* incremental.cc (Sized_incremental_binary::setup_readers): Allocate
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list.  Creates a single free list node that
74 // describes the entire region of length LEN.  If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81   this->list_.push_front(Free_list_node(0, len));
82   this->last_remove_ = this->list_.begin();
83   this->extend_ = extend;
84   this->length_ = len;
85   ++Free_list::num_lists;
86   ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list.  Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node.  We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101   if (start == end)
102     return;
103   gold_assert(start < end);
104
105   ++Free_list::num_removes;
106
107   Iterator p = this->last_remove_;
108   if (p->start_ > start)
109     p = this->list_.begin();
110
111   for (; p != this->list_.end(); ++p)
112     {
113       ++Free_list::num_remove_visits;
114       // Find a node that wholly contains the indicated region.
115       if (p->start_ <= start && p->end_ >= end)
116         {
117           // Case 1: the indicated region spans the whole node.
118           // Add some fuzz to avoid creating tiny free chunks.
119           if (p->start_ + 3 >= start && p->end_ <= end + 3)
120             p = this->list_.erase(p);
121           // Case 2: remove a chunk from the start of the node.
122           else if (p->start_ + 3 >= start)
123             p->start_ = end;
124           // Case 3: remove a chunk from the end of the node.
125           else if (p->end_ <= end + 3)
126             p->end_ = start;
127           // Case 4: remove a chunk from the middle, and split
128           // the node into two.
129           else
130             {
131               Free_list_node newnode(p->start_, start);
132               p->start_ = end;
133               this->list_.insert(p, newnode);
134               ++Free_list::num_nodes;
135             }
136           this->last_remove_ = p;
137           return;
138         }
139     }
140
141   // Did not find a node containing the given chunk.  This could happen
142   // because a small chunk was already removed due to the fuzz.
143   gold_debug(DEBUG_INCREMENTAL,
144              "Free_list::remove(%d,%d) not found",
145              static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155   gold_debug(DEBUG_INCREMENTAL,
156              "Free_list::allocate(%08lx, %d, %08lx)",
157              static_cast<long>(len), static_cast<int>(align),
158              static_cast<long>(minoff));
159   if (len == 0)
160     return align_address(minoff, align);
161
162   ++Free_list::num_allocates;
163
164   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165     {
166       ++Free_list::num_allocate_visits;
167       off_t start = p->start_ > minoff ? p->start_ : minoff;
168       start = align_address(start, align);
169       off_t end = start + len;
170       if (end <= p->end_)
171         {
172           if (p->start_ + 3 >= start && p->end_ <= end + 3)
173             this->list_.erase(p);
174           else if (p->start_ + 3 >= start)
175             p->start_ = end;
176           else if (p->end_ <= end + 3)
177             p->end_ = start;
178           else
179             {
180               Free_list_node newnode(p->start_, start);
181               p->start_ = end;
182               this->list_.insert(p, newnode);
183               ++Free_list::num_nodes;
184             }
185           return start;
186         }
187     }
188   return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195   gold_info("Free list:\n     start      end   length\n");
196   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
198               static_cast<long>(p->end_),
199               static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206   fprintf(stderr, _("%s: total free lists: %u\n"),
207           program_name, Free_list::num_lists);
208   fprintf(stderr, _("%s: total free list nodes: %u\n"),
209           program_name, Free_list::num_nodes);
210   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211           program_name, Free_list::num_removes);
212   fprintf(stderr, _("%s: nodes visited: %u\n"),
213           program_name, Free_list::num_remove_visits);
214   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215           program_name, Free_list::num_allocates);
216   fprintf(stderr, _("%s: nodes visited: %u\n"),
217           program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228     const Layout::Section_list& sections,
229     const Layout::Data_list& special_outputs)
230 {
231   for(Layout::Section_list::const_iterator p = sections.begin();
232       p != sections.end();
233       ++p)
234     gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236   for(Layout::Data_list::const_iterator p = special_outputs.begin();
237       p != special_outputs.end();
238       ++p)
239     gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241   
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246     const Layout::Section_list& sections)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     {
252       Output_section* os = *p;
253       Section_info info;
254       info.output_section = os;
255       info.address = os->is_address_valid() ? os->address() : 0;
256       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257       info.offset = os->is_offset_valid()? os->offset() : -1 ;
258       this->section_infos_.push_back(info);
259     }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266     const Layout::Section_list& sections)
267 {
268   size_t i = 0;
269   for(Layout::Section_list::const_iterator p = sections.begin();
270       p != sections.end();
271       ++p, ++i)
272     {
273       Output_section* os = *p;
274       uint64_t address = os->is_address_valid() ? os->address() : 0;
275       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278       if (i >= this->section_infos_.size())
279         {
280           gold_fatal("Section_info of %s missing.\n", os->name());
281         }
282       const Section_info& info = this->section_infos_[i];
283       if (os != info.output_section)
284         gold_fatal("Section order changed.  Expecting %s but see %s\n",
285                    info.output_section->name(), os->name());
286       if (address != info.address
287           || data_size != info.data_size
288           || offset != info.offset)
289         gold_fatal("Section %s changed.\n", os->name());
290     }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections.  This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301   Layout* layout = this->layout_;
302   off_t file_size = layout->finalize(this->input_objects_,
303                                      this->symtab_,
304                                      this->target_,
305                                      task);
306
307   // Now we know the final size of the output file and we know where
308   // each piece of information goes.
309
310   if (this->mapfile_ != NULL)
311     {
312       this->mapfile_->print_discarded_sections(this->input_objects_);
313       layout->print_to_mapfile(this->mapfile_);
314     }
315
316   Output_file* of;
317   if (layout->incremental_base() == NULL)
318     {
319       of = new Output_file(parameters->options().output_file_name());
320       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321         of->set_is_temporary();
322       of->open(file_size);
323     }
324   else
325     {
326       of = layout->incremental_base()->output_file();
327
328       // Apply the incremental relocations for symbols whose values
329       // have changed.  We do this before we resize the file and start
330       // writing anything else to it, so that we can read the old
331       // incremental information from the file before (possibly)
332       // overwriting it.
333       if (parameters->incremental_update())
334         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335                                                              this->layout_,
336                                                              of);
337
338       of->resize(file_size);
339     }
340
341   // Queue up the final set of tasks.
342   gold::queue_final_tasks(this->options_, this->input_objects_,
343                           this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349   : number_of_input_files_(number_of_input_files),
350     script_options_(script_options),
351     namepool_(),
352     sympool_(),
353     dynpool_(),
354     signatures_(),
355     section_name_map_(),
356     segment_list_(),
357     section_list_(),
358     unattached_section_list_(),
359     special_output_list_(),
360     section_headers_(NULL),
361     tls_segment_(NULL),
362     relro_segment_(NULL),
363     increase_relro_(0),
364     symtab_section_(NULL),
365     symtab_xindex_(NULL),
366     dynsym_section_(NULL),
367     dynsym_xindex_(NULL),
368     dynamic_section_(NULL),
369     dynamic_symbol_(NULL),
370     dynamic_data_(NULL),
371     eh_frame_section_(NULL),
372     eh_frame_data_(NULL),
373     added_eh_frame_data_(false),
374     eh_frame_hdr_section_(NULL),
375     build_id_note_(NULL),
376     debug_abbrev_(NULL),
377     debug_info_(NULL),
378     group_signatures_(),
379     output_file_size_(-1),
380     have_added_input_section_(false),
381     sections_are_attached_(false),
382     input_requires_executable_stack_(false),
383     input_with_gnu_stack_note_(false),
384     input_without_gnu_stack_note_(false),
385     has_static_tls_(false),
386     any_postprocessing_sections_(false),
387     resized_signatures_(false),
388     have_stabstr_section_(false),
389     incremental_inputs_(NULL),
390     record_output_section_data_from_script_(false),
391     script_output_section_data_list_(),
392     segment_states_(NULL),
393     relaxation_debug_check_(NULL),
394     incremental_base_(NULL),
395     free_list_()
396 {
397   // Make space for more than enough segments for a typical file.
398   // This is just for efficiency--it's OK if we wind up needing more.
399   this->segment_list_.reserve(12);
400
401   // We expect two unattached Output_data objects: the file header and
402   // the segment headers.
403   this->special_output_list_.reserve(2);
404
405   // Initialize structure needed for an incremental build.
406   if (parameters->incremental())
407     this->incremental_inputs_ = new Incremental_inputs;
408
409   // The section name pool is worth optimizing in all cases, because
410   // it is small, but there are often overlaps due to .rel sections.
411   this->namepool_.set_optimize();
412 }
413
414 // For incremental links, record the base file to be modified.
415
416 void
417 Layout::set_incremental_base(Incremental_binary* base)
418 {
419   this->incremental_base_ = base;
420   this->free_list_.init(base->output_file()->filesize(), true);
421 }
422
423 // Hash a key we use to look up an output section mapping.
424
425 size_t
426 Layout::Hash_key::operator()(const Layout::Key& k) const
427 {
428  return k.first + k.second.first + k.second.second;
429 }
430
431 // Returns whether the given section is in the list of
432 // debug-sections-used-by-some-version-of-gdb.  Currently,
433 // we've checked versions of gdb up to and including 6.7.1.
434
435 static const char* gdb_sections[] =
436 { ".debug_abbrev",
437   // ".debug_aranges",   // not used by gdb as of 6.7.1
438   ".debug_frame",
439   ".debug_info",
440   ".debug_types",
441   ".debug_line",
442   ".debug_loc",
443   ".debug_macinfo",
444   // ".debug_pubnames",  // not used by gdb as of 6.7.1
445   ".debug_ranges",
446   ".debug_str",
447 };
448
449 static const char* lines_only_debug_sections[] =
450 { ".debug_abbrev",
451   // ".debug_aranges",   // not used by gdb as of 6.7.1
452   // ".debug_frame",
453   ".debug_info",
454   // ".debug_types",
455   ".debug_line",
456   // ".debug_loc",
457   // ".debug_macinfo",
458   // ".debug_pubnames",  // not used by gdb as of 6.7.1
459   // ".debug_ranges",
460   ".debug_str",
461 };
462
463 static inline bool
464 is_gdb_debug_section(const char* str)
465 {
466   // We can do this faster: binary search or a hashtable.  But why bother?
467   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
468     if (strcmp(str, gdb_sections[i]) == 0)
469       return true;
470   return false;
471 }
472
473 static inline bool
474 is_lines_only_debug_section(const char* str)
475 {
476   // We can do this faster: binary search or a hashtable.  But why bother?
477   for (size_t i = 0;
478        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
479        ++i)
480     if (strcmp(str, lines_only_debug_sections[i]) == 0)
481       return true;
482   return false;
483 }
484
485 // Sometimes we compress sections.  This is typically done for
486 // sections that are not part of normal program execution (such as
487 // .debug_* sections), and where the readers of these sections know
488 // how to deal with compressed sections.  This routine doesn't say for
489 // certain whether we'll compress -- it depends on commandline options
490 // as well -- just whether this section is a candidate for compression.
491 // (The Output_compressed_section class decides whether to compress
492 // a given section, and picks the name of the compressed section.)
493
494 static bool
495 is_compressible_debug_section(const char* secname)
496 {
497   return (is_prefix_of(".debug", secname));
498 }
499
500 // We may see compressed debug sections in input files.  Return TRUE
501 // if this is the name of a compressed debug section.
502
503 bool
504 is_compressed_debug_section(const char* secname)
505 {
506   return (is_prefix_of(".zdebug", secname));
507 }
508
509 // Whether to include this section in the link.
510
511 template<int size, bool big_endian>
512 bool
513 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
514                         const elfcpp::Shdr<size, big_endian>& shdr)
515 {
516   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
517     return false;
518
519   switch (shdr.get_sh_type())
520     {
521     case elfcpp::SHT_NULL:
522     case elfcpp::SHT_SYMTAB:
523     case elfcpp::SHT_DYNSYM:
524     case elfcpp::SHT_HASH:
525     case elfcpp::SHT_DYNAMIC:
526     case elfcpp::SHT_SYMTAB_SHNDX:
527       return false;
528
529     case elfcpp::SHT_STRTAB:
530       // Discard the sections which have special meanings in the ELF
531       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
532       // checking the sh_link fields of the appropriate sections.
533       return (strcmp(name, ".dynstr") != 0
534               && strcmp(name, ".strtab") != 0
535               && strcmp(name, ".shstrtab") != 0);
536
537     case elfcpp::SHT_RELA:
538     case elfcpp::SHT_REL:
539     case elfcpp::SHT_GROUP:
540       // If we are emitting relocations these should be handled
541       // elsewhere.
542       gold_assert(!parameters->options().relocatable()
543                   && !parameters->options().emit_relocs());
544       return false;
545
546     case elfcpp::SHT_PROGBITS:
547       if (parameters->options().strip_debug()
548           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
549         {
550           if (is_debug_info_section(name))
551             return false;
552         }
553       if (parameters->options().strip_debug_non_line()
554           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
555         {
556           // Debugging sections can only be recognized by name.
557           if (is_prefix_of(".debug", name)
558               && !is_lines_only_debug_section(name))
559             return false;
560         }
561       if (parameters->options().strip_debug_gdb()
562           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
563         {
564           // Debugging sections can only be recognized by name.
565           if (is_prefix_of(".debug", name)
566               && !is_gdb_debug_section(name))
567             return false;
568         }
569       if (parameters->options().strip_lto_sections()
570           && !parameters->options().relocatable()
571           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572         {
573           // Ignore LTO sections containing intermediate code.
574           if (is_prefix_of(".gnu.lto_", name))
575             return false;
576         }
577       // The GNU linker strips .gnu_debuglink sections, so we do too.
578       // This is a feature used to keep debugging information in
579       // separate files.
580       if (strcmp(name, ".gnu_debuglink") == 0)
581         return false;
582       return true;
583
584     default:
585       return true;
586     }
587 }
588
589 // Return an output section named NAME, or NULL if there is none.
590
591 Output_section*
592 Layout::find_output_section(const char* name) const
593 {
594   for (Section_list::const_iterator p = this->section_list_.begin();
595        p != this->section_list_.end();
596        ++p)
597     if (strcmp((*p)->name(), name) == 0)
598       return *p;
599   return NULL;
600 }
601
602 // Return an output segment of type TYPE, with segment flags SET set
603 // and segment flags CLEAR clear.  Return NULL if there is none.
604
605 Output_segment*
606 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
607                             elfcpp::Elf_Word clear) const
608 {
609   for (Segment_list::const_iterator p = this->segment_list_.begin();
610        p != this->segment_list_.end();
611        ++p)
612     if (static_cast<elfcpp::PT>((*p)->type()) == type
613         && ((*p)->flags() & set) == set
614         && ((*p)->flags() & clear) == 0)
615       return *p;
616   return NULL;
617 }
618
619 // Return the output section to use for section NAME with type TYPE
620 // and section flags FLAGS.  NAME must be canonicalized in the string
621 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
622 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
623 // is used by the dynamic linker.  IS_RELRO is true for a relro
624 // section.  IS_LAST_RELRO is true for the last relro section.
625 // IS_FIRST_NON_RELRO is true for the first non-relro section.
626
627 Output_section*
628 Layout::get_output_section(const char* name, Stringpool::Key name_key,
629                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
630                            Output_section_order order, bool is_relro)
631 {
632   elfcpp::Elf_Xword lookup_flags = flags;
633
634   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
635   // read-write with read-only sections.  Some other ELF linkers do
636   // not do this.  FIXME: Perhaps there should be an option
637   // controlling this.
638   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
639
640   const Key key(name_key, std::make_pair(type, lookup_flags));
641   const std::pair<Key, Output_section*> v(key, NULL);
642   std::pair<Section_name_map::iterator, bool> ins(
643     this->section_name_map_.insert(v));
644
645   if (!ins.second)
646     return ins.first->second;
647   else
648     {
649       // This is the first time we've seen this name/type/flags
650       // combination.  For compatibility with the GNU linker, we
651       // combine sections with contents and zero flags with sections
652       // with non-zero flags.  This is a workaround for cases where
653       // assembler code forgets to set section flags.  FIXME: Perhaps
654       // there should be an option to control this.
655       Output_section* os = NULL;
656
657       if (type == elfcpp::SHT_PROGBITS)
658         {
659           if (flags == 0)
660             {
661               Output_section* same_name = this->find_output_section(name);
662               if (same_name != NULL
663                   && same_name->type() == elfcpp::SHT_PROGBITS
664                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
665                 os = same_name;
666             }
667           else if ((flags & elfcpp::SHF_TLS) == 0)
668             {
669               elfcpp::Elf_Xword zero_flags = 0;
670               const Key zero_key(name_key, std::make_pair(type, zero_flags));
671               Section_name_map::iterator p =
672                   this->section_name_map_.find(zero_key);
673               if (p != this->section_name_map_.end())
674                 os = p->second;
675             }
676         }
677
678       if (os == NULL)
679         os = this->make_output_section(name, type, flags, order, is_relro);
680
681       ins.first->second = os;
682       return os;
683     }
684 }
685
686 // Pick the output section to use for section NAME, in input file
687 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
688 // linker created section.  IS_INPUT_SECTION is true if we are
689 // choosing an output section for an input section found in a input
690 // file.  IS_INTERP is true if this is the .interp section.
691 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
692 // dynamic linker.  IS_RELRO is true for a relro section.
693 // IS_LAST_RELRO is true for the last relro section.
694 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
695 // will return NULL if the input section should be discarded.
696
697 Output_section*
698 Layout::choose_output_section(const Relobj* relobj, const char* name,
699                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
700                               bool is_input_section, Output_section_order order,
701                               bool is_relro)
702 {
703   // We should not see any input sections after we have attached
704   // sections to segments.
705   gold_assert(!is_input_section || !this->sections_are_attached_);
706
707   // Some flags in the input section should not be automatically
708   // copied to the output section.
709   flags &= ~ (elfcpp::SHF_INFO_LINK
710               | elfcpp::SHF_GROUP
711               | elfcpp::SHF_MERGE
712               | elfcpp::SHF_STRINGS);
713
714   // We only clear the SHF_LINK_ORDER flag in for
715   // a non-relocatable link.
716   if (!parameters->options().relocatable())
717     flags &= ~elfcpp::SHF_LINK_ORDER;
718
719   if (this->script_options_->saw_sections_clause())
720     {
721       // We are using a SECTIONS clause, so the output section is
722       // chosen based only on the name.
723
724       Script_sections* ss = this->script_options_->script_sections();
725       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
726       Output_section** output_section_slot;
727       Script_sections::Section_type script_section_type;
728       const char* orig_name = name;
729       name = ss->output_section_name(file_name, name, &output_section_slot,
730                                      &script_section_type);
731       if (name == NULL)
732         {
733           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
734                                      "because it is not allowed by the "
735                                      "SECTIONS clause of the linker script"),
736                      orig_name);
737           // The SECTIONS clause says to discard this input section.
738           return NULL;
739         }
740
741       // We can only handle script section types ST_NONE and ST_NOLOAD.
