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4819       else
4820         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4821     }
4822
4823   // Look for text segments that have dynamic relocations.
4824   bool have_textrel = false;
4825   if (!this->script_options_->saw_sections_clause())
4826     {
4827       for (Segment_list::const_iterator p = this->segment_list_.begin();
4828            p != this->segment_list_.end();
4829            ++p)
4830         {
4831           if ((*p)->type() == elfcpp::PT_LOAD
4832               && ((*p)->flags() & elfcpp::PF_W) == 0
4833               && (*p)->has_dynamic_reloc())
4834             {
4835               have_textrel = true;
4836               break;
4837             }
4838         }
4839     }
4840   else
4841     {
4842       // We don't know the section -> segment mapping, so we are
4843       // conservative and just look for readonly sections with
4844       // relocations.  If those sections wind up in writable segments,
4845       // then we have created an unnecessary DT_TEXTREL entry.
4846       for (Section_list::const_iterator p = this->section_list_.begin();
4847            p != this->section_list_.end();
4848            ++p)
4849         {
4850           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4851               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4852               && (*p)->has_dynamic_reloc())
4853             {
4854               have_textrel = true;
4855               break;
4856             }
4857         }
4858     }
4859
4860   if (parameters->options().filter() != NULL)
4861     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4862   if (parameters->options().any_auxiliary())
4863     {
4864       for (options::String_set::const_iterator p =
4865              parameters->options().auxiliary_begin();
4866            p != parameters->options().auxiliary_end();
4867            ++p)
4868         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4869     }
4870
4871   // Add a DT_FLAGS entry if necessary.
4872   unsigned int flags = 0;
4873   if (have_textrel)
4874     {
4875       // Add a DT_TEXTREL for compatibility with older loaders.
4876       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4877       flags |= elfcpp::DF_TEXTREL;
4878
4879       if (parameters->options().text())
4880         gold_error(_("read-only segment has dynamic relocations"));
4881       else if (parameters->options().warn_shared_textrel()
4882                && parameters->options().shared())
4883         gold_warning(_("shared library text segment is not shareable"));
4884     }
4885   if (parameters->options().shared() && this->has_static_tls())
4886     flags |= elfcpp::DF_STATIC_TLS;
4887   if (parameters->options().origin())
4888     flags |= elfcpp::DF_ORIGIN;
4889   if (parameters->options().Bsymbolic()
4890       && !parameters->options().have_dynamic_list())
4891     {
4892       flags |= elfcpp::DF_SYMBOLIC;
4893       // Add DT_SYMBOLIC for compatibility with older loaders.
4894       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4895     }
4896   if (parameters->options().now())
4897     flags |= elfcpp::DF_BIND_NOW;
4898   if (flags != 0)
4899     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4900
4901   flags = 0;
4902   if (parameters->options().global())
4903     flags |= elfcpp::DF_1_GLOBAL;
4904   if (parameters->options().initfirst())
4905     flags |= elfcpp::DF_1_INITFIRST;
4906   if (parameters->options().interpose())
4907     flags |= elfcpp::DF_1_INTERPOSE;
4908   if (parameters->options().loadfltr())
4909     flags |= elfcpp::DF_1_LOADFLTR;
4910   if (parameters->options().nodefaultlib())
4911     flags |= elfcpp::DF_1_NODEFLIB;
4912   if (parameters->options().nodelete())
4913     flags |= elfcpp::DF_1_NODELETE;
4914   if (parameters->options().nodlopen())
4915     flags |= elfcpp::DF_1_NOOPEN;
4916   if (parameters->options().nodump())
4917     flags |= elfcpp::DF_1_NODUMP;
4918   if (!parameters->options().shared())
4919     flags &= ~(elfcpp::DF_1_INITFIRST
4920                | elfcpp::DF_1_NODELETE
4921                | elfcpp::DF_1_NOOPEN);
4922   if (parameters->options().origin())
4923     flags |= elfcpp::DF_1_ORIGIN;
4924   if (parameters->options().now())
4925     flags |= elfcpp::DF_1_NOW;
4926   if (parameters->options().Bgroup())
4927     flags |= elfcpp::DF_1_GROUP;
4928   if (flags != 0)
4929     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4930 }
4931
4932 // Set the size of the _DYNAMIC symbol table to be the size of the
4933 // dynamic data.
4934
4935 void
4936 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4937 {
4938   Output_data_dynamic* const odyn = this->dynamic_data_;
4939   if (odyn == NULL)
4940     return;
4941   odyn->finalize_data_size();
4942   if (this->dynamic_symbol_ == NULL)
4943     return;
4944   off_t data_size = odyn->data_size();
4945   const int size = parameters->target().get_size();
4946   if (size == 32)
4947     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4948   else if (size == 64)
4949     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4950   else
4951     gold_unreachable();
4952 }
4953
4954 // The mapping of input section name prefixes to output section names.
