Don't pass around the target in order to define symbols; get it from
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "output.h"
33 #include "symtab.h"
34 #include "dynobj.h"
35 #include "ehframe.h"
36 #include "compressed_output.h"
37 #include "layout.h"
38
39 namespace gold
40 {
41
42 // Layout_task_runner methods.
43
44 // Lay out the sections.  This is called after all the input objects
45 // have been read.
46
47 void
48 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
49 {
50   off_t file_size = this->layout_->finalize(this->input_objects_,
51                                             this->symtab_,
52                                             task);
53
54   // Now we know the final size of the output file and we know where
55   // each piece of information goes.
56   Output_file* of = new Output_file(parameters->output_file_name());
57   of->open(file_size);
58
59   // Queue up the final set of tasks.
60   gold::queue_final_tasks(this->options_, this->input_objects_,
61                           this->symtab_, this->layout_, workqueue, of);
62 }
63
64 // Layout methods.
65
66 Layout::Layout(const General_options& options, Script_options* script_options)
67   : options_(options), script_options_(script_options), namepool_(),
68     sympool_(), dynpool_(), signatures_(),
69     section_name_map_(), segment_list_(), section_list_(),
70     unattached_section_list_(), special_output_list_(),
71     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
72     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
73     eh_frame_section_(NULL), output_file_size_(-1),
74     input_requires_executable_stack_(false),
75     input_with_gnu_stack_note_(false),
76     input_without_gnu_stack_note_(false),
77     has_static_tls_(false),
78     any_postprocessing_sections_(false)
79 {
80   // Make space for more than enough segments for a typical file.
81   // This is just for efficiency--it's OK if we wind up needing more.
82   this->segment_list_.reserve(12);
83
84   // We expect two unattached Output_data objects: the file header and
85   // the segment headers.
86   this->special_output_list_.reserve(2);
87 }
88
89 // Hash a key we use to look up an output section mapping.
90
91 size_t
92 Layout::Hash_key::operator()(const Layout::Key& k) const
93 {
94  return k.first + k.second.first + k.second.second;
95 }
96
97 // Return whether PREFIX is a prefix of STR.
98
99 static inline bool
100 is_prefix_of(const char* prefix, const char* str)
101 {
102   return strncmp(prefix, str, strlen(prefix)) == 0;
103 }
104
105 // Returns whether the given section is in the list of
106 // debug-sections-used-by-some-version-of-gdb.  Currently,
107 // we've checked versions of gdb up to and including 6.7.1.
108
109 static const char* gdb_sections[] =
110 { ".debug_abbrev",
111   // ".debug_aranges",   // not used by gdb as of 6.7.1
112   ".debug_frame",
113   ".debug_info",
114   ".debug_line",
115   ".debug_loc",
116   ".debug_macinfo",
117   // ".debug_pubnames",  // not used by gdb as of 6.7.1
118   ".debug_ranges",
119   ".debug_str",
120 };
121
122 static inline bool
123 is_gdb_debug_section(const char* str)
124 {
125   // We can do this faster: binary search or a hashtable.  But why bother?
126   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
127     if (strcmp(str, gdb_sections[i]) == 0)
128       return true;
129   return false;
130 }
131
132 // Whether to include this section in the link.
133
134 template<int size, bool big_endian>
135 bool
136 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
137                         const elfcpp::Shdr<size, big_endian>& shdr)
138 {
139   // Some section types are never linked.  Some are only linked when
140   // doing a relocateable link.
141   switch (shdr.get_sh_type())
142     {
143     case elfcpp::SHT_NULL:
144     case elfcpp::SHT_SYMTAB:
145     case elfcpp::SHT_DYNSYM:
146     case elfcpp::SHT_STRTAB:
147     case elfcpp::SHT_HASH:
148     case elfcpp::SHT_DYNAMIC:
149     case elfcpp::SHT_SYMTAB_SHNDX:
150       return false;
151
152     case elfcpp::SHT_RELA:
153     case elfcpp::SHT_REL:
154     case elfcpp::SHT_GROUP:
155       return parameters->output_is_object();
156
157     case elfcpp::SHT_PROGBITS:
158       if (parameters->strip_debug()
159           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
160         {
161           // Debugging sections can only be recognized by name.
162           if (is_prefix_of(".debug", name)
163               || is_prefix_of(".gnu.linkonce.wi.", name)
164               || is_prefix_of(".line", name)
165               || is_prefix_of(".stab", name))
166             return false;
167         }
168       if (parameters->strip_debug_gdb()
169           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
170         {
171           // Debugging sections can only be recognized by name.
172           if (is_prefix_of(".debug", name)
173               && !is_gdb_debug_section(name))
174             return false;
175         }
176       return true;
177
178     default:
179       return true;
180     }
181 }
182
183 // Return an output section named NAME, or NULL if there is none.
184
185 Output_section*
186 Layout::find_output_section(const char* name) const
187 {
188   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
189        p != this->section_name_map_.end();
190        ++p)
191     if (strcmp(p->second->name(), name) == 0)
192       return p->second;
193   return NULL;
194 }
195
196 // Return an output segment of type TYPE, with segment flags SET set
197 // and segment flags CLEAR clear.  Return NULL if there is none.
198
199 Output_segment*
200 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
201                             elfcpp::Elf_Word clear) const
202 {
203   for (Segment_list::const_iterator p = this->segment_list_.begin();
204        p != this->segment_list_.end();
205        ++p)
206     if (static_cast<elfcpp::PT>((*p)->type()) == type
207         && ((*p)->flags() & set) == set
208         && ((*p)->flags() & clear) == 0)
209       return *p;
210   return NULL;
211 }
212
213 // Return the output section to use for section NAME with type TYPE
214 // and section flags FLAGS.
215
216 Output_section*
217 Layout::get_output_section(const char* name, Stringpool::Key name_key,
218                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
219 {
220   // We should ignore some flags.
221   flags &= ~ (elfcpp::SHF_INFO_LINK
222               | elfcpp::SHF_LINK_ORDER
223               | elfcpp::SHF_GROUP
224               | elfcpp::SHF_MERGE
225               | elfcpp::SHF_STRINGS);
226
227   const Key key(name_key, std::make_pair(type, flags));
228   const std::pair<Key, Output_section*> v(key, NULL);
229   std::pair<Section_name_map::iterator, bool> ins(
230     this->section_name_map_.insert(v));
231
232   if (!ins.second)
233     return ins.first->second;
234   else
235     {
236       // This is the first time we've seen this name/type/flags
237       // combination.
238       Output_section* os = this->make_output_section(name, type, flags);
239       ins.first->second = os;
240       return os;
241     }
242 }
243
244 // Return the output section to use for input section SHNDX, with name
245 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
246 // index of a relocation section which applies to this section, or 0
247 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
248 // relocation section if there is one.  Set *OFF to the offset of this
249 // input section without the output section.  Return NULL if the
250 // section should be discarded.  Set *OFF to -1 if the section
251 // contents should not be written directly to the output file, but
252 // will instead receive special handling.
253
254 template<int size, bool big_endian>
255 Output_section*
256 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
257                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
258                unsigned int reloc_shndx, unsigned int, off_t* off)
259 {
260   if (!this->include_section(object, name, shdr))
261     return NULL;
262
263   // If we are not doing a relocateable link, choose the name to use
264   // for the output section.
265   size_t len = strlen(name);
266   if (!parameters->output_is_object())
267     name = Layout::output_section_name(name, &len);
268
269   // FIXME: Handle SHF_OS_NONCONFORMING here.
270
271   // Canonicalize the section name.
272   Stringpool::Key name_key;
273   name = this->namepool_.add_with_length(name, len, true, &name_key);
274
275   // Find the output section.  The output section is selected based on
276   // the section name, type, and flags.
277   Output_section* os = this->get_output_section(name, name_key,
278                                                 shdr.get_sh_type(),
279                                                 shdr.get_sh_flags());
280
281   // FIXME: Handle SHF_LINK_ORDER somewhere.
282
283   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
284
285   return os;
286 }
287
288 // Special GNU handling of sections name .eh_frame.  They will
289 // normally hold exception frame data as defined by the C++ ABI
290 // (http://codesourcery.com/cxx-abi/).