742       switch (script_section_type)
743         {
744         case Script_sections::ST_NONE:
745           break;
746         case Script_sections::ST_NOLOAD:
747           flags &= elfcpp::SHF_ALLOC;
748           break;
749         default:
750           gold_unreachable();
751         }
752
753       // If this is an orphan section--one not mentioned in the linker
754       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
755       // default processing below.
756
757       if (output_section_slot != NULL)
758         {
759           if (*output_section_slot != NULL)
760             {
761               (*output_section_slot)->update_flags_for_input_section(flags);
762               return *output_section_slot;
763             }
764
765           // We don't put sections found in the linker script into
766           // SECTION_NAME_MAP_.  That keeps us from getting confused
767           // if an orphan section is mapped to a section with the same
768           // name as one in the linker script.
769
770           name = this->namepool_.add(name, false, NULL);
771
772           Output_section* os = this->make_output_section(name, type, flags,
773                                                          order, is_relro);
774
775           os->set_found_in_sections_clause();
776
777           // Special handling for NOLOAD sections.
778           if (script_section_type == Script_sections::ST_NOLOAD)
779             {
780               os->set_is_noload();
781
782               // The constructor of Output_section sets addresses of non-ALLOC
783               // sections to 0 by default.  We don't want that for NOLOAD
784               // sections even if they have no SHF_ALLOC flag.
785               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
786                   && os->is_address_valid())
787                 {
788                   gold_assert(os->address() == 0
789                               && !os->is_offset_valid()
790                               && !os->is_data_size_valid());
791                   os->reset_address_and_file_offset();
792                 }
793             }
794
795           *output_section_slot = os;
796           return os;
797         }
798     }
799
800   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
801
802   size_t len = strlen(name);
803   char* uncompressed_name = NULL;
804
805   // Compressed debug sections should be mapped to the corresponding
806   // uncompressed section.
807   if (is_compressed_debug_section(name))
808     {
809       uncompressed_name = new char[len];
810       uncompressed_name[0] = '.';
811       gold_assert(name[0] == '.' && name[1] == 'z');
812       strncpy(&uncompressed_name[1], &name[2], len - 2);
813       uncompressed_name[len - 1] = '\0';
814       len -= 1;
815       name = uncompressed_name;
816     }
817
818   // Turn NAME from the name of the input section into the name of the
819   // output section.
820   if (is_input_section
821       && !this->script_options_->saw_sections_clause()
822       && !parameters->options().relocatable())
823     name = Layout::output_section_name(name, &len);
824
825   Stringpool::Key name_key;
826   name = this->namepool_.add_with_length(name, len, true, &name_key);
827
828   if (uncompressed_name != NULL)
829     delete[] uncompressed_name;
830
831   // Find or make the output section.  The output section is selected
832   // based on the section name, type, and flags.
833   return this->get_output_section(name, name_key, type, flags, order, is_relro);
834 }
835
836 // For incremental links, record the initial fixed layout of a section
837 // from the base file, and return a pointer to the Output_section.
838
839 template<int size, bool big_endian>
840 Output_section*
841 Layout::init_fixed_output_section(const char* name,
842                                   elfcpp::Shdr<size, big_endian>& shdr)
843 {
844   unsigned int sh_type = shdr.get_sh_type();
845
846   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
847   // All others will be created from scratch and reallocated.
848   if (sh_type != elfcpp::SHT_PROGBITS
849       && sh_type != elfcpp::SHT_NOBITS
850       && sh_type != elfcpp::SHT_NOTE)
851     return NULL;
852
853   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
854   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
855   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
856   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
857   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
858       shdr.get_sh_addralign();
859
860   // Make the output section.
861   Stringpool::Key name_key;
862   name = this->namepool_.add(name, true, &name_key);
863   Output_section* os = this->get_output_section(name, name_key, sh_type,
864                                                 sh_flags, ORDER_INVALID, false);
865   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
866   if (sh_type != elfcpp::SHT_NOBITS)
867     this->free_list_.remove(sh_offset, sh_offset + sh_size);
868   return os;
869 }
870
871 // Return the output section to use for input section SHNDX, with name
872 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
873 // index of a relocation section which applies to this section, or 0
874 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
875 // relocation section if there is one.  Set *OFF to the offset of this
876 // input section without the output section.  Return NULL if the
877 // section should be discarded.  Set *OFF to -1 if the section
878 // contents should not be written directly to the output file, but
879 // will instead receive special handling.
880
881 template<int size, bool big_endian>
882 Output_section*
883 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
884                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
885                unsigned int reloc_shndx, unsigned int, off_t* off)
886 {
887   *off = 0;
888
889   if (!this->include_section(object, name, shdr))
890     return NULL;
891
892   Output_section* os;
893
894   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
895   // correct section types.  Force them here.
896   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
897   if (sh_type == elfcpp::SHT_PROGBITS)
898     {
899       static const char init_array_prefix[] = ".init_array";
900       static const char preinit_array_prefix[] = ".preinit_array";
901       static const char fini_array_prefix[] = ".fini_array";
902       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
903       static size_t preinit_array_prefix_size =
904         sizeof(preinit_array_prefix) - 1;
905       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
906
907       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
908         sh_type = elfcpp::SHT_INIT_ARRAY;
909       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
910                == 0)
911         sh_type = elfcpp::SHT_PREINIT_ARRAY;
912       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
913         sh_type = elfcpp::SHT_FINI_ARRAY;
914     }
915
916   // In a relocatable link a grouped section must not be combined with
917   // any other sections.
918   if (parameters->options().relocatable()
919       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
920     {
921       name = this->namepool_.add(name, true, NULL);
922       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
923                                      ORDER_INVALID, false);
924     }
925   else
926     {
927       os = this->choose_output_section(object, name, sh_type,
928                                        shdr.get_sh_flags(), true,
929                                        ORDER_INVALID, false);
930       if (os == NULL)
931         return NULL;
932     }
933
934   // By default the GNU linker sorts input sections whose names match
935   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
936   // are sorted by name.  This is used to implement constructor
937   // priority ordering.  We are compatible.
938   if (!this->script_options_->saw_sections_clause()
939       && (is_prefix_of(".ctors.", name)
940           || is_prefix_of(".dtors.", name)
941           || is_prefix_of(".init_array.", name)
942           || is_prefix_of(".fini_array.", name)))
943     os->set_must_sort_attached_input_sections();
944
945   // FIXME: Handle SHF_LINK_ORDER somewhere.
946
947   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
948                                this->script_options_->saw_sections_clause());
949   this->have_added_input_section_ = true;
950
951   return os;
952 }
953
954 // Handle a relocation section when doing a relocatable link.
955
956 template<int size, bool big_endian>
957 Output_section*
958 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
959                      unsigned int,
960                      const elfcpp::Shdr<size, big_endian>& shdr,
961                      Output_section* data_section,
962                      Relocatable_relocs* rr)
963 {
964   gold_assert(parameters->options().relocatable()
965               || parameters->options().emit_relocs());
966
967   int sh_type = shdr.get_sh_type();
968
969   std::string name;
970   if (sh_type == elfcpp::SHT_REL)
971     name = ".rel";
972   else if (sh_type == elfcpp::SHT_RELA)
973     name = ".rela";
974   else
975     gold_unreachable();
976   name += data_section->name();
977
978   // In a relocatable link relocs for a grouped section must not be
979   // combined with other reloc sections.
980   Output_section* os;
981   if (!parameters->options().relocatable()
982       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
983     os = this->choose_output_section(object, name.c_str(), sh_type,
984                                      shdr.get_sh_flags(), false,
985                                      ORDER_INVALID, false);
986   else
987     {
988       const char* n = this->namepool_.add(name.c_str(), true, NULL);
989       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
990                                      ORDER_INVALID, false);
991     }
992
993   os->set_should_link_to_symtab();
994   os->set_info_section(data_section);
995
996   Output_section_data* posd;
997   if (sh_type == elfcpp::SHT_REL)
998     {
999       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1001                                            size,
1002                                            big_endian>(rr);
1003     }
1004   else if (sh_type == elfcpp::SHT_RELA)
1005     {
1006       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1007       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1008                                            size,
1009                                            big_endian>(rr);
1010     }
1011   else
1012     gold_unreachable();
1013
1014   os->add_output_section_data(posd);
1015   rr->set_output_data(posd);
1016
1017   return os;
1018 }
1019
1020 // Handle a group section when doing a relocatable link.
1021
1022 template<int size, bool big_endian>
1023 void
1024 Layout::layout_group(Symbol_table* symtab,
1025                      Sized_relobj<size, big_endian>* object,
1026                      unsigned int,
1027                      const char* group_section_name,
1028                      const char* signature,
1029                      const elfcpp::Shdr<size, big_endian>& shdr,
1030                      elfcpp::Elf_Word flags,
1031                      std::vector<unsigned int>* shndxes)
1032 {
1033   gold_assert(parameters->options().relocatable());
1034   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1035   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1036   Output_section* os = this->make_output_section(group_section_name,
1037                                                  elfcpp::SHT_GROUP,
1038                                                  shdr.get_sh_flags(),
1039                                                  ORDER_INVALID, false);
1040
1041   // We need to find a symbol with the signature in the symbol table.
1042   // If we don't find one now, we need to look again later.
1043   Symbol* sym = symtab->lookup(signature, NULL);
1044   if (sym != NULL)
1045     os->set_info_symndx(sym);
1046   else
1047     {
1048       // Reserve some space to minimize reallocations.
1049       if (this->group_signatures_.empty())
1050         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1051
1052       // We will wind up using a symbol whose name is the signature.
1053       // So just put the signature in the symbol name pool to save it.
1054       signature = symtab->canonicalize_name(signature);
1055       this->group_signatures_.push_back(Group_signature(os, signature));
1056     }
1057
1058   os->set_should_link_to_symtab();
1059   os->set_entsize(4);
1060
1061   section_size_type entry_count =
1062     convert_to_section_size_type(shdr.get_sh_size() / 4);
1063   Output_section_data* posd =
1064     new Output_data_group<size, big_endian>(object, entry_count, flags,
1065                                             shndxes);
1066   os->add_output_section_data(posd);
1067 }
1068
1069 // Special GNU handling of sections name .eh_frame.  They will
1070 // normally hold exception frame data as defined by the C++ ABI
1071 // (http://codesourcery.com/cxx-abi/).
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
1076                         const unsigned char* symbols,
1077                         off_t symbols_size,
1078                         const unsigned char* symbol_names,
1079                         off_t symbol_names_size,
1080                         unsigned int shndx,
1081                         const elfcpp::Shdr<size, big_endian>& shdr,
1082                         unsigned int reloc_shndx, unsigned int reloc_type,
1083                         off_t* off)
1084 {
1085   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1086   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1087
1088   const char* const name = ".eh_frame";
1089   Output_section* os = this->choose_output_section(object, name,
1090                                                    elfcpp::SHT_PROGBITS,
1091                                                    elfcpp::SHF_ALLOC, false,
1092                                                    ORDER_EHFRAME, false);
1093   if (os == NULL)
1094     return NULL;
1095
1096   if (this->eh_frame_section_ == NULL)
1097     {
1098       this->eh_frame_section_ = os;
1099       this->eh_frame_data_ = new Eh_frame();
1100
1101       // For incremental linking, we do not optimize .eh_frame sections
1102       // or create a .eh_frame_hdr section.
1103       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1104         {
1105           Output_section* hdr_os =
1106             this->choose_output_section(NULL, ".eh_frame_hdr",
1107                                         elfcpp::SHT_PROGBITS,
1108                                         elfcpp::SHF_ALLOC, false,
1109                                         ORDER_EHFRAME, false);
1110
1111           if (hdr_os != NULL)
1112             {
1113               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1114                                                         this->eh_frame_data_);
1115               hdr_os->add_output_section_data(hdr_posd);
1116
1117               hdr_os->set_after_input_sections();
1118
1119               if (!this->script_options_->saw_phdrs_clause())
1120                 {
1121                   Output_segment* hdr_oseg;
1122                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1123                                                        elfcpp::PF_R);
1124                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1125                                                           elfcpp::PF_R);
1126                 }
1127
1128               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1129             }
1130         }
1131     }
1132
1133   gold_assert(this->eh_frame_section_ == os);
1134
1135   if (!parameters->incremental()
1136       && this->eh_frame_data_->add_ehframe_input_section(object,
1137                                                          symbols,
1138                                                          symbols_size,
1139                                                          symbol_names,
1140                                                          symbol_names_size,
1141                                                          shndx,
1142                                                          reloc_shndx,
1143                                                          reloc_type))
1144     {
1145       os->update_flags_for_input_section(shdr.get_sh_flags());
1146
1147       // A writable .eh_frame section is a RELRO section.
1148       if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
1149         os->set_is_relro();
1150
1151       // We found a .eh_frame section we are going to optimize, so now
1152       // we can add the set of optimized sections to the output
1153       // section.  We need to postpone adding this until we've found a
1154       // section we can optimize so that the .eh_frame section in
1155       // crtbegin.o winds up at the start of the output section.
1156       if (!this->added_eh_frame_data_)
1157         {
1158           os->add_output_section_data(this->eh_frame_data_);
1159           this->added_eh_frame_data_ = true;
1160         }
1161       *off = -1;
1162     }
1163   else
1164     {
1165       // We couldn't handle this .eh_frame section for some reason.
1166       // Add it as a normal section.
1167       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1168       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1169                                    saw_sections_clause);
1170       this->have_added_input_section_ = true;
1171     }
1172
1173   return os;
1174 }
1175
1176 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1177 // the output section.
1178
1179 Output_section*
1180 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1181                                 elfcpp::Elf_Xword flags,
1182                                 Output_section_data* posd,
1183                                 Output_section_order order, bool is_relro)
1184 {
1185   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1186                                                    false, order, is_relro);
1187   if (os != NULL)
1188     os->add_output_section_data(posd);
1189   return os;
1190 }
1191
1192 // Map section flags to segment flags.
1193
1194 elfcpp::Elf_Word
1195 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1196 {
1197   elfcpp::Elf_Word ret = elfcpp::PF_R;
1198   if ((flags & elfcpp::SHF_WRITE) != 0)
1199     ret |= elfcpp::PF_W;
1200   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1201     ret |= elfcpp::PF_X;
1202   return ret;
1203 }
1204
1205 // Make a new Output_section, and attach it to segments as
1206 // appropriate.  ORDER is the order in which this section should
1207 // appear in the output segment.  IS_RELRO is true if this is a relro
1208 // (read-only after relocations) section.
1209
1210 Output_section*
1211 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1212                             elfcpp::Elf_Xword flags,
1213                             Output_section_order order, bool is_relro)
1214 {
1215   Output_section* os;
1216   if ((flags & elfcpp::SHF_ALLOC) == 0
1217       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1218       && is_compressible_debug_section(name))
1219     os = new Output_compressed_section(&parameters->options(), name, type,
1220                                        flags);
1221   else if ((flags & elfcpp::SHF_ALLOC) == 0
1222            && parameters->options().strip_debug_non_line()
1223            && strcmp(".debug_abbrev", name) == 0)
1224     {
1225       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1226           name, type, flags);
1227       if (this->debug_info_)
1228         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1229     }
1230   else if ((flags & elfcpp::SHF_ALLOC) == 0
1231            && parameters->options().strip_debug_non_line()
1232            && strcmp(".debug_info", name) == 0)
1233     {
1234       os = this->debug_info_ = new Output_reduced_debug_info_section(
1235           name, type, flags);
1236       if (this->debug_abbrev_)
1237         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1238     }
1239   else
1240     {
1241       // FIXME: const_cast is ugly.
1242       Target* target = const_cast<Target*>(&parameters->target());
1243       os = target->make_output_section(name, type, flags);
1244     }
1245
1246   // With -z relro, we have to recognize the special sections by name.
1247   // There is no other way.
1248   bool is_relro_local = false;
1249   if (!this->script_options_->saw_sections_clause()
1250       && parameters->options().relro()
1251       && type == elfcpp::SHT_PROGBITS
1252       && (flags & elfcpp::SHF_ALLOC) != 0
1253       && (flags & elfcpp::SHF_WRITE) != 0)
1254     {
1255       if (strcmp(name, ".data.rel.ro") == 0)
1256         is_relro = true;
1257       else if (strcmp(name, ".data.rel.ro.local") == 0)
1258         {
1259           is_relro = true;
1260           is_relro_local = true;
1261         }
1262       else if (type == elfcpp::SHT_INIT_ARRAY
1263                || type == elfcpp::SHT_FINI_ARRAY
1264                || type == elfcpp::SHT_PREINIT_ARRAY)
1265         is_relro = true;
1266       else if (strcmp(name, ".ctors") == 0
1267                || strcmp(name, ".dtors") == 0
1268                || strcmp(name, ".jcr") == 0)
1269         is_relro = true;
1270     }
1271
1272   if (is_relro)
1273     os->set_is_relro();
1274
1275   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1276     order = this->default_section_order(os, is_relro_local);
1277
1278   os->set_order(order);
1279
1280   parameters->target().new_output_section(os);
1281
1282   this->section_list_.push_back(os);
1283
1284   // The GNU linker by default sorts some sections by priority, so we
1285   // do the same.  We need to know that this might happen before we
1286   // attach any input sections.
1287   if (!this->script_options_->saw_sections_clause()
1288       && (strcmp(name, ".ctors") == 0
1289           || strcmp(name, ".dtors") == 0
1290           || strcmp(name, ".init_array") == 0
1291           || strcmp(name, ".fini_array") == 0))
1292     os->set_may_sort_attached_input_sections();
1293
1294   // Check for .stab*str sections, as .stab* sections need to link to
1295   // them.
1296   if (type == elfcpp::SHT_STRTAB
1297       && !this->have_stabstr_section_
1298       && strncmp(name, ".stab", 5) == 0
1299       && strcmp(name + strlen(name) - 3, "str") == 0)
1300     this->have_stabstr_section_ = true;
1301
1302   // If we have already attached the sections to segments, then we
1303   // need to attach this one now.  This happens for sections created
1304   // directly by the linker.
1305   if (this->sections_are_attached_)
1306     this->attach_section_to_segment(os);
1307
1308   return os;
1309 }
1310
1311 // Return the default order in which a section should be placed in an
1312 // output segment.  This function captures a lot of the ideas in
1313 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1314 // linker created section is normally set when the section is created;
1315 // this function is used for input sections.
1316
1317 Output_section_order
1318 Layout::default_section_order(Output_section* os, bool is_relro_local)
1319 {
1320   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1321   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1322   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1323   bool is_bss = false;
1324
1325   switch (os->type())
1326     {
1327     default:
1328     case elfcpp::SHT_PROGBITS:
1329       break;
1330     case elfcpp::SHT_NOBITS:
1331       is_bss = true;
1332       break;
1333     case elfcpp::SHT_RELA:
1334     case elfcpp::SHT_REL:
1335       if (!is_write)
1336         return ORDER_DYNAMIC_RELOCS;
1337       break;
1338     case elfcpp::SHT_HASH:
1339     case elfcpp::SHT_DYNAMIC:
1340     case elfcpp::SHT_SHLIB:
1341     case elfcpp::SHT_DYNSYM:
1342     case elfcpp::SHT_GNU_HASH:
1343     case elfcpp::SHT_GNU_verdef:
1344     case elfcpp::SHT_GNU_verneed:
1345     case elfcpp::SHT_GNU_versym:
1346       if (!is_write)
1347         return ORDER_DYNAMIC_LINKER;
1348       break;
1349     case elfcpp::SHT_NOTE:
1350       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1351     }
1352
1353   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1354     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1355
1356   if (!is_bss && !is_write)
1357     {
1358       if (is_execinstr)
1359         {
1360           if (strcmp(os->name(), ".init") == 0)
1361             return ORDER_INIT;
1362           else if (strcmp(os->name(), ".fini") == 0)
1363             return ORDER_FINI;
1364         }
1365       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1366     }
1367
1368   if (os->is_relro())
1369     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1370
1371   if (os->is_small_section())
1372     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1373   if (os->is_large_section())
1374     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1375
1376   return is_bss ? ORDER_BSS : ORDER_DATA;
1377 }
1378
1379 // Attach output sections to segments.  This is called after we have
1380 // seen all the input sections.