4955 // In some cases one prefix is itself a prefix of another prefix; in
4956 // such a case the longer prefix must come first.  These prefixes are
4957 // based on the GNU linker default ELF linker script.
4958
4959 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4960 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4961 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4962 {
4963   MAPPING_INIT(".text.", ".text"),
4964   MAPPING_INIT(".rodata.", ".rodata"),
4965   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4966   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4967   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4968   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4969   MAPPING_INIT(".data.", ".data"),
4970   MAPPING_INIT(".bss.", ".bss"),
4971   MAPPING_INIT(".tdata.", ".tdata"),
4972   MAPPING_INIT(".tbss.", ".tbss"),
4973   MAPPING_INIT(".init_array.", ".init_array"),
4974   MAPPING_INIT(".fini_array.", ".fini_array"),
4975   MAPPING_INIT(".sdata.", ".sdata"),
4976   MAPPING_INIT(".sbss.", ".sbss"),
4977   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4978   // differently depending on whether it is creating a shared library.
4979   MAPPING_INIT(".sdata2.", ".sdata"),
4980   MAPPING_INIT(".sbss2.", ".sbss"),
4981   MAPPING_INIT(".lrodata.", ".lrodata"),
4982   MAPPING_INIT(".ldata.", ".ldata"),
4983   MAPPING_INIT(".lbss.", ".lbss"),
4984   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4985   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4986   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4987   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4988   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4989   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4990   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4991   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4992   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4993   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4994   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4995   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4996   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4997   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4998   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4999   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5000   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5001   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5002   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5003   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5004   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5005 };
5006 #undef MAPPING_INIT
5007 #undef MAPPING_INIT_EXACT
5008
5009 const int Layout::section_name_mapping_count =
5010   (sizeof(Layout::section_name_mapping)
5011    / sizeof(Layout::section_name_mapping[0]));
5012
5013 // Choose the output section name to use given an input section name.
5014 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5015 // length of NAME.
5016
5017 const char*
5018 Layout::output_section_name(const Relobj* relobj, const char* name,
5019                             size_t* plen)
5020 {
5021   // gcc 4.3 generates the following sorts of section names when it
5022   // needs a section name specific to a function:
5023   //   .text.FN
5024   //   .rodata.FN
5025   //   .sdata2.FN
5026   //   .data.FN
5027   //   .data.rel.FN
5028   //   .data.rel.local.FN
5029   //   .data.rel.ro.FN
5030   //   .data.rel.ro.local.FN
5031   //   .sdata.FN
5032   //   .bss.FN
5033   //   .sbss.FN
5034   //   .tdata.FN
5035   //   .tbss.FN
5036
5037   // The GNU linker maps all of those to the part before the .FN,
5038   // except that .data.rel.local.FN is mapped to .data, and
5039   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5040   // beginning with .data.rel.ro.local are grouped together.
5041
5042   // For an anonymous namespace, the string FN can contain a '.'.
5043
5044   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5045   // GNU linker maps to .rodata.
5046
5047   // The .data.rel.ro sections are used with -z relro.  The sections
5048   // are recognized by name.  We use the same names that the GNU
5049   // linker does for these sections.
5050
5051   // It is hard to handle this in a principled way, so we don't even
5052   // try.  We use a table of mappings.  If the input section name is
5053   // not found in the table, we simply use it as the output section
5054   // name.
5055
5056   const Section_name_mapping* psnm = section_name_mapping;
5057   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5058     {
5059       if (psnm->fromlen > 0)
5060         {
5061           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5062             {
5063               *plen = psnm->tolen;
5064               return psnm->to;
5065             }
5066         }
5067       else
5068         {
5069           if (strcmp(name, psnm->from) == 0)
5070             {
5071               *plen = psnm->tolen;
5072               return psnm->to;
5073             }
5074         }
5075     }
5076
5077   // As an additional complication, .ctors sections are output in
5078   // either .ctors or .init_array sections, and .dtors sections are
5079   // output in either .dtors or .fini_array sections.
5080   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5081     {
5082       if (parameters->options().ctors_in_init_array())
5083         {
5084           *plen = 11;
5085           return name[1] == 'c' ? ".init_array" : ".fini_array";
5086         }
5087       else
5088         {
5089           *plen = 6;
5090           return name[1] == 'c' ? ".ctors" : ".dtors";
5091         }
5092     }
5093   if (parameters->options().ctors_in_init_array()
5094       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5095     {
5096       // To make .init_array/.fini_array work with gcc we must exclude
5097       // .ctors and .dtors sections from the crtbegin and crtend
5098       // files.
