* target.h (Target::output_section_name): New function.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460
461 static const char* gdb_sections[] =
462 {
463   "abbrev",
464   "addr",         // Fission extension
465   // "aranges",   // not used by gdb as of 7.4
466   "frame",
467   "info",
468   "types",
469   "line",
470   "loc",
471   "macinfo",
472   "macro",
473   // "pubnames",  // not used by gdb as of 7.4
474   // "pubtypes",  // not used by gdb as of 7.4
475   "ranges",
476   "str",
477 };
478
479 // This is the minimum set of sections needed for line numbers.
480
481 static const char* lines_only_debug_sections[] =
482 {
483   "abbrev",
484   // "addr",      // Fission extension
485   // "aranges",   // not used by gdb as of 7.4
486   // "frame",
487   "info",
488   // "types",
489   "line",
490   // "loc",
491   // "macinfo",
492   // "macro",
493   // "pubnames",  // not used by gdb as of 7.4
494   // "pubtypes",  // not used by gdb as of 7.4
495   // "ranges",
496   "str",
497 };
498
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501
502 static const char* gdb_fast_lookup_sections[] =
503 {
504   "aranges",
505   "pubnames",
506   "pubtypes",
507 };
508
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516   // We can do this faster: binary search or a hashtable.  But why bother?
517   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518     if (strcmp(suffix, gdb_sections[i]) == 0)
519       return true;
520   return false;
521 }
522
523 // Returns whether the given section is needed for lines-only debugging.
524
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528   // We can do this faster: binary search or a hashtable.  But why bother?
529   for (size_t i = 0;
530        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531        ++i)
532     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533       return true;
534   return false;
535 }
536
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543   // We can do this faster: binary search or a hashtable.  But why bother?
544   for (size_t i = 0;
545        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546        ++i)
547     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548       return true;
549   return false;
550 }
551
552 // Sometimes we compress sections.  This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections.  This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564   return (is_prefix_of(".debug", secname));
565 }
566
567 // We may see compressed debug sections in input files.  Return TRUE
568 // if this is the name of a compressed debug section.
569
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573   return (is_prefix_of(".zdebug", secname));
574 }
575
576 // Whether to include this section in the link.
577
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581                         const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584     return false;
585
586   switch (shdr.get_sh_type())
587     {
588     case elfcpp::SHT_NULL:
589     case elfcpp::SHT_SYMTAB:
590     case elfcpp::SHT_DYNSYM:
591     case elfcpp::SHT_HASH:
592     case elfcpp::SHT_DYNAMIC:
593     case elfcpp::SHT_SYMTAB_SHNDX:
594       return false;
595
596     case elfcpp::SHT_STRTAB:
597       // Discard the sections which have special meanings in the ELF
598       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
599       // checking the sh_link fields of the appropriate sections.
600       return (strcmp(name, ".dynstr") != 0
601               && strcmp(name, ".strtab") != 0
602               && strcmp(name, ".shstrtab") != 0);
603
604     case elfcpp::SHT_RELA:
605     case elfcpp::SHT_REL:
606     case elfcpp::SHT_GROUP:
607       // If we are emitting relocations these should be handled
608       // elsewhere.
609       gold_assert(!parameters->options().relocatable()
610                   && !parameters->options().emit_relocs());
611       return false;
612
613     case elfcpp::SHT_PROGBITS:
614       if (parameters->options().strip_debug()
615           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
616         {
617           if (is_debug_info_section(name))
618             return false;
619         }
620       if (parameters->options().strip_debug_non_line()
621           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622         {
623           // Debugging sections can only be recognized by name.
624           if (is_prefix_of(".debug_", name)
625               && !is_lines_only_debug_section(name + 7))
626             return false;
627           if (is_prefix_of(".zdebug_", name)
628               && !is_lines_only_debug_section(name + 8))
629             return false;
630         }
631       if (parameters->options().strip_debug_gdb()
632           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
633         {
634           // Debugging sections can only be recognized by name.
635           if (is_prefix_of(".debug_", name)
636               && !is_gdb_debug_section(name + 7))
637             return false;
638           if (is_prefix_of(".zdebug_", name)
639               && !is_gdb_debug_section(name + 8))
640             return false;
641         }
642       if (parameters->options().gdb_index()
643           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
644         {
645           // When building .gdb_index, we can strip .debug_pubnames,
646           // .debug_pubtypes, and .debug_aranges sections.