291
292 template<int size, bool big_endian>
293 Output_section*
294 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
295                         const unsigned char* symbols,
296                         off_t symbols_size,
297                         const unsigned char* symbol_names,
298                         off_t symbol_names_size,
299                         unsigned int shndx,
300                         const elfcpp::Shdr<size, big_endian>& shdr,
301                         unsigned int reloc_shndx, unsigned int reloc_type,
302                         off_t* off)
303 {
304   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
305   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
306
307   Stringpool::Key name_key;
308   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
309
310   Output_section* os = this->get_output_section(name, name_key,
311                                                 elfcpp::SHT_PROGBITS,
312                                                 elfcpp::SHF_ALLOC);
313
314   if (this->eh_frame_section_ == NULL)
315     {
316       this->eh_frame_section_ = os;
317       this->eh_frame_data_ = new Eh_frame();
318       os->add_output_section_data(this->eh_frame_data_);
319
320       if (this->options_.create_eh_frame_hdr())
321         {
322           Stringpool::Key hdr_name_key;
323           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
324                                                      false,
325                                                      &hdr_name_key);
326           Output_section* hdr_os =
327             this->get_output_section(hdr_name, hdr_name_key,
328                                      elfcpp::SHT_PROGBITS,
329                                      elfcpp::SHF_ALLOC);
330
331           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
332           hdr_os->add_output_section_data(hdr_posd);
333
334           hdr_os->set_after_input_sections();
335
336           Output_segment* hdr_oseg =
337             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
338           this->segment_list_.push_back(hdr_oseg);
339           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
340
341           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
342         }
343     }
344
345   gold_assert(this->eh_frame_section_ == os);
346
347   if (this->eh_frame_data_->add_ehframe_input_section(object,
348                                                       symbols,
349                                                       symbols_size,
350                                                       symbol_names,
351                                                       symbol_names_size,
352                                                       shndx,
353                                                       reloc_shndx,
354                                                       reloc_type))
355     *off = -1;
356   else
357     {
358       // We couldn't handle this .eh_frame section for some reason.
359       // Add it as a normal section.
360       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
361     }
362
363   return os;
364 }
365
366 // Add POSD to an output section using NAME, TYPE, and FLAGS.
367
368 void
369 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
370                                 elfcpp::Elf_Xword flags,
371                                 Output_section_data* posd)
372 {
373   // Canonicalize the name.
374   Stringpool::Key name_key;
375   name = this->namepool_.add(name, true, &name_key);
376
377   Output_section* os = this->get_output_section(name, name_key, type, flags);
378   os->add_output_section_data(posd);
379 }
380
381 // Map section flags to segment flags.
382
383 elfcpp::Elf_Word
384 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
385 {
386   elfcpp::Elf_Word ret = elfcpp::PF_R;
387   if ((flags & elfcpp::SHF_WRITE) != 0)
388     ret |= elfcpp::PF_W;
389   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
390     ret |= elfcpp::PF_X;
391   return ret;
392 }
393
394 // Sometimes we compress sections.  This is typically done for
395 // sections that are not part of normal program execution (such as
396 // .debug_* sections), and where the readers of these sections know
397 // how to deal with compressed sections.  (To make it easier for them,
398 // we will rename the ouput section in such cases from .foo to
399 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
400 // doesn't say for certain whether we'll compress -- it depends on
401 // commandline options as well -- just whether this section is a
402 // candidate for compression.
403
404 static bool
405 is_compressible_debug_section(const char* secname)
406 {
407   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
408 }
409
410 // Make a new Output_section, and attach it to segments as
411 // appropriate.
412
413 Output_section*
414 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
415                             elfcpp::Elf_Xword flags)
416 {
417   Output_section* os;
418   if ((flags & elfcpp::SHF_ALLOC) == 0
419       && this->options_.compress_debug_sections()
420       && is_compressible_debug_section(name))
421     os = new Output_compressed_section(&this->options_, name, type, flags);
422   else
423     os = new Output_section(name, type, flags);
424
425   this->section_list_.push_back(os);
426
427   if ((flags & elfcpp::SHF_ALLOC) == 0)
428     this->unattached_section_list_.push_back(os);
429   else
430     {
431       // This output section goes into a PT_LOAD segment.
432
433       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
434
435       // The only thing we really care about for PT_LOAD segments is
436       // whether or not they are writable, so that is how we search
437       // for them.  People who need segments sorted on some other
438       // basis will have to wait until we implement a mechanism for
439       // them to describe the segments they want.
440
441       Segment_list::const_iterator p;
442       for (p = this->segment_list_.begin();
443            p != this->segment_list_.end();
444            ++p)
445         {
446           if ((*p)->type() == elfcpp::PT_LOAD
447               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
448             {
449               (*p)->add_output_section(os, seg_flags);
450               break;
451             }
452         }
453
454       if (p == this->segment_list_.end())
455         {
456           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
457                                                     seg_flags);
458           this->segment_list_.push_back(oseg);
459           oseg->add_output_section(os, seg_flags);
460         }
461
462       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
463       // segment.
464       if (type == elfcpp::SHT_NOTE)
465         {
466           // See if we already have an equivalent PT_NOTE segment.
467           for (p = this->segment_list_.begin();
468                p != segment_list_.end();
469                ++p)
470             {
471               if ((*p)->type() == elfcpp::PT_NOTE
472                   && (((*p)->flags() & elfcpp::PF_W)
473                       == (seg_flags & elfcpp::PF_W)))
474                 {
475                   (*p)->add_output_section(os, seg_flags);
476                   break;
477                 }
478             }
479
480           if (p == this->segment_list_.end())
481             {
482               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
483                                                         seg_flags);
484               this->segment_list_.push_back(oseg);
485               oseg->add_output_section(os, seg_flags);
486             }
487         }
488
489       // If we see a loadable SHF_TLS section, we create a PT_TLS
490       // segment.  There can only be one such segment.
491       if ((flags & elfcpp::SHF_TLS) != 0)
492         {
493           if (this->tls_segment_ == NULL)
494             {
495               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
496                                                       seg_flags);
497               this->segment_list_.push_back(this->tls_segment_);
498             }
499           this->tls_segment_->add_output_section(os, seg_flags);
500         }
501     }
502
503   return os;
504 }
505
506 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
507 // is whether we saw a .note.GNU-stack section in the object file.
508 // GNU_STACK_FLAGS is the section flags.  The flags give the
509 // protection required for stack memory.  We record this in an
510 // executable as a PT_GNU_STACK segment.  If an object file does not
511 // have a .note.GNU-stack segment, we must assume that it is an old
512 // object.  On some targets that will force an executable stack.
513
514 void
515 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
516 {
517   if (!seen_gnu_stack)
518     this->input_without_gnu_stack_note_ = true;
519   else
520     {
521       this->input_with_gnu_stack_note_ = true;
522       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
523         this->input_requires_executable_stack_ = true;
524     }
525 }
526
527 // Create the dynamic sections which are needed before we read the
528 // relocs.
529
530 void
531 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
532 {
533   if (parameters->doing_static_link())
534     return;
535
536   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
537   this->dynamic_section_ = this->make_output_section(dynamic_name,
538                                                      elfcpp::SHT_DYNAMIC,
539                                                      (elfcpp::SHF_ALLOC
540                                                       | elfcpp::SHF_WRITE));
541
542   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
543                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
544                                 elfcpp::STV_HIDDEN, 0, false, false);
545
546   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
547
548   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
549 }
550
551 // For each output section whose name can be represented as C symbol,
552 // define __start and __stop symbols for the section.  This is a GNU
553 // extension.
554
555 void
556 Layout::define_section_symbols(Symbol_table* symtab)
557 {
558   for (Section_list::const_iterator p = this->section_list_.begin();
559        p != this->section_list_.end();
560        ++p)
561     {
562       const char* const name = (*p)->name();
563       if (name[strspn(name,
564                       ("0123456789"
565                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
566                        "abcdefghijklmnopqrstuvwxyz"
567                        "_"))]
568           == '\0')
569         {
570           const std::string name_string(name);
571           const std::string start_name("__start_" + name_string);
572           const std::string stop_name("__stop_" + name_string);
573
574           symtab->define_in_output_data(start_name.c_str(),
575                                         NULL, // version
576                                         *p,
577                                         0, // value
578                                         0, // symsize
579                                         elfcpp::STT_NOTYPE,
580                                         elfcpp::STB_GLOBAL,
581                                         elfcpp::STV_DEFAULT,
582                                         0, // nonvis
583                                         false, // offset_is_from_end
584                                         false); // only_if_ref
585
586           symtab->define_in_output_data(stop_name.c_str(),
587                                         NULL, // version
588                                         *p,
589                                         0, // value
590                                         0, // symsize
591                                         elfcpp::STT_NOTYPE,
592                                         elfcpp::STB_GLOBAL,
593                                         elfcpp::STV_DEFAULT,
594                                         0, // nonvis
595                                         true, // offset_is_from_end
596                                         false); // only_if_ref
597         }
598     }
599 }
600
601 // Find the first read-only PT_LOAD segment, creating one if
602 // necessary.