5099       if (relobj == NULL
5100           || (!Layout::match_file_name(relobj, "crtbegin")
5101               && !Layout::match_file_name(relobj, "crtend")))
5102         {
5103           *plen = 11;
5104           return name[1] == 'c' ? ".init_array" : ".fini_array";
5105         }
5106     }
5107
5108   return name;
5109 }
5110
5111 // Return true if RELOBJ is an input file whose base name matches
5112 // FILE_NAME.  The base name must have an extension of ".o", and must
5113 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5114 // to match crtbegin.o as well as crtbeginS.o without getting confused
5115 // by other possibilities.  Overall matching the file name this way is
5116 // a dreadful hack, but the GNU linker does it in order to better
5117 // support gcc, and we need to be compatible.
5118
5119 bool
5120 Layout::match_file_name(const Relobj* relobj, const char* match)
5121 {
5122   const std::string& file_name(relobj->name());
5123   const char* base_name = lbasename(file_name.c_str());
5124   size_t match_len = strlen(match);
5125   if (strncmp(base_name, match, match_len) != 0)
5126     return false;
5127   size_t base_len = strlen(base_name);
5128   if (base_len != match_len + 2 && base_len != match_len + 3)
5129     return false;
5130   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5131 }
5132
5133 // Check if a comdat group or .gnu.linkonce section with the given
5134 // NAME is selected for the link.  If there is already a section,
5135 // *KEPT_SECTION is set to point to the existing section and the
5136 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5137 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5138 // *KEPT_SECTION is set to the internal copy and the function returns
5139 // true.
5140
5141 bool
5142 Layout::find_or_add_kept_section(const std::string& name,
5143                                  Relobj* object,
5144                                  unsigned int shndx,
5145                                  bool is_comdat,
5146                                  bool is_group_name,
5147                                  Kept_section** kept_section)
5148 {
5149   // It's normal to see a couple of entries here, for the x86 thunk
5150   // sections.  If we see more than a few, we're linking a C++
5151   // program, and we resize to get more space to minimize rehashing.
5152   if (this->signatures_.size() > 4
5153       && !this->resized_signatures_)
5154     {
5155       reserve_unordered_map(&this->signatures_,
5156                             this->number_of_input_files_ * 64);
5157       this->resized_signatures_ = true;
5158     }
5159
5160   Kept_section candidate;
5161   std::pair<Signatures::iterator, bool> ins =
5162     this->signatures_.insert(std::make_pair(name, candidate));
5163
5164   if (kept_section != NULL)
5165     *kept_section = &ins.first->second;
5166   if (ins.second)
5167     {
5168       // This is the first time we've seen this signature.
5169       ins.first->second.set_object(object);
5170       ins.first->second.set_shndx(shndx);
5171       if (is_comdat)
5172         ins.first->second.set_is_comdat();
5173       if (is_group_name)
5174         ins.first->second.set_is_group_name();
5175       return true;
5176     }
5177
5178   // We have already seen this signature.
5179
5180   if (ins.first->second.is_group_name())
5181     {
5182       // We've already seen a real section group with this signature.
5183       // If the kept group is from a plugin object, and we're in the
5184       // replacement phase, accept the new one as a replacement.
5185       if (ins.first->second.object() == NULL
5186           && parameters->options().plugins()->in_replacement_phase())
5187         {
5188           ins.first->second.set_object(object);
5189           ins.first->second.set_shndx(shndx);
5190           return true;
5191         }
5192       return false;
5193     }
5194   else if (is_group_name)
5195     {
5196       // This is a real section group, and we've already seen a
5197       // linkonce section with this signature.  Record that we've seen
5198       // a section group, and don't include this section group.
5199       ins.first->second.set_is_group_name();
5200       return false;
5201     }
5202   else
5203     {
5204       // We've already seen a linkonce section and this is a linkonce
5205       // section.  These don't block each other--this may be the same
5206       // symbol name with different section types.
5207       return true;
5208     }
5209 }
5210
5211 // Store the allocated sections into the section list.
5212
5213 void
5214 Layout::get_allocated_sections(Section_list* section_list) const
5215 {
5216   for (Section_list::const_iterator p = this->section_list_.begin();
5217        p != this->section_list_.end();
5218        ++p)
5219     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5220       section_list->push_back(*p);
5221 }
5222
5223 // Store the executable sections into the section list.
5224
5225 void
5226 Layout::get_executable_sections(Section_list* section_list) const
5227 {
5228   for (Section_list::const_iterator p = this->section_list_.begin();
5229        p != this->section_list_.end();
5230        ++p)
5231     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5232         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5233       section_list->push_back(*p);
5234 }
5235
5236 // Create an output segment.