1381
1382 void
1383 Layout::attach_sections_to_segments()
1384 {
1385   for (Section_list::iterator p = this->section_list_.begin();
1386        p != this->section_list_.end();
1387        ++p)
1388     this->attach_section_to_segment(*p);
1389
1390   this->sections_are_attached_ = true;
1391 }
1392
1393 // Attach an output section to a segment.
1394
1395 void
1396 Layout::attach_section_to_segment(Output_section* os)
1397 {
1398   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1399     this->unattached_section_list_.push_back(os);
1400   else
1401     this->attach_allocated_section_to_segment(os);
1402 }
1403
1404 // Attach an allocated output section to a segment.
1405
1406 void
1407 Layout::attach_allocated_section_to_segment(Output_section* os)
1408 {
1409   elfcpp::Elf_Xword flags = os->flags();
1410   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1411
1412   if (parameters->options().relocatable())
1413     return;
1414
1415   // If we have a SECTIONS clause, we can't handle the attachment to
1416   // segments until after we've seen all the sections.
1417   if (this->script_options_->saw_sections_clause())
1418     return;
1419
1420   gold_assert(!this->script_options_->saw_phdrs_clause());
1421
1422   // This output section goes into a PT_LOAD segment.
1423
1424   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1425
1426   // Check for --section-start.
1427   uint64_t addr;
1428   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1429
1430   // In general the only thing we really care about for PT_LOAD
1431   // segments is whether or not they are writable or executable,
1432   // so that is how we search for them.
1433   // Large data sections also go into their own PT_LOAD segment.
1434   // People who need segments sorted on some other basis will
1435   // have to use a linker script.
1436
1437   Segment_list::const_iterator p;
1438   for (p = this->segment_list_.begin();
1439        p != this->segment_list_.end();
1440        ++p)
1441     {
1442       if ((*p)->type() != elfcpp::PT_LOAD)
1443         continue;
1444       if (!parameters->options().omagic()
1445           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1446         continue;
1447       if (parameters->options().rosegment()
1448           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1449         continue;
1450       // If -Tbss was specified, we need to separate the data and BSS
1451       // segments.
1452       if (parameters->options().user_set_Tbss())
1453         {
1454           if ((os->type() == elfcpp::SHT_NOBITS)
1455               == (*p)->has_any_data_sections())
1456             continue;
1457         }
1458       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1459         continue;
1460
1461       if (is_address_set)
1462         {
1463           if ((*p)->are_addresses_set())
1464             continue;
1465
1466           (*p)->add_initial_output_data(os);
1467           (*p)->update_flags_for_output_section(seg_flags);
1468           (*p)->set_addresses(addr, addr);
1469           break;
1470         }
1471
1472       (*p)->add_output_section_to_load(this, os, seg_flags);
1473       break;
1474     }
1475
1476   if (p == this->segment_list_.end())
1477     {
1478       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1479                                                        seg_flags);
1480       if (os->is_large_data_section())
1481         oseg->set_is_large_data_segment();
1482       oseg->add_output_section_to_load(this, os, seg_flags);
1483       if (is_address_set)
1484         oseg->set_addresses(addr, addr);
1485     }
1486
1487   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1488   // segment.
1489   if (os->type() == elfcpp::SHT_NOTE)
1490     {
1491       // See if we already have an equivalent PT_NOTE segment.
1492       for (p = this->segment_list_.begin();
1493            p != segment_list_.end();
1494            ++p)
1495         {
1496           if ((*p)->type() == elfcpp::PT_NOTE
1497               && (((*p)->flags() & elfcpp::PF_W)
1498                   == (seg_flags & elfcpp::PF_W)))
1499             {
1500               (*p)->add_output_section_to_nonload(os, seg_flags);
1501               break;
1502             }
1503         }
1504
1505       if (p == this->segment_list_.end())
1506         {
1507           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1508                                                            seg_flags);
1509           oseg->add_output_section_to_nonload(os, seg_flags);
1510         }
1511     }
1512
1513   // If we see a loadable SHF_TLS section, we create a PT_TLS
1514   // segment.  There can only be one such segment.
1515   if ((flags & elfcpp::SHF_TLS) != 0)
1516     {
1517       if (this->tls_segment_ == NULL)
1518         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1519       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1520     }
1521
1522   // If -z relro is in effect, and we see a relro section, we create a
1523   // PT_GNU_RELRO segment.  There can only be one such segment.
1524   if (os->is_relro() && parameters->options().relro())
1525     {
1526       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1527       if (this->relro_segment_ == NULL)
1528         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1529       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1530     }
1531 }
1532
1533 // Make an output section for a script.
1534
1535 Output_section*
1536 Layout::make_output_section_for_script(
1537     const char* name,
1538     Script_sections::Section_type section_type)
1539 {
1540   name = this->namepool_.add(name, false, NULL);
1541   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1542   if (section_type == Script_sections::ST_NOLOAD)
1543     sh_flags = 0;
1544   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1545                                                  sh_flags, ORDER_INVALID,
1546                                                  false);
1547   os->set_found_in_sections_clause();
1548   if (section_type == Script_sections::ST_NOLOAD)
1549     os->set_is_noload();
1550   return os;
1551 }
1552
1553 // Return the number of segments we expect to see.
1554
1555 size_t
1556 Layout::expected_segment_count() const
1557 {
1558   size_t ret = this->segment_list_.size();
1559
1560   // If we didn't see a SECTIONS clause in a linker script, we should
1561   // already have the complete list of segments.  Otherwise we ask the
1562   // SECTIONS clause how many segments it expects, and add in the ones
1563   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1564
1565   if (!this->script_options_->saw_sections_clause())
1566     return ret;
1567   else
1568     {
1569       const Script_sections* ss = this->script_options_->script_sections();
1570       return ret + ss->expected_segment_count(this);
1571     }
1572 }
1573
1574 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1575 // is whether we saw a .note.GNU-stack section in the object file.
1576 // GNU_STACK_FLAGS is the section flags.  The flags give the
1577 // protection required for stack memory.  We record this in an
1578 // executable as a PT_GNU_STACK segment.  If an object file does not
1579 // have a .note.GNU-stack segment, we must assume that it is an old
1580 // object.  On some targets that will force an executable stack.
1581
1582 void
1583 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1584                          const Object* obj)
1585 {
1586   if (!seen_gnu_stack)
1587     {
1588       this->input_without_gnu_stack_note_ = true;
1589       if (parameters->options().warn_execstack()
1590           && parameters->target().is_default_stack_executable())
1591         gold_warning(_("%s: missing .note.GNU-stack section"
1592                        " implies executable stack"),
1593                      obj->name().c_str());
1594     }
1595   else
1596     {
1597       this->input_with_gnu_stack_note_ = true;
1598       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1599         {
1600           this->input_requires_executable_stack_ = true;
1601           if (parameters->options().warn_execstack()
1602               || parameters->options().is_stack_executable())
1603             gold_warning(_("%s: requires executable stack"),
1604                          obj->name().c_str());
1605         }
1606     }
1607 }
1608
1609 // Create automatic note sections.
1610
1611 void
1612 Layout::create_notes()
1613 {
1614   this->create_gold_note();
1615   this->create_executable_stack_info();
1616   this->create_build_id();
1617 }
1618
1619 // Create the dynamic sections which are needed before we read the
1620 // relocs.
1621
1622 void
1623 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1624 {
1625   if (parameters->doing_static_link())
1626     return;
1627
1628   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1629                                                        elfcpp::SHT_DYNAMIC,
1630                                                        (elfcpp::SHF_ALLOC
1631                                                         | elfcpp::SHF_WRITE),
1632                                                        false, ORDER_RELRO,
1633                                                        true);
1634
1635   this->dynamic_symbol_ =
1636     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1637                                   this->dynamic_section_, 0, 0,
1638                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1639                                   elfcpp::STV_HIDDEN, 0, false, false);
1640
1641   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1642
1643   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1644 }
1645
1646 // For each output section whose name can be represented as C symbol,
1647 // define __start and __stop symbols for the section.  This is a GNU
1648 // extension.
1649
1650 void
1651 Layout::define_section_symbols(Symbol_table* symtab)
1652 {
1653   for (Section_list::const_iterator p = this->section_list_.begin();
1654        p != this->section_list_.end();
1655        ++p)
1656     {
1657       const char* const name = (*p)->name();
1658       if (is_cident(name))
1659         {
1660           const std::string name_string(name);
1661           const std::string start_name(cident_section_start_prefix
1662                                        + name_string);
1663           const std::string stop_name(cident_section_stop_prefix
1664                                       + name_string);
1665
1666           symtab->define_in_output_data(start_name.c_str(),
1667                                         NULL, // version
1668                                         Symbol_table::PREDEFINED,
1669                                         *p,
1670                                         0, // value
1671                                         0, // symsize
1672                                         elfcpp::STT_NOTYPE,
1673                                         elfcpp::STB_GLOBAL,
1674                                         elfcpp::STV_DEFAULT,
1675                                         0, // nonvis
1676                                         false, // offset_is_from_end
1677                                         true); // only_if_ref
1678
1679           symtab->define_in_output_data(stop_name.c_str(),
1680                                         NULL, // version
1681                                         Symbol_table::PREDEFINED,
1682                                         *p,
1683                                         0, // value
1684                                         0, // symsize
1685                                         elfcpp::STT_NOTYPE,
1686                                         elfcpp::STB_GLOBAL,
1687                                         elfcpp::STV_DEFAULT,
1688                                         0, // nonvis
1689                                         true, // offset_is_from_end
1690                                         true); // only_if_ref
1691         }
1692     }
1693 }
1694
1695 // Define symbols for group signatures.
1696
1697 void
1698 Layout::define_group_signatures(Symbol_table* symtab)
1699 {
1700   for (Group_signatures::iterator p = this->group_signatures_.begin();
1701        p != this->group_signatures_.end();
1702        ++p)
1703     {
1704       Symbol* sym = symtab->lookup(p->signature, NULL);
1705       if (sym != NULL)
1706         p->section->set_info_symndx(sym);
1707       else
1708         {
1709           // Force the name of the group section to the group
1710           // signature, and use the group's section symbol as the
1711           // signature symbol.
1712           if (strcmp(p->section->name(), p->signature) != 0)
1713             {
1714               const char* name = this->namepool_.add(p->signature,
1715                                                      true, NULL);
1716               p->section->set_name(name);
1717             }
1718           p->section->set_needs_symtab_index();
1719           p->section->set_info_section_symndx(p->section);
1720         }
1721     }
1722
1723   this->group_signatures_.clear();
1724 }
1725
1726 // Find the first read-only PT_LOAD segment, creating one if
1727 // necessary.
1728
1729 Output_segment*
1730 Layout::find_first_load_seg()
1731 {
1732   Output_segment* best = NULL;
1733   for (Segment_list::const_iterator p = this->segment_list_.begin();
1734        p != this->segment_list_.end();
1735        ++p)
1736     {
1737       if ((*p)->type() == elfcpp::PT_LOAD
1738           && ((*p)->flags() & elfcpp::PF_R) != 0
1739           && (parameters->options().omagic()
1740               || ((*p)->flags() & elfcpp::PF_W) == 0))
1741         {
1742           if (best == NULL || this->segment_precedes(*p, best))
1743             best = *p;
1744         }
1745     }
1746   if (best != NULL)
1747     return best;
1748
1749   gold_assert(!this->script_options_->saw_phdrs_clause());
1750
1751   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1752                                                        elfcpp::PF_R);
1753   return load_seg;
1754 }
1755
1756 // Save states of all current output segments.  Store saved states
1757 // in SEGMENT_STATES.
1758
1759 void
1760 Layout::save_segments(Segment_states* segment_states)
1761 {
1762   for (Segment_list::const_iterator p = this->segment_list_.begin();
1763        p != this->segment_list_.end();
1764        ++p)
1765     {
1766       Output_segment* segment = *p;
1767       // Shallow copy.
1768       Output_segment* copy = new Output_segment(*segment);
1769       (*segment_states)[segment] = copy;
1770     }
1771 }
1772
1773 // Restore states of output segments and delete any segment not found in
1774 // SEGMENT_STATES.
1775
1776 void
1777 Layout::restore_segments(const Segment_states* segment_states)
1778 {
1779   // Go through the segment list and remove any segment added in the
1780   // relaxation loop.
1781   this->tls_segment_ = NULL;
1782   this->relro_segment_ = NULL;
1783   Segment_list::iterator list_iter = this->segment_list_.begin();
1784   while (list_iter != this->segment_list_.end())
1785     {
1786       Output_segment* segment = *list_iter;
1787       Segment_states::const_iterator states_iter =
1788           segment_states->find(segment);
1789       if (states_iter != segment_states->end())
1790         {
1791           const Output_segment* copy = states_iter->second;
1792           // Shallow copy to restore states.
1793           *segment = *copy;
1794
1795           // Also fix up TLS and RELRO segment pointers as appropriate.
1796           if (segment->type() == elfcpp::PT_TLS)
1797             this->tls_segment_ = segment;
1798           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1799             this->relro_segment_ = segment;
1800
1801           ++list_iter;
1802         } 
1803       else
1804         {
1805           list_iter = this->segment_list_.erase(list_iter); 
1806           // This is a segment created during section layout.  It should be
1807           // safe to remove it since we should have removed all pointers to it.
1808           delete segment;
1809         }
1810     }
1811 }
1812
1813 // Clean up after relaxation so that sections can be laid out again.
1814
1815 void
1816 Layout::clean_up_after_relaxation()
1817 {
1818   // Restore the segments to point state just prior to the relaxation loop.
1819   Script_sections* script_section = this->script_options_->script_sections();
1820   script_section->release_segments();
1821   this->restore_segments(this->segment_states_);
1822
1823   // Reset section addresses and file offsets
1824   for (Section_list::iterator p = this->section_list_.begin();
1825        p != this->section_list_.end();
1826        ++p)
1827     {
1828       (*p)->restore_states();
1829
1830       // If an input section changes size because of relaxation,
1831       // we need to adjust the section offsets of all input sections.
1832       // after such a section.
1833       if ((*p)->section_offsets_need_adjustment())
1834         (*p)->adjust_section_offsets();
1835
1836       (*p)->reset_address_and_file_offset();
1837     }
1838   
1839   // Reset special output object address and file offsets.
1840   for (Data_list::iterator p = this->special_output_list_.begin();
1841        p != this->special_output_list_.end();
1842        ++p)
1843     (*p)->reset_address_and_file_offset();
1844
1845   // A linker script may have created some output section data objects.
1846   // They are useless now.
1847   for (Output_section_data_list::const_iterator p =
1848          this->script_output_section_data_list_.begin();
1849        p != this->script_output_section_data_list_.end();
1850        ++p)
1851     delete *p;
1852   this->script_output_section_data_list_.clear(); 
1853 }
1854
1855 // Prepare for relaxation.
1856
1857 void
1858 Layout::prepare_for_relaxation()
1859 {
1860   // Create an relaxation debug check if in debugging mode.
1861   if (is_debugging_enabled(DEBUG_RELAXATION))
1862     this->relaxation_debug_check_ = new Relaxation_debug_check();
1863
1864   // Save segment states.
1865   this->segment_states_ = new Segment_states();
1866   this->save_segments(this->segment_states_);
1867
1868   for(Section_list::const_iterator p = this->section_list_.begin();
1869       p != this->section_list_.end();
1870       ++p)
1871     (*p)->save_states();
1872
1873   if (is_debugging_enabled(DEBUG_RELAXATION))
1874     this->relaxation_debug_check_->check_output_data_for_reset_values(
1875         this->section_list_, this->special_output_list_);
1876
1877   // Also enable recording of output section data from scripts.
1878   this->record_output_section_data_from_script_ = true;
1879 }
1880
1881 // Relaxation loop body:  If target has no relaxation, this runs only once
1882 // Otherwise, the target relaxation hook is called at the end of
1883 // each iteration.  If the hook returns true, it means re-layout of
1884 // section is required.  
1885 //
1886 // The number of segments created by a linking script without a PHDRS
1887 // clause may be affected by section sizes and alignments.  There is
1888 // a remote chance that relaxation causes different number of PT_LOAD
1889 // segments are created and sections are attached to different segments.
1890 // Therefore, we always throw away all segments created during section
1891 // layout.  In order to be able to restart the section layout, we keep
1892 // a copy of the segment list right before the relaxation loop and use
1893 // that to restore the segments.
1894 // 
1895 // PASS is the current relaxation pass number. 
1896 // SYMTAB is a symbol table.
1897 // PLOAD_SEG is the address of a pointer for the load segment.
1898 // PHDR_SEG is a pointer to the PHDR segment.
1899 // SEGMENT_HEADERS points to the output segment header.
1900 // FILE_HEADER points to the output file header.
1901 // PSHNDX is the address to store the output section index.
1902
1903 off_t inline
1904 Layout::relaxation_loop_body(
1905     int pass,
1906     Target* target,
1907     Symbol_table* symtab,
1908     Output_segment** pload_seg,
1909     Output_segment* phdr_seg,
1910     Output_segment_headers* segment_headers,
1911     Output_file_header* file_header,
1912     unsigned int* pshndx)
1913 {
1914   // If this is not the first iteration, we need to clean up after
1915   // relaxation so that we can lay out the sections again.
1916   if (pass != 0)
1917     this->clean_up_after_relaxation();
1918
1919   // If there is a SECTIONS clause, put all the input sections into
1920   // the required order.
1921   Output_segment* load_seg;
1922   if (this->script_options_->saw_sections_clause())
1923     load_seg = this->set_section_addresses_from_script(symtab);
1924   else if (parameters->options().relocatable())
1925     load_seg = NULL;
1926   else
1927     load_seg = this->find_first_load_seg();
1928
1929   if (parameters->options().oformat_enum()
1930       != General_options::OBJECT_FORMAT_ELF)
1931     load_seg = NULL;
1932
1933   // If the user set the address of the text segment, that may not be
1934   // compatible with putting the segment headers and file headers into
1935   // that segment.
1936   if (parameters->options().user_set_Ttext())
1937     load_seg = NULL;
1938
1939   gold_assert(phdr_seg == NULL
1940               || load_seg != NULL
1941               || this->script_options_->saw_sections_clause());
1942
1943   // If the address of the load segment we found has been set by
1944   // --section-start rather than by a script, then adjust the VMA and
1945   // LMA downward if possible to include the file and section headers.