647           if (is_prefix_of(".debug_", name)
648               && is_gdb_fast_lookup_section(name + 7))
649             return false;
650           if (is_prefix_of(".zdebug_", name)
651               && is_gdb_fast_lookup_section(name + 8))
652             return false;
653         }
654       if (parameters->options().strip_lto_sections()
655           && !parameters->options().relocatable()
656           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
657         {
658           // Ignore LTO sections containing intermediate code.
659           if (is_prefix_of(".gnu.lto_", name))
660             return false;
661         }
662       // The GNU linker strips .gnu_debuglink sections, so we do too.
663       // This is a feature used to keep debugging information in
664       // separate files.
665       if (strcmp(name, ".gnu_debuglink") == 0)
666         return false;
667       return true;
668
669     default:
670       return true;
671     }
672 }
673
674 // Return an output section named NAME, or NULL if there is none.
675
676 Output_section*
677 Layout::find_output_section(const char* name) const
678 {
679   for (Section_list::const_iterator p = this->section_list_.begin();
680        p != this->section_list_.end();
681        ++p)
682     if (strcmp((*p)->name(), name) == 0)
683       return *p;
684   return NULL;
685 }
686
687 // Return an output segment of type TYPE, with segment flags SET set
688 // and segment flags CLEAR clear.  Return NULL if there is none.
689
690 Output_segment*
691 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
692                             elfcpp::Elf_Word clear) const
693 {
694   for (Segment_list::const_iterator p = this->segment_list_.begin();
695        p != this->segment_list_.end();
696        ++p)
697     if (static_cast<elfcpp::PT>((*p)->type()) == type
698         && ((*p)->flags() & set) == set
699         && ((*p)->flags() & clear) == 0)
700       return *p;
701   return NULL;
702 }
703
704 // When we put a .ctors or .dtors section with more than one word into
705 // a .init_array or .fini_array section, we need to reverse the words
706 // in the .ctors/.dtors section.  This is because .init_array executes
707 // constructors front to back, where .ctors executes them back to
708 // front, and vice-versa for .fini_array/.dtors.  Although we do want
709 // to remap .ctors/.dtors into .init_array/.fini_array because it can
710 // be more efficient, we don't want to change the order in which
711 // constructors/destructors are run.  This set just keeps track of
712 // these sections which need to be reversed.  It is only changed by
713 // Layout::layout.  It should be a private member of Layout, but that
714 // would require layout.h to #include object.h to get the definition
715 // of Section_id.
716 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
717
718 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
719 // .init_array/.fini_array section.
720
721 bool
722 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
723 {
724   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
725           != ctors_sections_in_init_array.end());
726 }
727
728 // Return the output section to use for section NAME with type TYPE
729 // and section flags FLAGS.  NAME must be canonicalized in the string
730 // pool, and NAME_KEY is the key.  ORDER is where this should appear
731 // in the output sections.  IS_RELRO is true for a relro section.
732
733 Output_section*
734 Layout::get_output_section(const char* name, Stringpool::Key name_key,
735                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736                            Output_section_order order, bool is_relro)
737 {
738   elfcpp::Elf_Word lookup_type = type;
739
740   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
741   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
742   // .init_array, .fini_array, and .preinit_array sections by name
743   // whatever their type in the input file.  We do this because the
744   // types are not always right in the input files.
745   if (lookup_type == elfcpp::SHT_INIT_ARRAY
746       || lookup_type == elfcpp::SHT_FINI_ARRAY
747       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
748     lookup_type = elfcpp::SHT_PROGBITS;
749
750   elfcpp::Elf_Xword lookup_flags = flags;
751
752   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
753   // read-write with read-only sections.  Some other ELF linkers do
754   // not do this.  FIXME: Perhaps there should be an option
755   // controlling this.
756   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
757
758   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
759   const std::pair<Key, Output_section*> v(key, NULL);
760   std::pair<Section_name_map::iterator, bool> ins(
761     this->section_name_map_.insert(v));
762
763   if (!ins.second)
764     return ins.first->second;
765   else
766     {
767       // This is the first time we've seen this name/type/flags
768       // combination.  For compatibility with the GNU linker, we
769       // combine sections with contents and zero flags with sections
770       // with non-zero flags.  This is a workaround for cases where
771       // assembler code forgets to set section flags.  FIXME: Perhaps
772       // there should be an option to control this.
