* layout.cc (Layout::set_segment_offsets): Don't realign text
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172         {
173           this->length_ = end;
174           p->end_ = end;
175         }
176       if (end <= p->end_)
177         {
178           if (p->start_ + 3 >= start && p->end_ <= end + 3)
179             this->list_.erase(p);
180           else if (p->start_ + 3 >= start)
181             p->start_ = end;
182           else if (p->end_ <= end + 3)
183             p->end_ = start;
184           else
185             {
186               Free_list_node newnode(p->start_, start);
187               p->start_ = end;
188               this->list_.insert(p, newnode);
189               ++Free_list::num_nodes;
190             }
191           return start;
192         }
193     }
194   if (this->extend_)
195     {
196       off_t start = align_address(this->length_, align);
197       this->length_ = start + len;
198       return start;
199     }
200   return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207   gold_info("Free list:\n     start      end   length\n");
208   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
210               static_cast<long>(p->end_),
211               static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218   fprintf(stderr, _("%s: total free lists: %u\n"),
219           program_name, Free_list::num_lists);
220   fprintf(stderr, _("%s: total free list nodes: %u\n"),
221           program_name, Free_list::num_nodes);
222   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223           program_name, Free_list::num_removes);
224   fprintf(stderr, _("%s: nodes visited: %u\n"),
225           program_name, Free_list::num_remove_visits);
226   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227           program_name, Free_list::num_allocates);
228   fprintf(stderr, _("%s: nodes visited: %u\n"),
229           program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240     const Layout::Section_list& sections,
241     const Layout::Data_list& special_outputs)
242 {
243   for(Layout::Section_list::const_iterator p = sections.begin();
244       p != sections.end();
245       ++p)
246     gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248   for(Layout::Data_list::const_iterator p = special_outputs.begin();
249       p != special_outputs.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253   
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258     const Layout::Section_list& sections)
259 {
260   for(Layout::Section_list::const_iterator p = sections.begin();
261       p != sections.end();
262       ++p)
263     {
264       Output_section* os = *p;
265       Section_info info;
266       info.output_section = os;
267       info.address = os->is_address_valid() ? os->address() : 0;
268       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269       info.offset = os->is_offset_valid()? os->offset() : -1 ;
270       this->section_infos_.push_back(info);
271     }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278     const Layout::Section_list& sections)
279 {
280   size_t i = 0;
281   for(Layout::Section_list::const_iterator p = sections.begin();
282       p != sections.end();
283       ++p, ++i)
284     {
285       Output_section* os = *p;
286       uint64_t address = os->is_address_valid() ? os->address() : 0;
287       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290       if (i >= this->section_infos_.size())
291         {
292           gold_fatal("Section_info of %s missing.\n", os->name());
293         }
294       const Section_info& info = this->section_infos_[i];
295       if (os != info.output_section)
296         gold_fatal("Section order changed.  Expecting %s but see %s\n",
297                    info.output_section->name(), os->name());
298       if (address != info.address
299           || data_size != info.data_size
300           || offset != info.offset)
301         gold_fatal("Section %s changed.\n", os->name());
302     }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections.  This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313   Layout* layout = this->layout_;
314   off_t file_size = layout->finalize(this->input_objects_,
315                                      this->symtab_,
316                                      this->target_,
317                                      task);
318
319   // Now we know the final size of the output file and we know where
320   // each piece of information goes.
321
322   if (this->mapfile_ != NULL)
323     {
324       this->mapfile_->print_discarded_sections(this->input_objects_);
325       layout->print_to_mapfile(this->mapfile_);
326     }
327
328   Output_file* of;
329   if (layout->incremental_base() == NULL)
330     {
331       of = new Output_file(parameters->options().output_file_name());
332       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333         of->set_is_temporary();
334       of->open(file_size);
335     }
336   else
337     {
338       of = layout->incremental_base()->output_file();
339
340       // Apply the incremental relocations for symbols whose values
341       // have changed.  We do this before we resize the file and start
342       // writing anything else to it, so that we can read the old
343       // incremental information from the file before (possibly)
344       // overwriting it.
345       if (parameters->incremental_update())
346         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347                                                              this->layout_,
348                                                              of);
349
350       of->resize(file_size);
351     }
352
353   // Queue up the final set of tasks.
354   gold::queue_final_tasks(this->options_, this->input_objects_,
355                           this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361   : number_of_input_files_(number_of_input_files),
362     script_options_(script_options),
363     namepool_(),
364     sympool_(),
365     dynpool_(),
366     signatures_(),
367     section_name_map_(),
368     segment_list_(),
369     section_list_(),
370     unattached_section_list_(),
371     special_output_list_(),
372     section_headers_(NULL),
373     tls_segment_(NULL),
374     relro_segment_(NULL),
375     interp_segment_(NULL),
376     increase_relro_(0),
377     symtab_section_(NULL),
378     symtab_xindex_(NULL),
379     dynsym_section_(NULL),
380     dynsym_xindex_(NULL),
381     dynamic_section_(NULL),
382     dynamic_symbol_(NULL),
383     dynamic_data_(NULL),
384     eh_frame_section_(NULL),
385     eh_frame_data_(NULL),
386     added_eh_frame_data_(false),
387     eh_frame_hdr_section_(NULL),
388     build_id_note_(NULL),
389     debug_abbrev_(NULL),
390     debug_info_(NULL),
391     group_signatures_(),
392     output_file_size_(-1),
393     have_added_input_section_(false),
394     sections_are_attached_(false),
395     input_requires_executable_stack_(false),
396     input_with_gnu_stack_note_(false),
397     input_without_gnu_stack_note_(false),
398     has_static_tls_(false),
399     any_postprocessing_sections_(false),
400     resized_signatures_(false),
401     have_stabstr_section_(false),
402     section_ordering_specified_(false),
403     incremental_inputs_(NULL),
404     record_output_section_data_from_script_(false),
405     script_output_section_data_list_(),
406     segment_states_(NULL),
407     relaxation_debug_check_(NULL),
408     input_section_position_(),
409     input_section_glob_(),
410     incremental_base_(NULL),
411     free_list_()
412 {
413   // Make space for more than enough segments for a typical file.
414   // This is just for efficiency--it's OK if we wind up needing more.
415   this->segment_list_.reserve(12);
416
417   // We expect two unattached Output_data objects: the file header and
418   // the segment headers.
419   this->special_output_list_.reserve(2);
420
421   // Initialize structure needed for an incremental build.
422   if (parameters->incremental())
423     this->incremental_inputs_ = new Incremental_inputs;
424
425   // The section name pool is worth optimizing in all cases, because
426   // it is small, but there are often overlaps due to .rel sections.
427   this->namepool_.set_optimize();
428 }
429
430 // For incremental links, record the base file to be modified.
431
432 void
433 Layout::set_incremental_base(Incremental_binary* base)
434 {
435   this->incremental_base_ = base;
436   this->free_list_.init(base->output_file()->filesize(), true);
437 }
438
439 // Hash a key we use to look up an output section mapping.
440
441 size_t
442 Layout::Hash_key::operator()(const Layout::Key& k) const
443 {
444  return k.first + k.second.first + k.second.second;
445 }
446
447 // Returns whether the given section is in the list of
448 // debug-sections-used-by-some-version-of-gdb.  Currently,
449 // we've checked versions of gdb up to and including 6.7.1.
450
451 static const char* gdb_sections[] =
452 { ".debug_abbrev",
453   // ".debug_aranges",   // not used by gdb as of 6.7.1
454   ".debug_frame",
455   ".debug_info",
456   ".debug_types",
457   ".debug_line",
458   ".debug_loc",
459   ".debug_macinfo",
460   // ".debug_pubnames",  // not used by gdb as of 6.7.1
461   ".debug_ranges",
462   ".debug_str",
463 };
464
465 static const char* lines_only_debug_sections[] =
466 { ".debug_abbrev",
467   // ".debug_aranges",   // not used by gdb as of 6.7.1
468   // ".debug_frame",
469   ".debug_info",
470   // ".debug_types",
471   ".debug_line",
472   // ".debug_loc",
473   // ".debug_macinfo",
474   // ".debug_pubnames",  // not used by gdb as of 6.7.1
475   // ".debug_ranges",
476   ".debug_str",
477 };
478
479 static inline bool
480 is_gdb_debug_section(const char* str)
481 {
482   // We can do this faster: binary search or a hashtable.  But why bother?
483   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
484     if (strcmp(str, gdb_sections[i]) == 0)
485       return true;
486   return false;
487 }
488
489 static inline bool
490 is_lines_only_debug_section(const char* str)
491 {
492   // We can do this faster: binary search or a hashtable.  But why bother?
493   for (size_t i = 0;
494        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
495        ++i)
496     if (strcmp(str, lines_only_debug_sections[i]) == 0)
497       return true;
498   return false;
499 }
500
501 // Sometimes we compress sections.  This is typically done for
502 // sections that are not part of normal program execution (such as
503 // .debug_* sections), and where the readers of these sections know
504 // how to deal with compressed sections.  This routine doesn't say for
505 // certain whether we'll compress -- it depends on commandline options
506 // as well -- just whether this section is a candidate for compression.
507 // (The Output_compressed_section class decides whether to compress
508 // a given section, and picks the name of the compressed section.)
509
510 static bool
511 is_compressible_debug_section(const char* secname)
512 {
513   return (is_prefix_of(".debug", secname));
514 }
515
516 // We may see compressed debug sections in input files.  Return TRUE
517 // if this is the name of a compressed debug section.
518
519 bool
520 is_compressed_debug_section(const char* secname)
521 {
522   return (is_prefix_of(".zdebug", secname));
523 }
524
525 // Whether to include this section in the link.
526
527 template<int size, bool big_endian>
528 bool
529 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
530                         const elfcpp::Shdr<size, big_endian>& shdr)
531 {
532   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
533     return false;
534
535   switch (shdr.get_sh_type())
536     {
537     case elfcpp::SHT_NULL:
538     case elfcpp::SHT_SYMTAB:
539     case elfcpp::SHT_DYNSYM:
540     case elfcpp::SHT_HASH:
541     case elfcpp::SHT_DYNAMIC:
542     case elfcpp::SHT_SYMTAB_SHNDX:
543       return false;
544
545     case elfcpp::SHT_STRTAB:
546       // Discard the sections which have special meanings in the ELF
547       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
548       // checking the sh_link fields of the appropriate sections.
549       return (strcmp(name, ".dynstr") != 0
550               && strcmp(name, ".strtab") != 0
551               && strcmp(name, ".shstrtab") != 0);
552
553     case elfcpp::SHT_RELA:
554     case elfcpp::SHT_REL:
555     case elfcpp::SHT_GROUP:
556       // If we are emitting relocations these should be handled
557       // elsewhere.
558       gold_assert(!parameters->options().relocatable()
559                   && !parameters->options().emit_relocs());
560       return false;
561
562     case elfcpp::SHT_PROGBITS:
563       if (parameters->options().strip_debug()
564           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565         {
566           if (is_debug_info_section(name))
567             return false;
568         }
569       if (parameters->options().strip_debug_non_line()
570           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571         {
572           // Debugging sections can only be recognized by name.
573           if (is_prefix_of(".debug", name)
574               && !is_lines_only_debug_section(name))
575             return false;
576         }
577       if (parameters->options().strip_debug_gdb()
578           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
579         {
580           // Debugging sections can only be recognized by name.
581           if (is_prefix_of(".debug", name)
582               && !is_gdb_debug_section(name))
583             return false;
584         }
585       if (parameters->options().strip_lto_sections()
586           && !parameters->options().relocatable()
587           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588         {
589           // Ignore LTO sections containing intermediate code.
590           if (is_prefix_of(".gnu.lto_", name))
591             return false;
592         }
593       // The GNU linker strips .gnu_debuglink sections, so we do too.
594       // This is a feature used to keep debugging information in
595       // separate files.
596       if (strcmp(name, ".gnu_debuglink") == 0)
597         return false;
598       return true;
599
600     default:
601       return true;
602     }
603 }
604
605 // Return an output section named NAME, or NULL if there is none.
606
607 Output_section*
608 Layout::find_output_section(const char* name) const
609 {
610   for (Section_list::const_iterator p = this->section_list_.begin();
611        p != this->section_list_.end();
612        ++p)
613     if (strcmp((*p)->name(), name) == 0)
614       return *p;
615   return NULL;
616 }
617
618 // Return an output segment of type TYPE, with segment flags SET set
619 // and segment flags CLEAR clear.  Return NULL if there is none.
620
621 Output_segment*
622 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
623                             elfcpp::Elf_Word clear) const
624 {
625   for (Segment_list::const_iterator p = this->segment_list_.begin();
626        p != this->segment_list_.end();
627        ++p)
628     if (static_cast<elfcpp::PT>((*p)->type()) == type
629         && ((*p)->flags() & set) == set
630         && ((*p)->flags() & clear) == 0)
631       return *p;
632   return NULL;
633 }
634
635 // When we put a .ctors or .dtors section with more than one word into
636 // a .init_array or .fini_array section, we need to reverse the words
637 // in the .ctors/.dtors section.  This is because .init_array executes
638 // constructors front to back, where .ctors executes them back to
639 // front, and vice-versa for .fini_array/.dtors.  Although we do want
640 // to remap .ctors/.dtors into .init_array/.fini_array because it can
641 // be more efficient, we don't want to change the order in which
642 // constructors/destructors are run.  This set just keeps track of
643 // these sections which need to be reversed.  It is only changed by
644 // Layout::layout.  It should be a private member of Layout, but that
645 // would require layout.h to #include object.h to get the definition
646 // of Section_id.
647 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
648
649 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
650 // .init_array/.fini_array section.
651
652 bool
653 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
654 {
655   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
656           != ctors_sections_in_init_array.end());
657 }
658
659 // Return the output section to use for section NAME with type TYPE
660 // and section flags FLAGS.  NAME must be canonicalized in the string
661 // pool, and NAME_KEY is the key.  ORDER is where this should appear
662 // in the output sections.  IS_RELRO is true for a relro section.
663
664 Output_section*
665 Layout::get_output_section(const char* name, Stringpool::Key name_key,
666                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
667                            Output_section_order order, bool is_relro)
668 {
669   elfcpp::Elf_Word lookup_type = type;
670
671   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
672   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
673   // .init_array, .fini_array, and .preinit_array sections by name
674   // whatever their type in the input file.  We do this because the
675   // types are not always right in the input files.
676   if (lookup_type == elfcpp::SHT_INIT_ARRAY
677       || lookup_type == elfcpp::SHT_FINI_ARRAY
678       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
679     lookup_type = elfcpp::SHT_PROGBITS;
680
681   elfcpp::Elf_Xword lookup_flags = flags;
682
683   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
684   // read-write with read-only sections.  Some other ELF linkers do
685   // not do this.  FIXME: Perhaps there should be an option
686   // controlling this.
687   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
688
689   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
690   const std::pair<Key, Output_section*> v(key, NULL);
691   std::pair<Section_name_map::iterator, bool> ins(
692     this->section_name_map_.insert(v));
693
694   if (!ins.second)
695     return ins.first->second;
696   else
697     {
698       // This is the first time we've seen this name/type/flags
699       // combination.  For compatibility with the GNU linker, we
700       // combine sections with contents and zero flags with sections
701       // with non-zero flags.  This is a workaround for cases where
702       // assembler code forgets to set section flags.  FIXME: Perhaps
703       // there should be an option to control this.
704       Output_section* os = NULL;
705
706       if (lookup_type == elfcpp::SHT_PROGBITS)
707         {
708           if (flags == 0)
709             {
710               Output_section* same_name = this->find_output_section(name);
711               if (same_name != NULL
712                   && (same_name->type() == elfcpp::SHT_PROGBITS
713                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
714                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
715                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
716                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
717                 os = same_name;
718             }
719           else if ((flags & elfcpp::SHF_TLS) == 0)
720             {
721               elfcpp::Elf_Xword zero_flags = 0;
722               const Key zero_key(name_key, std::make_pair(lookup_type,
723                                                           zero_flags));
724               Section_name_map::iterator p =
725                   this->section_name_map_.find(zero_key);
726               if (p != this->section_name_map_.end())
727                 os = p->second;
728             }
729         }
730
731       if (os == NULL)
732         os = this->make_output_section(name, type, flags, order, is_relro);
733
734       ins.first->second = os;
735       return os;
736     }
737 }
738
739 // Pick the output section to use for section NAME, in input file
740 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
741 // linker created section.  IS_INPUT_SECTION is true if we are
742 // choosing an output section for an input section found in a input
743 // file.  ORDER is where this section should appear in the output
744 // sections.  IS_RELRO is true for a relro section.  This will return
745 // NULL if the input section should be discarded.
746
747 Output_section*
748 Layout::choose_output_section(const Relobj* relobj, const char* name,
749                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
750                               bool is_input_section, Output_section_order order,
751                               bool is_relro)
752 {
753   // We should not see any input sections after we have attached
754   // sections to segments.
755   gold_assert(!is_input_section || !this->sections_are_attached_);
756
757   // Some flags in the input section should not be automatically
758   // copied to the output section.
759   flags &= ~ (elfcpp::SHF_INFO_LINK
760               | elfcpp::SHF_GROUP
761               | elfcpp::SHF_MERGE
762               | elfcpp::SHF_STRINGS);
763
764   // We only clear the SHF_LINK_ORDER flag in for
765   // a non-relocatable link.
766   if (!parameters->options().relocatable())
767     flags &= ~elfcpp::SHF_LINK_ORDER;
768
769   if (this->script_options_->saw_sections_clause())
770     {
771       // We are using a SECTIONS clause, so the output section is
772       // chosen based only on the name.
773
774       Script_sections* ss = this->script_options_->script_sections();
775       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
776       Output_section** output_section_slot;
777       Script_sections::Section_type script_section_type;
778       const char* orig_name = name;
779       name = ss->output_section_name(file_name, name, &output_section_slot,
780                                      &script_section_type);
781       if (name == NULL)
782         {
783           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
784                                      "because it is not allowed by the "
785                                      "SECTIONS clause of the linker script"),
786                      orig_name);
787           // The SECTIONS clause says to discard this input section.
788           return NULL;
789         }
790
791       // We can only handle script section types ST_NONE and ST_NOLOAD.
792       switch (script_section_type)
793         {
794         case Script_sections::ST_NONE:
795           break;
796         case Script_sections::ST_NOLOAD:
797           flags &= elfcpp::SHF_ALLOC;
798           break;
799         default:
800           gold_unreachable();
801         }
802
803       // If this is an orphan section--one not mentioned in the linker
804       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
805       // default processing below.
806
807       if (output_section_slot != NULL)
808         {
809           if (*output_section_slot != NULL)
810             {
811               (*output_section_slot)->update_flags_for_input_section(flags);
812               return *output_section_slot;
813             }
814
815           // We don't put sections found in the linker script into
816           // SECTION_NAME_MAP_.  That keeps us from getting confused
817           // if an orphan section is mapped to a section with the same
818           // name as one in the linker script.
819
820           name = this->namepool_.add(name, false, NULL);
821
822           Output_section* os = this->make_output_section(name, type, flags,
823                                                          order, is_relro);
824
825           os->set_found_in_sections_clause();
826
827           // Special handling for NOLOAD sections.
828           if (script_section_type == Script_sections::ST_NOLOAD)
829             {
830               os->set_is_noload();
831
832               // The constructor of Output_section sets addresses of non-ALLOC
833               // sections to 0 by default.  We don't want that for NOLOAD
834               // sections even if they have no SHF_ALLOC flag.
835               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
836                   && os->is_address_valid())
837                 {
838                   gold_assert(os->address() == 0
839                               && !os->is_offset_valid()
840                               && !os->is_data_size_valid());
841                   os->reset_address_and_file_offset();
842                 }
843             }
844
845           *output_section_slot = os;
846           return os;
847         }
848     }
849
850   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
851
852   size_t len = strlen(name);
853   char* uncompressed_name = NULL;
854
855   // Compressed debug sections should be mapped to the corresponding
856   // uncompressed section.