1946   uint64_t header_gap = 0;
1947   if (load_seg != NULL
1948       && load_seg->are_addresses_set()
1949       && !this->script_options_->saw_sections_clause()
1950       && !parameters->options().relocatable())
1951     {
1952       file_header->finalize_data_size();
1953       segment_headers->finalize_data_size();
1954       size_t sizeof_headers = (file_header->data_size()
1955                                + segment_headers->data_size());
1956       const uint64_t abi_pagesize = target->abi_pagesize();
1957       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1958       hdr_paddr &= ~(abi_pagesize - 1);
1959       uint64_t subtract = load_seg->paddr() - hdr_paddr;
1960       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1961         load_seg = NULL;
1962       else
1963         {
1964           load_seg->set_addresses(load_seg->vaddr() - subtract,
1965                                   load_seg->paddr() - subtract);
1966           header_gap = subtract - sizeof_headers;
1967         }
1968     }
1969
1970   // Lay out the segment headers.
1971   if (!parameters->options().relocatable())
1972     {
1973       gold_assert(segment_headers != NULL);
1974       if (header_gap != 0 && load_seg != NULL)
1975         {
1976           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1977           load_seg->add_initial_output_data(z);
1978         }
1979       if (load_seg != NULL)
1980         load_seg->add_initial_output_data(segment_headers);
1981       if (phdr_seg != NULL)
1982         phdr_seg->add_initial_output_data(segment_headers);
1983     }
1984
1985   // Lay out the file header.
1986   if (load_seg != NULL)
1987     load_seg->add_initial_output_data(file_header);
1988
1989   if (this->script_options_->saw_phdrs_clause()
1990       && !parameters->options().relocatable())
1991     {
1992       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1993       // clause in a linker script.
1994       Script_sections* ss = this->script_options_->script_sections();
1995       ss->put_headers_in_phdrs(file_header, segment_headers);
1996     }
1997
1998   // We set the output section indexes in set_segment_offsets and
1999   // set_section_indexes.
2000   *pshndx = 1;
2001
2002   // Set the file offsets of all the segments, and all the sections
2003   // they contain.
2004   off_t off;
2005   if (!parameters->options().relocatable())
2006     off = this->set_segment_offsets(target, load_seg, pshndx);
2007   else
2008     off = this->set_relocatable_section_offsets(file_header, pshndx);
2009
2010    // Verify that the dummy relaxation does not change anything.
2011   if (is_debugging_enabled(DEBUG_RELAXATION))
2012     {
2013       if (pass == 0)
2014         this->relaxation_debug_check_->read_sections(this->section_list_);
2015       else
2016         this->relaxation_debug_check_->verify_sections(this->section_list_);
2017     }
2018
2019   *pload_seg = load_seg;
2020   return off;
2021 }
2022
2023 // Search the list of patterns and find the postion of the given section
2024 // name in the output section.  If the section name matches a glob
2025 // pattern and a non-glob name, then the non-glob position takes
2026 // precedence.  Return 0 if no match is found.
2027
2028 unsigned int
2029 Layout::find_section_order_index(const std::string& section_name)
2030 {
2031   Unordered_map<std::string, unsigned int>::iterator map_it;
2032   map_it = this->input_section_position_.find(section_name);
2033   if (map_it != this->input_section_position_.end())
2034     return map_it->second;
2035
2036   // Absolute match failed.  Linear search the glob patterns.
2037   std::vector<std::string>::iterator it;
2038   for (it = this->input_section_glob_.begin();
2039        it != this->input_section_glob_.end();
2040        ++it)
2041     {
2042        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2043          {
2044            map_it = this->input_section_position_.find(*it);
2045            gold_assert(map_it != this->input_section_position_.end());
2046            return map_it->second;
2047          }
2048     }
2049   return 0;
2050 }
2051
2052 // Read the sequence of input sections from the file specified with
2053 // --section-ordering-file.
2054
2055 void
2056 Layout::read_layout_from_file()
2057 {
2058   const char* filename = parameters->options().section_ordering_file();
2059   std::ifstream in;
2060   std::string line;
2061
2062   in.open(filename);
2063   if (!in)
2064     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2065                filename, strerror(errno));
2066
2067   std::getline(in, line);   // this chops off the trailing \n, if any
2068   unsigned int position = 1;
2069
2070   while (in)
2071     {
2072       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2073         line.resize(line.length() - 1);
2074       // Ignore comments, beginning with '#'
2075       if (line[0] == '#')
2076         {
2077           std::getline(in, line);
2078           continue;
2079         }
2080       this->input_section_position_[line] = position;
2081       // Store all glob patterns in a vector.
2082       if (is_wildcard_string(line.c_str()))
2083         this->input_section_glob_.push_back(line);
2084       position++;
2085       std::getline(in, line);
2086     }
2087 }
2088
2089 // Finalize the layout.  When this is called, we have created all the
2090 // output sections and all the output segments which are based on
2091 // input sections.  We have several things to do, and we have to do
2092 // them in the right order, so that we get the right results correctly
2093 // and efficiently.
2094
2095 // 1) Finalize the list of output segments and create the segment
2096 // table header.
2097
2098 // 2) Finalize the dynamic symbol table and associated sections.
2099
2100 // 3) Determine the final file offset of all the output segments.
2101
2102 // 4) Determine the final file offset of all the SHF_ALLOC output
2103 // sections.
2104
2105 // 5) Create the symbol table sections and the section name table
2106 // section.
2107
2108 // 6) Finalize the symbol table: set symbol values to their final
2109 // value and make a final determination of which symbols are going
2110 // into the output symbol table.
2111
2112 // 7) Create the section table header.
2113
2114 // 8) Determine the final file offset of all the output sections which
2115 // are not SHF_ALLOC, including the section table header.
2116
2117 // 9) Finalize the ELF file header.
2118
2119 // This function returns the size of the output file.
2120
2121 off_t
2122 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2123                  Target* target, const Task* task)
2124 {
2125   target->finalize_sections(this, input_objects, symtab);
2126
2127   this->count_local_symbols(task, input_objects);
2128
2129   this->link_stabs_sections();
2130
2131   Output_segment* phdr_seg = NULL;
2132   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2133     {
2134       // There was a dynamic object in the link.  We need to create
2135       // some information for the dynamic linker.
2136
2137       // Create the PT_PHDR segment which will hold the program
2138       // headers.
2139       if (!this->script_options_->saw_phdrs_clause())
2140         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2141
2142       // Create the dynamic symbol table, including the hash table.
2143       Output_section* dynstr;
2144       std::vector<Symbol*> dynamic_symbols;
2145       unsigned int local_dynamic_count;
2146       Versions versions(*this->script_options()->version_script_info(),
2147                         &this->dynpool_);
2148       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2149                                   &local_dynamic_count, &dynamic_symbols,
2150                                   &versions);
2151
2152       // Create the .interp section to hold the name of the
2153       // interpreter, and put it in a PT_INTERP segment.
2154       if (!parameters->options().shared())
2155         this->create_interp(target);
2156
2157       // Finish the .dynamic section to hold the dynamic data, and put
2158       // it in a PT_DYNAMIC segment.
2159       this->finish_dynamic_section(input_objects, symtab);
2160
2161       // We should have added everything we need to the dynamic string
2162       // table.
2163       this->dynpool_.set_string_offsets();
2164
2165       // Create the version sections.  We can't do this until the
2166       // dynamic string table is complete.
2167       this->create_version_sections(&versions, symtab, local_dynamic_count,
2168                                     dynamic_symbols, dynstr);
2169
2170       // Set the size of the _DYNAMIC symbol.  We can't do this until
2171       // after we call create_version_sections.
2172       this->set_dynamic_symbol_size(symtab);
2173     }
2174   
2175   // Create segment headers.
2176   Output_segment_headers* segment_headers =
2177     (parameters->options().relocatable()
2178      ? NULL
2179      : new Output_segment_headers(this->segment_list_));
2180
2181   // Lay out the file header.
2182   Output_file_header* file_header
2183     = new Output_file_header(target, symtab, segment_headers,
2184                              parameters->options().entry());
2185
2186   this->special_output_list_.push_back(file_header);
2187   if (segment_headers != NULL)
2188     this->special_output_list_.push_back(segment_headers);
2189
2190   // Find approriate places for orphan output sections if we are using
2191   // a linker script.
2192   if (this->script_options_->saw_sections_clause())
2193     this->place_orphan_sections_in_script();
2194   
2195   Output_segment* load_seg;
2196   off_t off;
2197   unsigned int shndx;
2198   int pass = 0;
2199
2200   // Take a snapshot of the section layout as needed.
2201   if (target->may_relax())
2202     this->prepare_for_relaxation();
2203   
2204   // Run the relaxation loop to lay out sections.
2205   do
2206     {
2207       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2208                                        phdr_seg, segment_headers, file_header,
2209                                        &shndx);
2210       pass++;
2211     }
2212   while (target->may_relax()
2213          && target->relax(pass, input_objects, symtab, this, task));
2214
2215   // Set the file offsets of all the non-data sections we've seen so
2216   // far which don't have to wait for the input sections.  We need
2217   // this in order to finalize local symbols in non-allocated
2218   // sections.
2219   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2220
2221   // Set the section indexes of all unallocated sections seen so far,
2222   // in case any of them are somehow referenced by a symbol.
2223   shndx = this->set_section_indexes(shndx);
2224
2225   // Create the symbol table sections.
2226   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2227   if (!parameters->doing_static_link())
2228     this->assign_local_dynsym_offsets(input_objects);
2229
2230   // Process any symbol assignments from a linker script.  This must
2231   // be called after the symbol table has been finalized.
2232   this->script_options_->finalize_symbols(symtab, this);
2233
2234   // Create the incremental inputs sections.
2235   if (this->incremental_inputs_)
2236     {
2237       this->incremental_inputs_->finalize();
2238       this->create_incremental_info_sections(symtab);
2239     }
2240
2241   // Create the .shstrtab section.
2242   Output_section* shstrtab_section = this->create_shstrtab();
2243
2244   // Set the file offsets of the rest of the non-data sections which
2245   // don't have to wait for the input sections.
2246   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2247
2248   // Now that all sections have been created, set the section indexes
2249   // for any sections which haven't been done yet.
2250   shndx = this->set_section_indexes(shndx);
2251
2252   // Create the section table header.
2253   this->create_shdrs(shstrtab_section, &off);
2254
2255   // If there are no sections which require postprocessing, we can
2256   // handle the section names now, and avoid a resize later.
2257   if (!this->any_postprocessing_sections_)
2258     {
2259       off = this->set_section_offsets(off,
2260                                       POSTPROCESSING_SECTIONS_PASS);
2261       off =
2262           this->set_section_offsets(off,
2263                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2264     }
2265
2266   file_header->set_section_info(this->section_headers_, shstrtab_section);
2267
2268   // Now we know exactly where everything goes in the output file
2269   // (except for non-allocated sections which require postprocessing).
2270   Output_data::layout_complete();
2271
2272   this->output_file_size_ = off;
2273
2274   return off;
2275 }
2276
2277 // Create a note header following the format defined in the ELF ABI.
2278 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2279 // of the section to create, DESCSZ is the size of the descriptor.
2280 // ALLOCATE is true if the section should be allocated in memory.
2281 // This returns the new note section.  It sets *TRAILING_PADDING to
2282 // the number of trailing zero bytes required.
2283
2284 Output_section*
2285 Layout::create_note(const char* name, int note_type,
2286                     const char* section_name, size_t descsz,
2287                     bool allocate, size_t* trailing_padding)
2288 {
2289   // Authorities all agree that the values in a .note field should
2290   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2291   // they differ on what the alignment is for 64-bit binaries.
2292   // The GABI says unambiguously they take 8-byte alignment:
2293   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2294   // Other documentation says alignment should always be 4 bytes:
2295   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2296   // GNU ld and GNU readelf both support the latter (at least as of
2297   // version 2.16.91), and glibc always generates the latter for
2298   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2299   // here.
2300 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2301   const int size = parameters->target().get_size();
2302 #else
2303   const int size = 32;
2304 #endif
2305
2306   // The contents of the .note section.
2307   size_t namesz = strlen(name) + 1;
2308   size_t aligned_namesz = align_address(namesz, size / 8);
2309   size_t aligned_descsz = align_address(descsz, size / 8);
2310
2311   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2312
2313   unsigned char* buffer = new unsigned char[notehdrsz];
2314   memset(buffer, 0, notehdrsz);
2315
2316   bool is_big_endian = parameters->target().is_big_endian();
2317
2318   if (size == 32)
2319     {
2320       if (!is_big_endian)
2321         {
2322           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2323           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2324           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2325         }
2326       else
2327         {
2328           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2329           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2330           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2331         }
2332     }
2333   else if (size == 64)
2334     {
2335       if (!is_big_endian)
2336         {
2337           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2338           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2339           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2340         }
2341       else
2342         {
2343           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2344           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2345           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2346         }
2347     }
2348   else
2349     gold_unreachable();
2350
2351   memcpy(buffer + 3 * (size / 8), name, namesz);
2352
2353   elfcpp::Elf_Xword flags = 0;
2354   Output_section_order order = ORDER_INVALID;
2355   if (allocate)
2356     {
2357       flags = elfcpp::SHF_ALLOC;
2358       order = ORDER_RO_NOTE;
2359     }
2360   Output_section* os = this->choose_output_section(NULL, section_name,
2361                                                    elfcpp::SHT_NOTE,
2362                                                    flags, false, order, false);
2363   if (os == NULL)
2364     return NULL;
2365
2366   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2367                                                            size / 8,
2368                                                            "** note header");
2369   os->add_output_section_data(posd);
2370
2371   *trailing_padding = aligned_descsz - descsz;
2372
2373   return os;
2374 }
2375
2376 // For an executable or shared library, create a note to record the
2377 // version of gold used to create the binary.
2378
2379 void
2380 Layout::create_gold_note()
2381 {
2382   if (parameters->options().relocatable()
2383       || parameters->incremental_update())
2384     return;
2385
2386   std::string desc = std::string("gold ") + gold::get_version_string();
2387
2388   size_t trailing_padding;
2389   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2390                                          ".note.gnu.gold-version", desc.size(),
2391                                          false, &trailing_padding);
2392   if (os == NULL)
2393     return;
2394
2395   Output_section_data* posd = new Output_data_const(desc, 4);
2396   os->add_output_section_data(posd);
2397
2398   if (trailing_padding > 0)
2399     {
2400       posd = new Output_data_zero_fill(trailing_padding, 0);
2401       os->add_output_section_data(posd);
2402     }
2403 }
2404
2405 // Record whether the stack should be executable.  This can be set
2406 // from the command line using the -z execstack or -z noexecstack
2407 // options.  Otherwise, if any input file has a .note.GNU-stack
2408 // section with the SHF_EXECINSTR flag set, the stack should be
2409 // executable.  Otherwise, if at least one input file a
2410 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2411 // section, we use the target default for whether the stack should be
2412 // executable.  Otherwise, we don't generate a stack note.  When
2413 // generating a object file, we create a .note.GNU-stack section with
2414 // the appropriate marking.  When generating an executable or shared
2415 // library, we create a PT_GNU_STACK segment.
2416
2417 void
2418 Layout::create_executable_stack_info()
2419 {
2420   bool is_stack_executable;
2421   if (parameters->options().is_execstack_set())
2422     is_stack_executable = parameters->options().is_stack_executable();
2423   else if (!this->input_with_gnu_stack_note_)
2424     return;
2425   else
2426     {
2427       if (this->input_requires_executable_stack_)
2428         is_stack_executable = true;
2429       else if (this->input_without_gnu_stack_note_)
2430         is_stack_executable =
2431           parameters->target().is_default_stack_executable();
2432       else
2433         is_stack_executable = false;
2434     }
2435
2436   if (parameters->options().relocatable())
2437     {
2438       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2439       elfcpp::Elf_Xword flags = 0;
2440       if (is_stack_executable)
2441         flags |= elfcpp::SHF_EXECINSTR;
2442       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2443                                 ORDER_INVALID, false);
2444     }
2445   else
2446     {
2447       if (this->script_options_->saw_phdrs_clause())
2448         return;
2449       int flags = elfcpp::PF_R | elfcpp::PF_W;
2450       if (is_stack_executable)
2451         flags |= elfcpp::PF_X;
2452       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2453     }
2454 }
2455
2456 // If --build-id was used, set up the build ID note.
2457
2458 void
2459 Layout::create_build_id()
2460 {
2461   if (!parameters->options().user_set_build_id())
2462     return;
2463
2464   const char* style = parameters->options().build_id();
2465   if (strcmp(style, "none") == 0)
2466     return;
2467
2468   // Set DESCSZ to the size of the note descriptor.  When possible,
2469   // set DESC to the note descriptor contents.
2470   size_t descsz;
2471   std::string desc;
2472   if (strcmp(style, "md5") == 0)
2473     descsz = 128 / 8;
2474   else if (strcmp(style, "sha1") == 0)
2475     descsz = 160 / 8;
2476   else if (strcmp(style, "uuid") == 0)
2477     {
2478       const size_t uuidsz = 128 / 8;
2479
2480       char buffer[uuidsz];
2481       memset(buffer, 0, uuidsz);
2482
2483       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2484       if (descriptor < 0)
2485         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2486                    strerror(errno));
2487       else
2488         {
2489           ssize_t got = ::read(descriptor, buffer, uuidsz);
2490           release_descriptor(descriptor, true);
2491           if (got < 0)
2492             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2493           else if (static_cast<size_t>(got) != uuidsz)
2494             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2495                        uuidsz, got);
2496         }
2497
2498       desc.assign(buffer, uuidsz);
2499       descsz = uuidsz;
2500     }
2501   else if (strncmp(style, "0x", 2) == 0)
2502     {
2503       hex_init();
2504       const char* p = style + 2;
2505       while (*p != '\0')
2506         {
2507           if (hex_p(p[0]) && hex_p(p[1]))
2508             {
2509               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2510               desc += c;
2511               p += 2;
2512             }
2513           else if (*p == '-' || *p == ':')
2514             ++p;
2515           else
2516             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2517                        style);
2518         }
2519       descsz = desc.size();
2520     }
2521   else
2522     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2523
2524   // Create the note.
2525   size_t trailing_padding;
2526   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2527                                          ".note.gnu.build-id", descsz, true,
2528                                          &trailing_padding);
2529   if (os == NULL)
2530     return;
2531
2532   if (!desc.empty())
2533     {
2534       // We know the value already, so we fill it in now.
2535       gold_assert(desc.size() == descsz);
2536
2537       Output_section_data* posd = new Output_data_const(desc, 4);
2538       os->add_output_section_data(posd);
2539
2540       if (trailing_padding != 0)
2541         {
2542           posd = new Output_data_zero_fill(trailing_padding, 0);
2543           os->add_output_section_data(posd);
2544         }
2545     }
2546   else
2547     {
2548       // We need to compute a checksum after we have completed the
2549       // link.