5237
5238 Output_segment*
5239 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5240 {
5241   gold_assert(!parameters->options().relocatable());
5242   Output_segment* oseg = new Output_segment(type, flags);
5243   this->segment_list_.push_back(oseg);
5244
5245   if (type == elfcpp::PT_TLS)
5246     this->tls_segment_ = oseg;
5247   else if (type == elfcpp::PT_GNU_RELRO)
5248     this->relro_segment_ = oseg;
5249   else if (type == elfcpp::PT_INTERP)
5250     this->interp_segment_ = oseg;
5251
5252   return oseg;
5253 }
5254
5255 // Return the file offset of the normal symbol table.
5256
5257 off_t
5258 Layout::symtab_section_offset() const
5259 {
5260   if (this->symtab_section_ != NULL)
5261     return this->symtab_section_->offset();
5262   return 0;
5263 }
5264
5265 // Return the section index of the normal symbol table.  It may have
5266 // been stripped by the -s/--strip-all option.
5267
5268 unsigned int
5269 Layout::symtab_section_shndx() const
5270 {
5271   if (this->symtab_section_ != NULL)
5272     return this->symtab_section_->out_shndx();
5273   return 0;
5274 }
5275
5276 // Write out the Output_sections.  Most won't have anything to write,
5277 // since most of the data will come from input sections which are
5278 // handled elsewhere.  But some Output_sections do have Output_data.
5279
5280 void
5281 Layout::write_output_sections(Output_file* of) const
5282 {
5283   for (Section_list::const_iterator p = this->section_list_.begin();
5284        p != this->section_list_.end();
5285        ++p)
5286     {
5287       if (!(*p)->after_input_sections())
5288         (*p)->write(of);
5289     }
5290 }
5291
5292 // Write out data not associated with a section or the symbol table.
5293
5294 void
5295 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5296 {
5297   if (!parameters->options().strip_all())
5298     {
5299       const Output_section* symtab_section = this->symtab_section_;
5300       for (Section_list::const_iterator p = this->section_list_.begin();
5301            p != this->section_list_.end();
5302            ++p)
5303         {
5304           if ((*p)->needs_symtab_index())
5305             {
5306               gold_assert(symtab_section != NULL);
5307               unsigned int index = (*p)->symtab_index();
5308               gold_assert(index > 0 && index != -1U);
5309               off_t off = (symtab_section->offset()
5310                            + index * symtab_section->entsize());
5311               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5312             }
5313         }
5314     }
5315
5316   const Output_section* dynsym_section = this->dynsym_section_;
5317   for (Section_list::const_iterator p = this->section_list_.begin();
5318        p != this->section_list_.end();
5319        ++p)
5320     {
5321       if ((*p)->needs_dynsym_index())
5322         {
5323           gold_assert(dynsym_section != NULL);
5324           unsigned int index = (*p)->dynsym_index();
5325           gold_assert(index > 0 && index != -1U);
5326           off_t off = (dynsym_section->offset()
5327                        + index * dynsym_section->entsize());
5328           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5329         }
5330     }
5331
5332   // Write out the Output_data which are not in an Output_section.
5333   for (Data_list::const_iterator p = this->special_output_list_.begin();
5334        p != this->special_output_list_.end();
5335        ++p)
5336     (*p)->write(of);
5337
5338   // Write out the Output_data which are not in an Output_section
5339   // and are regenerated in each iteration of relaxation.
5340   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5341        p != this->relax_output_list_.end();
5342        ++p)
5343     (*p)->write(of);
5344 }
5345
5346 // Write out the Output_sections which can only be written after the
5347 // input sections are complete.
5348
5349 void
5350 Layout::write_sections_after_input_sections(Output_file* of)
5351 {
5352   // Determine the final section offsets, and thus the final output
5353   // file size.  Note we finalize the .shstrab last, to allow the
5354   // after_input_section sections to modify their section-names before
5355   // writing.
5356   if (this->any_postprocessing_sections_)
5357     {
5358       off_t off = this->output_file_size_;
5359       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5360
5361       // Now that we've finalized the names, we can finalize the shstrab.
5362       off =
5363         this->set_section_offsets(off,
5364                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5365
5366       if (off > this->output_file_size_)
5367         {
5368           of->resize(off);
5369           this->output_file_size_ = off;
5370         }
5371     }
5372
5373   for (Section_list::const_iterator p = this->section_list_.begin();
5374        p != this->section_list_.end();
5375        ++p)
5376     {
5377       if ((*p)->after_input_sections())
5378         (*p)->write(of);
5379     }
5380
5381   this->section_headers_->write(of);
5382 }
5383
5384 // If a tree-style build ID was requested, the parallel part of that computation
5385 // is already done, and the final hash-of-hashes is computed here.  For other
5386 // types of build IDs, all the work is done here.