603
604 Output_segment*
605 Layout::find_first_load_seg()
606 {
607   for (Segment_list::const_iterator p = this->segment_list_.begin();
608        p != this->segment_list_.end();
609        ++p)
610     {
611       if ((*p)->type() == elfcpp::PT_LOAD
612           && ((*p)->flags() & elfcpp::PF_R) != 0
613           && ((*p)->flags() & elfcpp::PF_W) == 0)
614         return *p;
615     }
616
617   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
618   this->segment_list_.push_back(load_seg);
619   return load_seg;
620 }
621
622 // Finalize the layout.  When this is called, we have created all the
623 // output sections and all the output segments which are based on
624 // input sections.  We have several things to do, and we have to do
625 // them in the right order, so that we get the right results correctly
626 // and efficiently.
627
628 // 1) Finalize the list of output segments and create the segment
629 // table header.
630
631 // 2) Finalize the dynamic symbol table and associated sections.
632
633 // 3) Determine the final file offset of all the output segments.
634
635 // 4) Determine the final file offset of all the SHF_ALLOC output
636 // sections.
637
638 // 5) Create the symbol table sections and the section name table
639 // section.
640
641 // 6) Finalize the symbol table: set symbol values to their final
642 // value and make a final determination of which symbols are going
643 // into the output symbol table.
644
645 // 7) Create the section table header.
646
647 // 8) Determine the final file offset of all the output sections which
648 // are not SHF_ALLOC, including the section table header.
649
650 // 9) Finalize the ELF file header.
651
652 // This function returns the size of the output file.
653
654 off_t
655 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
656                  const Task* task)
657 {
658   Target* const target = input_objects->target();
659
660   target->finalize_sections(this);
661
662   this->count_local_symbols(task, input_objects);
663
664   this->create_gold_note();
665   this->create_executable_stack_info(target);
666
667   Output_segment* phdr_seg = NULL;
668   if (!parameters->doing_static_link())
669     {
670       // There was a dynamic object in the link.  We need to create
671       // some information for the dynamic linker.
672
673       // Create the PT_PHDR segment which will hold the program
674       // headers.
675       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
676       this->segment_list_.push_back(phdr_seg);
677
678       // Create the dynamic symbol table, including the hash table.
679       Output_section* dynstr;
680       std::vector<Symbol*> dynamic_symbols;
681       unsigned int local_dynamic_count;
682       Versions versions(this->options_, &this->dynpool_);
683       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
684                                   &local_dynamic_count, &dynamic_symbols,
685                                   &versions);
686
687       // Create the .interp section to hold the name of the
688       // interpreter, and put it in a PT_INTERP segment.
689       if (!parameters->output_is_shared())
690         this->create_interp(target);
691
692       // Finish the .dynamic section to hold the dynamic data, and put
693       // it in a PT_DYNAMIC segment.
694       this->finish_dynamic_section(input_objects, symtab);
695
696       // We should have added everything we need to the dynamic string
697       // table.
698       this->dynpool_.set_string_offsets();
699
700       // Create the version sections.  We can't do this until the
701       // dynamic string table is complete.
702       this->create_version_sections(&versions, symtab, local_dynamic_count,
703                                     dynamic_symbols, dynstr);
704     }
705
706   // FIXME: Handle PT_GNU_STACK.
707
708   Output_segment* load_seg = this->find_first_load_seg();
709
710   // Lay out the segment headers.
711   Output_segment_headers* segment_headers;
712   segment_headers = new Output_segment_headers(this->segment_list_);
713   load_seg->add_initial_output_data(segment_headers);
714   this->special_output_list_.push_back(segment_headers);
715   if (phdr_seg != NULL)
716     phdr_seg->add_initial_output_data(segment_headers);
717
718   // Lay out the file header.
719   Output_file_header* file_header;
720   file_header = new Output_file_header(target, symtab, segment_headers,
721                                        this->script_options_->entry());
722   load_seg->add_initial_output_data(file_header);
723   this->special_output_list_.push_back(file_header);
724
725   // We set the output section indexes in set_segment_offsets and
726   // set_section_indexes.
727   unsigned int shndx = 1;
728
729   // Set the file offsets of all the segments, and all the sections
730   // they contain.
731   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
732
733   // Set the file offsets of all the non-data sections we've seen so
734   // far which don't have to wait for the input sections.  We need
735   // this in order to finalize local symbols in non-allocated
736   // sections.
737   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
738
739   // Create the symbol table sections.
740   this->create_symtab_sections(input_objects, symtab, &off);
741   if (!parameters->doing_static_link())
742     this->assign_local_dynsym_offsets(input_objects);
743
744   // Process any symbol assignments from a linker script.  This must
745   // be called after the symbol table has been finalized.
746   this->script_options_->finalize_symbols(symtab, this);
747
748   // Create the .shstrtab section.
749   Output_section* shstrtab_section = this->create_shstrtab();
750
751   // Set the file offsets of the rest of the non-data sections which
752   // don't have to wait for the input sections.
753   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
754
755   // Now that all sections have been created, set the section indexes.
756   shndx = this->set_section_indexes(shndx);
757
758   // Create the section table header.
759   this->create_shdrs(&off);
760
761   // If there are no sections which require postprocessing, we can
762   // handle the section names now, and avoid a resize later.
763   if (!this->any_postprocessing_sections_)
764     off = this->set_section_offsets(off,
765                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
766
767   file_header->set_section_info(this->section_headers_, shstrtab_section);
768
769   // Now we know exactly where everything goes in the output file
770   // (except for non-allocated sections which require postprocessing).
771   Output_data::layout_complete();
772
773   this->output_file_size_ = off;
774
775   return off;
776 }
777
778 // Create a .note section for an executable or shared library.  This
779 // records the version of gold used to create the binary.
780
781 void
782 Layout::create_gold_note()
783 {
784   if (parameters->output_is_object())
785     return;
786
787   // Authorities all agree that the values in a .note field should
788   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
789   // they differ on what the alignment is for 64-bit binaries.
790   // The GABI says unambiguously they take 8-byte alignment:
791   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
792   // Other documentation says alignment should always be 4 bytes:
793   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
794   // GNU ld and GNU readelf both support the latter (at least as of
795   // version 2.16.91), and glibc always generates the latter for
796   // .note.ABI-tag (as of version 1.6), so that's the one we go with
797   // here.
798 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
799   const int size = parameters->get_size();
800 #else
801   const int size = 32;
802 #endif
803
804   // The contents of the .note section.
805   const char* name = "GNU";
806   std::string desc(std::string("gold ") + gold::get_version_string());
807   size_t namesz = strlen(name) + 1;
808   size_t aligned_namesz = align_address(namesz, size / 8);
809   size_t descsz = desc.length() + 1;
810   size_t aligned_descsz = align_address(descsz, size / 8);
811   const int note_type = 4;
812
813   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
814
815   unsigned char buffer[128];
816   gold_assert(sizeof buffer >= notesz);
817   memset(buffer, 0, notesz);
818
819   bool is_big_endian = parameters->is_big_endian();
820
821   if (size == 32)
822     {
823       if (!is_big_endian)
824         {
825           elfcpp::Swap<32, false>::writeval(buffer, namesz);
826           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
827           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
828         }
829       else
830         {
831           elfcpp::Swap<32, true>::writeval(buffer, namesz);
832           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
833           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
834         }
835     }
836   else if (size == 64)
837     {
838       if (!is_big_endian)
839         {
840           elfcpp::Swap<64, false>::writeval(buffer, namesz);
841           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
842           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
843         }
844       else
845         {
846           elfcpp::Swap<64, true>::writeval(buffer, namesz);
847           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
848           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
849         }
850     }
851   else
852     gold_unreachable();
853
854   memcpy(buffer + 3 * (size / 8), name, namesz);
855   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
856
857   const char* note_name = this->namepool_.add(".note", false, NULL);
858   Output_section* os = this->make_output_section(note_name,
859                                                  elfcpp::SHT_NOTE,
860                                                  0);
861   Output_section_data* posd = new Output_data_const(buffer, notesz,
862                                                     size / 8);
863   os->add_output_section_data(posd);
864 }
865
866 // Record whether the stack should be executable.  This can be set
867 // from the command line using the -z execstack or -z noexecstack
868 // options.  Otherwise, if any input file has a .note.GNU-stack
869 // section with the SHF_EXECINSTR flag set, the stack should be
870 // executable.  Otherwise, if at least one input file a
871 // .note.GNU-stack section, and some input file has no .note.GNU-stack
872 // section, we use the target default for whether the stack should be
873 // executable.  Otherwise, we don't generate a stack note.  When
874 // generating a object file, we create a .note.GNU-stack section with
875 // the appropriate marking.  When generating an executable or shared
876 // library, we create a PT_GNU_STACK segment.