857   if (is_compressed_debug_section(name))
858     {
859       uncompressed_name = new char[len];
860       uncompressed_name[0] = '.';
861       gold_assert(name[0] == '.' && name[1] == 'z');
862       strncpy(&uncompressed_name[1], &name[2], len - 2);
863       uncompressed_name[len - 1] = '\0';
864       len -= 1;
865       name = uncompressed_name;
866     }
867
868   // Turn NAME from the name of the input section into the name of the
869   // output section.
870   if (is_input_section
871       && !this->script_options_->saw_sections_clause()
872       && !parameters->options().relocatable())
873     name = Layout::output_section_name(relobj, name, &len);
874
875   Stringpool::Key name_key;
876   name = this->namepool_.add_with_length(name, len, true, &name_key);
877
878   if (uncompressed_name != NULL)
879     delete[] uncompressed_name;
880
881   // Find or make the output section.  The output section is selected
882   // based on the section name, type, and flags.
883   return this->get_output_section(name, name_key, type, flags, order, is_relro);
884 }
885
886 // For incremental links, record the initial fixed layout of a section
887 // from the base file, and return a pointer to the Output_section.
888
889 template<int size, bool big_endian>
890 Output_section*
891 Layout::init_fixed_output_section(const char* name,
892                                   elfcpp::Shdr<size, big_endian>& shdr)
893 {
894   unsigned int sh_type = shdr.get_sh_type();
895
896   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
897   // All others will be created from scratch and reallocated.
898   if (sh_type != elfcpp::SHT_PROGBITS
899       && sh_type != elfcpp::SHT_NOBITS
900       && sh_type != elfcpp::SHT_NOTE)
901     return NULL;
902
903   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
904   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
905   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
906   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
907   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
908       shdr.get_sh_addralign();
909
910   // Make the output section.
911   Stringpool::Key name_key;
912   name = this->namepool_.add(name, true, &name_key);
913   Output_section* os = this->get_output_section(name, name_key, sh_type,
914                                                 sh_flags, ORDER_INVALID, false);
915   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
916   if (sh_type != elfcpp::SHT_NOBITS)
917     this->free_list_.remove(sh_offset, sh_offset + sh_size);
918   return os;
919 }
920
921 // Return the output section to use for input section SHNDX, with name
922 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
923 // index of a relocation section which applies to this section, or 0
924 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
925 // relocation section if there is one.  Set *OFF to the offset of this
926 // input section without the output section.  Return NULL if the
927 // section should be discarded.  Set *OFF to -1 if the section
928 // contents should not be written directly to the output file, but
929 // will instead receive special handling.
930
931 template<int size, bool big_endian>
932 Output_section*
933 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
934                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
935                unsigned int reloc_shndx, unsigned int, off_t* off)
936 {
937   *off = 0;
938
939   if (!this->include_section(object, name, shdr))
940     return NULL;
941
942   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
943
944   // In a relocatable link a grouped section must not be combined with
945   // any other sections.
946   Output_section* os;
947   if (parameters->options().relocatable()
948       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
949     {
950       name = this->namepool_.add(name, true, NULL);
951       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
952                                      ORDER_INVALID, false);
953     }
954   else
955     {
956       os = this->choose_output_section(object, name, sh_type,
957                                        shdr.get_sh_flags(), true,
958                                        ORDER_INVALID, false);
959       if (os == NULL)
960         return NULL;
961     }
962
963   // By default the GNU linker sorts input sections whose names match
964   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
965   // sections are sorted by name.  This is used to implement
966   // constructor priority ordering.  We are compatible.  When we put
967   // .ctor sections in .init_array and .dtor sections in .fini_array,
968   // we must also sort plain .ctor and .dtor sections.
969   if (!this->script_options_->saw_sections_clause()
970       && !parameters->options().relocatable()
971       && (is_prefix_of(".ctors.", name)
972           || is_prefix_of(".dtors.", name)
973           || is_prefix_of(".init_array.", name)
974           || is_prefix_of(".fini_array.", name)
975           || (parameters->options().ctors_in_init_array()
976               && (strcmp(name, ".ctors") == 0
977                   || strcmp(name, ".dtors") == 0))))
978     os->set_must_sort_attached_input_sections();
979
980   // If this is a .ctors or .ctors.* section being mapped to a
981   // .init_array section, or a .dtors or .dtors.* section being mapped
982   // to a .fini_array section, we will need to reverse the words if
983   // there is more than one.  Record this section for later.  See
984   // ctors_sections_in_init_array above.
985   if (!this->script_options_->saw_sections_clause()
986       && !parameters->options().relocatable()
987       && shdr.get_sh_size() > size / 8
988       && (((strcmp(name, ".ctors") == 0
989             || is_prefix_of(".ctors.", name))
990            && strcmp(os->name(), ".init_array") == 0)
991           || ((strcmp(name, ".dtors") == 0
992                || is_prefix_of(".dtors.", name))
993               && strcmp(os->name(), ".fini_array") == 0)))
994     ctors_sections_in_init_array.insert(Section_id(object, shndx));
995
996   // FIXME: Handle SHF_LINK_ORDER somewhere.
997
998   elfcpp::Elf_Xword orig_flags = os->flags();
999
1000   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1001                                this->script_options_->saw_sections_clause());
1002
1003   // If the flags changed, we may have to change the order.
1004   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1005     {
1006       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1007       elfcpp::Elf_Xword new_flags =
1008         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1009       if (orig_flags != new_flags)
1010         os->set_order(this->default_section_order(os, false));
1011     }
1012
1013   this->have_added_input_section_ = true;
1014
1015   return os;
1016 }
1017
1018 // Handle a relocation section when doing a relocatable link.
1019
1020 template<int size, bool big_endian>
1021 Output_section*
1022 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1023                      unsigned int,
1024                      const elfcpp::Shdr<size, big_endian>& shdr,
1025                      Output_section* data_section,
1026                      Relocatable_relocs* rr)
1027 {
1028   gold_assert(parameters->options().relocatable()
1029               || parameters->options().emit_relocs());
1030
1031   int sh_type = shdr.get_sh_type();
1032
1033   std::string name;
1034   if (sh_type == elfcpp::SHT_REL)
1035     name = ".rel";
1036   else if (sh_type == elfcpp::SHT_RELA)
1037     name = ".rela";
1038   else
1039     gold_unreachable();
1040   name += data_section->name();
1041
1042   // In a relocatable link relocs for a grouped section must not be
1043   // combined with other reloc sections.
1044   Output_section* os;
1045   if (!parameters->options().relocatable()
1046       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1047     os = this->choose_output_section(object, name.c_str(), sh_type,
1048                                      shdr.get_sh_flags(), false,
1049                                      ORDER_INVALID, false);
1050   else
1051     {
1052       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1053       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1054                                      ORDER_INVALID, false);
1055     }
1056
1057   os->set_should_link_to_symtab();
1058   os->set_info_section(data_section);
1059
1060   Output_section_data* posd;
1061   if (sh_type == elfcpp::SHT_REL)
1062     {
1063       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1064       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1065                                            size,
1066                                            big_endian>(rr);
1067     }
1068   else if (sh_type == elfcpp::SHT_RELA)
1069     {
1070       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1071       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1072                                            size,
1073                                            big_endian>(rr);
1074     }
1075   else
1076     gold_unreachable();
1077
1078   os->add_output_section_data(posd);
1079   rr->set_output_data(posd);
1080
1081   return os;
1082 }
1083
1084 // Handle a group section when doing a relocatable link.
1085
1086 template<int size, bool big_endian>
1087 void
1088 Layout::layout_group(Symbol_table* symtab,
1089                      Sized_relobj_file<size, big_endian>* object,
1090                      unsigned int,
1091                      const char* group_section_name,
1092                      const char* signature,
1093                      const elfcpp::Shdr<size, big_endian>& shdr,
1094                      elfcpp::Elf_Word flags,
1095                      std::vector<unsigned int>* shndxes)
1096 {
1097   gold_assert(parameters->options().relocatable());
1098   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1099   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1100   Output_section* os = this->make_output_section(group_section_name,
1101                                                  elfcpp::SHT_GROUP,
1102                                                  shdr.get_sh_flags(),
1103                                                  ORDER_INVALID, false);
1104
1105   // We need to find a symbol with the signature in the symbol table.
1106   // If we don't find one now, we need to look again later.
1107   Symbol* sym = symtab->lookup(signature, NULL);
1108   if (sym != NULL)
1109     os->set_info_symndx(sym);
1110   else
1111     {
1112       // Reserve some space to minimize reallocations.
1113       if (this->group_signatures_.empty())
1114         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1115
1116       // We will wind up using a symbol whose name is the signature.
1117       // So just put the signature in the symbol name pool to save it.
1118       signature = symtab->canonicalize_name(signature);
1119       this->group_signatures_.push_back(Group_signature(os, signature));
1120     }
1121
1122   os->set_should_link_to_symtab();
1123   os->set_entsize(4);
1124
1125   section_size_type entry_count =
1126     convert_to_section_size_type(shdr.get_sh_size() / 4);
1127   Output_section_data* posd =
1128     new Output_data_group<size, big_endian>(object, entry_count, flags,
1129                                             shndxes);
1130   os->add_output_section_data(posd);
1131 }
1132
1133 // Special GNU handling of sections name .eh_frame.  They will
1134 // normally hold exception frame data as defined by the C++ ABI
1135 // (http://codesourcery.com/cxx-abi/).
1136
1137 template<int size, bool big_endian>
1138 Output_section*
1139 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1140                         const unsigned char* symbols,
1141                         off_t symbols_size,
1142                         const unsigned char* symbol_names,
1143                         off_t symbol_names_size,
1144                         unsigned int shndx,
1145                         const elfcpp::Shdr<size, big_endian>& shdr,
1146                         unsigned int reloc_shndx, unsigned int reloc_type,
1147                         off_t* off)
1148 {
1149   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1150               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1151   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1152
1153   Output_section* os = this->make_eh_frame_section(object);
1154   if (os == NULL)
1155     return NULL;
1156
1157   gold_assert(this->eh_frame_section_ == os);
1158
1159   elfcpp::Elf_Xword orig_flags = os->flags();
1160
1161   if (!parameters->incremental()
1162       && this->eh_frame_data_->add_ehframe_input_section(object,
1163                                                          symbols,
1164                                                          symbols_size,
1165                                                          symbol_names,
1166                                                          symbol_names_size,
1167                                                          shndx,
1168                                                          reloc_shndx,
1169                                                          reloc_type))
1170     {
1171       os->update_flags_for_input_section(shdr.get_sh_flags());
1172
1173       // A writable .eh_frame section is a RELRO section.
1174       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1175           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1176         {
1177           os->set_is_relro();
1178           os->set_order(ORDER_RELRO);
1179         }
1180
1181       // We found a .eh_frame section we are going to optimize, so now
1182       // we can add the set of optimized sections to the output
1183       // section.  We need to postpone adding this until we've found a
1184       // section we can optimize so that the .eh_frame section in
1185       // crtbegin.o winds up at the start of the output section.
1186       if (!this->added_eh_frame_data_)
1187         {
1188           os->add_output_section_data(this->eh_frame_data_);
1189           this->added_eh_frame_data_ = true;
1190         }
1191       *off = -1;
1192     }
1193   else
1194     {
1195       // We couldn't handle this .eh_frame section for some reason.
1196       // Add it as a normal section.
1197       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1198       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1199                                    reloc_shndx, saw_sections_clause);
1200       this->have_added_input_section_ = true;
1201
1202       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1203           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1204         os->set_order(this->default_section_order(os, false));
1205     }
1206
1207   return os;
1208 }
1209
1210 // Create and return the magic .eh_frame section.  Create
1211 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1212 // input .eh_frame section; it may be NULL.
1213
1214 Output_section*
1215 Layout::make_eh_frame_section(const Relobj* object)
1216 {
1217   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1218   // SHT_PROGBITS.
1219   Output_section* os = this->choose_output_section(object, ".eh_frame",
1220                                                    elfcpp::SHT_PROGBITS,
1221                                                    elfcpp::SHF_ALLOC, false,
1222                                                    ORDER_EHFRAME, false);
1223   if (os == NULL)
1224     return NULL;
1225
1226   if (this->eh_frame_section_ == NULL)
1227     {
1228       this->eh_frame_section_ = os;
1229       this->eh_frame_data_ = new Eh_frame();
1230
1231       // For incremental linking, we do not optimize .eh_frame sections
1232       // or create a .eh_frame_hdr section.
1233       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1234         {
1235           Output_section* hdr_os =
1236             this->choose_output_section(NULL, ".eh_frame_hdr",
1237                                         elfcpp::SHT_PROGBITS,
1238                                         elfcpp::SHF_ALLOC, false,
1239                                         ORDER_EHFRAME, false);
1240
1241           if (hdr_os != NULL)
1242             {
1243               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1244                                                         this->eh_frame_data_);
1245               hdr_os->add_output_section_data(hdr_posd);
1246
1247               hdr_os->set_after_input_sections();
1248
1249               if (!this->script_options_->saw_phdrs_clause())
1250                 {
1251                   Output_segment* hdr_oseg;
1252                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1253                                                        elfcpp::PF_R);
1254                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1255                                                           elfcpp::PF_R);
1256                 }
1257
1258               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1259             }
1260         }
1261     }
1262
1263   return os;
1264 }
1265
1266 // Add an exception frame for a PLT.  This is called from target code.
1267
1268 void
1269 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1270                              size_t cie_length, const unsigned char* fde_data,
1271                              size_t fde_length)
1272 {
1273   if (parameters->incremental())
1274     {
1275       // FIXME: Maybe this could work some day....
1276       return;
1277     }
1278   Output_section* os = this->make_eh_frame_section(NULL);
1279   if (os == NULL)
1280     return;
1281   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1282                                             fde_data, fde_length);
1283   if (!this->added_eh_frame_data_)
1284     {
1285       os->add_output_section_data(this->eh_frame_data_);
1286       this->added_eh_frame_data_ = true;
1287     }
1288 }
1289
1290 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1291 // the output section.
1292
1293 Output_section*
1294 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1295                                 elfcpp::Elf_Xword flags,
1296                                 Output_section_data* posd,
1297                                 Output_section_order order, bool is_relro)
1298 {
1299   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1300                                                    false, order, is_relro);
1301   if (os != NULL)
1302     os->add_output_section_data(posd);
1303   return os;
1304 }
1305
1306 // Map section flags to segment flags.
1307
1308 elfcpp::Elf_Word
1309 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1310 {
1311   elfcpp::Elf_Word ret = elfcpp::PF_R;
1312   if ((flags & elfcpp::SHF_WRITE) != 0)
1313     ret |= elfcpp::PF_W;
1314   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1315     ret |= elfcpp::PF_X;
1316   return ret;
1317 }
1318
1319 // Make a new Output_section, and attach it to segments as
1320 // appropriate.  ORDER is the order in which this section should
1321 // appear in the output segment.  IS_RELRO is true if this is a relro
1322 // (read-only after relocations) section.
1323
1324 Output_section*
1325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1326                             elfcpp::Elf_Xword flags,
1327                             Output_section_order order, bool is_relro)
1328 {
1329   Output_section* os;
1330   if ((flags & elfcpp::SHF_ALLOC) == 0
1331       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1332       && is_compressible_debug_section(name))
1333     os = new Output_compressed_section(&parameters->options(), name, type,
1334                                        flags);
1335   else if ((flags & elfcpp::SHF_ALLOC) == 0
1336            && parameters->options().strip_debug_non_line()
1337            && strcmp(".debug_abbrev", name) == 0)
1338     {
1339       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1340           name, type, flags);
1341       if (this->debug_info_)
1342         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1343     }
1344   else if ((flags & elfcpp::SHF_ALLOC) == 0
1345            && parameters->options().strip_debug_non_line()
1346            && strcmp(".debug_info", name) == 0)
1347     {
1348       os = this->debug_info_ = new Output_reduced_debug_info_section(
1349           name, type, flags);
1350       if (this->debug_abbrev_)
1351         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1352     }
1353   else
1354     {
1355       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1356       // not have correct section types.  Force them here.
1357       if (type == elfcpp::SHT_PROGBITS)
1358         {
1359           if (is_prefix_of(".init_array", name))
1360             type = elfcpp::SHT_INIT_ARRAY;
1361           else if (is_prefix_of(".preinit_array", name))
1362             type = elfcpp::SHT_PREINIT_ARRAY;
1363           else if (is_prefix_of(".fini_array", name))
1364             type = elfcpp::SHT_FINI_ARRAY;
1365         }
1366
1367       // FIXME: const_cast is ugly.
1368       Target* target = const_cast<Target*>(&parameters->target());
1369       os = target->make_output_section(name, type, flags);
1370     }
1371
1372   // With -z relro, we have to recognize the special sections by name.
1373   // There is no other way.
1374   bool is_relro_local = false;
1375   if (!this->script_options_->saw_sections_clause()
1376       && parameters->options().relro()
1377       && type == elfcpp::SHT_PROGBITS
1378       && (flags & elfcpp::SHF_ALLOC) != 0
1379       && (flags & elfcpp::SHF_WRITE) != 0)
1380     {
1381       if (strcmp(name, ".data.rel.ro") == 0)
1382         is_relro = true;
1383       else if (strcmp(name, ".data.rel.ro.local") == 0)
1384         {
1385           is_relro = true;
1386           is_relro_local = true;
1387         }
1388       else if (type == elfcpp::SHT_INIT_ARRAY
1389                || type == elfcpp::SHT_FINI_ARRAY
1390                || type == elfcpp::SHT_PREINIT_ARRAY)
1391         is_relro = true;
1392       else if (strcmp(name, ".ctors") == 0
1393                || strcmp(name, ".dtors") == 0
1394                || strcmp(name, ".jcr") == 0)
1395         is_relro = true;
1396     }
1397
1398   if (is_relro)
1399     os->set_is_relro();
1400
1401   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1402     order = this->default_section_order(os, is_relro_local);
1403
1404   os->set_order(order);
1405
1406   parameters->target().new_output_section(os);
1407
1408   this->section_list_.push_back(os);
1409
1410   // The GNU linker by default sorts some sections by priority, so we
1411   // do the same.  We need to know that this might happen before we
1412   // attach any input sections.
1413   if (!this->script_options_->saw_sections_clause()
1414       && !parameters->options().relocatable()
1415       && (strcmp(name, ".init_array") == 0
1416           || strcmp(name, ".fini_array") == 0
1417           || (!parameters->options().ctors_in_init_array()
1418               && (strcmp(name, ".ctors") == 0
1419                   || strcmp(name, ".dtors") == 0))))
1420     os->set_may_sort_attached_input_sections();
1421
1422   // Check for .stab*str sections, as .stab* sections need to link to
1423   // them.
1424   if (type == elfcpp::SHT_STRTAB
1425       && !this->have_stabstr_section_
1426       && strncmp(name, ".stab", 5) == 0
1427       && strcmp(name + strlen(name) - 3, "str") == 0)
1428     this->have_stabstr_section_ = true;
1429
1430   // During a full incremental link, we add patch space to most
1431   // PROGBITS and NOBITS sections.  Flag those that may be
1432   // arbitrarily padded.
1433   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1434       && order != ORDER_INTERP
1435       && order != ORDER_INIT
1436       && order != ORDER_PLT
1437       && order != ORDER_FINI
1438       && order != ORDER_RELRO_LAST
1439       && order != ORDER_NON_RELRO_FIRST
1440       && strcmp(name, ".ctors") != 0
1441       && strcmp(name, ".dtors") != 0
1442       && strcmp(name, ".jcr") != 0)
1443     os->set_is_patch_space_allowed();
1444
1445   // If we have already attached the sections to segments, then we
1446   // need to attach this one now.  This happens for sections created
1447   // directly by the linker.
1448   if (this->sections_are_attached_)
1449     this->attach_section_to_segment(os);
1450
1451   return os;
1452 }
1453
1454 // Return the default order in which a section should be placed in an
1455 // output segment.  This function captures a lot of the ideas in
1456 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1457 // linker created section is normally set when the section is created;
1458 // this function is used for input sections.