2550       gold_assert(trailing_padding == 0);
2551       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2552       os->add_output_section_data(this->build_id_note_);
2553     }
2554 }
2555
2556 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2557 // field of the former should point to the latter.  I'm not sure who
2558 // started this, but the GNU linker does it, and some tools depend
2559 // upon it.
2560
2561 void
2562 Layout::link_stabs_sections()
2563 {
2564   if (!this->have_stabstr_section_)
2565     return;
2566
2567   for (Section_list::iterator p = this->section_list_.begin();
2568        p != this->section_list_.end();
2569        ++p)
2570     {
2571       if ((*p)->type() != elfcpp::SHT_STRTAB)
2572         continue;
2573
2574       const char* name = (*p)->name();
2575       if (strncmp(name, ".stab", 5) != 0)
2576         continue;
2577
2578       size_t len = strlen(name);
2579       if (strcmp(name + len - 3, "str") != 0)
2580         continue;
2581
2582       std::string stab_name(name, len - 3);
2583       Output_section* stab_sec;
2584       stab_sec = this->find_output_section(stab_name.c_str());
2585       if (stab_sec != NULL)
2586         stab_sec->set_link_section(*p);
2587     }
2588 }
2589
2590 // Create .gnu_incremental_inputs and related sections needed
2591 // for the next run of incremental linking to check what has changed.
2592
2593 void
2594 Layout::create_incremental_info_sections(Symbol_table* symtab)
2595 {
2596   Incremental_inputs* incr = this->incremental_inputs_;
2597
2598   gold_assert(incr != NULL);
2599
2600   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2601   incr->create_data_sections(symtab);
2602
2603   // Add the .gnu_incremental_inputs section.
2604   const char* incremental_inputs_name =
2605     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2606   Output_section* incremental_inputs_os =
2607     this->make_output_section(incremental_inputs_name,
2608                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2609                               ORDER_INVALID, false);
2610   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2611
2612   // Add the .gnu_incremental_symtab section.
2613   const char* incremental_symtab_name =
2614     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2615   Output_section* incremental_symtab_os =
2616     this->make_output_section(incremental_symtab_name,
2617                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2618                               ORDER_INVALID, false);
2619   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2620   incremental_symtab_os->set_entsize(4);
2621
2622   // Add the .gnu_incremental_relocs section.
2623   const char* incremental_relocs_name =
2624     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2625   Output_section* incremental_relocs_os =
2626     this->make_output_section(incremental_relocs_name,
2627                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2628                               ORDER_INVALID, false);
2629   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2630   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2631
2632   // Add the .gnu_incremental_got_plt section.
2633   const char* incremental_got_plt_name =
2634     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2635   Output_section* incremental_got_plt_os =
2636     this->make_output_section(incremental_got_plt_name,
2637                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2638                               ORDER_INVALID, false);
2639   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2640
2641   // Add the .gnu_incremental_strtab section.
2642   const char* incremental_strtab_name =
2643     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2644   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2645                                                         elfcpp::SHT_STRTAB, 0,
2646                                                         ORDER_INVALID, false);
2647   Output_data_strtab* strtab_data =
2648       new Output_data_strtab(incr->get_stringpool());
2649   incremental_strtab_os->add_output_section_data(strtab_data);
2650
2651   incremental_inputs_os->set_after_input_sections();
2652   incremental_symtab_os->set_after_input_sections();
2653   incremental_relocs_os->set_after_input_sections();
2654   incremental_got_plt_os->set_after_input_sections();
2655
2656   incremental_inputs_os->set_link_section(incremental_strtab_os);
2657   incremental_symtab_os->set_link_section(incremental_inputs_os);
2658   incremental_relocs_os->set_link_section(incremental_inputs_os);
2659   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2660 }
2661
2662 // Return whether SEG1 should be before SEG2 in the output file.  This
2663 // is based entirely on the segment type and flags.  When this is
2664 // called the segment addresses has normally not yet been set.
2665
2666 bool
2667 Layout::segment_precedes(const Output_segment* seg1,
2668                          const Output_segment* seg2)
2669 {
2670   elfcpp::Elf_Word type1 = seg1->type();
2671   elfcpp::Elf_Word type2 = seg2->type();
2672
2673   // The single PT_PHDR segment is required to precede any loadable
2674   // segment.  We simply make it always first.
2675   if (type1 == elfcpp::PT_PHDR)
2676     {
2677       gold_assert(type2 != elfcpp::PT_PHDR);
2678       return true;
2679     }
2680   if (type2 == elfcpp::PT_PHDR)
2681     return false;
2682
2683   // The single PT_INTERP segment is required to precede any loadable
2684   // segment.  We simply make it always second.
2685   if (type1 == elfcpp::PT_INTERP)
2686     {
2687       gold_assert(type2 != elfcpp::PT_INTERP);
2688       return true;
2689     }
2690   if (type2 == elfcpp::PT_INTERP)
2691     return false;
2692
2693   // We then put PT_LOAD segments before any other segments.
2694   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2695     return true;
2696   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2697     return false;
2698
2699   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2700   // segment, because that is where the dynamic linker expects to find
2701   // it (this is just for efficiency; other positions would also work
2702   // correctly).
2703   if (type1 == elfcpp::PT_TLS
2704       && type2 != elfcpp::PT_TLS
2705       && type2 != elfcpp::PT_GNU_RELRO)
2706     return false;
2707   if (type2 == elfcpp::PT_TLS
2708       && type1 != elfcpp::PT_TLS
2709       && type1 != elfcpp::PT_GNU_RELRO)
2710     return true;
2711
2712   // We put the PT_GNU_RELRO segment last, because that is where the
2713   // dynamic linker expects to find it (as with PT_TLS, this is just
2714   // for efficiency).
2715   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2716     return false;
2717   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2718     return true;
2719
2720   const elfcpp::Elf_Word flags1 = seg1->flags();
2721   const elfcpp::Elf_Word flags2 = seg2->flags();
2722
2723   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2724   // by the numeric segment type and flags values.  There should not
2725   // be more than one segment with the same type and flags.
2726   if (type1 != elfcpp::PT_LOAD)
2727     {
2728       if (type1 != type2)
2729         return type1 < type2;
2730       gold_assert(flags1 != flags2);
2731       return flags1 < flags2;
2732     }
2733
2734   // If the addresses are set already, sort by load address.
2735   if (seg1->are_addresses_set())
2736     {
2737       if (!seg2->are_addresses_set())
2738         return true;
2739
2740       unsigned int section_count1 = seg1->output_section_count();
2741       unsigned int section_count2 = seg2->output_section_count();
2742       if (section_count1 == 0 && section_count2 > 0)
2743         return true;
2744       if (section_count1 > 0 && section_count2 == 0)
2745         return false;
2746
2747       uint64_t paddr1 = (seg1->are_addresses_set()
2748                          ? seg1->paddr()
2749                          : seg1->first_section_load_address());
2750       uint64_t paddr2 = (seg2->are_addresses_set()
2751                          ? seg2->paddr()
2752                          : seg2->first_section_load_address());
2753
2754       if (paddr1 != paddr2)
2755         return paddr1 < paddr2;
2756     }
2757   else if (seg2->are_addresses_set())
2758     return false;
2759
2760   // A segment which holds large data comes after a segment which does
2761   // not hold large data.
2762   if (seg1->is_large_data_segment())
2763     {
2764       if (!seg2->is_large_data_segment())
2765         return false;
2766     }
2767   else if (seg2->is_large_data_segment())
2768     return true;
2769
2770   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2771   // segments come before writable segments.  Then writable segments
2772   // with data come before writable segments without data.  Then
2773   // executable segments come before non-executable segments.  Then
2774   // the unlikely case of a non-readable segment comes before the
2775   // normal case of a readable segment.  If there are multiple
2776   // segments with the same type and flags, we require that the
2777   // address be set, and we sort by virtual address and then physical
2778   // address.
2779   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2780     return (flags1 & elfcpp::PF_W) == 0;
2781   if ((flags1 & elfcpp::PF_W) != 0
2782       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2783     return seg1->has_any_data_sections();
2784   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2785     return (flags1 & elfcpp::PF_X) != 0;
2786   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2787     return (flags1 & elfcpp::PF_R) == 0;
2788
2789   // We shouldn't get here--we shouldn't create segments which we
2790   // can't distinguish.
2791   gold_unreachable();
2792 }
2793
2794 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2795
2796 static off_t
2797 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2798 {
2799   uint64_t unsigned_off = off;
2800   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2801                           | (addr & (abi_pagesize - 1)));
2802   if (aligned_off < unsigned_off)
2803     aligned_off += abi_pagesize;
2804   return aligned_off;
2805 }
2806
2807 // Set the file offsets of all the segments, and all the sections they
2808 // contain.  They have all been created.  LOAD_SEG must be be laid out
2809 // first.  Return the offset of the data to follow.
2810
2811 off_t
2812 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2813                             unsigned int* pshndx)
2814 {
2815   // Sort them into the final order.
2816   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2817             Layout::Compare_segments());
2818
2819   // Find the PT_LOAD segments, and set their addresses and offsets
2820   // and their section's addresses and offsets.
2821   uint64_t addr;
2822   if (parameters->options().user_set_Ttext())
2823     addr = parameters->options().Ttext();
2824   else if (parameters->options().output_is_position_independent())
2825     addr = 0;
2826   else
2827     addr = target->default_text_segment_address();
2828   off_t off = 0;
2829
2830   // If LOAD_SEG is NULL, then the file header and segment headers
2831   // will not be loadable.  But they still need to be at offset 0 in
2832   // the file.  Set their offsets now.
2833   if (load_seg == NULL)
2834     {
2835       for (Data_list::iterator p = this->special_output_list_.begin();
2836            p != this->special_output_list_.end();
2837            ++p)
2838         {
2839           off = align_address(off, (*p)->addralign());
2840           (*p)->set_address_and_file_offset(0, off);
2841           off += (*p)->data_size();
2842         }
2843     }
2844
2845   unsigned int increase_relro = this->increase_relro_;
2846   if (this->script_options_->saw_sections_clause())
2847     increase_relro = 0;
2848
2849   const bool check_sections = parameters->options().check_sections();
2850   Output_segment* last_load_segment = NULL;
2851
2852   for (Segment_list::iterator p = this->segment_list_.begin();
2853        p != this->segment_list_.end();
2854        ++p)
2855     {
2856       if ((*p)->type() == elfcpp::PT_LOAD)
2857         {
2858           if (load_seg != NULL && load_seg != *p)
2859             gold_unreachable();
2860           load_seg = NULL;
2861
2862           bool are_addresses_set = (*p)->are_addresses_set();
2863           if (are_addresses_set)
2864             {
2865               // When it comes to setting file offsets, we care about
2866               // the physical address.
2867               addr = (*p)->paddr();
2868             }
2869           else if (parameters->options().user_set_Tdata()
2870                    && ((*p)->flags() & elfcpp::PF_W) != 0
2871                    && (!parameters->options().user_set_Tbss()
2872                        || (*p)->has_any_data_sections()))
2873             {
2874               addr = parameters->options().Tdata();
2875               are_addresses_set = true;
2876             }
2877           else if (parameters->options().user_set_Tbss()
2878                    && ((*p)->flags() & elfcpp::PF_W) != 0
2879                    && !(*p)->has_any_data_sections())
2880             {
2881               addr = parameters->options().Tbss();
2882               are_addresses_set = true;
2883             }
2884
2885           uint64_t orig_addr = addr;
2886           uint64_t orig_off = off;
2887
2888           uint64_t aligned_addr = 0;
2889           uint64_t abi_pagesize = target->abi_pagesize();
2890           uint64_t common_pagesize = target->common_pagesize();
2891
2892           if (!parameters->options().nmagic()
2893               && !parameters->options().omagic())
2894             (*p)->set_minimum_p_align(common_pagesize);
2895
2896           if (!are_addresses_set)
2897             {
2898               // Skip the address forward one page, maintaining the same
2899               // position within the page.  This lets us store both segments
2900               // overlapping on a single page in the file, but the loader will
2901               // put them on different pages in memory. We will revisit this
2902               // decision once we know the size of the segment.
2903
2904               addr = align_address(addr, (*p)->maximum_alignment());
2905               aligned_addr = addr;
2906
2907               if ((addr & (abi_pagesize - 1)) != 0)
2908                 addr = addr + abi_pagesize;
2909
2910               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2911             }
2912
2913           if (!parameters->options().nmagic()
2914               && !parameters->options().omagic())
2915             off = align_file_offset(off, addr, abi_pagesize);
2916           else if (load_seg == NULL)
2917             {
2918               // This is -N or -n with a section script which prevents
2919               // us from using a load segment.  We need to ensure that
2920               // the file offset is aligned to the alignment of the
2921               // segment.  This is because the linker script
2922               // implicitly assumed a zero offset.  If we don't align
2923               // here, then the alignment of the sections in the
2924               // linker script may not match the alignment of the
2925               // sections in the set_section_addresses call below,
2926               // causing an error about dot moving backward.
2927               off = align_address(off, (*p)->maximum_alignment());
2928             }
2929
2930           unsigned int shndx_hold = *pshndx;
2931           bool has_relro = false;
2932           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2933                                                           &increase_relro,
2934                                                           &has_relro,
2935                                                           &off, pshndx);
2936
2937           // Now that we know the size of this segment, we may be able
2938           // to save a page in memory, at the cost of wasting some
2939           // file space, by instead aligning to the start of a new
2940           // page.  Here we use the real machine page size rather than
2941           // the ABI mandated page size.  If the segment has been
2942           // aligned so that the relro data ends at a page boundary,
2943           // we do not try to realign it.
2944
2945           if (!are_addresses_set
2946               && !has_relro
2947               && aligned_addr != addr
2948               && !parameters->incremental_update())
2949             {
2950               uint64_t first_off = (common_pagesize
2951                                     - (aligned_addr
2952                                        & (common_pagesize - 1)));
2953               uint64_t last_off = new_addr & (common_pagesize - 1);
2954               if (first_off > 0
2955                   && last_off > 0
2956                   && ((aligned_addr & ~ (common_pagesize - 1))
2957                       != (new_addr & ~ (common_pagesize - 1)))
2958                   && first_off + last_off <= common_pagesize)
2959                 {
2960                   *pshndx = shndx_hold;
2961                   addr = align_address(aligned_addr, common_pagesize);
2962                   addr = align_address(addr, (*p)->maximum_alignment());
2963                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2964                   off = align_file_offset(off, addr, abi_pagesize);
2965
2966                   increase_relro = this->increase_relro_;
2967                   if (this->script_options_->saw_sections_clause())
2968                     increase_relro = 0;
2969                   has_relro = false;
2970
2971                   new_addr = (*p)->set_section_addresses(this, true, addr,
2972                                                          &increase_relro,
2973                                                          &has_relro,
2974                                                          &off, pshndx);
2975                 }
2976             }
2977
2978           addr = new_addr;
2979
2980           // Implement --check-sections.  We know that the segments
2981           // are sorted by LMA.
2982           if (check_sections && last_load_segment != NULL)
2983             {
2984               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2985               if (last_load_segment->paddr() + last_load_segment->memsz()
2986                   > (*p)->paddr())
2987                 {
2988                   unsigned long long lb1 = last_load_segment->paddr();
2989                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2990                   unsigned long long lb2 = (*p)->paddr();
2991                   unsigned long long le2 = lb2 + (*p)->memsz();
2992                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2993                                "[0x%llx -> 0x%llx]"),
2994                              lb1, le1, lb2, le2);
2995                 }
2996             }
2997           last_load_segment = *p;
2998         }
2999     }
3000
3001   // Handle the non-PT_LOAD segments, setting their offsets from their
3002   // section's offsets.
3003   for (Segment_list::iterator p = this->segment_list_.begin();
3004        p != this->segment_list_.end();
3005        ++p)
3006     {
3007       if ((*p)->type() != elfcpp::PT_LOAD)
3008         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3009                          ? increase_relro
3010                          : 0);
3011     }
3012
3013   // Set the TLS offsets for each section in the PT_TLS segment.
3014   if (this->tls_segment_ != NULL)
3015     this->tls_segment_->set_tls_offsets();
3016
3017   return off;
3018 }
3019
3020 // Set the offsets of all the allocated sections when doing a
3021 // relocatable link.  This does the same jobs as set_segment_offsets,
3022 // only for a relocatable link.
3023
3024 off_t
3025 Layout::set_relocatable_section_offsets(Output_data* file_header,
3026                                         unsigned int* pshndx)
3027 {
3028   off_t off = 0;
3029
3030   file_header->set_address_and_file_offset(0, 0);
3031   off += file_header->data_size();
3032
3033   for (Section_list::iterator p = this->section_list_.begin();
3034        p != this->section_list_.end();
3035        ++p)
3036     {
3037       // We skip unallocated sections here, except that group sections
3038       // have to come first.
3039       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3040           && (*p)->type() != elfcpp::SHT_GROUP)
3041         continue;
3042
3043       off = align_address(off, (*p)->addralign());
3044
3045       // The linker script might have set the address.
3046       if (!(*p)->is_address_valid())
3047         (*p)->set_address(0);
3048       (*p)->set_file_offset(off);
3049       (*p)->finalize_data_size();
3050       off += (*p)->data_size();
3051
3052       (*p)->set_out_shndx(*pshndx);
3053       ++*pshndx;
3054     }
3055
3056   return off;
3057 }
3058
3059 // Set the file offset of all the sections not associated with a
3060 // segment.
3061
3062 off_t
3063 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3064 {
3065   off_t startoff = off;
3066   off_t maxoff = off;
3067
3068   for (Section_list::iterator p = this->unattached_section_list_.begin();
3069        p != this->unattached_section_list_.end();
3070        ++p)
3071     {
3072       // The symtab section is handled in create_symtab_sections.
3073       if (*p == this->symtab_section_)
3074         continue;
3075
3076       // If we've already set the data size, don't set it again.
3077       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3078         continue;
3079
3080       if (pass == BEFORE_INPUT_SECTIONS_PASS
3081           && (*p)->requires_postprocessing())
3082         {
3083           (*p)->create_postprocessing_buffer();
3084           this->any_postprocessing_sections_ = true;
3085         }
3086
3087       if (pass == BEFORE_INPUT_SECTIONS_PASS
3088           && (*p)->after_input_sections())
3089         continue;
3090       else if (pass == POSTPROCESSING_SECTIONS_PASS
3091                && (!(*p)->after_input_sections()
3092                    || (*p)->type() == elfcpp::SHT_STRTAB))
3093         continue;
3094       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3095                && (!(*p)->after_input_sections()
3096                    || (*p)->type() != elfcpp::SHT_STRTAB))
3097         continue;
3098
3099       if (!parameters->incremental_update())
3100         {
3101           off = align_address(off, (*p)->addralign());
3102           (*p)->set_file_offset(off);
3103           (*p)->finalize_data_size();
3104         }
3105       else
3106         {
3107           // Incremental update: allocate file space from free list.