877
878 void
879 Layout::create_executable_stack_info(const Target* target)
880 {
881   bool is_stack_executable;
882   if (this->options_.is_execstack_set())
883     is_stack_executable = this->options_.is_stack_executable();
884   else if (!this->input_with_gnu_stack_note_)
885     return;
886   else
887     {
888       if (this->input_requires_executable_stack_)
889         is_stack_executable = true;
890       else if (this->input_without_gnu_stack_note_)
891         is_stack_executable = target->is_default_stack_executable();
892       else
893         is_stack_executable = false;
894     }
895
896   if (parameters->output_is_object())
897     {
898       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
899       elfcpp::Elf_Xword flags = 0;
900       if (is_stack_executable)
901         flags |= elfcpp::SHF_EXECINSTR;
902       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
903     }
904   else
905     {
906       int flags = elfcpp::PF_R | elfcpp::PF_W;
907       if (is_stack_executable)
908         flags |= elfcpp::PF_X;
909       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
910       this->segment_list_.push_back(oseg);
911     }
912 }
913
914 // Return whether SEG1 should be before SEG2 in the output file.  This
915 // is based entirely on the segment type and flags.  When this is
916 // called the segment addresses has normally not yet been set.
917
918 bool
919 Layout::segment_precedes(const Output_segment* seg1,
920                          const Output_segment* seg2)
921 {
922   elfcpp::Elf_Word type1 = seg1->type();
923   elfcpp::Elf_Word type2 = seg2->type();
924
925   // The single PT_PHDR segment is required to precede any loadable
926   // segment.  We simply make it always first.
927   if (type1 == elfcpp::PT_PHDR)
928     {
929       gold_assert(type2 != elfcpp::PT_PHDR);
930       return true;
931     }
932   if (type2 == elfcpp::PT_PHDR)
933     return false;
934
935   // The single PT_INTERP segment is required to precede any loadable
936   // segment.  We simply make it always second.
937   if (type1 == elfcpp::PT_INTERP)
938     {
939       gold_assert(type2 != elfcpp::PT_INTERP);
940       return true;
941     }
942   if (type2 == elfcpp::PT_INTERP)
943     return false;
944
945   // We then put PT_LOAD segments before any other segments.
946   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
947     return true;
948   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
949     return false;
950
951   // We put the PT_TLS segment last, because that is where the dynamic
952   // linker expects to find it (this is just for efficiency; other
953   // positions would also work correctly).
954   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
955     return false;
956   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
957     return true;
958
959   const elfcpp::Elf_Word flags1 = seg1->flags();
960   const elfcpp::Elf_Word flags2 = seg2->flags();
961
962   // The order of non-PT_LOAD segments is unimportant.  We simply sort
963   // by the numeric segment type and flags values.  There should not
964   // be more than one segment with the same type and flags.
965   if (type1 != elfcpp::PT_LOAD)
966     {
967       if (type1 != type2)
968         return type1 < type2;
969       gold_assert(flags1 != flags2);
970       return flags1 < flags2;
971     }
972
973   // We sort PT_LOAD segments based on the flags.  Readonly segments
974   // come before writable segments.  Then executable segments come
975   // before non-executable segments.  Then the unlikely case of a
976   // non-readable segment comes before the normal case of a readable
977   // segment.  If there are multiple segments with the same type and
978   // flags, we require that the address be set, and we sort by
979   // virtual address and then physical address.
980   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
981     return (flags1 & elfcpp::PF_W) == 0;
982   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
983     return (flags1 & elfcpp::PF_X) != 0;
984   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
985     return (flags1 & elfcpp::PF_R) == 0;
986
987   uint64_t vaddr1 = seg1->vaddr();
988   uint64_t vaddr2 = seg2->vaddr();
989   if (vaddr1 != vaddr2)
990     return vaddr1 < vaddr2;
991
992   uint64_t paddr1 = seg1->paddr();
993   uint64_t paddr2 = seg2->paddr();
994   gold_assert(paddr1 != paddr2);
995   return paddr1 < paddr2;
996 }
997
998 // Set the file offsets of all the segments, and all the sections they
999 // contain.  They have all been created.  LOAD_SEG must be be laid out
1000 // first.  Return the offset of the data to follow.
1001
1002 off_t
1003 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1004                             unsigned int *pshndx)
1005 {
1006   // Sort them into the final order.
1007   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1008             Layout::Compare_segments());
1009
1010   // Find the PT_LOAD segments, and set their addresses and offsets
1011   // and their section's addresses and offsets.
1012   uint64_t addr;
1013   if (parameters->output_is_shared())
1014     addr = 0;
1015   else if (options_.user_set_text_segment_address())
1016     addr = options_.text_segment_address();
1017   else
1018     addr = target->default_text_segment_address();
1019   off_t off = 0;
1020   bool was_readonly = false;
1021   for (Segment_list::iterator p = this->segment_list_.begin();
1022        p != this->segment_list_.end();
1023        ++p)
1024     {
1025       if ((*p)->type() == elfcpp::PT_LOAD)
1026         {
1027           if (load_seg != NULL && load_seg != *p)
1028             gold_unreachable();
1029           load_seg = NULL;
1030
1031           // If the last segment was readonly, and this one is not,
1032           // then skip the address forward one page, maintaining the
1033           // same position within the page.  This lets us store both
1034           // segments overlapping on a single page in the file, but
1035           // the loader will put them on different pages in memory.
1036
1037           uint64_t orig_addr = addr;
1038           uint64_t orig_off = off;
1039
1040           uint64_t aligned_addr = addr;
1041           uint64_t abi_pagesize = target->abi_pagesize();
1042
1043           // FIXME: This should depend on the -n and -N options.
1044           (*p)->set_minimum_addralign(target->common_pagesize());
1045
1046           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1047             {
1048               uint64_t align = (*p)->addralign();
1049
1050               addr = align_address(addr, align);
1051               aligned_addr = addr;
1052               if ((addr & (abi_pagesize - 1)) != 0)
1053                 addr = addr + abi_pagesize;
1054             }
1055
1056           unsigned int shndx_hold = *pshndx;
1057           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1058           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1059
1060           // Now that we know the size of this segment, we may be able
1061           // to save a page in memory, at the cost of wasting some
1062           // file space, by instead aligning to the start of a new
1063           // page.  Here we use the real machine page size rather than
1064           // the ABI mandated page size.
1065
1066           if (aligned_addr != addr)
1067             {
1068               uint64_t common_pagesize = target->common_pagesize();
1069               uint64_t first_off = (common_pagesize
1070                                     - (aligned_addr
1071                                        & (common_pagesize - 1)));
1072               uint64_t last_off = new_addr & (common_pagesize - 1);
1073               if (first_off > 0
1074                   && last_off > 0
1075                   && ((aligned_addr & ~ (common_pagesize - 1))
1076                       != (new_addr & ~ (common_pagesize - 1)))
1077                   && first_off + last_off <= common_pagesize)
1078                 {
1079                   *pshndx = shndx_hold;
1080                   addr = align_address(aligned_addr, common_pagesize);
1081                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1082                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1083                 }
1084             }
1085
1086           addr = new_addr;
1087
1088           if (((*p)->flags() & elfcpp::PF_W) == 0)
1089             was_readonly = true;
1090         }
1091     }
1092
1093   // Handle the non-PT_LOAD segments, setting their offsets from their
1094   // section's offsets.
1095   for (Segment_list::iterator p = this->segment_list_.begin();
1096        p != this->segment_list_.end();
1097        ++p)
1098     {
1099       if ((*p)->type() != elfcpp::PT_LOAD)
1100         (*p)->set_offset();
1101     }
1102
1103   // Set the TLS offsets for each section in the PT_TLS segment.
1104   if (this->tls_segment_ != NULL)
1105     this->tls_segment_->set_tls_offsets();
1106
1107   return off;
1108 }
1109
1110 // Set the file offset of all the sections not associated with a
1111 // segment.
1112
1113 off_t
1114 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1115 {
1116   for (Section_list::iterator p = this->unattached_section_list_.begin();
1117        p != this->unattached_section_list_.end();
1118        ++p)
1119     {
1120       // The symtab section is handled in create_symtab_sections.
1121       if (*p == this->symtab_section_)
1122         continue;
1123
1124       // If we've already set the data size, don't set it again.
1125       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1126         continue;
1127
1128       if (pass == BEFORE_INPUT_SECTIONS_PASS
1129           && (*p)->requires_postprocessing())
1130         {
1131           (*p)->create_postprocessing_buffer();
1132           this->any_postprocessing_sections_ = true;
1133         }
1134
1135       if (pass == BEFORE_INPUT_SECTIONS_PASS
1136           && (*p)->after_input_sections())
1137         continue;
1138       else if (pass == POSTPROCESSING_SECTIONS_PASS
1139                && (!(*p)->after_input_sections()
1140                    || (*p)->type() == elfcpp::SHT_STRTAB))
1141         continue;
1142       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1143                && (!(*p)->after_input_sections()
1144                    || (*p)->type() != elfcpp::SHT_STRTAB))
1145         continue;
1146
1147       off = align_address(off, (*p)->addralign());
1148       (*p)->set_file_offset(off);
1149       (*p)->finalize_data_size();
1150       off += (*p)->data_size();
1151
1152       // At this point the name must be set.