773       Output_section* os = NULL;
774
775       if (lookup_type == elfcpp::SHT_PROGBITS)
776         {
777           if (flags == 0)
778             {
779               Output_section* same_name = this->find_output_section(name);
780               if (same_name != NULL
781                   && (same_name->type() == elfcpp::SHT_PROGBITS
782                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
783                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
784                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
785                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
786                 os = same_name;
787             }
788           else if ((flags & elfcpp::SHF_TLS) == 0)
789             {
790               elfcpp::Elf_Xword zero_flags = 0;
791               const Key zero_key(name_key, std::make_pair(lookup_type,
792                                                           zero_flags));
793               Section_name_map::iterator p =
794                   this->section_name_map_.find(zero_key);
795               if (p != this->section_name_map_.end())
796                 os = p->second;
797             }
798         }
799
800       if (os == NULL)
801         os = this->make_output_section(name, type, flags, order, is_relro);
802
803       ins.first->second = os;
804       return os;
805     }
806 }
807
808 // Pick the output section to use for section NAME, in input file
809 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
810 // linker created section.  IS_INPUT_SECTION is true if we are
811 // choosing an output section for an input section found in a input
812 // file.  ORDER is where this section should appear in the output
813 // sections.  IS_RELRO is true for a relro section.  This will return
814 // NULL if the input section should be discarded.
815
816 Output_section*
817 Layout::choose_output_section(const Relobj* relobj, const char* name,
818                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819                               bool is_input_section, Output_section_order order,
820                               bool is_relro)
821 {
822   // We should not see any input sections after we have attached
823   // sections to segments.
824   gold_assert(!is_input_section || !this->sections_are_attached_);
825
826   // Some flags in the input section should not be automatically
827   // copied to the output section.
828   flags &= ~ (elfcpp::SHF_INFO_LINK
829               | elfcpp::SHF_GROUP
830               | elfcpp::SHF_MERGE
831               | elfcpp::SHF_STRINGS);
832
833   // We only clear the SHF_LINK_ORDER flag in for
834   // a non-relocatable link.
835   if (!parameters->options().relocatable())
836     flags &= ~elfcpp::SHF_LINK_ORDER;
837
838   if (this->script_options_->saw_sections_clause())
839     {
840       // We are using a SECTIONS clause, so the output section is
841       // chosen based only on the name.
842
843       Script_sections* ss = this->script_options_->script_sections();
844       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
845       Output_section** output_section_slot;
846       Script_sections::Section_type script_section_type;
847       const char* orig_name = name;
848       name = ss->output_section_name(file_name, name, &output_section_slot,
849                                      &script_section_type);
850       if (name == NULL)
851         {
852           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
853                                      "because it is not allowed by the "
854                                      "SECTIONS clause of the linker script"),
855                      orig_name);
856           // The SECTIONS clause says to discard this input section.
857           return NULL;
858         }
859
860       // We can only handle script section types ST_NONE and ST_NOLOAD.
861       switch (script_section_type)
862         {
863         case Script_sections::ST_NONE:
864           break;
865         case Script_sections::ST_NOLOAD:
866           flags &= elfcpp::SHF_ALLOC;
867           break;
868         default:
869           gold_unreachable();
870         }
871
872       // If this is an orphan section--one not mentioned in the linker
873       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
874       // default processing below.
875
876       if (output_section_slot != NULL)
877         {
878           if (*output_section_slot != NULL)
879             {
880               (*output_section_slot)->update_flags_for_input_section(flags);
881               return *output_section_slot;
882             }
883
884           // We don't put sections found in the linker script into
885           // SECTION_NAME_MAP_.  That keeps us from getting confused
886           // if an orphan section is mapped to a section with the same
887           // name as one in the linker script.
888
889           name = this->namepool_.add(name, false, NULL);
890
891           Output_section* os = this->make_output_section(name, type, flags,
892                                                          order, is_relro);
893
894           os->set_found_in_sections_clause();
895
896           // Special handling for NOLOAD sections.
897           if (script_section_type == Script_sections::ST_NOLOAD)
898             {
899               os->set_is_noload();
900
901               // The constructor of Output_section sets addresses of non-ALLOC
902               // sections to 0 by default.  We don't want that for NOLOAD
903               // sections even if they have no SHF_ALLOC flag.
904               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
905                   && os->is_address_valid())
906                 {
907                   gold_assert(os->address() == 0
908                               && !os->is_offset_valid()
909                               && !os->is_data_size_valid());
910                   os->reset_address_and_file_offset();
911                 }
912             }
913
914           *output_section_slot = os;
915           return os;
916         }
917     }
918
919   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
920
921   size_t len = strlen(name);
922   char* uncompressed_name = NULL;
923
924   // Compressed debug sections should be mapped to the corresponding
925   // uncompressed section.