1459
1460 Output_section_order
1461 Layout::default_section_order(Output_section* os, bool is_relro_local)
1462 {
1463   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1464   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1465   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1466   bool is_bss = false;
1467
1468   switch (os->type())
1469     {
1470     default:
1471     case elfcpp::SHT_PROGBITS:
1472       break;
1473     case elfcpp::SHT_NOBITS:
1474       is_bss = true;
1475       break;
1476     case elfcpp::SHT_RELA:
1477     case elfcpp::SHT_REL:
1478       if (!is_write)
1479         return ORDER_DYNAMIC_RELOCS;
1480       break;
1481     case elfcpp::SHT_HASH:
1482     case elfcpp::SHT_DYNAMIC:
1483     case elfcpp::SHT_SHLIB:
1484     case elfcpp::SHT_DYNSYM:
1485     case elfcpp::SHT_GNU_HASH:
1486     case elfcpp::SHT_GNU_verdef:
1487     case elfcpp::SHT_GNU_verneed:
1488     case elfcpp::SHT_GNU_versym:
1489       if (!is_write)
1490         return ORDER_DYNAMIC_LINKER;
1491       break;
1492     case elfcpp::SHT_NOTE:
1493       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1494     }
1495
1496   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1497     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1498
1499   if (!is_bss && !is_write)
1500     {
1501       if (is_execinstr)
1502         {
1503           if (strcmp(os->name(), ".init") == 0)
1504             return ORDER_INIT;
1505           else if (strcmp(os->name(), ".fini") == 0)
1506             return ORDER_FINI;
1507         }
1508       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1509     }
1510
1511   if (os->is_relro())
1512     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1513
1514   if (os->is_small_section())
1515     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1516   if (os->is_large_section())
1517     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1518
1519   return is_bss ? ORDER_BSS : ORDER_DATA;
1520 }
1521
1522 // Attach output sections to segments.  This is called after we have
1523 // seen all the input sections.
1524
1525 void
1526 Layout::attach_sections_to_segments()
1527 {
1528   for (Section_list::iterator p = this->section_list_.begin();
1529        p != this->section_list_.end();
1530        ++p)
1531     this->attach_section_to_segment(*p);
1532
1533   this->sections_are_attached_ = true;
1534 }
1535
1536 // Attach an output section to a segment.
1537
1538 void
1539 Layout::attach_section_to_segment(Output_section* os)
1540 {
1541   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1542     this->unattached_section_list_.push_back(os);
1543   else
1544     this->attach_allocated_section_to_segment(os);
1545 }
1546
1547 // Attach an allocated output section to a segment.
1548
1549 void
1550 Layout::attach_allocated_section_to_segment(Output_section* os)
1551 {
1552   elfcpp::Elf_Xword flags = os->flags();
1553   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1554
1555   if (parameters->options().relocatable())
1556     return;
1557
1558   // If we have a SECTIONS clause, we can't handle the attachment to
1559   // segments until after we've seen all the sections.
1560   if (this->script_options_->saw_sections_clause())
1561     return;
1562
1563   gold_assert(!this->script_options_->saw_phdrs_clause());
1564
1565   // This output section goes into a PT_LOAD segment.
1566
1567   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1568
1569   // Check for --section-start.
1570   uint64_t addr;
1571   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1572
1573   // In general the only thing we really care about for PT_LOAD
1574   // segments is whether or not they are writable or executable,
1575   // so that is how we search for them.
1576   // Large data sections also go into their own PT_LOAD segment.
1577   // People who need segments sorted on some other basis will
1578   // have to use a linker script.
1579
1580   Segment_list::const_iterator p;
1581   for (p = this->segment_list_.begin();
1582        p != this->segment_list_.end();
1583        ++p)
1584     {
1585       if ((*p)->type() != elfcpp::PT_LOAD)
1586         continue;
1587       if (!parameters->options().omagic()
1588           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1589         continue;
1590       if (parameters->options().rosegment()
1591           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1592         continue;
1593       // If -Tbss was specified, we need to separate the data and BSS
1594       // segments.
1595       if (parameters->options().user_set_Tbss())
1596         {
1597           if ((os->type() == elfcpp::SHT_NOBITS)
1598               == (*p)->has_any_data_sections())
1599             continue;
1600         }
1601       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1602         continue;
1603
1604       if (is_address_set)
1605         {
1606           if ((*p)->are_addresses_set())
1607             continue;
1608
1609           (*p)->add_initial_output_data(os);
1610           (*p)->update_flags_for_output_section(seg_flags);
1611           (*p)->set_addresses(addr, addr);
1612           break;
1613         }
1614
1615       (*p)->add_output_section_to_load(this, os, seg_flags);
1616       break;
1617     }
1618
1619   if (p == this->segment_list_.end())
1620     {
1621       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1622                                                        seg_flags);
1623       if (os->is_large_data_section())
1624         oseg->set_is_large_data_segment();
1625       oseg->add_output_section_to_load(this, os, seg_flags);
1626       if (is_address_set)
1627         oseg->set_addresses(addr, addr);
1628     }
1629
1630   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1631   // segment.
1632   if (os->type() == elfcpp::SHT_NOTE)
1633     {
1634       // See if we already have an equivalent PT_NOTE segment.
1635       for (p = this->segment_list_.begin();
1636            p != segment_list_.end();
1637            ++p)
1638         {
1639           if ((*p)->type() == elfcpp::PT_NOTE
1640               && (((*p)->flags() & elfcpp::PF_W)
1641                   == (seg_flags & elfcpp::PF_W)))
1642             {
1643               (*p)->add_output_section_to_nonload(os, seg_flags);
1644               break;
1645             }
1646         }
1647
1648       if (p == this->segment_list_.end())
1649         {
1650           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1651                                                            seg_flags);
1652           oseg->add_output_section_to_nonload(os, seg_flags);
1653         }
1654     }
1655
1656   // If we see a loadable SHF_TLS section, we create a PT_TLS
1657   // segment.  There can only be one such segment.
1658   if ((flags & elfcpp::SHF_TLS) != 0)
1659     {
1660       if (this->tls_segment_ == NULL)
1661         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1662       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1663     }
1664
1665   // If -z relro is in effect, and we see a relro section, we create a
1666   // PT_GNU_RELRO segment.  There can only be one such segment.
1667   if (os->is_relro() && parameters->options().relro())
1668     {
1669       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1670       if (this->relro_segment_ == NULL)
1671         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1672       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1673     }
1674
1675   // If we see a section named .interp, put it into a PT_INTERP
1676   // segment.  This seems broken to me, but this is what GNU ld does,
1677   // and glibc expects it.
1678   if (strcmp(os->name(), ".interp") == 0
1679       && !this->script_options_->saw_phdrs_clause())
1680     {
1681       if (this->interp_segment_ == NULL)
1682         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1683       else
1684         gold_warning(_("multiple '.interp' sections in input files "
1685                        "may cause confusing PT_INTERP segment"));
1686       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1687     }
1688 }
1689
1690 // Make an output section for a script.
1691
1692 Output_section*
1693 Layout::make_output_section_for_script(
1694     const char* name,
1695     Script_sections::Section_type section_type)
1696 {
1697   name = this->namepool_.add(name, false, NULL);
1698   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1699   if (section_type == Script_sections::ST_NOLOAD)
1700     sh_flags = 0;
1701   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1702                                                  sh_flags, ORDER_INVALID,
1703                                                  false);
1704   os->set_found_in_sections_clause();
1705   if (section_type == Script_sections::ST_NOLOAD)
1706     os->set_is_noload();
1707   return os;
1708 }
1709
1710 // Return the number of segments we expect to see.
1711
1712 size_t
1713 Layout::expected_segment_count() const
1714 {
1715   size_t ret = this->segment_list_.size();
1716
1717   // If we didn't see a SECTIONS clause in a linker script, we should
1718   // already have the complete list of segments.  Otherwise we ask the
1719   // SECTIONS clause how many segments it expects, and add in the ones
1720   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1721
1722   if (!this->script_options_->saw_sections_clause())
1723     return ret;
1724   else
1725     {
1726       const Script_sections* ss = this->script_options_->script_sections();
1727       return ret + ss->expected_segment_count(this);
1728     }
1729 }
1730
1731 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1732 // is whether we saw a .note.GNU-stack section in the object file.
1733 // GNU_STACK_FLAGS is the section flags.  The flags give the
1734 // protection required for stack memory.  We record this in an
1735 // executable as a PT_GNU_STACK segment.  If an object file does not
1736 // have a .note.GNU-stack segment, we must assume that it is an old
1737 // object.  On some targets that will force an executable stack.
1738
1739 void
1740 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1741                          const Object* obj)
1742 {
1743   if (!seen_gnu_stack)
1744     {
1745       this->input_without_gnu_stack_note_ = true;
1746       if (parameters->options().warn_execstack()
1747           && parameters->target().is_default_stack_executable())
1748         gold_warning(_("%s: missing .note.GNU-stack section"
1749                        " implies executable stack"),
1750                      obj->name().c_str());
1751     }
1752   else
1753     {
1754       this->input_with_gnu_stack_note_ = true;
1755       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1756         {
1757           this->input_requires_executable_stack_ = true;
1758           if (parameters->options().warn_execstack()
1759               || parameters->options().is_stack_executable())
1760             gold_warning(_("%s: requires executable stack"),
1761                          obj->name().c_str());
1762         }
1763     }
1764 }
1765
1766 // Create automatic note sections.
1767
1768 void
1769 Layout::create_notes()
1770 {
1771   this->create_gold_note();
1772   this->create_executable_stack_info();
1773   this->create_build_id();
1774 }
1775
1776 // Create the dynamic sections which are needed before we read the
1777 // relocs.
1778
1779 void
1780 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1781 {
1782   if (parameters->doing_static_link())
1783     return;
1784
1785   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1786                                                        elfcpp::SHT_DYNAMIC,
1787                                                        (elfcpp::SHF_ALLOC
1788                                                         | elfcpp::SHF_WRITE),
1789                                                        false, ORDER_RELRO,
1790                                                        true);
1791
1792   // A linker script may discard .dynamic, so check for NULL.
1793   if (this->dynamic_section_ != NULL)
1794     {
1795       this->dynamic_symbol_ =
1796         symtab->define_in_output_data("_DYNAMIC", NULL,
1797                                       Symbol_table::PREDEFINED,
1798                                       this->dynamic_section_, 0, 0,
1799                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1800                                       elfcpp::STV_HIDDEN, 0, false, false);
1801
1802       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1803
1804       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1805     }
1806 }
1807
1808 // For each output section whose name can be represented as C symbol,
1809 // define __start and __stop symbols for the section.  This is a GNU
1810 // extension.
1811
1812 void
1813 Layout::define_section_symbols(Symbol_table* symtab)
1814 {
1815   for (Section_list::const_iterator p = this->section_list_.begin();
1816        p != this->section_list_.end();
1817        ++p)
1818     {
1819       const char* const name = (*p)->name();
1820       if (is_cident(name))
1821         {
1822           const std::string name_string(name);
1823           const std::string start_name(cident_section_start_prefix
1824                                        + name_string);
1825           const std::string stop_name(cident_section_stop_prefix
1826                                       + name_string);
1827
1828           symtab->define_in_output_data(start_name.c_str(),
1829                                         NULL, // version
1830                                         Symbol_table::PREDEFINED,
1831                                         *p,
1832                                         0, // value
1833                                         0, // symsize
1834                                         elfcpp::STT_NOTYPE,
1835                                         elfcpp::STB_GLOBAL,
1836                                         elfcpp::STV_DEFAULT,
1837                                         0, // nonvis
1838                                         false, // offset_is_from_end
1839                                         true); // only_if_ref
1840
1841           symtab->define_in_output_data(stop_name.c_str(),
1842                                         NULL, // version
1843                                         Symbol_table::PREDEFINED,
1844                                         *p,
1845                                         0, // value
1846                                         0, // symsize
1847                                         elfcpp::STT_NOTYPE,
1848                                         elfcpp::STB_GLOBAL,
1849                                         elfcpp::STV_DEFAULT,
1850                                         0, // nonvis
1851                                         true, // offset_is_from_end
1852                                         true); // only_if_ref
1853         }
1854     }
1855 }
1856
1857 // Define symbols for group signatures.
1858
1859 void
1860 Layout::define_group_signatures(Symbol_table* symtab)
1861 {
1862   for (Group_signatures::iterator p = this->group_signatures_.begin();
1863        p != this->group_signatures_.end();
1864        ++p)
1865     {
1866       Symbol* sym = symtab->lookup(p->signature, NULL);
1867       if (sym != NULL)
1868         p->section->set_info_symndx(sym);
1869       else
1870         {
1871           // Force the name of the group section to the group
1872           // signature, and use the group's section symbol as the
1873           // signature symbol.
1874           if (strcmp(p->section->name(), p->signature) != 0)
1875             {
1876               const char* name = this->namepool_.add(p->signature,
1877                                                      true, NULL);
1878               p->section->set_name(name);
1879             }
1880           p->section->set_needs_symtab_index();
1881           p->section->set_info_section_symndx(p->section);
1882         }
1883     }
1884
1885   this->group_signatures_.clear();
1886 }
1887
1888 // Find the first read-only PT_LOAD segment, creating one if
1889 // necessary.
1890
1891 Output_segment*
1892 Layout::find_first_load_seg()
1893 {
1894   Output_segment* best = NULL;
1895   for (Segment_list::const_iterator p = this->segment_list_.begin();
1896        p != this->segment_list_.end();
1897        ++p)
1898     {
1899       if ((*p)->type() == elfcpp::PT_LOAD
1900           && ((*p)->flags() & elfcpp::PF_R) != 0
1901           && (parameters->options().omagic()
1902               || ((*p)->flags() & elfcpp::PF_W) == 0))
1903         {
1904           if (best == NULL || this->segment_precedes(*p, best))
1905             best = *p;
1906         }
1907     }
1908   if (best != NULL)
1909     return best;
1910
1911   gold_assert(!this->script_options_->saw_phdrs_clause());
1912
1913   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1914                                                        elfcpp::PF_R);
1915   return load_seg;
1916 }
1917
1918 // Save states of all current output segments.  Store saved states
1919 // in SEGMENT_STATES.
1920
1921 void
1922 Layout::save_segments(Segment_states* segment_states)
1923 {
1924   for (Segment_list::const_iterator p = this->segment_list_.begin();
1925        p != this->segment_list_.end();
1926        ++p)
1927     {
1928       Output_segment* segment = *p;
1929       // Shallow copy.
1930       Output_segment* copy = new Output_segment(*segment);
1931       (*segment_states)[segment] = copy;
1932     }
1933 }
1934
1935 // Restore states of output segments and delete any segment not found in
1936 // SEGMENT_STATES.
1937
1938 void
1939 Layout::restore_segments(const Segment_states* segment_states)
1940 {
1941   // Go through the segment list and remove any segment added in the
1942   // relaxation loop.
1943   this->tls_segment_ = NULL;
1944   this->relro_segment_ = NULL;
1945   Segment_list::iterator list_iter = this->segment_list_.begin();
1946   while (list_iter != this->segment_list_.end())
1947     {
1948       Output_segment* segment = *list_iter;
1949       Segment_states::const_iterator states_iter =
1950           segment_states->find(segment);
1951       if (states_iter != segment_states->end())
1952         {
1953           const Output_segment* copy = states_iter->second;
1954           // Shallow copy to restore states.
1955           *segment = *copy;
1956
1957           // Also fix up TLS and RELRO segment pointers as appropriate.
1958           if (segment->type() == elfcpp::PT_TLS)
1959             this->tls_segment_ = segment;
1960           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1961             this->relro_segment_ = segment;
1962
1963           ++list_iter;
1964         } 
1965       else
1966         {
1967           list_iter = this->segment_list_.erase(list_iter); 
1968           // This is a segment created during section layout.  It should be
1969           // safe to remove it since we should have removed all pointers to it.
1970           delete segment;
1971         }
1972     }
1973 }
1974
1975 // Clean up after relaxation so that sections can be laid out again.
1976
1977 void
1978 Layout::clean_up_after_relaxation()
1979 {
1980   // Restore the segments to point state just prior to the relaxation loop.
1981   Script_sections* script_section = this->script_options_->script_sections();
1982   script_section->release_segments();
1983   this->restore_segments(this->segment_states_);
1984
1985   // Reset section addresses and file offsets
1986   for (Section_list::iterator p = this->section_list_.begin();
1987        p != this->section_list_.end();
1988        ++p)
1989     {
1990       (*p)->restore_states();
1991
1992       // If an input section changes size because of relaxation,
1993       // we need to adjust the section offsets of all input sections.
1994       // after such a section.
1995       if ((*p)->section_offsets_need_adjustment())
1996         (*p)->adjust_section_offsets();
1997
1998       (*p)->reset_address_and_file_offset();
1999     }
2000   
2001   // Reset special output object address and file offsets.
2002   for (Data_list::iterator p = this->special_output_list_.begin();
2003        p != this->special_output_list_.end();
2004        ++p)
2005     (*p)->reset_address_and_file_offset();
2006
2007   // A linker script may have created some output section data objects.
2008   // They are useless now.
2009   for (Output_section_data_list::const_iterator p =
2010          this->script_output_section_data_list_.begin();
2011        p != this->script_output_section_data_list_.end();
2012        ++p)
2013     delete *p;
2014   this->script_output_section_data_list_.clear(); 
2015 }
2016
2017 // Prepare for relaxation.
2018
2019 void
2020 Layout::prepare_for_relaxation()
2021 {
2022   // Create an relaxation debug check if in debugging mode.
2023   if (is_debugging_enabled(DEBUG_RELAXATION))
2024     this->relaxation_debug_check_ = new Relaxation_debug_check();
2025
2026   // Save segment states.
2027   this->segment_states_ = new Segment_states();
2028   this->save_segments(this->segment_states_);
2029
2030   for(Section_list::const_iterator p = this->section_list_.begin();
2031       p != this->section_list_.end();
2032       ++p)
2033     (*p)->save_states();
2034
2035   if (is_debugging_enabled(DEBUG_RELAXATION))
2036     this->relaxation_debug_check_->check_output_data_for_reset_values(
2037         this->section_list_, this->special_output_list_);
2038
2039   // Also enable recording of output section data from scripts.
2040   this->record_output_section_data_from_script_ = true;
2041 }
2042
2043 // Relaxation loop body:  If target has no relaxation, this runs only once
2044 // Otherwise, the target relaxation hook is called at the end of
2045 // each iteration.  If the hook returns true, it means re-layout of
2046 // section is required.  
2047 //
2048 // The number of segments created by a linking script without a PHDRS
2049 // clause may be affected by section sizes and alignments.  There is
2050 // a remote chance that relaxation causes different number of PT_LOAD
2051 // segments are created and sections are attached to different segments.
2052 // Therefore, we always throw away all segments created during section
2053 // layout.  In order to be able to restart the section layout, we keep
2054 // a copy of the segment list right before the relaxation loop and use
2055 // that to restore the segments.
2056 // 
2057 // PASS is the current relaxation pass number. 
2058 // SYMTAB is a symbol table.
2059 // PLOAD_SEG is the address of a pointer for the load segment.
2060 // PHDR_SEG is a pointer to the PHDR segment.
2061 // SEGMENT_HEADERS points to the output segment header.
2062 // FILE_HEADER points to the output file header.
2063 // PSHNDX is the address to store the output section index.
2064
2065 off_t inline
2066 Layout::relaxation_loop_body(
2067     int pass,
2068     Target* target,
2069     Symbol_table* symtab,
2070     Output_segment** pload_seg,
2071     Output_segment* phdr_seg,
2072     Output_segment_headers* segment_headers,
2073     Output_file_header* file_header,
2074     unsigned int* pshndx)
2075 {
2076   // If this is not the first iteration, we need to clean up after
2077   // relaxation so that we can lay out the sections again.
2078   if (pass != 0)
2079     this->clean_up_after_relaxation();
2080
2081   // If there is a SECTIONS clause, put all the input sections into
2082   // the required order.
2083   Output_segment* load_seg;
2084   if (this->script_options_->saw_sections_clause())
2085     load_seg = this->set_section_addresses_from_script(symtab);
2086   else if (parameters->options().relocatable())
2087     load_seg = NULL;
2088   else
2089     load_seg = this->find_first_load_seg();
2090
2091   if (parameters->options().oformat_enum()
2092       != General_options::OBJECT_FORMAT_ELF)
2093     load_seg = NULL;
2094
2095   // If the user set the address of the text segment, that may not be
2096   // compatible with putting the segment headers and file headers into
2097   // that segment.