1153       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1154         this->namepool_.add((*p)->name(), false, NULL);
1155     }
1156   return off;
1157 }
1158
1159 // Set the section indexes of all the sections not associated with a
1160 // segment.
1161
1162 unsigned int
1163 Layout::set_section_indexes(unsigned int shndx)
1164 {
1165   for (Section_list::iterator p = this->unattached_section_list_.begin();
1166        p != this->unattached_section_list_.end();
1167        ++p)
1168     {
1169       (*p)->set_out_shndx(shndx);
1170       ++shndx;
1171     }
1172   return shndx;
1173 }
1174
1175 // Count the local symbols in the regular symbol table and the dynamic
1176 // symbol table, and build the respective string pools.
1177
1178 void
1179 Layout::count_local_symbols(const Task* task,
1180                             const Input_objects* input_objects)
1181 {
1182   // First, figure out an upper bound on the number of symbols we'll
1183   // be inserting into each pool.  This helps us create the pools with
1184   // the right size, to avoid unnecessary hashtable resizing.
1185   unsigned int symbol_count = 0;
1186   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1187        p != input_objects->relobj_end();
1188        ++p)
1189     symbol_count += (*p)->local_symbol_count();
1190
1191   // Go from "upper bound" to "estimate."  We overcount for two
1192   // reasons: we double-count symbols that occur in more than one
1193   // object file, and we count symbols that are dropped from the
1194   // output.  Add it all together and assume we overcount by 100%.
1195   symbol_count /= 2;
1196
1197   // We assume all symbols will go into both the sympool and dynpool.
1198   this->sympool_.reserve(symbol_count);
1199   this->dynpool_.reserve(symbol_count);
1200
1201   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1202        p != input_objects->relobj_end();
1203        ++p)
1204     {
1205       Task_lock_obj<Object> tlo(task, *p);
1206       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1207     }
1208 }
1209
1210 // Create the symbol table sections.  Here we also set the final
1211 // values of the symbols.  At this point all the loadable sections are
1212 // fully laid out.
1213
1214 void
1215 Layout::create_symtab_sections(const Input_objects* input_objects,
1216                                Symbol_table* symtab,
1217                                off_t* poff)
1218 {
1219   int symsize;
1220   unsigned int align;
1221   if (parameters->get_size() == 32)
1222     {
1223       symsize = elfcpp::Elf_sizes<32>::sym_size;
1224       align = 4;
1225     }
1226   else if (parameters->get_size() == 64)
1227     {
1228       symsize = elfcpp::Elf_sizes<64>::sym_size;
1229       align = 8;
1230     }
1231   else
1232     gold_unreachable();
1233
1234   off_t off = *poff;
1235   off = align_address(off, align);
1236   off_t startoff = off;
1237
1238   // Save space for the dummy symbol at the start of the section.  We
1239   // never bother to write this out--it will just be left as zero.
1240   off += symsize;
1241   unsigned int local_symbol_index = 1;
1242
1243   // Add STT_SECTION symbols for each Output section which needs one.
1244   for (Section_list::iterator p = this->section_list_.begin();
1245        p != this->section_list_.end();
1246        ++p)
1247     {
1248       if (!(*p)->needs_symtab_index())
1249         (*p)->set_symtab_index(-1U);
1250       else
1251         {
1252           (*p)->set_symtab_index(local_symbol_index);
1253           ++local_symbol_index;
1254           off += symsize;
1255         }
1256     }
1257
1258   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1259        p != input_objects->relobj_end();
1260        ++p)
1261     {
1262       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1263                                                         off);
1264       off += (index - local_symbol_index) * symsize;
1265       local_symbol_index = index;
1266     }
1267
1268   unsigned int local_symcount = local_symbol_index;
1269   gold_assert(local_symcount * symsize == off - startoff);
1270
1271   off_t dynoff;
1272   size_t dyn_global_index;
1273   size_t dyncount;
1274   if (this->dynsym_section_ == NULL)
1275     {
1276       dynoff = 0;
1277       dyn_global_index = 0;
1278       dyncount = 0;
1279     }
1280   else
1281     {
1282       dyn_global_index = this->dynsym_section_->info();
1283       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1284       dynoff = this->dynsym_section_->offset() + locsize;
1285       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1286       gold_assert(static_cast<off_t>(dyncount * symsize)
1287                   == this->dynsym_section_->data_size() - locsize);
1288     }
1289
1290   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1291                          &this->sympool_, &local_symcount);
1292
1293   if (!parameters->strip_all())
1294     {
1295       this->sympool_.set_string_offsets();
1296
1297       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1298       Output_section* osymtab = this->make_output_section(symtab_name,
1299                                                           elfcpp::SHT_SYMTAB,
1300                                                           0);
1301       this->symtab_section_ = osymtab;
1302
1303       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1304                                                              align);
1305       osymtab->add_output_section_data(pos);
1306
1307       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1308       Output_section* ostrtab = this->make_output_section(strtab_name,
1309                                                           elfcpp::SHT_STRTAB,
1310                                                           0);
1311
1312       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1313       ostrtab->add_output_section_data(pstr);
1314
1315       osymtab->set_file_offset(startoff);
1316       osymtab->finalize_data_size();
1317       osymtab->set_link_section(ostrtab);
1318       osymtab->set_info(local_symcount);
1319       osymtab->set_entsize(symsize);
1320
1321       *poff = off;
1322     }
1323 }
1324
1325 // Create the .shstrtab section, which holds the names of the
1326 // sections.  At the time this is called, we have created all the
1327 // output sections except .shstrtab itself.
1328
1329 Output_section*
1330 Layout::create_shstrtab()
1331 {
1332   // FIXME: We don't need to create a .shstrtab section if we are
1333   // stripping everything.
1334
1335   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1336
1337   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1338
1339   // We can't write out this section until we've set all the section
1340   // names, and we don't set the names of compressed output sections
1341   // until relocations are complete.
1342   os->set_after_input_sections();
1343
1344   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1345   os->add_output_section_data(posd);
1346
1347   return os;
1348 }
1349
1350 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1351 // offset.
1352
1353 void
1354 Layout::create_shdrs(off_t* poff)
1355 {
1356   Output_section_headers* oshdrs;
1357   oshdrs = new Output_section_headers(this,
1358                                       &this->segment_list_,
1359                                       &this->unattached_section_list_,
1360                                       &this->namepool_);
1361   off_t off = align_address(*poff, oshdrs->addralign());
1362   oshdrs->set_address_and_file_offset(0, off);
1363   off += oshdrs->data_size();
1364   *poff = off;
1365   this->section_headers_ = oshdrs;
1366 }
1367
1368 // Create the dynamic symbol table.
1369
1370 void
1371 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1372                               Symbol_table* symtab,
1373                               Output_section **pdynstr,
1374                               unsigned int* plocal_dynamic_count,
1375                               std::vector<Symbol*>* pdynamic_symbols,
1376                               Versions* pversions)
1377 {
1378   // Count all the symbols in the dynamic symbol table, and set the
1379   // dynamic symbol indexes.
1380
1381   // Skip symbol 0, which is always all zeroes.
1382   unsigned int index = 1;
1383
1384   // Add STT_SECTION symbols for each Output section which needs one.
1385   for (Section_list::iterator p = this->section_list_.begin();
1386        p != this->section_list_.end();
1387        ++p)
1388     {
1389       if (!(*p)->needs_dynsym_index())
1390         (*p)->set_dynsym_index(-1U);
1391       else
1392         {
1393           (*p)->set_dynsym_index(index);
1394           ++index;
1395         }
1396     }
1397
1398   // Count the local symbols that need to go in the dynamic symbol table,
1399   // and set the dynamic symbol indexes.
1400   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1401        p != input_objects->relobj_end();
1402        ++p)
1403     {
1404       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1405       index = new_index;
1406     }
1407
1408   unsigned int local_symcount = index;
1409   *plocal_dynamic_count = local_symcount;
1410
1411   // FIXME: We have to tell set_dynsym_indexes whether the
1412   // -E/--export-dynamic option was used.
1413   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1414                                      &this->dynpool_, pversions);
1415
1416   int symsize;
1417   unsigned int align;
1418   const int size = parameters->get_size();
1419   if (size == 32)
1420     {
1421       symsize = elfcpp::Elf_sizes<32>::sym_size;
1422       align = 4;
1423     }
1424   else if (size == 64)
1425     {
1426       symsize = elfcpp::Elf_sizes<64>::sym_size;
1427       align = 8;
1428     }
1429   else
1430     gold_unreachable();
1431
1432   // Create the dynamic symbol table section.