5387
5388 void
5389 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5390                        size_t size_of_hashes) const
5391 {
5392   if (this->build_id_note_ == NULL)
5393     return;
5394
5395   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5396                                           this->build_id_note_->data_size());
5397
5398   if (array_of_hashes == NULL)
5399     {
5400       const size_t output_file_size = this->output_file_size();
5401       const unsigned char* iv = of->get_input_view(0, output_file_size);
5402       const char* style = parameters->options().build_id();
5403
5404       // If we get here with style == "tree" then the output must be
5405       // too small for chunking, and we use SHA-1 in that case.
5406       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5407         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5408       else if (strcmp(style, "md5") == 0)
5409         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5410       else
5411         gold_unreachable();
5412
5413       of->free_input_view(0, output_file_size, iv);
5414     }
5415   else
5416     {
5417       // Non-overlapping substrings of the output file have been hashed.
5418       // Compute SHA-1 hash of the hashes.
5419       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5420                   size_of_hashes, ov);
5421       delete[] array_of_hashes;
5422     }
5423
5424   of->write_output_view(this->build_id_note_->offset(),
5425                         this->build_id_note_->data_size(),
5426                         ov);
5427 }
5428
5429 // Write out a binary file.  This is called after the link is
5430 // complete.  IN is the temporary output file we used to generate the
5431 // ELF code.  We simply walk through the segments, read them from
5432 // their file offset in IN, and write them to their load address in
5433 // the output file.  FIXME: with a bit more work, we could support
5434 // S-records and/or Intel hex format here.
5435
5436 void
5437 Layout::write_binary(Output_file* in) const
5438 {
5439   gold_assert(parameters->options().oformat_enum()
5440               == General_options::OBJECT_FORMAT_BINARY);
5441
5442   // Get the size of the binary file.
5443   uint64_t max_load_address = 0;
5444   for (Segment_list::const_iterator p = this->segment_list_.begin();
5445        p != this->segment_list_.end();
5446        ++p)
5447     {
5448       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5449         {
5450           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5451           if (max_paddr > max_load_address)
5452             max_load_address = max_paddr;
5453         }
5454     }
5455
5456   Output_file out(parameters->options().output_file_name());
5457   out.open(max_load_address);
5458
5459   for (Segment_list::const_iterator p = this->segment_list_.begin();
5460        p != this->segment_list_.end();
5461        ++p)
5462     {
5463       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5464         {
5465           const unsigned char* vin = in->get_input_view((*p)->offset(),
5466                                                         (*p)->filesz());
5467           unsigned char* vout = out.get_output_view((*p)->paddr(),
5468                                                     (*p)->filesz());
5469           memcpy(vout, vin, (*p)->filesz());
5470           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5471           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5472         }
5473     }
5474
5475   out.close();
5476 }
5477
5478 // Print the output sections to the map file.
5479
5480 void
5481 Layout::print_to_mapfile(Mapfile* mapfile) const
5482 {
5483   for (Segment_list::const_iterator p = this->segment_list_.begin();
5484        p != this->segment_list_.end();
5485        ++p)
5486     (*p)->print_sections_to_mapfile(mapfile);
5487   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5488        p != this->unattached_section_list_.end();
5489        ++p)
5490     (*p)->print_to_mapfile(mapfile);
5491 }
5492
5493 // Print statistical information to stderr.  This is used for --stats.
5494
5495 void
5496 Layout::print_stats() const
5497 {
5498   this->namepool_.print_stats("section name pool");
5499   this->sympool_.print_stats("output symbol name pool");
5500   this->dynpool_.print_stats("dynamic name pool");
5501
5502   for (Section_list::const_iterator p = this->section_list_.begin();
5503        p != this->section_list_.end();
5504        ++p)
5505     (*p)->print_merge_stats();
5506 }
5507
5508 // Write_sections_task methods.
5509
5510 // We can always run this task.
5511
5512 Task_token*
5513 Write_sections_task::is_runnable()
5514 {
5515   return NULL;
5516 }
5517
5518 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5519 // when finished.
5520
5521 void
5522 Write_sections_task::locks(Task_locker* tl)
5523 {
5524   tl->add(this, this->output_sections_blocker_);
5525   if (this->input_sections_blocker_ != NULL)
5526     tl->add(this, this->input_sections_blocker_);
5527   tl->add(this, this->final_blocker_);
5528 }
5529
5530 // Run the task--write out the data.
5531
5532 void
5533 Write_sections_task::run(Workqueue*)
5534 {
5535   this->layout_->write_output_sections(this->of_);
5536 }
5537
5538 // Write_data_task methods.