926   if (is_compressed_debug_section(name))
927     {
928       uncompressed_name = new char[len];
929       uncompressed_name[0] = '.';
930       gold_assert(name[0] == '.' && name[1] == 'z');
931       strncpy(&uncompressed_name[1], &name[2], len - 2);
932       uncompressed_name[len - 1] = '\0';
933       len -= 1;
934       name = uncompressed_name;
935     }
936
937   // Turn NAME from the name of the input section into the name of the
938   // output section.
939   if (is_input_section
940       && !this->script_options_->saw_sections_clause()
941       && !parameters->options().relocatable())
942     {
943       const char *orig_name = name;
944       name = parameters->target().output_section_name(relobj, name, &len);
945       if (name == NULL)
946         name = Layout::output_section_name(relobj, orig_name, &len);
947     }
948
949   Stringpool::Key name_key;
950   name = this->namepool_.add_with_length(name, len, true, &name_key);
951
952   if (uncompressed_name != NULL)
953     delete[] uncompressed_name;
954
955   // Find or make the output section.  The output section is selected
956   // based on the section name, type, and flags.
957   return this->get_output_section(name, name_key, type, flags, order, is_relro);
958 }
959
960 // For incremental links, record the initial fixed layout of a section
961 // from the base file, and return a pointer to the Output_section.
962
963 template<int size, bool big_endian>
964 Output_section*
965 Layout::init_fixed_output_section(const char* name,
966                                   elfcpp::Shdr<size, big_endian>& shdr)
967 {
968   unsigned int sh_type = shdr.get_sh_type();
969
970   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
971   // PRE_INIT_ARRAY, and NOTE sections.
972   // All others will be created from scratch and reallocated.
973   if (!can_incremental_update(sh_type))
974     return NULL;
975
976   // If we're generating a .gdb_index section, we need to regenerate
977   // it from scratch.
978   if (parameters->options().gdb_index()
979       && sh_type == elfcpp::SHT_PROGBITS
980       && strcmp(name, ".gdb_index") == 0)
981     return NULL;
982
983   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
984   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
985   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
986   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
987   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
988       shdr.get_sh_addralign();
989
990   // Make the output section.
991   Stringpool::Key name_key;
992   name = this->namepool_.add(name, true, &name_key);
993   Output_section* os = this->get_output_section(name, name_key, sh_type,
994                                                 sh_flags, ORDER_INVALID, false);
995   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
996   if (sh_type != elfcpp::SHT_NOBITS)
997     this->free_list_.remove(sh_offset, sh_offset + sh_size);
998   return os;
999 }
1000
1001 // Return the output section to use for input section SHNDX, with name
1002 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1003 // index of a relocation section which applies to this section, or 0
1004 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1005 // relocation section if there is one.  Set *OFF to the offset of this
1006 // input section without the output section.  Return NULL if the
1007 // section should be discarded.  Set *OFF to -1 if the section
1008 // contents should not be written directly to the output file, but
1009 // will instead receive special handling.
1010
1011 template<int size, bool big_endian>
1012 Output_section*
1013 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1014                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1015                unsigned int reloc_shndx, unsigned int, off_t* off)
1016 {
1017   *off = 0;
1018
1019   if (!this->include_section(object, name, shdr))
1020     return NULL;
1021
1022   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1023
1024   // In a relocatable link a grouped section must not be combined with
1025   // any other sections.
1026   Output_section* os;
1027   if (parameters->options().relocatable()
1028       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1029     {
1030       name = this->namepool_.add(name, true, NULL);
1031       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1032                                      ORDER_INVALID, false);
1033     }
1034   else
1035     {
1036       os = this->choose_output_section(object, name, sh_type,
1037                                        shdr.get_sh_flags(), true,
1038                                        ORDER_INVALID, false);
1039       if (os == NULL)
1040         return NULL;
1041     }
1042
1043   // By default the GNU linker sorts input sections whose names match
1044   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1045   // sections are sorted by name.  This is used to implement
1046   // constructor priority ordering.  We are compatible.  When we put
1047   // .ctor sections in .init_array and .dtor sections in .fini_array,
1048   // we must also sort plain .ctor and .dtor sections.
1049   if (!this->script_options_->saw_sections_clause()
1050       && !parameters->options().relocatable()
1051       && (is_prefix_of(".ctors.", name)
1052           || is_prefix_of(".dtors.", name)
1053           || is_prefix_of(".init_array.", name)
1054           || is_prefix_of(".fini_array.", name)
1055           || (parameters->options().ctors_in_init_array()
1056               && (strcmp(name, ".ctors") == 0
1057                   || strcmp(name, ".dtors") == 0))))
1058     os->set_must_sort_attached_input_sections();
1059
1060   // If this is a .ctors or .ctors.* section being mapped to a
1061   // .init_array section, or a .dtors or .dtors.* section being mapped
1062   // to a .fini_array section, we will need to reverse the words if
1063   // there is more than one.  Record this section for later.  See
1064   // ctors_sections_in_init_array above.