2098   if (parameters->options().user_set_Ttext()
2099       && parameters->options().Ttext() % target->common_pagesize() != 0)
2100     {
2101       load_seg = NULL;
2102       phdr_seg = NULL;
2103     }
2104
2105   gold_assert(phdr_seg == NULL
2106               || load_seg != NULL
2107               || this->script_options_->saw_sections_clause());
2108
2109   // If the address of the load segment we found has been set by
2110   // --section-start rather than by a script, then adjust the VMA and
2111   // LMA downward if possible to include the file and section headers.
2112   uint64_t header_gap = 0;
2113   if (load_seg != NULL
2114       && load_seg->are_addresses_set()
2115       && !this->script_options_->saw_sections_clause()
2116       && !parameters->options().relocatable())
2117     {
2118       file_header->finalize_data_size();
2119       segment_headers->finalize_data_size();
2120       size_t sizeof_headers = (file_header->data_size()
2121                                + segment_headers->data_size());
2122       const uint64_t abi_pagesize = target->abi_pagesize();
2123       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2124       hdr_paddr &= ~(abi_pagesize - 1);
2125       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2126       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2127         load_seg = NULL;
2128       else
2129         {
2130           load_seg->set_addresses(load_seg->vaddr() - subtract,
2131                                   load_seg->paddr() - subtract);
2132           header_gap = subtract - sizeof_headers;
2133         }
2134     }
2135
2136   // Lay out the segment headers.
2137   if (!parameters->options().relocatable())
2138     {
2139       gold_assert(segment_headers != NULL);
2140       if (header_gap != 0 && load_seg != NULL)
2141         {
2142           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2143           load_seg->add_initial_output_data(z);
2144         }
2145       if (load_seg != NULL)
2146         load_seg->add_initial_output_data(segment_headers);
2147       if (phdr_seg != NULL)
2148         phdr_seg->add_initial_output_data(segment_headers);
2149     }
2150
2151   // Lay out the file header.
2152   if (load_seg != NULL)
2153     load_seg->add_initial_output_data(file_header);
2154
2155   if (this->script_options_->saw_phdrs_clause()
2156       && !parameters->options().relocatable())
2157     {
2158       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2159       // clause in a linker script.
2160       Script_sections* ss = this->script_options_->script_sections();
2161       ss->put_headers_in_phdrs(file_header, segment_headers);
2162     }
2163
2164   // We set the output section indexes in set_segment_offsets and
2165   // set_section_indexes.
2166   *pshndx = 1;
2167
2168   // Set the file offsets of all the segments, and all the sections
2169   // they contain.
2170   off_t off;
2171   if (!parameters->options().relocatable())
2172     off = this->set_segment_offsets(target, load_seg, pshndx);
2173   else
2174     off = this->set_relocatable_section_offsets(file_header, pshndx);
2175
2176    // Verify that the dummy relaxation does not change anything.
2177   if (is_debugging_enabled(DEBUG_RELAXATION))
2178     {
2179       if (pass == 0)
2180         this->relaxation_debug_check_->read_sections(this->section_list_);
2181       else
2182         this->relaxation_debug_check_->verify_sections(this->section_list_);
2183     }
2184
2185   *pload_seg = load_seg;
2186   return off;
2187 }
2188
2189 // Search the list of patterns and find the postion of the given section
2190 // name in the output section.  If the section name matches a glob
2191 // pattern and a non-glob name, then the non-glob position takes
2192 // precedence.  Return 0 if no match is found.
2193
2194 unsigned int
2195 Layout::find_section_order_index(const std::string& section_name)
2196 {
2197   Unordered_map<std::string, unsigned int>::iterator map_it;
2198   map_it = this->input_section_position_.find(section_name);
2199   if (map_it != this->input_section_position_.end())
2200     return map_it->second;
2201
2202   // Absolute match failed.  Linear search the glob patterns.
2203   std::vector<std::string>::iterator it;
2204   for (it = this->input_section_glob_.begin();
2205        it != this->input_section_glob_.end();
2206        ++it)
2207     {
2208        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2209          {
2210            map_it = this->input_section_position_.find(*it);
2211            gold_assert(map_it != this->input_section_position_.end());
2212            return map_it->second;
2213          }
2214     }
2215   return 0;
2216 }
2217
2218 // Read the sequence of input sections from the file specified with
2219 // option --section-ordering-file.
2220
2221 void
2222 Layout::read_layout_from_file()
2223 {
2224   const char* filename = parameters->options().section_ordering_file();
2225   std::ifstream in;
2226   std::string line;
2227
2228   in.open(filename);
2229   if (!in)
2230     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2231                filename, strerror(errno));
2232
2233   std::getline(in, line);   // this chops off the trailing \n, if any
2234   unsigned int position = 1;
2235   this->set_section_ordering_specified();
2236
2237   while (in)
2238     {
2239       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2240         line.resize(line.length() - 1);
2241       // Ignore comments, beginning with '#'
2242       if (line[0] == '#')
2243         {
2244           std::getline(in, line);
2245           continue;
2246         }
2247       this->input_section_position_[line] = position;
2248       // Store all glob patterns in a vector.
2249       if (is_wildcard_string(line.c_str()))
2250         this->input_section_glob_.push_back(line);
2251       position++;
2252       std::getline(in, line);
2253     }
2254 }
2255
2256 // Finalize the layout.  When this is called, we have created all the
2257 // output sections and all the output segments which are based on
2258 // input sections.  We have several things to do, and we have to do
2259 // them in the right order, so that we get the right results correctly
2260 // and efficiently.
2261
2262 // 1) Finalize the list of output segments and create the segment
2263 // table header.
2264
2265 // 2) Finalize the dynamic symbol table and associated sections.
2266
2267 // 3) Determine the final file offset of all the output segments.
2268
2269 // 4) Determine the final file offset of all the SHF_ALLOC output
2270 // sections.
2271
2272 // 5) Create the symbol table sections and the section name table
2273 // section.
2274
2275 // 6) Finalize the symbol table: set symbol values to their final
2276 // value and make a final determination of which symbols are going
2277 // into the output symbol table.
2278
2279 // 7) Create the section table header.
2280
2281 // 8) Determine the final file offset of all the output sections which
2282 // are not SHF_ALLOC, including the section table header.
2283
2284 // 9) Finalize the ELF file header.
2285
2286 // This function returns the size of the output file.
2287
2288 off_t
2289 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2290                  Target* target, const Task* task)
2291 {
2292   target->finalize_sections(this, input_objects, symtab);
2293
2294   this->count_local_symbols(task, input_objects);
2295
2296   this->link_stabs_sections();
2297
2298   Output_segment* phdr_seg = NULL;
2299   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2300     {
2301       // There was a dynamic object in the link.  We need to create
2302       // some information for the dynamic linker.
2303
2304       // Create the PT_PHDR segment which will hold the program
2305       // headers.
2306       if (!this->script_options_->saw_phdrs_clause())
2307         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2308
2309       // Create the dynamic symbol table, including the hash table.
2310       Output_section* dynstr;
2311       std::vector<Symbol*> dynamic_symbols;
2312       unsigned int local_dynamic_count;
2313       Versions versions(*this->script_options()->version_script_info(),
2314                         &this->dynpool_);
2315       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2316                                   &local_dynamic_count, &dynamic_symbols,
2317                                   &versions);
2318
2319       // Create the .interp section to hold the name of the
2320       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2321       // if we saw a .interp section in an input file.
2322       if ((!parameters->options().shared()
2323            || parameters->options().dynamic_linker() != NULL)
2324           && this->interp_segment_ == NULL)
2325         this->create_interp(target);
2326
2327       // Finish the .dynamic section to hold the dynamic data, and put
2328       // it in a PT_DYNAMIC segment.
2329       this->finish_dynamic_section(input_objects, symtab);
2330
2331       // We should have added everything we need to the dynamic string
2332       // table.
2333       this->dynpool_.set_string_offsets();
2334
2335       // Create the version sections.  We can't do this until the
2336       // dynamic string table is complete.
2337       this->create_version_sections(&versions, symtab, local_dynamic_count,
2338                                     dynamic_symbols, dynstr);
2339
2340       // Set the size of the _DYNAMIC symbol.  We can't do this until
2341       // after we call create_version_sections.
2342       this->set_dynamic_symbol_size(symtab);
2343     }
2344   
2345   // Create segment headers.
2346   Output_segment_headers* segment_headers =
2347     (parameters->options().relocatable()
2348      ? NULL
2349      : new Output_segment_headers(this->segment_list_));
2350
2351   // Lay out the file header.
2352   Output_file_header* file_header = new Output_file_header(target, symtab,
2353                                                            segment_headers);
2354
2355   this->special_output_list_.push_back(file_header);
2356   if (segment_headers != NULL)
2357     this->special_output_list_.push_back(segment_headers);
2358
2359   // Find approriate places for orphan output sections if we are using
2360   // a linker script.
2361   if (this->script_options_->saw_sections_clause())
2362     this->place_orphan_sections_in_script();
2363   
2364   Output_segment* load_seg;
2365   off_t off;
2366   unsigned int shndx;
2367   int pass = 0;
2368
2369   // Take a snapshot of the section layout as needed.
2370   if (target->may_relax())
2371     this->prepare_for_relaxation();
2372   
2373   // Run the relaxation loop to lay out sections.
2374   do
2375     {
2376       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2377                                        phdr_seg, segment_headers, file_header,
2378                                        &shndx);
2379       pass++;
2380     }
2381   while (target->may_relax()
2382          && target->relax(pass, input_objects, symtab, this, task));
2383
2384   // Set the file offsets of all the non-data sections we've seen so
2385   // far which don't have to wait for the input sections.  We need
2386   // this in order to finalize local symbols in non-allocated
2387   // sections.
2388   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2389
2390   // Set the section indexes of all unallocated sections seen so far,
2391   // in case any of them are somehow referenced by a symbol.
2392   shndx = this->set_section_indexes(shndx);
2393
2394   // Create the symbol table sections.
2395   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2396   if (!parameters->doing_static_link())
2397     this->assign_local_dynsym_offsets(input_objects);
2398
2399   // Process any symbol assignments from a linker script.  This must
2400   // be called after the symbol table has been finalized.
2401   this->script_options_->finalize_symbols(symtab, this);
2402
2403   // Create the incremental inputs sections.
2404   if (this->incremental_inputs_)
2405     {
2406       this->incremental_inputs_->finalize();
2407       this->create_incremental_info_sections(symtab);
2408     }
2409
2410   // Create the .shstrtab section.
2411   Output_section* shstrtab_section = this->create_shstrtab();
2412
2413   // Set the file offsets of the rest of the non-data sections which
2414   // don't have to wait for the input sections.
2415   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2416
2417   // Now that all sections have been created, set the section indexes
2418   // for any sections which haven't been done yet.
2419   shndx = this->set_section_indexes(shndx);
2420
2421   // Create the section table header.
2422   this->create_shdrs(shstrtab_section, &off);
2423
2424   // If there are no sections which require postprocessing, we can
2425   // handle the section names now, and avoid a resize later.
2426   if (!this->any_postprocessing_sections_)
2427     {
2428       off = this->set_section_offsets(off,
2429                                       POSTPROCESSING_SECTIONS_PASS);
2430       off =
2431           this->set_section_offsets(off,
2432                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2433     }
2434
2435   file_header->set_section_info(this->section_headers_, shstrtab_section);
2436
2437   // Now we know exactly where everything goes in the output file
2438   // (except for non-allocated sections which require postprocessing).
2439   Output_data::layout_complete();
2440
2441   this->output_file_size_ = off;
2442
2443   return off;
2444 }
2445
2446 // Create a note header following the format defined in the ELF ABI.
2447 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2448 // of the section to create, DESCSZ is the size of the descriptor.
2449 // ALLOCATE is true if the section should be allocated in memory.
2450 // This returns the new note section.  It sets *TRAILING_PADDING to
2451 // the number of trailing zero bytes required.
2452
2453 Output_section*
2454 Layout::create_note(const char* name, int note_type,
2455                     const char* section_name, size_t descsz,
2456                     bool allocate, size_t* trailing_padding)
2457 {
2458   // Authorities all agree that the values in a .note field should
2459   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2460   // they differ on what the alignment is for 64-bit binaries.
2461   // The GABI says unambiguously they take 8-byte alignment:
2462   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2463   // Other documentation says alignment should always be 4 bytes:
2464   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2465   // GNU ld and GNU readelf both support the latter (at least as of
2466   // version 2.16.91), and glibc always generates the latter for
2467   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2468   // here.
2469 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2470   const int size = parameters->target().get_size();
2471 #else
2472   const int size = 32;
2473 #endif
2474
2475   // The contents of the .note section.
2476   size_t namesz = strlen(name) + 1;
2477   size_t aligned_namesz = align_address(namesz, size / 8);
2478   size_t aligned_descsz = align_address(descsz, size / 8);
2479
2480   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2481
2482   unsigned char* buffer = new unsigned char[notehdrsz];
2483   memset(buffer, 0, notehdrsz);
2484
2485   bool is_big_endian = parameters->target().is_big_endian();
2486
2487   if (size == 32)
2488     {
2489       if (!is_big_endian)
2490         {
2491           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2492           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2493           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2494         }
2495       else
2496         {
2497           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2498           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2499           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2500         }
2501     }
2502   else if (size == 64)
2503     {
2504       if (!is_big_endian)
2505         {
2506           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2507           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2508           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2509         }
2510       else
2511         {
2512           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2513           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2514           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2515         }
2516     }
2517   else
2518     gold_unreachable();
2519
2520   memcpy(buffer + 3 * (size / 8), name, namesz);
2521
2522   elfcpp::Elf_Xword flags = 0;
2523   Output_section_order order = ORDER_INVALID;
2524   if (allocate)
2525     {
2526       flags = elfcpp::SHF_ALLOC;
2527       order = ORDER_RO_NOTE;
2528     }
2529   Output_section* os = this->choose_output_section(NULL, section_name,
2530                                                    elfcpp::SHT_NOTE,
2531                                                    flags, false, order, false);
2532   if (os == NULL)
2533     return NULL;
2534
2535   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2536                                                            size / 8,
2537                                                            "** note header");
2538   os->add_output_section_data(posd);
2539
2540   *trailing_padding = aligned_descsz - descsz;
2541
2542   return os;
2543 }
2544
2545 // For an executable or shared library, create a note to record the
2546 // version of gold used to create the binary.
2547
2548 void
2549 Layout::create_gold_note()
2550 {
2551   if (parameters->options().relocatable()
2552       || parameters->incremental_update())
2553     return;
2554
2555   std::string desc = std::string("gold ") + gold::get_version_string();
2556
2557   size_t trailing_padding;
2558   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2559                                          ".note.gnu.gold-version", desc.size(),
2560                                          false, &trailing_padding);
2561   if (os == NULL)
2562     return;
2563
2564   Output_section_data* posd = new Output_data_const(desc, 4);
2565   os->add_output_section_data(posd);
2566
2567   if (trailing_padding > 0)
2568     {
2569       posd = new Output_data_zero_fill(trailing_padding, 0);
2570       os->add_output_section_data(posd);
2571     }
2572 }
2573
2574 // Record whether the stack should be executable.  This can be set
2575 // from the command line using the -z execstack or -z noexecstack
2576 // options.  Otherwise, if any input file has a .note.GNU-stack
2577 // section with the SHF_EXECINSTR flag set, the stack should be
2578 // executable.  Otherwise, if at least one input file a
2579 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2580 // section, we use the target default for whether the stack should be
2581 // executable.  Otherwise, we don't generate a stack note.  When
2582 // generating a object file, we create a .note.GNU-stack section with
2583 // the appropriate marking.  When generating an executable or shared
2584 // library, we create a PT_GNU_STACK segment.
2585
2586 void
2587 Layout::create_executable_stack_info()
2588 {
2589   bool is_stack_executable;
2590   if (parameters->options().is_execstack_set())
2591     is_stack_executable = parameters->options().is_stack_executable();
2592   else if (!this->input_with_gnu_stack_note_)
2593     return;
2594   else
2595     {
2596       if (this->input_requires_executable_stack_)
2597         is_stack_executable = true;
2598       else if (this->input_without_gnu_stack_note_)
2599         is_stack_executable =
2600           parameters->target().is_default_stack_executable();
2601       else
2602         is_stack_executable = false;
2603     }
2604
2605   if (parameters->options().relocatable())
2606     {
2607       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2608       elfcpp::Elf_Xword flags = 0;
2609       if (is_stack_executable)
2610         flags |= elfcpp::SHF_EXECINSTR;
2611       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2612                                 ORDER_INVALID, false);
2613     }
2614   else
2615     {
2616       if (this->script_options_->saw_phdrs_clause())
2617         return;
2618       int flags = elfcpp::PF_R | elfcpp::PF_W;
2619       if (is_stack_executable)
2620         flags |= elfcpp::PF_X;
2621       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2622     }
2623 }
2624
2625 // If --build-id was used, set up the build ID note.
2626
2627 void
2628 Layout::create_build_id()
2629 {
2630   if (!parameters->options().user_set_build_id())
2631     return;
2632
2633   const char* style = parameters->options().build_id();
2634   if (strcmp(style, "none") == 0)
2635     return;
2636
2637   // Set DESCSZ to the size of the note descriptor.  When possible,
2638   // set DESC to the note descriptor contents.
2639   size_t descsz;
2640   std::string desc;
2641   if (strcmp(style, "md5") == 0)
2642     descsz = 128 / 8;
2643   else if (strcmp(style, "sha1") == 0)
2644     descsz = 160 / 8;
2645   else if (strcmp(style, "uuid") == 0)
2646     {
2647       const size_t uuidsz = 128 / 8;
2648
2649       char buffer[uuidsz];
2650       memset(buffer, 0, uuidsz);
2651
2652       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2653       if (descriptor < 0)
2654         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2655                    strerror(errno));
2656       else
2657         {
2658           ssize_t got = ::read(descriptor, buffer, uuidsz);
2659           release_descriptor(descriptor, true);
2660           if (got < 0)
2661             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2662           else if (static_cast<size_t>(got) != uuidsz)
2663             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2664                        uuidsz, got);
2665         }
2666
2667       desc.assign(buffer, uuidsz);
2668       descsz = uuidsz;
2669     }
2670   else if (strncmp(style, "0x", 2) == 0)
2671     {
2672       hex_init();
2673       const char* p = style + 2;
2674       while (*p != '\0')
2675         {
2676           if (hex_p(p[0]) && hex_p(p[1]))
2677             {
2678               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2679               desc += c;
2680               p += 2;
2681             }
2682           else if (*p == '-' || *p == ':')
2683             ++p;
2684           else
2685             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2686                        style);
2687         }
2688       descsz = desc.size();
2689     }
2690   else
2691     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2692
2693   // Create the note.
2694   size_t trailing_padding;
2695   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2696                                          ".note.gnu.build-id", descsz, true,
2697                                          &trailing_padding);
2698   if (os == NULL)
2699     return;
2700
2701   if (!desc.empty())
2702     {
2703       // We know the value already, so we fill it in now.
2704       gold_assert(desc.size() == descsz);
2705
2706       Output_section_data* posd = new Output_data_const(desc, 4);
2707       os->add_output_section_data(posd);
2708
2709       if (trailing_padding != 0)
2710         {
2711           posd = new Output_data_zero_fill(trailing_padding, 0);
2712           os->add_output_section_data(posd);
2713         }
2714     }
2715   else
2716     {
2717       // We need to compute a checksum after we have completed the
2718       // link.
2719       gold_assert(trailing_padding == 0);
2720       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2721       os->add_output_section_data(this->build_id_note_);
2722     }
2723 }
2724
2725 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2726 // field of the former should point to the latter.  I'm not sure who
2727 // started this, but the GNU linker does it, and some tools depend
2728 // upon it.