5539
5540 // We can always run this task.
5541
5542 Task_token*
5543 Write_data_task::is_runnable()
5544 {
5545   return NULL;
5546 }
5547
5548 // We need to unlock FINAL_BLOCKER when finished.
5549
5550 void
5551 Write_data_task::locks(Task_locker* tl)
5552 {
5553   tl->add(this, this->final_blocker_);
5554 }
5555
5556 // Run the task--write out the data.
5557
5558 void
5559 Write_data_task::run(Workqueue*)
5560 {
5561   this->layout_->write_data(this->symtab_, this->of_);
5562 }
5563
5564 // Write_symbols_task methods.
5565
5566 // We can always run this task.
5567
5568 Task_token*
5569 Write_symbols_task::is_runnable()
5570 {
5571   return NULL;
5572 }
5573
5574 // We need to unlock FINAL_BLOCKER when finished.
5575
5576 void
5577 Write_symbols_task::locks(Task_locker* tl)
5578 {
5579   tl->add(this, this->final_blocker_);
5580 }
5581
5582 // Run the task--write out the symbols.
5583
5584 void
5585 Write_symbols_task::run(Workqueue*)
5586 {
5587   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5588                                this->layout_->symtab_xindex(),
5589                                this->layout_->dynsym_xindex(), this->of_);
5590 }
5591
5592 // Write_after_input_sections_task methods.
5593
5594 // We can only run this task after the input sections have completed.
5595
5596 Task_token*
5597 Write_after_input_sections_task::is_runnable()
5598 {
5599   if (this->input_sections_blocker_->is_blocked())
5600     return this->input_sections_blocker_;
5601   return NULL;
5602 }
5603
5604 // We need to unlock FINAL_BLOCKER when finished.
5605
5606 void
5607 Write_after_input_sections_task::locks(Task_locker* tl)
5608 {
5609   tl->add(this, this->final_blocker_);
5610 }
5611
5612 // Run the task.
5613
5614 void
5615 Write_after_input_sections_task::run(Workqueue*)
5616 {
5617   this->layout_->write_sections_after_input_sections(this->of_);
5618 }
5619
5620 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5621 // or as a "tree" where each chunk of the string is hashed and then those
5622 // hashes are put into a (much smaller) string which is hashed with sha1.
5623 // We compute a checksum over the entire file because that is simplest.
5624
5625 void
5626 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5627 {
5628   Task_token* post_hash_tasks_blocker = new Task_token(true);
5629   const Layout* layout = this->layout_;
5630   Output_file* of = this->of_;
5631   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5632                            : static_cast<size_t>(layout->output_file_size()));
5633   unsigned char* array_of_hashes = NULL;
5634   size_t size_of_hashes = 0;
5635
5636   if (strcmp(this->options_->build_id(), "tree") == 0
5637       && this->options_->build_id_chunk_size_for_treehash() > 0
5638       && filesize > 0
5639       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5640     {
5641       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5642       const size_t chunk_size =
5643           this->options_->build_id_chunk_size_for_treehash();
5644       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5645       post_hash_tasks_blocker->add_blockers(num_hashes);
5646       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5647       array_of_hashes = new unsigned char[size_of_hashes];
5648       unsigned char *dst = array_of_hashes;
5649       for (size_t i = 0, src_offset = 0; i < num_hashes;
5650            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5651         {
5652           size_t size = std::min(chunk_size, filesize - src_offset);
5653           workqueue->queue(new Hash_task(of,
5654                                          src_offset,
5655                                          size,
5656                                          dst,
5657                                          post_hash_tasks_blocker));
5658         }
5659     }
5660
5661   // Queue the final task to write the build id and close the output file.
5662   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5663                                                            layout,
5664                                                            of,
5665                                                            array_of_hashes,
5666                                                            size_of_hashes),
5667                                      post_hash_tasks_blocker,
5668                                      "Task_function Close_task_runner"));
5669 }
5670
5671 // Close_task_runner methods.
5672
5673 // Finish up the build ID computation, if necessary, and write a binary file,
5674 // if necessary.  Then close the output file.
5675
5676 void
5677 Close_task_runner::run(Workqueue*, const Task*)
5678 {
5679   // At this point the multi-threaded part of the build ID computation,
5680   // if any, is done.  See Build_id_task_runner.
5681   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5682                                 this->size_of_hashes_);
5683
5684   // If we've been asked to create a binary file, we do so here.
5685   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5686     this->layout_->write_binary(this->of_);
5687
5688   this->of_->close();
5689 }
5690
5691 // Instantiate the templates we need.  We could use the configure
5692 // script to restrict this to only the ones for implemented targets.