1433
1434   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1435   Output_section* dynsym = this->make_output_section(dynsym_name,
1436                                                      elfcpp::SHT_DYNSYM,
1437                                                      elfcpp::SHF_ALLOC);
1438
1439   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1440                                                            align);
1441   dynsym->add_output_section_data(odata);
1442
1443   dynsym->set_info(local_symcount);
1444   dynsym->set_entsize(symsize);
1445   dynsym->set_addralign(align);
1446
1447   this->dynsym_section_ = dynsym;
1448
1449   Output_data_dynamic* const odyn = this->dynamic_data_;
1450   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1451   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1452
1453   // Create the dynamic string table section.
1454
1455   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1456   Output_section* dynstr = this->make_output_section(dynstr_name,
1457                                                      elfcpp::SHT_STRTAB,
1458                                                      elfcpp::SHF_ALLOC);
1459
1460   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1461   dynstr->add_output_section_data(strdata);
1462
1463   dynsym->set_link_section(dynstr);
1464   this->dynamic_section_->set_link_section(dynstr);
1465
1466   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1467   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1468
1469   *pdynstr = dynstr;
1470
1471   // Create the hash tables.
1472
1473   // FIXME: We need an option to create a GNU hash table.
1474
1475   unsigned char* phash;
1476   unsigned int hashlen;
1477   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1478                                 &phash, &hashlen);
1479
1480   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1481   Output_section* hashsec = this->make_output_section(hash_name,
1482                                                       elfcpp::SHT_HASH,
1483                                                       elfcpp::SHF_ALLOC);
1484
1485   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1486                                                                hashlen,
1487                                                                align);
1488   hashsec->add_output_section_data(hashdata);
1489
1490   hashsec->set_link_section(dynsym);
1491   hashsec->set_entsize(4);
1492
1493   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1494 }
1495
1496 // Assign offsets to each local portion of the dynamic symbol table.
1497
1498 void
1499 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1500 {
1501   Output_section* dynsym = this->dynsym_section_;
1502   gold_assert(dynsym != NULL);
1503
1504   off_t off = dynsym->offset();
1505
1506   // Skip the dummy symbol at the start of the section.
1507   off += dynsym->entsize();
1508
1509   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1510        p != input_objects->relobj_end();
1511        ++p)
1512     {
1513       unsigned int count = (*p)->set_local_dynsym_offset(off);
1514       off += count * dynsym->entsize();
1515     }
1516 }
1517
1518 // Create the version sections.
1519
1520 void
1521 Layout::create_version_sections(const Versions* versions,
1522                                 const Symbol_table* symtab,
1523                                 unsigned int local_symcount,
1524                                 const std::vector<Symbol*>& dynamic_symbols,
1525                                 const Output_section* dynstr)
1526 {
1527   if (!versions->any_defs() && !versions->any_needs())
1528     return;
1529
1530   if (parameters->get_size() == 32)
1531     {
1532       if (parameters->is_big_endian())
1533         {
1534 #ifdef HAVE_TARGET_32_BIG
1535           this->sized_create_version_sections
1536               SELECT_SIZE_ENDIAN_NAME(32, true)(
1537                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1538                   SELECT_SIZE_ENDIAN(32, true));
1539 #else
1540           gold_unreachable();
1541 #endif
1542         }
1543       else
1544         {
1545 #ifdef HAVE_TARGET_32_LITTLE
1546           this->sized_create_version_sections
1547               SELECT_SIZE_ENDIAN_NAME(32, false)(
1548                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1549                   SELECT_SIZE_ENDIAN(32, false));
1550 #else
1551           gold_unreachable();
1552 #endif
1553         }
1554     }
1555   else if (parameters->get_size() == 64)
1556     {
1557       if (parameters->is_big_endian())
1558         {
1559 #ifdef HAVE_TARGET_64_BIG
1560           this->sized_create_version_sections
1561               SELECT_SIZE_ENDIAN_NAME(64, true)(
1562                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1563                   SELECT_SIZE_ENDIAN(64, true));
1564 #else
1565           gold_unreachable();
1566 #endif
1567         }
1568       else
1569         {
1570 #ifdef HAVE_TARGET_64_LITTLE
1571           this->sized_create_version_sections
1572               SELECT_SIZE_ENDIAN_NAME(64, false)(
1573                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1574                   SELECT_SIZE_ENDIAN(64, false));
1575 #else
1576           gold_unreachable();
1577 #endif
1578         }
1579     }
1580   else
1581     gold_unreachable();
1582 }
1583
1584 // Create the version sections, sized version.
1585
1586 template<int size, bool big_endian>
1587 void
1588 Layout::sized_create_version_sections(
1589     const Versions* versions,
1590     const Symbol_table* symtab,
1591     unsigned int local_symcount,
1592     const std::vector<Symbol*>& dynamic_symbols,
1593     const Output_section* dynstr
1594     ACCEPT_SIZE_ENDIAN)
1595 {
1596   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1597   Output_section* vsec = this->make_output_section(vname,
1598                                                    elfcpp::SHT_GNU_versym,
1599                                                    elfcpp::SHF_ALLOC);
1600
1601   unsigned char* vbuf;
1602   unsigned int vsize;
1603   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1604       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1605       SELECT_SIZE_ENDIAN(size, big_endian));
1606
1607   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1608
1609   vsec->add_output_section_data(vdata);
1610   vsec->set_entsize(2);
1611   vsec->set_link_section(this->dynsym_section_);
1612
1613   Output_data_dynamic* const odyn = this->dynamic_data_;
1614   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1615
1616   if (versions->any_defs())
1617     {
1618       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1619       Output_section *vdsec;
1620       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1621                                         elfcpp::SHF_ALLOC);
1622
1623       unsigned char* vdbuf;
1624       unsigned int vdsize;
1625       unsigned int vdentries;
1626       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1627           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1628           SELECT_SIZE_ENDIAN(size, big_endian));
1629
1630       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1631                                                                  vdsize,
1632                                                                  4);
1633
1634       vdsec->add_output_section_data(vddata);
1635       vdsec->set_link_section(dynstr);
1636       vdsec->set_info(vdentries);
1637
1638       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1639       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1640     }
1641
1642   if (versions->any_needs())
1643     {
1644       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1645       Output_section* vnsec;
1646       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1647                                         elfcpp::SHF_ALLOC);
1648
1649       unsigned char* vnbuf;
1650       unsigned int vnsize;
1651       unsigned int vnentries;
1652       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1653         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1654          SELECT_SIZE_ENDIAN(size, big_endian));
1655
1656       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1657                                                                  vnsize,
1658                                                                  4);
1659
1660       vnsec->add_output_section_data(vndata);
1661       vnsec->set_link_section(dynstr);
1662       vnsec->set_info(vnentries);
1663
1664       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1665       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1666     }
1667 }
1668
1669 // Create the .interp section and PT_INTERP segment.
1670
1671 void
1672 Layout::create_interp(const Target* target)
1673 {
1674   const char* interp = this->options_.dynamic_linker();
1675   if (interp == NULL)
1676     {
1677       interp = target->dynamic_linker();
1678       gold_assert(interp != NULL);
1679     }
1680
1681   size_t len = strlen(interp) + 1;
1682
1683   Output_section_data* odata = new Output_data_const(interp, len, 1);
1684
1685   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1686   Output_section* osec = this->make_output_section(interp_name,
1687                                                    elfcpp::SHT_PROGBITS,
1688                                                    elfcpp::SHF_ALLOC);
1689   osec->add_output_section_data(odata);
1690
1691   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1692   this->segment_list_.push_back(oseg);
1693   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1694 }
1695
1696 // Finish the .dynamic section and PT_DYNAMIC segment.
1697
1698 void
1699 Layout::finish_dynamic_section(const Input_objects* input_objects,
1700                                const Symbol_table* symtab)
1701 {
1702   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1703                                             elfcpp::PF_R | elfcpp::PF_W);
1704   this->segment_list_.push_back(oseg);
1705   oseg->add_initial_output_section(this->dynamic_section_,
1706                                    elfcpp::PF_R | elfcpp::PF_W);
1707
1708   Output_data_dynamic* const odyn = this->dynamic_data_;
1709
1710   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1711        p != input_objects->dynobj_end();
1712        ++p)
1713     {
1714       // FIXME: Handle --as-needed.
1715       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1716     }
1717
1718   if (parameters->output_is_shared())
1719     {
1720       const char* soname = this->options_.soname();
1721       if (soname != NULL)
1722         odyn->add_string(elfcpp::DT_SONAME, soname);
1723     }
1724
1725   // FIXME: Support --init and --fini.