2729
2730 void
2731 Layout::link_stabs_sections()
2732 {
2733   if (!this->have_stabstr_section_)
2734     return;
2735
2736   for (Section_list::iterator p = this->section_list_.begin();
2737        p != this->section_list_.end();
2738        ++p)
2739     {
2740       if ((*p)->type() != elfcpp::SHT_STRTAB)
2741         continue;
2742
2743       const char* name = (*p)->name();
2744       if (strncmp(name, ".stab", 5) != 0)
2745         continue;
2746
2747       size_t len = strlen(name);
2748       if (strcmp(name + len - 3, "str") != 0)
2749         continue;
2750
2751       std::string stab_name(name, len - 3);
2752       Output_section* stab_sec;
2753       stab_sec = this->find_output_section(stab_name.c_str());
2754       if (stab_sec != NULL)
2755         stab_sec->set_link_section(*p);
2756     }
2757 }
2758
2759 // Create .gnu_incremental_inputs and related sections needed
2760 // for the next run of incremental linking to check what has changed.
2761
2762 void
2763 Layout::create_incremental_info_sections(Symbol_table* symtab)
2764 {
2765   Incremental_inputs* incr = this->incremental_inputs_;
2766
2767   gold_assert(incr != NULL);
2768
2769   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2770   incr->create_data_sections(symtab);
2771
2772   // Add the .gnu_incremental_inputs section.
2773   const char* incremental_inputs_name =
2774     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2775   Output_section* incremental_inputs_os =
2776     this->make_output_section(incremental_inputs_name,
2777                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2778                               ORDER_INVALID, false);
2779   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2780
2781   // Add the .gnu_incremental_symtab section.
2782   const char* incremental_symtab_name =
2783     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2784   Output_section* incremental_symtab_os =
2785     this->make_output_section(incremental_symtab_name,
2786                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2787                               ORDER_INVALID, false);
2788   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2789   incremental_symtab_os->set_entsize(4);
2790
2791   // Add the .gnu_incremental_relocs section.
2792   const char* incremental_relocs_name =
2793     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2794   Output_section* incremental_relocs_os =
2795     this->make_output_section(incremental_relocs_name,
2796                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2797                               ORDER_INVALID, false);
2798   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2799   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2800
2801   // Add the .gnu_incremental_got_plt section.
2802   const char* incremental_got_plt_name =
2803     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2804   Output_section* incremental_got_plt_os =
2805     this->make_output_section(incremental_got_plt_name,
2806                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2807                               ORDER_INVALID, false);
2808   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2809
2810   // Add the .gnu_incremental_strtab section.
2811   const char* incremental_strtab_name =
2812     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2813   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2814                                                         elfcpp::SHT_STRTAB, 0,
2815                                                         ORDER_INVALID, false);
2816   Output_data_strtab* strtab_data =
2817       new Output_data_strtab(incr->get_stringpool());
2818   incremental_strtab_os->add_output_section_data(strtab_data);
2819
2820   incremental_inputs_os->set_after_input_sections();
2821   incremental_symtab_os->set_after_input_sections();
2822   incremental_relocs_os->set_after_input_sections();
2823   incremental_got_plt_os->set_after_input_sections();
2824
2825   incremental_inputs_os->set_link_section(incremental_strtab_os);
2826   incremental_symtab_os->set_link_section(incremental_inputs_os);
2827   incremental_relocs_os->set_link_section(incremental_inputs_os);
2828   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2829 }
2830
2831 // Return whether SEG1 should be before SEG2 in the output file.  This
2832 // is based entirely on the segment type and flags.  When this is
2833 // called the segment addresses have normally not yet been set.
2834
2835 bool
2836 Layout::segment_precedes(const Output_segment* seg1,
2837                          const Output_segment* seg2)
2838 {
2839   elfcpp::Elf_Word type1 = seg1->type();
2840   elfcpp::Elf_Word type2 = seg2->type();
2841
2842   // The single PT_PHDR segment is required to precede any loadable
2843   // segment.  We simply make it always first.
2844   if (type1 == elfcpp::PT_PHDR)
2845     {
2846       gold_assert(type2 != elfcpp::PT_PHDR);
2847       return true;
2848     }
2849   if (type2 == elfcpp::PT_PHDR)
2850     return false;
2851
2852   // The single PT_INTERP segment is required to precede any loadable
2853   // segment.  We simply make it always second.
2854   if (type1 == elfcpp::PT_INTERP)
2855     {
2856       gold_assert(type2 != elfcpp::PT_INTERP);
2857       return true;
2858     }
2859   if (type2 == elfcpp::PT_INTERP)
2860     return false;
2861
2862   // We then put PT_LOAD segments before any other segments.
2863   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2864     return true;
2865   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2866     return false;
2867
2868   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2869   // segment, because that is where the dynamic linker expects to find
2870   // it (this is just for efficiency; other positions would also work
2871   // correctly).
2872   if (type1 == elfcpp::PT_TLS
2873       && type2 != elfcpp::PT_TLS
2874       && type2 != elfcpp::PT_GNU_RELRO)
2875     return false;
2876   if (type2 == elfcpp::PT_TLS
2877       && type1 != elfcpp::PT_TLS
2878       && type1 != elfcpp::PT_GNU_RELRO)
2879     return true;
2880
2881   // We put the PT_GNU_RELRO segment last, because that is where the
2882   // dynamic linker expects to find it (as with PT_TLS, this is just
2883   // for efficiency).
2884   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2885     return false;
2886   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2887     return true;
2888
2889   const elfcpp::Elf_Word flags1 = seg1->flags();
2890   const elfcpp::Elf_Word flags2 = seg2->flags();
2891
2892   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2893   // by the numeric segment type and flags values.  There should not
2894   // be more than one segment with the same type and flags.
2895   if (type1 != elfcpp::PT_LOAD)
2896     {
2897       if (type1 != type2)
2898         return type1 < type2;
2899       gold_assert(flags1 != flags2);
2900       return flags1 < flags2;
2901     }
2902
2903   // If the addresses are set already, sort by load address.
2904   if (seg1->are_addresses_set())
2905     {
2906       if (!seg2->are_addresses_set())
2907         return true;
2908
2909       unsigned int section_count1 = seg1->output_section_count();
2910       unsigned int section_count2 = seg2->output_section_count();
2911       if (section_count1 == 0 && section_count2 > 0)
2912         return true;
2913       if (section_count1 > 0 && section_count2 == 0)
2914         return false;
2915
2916       uint64_t paddr1 = (seg1->are_addresses_set()
2917                          ? seg1->paddr()
2918                          : seg1->first_section_load_address());
2919       uint64_t paddr2 = (seg2->are_addresses_set()
2920                          ? seg2->paddr()
2921                          : seg2->first_section_load_address());
2922
2923       if (paddr1 != paddr2)
2924         return paddr1 < paddr2;
2925     }
2926   else if (seg2->are_addresses_set())
2927     return false;
2928
2929   // A segment which holds large data comes after a segment which does
2930   // not hold large data.
2931   if (seg1->is_large_data_segment())
2932     {
2933       if (!seg2->is_large_data_segment())
2934         return false;
2935     }
2936   else if (seg2->is_large_data_segment())
2937     return true;
2938
2939   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2940   // segments come before writable segments.  Then writable segments
2941   // with data come before writable segments without data.  Then
2942   // executable segments come before non-executable segments.  Then
2943   // the unlikely case of a non-readable segment comes before the
2944   // normal case of a readable segment.  If there are multiple
2945   // segments with the same type and flags, we require that the
2946   // address be set, and we sort by virtual address and then physical
2947   // address.
2948   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2949     return (flags1 & elfcpp::PF_W) == 0;
2950   if ((flags1 & elfcpp::PF_W) != 0
2951       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2952     return seg1->has_any_data_sections();
2953   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2954     return (flags1 & elfcpp::PF_X) != 0;
2955   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2956     return (flags1 & elfcpp::PF_R) == 0;
2957
2958   // We shouldn't get here--we shouldn't create segments which we
2959   // can't distinguish.  Unless of course we are using a weird linker
2960   // script.
2961   gold_assert(this->script_options_->saw_phdrs_clause());
2962   return false;
2963 }
2964
2965 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2966
2967 static off_t
2968 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2969 {
2970   uint64_t unsigned_off = off;
2971   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2972                           | (addr & (abi_pagesize - 1)));
2973   if (aligned_off < unsigned_off)
2974     aligned_off += abi_pagesize;
2975   return aligned_off;
2976 }
2977
2978 // Set the file offsets of all the segments, and all the sections they
2979 // contain.  They have all been created.  LOAD_SEG must be be laid out
2980 // first.  Return the offset of the data to follow.
2981
2982 off_t
2983 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2984                             unsigned int* pshndx)
2985 {
2986   // Sort them into the final order.  We use a stable sort so that we
2987   // don't randomize the order of indistinguishable segments created
2988   // by linker scripts.
2989   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2990                    Layout::Compare_segments(this));
2991
2992   // Find the PT_LOAD segments, and set their addresses and offsets
2993   // and their section's addresses and offsets.
2994   uint64_t addr;
2995   if (parameters->options().user_set_Ttext())
2996     addr = parameters->options().Ttext();
2997   else if (parameters->options().output_is_position_independent())
2998     addr = 0;
2999   else
3000     addr = target->default_text_segment_address();
3001   off_t off = 0;
3002
3003   // If LOAD_SEG is NULL, then the file header and segment headers
3004   // will not be loadable.  But they still need to be at offset 0 in
3005   // the file.  Set their offsets now.
3006   if (load_seg == NULL)
3007     {
3008       for (Data_list::iterator p = this->special_output_list_.begin();
3009            p != this->special_output_list_.end();
3010            ++p)
3011         {
3012           off = align_address(off, (*p)->addralign());
3013           (*p)->set_address_and_file_offset(0, off);
3014           off += (*p)->data_size();
3015         }
3016     }
3017
3018   unsigned int increase_relro = this->increase_relro_;
3019   if (this->script_options_->saw_sections_clause())
3020     increase_relro = 0;
3021
3022   const bool check_sections = parameters->options().check_sections();
3023   Output_segment* last_load_segment = NULL;
3024
3025   for (Segment_list::iterator p = this->segment_list_.begin();
3026        p != this->segment_list_.end();
3027        ++p)
3028     {
3029       if ((*p)->type() == elfcpp::PT_LOAD)
3030         {
3031           if (load_seg != NULL && load_seg != *p)
3032             gold_unreachable();
3033           load_seg = NULL;
3034
3035           bool are_addresses_set = (*p)->are_addresses_set();
3036           if (are_addresses_set)
3037             {
3038               // When it comes to setting file offsets, we care about
3039               // the physical address.
3040               addr = (*p)->paddr();
3041             }
3042           else if (parameters->options().user_set_Ttext()
3043                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3044             {
3045               are_addresses_set = true;
3046             }
3047           else if (parameters->options().user_set_Tdata()
3048                    && ((*p)->flags() & elfcpp::PF_W) != 0
3049                    && (!parameters->options().user_set_Tbss()
3050                        || (*p)->has_any_data_sections()))
3051             {
3052               addr = parameters->options().Tdata();
3053               are_addresses_set = true;
3054             }
3055           else if (parameters->options().user_set_Tbss()
3056                    && ((*p)->flags() & elfcpp::PF_W) != 0
3057                    && !(*p)->has_any_data_sections())
3058             {
3059               addr = parameters->options().Tbss();
3060               are_addresses_set = true;
3061             }
3062
3063           uint64_t orig_addr = addr;
3064           uint64_t orig_off = off;
3065
3066           uint64_t aligned_addr = 0;
3067           uint64_t abi_pagesize = target->abi_pagesize();
3068           uint64_t common_pagesize = target->common_pagesize();
3069
3070           if (!parameters->options().nmagic()
3071               && !parameters->options().omagic())
3072             (*p)->set_minimum_p_align(common_pagesize);
3073
3074           if (!are_addresses_set)
3075             {
3076               // Skip the address forward one page, maintaining the same
3077               // position within the page.  This lets us store both segments
3078               // overlapping on a single page in the file, but the loader will
3079               // put them on different pages in memory. We will revisit this
3080               // decision once we know the size of the segment.
3081
3082               addr = align_address(addr, (*p)->maximum_alignment());
3083               aligned_addr = addr;
3084
3085               if ((addr & (abi_pagesize - 1)) != 0)
3086                 addr = addr + abi_pagesize;
3087
3088               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3089             }
3090
3091           if (!parameters->options().nmagic()
3092               && !parameters->options().omagic())
3093             off = align_file_offset(off, addr, abi_pagesize);
3094           else if (load_seg == NULL)
3095             {
3096               // This is -N or -n with a section script which prevents
3097               // us from using a load segment.  We need to ensure that
3098               // the file offset is aligned to the alignment of the
3099               // segment.  This is because the linker script
3100               // implicitly assumed a zero offset.  If we don't align
3101               // here, then the alignment of the sections in the
3102               // linker script may not match the alignment of the
3103               // sections in the set_section_addresses call below,
3104               // causing an error about dot moving backward.
3105               off = align_address(off, (*p)->maximum_alignment());
3106             }
3107
3108           unsigned int shndx_hold = *pshndx;
3109           bool has_relro = false;
3110           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3111                                                           &increase_relro,
3112                                                           &has_relro,
3113                                                           &off, pshndx);
3114
3115           // Now that we know the size of this segment, we may be able
3116           // to save a page in memory, at the cost of wasting some
3117           // file space, by instead aligning to the start of a new
3118           // page.  Here we use the real machine page size rather than
3119           // the ABI mandated page size.  If the segment has been
3120           // aligned so that the relro data ends at a page boundary,
3121           // we do not try to realign it.
3122
3123           if (!are_addresses_set
3124               && !has_relro
3125               && aligned_addr != addr
3126               && !parameters->incremental())
3127             {
3128               uint64_t first_off = (common_pagesize
3129                                     - (aligned_addr
3130                                        & (common_pagesize - 1)));
3131               uint64_t last_off = new_addr & (common_pagesize - 1);
3132               if (first_off > 0
3133                   && last_off > 0
3134                   && ((aligned_addr & ~ (common_pagesize - 1))
3135                       != (new_addr & ~ (common_pagesize - 1)))
3136                   && first_off + last_off <= common_pagesize)
3137                 {
3138                   *pshndx = shndx_hold;
3139                   addr = align_address(aligned_addr, common_pagesize);
3140                   addr = align_address(addr, (*p)->maximum_alignment());
3141                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3142                   off = align_file_offset(off, addr, abi_pagesize);
3143
3144                   increase_relro = this->increase_relro_;
3145                   if (this->script_options_->saw_sections_clause())
3146                     increase_relro = 0;
3147                   has_relro = false;
3148
3149                   new_addr = (*p)->set_section_addresses(this, true, addr,
3150                                                          &increase_relro,
3151                                                          &has_relro,
3152                                                          &off, pshndx);
3153                 }
3154             }
3155
3156           addr = new_addr;
3157
3158           // Implement --check-sections.  We know that the segments
3159           // are sorted by LMA.
3160           if (check_sections && last_load_segment != NULL)
3161             {
3162               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3163               if (last_load_segment->paddr() + last_load_segment->memsz()
3164                   > (*p)->paddr())
3165                 {
3166                   unsigned long long lb1 = last_load_segment->paddr();
3167                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3168                   unsigned long long lb2 = (*p)->paddr();
3169                   unsigned long long le2 = lb2 + (*p)->memsz();
3170                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3171                                "[0x%llx -> 0x%llx]"),
3172                              lb1, le1, lb2, le2);
3173                 }
3174             }
3175           last_load_segment = *p;
3176         }
3177     }
3178
3179   // Handle the non-PT_LOAD segments, setting their offsets from their
3180   // section's offsets.
3181   for (Segment_list::iterator p = this->segment_list_.begin();
3182        p != this->segment_list_.end();
3183        ++p)
3184     {
3185       if ((*p)->type() != elfcpp::PT_LOAD)
3186         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3187                          ? increase_relro
3188                          : 0);
3189     }
3190
3191   // Set the TLS offsets for each section in the PT_TLS segment.
3192   if (this->tls_segment_ != NULL)
3193     this->tls_segment_->set_tls_offsets();
3194
3195   return off;
3196 }
3197
3198 // Set the offsets of all the allocated sections when doing a
3199 // relocatable link.  This does the same jobs as set_segment_offsets,
3200 // only for a relocatable link.
3201
3202 off_t
3203 Layout::set_relocatable_section_offsets(Output_data* file_header,
3204                                         unsigned int* pshndx)
3205 {
3206   off_t off = 0;
3207
3208   file_header->set_address_and_file_offset(0, 0);
3209   off += file_header->data_size();
3210
3211   for (Section_list::iterator p = this->section_list_.begin();
3212        p != this->section_list_.end();
3213        ++p)
3214     {
3215       // We skip unallocated sections here, except that group sections
3216       // have to come first.
3217       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3218           && (*p)->type() != elfcpp::SHT_GROUP)
3219         continue;
3220
3221       off = align_address(off, (*p)->addralign());
3222
3223       // The linker script might have set the address.
3224       if (!(*p)->is_address_valid())
3225         (*p)->set_address(0);
3226       (*p)->set_file_offset(off);
3227       (*p)->finalize_data_size();
3228       off += (*p)->data_size();
3229
3230       (*p)->set_out_shndx(*pshndx);
3231       ++*pshndx;
3232     }
3233
3234   return off;
3235 }
3236
3237 // Set the file offset of all the sections not associated with a
3238 // segment.
3239
3240 off_t
3241 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3242 {
3243   off_t startoff = off;
3244   off_t maxoff = off;
3245
3246   for (Section_list::iterator p = this->unattached_section_list_.begin();
3247        p != this->unattached_section_list_.end();
3248        ++p)
3249     {
3250       // The symtab section is handled in create_symtab_sections.
3251       if (*p == this->symtab_section_)
3252         continue;
3253
3254       // If we've already set the data size, don't set it again.
3255       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3256         continue;
3257
3258       if (pass == BEFORE_INPUT_SECTIONS_PASS
3259           && (*p)->requires_postprocessing())
3260         {
3261           (*p)->create_postprocessing_buffer();
3262           this->any_postprocessing_sections_ = true;
3263         }
3264
3265       if (pass == BEFORE_INPUT_SECTIONS_PASS
3266           && (*p)->after_input_sections())
3267         continue;
3268       else if (pass == POSTPROCESSING_SECTIONS_PASS
3269                && (!(*p)->after_input_sections()
3270                    || (*p)->type() == elfcpp::SHT_STRTAB))
3271         continue;
3272       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3273                && (!(*p)->after_input_sections()
3274                    || (*p)->type() != elfcpp::SHT_STRTAB))
3275         continue;
3276
3277       if (!parameters->incremental_update())
3278         {
3279           off = align_address(off, (*p)->addralign());
3280           (*p)->set_file_offset(off);
3281           (*p)->finalize_data_size();
3282         }
3283       else
3284         {
3285           // Incremental update: allocate file space from free list.
3286           (*p)->pre_finalize_data_size();
3287           off_t current_size = (*p)->current_data_size();
3288           off = this->allocate(current_size, (*p)->addralign(), startoff);
3289           if (off == -1)
3290             {
3291               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3292                 this->free_list_.dump();
3293               gold_assert((*p)->output_section() != NULL);
3294               gold_fallback(_("out of patch space for section %s; "
3295                               "relink with --incremental-full"),
3296                             (*p)->output_section()->name());
3297             }
3298           (*p)->set_file_offset(off);
3299           (*p)->finalize_data_size();
3300           if ((*p)->data_size() > current_size)
3301             {
3302               gold_assert((*p)->output_section() != NULL);
3303               gold_fallback(_("%s: section changed size; "
3304                               "relink with --incremental-full"),
3305                             (*p)->output_section()->name());
3306             }
3307           gold_debug(DEBUG_INCREMENTAL,
3308                      "set_section_offsets: %08lx %08lx %s",
3309                      static_cast<long>(off),
3310                      static_cast<long>((*p)->data_size()),
3311                      ((*p)->output_section() != NULL
3312                       ? (*p)->output_section()->name() : "(special)"));
3313         }
3314
3315       off += (*p)->data_size();
3316       if (off > maxoff)
3317         maxoff = off;
3318
3319       // At this point the name must be set.
3320       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3321         this->namepool_.add((*p)->name(), false, NULL);
3322     }
3323   return maxoff;
3324 }
3325
3326 // Set the section indexes of all the sections not associated with a
3327 // segment.