5693
5694 #ifdef HAVE_TARGET_32_LITTLE
5695 template
5696 Output_section*
5697 Layout::init_fixed_output_section<32, false>(
5698     const char* name,
5699     elfcpp::Shdr<32, false>& shdr);
5700 #endif
5701
5702 #ifdef HAVE_TARGET_32_BIG
5703 template
5704 Output_section*
5705 Layout::init_fixed_output_section<32, true>(
5706     const char* name,
5707     elfcpp::Shdr<32, true>& shdr);
5708 #endif
5709
5710 #ifdef HAVE_TARGET_64_LITTLE
5711 template
5712 Output_section*
5713 Layout::init_fixed_output_section<64, false>(
5714     const char* name,
5715     elfcpp::Shdr<64, false>& shdr);
5716 #endif
5717
5718 #ifdef HAVE_TARGET_64_BIG
5719 template
5720 Output_section*
5721 Layout::init_fixed_output_section<64, true>(
5722     const char* name,
5723     elfcpp::Shdr<64, true>& shdr);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_32_LITTLE
5727 template
5728 Output_section*
5729 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5730                           unsigned int shndx,
5731                           const char* name,
5732                           const elfcpp::Shdr<32, false>& shdr,
5733                           unsigned int, unsigned int, off_t*);
5734 #endif
5735
5736 #ifdef HAVE_TARGET_32_BIG
5737 template
5738 Output_section*
5739 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5740                          unsigned int shndx,
5741                          const char* name,
5742                          const elfcpp::Shdr<32, true>& shdr,
5743                          unsigned int, unsigned int, off_t*);
5744 #endif
5745
5746 #ifdef HAVE_TARGET_64_LITTLE
5747 template
5748 Output_section*
5749 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5750                           unsigned int shndx,
5751                           const char* name,
5752                           const elfcpp::Shdr<64, false>& shdr,
5753                           unsigned int, unsigned int, off_t*);
5754 #endif
5755
5756 #ifdef HAVE_TARGET_64_BIG
5757 template
5758 Output_section*
5759 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5760                          unsigned int shndx,
5761                          const char* name,
5762                          const elfcpp::Shdr<64, true>& shdr,
5763                          unsigned int, unsigned int, off_t*);
5764 #endif
5765
5766 #ifdef HAVE_TARGET_32_LITTLE
5767 template
5768 Output_section*
5769 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5770                                 unsigned int reloc_shndx,
5771                                 const elfcpp::Shdr<32, false>& shdr,
5772                                 Output_section* data_section,
5773                                 Relocatable_relocs* rr);
5774 #endif
5775
5776 #ifdef HAVE_TARGET_32_BIG
5777 template
5778 Output_section*
5779 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5780                                unsigned int reloc_shndx,
5781                                const elfcpp::Shdr<32, true>& shdr,
5782                                Output_section* data_section,
5783                                Relocatable_relocs* rr);
5784 #endif
5785
5786 #ifdef HAVE_TARGET_64_LITTLE
5787 template
5788 Output_section*
5789 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5790                                 unsigned int reloc_shndx,
5791                                 const elfcpp::Shdr<64, false>& shdr,
5792                                 Output_section* data_section,
5793                                 Relocatable_relocs* rr);
5794 #endif
5795
5796 #ifdef HAVE_TARGET_64_BIG
5797 template
5798 Output_section*
5799 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5800                                unsigned int reloc_shndx,
5801                                const elfcpp::Shdr<64, true>& shdr,
5802                                Output_section* data_section,
5803                                Relocatable_relocs* rr);
5804 #endif
5805
5806 #ifdef HAVE_TARGET_32_LITTLE
5807 template
5808 void
5809 Layout::layout_group<32, false>(Symbol_table* symtab,
5810                                 Sized_relobj_file<32, false>* object,
5811                                 unsigned int,
5812                                 const char* group_section_name,
5813                                 const char* signature,
5814                                 const elfcpp::Shdr<32, false>& shdr,
5815                                 elfcpp::Elf_Word flags,
5816                                 std::vector<unsigned int>* shndxes);
5817 #endif
5818
5819 #ifdef HAVE_TARGET_32_BIG
5820 template
5821 void
5822 Layout::layout_group<32, true>(Symbol_table* symtab,
5823                                Sized_relobj_file<32, true>* object,
5824                                unsigned int,
5825                                const char* group_section_name,
5826                                const char* signature,
5827                                const elfcpp::Shdr<32, true>& shdr,
5828                                elfcpp::Elf_Word flags,
5829                                std::vector<unsigned int>* shndxes);
5830 #endif
5831
5832 #ifdef HAVE_TARGET_64_LITTLE
5833 template
5834 void
5835 Layout::layout_group<64, false>(Symbol_table* symtab,
5836                                 Sized_relobj_file<64, false>* object,
5837                                 unsigned int,
5838                                 const char* group_section_name,
5839                                 const char* signature,