1726   Symbol* sym = symtab->lookup("_init");
1727   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1728     odyn->add_symbol(elfcpp::DT_INIT, sym);
1729
1730   sym = symtab->lookup("_fini");
1731   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1732     odyn->add_symbol(elfcpp::DT_FINI, sym);
1733
1734   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1735
1736   // Add a DT_RPATH entry if needed.
1737   const General_options::Dir_list& rpath(this->options_.rpath());
1738   if (!rpath.empty())
1739     {
1740       std::string rpath_val;
1741       for (General_options::Dir_list::const_iterator p = rpath.begin();
1742            p != rpath.end();
1743            ++p)
1744         {
1745           if (rpath_val.empty())
1746             rpath_val = p->name();
1747           else
1748             {
1749               // Eliminate duplicates.
1750               General_options::Dir_list::const_iterator q;
1751               for (q = rpath.begin(); q != p; ++q)
1752                 if (q->name() == p->name())
1753                   break;
1754               if (q == p)
1755                 {
1756                   rpath_val += ':';
1757                   rpath_val += p->name();
1758                 }
1759             }
1760         }
1761
1762       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1763     }
1764
1765   // Look for text segments that have dynamic relocations.
1766   bool have_textrel = false;
1767   for (Segment_list::const_iterator p = this->segment_list_.begin();
1768        p != this->segment_list_.end();
1769        ++p)
1770     {
1771       if (((*p)->flags() & elfcpp::PF_W) == 0
1772           && (*p)->dynamic_reloc_count() > 0)
1773         {
1774           have_textrel = true;
1775           break;
1776         }
1777     }
1778
1779   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1780   // post-link tools can easily modify these flags if desired.
1781   unsigned int flags = 0;
1782   if (have_textrel)
1783     {
1784       // Add a DT_TEXTREL for compatibility with older loaders.
1785       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1786       flags |= elfcpp::DF_TEXTREL;
1787     }
1788   if (parameters->output_is_shared() && this->has_static_tls())
1789     flags |= elfcpp::DF_STATIC_TLS;
1790   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1791 }
1792
1793 // The mapping of .gnu.linkonce section names to real section names.
1794
1795 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1796 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1797 {
1798   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1799   MAPPING_INIT("t", ".text"),
1800   MAPPING_INIT("r", ".rodata"),
1801   MAPPING_INIT("d", ".data"),
1802   MAPPING_INIT("b", ".bss"),
1803   MAPPING_INIT("s", ".sdata"),
1804   MAPPING_INIT("sb", ".sbss"),
1805   MAPPING_INIT("s2", ".sdata2"),
1806   MAPPING_INIT("sb2", ".sbss2"),
1807   MAPPING_INIT("wi", ".debug_info"),
1808   MAPPING_INIT("td", ".tdata"),
1809   MAPPING_INIT("tb", ".tbss"),
1810   MAPPING_INIT("lr", ".lrodata"),
1811   MAPPING_INIT("l", ".ldata"),
1812   MAPPING_INIT("lb", ".lbss"),
1813 };
1814 #undef MAPPING_INIT
1815
1816 const int Layout::linkonce_mapping_count =
1817   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1818
1819 // Return the name of the output section to use for a .gnu.linkonce
1820 // section.  This is based on the default ELF linker script of the old
1821 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1822 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1823 // initialized to the length of NAME.
1824
1825 const char*
1826 Layout::linkonce_output_name(const char* name, size_t *plen)
1827 {
1828   const char* s = name + sizeof(".gnu.linkonce") - 1;
1829   if (*s != '.')
1830     return name;
1831   ++s;
1832   const Linkonce_mapping* plm = linkonce_mapping;
1833   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1834     {
1835       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1836         {
1837           *plen = plm->tolen;
1838           return plm->to;
1839         }
1840     }
1841   return name;
1842 }
1843
1844 // Choose the output section name to use given an input section name.
1845 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1846 // length of NAME.
1847
1848 const char*
1849 Layout::output_section_name(const char* name, size_t* plen)
1850 {
1851   if (Layout::is_linkonce(name))
1852     {
1853       // .gnu.linkonce sections are laid out as though they were named
1854       // for the sections are placed into.
1855       return Layout::linkonce_output_name(name, plen);
1856     }
1857
1858   // gcc 4.3 generates the following sorts of section names when it
1859   // needs a section name specific to a function:
1860   //   .text.FN
1861   //   .rodata.FN
1862   //   .sdata2.FN
1863   //   .data.FN
1864   //   .data.rel.FN
1865   //   .data.rel.local.FN
1866   //   .data.rel.ro.FN
1867   //   .data.rel.ro.local.FN
1868   //   .sdata.FN
1869   //   .bss.FN
1870   //   .sbss.FN
1871   //   .tdata.FN
1872   //   .tbss.FN
1873
1874   // The GNU linker maps all of those to the part before the .FN,
1875   // except that .data.rel.local.FN is mapped to .data, and
1876   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1877   // beginning with .data.rel.ro.local are grouped together.
1878
1879   // For an anonymous namespace, the string FN can contain a '.'.
1880
1881   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1882   // GNU linker maps to .rodata.
1883
1884   // The .data.rel.ro sections enable a security feature triggered by
1885   // the -z relro option.  Section which need to be relocated at
1886   // program startup time but which may be readonly after startup are
1887   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1888   // segment.  The dynamic linker will make that segment writable,
1889   // perform relocations, and then make it read-only.  FIXME: We do
1890   // not yet implement this optimization.
1891
1892   // It is hard to handle this in a principled way.
1893
1894   // These are the rules we follow:
1895
1896   // If the section name has no initial '.', or no dot other than an
1897   // initial '.', we use the name unchanged (i.e., "mysection" and
1898   // ".text" are unchanged).
1899
1900   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1901
1902   // Otherwise, we drop the second '.' and everything that comes after
1903   // it (i.e., ".text.XXX" becomes ".text").
1904
1905   const char* s = name;
1906   if (*s != '.')
1907     return name;
1908   ++s;
1909   const char* sdot = strchr(s, '.');
1910   if (sdot == NULL)
1911     return name;
1912
1913   const char* const data_rel_ro = ".data.rel.ro";
1914   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1915     {
1916       *plen = strlen(data_rel_ro);
1917       return data_rel_ro;
1918     }
1919
1920   *plen = sdot - name;
1921   return name;
1922 }
1923
1924 // Record the signature of a comdat section, and return whether to
1925 // include it in the link.  If GROUP is true, this is a regular
1926 // section group.  If GROUP is false, this is a group signature
1927 // derived from the name of a linkonce section.  We want linkonce
1928 // signatures and group signatures to block each other, but we don't
1929 // want a linkonce signature to block another linkonce signature.
1930
1931 bool
1932 Layout::add_comdat(const char* signature, bool group)
1933 {
1934   std::string sig(signature);
1935   std::pair<Signatures::iterator, bool> ins(
1936     this->signatures_.insert(std::make_pair(sig, group)));
1937
1938   if (ins.second)
1939     {
1940       // This is the first time we've seen this signature.
1941       return true;
1942     }
1943
1944   if (ins.first->second)
1945     {
1946       // We've already seen a real section group with this signature.
1947       return false;
1948     }
1949   else if (group)
1950     {
1951       // This is a real section group, and we've already seen a
1952       // linkonce section with this signature.  Record that we've seen
1953       // a section group, and don't include this section group.
1954       ins.first->second = true;
1955       return false;
1956     }
1957   else
1958     {
1959       // We've already seen a linkonce section and this is a linkonce
1960       // section.  These don't block each other--this may be the same
1961       // symbol name with different section types.
1962       return true;
1963     }
1964 }
1965
1966 // Write out the Output_sections.  Most won't have anything to write,
1967 // since most of the data will come from input sections which are
1968 // handled elsewhere.  But some Output_sections do have Output_data.
1969
1970 void
1971 Layout::write_output_sections(Output_file* of) const
1972 {
1973   for (Section_list::const_iterator p = this->section_list_.begin();
1974        p != this->section_list_.end();
1975        ++p)
1976     {
1977       if (!(*p)->after_input_sections())
1978         (*p)->write(of);
1979     }
1980 }
1981
1982 // Write out data not associated with a section or the symbol table.