3328
3329 unsigned int
3330 Layout::set_section_indexes(unsigned int shndx)
3331 {
3332   for (Section_list::iterator p = this->unattached_section_list_.begin();
3333        p != this->unattached_section_list_.end();
3334        ++p)
3335     {
3336       if (!(*p)->has_out_shndx())
3337         {
3338           (*p)->set_out_shndx(shndx);
3339           ++shndx;
3340         }
3341     }
3342   return shndx;
3343 }
3344
3345 // Set the section addresses according to the linker script.  This is
3346 // only called when we see a SECTIONS clause.  This returns the
3347 // program segment which should hold the file header and segment
3348 // headers, if any.  It will return NULL if they should not be in a
3349 // segment.
3350
3351 Output_segment*
3352 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3353 {
3354   Script_sections* ss = this->script_options_->script_sections();
3355   gold_assert(ss->saw_sections_clause());
3356   return this->script_options_->set_section_addresses(symtab, this);
3357 }
3358
3359 // Place the orphan sections in the linker script.
3360
3361 void
3362 Layout::place_orphan_sections_in_script()
3363 {
3364   Script_sections* ss = this->script_options_->script_sections();
3365   gold_assert(ss->saw_sections_clause());
3366
3367   // Place each orphaned output section in the script.
3368   for (Section_list::iterator p = this->section_list_.begin();
3369        p != this->section_list_.end();
3370        ++p)
3371     {
3372       if (!(*p)->found_in_sections_clause())
3373         ss->place_orphan(*p);
3374     }
3375 }
3376
3377 // Count the local symbols in the regular symbol table and the dynamic
3378 // symbol table, and build the respective string pools.
3379
3380 void
3381 Layout::count_local_symbols(const Task* task,
3382                             const Input_objects* input_objects)
3383 {
3384   // First, figure out an upper bound on the number of symbols we'll
3385   // be inserting into each pool.  This helps us create the pools with
3386   // the right size, to avoid unnecessary hashtable resizing.
3387   unsigned int symbol_count = 0;
3388   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3389        p != input_objects->relobj_end();
3390        ++p)
3391     symbol_count += (*p)->local_symbol_count();
3392
3393   // Go from "upper bound" to "estimate."  We overcount for two
3394   // reasons: we double-count symbols that occur in more than one
3395   // object file, and we count symbols that are dropped from the
3396   // output.  Add it all together and assume we overcount by 100%.
3397   symbol_count /= 2;
3398
3399   // We assume all symbols will go into both the sympool and dynpool.
3400   this->sympool_.reserve(symbol_count);
3401   this->dynpool_.reserve(symbol_count);
3402
3403   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3404        p != input_objects->relobj_end();
3405        ++p)
3406     {
3407       Task_lock_obj<Object> tlo(task, *p);
3408       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3409     }
3410 }
3411
3412 // Create the symbol table sections.  Here we also set the final
3413 // values of the symbols.  At this point all the loadable sections are
3414 // fully laid out.  SHNUM is the number of sections so far.
3415
3416 void
3417 Layout::create_symtab_sections(const Input_objects* input_objects,
3418                                Symbol_table* symtab,
3419                                unsigned int shnum,
3420                                off_t* poff)
3421 {
3422   int symsize;
3423   unsigned int align;
3424   if (parameters->target().get_size() == 32)
3425     {
3426       symsize = elfcpp::Elf_sizes<32>::sym_size;
3427       align = 4;
3428     }
3429   else if (parameters->target().get_size() == 64)
3430     {
3431       symsize = elfcpp::Elf_sizes<64>::sym_size;
3432       align = 8;
3433     }
3434   else
3435     gold_unreachable();
3436
3437   // Compute file offsets relative to the start of the symtab section.
3438   off_t off = 0;
3439
3440   // Save space for the dummy symbol at the start of the section.  We
3441   // never bother to write this out--it will just be left as zero.
3442   off += symsize;
3443   unsigned int local_symbol_index = 1;
3444
3445   // Add STT_SECTION symbols for each Output section which needs one.
3446   for (Section_list::iterator p = this->section_list_.begin();
3447        p != this->section_list_.end();
3448        ++p)
3449     {
3450       if (!(*p)->needs_symtab_index())
3451         (*p)->set_symtab_index(-1U);
3452       else
3453         {
3454           (*p)->set_symtab_index(local_symbol_index);
3455           ++local_symbol_index;
3456           off += symsize;
3457         }
3458     }
3459
3460   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3461        p != input_objects->relobj_end();
3462        ++p)
3463     {
3464       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3465                                                         off, symtab);
3466       off += (index - local_symbol_index) * symsize;
3467       local_symbol_index = index;
3468     }
3469
3470   unsigned int local_symcount = local_symbol_index;
3471   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3472
3473   off_t dynoff;
3474   size_t dyn_global_index;
3475   size_t dyncount;
3476   if (this->dynsym_section_ == NULL)
3477     {
3478       dynoff = 0;
3479       dyn_global_index = 0;
3480       dyncount = 0;
3481     }
3482   else
3483     {
3484       dyn_global_index = this->dynsym_section_->info();
3485       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3486       dynoff = this->dynsym_section_->offset() + locsize;
3487       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3488       gold_assert(static_cast<off_t>(dyncount * symsize)
3489                   == this->dynsym_section_->data_size() - locsize);
3490     }
3491
3492   off_t global_off = off;
3493   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3494                          &this->sympool_, &local_symcount);
3495
3496   if (!parameters->options().strip_all())
3497     {
3498       this->sympool_.set_string_offsets();
3499
3500       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3501       Output_section* osymtab = this->make_output_section(symtab_name,
3502                                                           elfcpp::SHT_SYMTAB,
3503                                                           0, ORDER_INVALID,
3504                                                           false);
3505       this->symtab_section_ = osymtab;
3506
3507       Output_section_data* pos = new Output_data_fixed_space(off, align,
3508                                                              "** symtab");
3509       osymtab->add_output_section_data(pos);
3510
3511       // We generate a .symtab_shndx section if we have more than
3512       // SHN_LORESERVE sections.  Technically it is possible that we
3513       // don't need one, because it is possible that there are no
3514       // symbols in any of sections with indexes larger than
3515       // SHN_LORESERVE.  That is probably unusual, though, and it is
3516       // easier to always create one than to compute section indexes
3517       // twice (once here, once when writing out the symbols).
3518       if (shnum >= elfcpp::SHN_LORESERVE)
3519         {
3520           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3521                                                                false, NULL);
3522           Output_section* osymtab_xindex =
3523             this->make_output_section(symtab_xindex_name,
3524                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3525                                       ORDER_INVALID, false);
3526
3527           size_t symcount = off / symsize;
3528           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3529
3530           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3531
3532           osymtab_xindex->set_link_section(osymtab);
3533           osymtab_xindex->set_addralign(4);
3534           osymtab_xindex->set_entsize(4);
3535
3536           osymtab_xindex->set_after_input_sections();
3537
3538           // This tells the driver code to wait until the symbol table
3539           // has written out before writing out the postprocessing
3540           // sections, including the .symtab_shndx section.
3541           this->any_postprocessing_sections_ = true;
3542         }
3543
3544       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3545       Output_section* ostrtab = this->make_output_section(strtab_name,
3546                                                           elfcpp::SHT_STRTAB,
3547                                                           0, ORDER_INVALID,
3548                                                           false);
3549
3550       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3551       ostrtab->add_output_section_data(pstr);
3552
3553       off_t symtab_off;
3554       if (!parameters->incremental_update())
3555         symtab_off = align_address(*poff, align);
3556       else
3557         {
3558           symtab_off = this->allocate(off, align, *poff);
3559           if (off == -1)
3560             gold_fallback(_("out of patch space for symbol table; "
3561                             "relink with --incremental-full"));
3562           gold_debug(DEBUG_INCREMENTAL,
3563                      "create_symtab_sections: %08lx %08lx .symtab",
3564                      static_cast<long>(symtab_off),
3565                      static_cast<long>(off));
3566         }
3567
3568       symtab->set_file_offset(symtab_off + global_off);
3569       osymtab->set_file_offset(symtab_off);
3570       osymtab->finalize_data_size();
3571       osymtab->set_link_section(ostrtab);
3572       osymtab->set_info(local_symcount);
3573       osymtab->set_entsize(symsize);
3574
3575       if (symtab_off + off > *poff)
3576         *poff = symtab_off + off;
3577     }
3578 }
3579
3580 // Create the .shstrtab section, which holds the names of the
3581 // sections.  At the time this is called, we have created all the
3582 // output sections except .shstrtab itself.
3583
3584 Output_section*
3585 Layout::create_shstrtab()
3586 {
3587   // FIXME: We don't need to create a .shstrtab section if we are
3588   // stripping everything.
3589
3590   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3591
3592   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3593                                                  ORDER_INVALID, false);
3594
3595   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3596     {
3597       // We can't write out this section until we've set all the
3598       // section names, and we don't set the names of compressed
3599       // output sections until relocations are complete.  FIXME: With
3600       // the current names we use, this is unnecessary.
3601       os->set_after_input_sections();
3602     }
3603
3604   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3605   os->add_output_section_data(posd);
3606
3607   return os;
3608 }
3609
3610 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3611 // offset.
3612
3613 void
3614 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3615 {
3616   Output_section_headers* oshdrs;
3617   oshdrs = new Output_section_headers(this,
3618                                       &this->segment_list_,
3619                                       &this->section_list_,
3620                                       &this->unattached_section_list_,
3621                                       &this->namepool_,
3622                                       shstrtab_section);
3623   off_t off;
3624   if (!parameters->incremental_update())
3625     off = align_address(*poff, oshdrs->addralign());
3626   else
3627     {
3628       oshdrs->pre_finalize_data_size();
3629       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3630       if (off == -1)
3631           gold_fallback(_("out of patch space for section header table; "
3632                           "relink with --incremental-full"));
3633       gold_debug(DEBUG_INCREMENTAL,
3634                  "create_shdrs: %08lx %08lx (section header table)",
3635                  static_cast<long>(off),
3636                  static_cast<long>(off + oshdrs->data_size()));
3637     }
3638   oshdrs->set_address_and_file_offset(0, off);
3639   off += oshdrs->data_size();
3640   if (off > *poff)
3641     *poff = off;
3642   this->section_headers_ = oshdrs;
3643 }
3644
3645 // Count the allocated sections.
3646
3647 size_t
3648 Layout::allocated_output_section_count() const
3649 {
3650   size_t section_count = 0;
3651   for (Segment_list::const_iterator p = this->segment_list_.begin();
3652        p != this->segment_list_.end();
3653        ++p)
3654     section_count += (*p)->output_section_count();
3655   return section_count;
3656 }
3657
3658 // Create the dynamic symbol table.
3659
3660 void
3661 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3662                               Symbol_table* symtab,
3663                               Output_section** pdynstr,
3664                               unsigned int* plocal_dynamic_count,
3665                               std::vector<Symbol*>* pdynamic_symbols,
3666                               Versions* pversions)
3667 {
3668   // Count all the symbols in the dynamic symbol table, and set the
3669   // dynamic symbol indexes.
3670
3671   // Skip symbol 0, which is always all zeroes.
3672   unsigned int index = 1;
3673
3674   // Add STT_SECTION symbols for each Output section which needs one.
3675   for (Section_list::iterator p = this->section_list_.begin();
3676        p != this->section_list_.end();
3677        ++p)
3678     {
3679       if (!(*p)->needs_dynsym_index())
3680         (*p)->set_dynsym_index(-1U);
3681       else
3682         {
3683           (*p)->set_dynsym_index(index);
3684           ++index;
3685         }
3686     }
3687
3688   // Count the local symbols that need to go in the dynamic symbol table,
3689   // and set the dynamic symbol indexes.
3690   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3691        p != input_objects->relobj_end();
3692        ++p)
3693     {
3694       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3695       index = new_index;
3696     }
3697
3698   unsigned int local_symcount = index;
3699   *plocal_dynamic_count = local_symcount;
3700
3701   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3702                                      &this->dynpool_, pversions);
3703
3704   int symsize;
3705   unsigned int align;
3706   const int size = parameters->target().get_size();
3707   if (size == 32)
3708     {
3709       symsize = elfcpp::Elf_sizes<32>::sym_size;
3710       align = 4;
3711     }
3712   else if (size == 64)
3713     {
3714       symsize = elfcpp::Elf_sizes<64>::sym_size;
3715       align = 8;
3716     }
3717   else
3718     gold_unreachable();
3719
3720   // Create the dynamic symbol table section.
3721
3722   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3723                                                        elfcpp::SHT_DYNSYM,
3724                                                        elfcpp::SHF_ALLOC,
3725                                                        false,
3726                                                        ORDER_DYNAMIC_LINKER,
3727                                                        false);
3728
3729   // Check for NULL as a linker script may discard .dynsym.
3730   if (dynsym != NULL)
3731     {
3732       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3733                                                                align,
3734                                                                "** dynsym");
3735       dynsym->add_output_section_data(odata);
3736
3737       dynsym->set_info(local_symcount);
3738       dynsym->set_entsize(symsize);
3739       dynsym->set_addralign(align);
3740
3741       this->dynsym_section_ = dynsym;
3742     }
3743
3744   Output_data_dynamic* const odyn = this->dynamic_data_;
3745   if (odyn != NULL)
3746     {
3747       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3748       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3749     }
3750
3751   // If there are more than SHN_LORESERVE allocated sections, we
3752   // create a .dynsym_shndx section.  It is possible that we don't
3753   // need one, because it is possible that there are no dynamic
3754   // symbols in any of the sections with indexes larger than
3755   // SHN_LORESERVE.  This is probably unusual, though, and at this
3756   // time we don't know the actual section indexes so it is
3757   // inconvenient to check.
3758   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3759     {
3760       Output_section* dynsym_xindex =
3761         this->choose_output_section(NULL, ".dynsym_shndx",
3762                                     elfcpp::SHT_SYMTAB_SHNDX,
3763                                     elfcpp::SHF_ALLOC,
3764                                     false, ORDER_DYNAMIC_LINKER, false);
3765
3766       if (dynsym_xindex != NULL)
3767         {
3768           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3769
3770           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3771
3772           dynsym_xindex->set_link_section(dynsym);
3773           dynsym_xindex->set_addralign(4);
3774           dynsym_xindex->set_entsize(4);
3775
3776           dynsym_xindex->set_after_input_sections();
3777
3778           // This tells the driver code to wait until the symbol table
3779           // has written out before writing out the postprocessing
3780           // sections, including the .dynsym_shndx section.
3781           this->any_postprocessing_sections_ = true;
3782         }
3783     }
3784
3785   // Create the dynamic string table section.
3786
3787   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3788                                                        elfcpp::SHT_STRTAB,
3789                                                        elfcpp::SHF_ALLOC,
3790                                                        false,
3791                                                        ORDER_DYNAMIC_LINKER,
3792                                                        false);
3793
3794   if (dynstr != NULL)
3795     {
3796       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3797       dynstr->add_output_section_data(strdata);
3798
3799       if (dynsym != NULL)
3800         dynsym->set_link_section(dynstr);
3801       if (this->dynamic_section_ != NULL)
3802         this->dynamic_section_->set_link_section(dynstr);
3803
3804       if (odyn != NULL)
3805         {
3806           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3807           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3808         }
3809
3810       *pdynstr = dynstr;
3811     }
3812
3813   // Create the hash tables.
3814
3815   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3816       || strcmp(parameters->options().hash_style(), "both") == 0)
3817     {
3818       unsigned char* phash;
3819       unsigned int hashlen;
3820       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3821                                     &phash, &hashlen);
3822
3823       Output_section* hashsec =
3824         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3825                                     elfcpp::SHF_ALLOC, false,
3826                                     ORDER_DYNAMIC_LINKER, false);
3827
3828       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3829                                                                    hashlen,
3830                                                                    align,
3831                                                                    "** hash");
3832       if (hashsec != NULL && hashdata != NULL)
3833         hashsec->add_output_section_data(hashdata);
3834
3835       if (hashsec != NULL)
3836         {
3837           if (dynsym != NULL)
3838             hashsec->set_link_section(dynsym);
3839           hashsec->set_entsize(4);
3840         }
3841
3842       if (odyn != NULL)
3843         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3844     }
3845
3846   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3847       || strcmp(parameters->options().hash_style(), "both") == 0)
3848     {
3849       unsigned char* phash;
3850       unsigned int hashlen;
3851       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3852                                     &phash, &hashlen);
3853
3854       Output_section* hashsec =
3855         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3856                                     elfcpp::SHF_ALLOC, false,
3857                                     ORDER_DYNAMIC_LINKER, false);
3858
3859       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3860                                                                    hashlen,
3861                                                                    align,
3862                                                                    "** hash");
3863       if (hashsec != NULL && hashdata != NULL)
3864         hashsec->add_output_section_data(hashdata);
3865
3866       if (hashsec != NULL)
3867         {
3868           if (dynsym != NULL)
3869             hashsec->set_link_section(dynsym);
3870
3871           // For a 64-bit target, the entries in .gnu.hash do not have
3872           // a uniform size, so we only set the entry size for a
3873           // 32-bit target.
3874           if (parameters->target().get_size() == 32)
3875             hashsec->set_entsize(4);
3876
3877           if (odyn != NULL)
3878             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3879         }
3880     }
3881 }
3882
3883 // Assign offsets to each local portion of the dynamic symbol table.
3884
3885 void
3886 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3887 {
3888   Output_section* dynsym = this->dynsym_section_;
3889   if (dynsym == NULL)
3890     return;
3891
3892   off_t off = dynsym->offset();
3893
3894   // Skip the dummy symbol at the start of the section.
3895   off += dynsym->entsize();
3896
3897   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3898        p != input_objects->relobj_end();
3899        ++p)
3900     {
3901       unsigned int count = (*p)->set_local_dynsym_offset(off);
3902       off += count * dynsym->entsize();
3903     }
3904 }
3905
3906 // Create the version sections.
3907
3908 void
3909 Layout::create_version_sections(const Versions* versions,
3910                                 const Symbol_table* symtab,
3911                                 unsigned int local_symcount,
3912                                 const std::vector<Symbol*>& dynamic_symbols,
3913                                 const Output_section* dynstr)
3914 {
3915   if (!versions->any_defs() && !versions->any_needs())
3916     return;
3917
3918   switch (parameters->size_and_endianness())
3919     {
3920 #ifdef HAVE_TARGET_32_LITTLE
3921     case Parameters::TARGET_32_LITTLE:
3922       this->sized_create_version_sections<32, false>(versions, symtab,
3923                                                      local_symcount,
3924                                                      dynamic_symbols, dynstr);
3925       break;
3926 #endif
3927 #ifdef HAVE_TARGET_32_BIG
3928     case Parameters::TARGET_32_BIG:
3929       this->sized_create_version_sections<32, true>(versions, symtab,
3930                                                     local_symcount,
3931                                                     dynamic_symbols, dynstr);
3932       break;
3933 #endif
3934 #ifdef HAVE_TARGET_64_LITTLE
3935     case Parameters::TARGET_64_LITTLE:
3936       this->sized_create_version_sections<64, false>(versions, symtab,
3937                                                      local_symcount,
3938                                                      dynamic_symbols, dynstr);
3939       break;
3940 #endif
3941 #ifdef HAVE_TARGET_64_BIG
3942     case Parameters::TARGET_64_BIG:
3943       this->sized_create_version_sections<64, true>(versions, symtab,
3944                                                     local_symcount,
3945                                                     dynamic_symbols, dynstr);
3946       break;
3947 #endif
3948     default:
3949       gold_unreachable();
3950     }
3951 }
3952
3953 // Create the version sections, sized version.
3954
3955 template<int size, bool big_endian>
3956 void
3957 Layout::sized_create_version_sections(
3958     const Versions* versions,
3959     const Symbol_table* symtab,
3960     unsigned int local_symcount,
3961     const std::vector<Symbol*>& dynamic_symbols,
3962     const Output_section* dynstr)
3963 {
3964   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3965                                                      elfcpp::SHT_GNU_versym,
3966                                                      elfcpp::SHF_ALLOC,
3967                                                      false,
3968                                                      ORDER_DYNAMIC_LINKER,
3969                                                      false);
3970
3971   // Check for NULL since a linker script may discard this section.