5840                                 const elfcpp::Shdr<64, false>& shdr,
5841                                 elfcpp::Elf_Word flags,
5842                                 std::vector<unsigned int>* shndxes);
5843 #endif
5844
5845 #ifdef HAVE_TARGET_64_BIG
5846 template
5847 void
5848 Layout::layout_group<64, true>(Symbol_table* symtab,
5849                                Sized_relobj_file<64, true>* object,
5850                                unsigned int,
5851                                const char* group_section_name,
5852                                const char* signature,
5853                                const elfcpp::Shdr<64, true>& shdr,
5854                                elfcpp::Elf_Word flags,
5855                                std::vector<unsigned int>* shndxes);
5856 #endif
5857
5858 #ifdef HAVE_TARGET_32_LITTLE
5859 template
5860 Output_section*
5861 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5862                                    const unsigned char* symbols,
5863                                    off_t symbols_size,
5864                                    const unsigned char* symbol_names,
5865                                    off_t symbol_names_size,
5866                                    unsigned int shndx,
5867                                    const elfcpp::Shdr<32, false>& shdr,
5868                                    unsigned int reloc_shndx,
5869                                    unsigned int reloc_type,
5870                                    off_t* off);
5871 #endif
5872
5873 #ifdef HAVE_TARGET_32_BIG
5874 template
5875 Output_section*
5876 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5877                                   const unsigned char* symbols,
5878                                   off_t symbols_size,
5879                                   const unsigned char* symbol_names,
5880                                   off_t symbol_names_size,
5881                                   unsigned int shndx,
5882                                   const elfcpp::Shdr<32, true>& shdr,
5883                                   unsigned int reloc_shndx,
5884                                   unsigned int reloc_type,
5885                                   off_t* off);
5886 #endif
5887
5888 #ifdef HAVE_TARGET_64_LITTLE
5889 template
5890 Output_section*
5891 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5892                                    const unsigned char* symbols,
5893                                    off_t symbols_size,
5894                                    const unsigned char* symbol_names,
5895                                    off_t symbol_names_size,
5896                                    unsigned int shndx,
5897                                    const elfcpp::Shdr<64, false>& shdr,
5898                                    unsigned int reloc_shndx,
5899                                    unsigned int reloc_type,
5900                                    off_t* off);
5901 #endif
5902
5903 #ifdef HAVE_TARGET_64_BIG
5904 template
5905 Output_section*
5906 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5907                                   const unsigned char* symbols,
5908                                   off_t symbols_size,
5909                                   const unsigned char* symbol_names,
5910                                   off_t symbol_names_size,
5911                                   unsigned int shndx,
5912                                   const elfcpp::Shdr<64, true>& shdr,
5913                                   unsigned int reloc_shndx,
5914                                   unsigned int reloc_type,
5915                                   off_t* off);
5916 #endif
5917
5918 #ifdef HAVE_TARGET_32_LITTLE
5919 template
5920 void
5921 Layout::add_to_gdb_index(bool is_type_unit,
5922                          Sized_relobj<32, false>* object,
5923                          const unsigned char* symbols,
5924                          off_t symbols_size,
5925                          unsigned int shndx,
5926                          unsigned int reloc_shndx,
5927                          unsigned int reloc_type);
5928 #endif
5929
5930 #ifdef HAVE_TARGET_32_BIG
5931 template
5932 void
5933 Layout::add_to_gdb_index(bool is_type_unit,
5934                          Sized_relobj<32, true>* object,
5935                          const unsigned char* symbols,
5936                          off_t symbols_size,
5937                          unsigned int shndx,
5938                          unsigned int reloc_shndx,
5939                          unsigned int reloc_type);
5940 #endif
5941
5942 #ifdef HAVE_TARGET_64_LITTLE
5943 template
5944 void
5945 Layout::add_to_gdb_index(bool is_type_unit,
5946                          Sized_relobj<64, false>* object,
5947                          const unsigned char* symbols,
5948                          off_t symbols_size,
5949                          unsigned int shndx,
5950                          unsigned int reloc_shndx,
5951                          unsigned int reloc_type);
5952 #endif
5953
5954 #ifdef HAVE_TARGET_64_BIG
5955 template
5956 void
5957 Layout::add_to_gdb_index(bool is_type_unit,
5958                          Sized_relobj<64, true>* object,
5959                          const unsigned char* symbols,
5960                          off_t symbols_size,
5961                          unsigned int shndx,
5962                          unsigned int reloc_shndx,
5963                          unsigned int reloc_type);
5964 #endif
5965
5966 } // End namespace gold.