3108           (*p)->pre_finalize_data_size();
3109           off_t current_size = (*p)->current_data_size();
3110           off = this->allocate(current_size, (*p)->addralign(), startoff);
3111           if (off == -1)
3112             {
3113               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3114                 this->free_list_.dump();
3115               gold_assert((*p)->output_section() != NULL);
3116               gold_fatal(_("out of patch space for section %s; "
3117                            "relink with --incremental-full"),
3118                          (*p)->output_section()->name());
3119             }
3120           (*p)->set_file_offset(off);
3121           (*p)->finalize_data_size();
3122           if ((*p)->data_size() > current_size)
3123             {
3124               gold_assert((*p)->output_section() != NULL);
3125               gold_fatal(_("%s: section changed size; "
3126                            "relink with --incremental-full"),
3127                          (*p)->output_section()->name());
3128             }
3129           gold_debug(DEBUG_INCREMENTAL,
3130                      "set_section_offsets: %08lx %08lx %s",
3131                      static_cast<long>(off),
3132                      static_cast<long>((*p)->data_size()),
3133                      ((*p)->output_section() != NULL
3134                       ? (*p)->output_section()->name() : "(special)"));
3135         }
3136
3137       off += (*p)->data_size();
3138       if (off > maxoff)
3139         maxoff = off;
3140
3141       // At this point the name must be set.
3142       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3143         this->namepool_.add((*p)->name(), false, NULL);
3144     }
3145   return maxoff;
3146 }
3147
3148 // Set the section indexes of all the sections not associated with a
3149 // segment.
3150
3151 unsigned int
3152 Layout::set_section_indexes(unsigned int shndx)
3153 {
3154   for (Section_list::iterator p = this->unattached_section_list_.begin();
3155        p != this->unattached_section_list_.end();
3156        ++p)
3157     {
3158       if (!(*p)->has_out_shndx())
3159         {
3160           (*p)->set_out_shndx(shndx);
3161           ++shndx;
3162         }
3163     }
3164   return shndx;
3165 }
3166
3167 // Set the section addresses according to the linker script.  This is
3168 // only called when we see a SECTIONS clause.  This returns the
3169 // program segment which should hold the file header and segment
3170 // headers, if any.  It will return NULL if they should not be in a
3171 // segment.
3172
3173 Output_segment*
3174 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3175 {
3176   Script_sections* ss = this->script_options_->script_sections();
3177   gold_assert(ss->saw_sections_clause());
3178   return this->script_options_->set_section_addresses(symtab, this);
3179 }
3180
3181 // Place the orphan sections in the linker script.
3182
3183 void
3184 Layout::place_orphan_sections_in_script()
3185 {
3186   Script_sections* ss = this->script_options_->script_sections();
3187   gold_assert(ss->saw_sections_clause());
3188
3189   // Place each orphaned output section in the script.
3190   for (Section_list::iterator p = this->section_list_.begin();
3191        p != this->section_list_.end();
3192        ++p)
3193     {
3194       if (!(*p)->found_in_sections_clause())
3195         ss->place_orphan(*p);
3196     }
3197 }
3198
3199 // Count the local symbols in the regular symbol table and the dynamic
3200 // symbol table, and build the respective string pools.
3201
3202 void
3203 Layout::count_local_symbols(const Task* task,
3204                             const Input_objects* input_objects)
3205 {
3206   // First, figure out an upper bound on the number of symbols we'll
3207   // be inserting into each pool.  This helps us create the pools with
3208   // the right size, to avoid unnecessary hashtable resizing.
3209   unsigned int symbol_count = 0;
3210   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3211        p != input_objects->relobj_end();
3212        ++p)
3213     symbol_count += (*p)->local_symbol_count();
3214
3215   // Go from "upper bound" to "estimate."  We overcount for two
3216   // reasons: we double-count symbols that occur in more than one
3217   // object file, and we count symbols that are dropped from the
3218   // output.  Add it all together and assume we overcount by 100%.
3219   symbol_count /= 2;
3220
3221   // We assume all symbols will go into both the sympool and dynpool.
3222   this->sympool_.reserve(symbol_count);
3223   this->dynpool_.reserve(symbol_count);
3224
3225   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3226        p != input_objects->relobj_end();
3227        ++p)
3228     {
3229       Task_lock_obj<Object> tlo(task, *p);
3230       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3231     }
3232 }
3233
3234 // Create the symbol table sections.  Here we also set the final
3235 // values of the symbols.  At this point all the loadable sections are
3236 // fully laid out.  SHNUM is the number of sections so far.
3237
3238 void
3239 Layout::create_symtab_sections(const Input_objects* input_objects,
3240                                Symbol_table* symtab,
3241                                unsigned int shnum,
3242                                off_t* poff)
3243 {
3244   int symsize;
3245   unsigned int align;
3246   if (parameters->target().get_size() == 32)
3247     {
3248       symsize = elfcpp::Elf_sizes<32>::sym_size;
3249       align = 4;
3250     }
3251   else if (parameters->target().get_size() == 64)
3252     {
3253       symsize = elfcpp::Elf_sizes<64>::sym_size;
3254       align = 8;
3255     }
3256   else
3257     gold_unreachable();
3258
3259   // Compute file offsets relative to the start of the symtab section.
3260   off_t off = 0;
3261
3262   // Save space for the dummy symbol at the start of the section.  We
3263   // never bother to write this out--it will just be left as zero.
3264   off += symsize;
3265   unsigned int local_symbol_index = 1;
3266
3267   // Add STT_SECTION symbols for each Output section which needs one.
3268   for (Section_list::iterator p = this->section_list_.begin();
3269        p != this->section_list_.end();
3270        ++p)
3271     {
3272       if (!(*p)->needs_symtab_index())
3273         (*p)->set_symtab_index(-1U);
3274       else
3275         {
3276           (*p)->set_symtab_index(local_symbol_index);
3277           ++local_symbol_index;
3278           off += symsize;
3279         }
3280     }
3281
3282   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3283        p != input_objects->relobj_end();
3284        ++p)
3285     {
3286       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3287                                                         off, symtab);
3288       off += (index - local_symbol_index) * symsize;
3289       local_symbol_index = index;
3290     }
3291
3292   unsigned int local_symcount = local_symbol_index;
3293   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3294
3295   off_t dynoff;
3296   size_t dyn_global_index;
3297   size_t dyncount;
3298   if (this->dynsym_section_ == NULL)
3299     {
3300       dynoff = 0;
3301       dyn_global_index = 0;
3302       dyncount = 0;
3303     }
3304   else
3305     {
3306       dyn_global_index = this->dynsym_section_->info();
3307       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3308       dynoff = this->dynsym_section_->offset() + locsize;
3309       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3310       gold_assert(static_cast<off_t>(dyncount * symsize)
3311                   == this->dynsym_section_->data_size() - locsize);
3312     }
3313
3314   off_t global_off = off;
3315   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3316                          &this->sympool_, &local_symcount);
3317
3318   if (!parameters->options().strip_all())
3319     {
3320       this->sympool_.set_string_offsets();
3321
3322       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3323       Output_section* osymtab = this->make_output_section(symtab_name,
3324                                                           elfcpp::SHT_SYMTAB,
3325                                                           0, ORDER_INVALID,
3326                                                           false);
3327       this->symtab_section_ = osymtab;
3328
3329       Output_section_data* pos = new Output_data_fixed_space(off, align,
3330                                                              "** symtab");
3331       osymtab->add_output_section_data(pos);
3332
3333       // We generate a .symtab_shndx section if we have more than
3334       // SHN_LORESERVE sections.  Technically it is possible that we
3335       // don't need one, because it is possible that there are no
3336       // symbols in any of sections with indexes larger than
3337       // SHN_LORESERVE.  That is probably unusual, though, and it is
3338       // easier to always create one than to compute section indexes
3339       // twice (once here, once when writing out the symbols).
3340       if (shnum >= elfcpp::SHN_LORESERVE)
3341         {
3342           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3343                                                                false, NULL);
3344           Output_section* osymtab_xindex =
3345             this->make_output_section(symtab_xindex_name,
3346                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3347                                       ORDER_INVALID, false);
3348
3349           size_t symcount = off / symsize;
3350           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3351
3352           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3353
3354           osymtab_xindex->set_link_section(osymtab);
3355           osymtab_xindex->set_addralign(4);
3356           osymtab_xindex->set_entsize(4);
3357
3358           osymtab_xindex->set_after_input_sections();
3359
3360           // This tells the driver code to wait until the symbol table
3361           // has written out before writing out the postprocessing
3362           // sections, including the .symtab_shndx section.
3363           this->any_postprocessing_sections_ = true;
3364         }
3365
3366       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3367       Output_section* ostrtab = this->make_output_section(strtab_name,
3368                                                           elfcpp::SHT_STRTAB,
3369                                                           0, ORDER_INVALID,
3370                                                           false);
3371
3372       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3373       ostrtab->add_output_section_data(pstr);
3374
3375       off_t symtab_off;
3376       if (!parameters->incremental_update())
3377         symtab_off = align_address(*poff, align);
3378       else
3379         {
3380           symtab_off = this->allocate(off, align, *poff);
3381           if (off == -1)
3382             gold_fatal(_("out of patch space for symbol table; "
3383                          "relink with --incremental-full"));
3384           gold_debug(DEBUG_INCREMENTAL,
3385                      "create_symtab_sections: %08lx %08lx .symtab",
3386                      static_cast<long>(symtab_off),
3387                      static_cast<long>(off));
3388         }
3389
3390       symtab->set_file_offset(symtab_off + global_off);
3391       osymtab->set_file_offset(symtab_off);
3392       osymtab->finalize_data_size();
3393       osymtab->set_link_section(ostrtab);
3394       osymtab->set_info(local_symcount);
3395       osymtab->set_entsize(symsize);
3396
3397       if (symtab_off + off > *poff)
3398         *poff = symtab_off + off;
3399     }
3400 }
3401
3402 // Create the .shstrtab section, which holds the names of the
3403 // sections.  At the time this is called, we have created all the
3404 // output sections except .shstrtab itself.
3405
3406 Output_section*
3407 Layout::create_shstrtab()
3408 {
3409   // FIXME: We don't need to create a .shstrtab section if we are
3410   // stripping everything.
3411
3412   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3413
3414   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3415                                                  ORDER_INVALID, false);
3416
3417   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3418     {
3419       // We can't write out this section until we've set all the
3420       // section names, and we don't set the names of compressed
3421       // output sections until relocations are complete.  FIXME: With
3422       // the current names we use, this is unnecessary.
3423       os->set_after_input_sections();
3424     }
3425
3426   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3427   os->add_output_section_data(posd);
3428
3429   return os;
3430 }
3431
3432 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3433 // offset.
3434
3435 void
3436 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3437 {
3438   Output_section_headers* oshdrs;
3439   oshdrs = new Output_section_headers(this,
3440                                       &this->segment_list_,
3441                                       &this->section_list_,
3442                                       &this->unattached_section_list_,
3443                                       &this->namepool_,
3444                                       shstrtab_section);
3445   off_t off;
3446   if (!parameters->incremental_update())
3447     off = align_address(*poff, oshdrs->addralign());
3448   else
3449     {
3450       oshdrs->pre_finalize_data_size();
3451       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3452       if (off == -1)
3453           gold_fatal(_("out of patch space for section header table; "
3454                        "relink with --incremental-full"));
3455       gold_debug(DEBUG_INCREMENTAL,
3456                  "create_shdrs: %08lx %08lx (section header table)",
3457                  static_cast<long>(off),
3458                  static_cast<long>(off + oshdrs->data_size()));
3459     }
3460   oshdrs->set_address_and_file_offset(0, off);
3461   off += oshdrs->data_size();
3462   if (off > *poff)
3463     *poff = off;
3464   this->section_headers_ = oshdrs;
3465 }
3466
3467 // Count the allocated sections.
3468
3469 size_t
3470 Layout::allocated_output_section_count() const
3471 {
3472   size_t section_count = 0;
3473   for (Segment_list::const_iterator p = this->segment_list_.begin();
3474        p != this->segment_list_.end();
3475        ++p)
3476     section_count += (*p)->output_section_count();
3477   return section_count;
3478 }
3479
3480 // Create the dynamic symbol table.
3481
3482 void
3483 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3484                               Symbol_table* symtab,
3485                               Output_section** pdynstr,
3486                               unsigned int* plocal_dynamic_count,
3487                               std::vector<Symbol*>* pdynamic_symbols,
3488                               Versions* pversions)
3489 {
3490   // Count all the symbols in the dynamic symbol table, and set the
3491   // dynamic symbol indexes.
3492
3493   // Skip symbol 0, which is always all zeroes.
3494   unsigned int index = 1;
3495
3496   // Add STT_SECTION symbols for each Output section which needs one.
3497   for (Section_list::iterator p = this->section_list_.begin();
3498        p != this->section_list_.end();
3499        ++p)
3500     {
3501       if (!(*p)->needs_dynsym_index())
3502         (*p)->set_dynsym_index(-1U);
3503       else
3504         {
3505           (*p)->set_dynsym_index(index);
3506           ++index;
3507         }
3508     }
3509
3510   // Count the local symbols that need to go in the dynamic symbol table,
3511   // and set the dynamic symbol indexes.
3512   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3513        p != input_objects->relobj_end();
3514        ++p)
3515     {
3516       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3517       index = new_index;
3518     }
3519
3520   unsigned int local_symcount = index;
3521   *plocal_dynamic_count = local_symcount;
3522
3523   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3524                                      &this->dynpool_, pversions);
3525
3526   int symsize;
3527   unsigned int align;
3528   const int size = parameters->target().get_size();
3529   if (size == 32)
3530     {
3531       symsize = elfcpp::Elf_sizes<32>::sym_size;
3532       align = 4;
3533     }
3534   else if (size == 64)
3535     {
3536       symsize = elfcpp::Elf_sizes<64>::sym_size;
3537       align = 8;
3538     }
3539   else
3540     gold_unreachable();
3541
3542   // Create the dynamic symbol table section.
3543
3544   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3545                                                        elfcpp::SHT_DYNSYM,
3546                                                        elfcpp::SHF_ALLOC,
3547                                                        false,
3548                                                        ORDER_DYNAMIC_LINKER,
3549                                                        false);
3550
3551   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3552                                                            align,
3553                                                            "** dynsym");
3554   dynsym->add_output_section_data(odata);
3555
3556   dynsym->set_info(local_symcount);
3557   dynsym->set_entsize(symsize);
3558   dynsym->set_addralign(align);
3559
3560   this->dynsym_section_ = dynsym;
3561
3562   Output_data_dynamic* const odyn = this->dynamic_data_;
3563   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3564   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3565
3566   // If there are more than SHN_LORESERVE allocated sections, we
3567   // create a .dynsym_shndx section.  It is possible that we don't
3568   // need one, because it is possible that there are no dynamic
3569   // symbols in any of the sections with indexes larger than
3570   // SHN_LORESERVE.  This is probably unusual, though, and at this
3571   // time we don't know the actual section indexes so it is
3572   // inconvenient to check.
3573   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3574     {
3575       Output_section* dynsym_xindex =
3576         this->choose_output_section(NULL, ".dynsym_shndx",
3577                                     elfcpp::SHT_SYMTAB_SHNDX,
3578                                     elfcpp::SHF_ALLOC,
3579                                     false, ORDER_DYNAMIC_LINKER, false);
3580
3581       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3582
3583       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3584
3585       dynsym_xindex->set_link_section(dynsym);
3586       dynsym_xindex->set_addralign(4);
3587       dynsym_xindex->set_entsize(4);
3588
3589       dynsym_xindex->set_after_input_sections();
3590
3591       // This tells the driver code to wait until the symbol table has
3592       // written out before writing out the postprocessing sections,
3593       // including the .dynsym_shndx section.
3594       this->any_postprocessing_sections_ = true;
3595     }
3596
3597   // Create the dynamic string table section.
3598
3599   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3600                                                        elfcpp::SHT_STRTAB,
3601                                                        elfcpp::SHF_ALLOC,
3602                                                        false,
3603                                                        ORDER_DYNAMIC_LINKER,
3604                                                        false);
3605
3606   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3607   dynstr->add_output_section_data(strdata);
3608
3609   dynsym->set_link_section(dynstr);
3610   this->dynamic_section_->set_link_section(dynstr);
3611
3612   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3613   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3614
3615   *pdynstr = dynstr;
3616
3617   // Create the hash tables.
3618
3619   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3620       || strcmp(parameters->options().hash_style(), "both") == 0)
3621     {
3622       unsigned char* phash;
3623       unsigned int hashlen;
3624       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3625                                     &phash, &hashlen);
3626
3627       Output_section* hashsec =
3628         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3629                                     elfcpp::SHF_ALLOC, false,
3630                                     ORDER_DYNAMIC_LINKER, false);
3631
3632       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3633                                                                    hashlen,
3634                                                                    align,
3635                                                                    "** hash");
3636       hashsec->add_output_section_data(hashdata);
3637
3638       hashsec->set_link_section(dynsym);
3639       hashsec->set_entsize(4);
3640
3641       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3642     }
3643
3644   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3645       || strcmp(parameters->options().hash_style(), "both") == 0)
3646     {
3647       unsigned char* phash;
3648       unsigned int hashlen;
3649       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3650                                     &phash, &hashlen);
3651
3652       Output_section* hashsec =
3653         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3654                                     elfcpp::SHF_ALLOC, false,
3655                                     ORDER_DYNAMIC_LINKER, false);
3656
3657       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3658                                                                    hashlen,
3659                                                                    align,
3660                                                                    "** hash");
3661       hashsec->add_output_section_data(hashdata);
3662
3663       hashsec->set_link_section(dynsym);
3664
3665       // For a 64-bit target, the entries in .gnu.hash do not have a
3666       // uniform size, so we only set the entry size for a 32-bit
3667       // target.
3668       if (parameters->target().get_size() == 32)
3669         hashsec->set_entsize(4);
3670
3671       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3672     }
3673 }
3674
3675 // Assign offsets to each local portion of the dynamic symbol table.
3676
3677 void
3678 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3679 {
3680   Output_section* dynsym = this->dynsym_section_;
3681   gold_assert(dynsym != NULL);
3682
3683   off_t off = dynsym->offset();
3684
3685   // Skip the dummy symbol at the start of the section.
3686   off += dynsym->entsize();
3687
3688   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3689        p != input_objects->relobj_end();
3690        ++p)
3691     {
3692       unsigned int count = (*p)->set_local_dynsym_offset(off);
3693       off += count * dynsym->entsize();
3694     }
3695 }
3696
3697 // Create the version sections.
3698
3699 void
3700 Layout::create_version_sections(const Versions* versions,
3701                                 const Symbol_table* symtab,
3702                                 unsigned int local_symcount,
3703                                 const std::vector<Symbol*>& dynamic_symbols,
3704                                 const Output_section* dynstr)
3705 {
3706   if (!versions->any_defs() && !versions->any_needs())
3707     return;
3708
3709   switch (parameters->size_and_endianness())
3710     {
3711 #ifdef HAVE_TARGET_32_LITTLE
3712     case Parameters::TARGET_32_LITTLE:
3713       this->sized_create_version_sections<32, false>(versions, symtab,
3714                                                      local_symcount,
3715                                                      dynamic_symbols, dynstr);
3716       break;
3717 #endif
3718 #ifdef HAVE_TARGET_32_BIG
3719     case Parameters::TARGET_32_BIG:
3720       this->sized_create_version_sections<32, true>(versions, symtab,
3721                                                     local_symcount,
3722                                                     dynamic_symbols, dynstr);
3723       break;
3724 #endif
3725 #ifdef HAVE_TARGET_64_LITTLE
3726     case Parameters::TARGET_64_LITTLE:
3727       this->sized_create_version_sections<64, false>(versions, symtab,
3728                                                      local_symcount,
3729                                                      dynamic_symbols, dynstr);
3730       break;
3731 #endif
3732 #ifdef HAVE_TARGET_64_BIG
3733     case Parameters::TARGET_64_BIG:
3734       this->sized_create_version_sections<64, true>(versions, symtab,
3735                                                     local_symcount,
3736                                                     dynamic_symbols, dynstr);
3737       break;
3738 #endif
3739     default:
3740       gold_unreachable();
3741     }
3742 }
3743
3744 // Create the version sections, sized version.