1983
1984 void
1985 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1986 {
1987   if (!parameters->strip_all())
1988     {
1989       const Output_section* symtab_section = this->symtab_section_;
1990       for (Section_list::const_iterator p = this->section_list_.begin();
1991            p != this->section_list_.end();
1992            ++p)
1993         {
1994           if ((*p)->needs_symtab_index())
1995             {
1996               gold_assert(symtab_section != NULL);
1997               unsigned int index = (*p)->symtab_index();
1998               gold_assert(index > 0 && index != -1U);
1999               off_t off = (symtab_section->offset()
2000                            + index * symtab_section->entsize());
2001               symtab->write_section_symbol(*p, of, off);
2002             }
2003         }
2004     }
2005
2006   const Output_section* dynsym_section = this->dynsym_section_;
2007   for (Section_list::const_iterator p = this->section_list_.begin();
2008        p != this->section_list_.end();
2009        ++p)
2010     {
2011       if ((*p)->needs_dynsym_index())
2012         {
2013           gold_assert(dynsym_section != NULL);
2014           unsigned int index = (*p)->dynsym_index();
2015           gold_assert(index > 0 && index != -1U);
2016           off_t off = (dynsym_section->offset()
2017                        + index * dynsym_section->entsize());
2018           symtab->write_section_symbol(*p, of, off);
2019         }
2020     }
2021
2022   // Write out the Output_data which are not in an Output_section.
2023   for (Data_list::const_iterator p = this->special_output_list_.begin();
2024        p != this->special_output_list_.end();
2025        ++p)
2026     (*p)->write(of);
2027 }
2028
2029 // Write out the Output_sections which can only be written after the
2030 // input sections are complete.
2031
2032 void
2033 Layout::write_sections_after_input_sections(Output_file* of)
2034 {
2035   // Determine the final section offsets, and thus the final output
2036   // file size.  Note we finalize the .shstrab last, to allow the
2037   // after_input_section sections to modify their section-names before
2038   // writing.
2039   if (this->any_postprocessing_sections_)
2040     {
2041       off_t off = this->output_file_size_;
2042       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2043       
2044       // Now that we've finalized the names, we can finalize the shstrab.
2045       off =
2046         this->set_section_offsets(off,
2047                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2048
2049       if (off > this->output_file_size_)
2050         {
2051           of->resize(off);
2052           this->output_file_size_ = off;
2053         }
2054     }
2055
2056   for (Section_list::const_iterator p = this->section_list_.begin();
2057        p != this->section_list_.end();
2058        ++p)
2059     {
2060       if ((*p)->after_input_sections())
2061         (*p)->write(of);
2062     }
2063
2064   this->section_headers_->write(of);
2065 }
2066
2067 // Print statistical information to stderr.  This is used for --stats.
2068
2069 void
2070 Layout::print_stats() const
2071 {
2072   this->namepool_.print_stats("section name pool");
2073   this->sympool_.print_stats("output symbol name pool");
2074   this->dynpool_.print_stats("dynamic name pool");
2075
2076   for (Section_list::const_iterator p = this->section_list_.begin();
2077        p != this->section_list_.end();
2078        ++p)
2079     (*p)->print_merge_stats();
2080 }
2081
2082 // Write_sections_task methods.
2083
2084 // We can always run this task.
2085
2086 Task_token*
2087 Write_sections_task::is_runnable()
2088 {
2089   return NULL;
2090 }
2091
2092 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2093 // when finished.
2094
2095 void
2096 Write_sections_task::locks(Task_locker* tl)
2097 {
2098   tl->add(this, this->output_sections_blocker_);
2099   tl->add(this, this->final_blocker_);
2100 }
2101
2102 // Run the task--write out the data.
2103
2104 void
2105 Write_sections_task::run(Workqueue*)
2106 {
2107   this->layout_->write_output_sections(this->of_);
2108 }
2109
2110 // Write_data_task methods.
2111
2112 // We can always run this task.
2113
2114 Task_token*
2115 Write_data_task::is_runnable()
2116 {
2117   return NULL;
2118 }
2119
2120 // We need to unlock FINAL_BLOCKER when finished.
2121
2122 void
2123 Write_data_task::locks(Task_locker* tl)
2124 {
2125   tl->add(this, this->final_blocker_);
2126 }
2127
2128 // Run the task--write out the data.
2129
2130 void
2131 Write_data_task::run(Workqueue*)
2132 {
2133   this->layout_->write_data(this->symtab_, this->of_);
2134 }
2135
2136 // Write_symbols_task methods.
2137
2138 // We can always run this task.
2139
2140 Task_token*
2141 Write_symbols_task::is_runnable()
2142 {
2143   return NULL;
2144 }
2145
2146 // We need to unlock FINAL_BLOCKER when finished.
2147
2148 void
2149 Write_symbols_task::locks(Task_locker* tl)
2150 {
2151   tl->add(this, this->final_blocker_);
2152 }
2153
2154 // Run the task--write out the symbols.
2155
2156 void
2157 Write_symbols_task::run(Workqueue*)
2158 {
2159   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2160                                this->dynpool_, this->of_);
2161 }
2162
2163 // Write_after_input_sections_task methods.
2164
2165 // We can only run this task after the input sections have completed.
2166
2167 Task_token*
2168 Write_after_input_sections_task::is_runnable()
2169 {
2170   if (this->input_sections_blocker_->is_blocked())
2171     return this->input_sections_blocker_;
2172   return NULL;
2173 }
2174
2175 // We need to unlock FINAL_BLOCKER when finished.
2176
2177 void
2178 Write_after_input_sections_task::locks(Task_locker* tl)
2179 {
2180   tl->add(this, this->final_blocker_);
2181 }
2182
2183 // Run the task.
2184
2185 void
2186 Write_after_input_sections_task::run(Workqueue*)
2187 {
2188   this->layout_->write_sections_after_input_sections(this->of_);
2189 }
2190
2191 // Close_task_runner methods.
2192
2193 // Run the task--close the file.
2194
2195 void
2196 Close_task_runner::run(Workqueue*, const Task*)
2197 {
2198   this->of_->close();
2199 }
2200
2201 // Instantiate the templates we need.  We could use the configure
2202 // script to restrict this to only the ones for implemented targets.
2203
2204 #ifdef HAVE_TARGET_32_LITTLE
2205 template
2206 Output_section*
2207 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2208                           const char* name,
2209                           const elfcpp::Shdr<32, false>& shdr,
2210                           unsigned int, unsigned int, off_t*);
2211 #endif
2212
2213 #ifdef HAVE_TARGET_32_BIG
2214 template
2215 Output_section*
2216 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2217                          const char* name,
2218                          const elfcpp::Shdr<32, true>& shdr,
2219                          unsigned int, unsigned int, off_t*);
2220 #endif
2221
2222 #ifdef HAVE_TARGET_64_LITTLE
2223 template
2224 Output_section*
2225 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2226                           const char* name,
2227                           const elfcpp::Shdr<64, false>& shdr,
2228                           unsigned int, unsigned int, off_t*);
2229 #endif
2230
2231 #ifdef HAVE_TARGET_64_BIG
2232 template
2233 Output_section*
2234 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2235                          const char* name,
2236                          const elfcpp::Shdr<64, true>& shdr,
2237                          unsigned int, unsigned int, off_t*);
2238 #endif
2239
2240 #ifdef HAVE_TARGET_32_LITTLE
2241 template
2242 Output_section*
2243 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2244                                    const unsigned char* symbols,
2245                                    off_t symbols_size,
2246                                    const unsigned char* symbol_names,
2247                                    off_t symbol_names_size,
2248                                    unsigned int shndx,
2249                                    const elfcpp::Shdr<32, false>& shdr,
2250                                    unsigned int reloc_shndx,
2251                                    unsigned int reloc_type,
2252                                    off_t* off);
2253 #endif
2254
2255 #ifdef HAVE_TARGET_32_BIG
2256 template
2257 Output_section*
2258 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2259                                    const unsigned char* symbols,
2260                                    off_t symbols_size,
2261                                   const unsigned char* symbol_names,
2262                                   off_t symbol_names_size,
2263                                   unsigned int shndx,
2264                                   const elfcpp::Shdr<32, true>& shdr,
2265                                   unsigned int reloc_shndx,
2266                                   unsigned int reloc_type,
2267                                   off_t* off);
2268 #endif
2269
2270 #ifdef HAVE_TARGET_64_LITTLE
2271 template
2272 Output_section*
2273 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2274                                    const unsigned char* symbols,
2275                                    off_t symbols_size,
2276                                    const unsigned char* symbol_names,
2277                                    off_t symbol_names_size,
2278                                    unsigned int shndx,
2279                                    const elfcpp::Shdr<64, false>& shdr,
2280                                    unsigned int reloc_shndx,
2281                                    unsigned int reloc_type,
2282                                    off_t* off);
2283 #endif
2284
2285 #ifdef HAVE_TARGET_64_BIG
2286 template
2287 Output_section*
2288 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2289                                    const unsigned char* symbols,
2290                                    off_t symbols_size,
2291                                   const unsigned char* symbol_names,
2292                                   off_t symbol_names_size,
2293                                   unsigned int shndx,
2294                                   const elfcpp::Shdr<64, true>& shdr,
2295                                   unsigned int reloc_shndx,
2296                                   unsigned int reloc_type,
2297                                   off_t* off);
2298 #endif
2299
2300 } // End namespace gold.