3972   if (vsec != NULL)
3973     {
3974       unsigned char* vbuf;
3975       unsigned int vsize;
3976       versions->symbol_section_contents<size, big_endian>(symtab,
3977                                                           &this->dynpool_,
3978                                                           local_symcount,
3979                                                           dynamic_symbols,
3980                                                           &vbuf, &vsize);
3981
3982       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3983                                                                 "** versions");
3984
3985       vsec->add_output_section_data(vdata);
3986       vsec->set_entsize(2);
3987       vsec->set_link_section(this->dynsym_section_);
3988     }
3989
3990   Output_data_dynamic* const odyn = this->dynamic_data_;
3991   if (odyn != NULL && vsec != NULL)
3992     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3993
3994   if (versions->any_defs())
3995     {
3996       Output_section* vdsec;
3997       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
3998                                           elfcpp::SHT_GNU_verdef,
3999                                           elfcpp::SHF_ALLOC,
4000                                           false, ORDER_DYNAMIC_LINKER, false);
4001
4002       if (vdsec != NULL)
4003         {
4004           unsigned char* vdbuf;
4005           unsigned int vdsize;
4006           unsigned int vdentries;
4007           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4008                                                            &vdbuf, &vdsize,
4009                                                            &vdentries);
4010
4011           Output_section_data* vddata =
4012             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4013
4014           vdsec->add_output_section_data(vddata);
4015           vdsec->set_link_section(dynstr);
4016           vdsec->set_info(vdentries);
4017
4018           if (odyn != NULL)
4019             {
4020               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4021               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4022             }
4023         }
4024     }
4025
4026   if (versions->any_needs())
4027     {
4028       Output_section* vnsec;
4029       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4030                                           elfcpp::SHT_GNU_verneed,
4031                                           elfcpp::SHF_ALLOC,
4032                                           false, ORDER_DYNAMIC_LINKER, false);
4033
4034       if (vnsec != NULL)
4035         {
4036           unsigned char* vnbuf;
4037           unsigned int vnsize;
4038           unsigned int vnentries;
4039           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4040                                                             &vnbuf, &vnsize,
4041                                                             &vnentries);
4042
4043           Output_section_data* vndata =
4044             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4045
4046           vnsec->add_output_section_data(vndata);
4047           vnsec->set_link_section(dynstr);
4048           vnsec->set_info(vnentries);
4049
4050           if (odyn != NULL)
4051             {
4052               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4053               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4054             }
4055         }
4056     }
4057 }
4058
4059 // Create the .interp section and PT_INTERP segment.
4060
4061 void
4062 Layout::create_interp(const Target* target)
4063 {
4064   gold_assert(this->interp_segment_ == NULL);
4065
4066   const char* interp = parameters->options().dynamic_linker();
4067   if (interp == NULL)
4068     {
4069       interp = target->dynamic_linker();
4070       gold_assert(interp != NULL);
4071     }
4072
4073   size_t len = strlen(interp) + 1;
4074
4075   Output_section_data* odata = new Output_data_const(interp, len, 1);
4076
4077   Output_section* osec = this->choose_output_section(NULL, ".interp",
4078                                                      elfcpp::SHT_PROGBITS,
4079                                                      elfcpp::SHF_ALLOC,
4080                                                      false, ORDER_INTERP,
4081                                                      false);
4082   if (osec != NULL)
4083     osec->add_output_section_data(odata);
4084 }
4085
4086 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4087 // called by the target-specific code.  This does nothing if not doing
4088 // a dynamic link.
4089
4090 // USE_REL is true for REL relocs rather than RELA relocs.
4091
4092 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4093
4094 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4095 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4096 // some targets have multiple reloc sections in PLT_REL.
4097
4098 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4099 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4100 // section.
4101
4102 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4103 // executable.
4104
4105 void
4106 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4107                                 const Output_data* plt_rel,
4108                                 const Output_data_reloc_generic* dyn_rel,
4109                                 bool add_debug, bool dynrel_includes_plt)
4110 {
4111   Output_data_dynamic* odyn = this->dynamic_data_;
4112   if (odyn == NULL)
4113     return;
4114
4115   if (plt_got != NULL && plt_got->output_section() != NULL)
4116     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4117
4118   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4119     {
4120       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4121       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4122       odyn->add_constant(elfcpp::DT_PLTREL,
4123                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4124     }
4125
4126   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4127     {
4128       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4129                                 dyn_rel->output_section());
4130       if (plt_rel != NULL
4131           && plt_rel->output_section() != NULL
4132           && dynrel_includes_plt)
4133         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4134                                dyn_rel->output_section(),
4135                                plt_rel->output_section());
4136       else
4137         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4138                                dyn_rel->output_section());
4139       const int size = parameters->target().get_size();
4140       elfcpp::DT rel_tag;
4141       int rel_size;
4142       if (use_rel)
4143         {
4144           rel_tag = elfcpp::DT_RELENT;
4145           if (size == 32)
4146             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4147           else if (size == 64)
4148             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4149           else
4150             gold_unreachable();
4151         }
4152       else
4153         {
4154           rel_tag = elfcpp::DT_RELAENT;
4155           if (size == 32)
4156             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4157           else if (size == 64)
4158             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4159           else
4160             gold_unreachable();
4161         }
4162       odyn->add_constant(rel_tag, rel_size);
4163
4164       if (parameters->options().combreloc())
4165         {
4166           size_t c = dyn_rel->relative_reloc_count();
4167           if (c > 0)
4168             odyn->add_constant((use_rel
4169                                 ? elfcpp::DT_RELCOUNT
4170                                 : elfcpp::DT_RELACOUNT),
4171                                c);
4172         }
4173     }
4174
4175   if (add_debug && !parameters->options().shared())
4176     {
4177       // The value of the DT_DEBUG tag is filled in by the dynamic
4178       // linker at run time, and used by the debugger.
4179       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4180     }
4181 }
4182
4183 // Finish the .dynamic section and PT_DYNAMIC segment.
4184
4185 void
4186 Layout::finish_dynamic_section(const Input_objects* input_objects,
4187                                const Symbol_table* symtab)
4188 {
4189   if (!this->script_options_->saw_phdrs_clause()
4190       && this->dynamic_section_ != NULL)
4191     {
4192       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4193                                                        (elfcpp::PF_R
4194                                                         | elfcpp::PF_W));
4195       oseg->add_output_section_to_nonload(this->dynamic_section_,
4196                                           elfcpp::PF_R | elfcpp::PF_W);
4197     }
4198
4199   Output_data_dynamic* const odyn = this->dynamic_data_;
4200   if (odyn == NULL)
4201     return;
4202
4203   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4204        p != input_objects->dynobj_end();
4205        ++p)
4206     {
4207       if (!(*p)->is_needed() && (*p)->as_needed())
4208         {
4209           // This dynamic object was linked with --as-needed, but it
4210           // is not needed.
4211           continue;
4212         }
4213
4214       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4215     }
4216
4217   if (parameters->options().shared())
4218     {
4219       const char* soname = parameters->options().soname();
4220       if (soname != NULL)
4221         odyn->add_string(elfcpp::DT_SONAME, soname);
4222     }
4223
4224   Symbol* sym = symtab->lookup(parameters->options().init());
4225   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4226     odyn->add_symbol(elfcpp::DT_INIT, sym);
4227
4228   sym = symtab->lookup(parameters->options().fini());
4229   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4230     odyn->add_symbol(elfcpp::DT_FINI, sym);
4231
4232   // Look for .init_array, .preinit_array and .fini_array by checking
4233   // section types.
4234   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4235       p != this->section_list_.end();
4236       ++p)
4237     switch((*p)->type())
4238       {
4239       case elfcpp::SHT_FINI_ARRAY:
4240         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4241         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4242         break;
4243       case elfcpp::SHT_INIT_ARRAY:
4244         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4245         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4246         break;
4247       case elfcpp::SHT_PREINIT_ARRAY:
4248         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4249         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4250         break;
4251       default:
4252         break;
4253       }
4254   
4255   // Add a DT_RPATH entry if needed.
4256   const General_options::Dir_list& rpath(parameters->options().rpath());
4257   if (!rpath.empty())
4258     {
4259       std::string rpath_val;
4260       for (General_options::Dir_list::const_iterator p = rpath.begin();
4261            p != rpath.end();
4262            ++p)
4263         {
4264           if (rpath_val.empty())
4265             rpath_val = p->name();
4266           else
4267             {
4268               // Eliminate duplicates.
4269               General_options::Dir_list::const_iterator q;
4270               for (q = rpath.begin(); q != p; ++q)
4271                 if (q->name() == p->name())
4272                   break;
4273               if (q == p)
4274                 {
4275                   rpath_val += ':';
4276                   rpath_val += p->name();
4277                 }
4278             }
4279         }
4280
4281       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4282       if (parameters->options().enable_new_dtags())
4283         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4284     }
4285
4286   // Look for text segments that have dynamic relocations.
4287   bool have_textrel = false;
4288   if (!this->script_options_->saw_sections_clause())
4289     {
4290       for (Segment_list::const_iterator p = this->segment_list_.begin();
4291            p != this->segment_list_.end();
4292            ++p)
4293         {
4294           if ((*p)->type() == elfcpp::PT_LOAD
4295               && ((*p)->flags() & elfcpp::PF_W) == 0
4296               && (*p)->has_dynamic_reloc())
4297             {
4298               have_textrel = true;
4299               break;
4300             }
4301         }
4302     }
4303   else
4304     {
4305       // We don't know the section -> segment mapping, so we are
4306       // conservative and just look for readonly sections with
4307       // relocations.  If those sections wind up in writable segments,
4308       // then we have created an unnecessary DT_TEXTREL entry.
4309       for (Section_list::const_iterator p = this->section_list_.begin();
4310            p != this->section_list_.end();
4311            ++p)
4312         {
4313           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4314               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4315               && (*p)->has_dynamic_reloc())
4316             {
4317               have_textrel = true;
4318               break;
4319             }
4320         }
4321     }
4322
4323   if (parameters->options().filter() != NULL)
4324     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4325   if (parameters->options().any_auxiliary())
4326     {
4327       for (options::String_set::const_iterator p =
4328              parameters->options().auxiliary_begin();
4329            p != parameters->options().auxiliary_end();
4330            ++p)
4331         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4332     }
4333
4334   // Add a DT_FLAGS entry if necessary.
4335   unsigned int flags = 0;
4336   if (have_textrel)
4337     {
4338       // Add a DT_TEXTREL for compatibility with older loaders.
4339       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4340       flags |= elfcpp::DF_TEXTREL;
4341
4342       if (parameters->options().text())
4343         gold_error(_("read-only segment has dynamic relocations"));
4344       else if (parameters->options().warn_shared_textrel()
4345                && parameters->options().shared())
4346         gold_warning(_("shared library text segment is not shareable"));
4347     }
4348   if (parameters->options().shared() && this->has_static_tls())
4349     flags |= elfcpp::DF_STATIC_TLS;
4350   if (parameters->options().origin())
4351     flags |= elfcpp::DF_ORIGIN;
4352   if (parameters->options().Bsymbolic())
4353     {
4354       flags |= elfcpp::DF_SYMBOLIC;
4355       // Add DT_SYMBOLIC for compatibility with older loaders.
4356       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4357     }
4358   if (parameters->options().now())
4359     flags |= elfcpp::DF_BIND_NOW;
4360   if (flags != 0)
4361     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4362
4363   flags = 0;
4364   if (parameters->options().initfirst())
4365     flags |= elfcpp::DF_1_INITFIRST;
4366   if (parameters->options().interpose())
4367     flags |= elfcpp::DF_1_INTERPOSE;
4368   if (parameters->options().loadfltr())
4369     flags |= elfcpp::DF_1_LOADFLTR;
4370   if (parameters->options().nodefaultlib())
4371     flags |= elfcpp::DF_1_NODEFLIB;
4372   if (parameters->options().nodelete())
4373     flags |= elfcpp::DF_1_NODELETE;
4374   if (parameters->options().nodlopen())
4375     flags |= elfcpp::DF_1_NOOPEN;
4376   if (parameters->options().nodump())
4377     flags |= elfcpp::DF_1_NODUMP;
4378   if (!parameters->options().shared())
4379     flags &= ~(elfcpp::DF_1_INITFIRST
4380                | elfcpp::DF_1_NODELETE
4381                | elfcpp::DF_1_NOOPEN);
4382   if (parameters->options().origin())
4383     flags |= elfcpp::DF_1_ORIGIN;
4384   if (parameters->options().now())
4385     flags |= elfcpp::DF_1_NOW;
4386   if (parameters->options().Bgroup())
4387     flags |= elfcpp::DF_1_GROUP;
4388   if (flags != 0)
4389     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4390 }
4391
4392 // Set the size of the _DYNAMIC symbol table to be the size of the
4393 // dynamic data.
4394
4395 void
4396 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4397 {
4398   Output_data_dynamic* const odyn = this->dynamic_data_;
4399   if (odyn == NULL)
4400     return;
4401   odyn->finalize_data_size();
4402   if (this->dynamic_symbol_ == NULL)
4403     return;
4404   off_t data_size = odyn->data_size();
4405   const int size = parameters->target().get_size();
4406   if (size == 32)
4407     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4408   else if (size == 64)
4409     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4410   else
4411     gold_unreachable();
4412 }
4413
4414 // The mapping of input section name prefixes to output section names.
4415 // In some cases one prefix is itself a prefix of another prefix; in
4416 // such a case the longer prefix must come first.  These prefixes are
4417 // based on the GNU linker default ELF linker script.
4418
4419 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4420 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4421 {
4422   MAPPING_INIT(".text.", ".text"),
4423   MAPPING_INIT(".rodata.", ".rodata"),
4424   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4425   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4426   MAPPING_INIT(".data.", ".data"),
4427   MAPPING_INIT(".bss.", ".bss"),
4428   MAPPING_INIT(".tdata.", ".tdata"),
4429   MAPPING_INIT(".tbss.", ".tbss"),
4430   MAPPING_INIT(".init_array.", ".init_array"),
4431   MAPPING_INIT(".fini_array.", ".fini_array"),
4432   MAPPING_INIT(".sdata.", ".sdata"),
4433   MAPPING_INIT(".sbss.", ".sbss"),
4434   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4435   // differently depending on whether it is creating a shared library.
4436   MAPPING_INIT(".sdata2.", ".sdata"),
4437   MAPPING_INIT(".sbss2.", ".sbss"),
4438   MAPPING_INIT(".lrodata.", ".lrodata"),
4439   MAPPING_INIT(".ldata.", ".ldata"),
4440   MAPPING_INIT(".lbss.", ".lbss"),
4441   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4442   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4443   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4444   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4445   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4446   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4447   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4448   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4449   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4450   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4451   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4452   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4453   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4454   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4455   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4456   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4457   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4458   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4459   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4460   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4461   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4462 };
4463 #undef MAPPING_INIT
4464
4465 const int Layout::section_name_mapping_count =
4466   (sizeof(Layout::section_name_mapping)
4467    / sizeof(Layout::section_name_mapping[0]));
4468
4469 // Choose the output section name to use given an input section name.
4470 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4471 // length of NAME.
4472
4473 const char*
4474 Layout::output_section_name(const Relobj* relobj, const char* name,
4475                             size_t* plen)
4476 {
4477   // gcc 4.3 generates the following sorts of section names when it
4478   // needs a section name specific to a function:
4479   //   .text.FN
4480   //   .rodata.FN
4481   //   .sdata2.FN
4482   //   .data.FN
4483   //   .data.rel.FN
4484   //   .data.rel.local.FN
4485   //   .data.rel.ro.FN
4486   //   .data.rel.ro.local.FN
4487   //   .sdata.FN
4488   //   .bss.FN
4489   //   .sbss.FN
4490   //   .tdata.FN
4491   //   .tbss.FN
4492
4493   // The GNU linker maps all of those to the part before the .FN,
4494   // except that .data.rel.local.FN is mapped to .data, and
4495   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4496   // beginning with .data.rel.ro.local are grouped together.
4497
4498   // For an anonymous namespace, the string FN can contain a '.'.
4499
4500   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4501   // GNU linker maps to .rodata.
4502
4503   // The .data.rel.ro sections are used with -z relro.  The sections
4504   // are recognized by name.  We use the same names that the GNU
4505   // linker does for these sections.
4506
4507   // It is hard to handle this in a principled way, so we don't even
4508   // try.  We use a table of mappings.  If the input section name is
4509   // not found in the table, we simply use it as the output section
4510   // name.
4511
4512   const Section_name_mapping* psnm = section_name_mapping;
4513   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4514     {
4515       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4516         {
4517           *plen = psnm->tolen;
4518           return psnm->to;
4519         }
4520     }
4521
4522   // As an additional complication, .ctors sections are output in
4523   // either .ctors or .init_array sections, and .dtors sections are
4524   // output in either .dtors or .fini_array sections.
4525   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4526     {
4527       if (parameters->options().ctors_in_init_array())
4528         {
4529           *plen = 11;
4530           return name[1] == 'c' ? ".init_array" : ".fini_array";
4531         }
4532       else
4533         {
4534           *plen = 6;
4535           return name[1] == 'c' ? ".ctors" : ".dtors";
4536         }
4537     }
4538   if (parameters->options().ctors_in_init_array()
4539       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4540     {
4541       // To make .init_array/.fini_array work with gcc we must exclude
4542       // .ctors and .dtors sections from the crtbegin and crtend
4543       // files.
4544       if (relobj == NULL
4545           || (!Layout::match_file_name(relobj, "crtbegin")
4546               && !Layout::match_file_name(relobj, "crtend")))
4547         {
4548           *plen = 11;
4549           return name[1] == 'c' ? ".init_array" : ".fini_array";
4550         }
4551     }
4552
4553   return name;
4554 }
4555
4556 // Return true if RELOBJ is an input file whose base name matches
4557 // FILE_NAME.  The base name must have an extension of ".o", and must
4558 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4559 // to match crtbegin.o as well as crtbeginS.o without getting confused
4560 // by other possibilities.  Overall matching the file name this way is
4561 // a dreadful hack, but the GNU linker does it in order to better
4562 // support gcc, and we need to be compatible.
4563
4564 bool
4565 Layout::match_file_name(const Relobj* relobj, const char* match)
4566 {
4567   const std::string& file_name(relobj->name());
4568   const char* base_name = lbasename(file_name.c_str());
4569   size_t match_len = strlen(match);
4570   if (strncmp(base_name, match, match_len) != 0)
4571     return false;
4572   size_t base_len = strlen(base_name);
4573   if (base_len != match_len + 2 && base_len != match_len + 3)
4574     return false;
4575   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4576 }
4577
4578 // Check if a comdat group or .gnu.linkonce section with the given
4579 // NAME is selected for the link.  If there is already a section,
4580 // *KEPT_SECTION is set to point to the existing section and the
4581 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4582 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4583 // *KEPT_SECTION is set to the internal copy and the function returns
4584 // true.
4585
4586 bool
4587 Layout::find_or_add_kept_section(const std::string& name,
4588                                  Relobj* object,
4589                                  unsigned int shndx,
4590                                  bool is_comdat,
4591                                  bool is_group_name,
4592                                  Kept_section** kept_section)
4593 {
4594   // It's normal to see a couple of entries here, for the x86 thunk
4595   // sections.  If we see more than a few, we're linking a C++
4596   // program, and we resize to get more space to minimize rehashing.
4597   if (this->signatures_.size() > 4
4598       && !this->resized_signatures_)
4599     {
4600       reserve_unordered_map(&this->signatures_,
4601                             this->number_of_input_files_ * 64);
4602       this->resized_signatures_ = true;
4603     }
4604
4605   Kept_section candidate;
4606   std::pair<Signatures::iterator, bool> ins =
4607     this->signatures_.insert(std::make_pair(name, candidate));
4608
4609   if (kept_section != NULL)
4610     *kept_section = &ins.first->second;
4611   if (ins.second)
4612     {
4613       // This is the first time we've seen this signature.