3745
3746 template<int size, bool big_endian>
3747 void
3748 Layout::sized_create_version_sections(
3749     const Versions* versions,
3750     const Symbol_table* symtab,
3751     unsigned int local_symcount,
3752     const std::vector<Symbol*>& dynamic_symbols,
3753     const Output_section* dynstr)
3754 {
3755   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3756                                                      elfcpp::SHT_GNU_versym,
3757                                                      elfcpp::SHF_ALLOC,
3758                                                      false,
3759                                                      ORDER_DYNAMIC_LINKER,
3760                                                      false);
3761
3762   unsigned char* vbuf;
3763   unsigned int vsize;
3764   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3765                                                       local_symcount,
3766                                                       dynamic_symbols,
3767                                                       &vbuf, &vsize);
3768
3769   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3770                                                             "** versions");
3771
3772   vsec->add_output_section_data(vdata);
3773   vsec->set_entsize(2);
3774   vsec->set_link_section(this->dynsym_section_);
3775
3776   Output_data_dynamic* const odyn = this->dynamic_data_;
3777   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3778
3779   if (versions->any_defs())
3780     {
3781       Output_section* vdsec;
3782       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3783                                          elfcpp::SHT_GNU_verdef,
3784                                          elfcpp::SHF_ALLOC,
3785                                          false, ORDER_DYNAMIC_LINKER, false);
3786
3787       unsigned char* vdbuf;
3788       unsigned int vdsize;
3789       unsigned int vdentries;
3790       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3791                                                        &vdsize, &vdentries);
3792
3793       Output_section_data* vddata =
3794         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3795
3796       vdsec->add_output_section_data(vddata);
3797       vdsec->set_link_section(dynstr);
3798       vdsec->set_info(vdentries);
3799
3800       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3801       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3802     }
3803
3804   if (versions->any_needs())
3805     {
3806       Output_section* vnsec;
3807       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3808                                           elfcpp::SHT_GNU_verneed,
3809                                           elfcpp::SHF_ALLOC,
3810                                           false, ORDER_DYNAMIC_LINKER, false);
3811
3812       unsigned char* vnbuf;
3813       unsigned int vnsize;
3814       unsigned int vnentries;
3815       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3816                                                         &vnbuf, &vnsize,
3817                                                         &vnentries);
3818
3819       Output_section_data* vndata =
3820         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3821
3822       vnsec->add_output_section_data(vndata);
3823       vnsec->set_link_section(dynstr);
3824       vnsec->set_info(vnentries);
3825
3826       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3827       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3828     }
3829 }
3830
3831 // Create the .interp section and PT_INTERP segment.
3832
3833 void
3834 Layout::create_interp(const Target* target)
3835 {
3836   const char* interp = parameters->options().dynamic_linker();
3837   if (interp == NULL)
3838     {
3839       interp = target->dynamic_linker();
3840       gold_assert(interp != NULL);
3841     }
3842
3843   size_t len = strlen(interp) + 1;
3844
3845   Output_section_data* odata = new Output_data_const(interp, len, 1);
3846
3847   Output_section* osec = this->choose_output_section(NULL, ".interp",
3848                                                      elfcpp::SHT_PROGBITS,
3849                                                      elfcpp::SHF_ALLOC,
3850                                                      false, ORDER_INTERP,
3851                                                      false);
3852   osec->add_output_section_data(odata);
3853
3854   if (!this->script_options_->saw_phdrs_clause())
3855     {
3856       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3857                                                        elfcpp::PF_R);
3858       oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3859     }
3860 }
3861
3862 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3863 // called by the target-specific code.  This does nothing if not doing
3864 // a dynamic link.
3865
3866 // USE_REL is true for REL relocs rather than RELA relocs.
3867
3868 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3869
3870 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3871 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3872 // some targets have multiple reloc sections in PLT_REL.
3873
3874 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3875 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3876
3877 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3878 // executable.
3879
3880 void
3881 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3882                                 const Output_data* plt_rel,
3883                                 const Output_data_reloc_generic* dyn_rel,
3884                                 bool add_debug, bool dynrel_includes_plt)
3885 {
3886   Output_data_dynamic* odyn = this->dynamic_data_;
3887   if (odyn == NULL)
3888     return;
3889
3890   if (plt_got != NULL && plt_got->output_section() != NULL)
3891     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3892
3893   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3894     {
3895       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3896       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3897       odyn->add_constant(elfcpp::DT_PLTREL,
3898                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3899     }
3900
3901   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3902     {
3903       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3904                                 dyn_rel);
3905       if (plt_rel != NULL && dynrel_includes_plt)
3906         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3907                                dyn_rel, plt_rel);
3908       else
3909         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3910                                dyn_rel);
3911       const int size = parameters->target().get_size();
3912       elfcpp::DT rel_tag;
3913       int rel_size;
3914       if (use_rel)
3915         {
3916           rel_tag = elfcpp::DT_RELENT;
3917           if (size == 32)
3918             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3919           else if (size == 64)
3920             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3921           else
3922             gold_unreachable();
3923         }
3924       else
3925         {
3926           rel_tag = elfcpp::DT_RELAENT;
3927           if (size == 32)
3928             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3929           else if (size == 64)
3930             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3931           else
3932             gold_unreachable();
3933         }
3934       odyn->add_constant(rel_tag, rel_size);
3935
3936       if (parameters->options().combreloc())
3937         {
3938           size_t c = dyn_rel->relative_reloc_count();
3939           if (c > 0)
3940             odyn->add_constant((use_rel
3941                                 ? elfcpp::DT_RELCOUNT
3942                                 : elfcpp::DT_RELACOUNT),
3943                                c);
3944         }
3945     }
3946
3947   if (add_debug && !parameters->options().shared())
3948     {
3949       // The value of the DT_DEBUG tag is filled in by the dynamic
3950       // linker at run time, and used by the debugger.
3951       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3952     }
3953 }
3954
3955 // Finish the .dynamic section and PT_DYNAMIC segment.
3956
3957 void
3958 Layout::finish_dynamic_section(const Input_objects* input_objects,
3959                                const Symbol_table* symtab)
3960 {
3961   if (!this->script_options_->saw_phdrs_clause())
3962     {
3963       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3964                                                        (elfcpp::PF_R
3965                                                         | elfcpp::PF_W));
3966       oseg->add_output_section_to_nonload(this->dynamic_section_,
3967                                           elfcpp::PF_R | elfcpp::PF_W);
3968     }
3969
3970   Output_data_dynamic* const odyn = this->dynamic_data_;
3971
3972   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3973        p != input_objects->dynobj_end();
3974        ++p)
3975     {
3976       if (!(*p)->is_needed()
3977           && !(*p)->is_incremental()
3978           && (*p)->input_file()->options().as_needed())
3979         {
3980           // This dynamic object was linked with --as-needed, but it
3981           // is not needed.
3982           continue;
3983         }
3984
3985       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3986     }
3987
3988   if (parameters->options().shared())
3989     {
3990       const char* soname = parameters->options().soname();
3991       if (soname != NULL)
3992         odyn->add_string(elfcpp::DT_SONAME, soname);
3993     }
3994
3995   Symbol* sym = symtab->lookup(parameters->options().init());
3996   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3997     odyn->add_symbol(elfcpp::DT_INIT, sym);
3998
3999   sym = symtab->lookup(parameters->options().fini());
4000   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4001     odyn->add_symbol(elfcpp::DT_FINI, sym);
4002
4003   // Look for .init_array, .preinit_array and .fini_array by checking
4004   // section types.
4005   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4006       p != this->section_list_.end();
4007       ++p)
4008     switch((*p)->type())
4009       {
4010       case elfcpp::SHT_FINI_ARRAY:
4011         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4012         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4013         break;
4014       case elfcpp::SHT_INIT_ARRAY:
4015         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4016         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4017         break;
4018       case elfcpp::SHT_PREINIT_ARRAY:
4019         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4020         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4021         break;
4022       default:
4023         break;
4024       }
4025   
4026   // Add a DT_RPATH entry if needed.
4027   const General_options::Dir_list& rpath(parameters->options().rpath());
4028   if (!rpath.empty())
4029     {
4030       std::string rpath_val;
4031       for (General_options::Dir_list::const_iterator p = rpath.begin();
4032            p != rpath.end();
4033            ++p)
4034         {
4035           if (rpath_val.empty())
4036             rpath_val = p->name();
4037           else
4038             {
4039               // Eliminate duplicates.
4040               General_options::Dir_list::const_iterator q;
4041               for (q = rpath.begin(); q != p; ++q)
4042                 if (q->name() == p->name())
4043                   break;
4044               if (q == p)
4045                 {
4046                   rpath_val += ':';
4047                   rpath_val += p->name();
4048                 }
4049             }
4050         }
4051
4052       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4053       if (parameters->options().enable_new_dtags())
4054         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4055     }
4056
4057   // Look for text segments that have dynamic relocations.
4058   bool have_textrel = false;
4059   if (!this->script_options_->saw_sections_clause())
4060     {
4061       for (Segment_list::const_iterator p = this->segment_list_.begin();
4062            p != this->segment_list_.end();
4063            ++p)
4064         {
4065           if (((*p)->flags() & elfcpp::PF_W) == 0
4066               && (*p)->has_dynamic_reloc())
4067             {
4068               have_textrel = true;
4069               break;
4070             }
4071         }
4072     }
4073   else
4074     {
4075       // We don't know the section -> segment mapping, so we are
4076       // conservative and just look for readonly sections with
4077       // relocations.  If those sections wind up in writable segments,
4078       // then we have created an unnecessary DT_TEXTREL entry.
4079       for (Section_list::const_iterator p = this->section_list_.begin();
4080            p != this->section_list_.end();
4081            ++p)
4082         {
4083           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4084               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4085               && ((*p)->has_dynamic_reloc()))
4086             {
4087               have_textrel = true;
4088               break;
4089             }
4090         }
4091     }
4092
4093   // Add a DT_FLAGS entry. We add it even if no flags are set so that
4094   // post-link tools can easily modify these flags if desired.
4095   unsigned int flags = 0;
4096   if (have_textrel)
4097     {
4098       // Add a DT_TEXTREL for compatibility with older loaders.
4099       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4100       flags |= elfcpp::DF_TEXTREL;
4101
4102       if (parameters->options().text())
4103         gold_error(_("read-only segment has dynamic relocations"));
4104       else if (parameters->options().warn_shared_textrel()
4105                && parameters->options().shared())
4106         gold_warning(_("shared library text segment is not shareable"));
4107     }
4108   if (parameters->options().shared() && this->has_static_tls())
4109     flags |= elfcpp::DF_STATIC_TLS;
4110   if (parameters->options().origin())
4111     flags |= elfcpp::DF_ORIGIN;
4112   if (parameters->options().Bsymbolic())
4113     {
4114       flags |= elfcpp::DF_SYMBOLIC;
4115       // Add DT_SYMBOLIC for compatibility with older loaders.
4116       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4117     }
4118   if (parameters->options().now())
4119     flags |= elfcpp::DF_BIND_NOW;
4120   odyn->add_constant(elfcpp::DT_FLAGS, flags);
4121
4122   flags = 0;
4123   if (parameters->options().initfirst())
4124     flags |= elfcpp::DF_1_INITFIRST;
4125   if (parameters->options().interpose())
4126     flags |= elfcpp::DF_1_INTERPOSE;
4127   if (parameters->options().loadfltr())
4128     flags |= elfcpp::DF_1_LOADFLTR;
4129   if (parameters->options().nodefaultlib())
4130     flags |= elfcpp::DF_1_NODEFLIB;
4131   if (parameters->options().nodelete())
4132     flags |= elfcpp::DF_1_NODELETE;
4133   if (parameters->options().nodlopen())
4134     flags |= elfcpp::DF_1_NOOPEN;
4135   if (parameters->options().nodump())
4136     flags |= elfcpp::DF_1_NODUMP;
4137   if (!parameters->options().shared())
4138     flags &= ~(elfcpp::DF_1_INITFIRST
4139                | elfcpp::DF_1_NODELETE
4140                | elfcpp::DF_1_NOOPEN);
4141   if (parameters->options().origin())
4142     flags |= elfcpp::DF_1_ORIGIN;
4143   if (parameters->options().now())
4144     flags |= elfcpp::DF_1_NOW;
4145   if (flags)
4146     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4147 }
4148
4149 // Set the size of the _DYNAMIC symbol table to be the size of the
4150 // dynamic data.
4151
4152 void
4153 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4154 {
4155   Output_data_dynamic* const odyn = this->dynamic_data_;
4156   odyn->finalize_data_size();
4157   off_t data_size = odyn->data_size();
4158   const int size = parameters->target().get_size();
4159   if (size == 32)
4160     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4161   else if (size == 64)
4162     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4163   else
4164     gold_unreachable();
4165 }
4166
4167 // The mapping of input section name prefixes to output section names.
4168 // In some cases one prefix is itself a prefix of another prefix; in
4169 // such a case the longer prefix must come first.  These prefixes are
4170 // based on the GNU linker default ELF linker script.
4171
4172 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4173 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4174 {
4175   MAPPING_INIT(".text.", ".text"),
4176   MAPPING_INIT(".ctors.", ".ctors"),
4177   MAPPING_INIT(".dtors.", ".dtors"),
4178   MAPPING_INIT(".rodata.", ".rodata"),
4179   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4180   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4181   MAPPING_INIT(".data.", ".data"),
4182   MAPPING_INIT(".bss.", ".bss"),
4183   MAPPING_INIT(".tdata.", ".tdata"),
4184   MAPPING_INIT(".tbss.", ".tbss"),
4185   MAPPING_INIT(".init_array.", ".init_array"),
4186   MAPPING_INIT(".fini_array.", ".fini_array"),
4187   MAPPING_INIT(".sdata.", ".sdata"),
4188   MAPPING_INIT(".sbss.", ".sbss"),
4189   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4190   // differently depending on whether it is creating a shared library.
4191   MAPPING_INIT(".sdata2.", ".sdata"),
4192   MAPPING_INIT(".sbss2.", ".sbss"),
4193   MAPPING_INIT(".lrodata.", ".lrodata"),
4194   MAPPING_INIT(".ldata.", ".ldata"),
4195   MAPPING_INIT(".lbss.", ".lbss"),
4196   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4197   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4198   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4199   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4200   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4201   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4202   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4203   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4204   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4205   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4206   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4207   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4208   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4209   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4210   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4211   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4212   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4213   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4214   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4215   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4216   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4217 };
4218 #undef MAPPING_INIT
4219
4220 const int Layout::section_name_mapping_count =
4221   (sizeof(Layout::section_name_mapping)
4222    / sizeof(Layout::section_name_mapping[0]));
4223
4224 // Choose the output section name to use given an input section name.
4225 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4226 // length of NAME.
4227
4228 const char*
4229 Layout::output_section_name(const char* name, size_t* plen)
4230 {
4231   // gcc 4.3 generates the following sorts of section names when it
4232   // needs a section name specific to a function:
4233   //   .text.FN
4234   //   .rodata.FN
4235   //   .sdata2.FN
4236   //   .data.FN
4237   //   .data.rel.FN
4238   //   .data.rel.local.FN
4239   //   .data.rel.ro.FN
4240   //   .data.rel.ro.local.FN
4241   //   .sdata.FN
4242   //   .bss.FN
4243   //   .sbss.FN
4244   //   .tdata.FN
4245   //   .tbss.FN
4246
4247   // The GNU linker maps all of those to the part before the .FN,
4248   // except that .data.rel.local.FN is mapped to .data, and
4249   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4250   // beginning with .data.rel.ro.local are grouped together.
4251
4252   // For an anonymous namespace, the string FN can contain a '.'.
4253
4254   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4255   // GNU linker maps to .rodata.
4256
4257   // The .data.rel.ro sections are used with -z relro.  The sections
4258   // are recognized by name.  We use the same names that the GNU
4259   // linker does for these sections.
4260
4261   // It is hard to handle this in a principled way, so we don't even
4262   // try.  We use a table of mappings.  If the input section name is
4263   // not found in the table, we simply use it as the output section
4264   // name.
4265
4266   const Section_name_mapping* psnm = section_name_mapping;
4267   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4268     {
4269       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4270         {
4271           *plen = psnm->tolen;
4272           return psnm->to;
4273         }
4274     }
4275
4276   return name;
4277 }
4278
4279 // Check if a comdat group or .gnu.linkonce section with the given
4280 // NAME is selected for the link.  If there is already a section,
4281 // *KEPT_SECTION is set to point to the existing section and the
4282 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4283 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4284 // *KEPT_SECTION is set to the internal copy and the function returns
4285 // true.
4286
4287 bool
4288 Layout::find_or_add_kept_section(const std::string& name,
4289                                  Relobj* object,
4290                                  unsigned int shndx,
4291                                  bool is_comdat,
4292                                  bool is_group_name,
4293                                  Kept_section** kept_section)
4294 {
4295   // It's normal to see a couple of entries here, for the x86 thunk
4296   // sections.  If we see more than a few, we're linking a C++
4297   // program, and we resize to get more space to minimize rehashing.
4298   if (this->signatures_.size() > 4
4299       && !this->resized_signatures_)
4300     {
4301       reserve_unordered_map(&this->signatures_,
4302                             this->number_of_input_files_ * 64);
4303       this->resized_signatures_ = true;
4304     }
4305
4306   Kept_section candidate;
4307   std::pair<Signatures::iterator, bool> ins =
4308     this->signatures_.insert(std::make_pair(name, candidate));
4309
4310   if (kept_section != NULL)
4311     *kept_section = &ins.first->second;
4312   if (ins.second)
4313     {
4314       // This is the first time we've seen this signature.
4315       ins.first->second.set_object(object);
4316       ins.first->second.set_shndx(shndx);
4317       if (is_comdat)
4318         ins.first->second.set_is_comdat();
4319       if (is_group_name)
4320         ins.first->second.set_is_group_name();
4321       return true;
4322     }
4323
4324   // We have already seen this signature.
4325
4326   if (ins.first->second.is_group_name())
4327     {
4328       // We've already seen a real section group with this signature.
4329       // If the kept group is from a plugin object, and we're in the
4330       // replacement phase, accept the new one as a replacement.
4331       if (ins.first->second.object() == NULL
4332           && parameters->options().plugins()->in_replacement_phase())
4333         {
4334           ins.first->second.set_object(object);
4335           ins.first->second.set_shndx(shndx);
4336           return true;
4337         }
4338       return false;
4339     }
4340   else if (is_group_name)
4341     {
4342       // This is a real section group, and we've already seen a
4343       // linkonce section with this signature.  Record that we've seen
4344       // a section group, and don't include this section group.
4345       ins.first->second.set_is_group_name();
4346       return false;
4347     }
4348   else
4349     {
4350       // We've already seen a linkonce section and this is a linkonce
4351       // section.  These don't block each other--this may be the same
4352       // symbol name with different section types.
4353       return true;
4354     }
4355 }
4356
4357 // Store the allocated sections into the section list.
4358
4359 void
4360 Layout::get_allocated_sections(Section_list* section_list) const
4361 {
4362   for (Section_list::const_iterator p = this->section_list_.begin();
4363        p != this->section_list_.end();
4364        ++p)
4365     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4366       section_list->push_back(*p);
4367 }
4368
4369 // Create an output segment.
4370
4371 Output_segment*
4372 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4373 {
4374   gold_assert(!parameters->options().relocatable());
4375   Output_segment* oseg = new Output_segment(type, flags);
4376   this->segment_list_.push_back(oseg);
4377
4378   if (type == elfcpp::PT_TLS)
4379     this->tls_segment_ = oseg;
4380   else if (type == elfcpp::PT_GNU_RELRO)
4381     this->relro_segment_ = oseg;
4382
4383   return oseg;
4384 }
4385
4386 // Return the file offset of the normal symbol table.
4387
4388 off_t
4389 Layout::symtab_section_offset() const
4390 {
4391   if (this->symtab_section_ != NULL)
4392     return this->symtab_section_->offset();
4393   return 0;
4394 }
4395
4396 // Write out the Output_sections.  Most won't have anything to write,
4397 // since most of the data will come from input sections which are
4398 // handled elsewhere.  But some Output_sections do have Output_data.
4399
4400 void
4401 Layout::write_output_sections(Output_file* of) const
4402 {
4403   for (Section_list::const_iterator p = this->section_list_.begin();
4404        p != this->section_list_.end();
4405        ++p)
4406     {
4407       if (!(*p)->after_input_sections())
4408         (*p)->write(of);
4409     }
4410 }
4411
4412 // Write out data not associated with a section or the symbol table.
4413
4414 void
4415 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4416 {
4417   if (!parameters->options().strip_all())
4418     {
4419       const Output_section* symtab_section = this->symtab_section_;
4420       for (Section_list::const_iterator p = this->section_list_.begin();
4421            p != this->section_list_.end();
4422            ++p)
4423         {
4424           if ((*p)->needs_symtab_index())
4425             {
4426               gold_assert(symtab_section != NULL);
4427               unsigned int index = (*p)->symtab_index();
4428               gold_assert(index > 0 && index != -1U);
4429               off_t off = (symtab_section->offset()
4430                            + index * symtab_section->entsize());
4431               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4432             }
4433         }
4434     }
4435
4436   const Output_section* dynsym_section = this->dynsym_section_;
4437   for (Section_list::const_iterator p = this->section_list_.begin();
4438        p != this->section_list_.end();
4439        ++p)
4440     {
4441       if ((*p)->needs_dynsym_index())
4442         {
4443           gold_assert(dynsym_section != NULL);
4444           unsigned int index = (*p)->dynsym_index();
4445           gold_assert(index > 0 && index != -1U);
4446           off_t off = (dynsym_section->offset()
4447                        + index * dynsym_section->entsize());
4448           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4449         }
4450     }
4451
4452   // Write out the Output_data which are not in an Output_section.
4453   for (Data_list::const_iterator p = this->special_output_list_.begin();
4454        p != this->special_output_list_.end();
4455        ++p)
4456     (*p)->write(of);
4457 }
4458
4459 // Write out the Output_sections which can only be written after the
4460 // input sections are complete.
4461
4462 void
4463 Layout::write_sections_after_input_sections(Output_file* of)
4464 {
4465   // Determine the final section offsets, and thus the final output
4466   // file size.  Note we finalize the .shstrab last, to allow the
4467   // after_input_section sections to modify their section-names before
4468   // writing.
4469   if (this->any_postprocessing_sections_)
4470     {
4471       off_t off = this->output_file_size_;
4472       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4473
4474       // Now that we've finalized the names, we can finalize the shstrab.
4475       off =
4476         this->set_section_offsets(off,
4477                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4478
4479       if (off > this->output_file_size_)
4480         {
4481           of->resize(off);
4482           this->output_file_size_ = off;
4483         }
4484     }
4485
4486   for (Section_list::const_iterator p = this->section_list_.begin();
4487        p != this->section_list_.end();
4488        ++p)
4489     {
4490       if ((*p)->after_input_sections())
4491         (*p)->write(of);
4492     }
4493
4494   this->section_headers_->write(of);
4495 }
4496
4497 // If the build ID requires computing a checksum, do so here, and
4498 // write it out.  We compute a checksum over the entire file because
4499 // that is simplest.
4500
4501 void
4502 Layout::write_build_id(Output_file* of) const
4503 {
4504   if (this->build_id_note_ == NULL)
4505     return;
4506
4507   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4508
4509   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4510                                           this->build_id_note_->data_size());
4511
4512   const char* style = parameters->options().build_id();
4513   if (strcmp(style, "sha1") == 0)
4514     {
4515       sha1_ctx ctx;
4516       sha1_init_ctx(&ctx);
4517       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4518       sha1_finish_ctx(&ctx, ov);
4519     }
4520   else if (strcmp(style, "md5") == 0)
4521     {
4522       md5_ctx ctx;
4523       md5_init_ctx(&ctx);
4524       md5_process_bytes(iv, this->output_file_size_, &ctx);
4525       md5_finish_ctx(&ctx, ov);
4526     }
4527   else
4528     gold_unreachable();
4529
4530   of->write_output_view(this->build_id_note_->offset(),
4531                         this->build_id_note_->data_size(),
4532                         ov);
4533
4534   of->free_input_view(0, this->output_file_size_, iv);
4535 }
4536
4537 // Write out a binary file.  This is called after the link is
4538 // complete.  IN is the temporary output file we used to generate the
4539 // ELF code.  We simply walk through the segments, read them from
4540 // their file offset in IN, and write them to their load address in
4541 // the output file.  FIXME: with a bit more work, we could support
4542 // S-records and/or Intel hex format here.
4543
4544 void
4545 Layout::write_binary(Output_file* in) const
4546 {
4547   gold_assert(parameters->options().oformat_enum()
4548               == General_options::OBJECT_FORMAT_BINARY);
4549
4550   // Get the size of the binary file.
4551   uint64_t max_load_address = 0;
4552   for (Segment_list::const_iterator p = this->segment_list_.begin();
4553        p != this->segment_list_.end();
4554        ++p)
4555     {
4556       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4557         {
4558           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4559           if (max_paddr > max_load_address)
4560             max_load_address = max_paddr;
4561         }
4562     }
4563
4564   Output_file out(parameters->options().output_file_name());
4565   out.open(max_load_address);
4566
4567   for (Segment_list::const_iterator p = this->segment_list_.begin();
4568        p != this->segment_list_.end();
4569        ++p)
4570     {
4571       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4572         {
4573           const unsigned char* vin = in->get_input_view((*p)->offset(),
4574                                                         (*p)->filesz());
4575           unsigned char* vout = out.get_output_view((*p)->paddr(),
4576                                                     (*p)->filesz());
4577           memcpy(vout, vin, (*p)->filesz());
4578           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4579           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4580         }
4581     }
4582
4583   out.close();
4584 }
4585
4586 // Print the output sections to the map file.
4587
4588 void
4589 Layout::print_to_mapfile(Mapfile* mapfile) const
4590 {
4591   for (Segment_list::const_iterator p = this->segment_list_.begin();
4592        p != this->segment_list_.end();
4593        ++p)
4594     (*p)->print_sections_to_mapfile(mapfile);
4595 }
4596
4597 // Print statistical information to stderr.  This is used for --stats.
4598
4599 void
4600 Layout::print_stats() const
4601 {
4602   this->namepool_.print_stats("section name pool");
4603   this->sympool_.print_stats("output symbol name pool");
4604   this->dynpool_.print_stats("dynamic name pool");
4605
4606   for (Section_list::const_iterator p = this->section_list_.begin();
4607        p != this->section_list_.end();
4608        ++p)
4609     (*p)->print_merge_stats();
4610 }
4611
4612 // Write_sections_task methods.
4613
4614 // We can always run this task.
4615
4616 Task_token*
4617 Write_sections_task::is_runnable()
4618 {
4619   return NULL;
4620 }
4621
4622 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4623 // when finished.
4624
4625 void
4626 Write_sections_task::locks(Task_locker* tl)
4627 {
4628   tl->add(this, this->output_sections_blocker_);
4629   tl->add(this, this->final_blocker_);
4630 }
4631
4632 // Run the task--write out the data.
4633
4634 void
4635 Write_sections_task::run(Workqueue*)
4636 {
4637   this->layout_->write_output_sections(this->of_);
4638 }
4639
4640 // Write_data_task methods.
4641
4642 // We can always run this task.
4643
4644 Task_token*
4645 Write_data_task::is_runnable()
4646 {
4647   return NULL;
4648 }
4649
4650 // We need to unlock FINAL_BLOCKER when finished.
4651
4652 void
4653 Write_data_task::locks(Task_locker* tl)
4654 {
4655   tl->add(this, this->final_blocker_);
4656 }
4657
4658 // Run the task--write out the data.
4659
4660 void
4661 Write_data_task::run(Workqueue*)
4662 {
4663   this->layout_->write_data(this->symtab_, this->of_);
4664 }
4665
4666 // Write_symbols_task methods.
4667
4668 // We can always run this task.
4669
4670 Task_token*
4671 Write_symbols_task::is_runnable()
4672 {
4673   return NULL;
4674 }
4675
4676 // We need to unlock FINAL_BLOCKER when finished.
4677
4678 void
4679 Write_symbols_task::locks(Task_locker* tl)
4680 {
4681   tl->add(this, this->final_blocker_);
4682 }
4683
4684 // Run the task--write out the symbols.
4685
4686 void
4687 Write_symbols_task::run(Workqueue*)
4688 {
4689   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4690                                this->layout_->symtab_xindex(),
4691                                this->layout_->dynsym_xindex(), this->of_);
4692 }
4693
4694 // Write_after_input_sections_task methods.
4695
4696 // We can only run this task after the input sections have completed.
4697
4698 Task_token*
4699 Write_after_input_sections_task::is_runnable()
4700 {
4701   if (this->input_sections_blocker_->is_blocked())
4702     return this->input_sections_blocker_;
4703   return NULL;
4704 }
4705
4706 // We need to unlock FINAL_BLOCKER when finished.
4707
4708 void
4709 Write_after_input_sections_task::locks(Task_locker* tl)
4710 {
4711   tl->add(this, this->final_blocker_);
4712 }
4713
4714 // Run the task.
4715
4716 void
4717 Write_after_input_sections_task::run(Workqueue*)
4718 {
4719   this->layout_->write_sections_after_input_sections(this->of_);
4720 }
4721
4722 // Close_task_runner methods.
4723
4724 // Run the task--close the file.
4725
4726 void
4727 Close_task_runner::run(Workqueue*, const Task*)
4728 {
4729   // If we need to compute a checksum for the BUILD if, we do so here.
4730   this->layout_->write_build_id(this->of_);
4731
4732   // If we've been asked to create a binary file, we do so here.
4733   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4734     this->layout_->write_binary(this->of_);
4735
4736   this->of_->close();
4737 }
4738
4739 // Instantiate the templates we need.  We could use the configure
4740 // script to restrict this to only the ones for implemented targets.
4741
4742 #ifdef HAVE_TARGET_32_LITTLE
4743 template
4744 Output_section*
4745 Layout::init_fixed_output_section<32, false>(
4746     const char* name,
4747     elfcpp::Shdr<32, false>& shdr);
4748 #endif
4749
4750 #ifdef HAVE_TARGET_32_BIG
4751 template
4752 Output_section*
4753 Layout::init_fixed_output_section<32, true>(
4754     const char* name,
4755     elfcpp::Shdr<32, true>& shdr);
4756 #endif
4757
4758 #ifdef HAVE_TARGET_64_LITTLE
4759 template
4760 Output_section*
4761 Layout::init_fixed_output_section<64, false>(
4762     const char* name,
4763     elfcpp::Shdr<64, false>& shdr);
4764 #endif
4765
4766 #ifdef HAVE_TARGET_64_BIG
4767 template
4768 Output_section*
4769 Layout::init_fixed_output_section<64, true>(
4770     const char* name,
4771     elfcpp::Shdr<64, true>& shdr);
4772 #endif
4773
4774 #ifdef HAVE_TARGET_32_LITTLE
4775 template
4776 Output_section*
4777 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4778                           const char* name,
4779                           const elfcpp::Shdr<32, false>& shdr,
4780                           unsigned int, unsigned int, off_t*);
4781 #endif
4782
4783 #ifdef HAVE_TARGET_32_BIG
4784 template
4785 Output_section*
4786 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4787                          const char* name,
4788                          const elfcpp::Shdr<32, true>& shdr,
4789                          unsigned int, unsigned int, off_t*);
4790 #endif
4791
4792 #ifdef HAVE_TARGET_64_LITTLE
4793 template
4794 Output_section*
4795 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4796                           const char* name,
4797                           const elfcpp::Shdr<64, false>& shdr,
4798                           unsigned int, unsigned int, off_t*);
4799 #endif
4800
4801 #ifdef HAVE_TARGET_64_BIG
4802 template
4803 Output_section*
4804 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4805                          const char* name,
4806                          const elfcpp::Shdr<64, true>& shdr,
4807                          unsigned int, unsigned int, off_t*);
4808 #endif
4809
4810 #ifdef HAVE_TARGET_32_LITTLE
4811 template
4812 Output_section*
4813 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4814                                 unsigned int reloc_shndx,
4815                                 const elfcpp::Shdr<32, false>& shdr,
4816                                 Output_section* data_section,
4817                                 Relocatable_relocs* rr);
4818 #endif
4819
4820 #ifdef HAVE_TARGET_32_BIG
4821 template
4822 Output_section*
4823 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4824                                unsigned int reloc_shndx,
4825                                const elfcpp::Shdr<32, true>& shdr,
4826                                Output_section* data_section,
4827                                Relocatable_relocs* rr);
4828 #endif
4829
4830 #ifdef HAVE_TARGET_64_LITTLE
4831 template
4832 Output_section*
4833 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4834                                 unsigned int reloc_shndx,
4835                                 const elfcpp::Shdr<64, false>& shdr,
4836                                 Output_section* data_section,
4837                                 Relocatable_relocs* rr);
4838 #endif
4839
4840 #ifdef HAVE_TARGET_64_BIG
4841 template
4842 Output_section*
4843 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4844                                unsigned int reloc_shndx,
4845                                const elfcpp::Shdr<64, true>& shdr,
4846                                Output_section* data_section,
4847                                Relocatable_relocs* rr);
4848 #endif
4849
4850 #ifdef HAVE_TARGET_32_LITTLE
4851 template
4852 void
4853 Layout::layout_group<32, false>(Symbol_table* symtab,
4854                                 Sized_relobj<32, false>* object,
4855                                 unsigned int,
4856                                 const char* group_section_name,
4857                                 const char* signature,
4858                                 const elfcpp::Shdr<32, false>& shdr,
4859                                 elfcpp::Elf_Word flags,
4860                                 std::vector<unsigned int>* shndxes);
4861 #endif
4862
4863 #ifdef HAVE_TARGET_32_BIG
4864 template
4865 void
4866 Layout::layout_group<32, true>(Symbol_table* symtab,
4867                                Sized_relobj<32, true>* object,
4868                                unsigned int,
4869                                const char* group_section_name,
4870                                const char* signature,
4871                                const elfcpp::Shdr<32, true>& shdr,
4872                                elfcpp::Elf_Word flags,
4873                                std::vector<unsigned int>* shndxes);
4874 #endif
4875
4876 #ifdef HAVE_TARGET_64_LITTLE
4877 template
4878 void
4879 Layout::layout_group<64, false>(Symbol_table* symtab,
4880                                 Sized_relobj<64, false>* object,
4881                                 unsigned int,
4882                                 const char* group_section_name,
4883                                 const char* signature,
4884                                 const elfcpp::Shdr<64, false>& shdr,
4885                                 elfcpp::Elf_Word flags,
4886                                 std::vector<unsigned int>* shndxes);
4887 #endif
4888
4889 #ifdef HAVE_TARGET_64_BIG
4890 template
4891 void
4892 Layout::layout_group<64, true>(Symbol_table* symtab,
4893                                Sized_relobj<64, true>* object,
4894                                unsigned int,
4895                                const char* group_section_name,
4896                                const char* signature,
4897                                const elfcpp::Shdr<64, true>& shdr,
4898                                elfcpp::Elf_Word flags,
4899                                std::vector<unsigned int>* shndxes);
4900 #endif
4901
4902 #ifdef HAVE_TARGET_32_LITTLE
4903 template
4904 Output_section*
4905 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4906                                    const unsigned char* symbols,
4907                                    off_t symbols_size,
4908                                    const unsigned char* symbol_names,
4909                                    off_t symbol_names_size,
4910                                    unsigned int shndx,
4911                                    const elfcpp::Shdr<32, false>& shdr,
4912                                    unsigned int reloc_shndx,
4913                                    unsigned int reloc_type,
4914                                    off_t* off);
4915 #endif
4916
4917 #ifdef HAVE_TARGET_32_BIG
4918 template
4919 Output_section*
4920 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4921                                    const unsigned char* symbols,
4922                                    off_t symbols_size,
4923                                   const unsigned char* symbol_names,
4924                                   off_t symbol_names_size,
4925                                   unsigned int shndx,
4926                                   const elfcpp::Shdr<32, true>& shdr,
4927                                   unsigned int reloc_shndx,
4928                                   unsigned int reloc_type,
4929                                   off_t* off);
4930 #endif
4931
4932 #ifdef HAVE_TARGET_64_LITTLE
4933 template
4934 Output_section*
4935 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4936                                    const unsigned char* symbols,
4937                                    off_t symbols_size,
4938                                    const unsigned char* symbol_names,
4939                                    off_t symbol_names_size,
4940                                    unsigned int shndx,
4941                                    const elfcpp::Shdr<64, false>& shdr,
4942                                    unsigned int reloc_shndx,
4943                                    unsigned int reloc_type,
4944                                    off_t* off);
4945 #endif
4946
4947 #ifdef HAVE_TARGET_64_BIG
4948 template
4949 Output_section*
4950 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4951                                    const unsigned char* symbols,
4952                                    off_t symbols_size,
4953                                   const unsigned char* symbol_names,
4954                                   off_t symbol_names_size,
4955                                   unsigned int shndx,
4956                                   const elfcpp::Shdr<64, true>& shdr,
4957                                   unsigned int reloc_shndx,
4958                                   unsigned int reloc_type,
4959                                   off_t* off);
4960 #endif
4961
4962 } // End namespace gold.