4614       ins.first->second.set_object(object);
4615       ins.first->second.set_shndx(shndx);
4616       if (is_comdat)
4617         ins.first->second.set_is_comdat();
4618       if (is_group_name)
4619         ins.first->second.set_is_group_name();
4620       return true;
4621     }
4622
4623   // We have already seen this signature.
4624
4625   if (ins.first->second.is_group_name())
4626     {
4627       // We've already seen a real section group with this signature.
4628       // If the kept group is from a plugin object, and we're in the
4629       // replacement phase, accept the new one as a replacement.
4630       if (ins.first->second.object() == NULL
4631           && parameters->options().plugins()->in_replacement_phase())
4632         {
4633           ins.first->second.set_object(object);
4634           ins.first->second.set_shndx(shndx);
4635           return true;
4636         }
4637       return false;
4638     }
4639   else if (is_group_name)
4640     {
4641       // This is a real section group, and we've already seen a
4642       // linkonce section with this signature.  Record that we've seen
4643       // a section group, and don't include this section group.
4644       ins.first->second.set_is_group_name();
4645       return false;
4646     }
4647   else
4648     {
4649       // We've already seen a linkonce section and this is a linkonce
4650       // section.  These don't block each other--this may be the same
4651       // symbol name with different section types.
4652       return true;
4653     }
4654 }
4655
4656 // Store the allocated sections into the section list.
4657
4658 void
4659 Layout::get_allocated_sections(Section_list* section_list) const
4660 {
4661   for (Section_list::const_iterator p = this->section_list_.begin();
4662        p != this->section_list_.end();
4663        ++p)
4664     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4665       section_list->push_back(*p);
4666 }
4667
4668 // Create an output segment.
4669
4670 Output_segment*
4671 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4672 {
4673   gold_assert(!parameters->options().relocatable());
4674   Output_segment* oseg = new Output_segment(type, flags);
4675   this->segment_list_.push_back(oseg);
4676
4677   if (type == elfcpp::PT_TLS)
4678     this->tls_segment_ = oseg;
4679   else if (type == elfcpp::PT_GNU_RELRO)
4680     this->relro_segment_ = oseg;
4681   else if (type == elfcpp::PT_INTERP)
4682     this->interp_segment_ = oseg;
4683
4684   return oseg;
4685 }
4686
4687 // Return the file offset of the normal symbol table.
4688
4689 off_t
4690 Layout::symtab_section_offset() const
4691 {
4692   if (this->symtab_section_ != NULL)
4693     return this->symtab_section_->offset();
4694   return 0;
4695 }
4696
4697 // Return the section index of the normal symbol table.  It may have
4698 // been stripped by the -s/--strip-all option.
4699
4700 unsigned int
4701 Layout::symtab_section_shndx() const
4702 {
4703   if (this->symtab_section_ != NULL)
4704     return this->symtab_section_->out_shndx();
4705   return 0;
4706 }
4707
4708 // Write out the Output_sections.  Most won't have anything to write,
4709 // since most of the data will come from input sections which are
4710 // handled elsewhere.  But some Output_sections do have Output_data.
4711
4712 void
4713 Layout::write_output_sections(Output_file* of) const
4714 {
4715   for (Section_list::const_iterator p = this->section_list_.begin();
4716        p != this->section_list_.end();
4717        ++p)
4718     {
4719       if (!(*p)->after_input_sections())
4720         (*p)->write(of);
4721     }
4722 }
4723
4724 // Write out data not associated with a section or the symbol table.
4725
4726 void
4727 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4728 {
4729   if (!parameters->options().strip_all())
4730     {
4731       const Output_section* symtab_section = this->symtab_section_;
4732       for (Section_list::const_iterator p = this->section_list_.begin();
4733            p != this->section_list_.end();
4734            ++p)
4735         {
4736           if ((*p)->needs_symtab_index())
4737             {
4738               gold_assert(symtab_section != NULL);
4739               unsigned int index = (*p)->symtab_index();
4740               gold_assert(index > 0 && index != -1U);
4741               off_t off = (symtab_section->offset()
4742                            + index * symtab_section->entsize());
4743               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4744             }
4745         }
4746     }
4747
4748   const Output_section* dynsym_section = this->dynsym_section_;
4749   for (Section_list::const_iterator p = this->section_list_.begin();
4750        p != this->section_list_.end();
4751        ++p)
4752     {
4753       if ((*p)->needs_dynsym_index())
4754         {
4755           gold_assert(dynsym_section != NULL);
4756           unsigned int index = (*p)->dynsym_index();
4757           gold_assert(index > 0 && index != -1U);
4758           off_t off = (dynsym_section->offset()
4759                        + index * dynsym_section->entsize());
4760           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4761         }
4762     }
4763
4764   // Write out the Output_data which are not in an Output_section.
4765   for (Data_list::const_iterator p = this->special_output_list_.begin();
4766        p != this->special_output_list_.end();
4767        ++p)
4768     (*p)->write(of);
4769 }
4770
4771 // Write out the Output_sections which can only be written after the
4772 // input sections are complete.
4773
4774 void
4775 Layout::write_sections_after_input_sections(Output_file* of)
4776 {
4777   // Determine the final section offsets, and thus the final output
4778   // file size.  Note we finalize the .shstrab last, to allow the
4779   // after_input_section sections to modify their section-names before
4780   // writing.
4781   if (this->any_postprocessing_sections_)
4782     {
4783       off_t off = this->output_file_size_;
4784       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4785
4786       // Now that we've finalized the names, we can finalize the shstrab.
4787       off =
4788         this->set_section_offsets(off,
4789                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4790
4791       if (off > this->output_file_size_)
4792         {
4793           of->resize(off);
4794           this->output_file_size_ = off;
4795         }
4796     }
4797
4798   for (Section_list::const_iterator p = this->section_list_.begin();
4799        p != this->section_list_.end();
4800        ++p)
4801     {
4802       if ((*p)->after_input_sections())
4803         (*p)->write(of);
4804     }
4805
4806   this->section_headers_->write(of);
4807 }
4808
4809 // If the build ID requires computing a checksum, do so here, and
4810 // write it out.  We compute a checksum over the entire file because
4811 // that is simplest.
4812
4813 void
4814 Layout::write_build_id(Output_file* of) const
4815 {
4816   if (this->build_id_note_ == NULL)
4817     return;
4818
4819   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4820
4821   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4822                                           this->build_id_note_->data_size());
4823
4824   const char* style = parameters->options().build_id();
4825   if (strcmp(style, "sha1") == 0)
4826     {
4827       sha1_ctx ctx;
4828       sha1_init_ctx(&ctx);
4829       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4830       sha1_finish_ctx(&ctx, ov);
4831     }
4832   else if (strcmp(style, "md5") == 0)
4833     {
4834       md5_ctx ctx;
4835       md5_init_ctx(&ctx);
4836       md5_process_bytes(iv, this->output_file_size_, &ctx);
4837       md5_finish_ctx(&ctx, ov);
4838     }
4839   else
4840     gold_unreachable();
4841
4842   of->write_output_view(this->build_id_note_->offset(),
4843                         this->build_id_note_->data_size(),
4844                         ov);
4845
4846   of->free_input_view(0, this->output_file_size_, iv);
4847 }
4848
4849 // Write out a binary file.  This is called after the link is
4850 // complete.  IN is the temporary output file we used to generate the
4851 // ELF code.  We simply walk through the segments, read them from
4852 // their file offset in IN, and write them to their load address in
4853 // the output file.  FIXME: with a bit more work, we could support
4854 // S-records and/or Intel hex format here.
4855
4856 void
4857 Layout::write_binary(Output_file* in) const
4858 {
4859   gold_assert(parameters->options().oformat_enum()
4860               == General_options::OBJECT_FORMAT_BINARY);
4861
4862   // Get the size of the binary file.
4863   uint64_t max_load_address = 0;
4864   for (Segment_list::const_iterator p = this->segment_list_.begin();
4865        p != this->segment_list_.end();
4866        ++p)
4867     {
4868       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4869         {
4870           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4871           if (max_paddr > max_load_address)
4872             max_load_address = max_paddr;
4873         }
4874     }
4875
4876   Output_file out(parameters->options().output_file_name());
4877   out.open(max_load_address);
4878
4879   for (Segment_list::const_iterator p = this->segment_list_.begin();
4880        p != this->segment_list_.end();
4881        ++p)
4882     {
4883       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4884         {
4885           const unsigned char* vin = in->get_input_view((*p)->offset(),
4886                                                         (*p)->filesz());
4887           unsigned char* vout = out.get_output_view((*p)->paddr(),
4888                                                     (*p)->filesz());
4889           memcpy(vout, vin, (*p)->filesz());
4890           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4891           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4892         }
4893     }
4894
4895   out.close();
4896 }
4897
4898 // Print the output sections to the map file.
4899
4900 void
4901 Layout::print_to_mapfile(Mapfile* mapfile) const
4902 {
4903   for (Segment_list::const_iterator p = this->segment_list_.begin();
4904        p != this->segment_list_.end();
4905        ++p)
4906     (*p)->print_sections_to_mapfile(mapfile);
4907 }
4908
4909 // Print statistical information to stderr.  This is used for --stats.
4910
4911 void
4912 Layout::print_stats() const
4913 {
4914   this->namepool_.print_stats("section name pool");
4915   this->sympool_.print_stats("output symbol name pool");
4916   this->dynpool_.print_stats("dynamic name pool");
4917
4918   for (Section_list::const_iterator p = this->section_list_.begin();
4919        p != this->section_list_.end();
4920        ++p)
4921     (*p)->print_merge_stats();
4922 }
4923
4924 // Write_sections_task methods.
4925
4926 // We can always run this task.
4927
4928 Task_token*
4929 Write_sections_task::is_runnable()
4930 {
4931   return NULL;
4932 }
4933
4934 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4935 // when finished.
4936
4937 void
4938 Write_sections_task::locks(Task_locker* tl)
4939 {
4940   tl->add(this, this->output_sections_blocker_);
4941   tl->add(this, this->final_blocker_);
4942 }
4943
4944 // Run the task--write out the data.
4945
4946 void
4947 Write_sections_task::run(Workqueue*)
4948 {
4949   this->layout_->write_output_sections(this->of_);
4950 }
4951
4952 // Write_data_task methods.
4953
4954 // We can always run this task.
4955
4956 Task_token*
4957 Write_data_task::is_runnable()
4958 {
4959   return NULL;
4960 }
4961
4962 // We need to unlock FINAL_BLOCKER when finished.
4963
4964 void
4965 Write_data_task::locks(Task_locker* tl)
4966 {
4967   tl->add(this, this->final_blocker_);
4968 }
4969
4970 // Run the task--write out the data.
4971
4972 void
4973 Write_data_task::run(Workqueue*)
4974 {
4975   this->layout_->write_data(this->symtab_, this->of_);
4976 }
4977
4978 // Write_symbols_task methods.
4979
4980 // We can always run this task.
4981
4982 Task_token*
4983 Write_symbols_task::is_runnable()
4984 {
4985   return NULL;
4986 }
4987
4988 // We need to unlock FINAL_BLOCKER when finished.
4989
4990 void
4991 Write_symbols_task::locks(Task_locker* tl)
4992 {
4993   tl->add(this, this->final_blocker_);
4994 }
4995
4996 // Run the task--write out the symbols.
4997
4998 void
4999 Write_symbols_task::run(Workqueue*)
5000 {
5001   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5002                                this->layout_->symtab_xindex(),
5003                                this->layout_->dynsym_xindex(), this->of_);
5004 }
5005
5006 // Write_after_input_sections_task methods.
5007
5008 // We can only run this task after the input sections have completed.
5009
5010 Task_token*
5011 Write_after_input_sections_task::is_runnable()
5012 {
5013   if (this->input_sections_blocker_->is_blocked())
5014     return this->input_sections_blocker_;
5015   return NULL;
5016 }
5017
5018 // We need to unlock FINAL_BLOCKER when finished.
5019
5020 void
5021 Write_after_input_sections_task::locks(Task_locker* tl)
5022 {
5023   tl->add(this, this->final_blocker_);
5024 }
5025
5026 // Run the task.
5027
5028 void
5029 Write_after_input_sections_task::run(Workqueue*)
5030 {
5031   this->layout_->write_sections_after_input_sections(this->of_);
5032 }
5033
5034 // Close_task_runner methods.
5035
5036 // Run the task--close the file.
5037
5038 void
5039 Close_task_runner::run(Workqueue*, const Task*)
5040 {
5041   // If we need to compute a checksum for the BUILD if, we do so here.
5042   this->layout_->write_build_id(this->of_);
5043
5044   // If we've been asked to create a binary file, we do so here.
5045   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5046     this->layout_->write_binary(this->of_);
5047
5048   this->of_->close();
5049 }
5050
5051 // Instantiate the templates we need.  We could use the configure
5052 // script to restrict this to only the ones for implemented targets.
5053
5054 #ifdef HAVE_TARGET_32_LITTLE
5055 template
5056 Output_section*
5057 Layout::init_fixed_output_section<32, false>(
5058     const char* name,
5059     elfcpp::Shdr<32, false>& shdr);
5060 #endif
5061
5062 #ifdef HAVE_TARGET_32_BIG
5063 template
5064 Output_section*
5065 Layout::init_fixed_output_section<32, true>(
5066     const char* name,
5067     elfcpp::Shdr<32, true>& shdr);
5068 #endif
5069
5070 #ifdef HAVE_TARGET_64_LITTLE
5071 template
5072 Output_section*
5073 Layout::init_fixed_output_section<64, false>(
5074     const char* name,
5075     elfcpp::Shdr<64, false>& shdr);
5076 #endif
5077
5078 #ifdef HAVE_TARGET_64_BIG
5079 template
5080 Output_section*
5081 Layout::init_fixed_output_section<64, true>(
5082     const char* name,
5083     elfcpp::Shdr<64, true>& shdr);
5084 #endif
5085
5086 #ifdef HAVE_TARGET_32_LITTLE
5087 template
5088 Output_section*
5089 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5090                           unsigned int shndx,
5091                           const char* name,
5092                           const elfcpp::Shdr<32, false>& shdr,
5093                           unsigned int, unsigned int, off_t*);
5094 #endif
5095
5096 #ifdef HAVE_TARGET_32_BIG
5097 template
5098 Output_section*
5099 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5100                          unsigned int shndx,
5101                          const char* name,
5102                          const elfcpp::Shdr<32, true>& shdr,
5103                          unsigned int, unsigned int, off_t*);
5104 #endif
5105
5106 #ifdef HAVE_TARGET_64_LITTLE
5107 template
5108 Output_section*
5109 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5110                           unsigned int shndx,
5111                           const char* name,
5112                           const elfcpp::Shdr<64, false>& shdr,
5113                           unsigned int, unsigned int, off_t*);
5114 #endif
5115
5116 #ifdef HAVE_TARGET_64_BIG
5117 template
5118 Output_section*
5119 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5120                          unsigned int shndx,
5121                          const char* name,
5122                          const elfcpp::Shdr<64, true>& shdr,
5123                          unsigned int, unsigned int, off_t*);
5124 #endif
5125
5126 #ifdef HAVE_TARGET_32_LITTLE
5127 template
5128 Output_section*
5129 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5130                                 unsigned int reloc_shndx,
5131                                 const elfcpp::Shdr<32, false>& shdr,
5132                                 Output_section* data_section,
5133                                 Relocatable_relocs* rr);
5134 #endif
5135
5136 #ifdef HAVE_TARGET_32_BIG
5137 template
5138 Output_section*
5139 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5140                                unsigned int reloc_shndx,
5141                                const elfcpp::Shdr<32, true>& shdr,
5142                                Output_section* data_section,
5143                                Relocatable_relocs* rr);
5144 #endif
5145
5146 #ifdef HAVE_TARGET_64_LITTLE
5147 template
5148 Output_section*
5149 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5150                                 unsigned int reloc_shndx,
5151                                 const elfcpp::Shdr<64, false>& shdr,
5152                                 Output_section* data_section,
5153                                 Relocatable_relocs* rr);
5154 #endif
5155
5156 #ifdef HAVE_TARGET_64_BIG
5157 template
5158 Output_section*
5159 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5160                                unsigned int reloc_shndx,
5161                                const elfcpp::Shdr<64, true>& shdr,
5162                                Output_section* data_section,
5163                                Relocatable_relocs* rr);
5164 #endif
5165
5166 #ifdef HAVE_TARGET_32_LITTLE
5167 template
5168 void
5169 Layout::layout_group<32, false>(Symbol_table* symtab,
5170                                 Sized_relobj_file<32, false>* object,
5171                                 unsigned int,
5172                                 const char* group_section_name,
5173                                 const char* signature,
5174                                 const elfcpp::Shdr<32, false>& shdr,
5175                                 elfcpp::Elf_Word flags,
5176                                 std::vector<unsigned int>* shndxes);
5177 #endif
5178
5179 #ifdef HAVE_TARGET_32_BIG
5180 template
5181 void
5182 Layout::layout_group<32, true>(Symbol_table* symtab,
5183                                Sized_relobj_file<32, true>* object,
5184                                unsigned int,
5185                                const char* group_section_name,
5186                                const char* signature,
5187                                const elfcpp::Shdr<32, true>& shdr,
5188                                elfcpp::Elf_Word flags,
5189                                std::vector<unsigned int>* shndxes);
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_LITTLE
5193 template
5194 void
5195 Layout::layout_group<64, false>(Symbol_table* symtab,
5196                                 Sized_relobj_file<64, false>* object,
5197                                 unsigned int,
5198                                 const char* group_section_name,
5199                                 const char* signature,
5200                                 const elfcpp::Shdr<64, false>& shdr,
5201                                 elfcpp::Elf_Word flags,
5202                                 std::vector<unsigned int>* shndxes);
5203 #endif
5204
5205 #ifdef HAVE_TARGET_64_BIG
5206 template
5207 void
5208 Layout::layout_group<64, true>(Symbol_table* symtab,
5209                                Sized_relobj_file<64, true>* object,
5210                                unsigned int,
5211                                const char* group_section_name,
5212                                const char* signature,
5213                                const elfcpp::Shdr<64, true>& shdr,
5214                                elfcpp::Elf_Word flags,
5215                                std::vector<unsigned int>* shndxes);
5216 #endif
5217
5218 #ifdef HAVE_TARGET_32_LITTLE
5219 template
5220 Output_section*
5221 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5222                                    const unsigned char* symbols,
5223                                    off_t symbols_size,
5224                                    const unsigned char* symbol_names,
5225                                    off_t symbol_names_size,
5226                                    unsigned int shndx,
5227                                    const elfcpp::Shdr<32, false>& shdr,
5228                                    unsigned int reloc_shndx,
5229                                    unsigned int reloc_type,
5230                                    off_t* off);
5231 #endif
5232
5233 #ifdef HAVE_TARGET_32_BIG
5234 template
5235 Output_section*
5236 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5237                                   const unsigned char* symbols,
5238                                   off_t symbols_size,
5239                                   const unsigned char* symbol_names,
5240                                   off_t symbol_names_size,
5241                                   unsigned int shndx,
5242                                   const elfcpp::Shdr<32, true>& shdr,
5243                                   unsigned int reloc_shndx,
5244                                   unsigned int reloc_type,
5245                                   off_t* off);
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_LITTLE
5249 template
5250 Output_section*
5251 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5252                                    const unsigned char* symbols,
5253                                    off_t symbols_size,
5254                                    const unsigned char* symbol_names,
5255                                    off_t symbol_names_size,
5256                                    unsigned int shndx,
5257                                    const elfcpp::Shdr<64, false>& shdr,
5258                                    unsigned int reloc_shndx,
5259                                    unsigned int reloc_type,
5260                                    off_t* off);
5261 #endif
5262
5263 #ifdef HAVE_TARGET_64_BIG
5264 template
5265 Output_section*
5266 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5267                                   const unsigned char* symbols,
5268                                   off_t symbols_size,
5269                                   const unsigned char* symbol_names,
5270                                   off_t symbol_names_size,
5271                                   unsigned int shndx,
5272                                   const elfcpp::Shdr<64, true>& shdr,
5273                                   unsigned int reloc_shndx,
5274                                   unsigned int reloc_type,
5275                                   off_t* off);
5276 #endif
5277
5278 } // End namespace gold.