1065   if (!this->script_options_->saw_sections_clause()
1066       && !parameters->options().relocatable()
1067       && shdr.get_sh_size() > size / 8
1068       && (((strcmp(name, ".ctors") == 0
1069             || is_prefix_of(".ctors.", name))
1070            && strcmp(os->name(), ".init_array") == 0)
1071           || ((strcmp(name, ".dtors") == 0
1072                || is_prefix_of(".dtors.", name))
1073               && strcmp(os->name(), ".fini_array") == 0)))
1074     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1075
1076   // FIXME: Handle SHF_LINK_ORDER somewhere.
1077
1078   elfcpp::Elf_Xword orig_flags = os->flags();
1079
1080   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1081                                this->script_options_->saw_sections_clause());
1082
1083   // If the flags changed, we may have to change the order.
1084   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1085     {
1086       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1087       elfcpp::Elf_Xword new_flags =
1088         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1089       if (orig_flags != new_flags)
1090         os->set_order(this->default_section_order(os, false));
1091     }
1092
1093   this->have_added_input_section_ = true;
1094
1095   return os;
1096 }
1097
1098 // Handle a relocation section when doing a relocatable link.
1099
1100 template<int size, bool big_endian>
1101 Output_section*
1102 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1103                      unsigned int,
1104                      const elfcpp::Shdr<size, big_endian>& shdr,
1105                      Output_section* data_section,
1106                      Relocatable_relocs* rr)
1107 {
1108   gold_assert(parameters->options().relocatable()
1109               || parameters->options().emit_relocs());
1110
1111   int sh_type = shdr.get_sh_type();
1112
1113   std::string name;
1114   if (sh_type == elfcpp::SHT_REL)
1115     name = ".rel";
1116   else if (sh_type == elfcpp::SHT_RELA)
1117     name = ".rela";
1118   else
1119     gold_unreachable();
1120   name += data_section->name();
1121
1122   // In a relocatable link relocs for a grouped section must not be
1123   // combined with other reloc sections.
1124   Output_section* os;
1125   if (!parameters->options().relocatable()
1126       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1127     os = this->choose_output_section(object, name.c_str(), sh_type,
1128                                      shdr.get_sh_flags(), false,
1129                                      ORDER_INVALID, false);
1130   else
1131     {
1132       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1133       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1134                                      ORDER_INVALID, false);
1135     }
1136
1137   os->set_should_link_to_symtab();
1138   os->set_info_section(data_section);
1139
1140   Output_section_data* posd;
1141   if (sh_type == elfcpp::SHT_REL)
1142     {
1143       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1144       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1145                                            size,
1146                                            big_endian>(rr);
1147     }
1148   else if (sh_type == elfcpp::SHT_RELA)
1149     {
1150       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1151       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1152                                            size,
1153                                            big_endian>(rr);
1154     }
1155   else
1156     gold_unreachable();
1157
1158   os->add_output_section_data(posd);
1159   rr->set_output_data(posd);
1160
1161   return os;
1162 }
1163
1164 // Handle a group section when doing a relocatable link.
1165
1166 template<int size, bool big_endian>
1167 void
1168 Layout::layout_group(Symbol_table* symtab,
1169                      Sized_relobj_file<size, big_endian>* object,
1170                      unsigned int,
1171                      const char* group_section_name,
1172                      const char* signature,
1173                      const elfcpp::Shdr<size, big_endian>& shdr,
1174                      elfcpp::Elf_Word flags,
1175                      std::vector<unsigned int>* shndxes)
1176 {
1177   gold_assert(parameters->options().relocatable());
1178   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1179   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1180   Output_section* os = this->make_output_section(group_section_name,
1181                                                  elfcpp::SHT_GROUP,
1182                                                  shdr.get_sh_flags(),
1183                                                  ORDER_INVALID, false);
1184
1185   // We need to find a symbol with the signature in the symbol table.
1186   // If we don't find one now, we need to look again later.
1187   Symbol* sym = symtab->lookup(signature, NULL);
1188   if (sym != NULL)
1189     os->set_info_symndx(sym);
1190   else
1191     {
1192       // Reserve some space to minimize reallocations.
1193       if (this->group_signatures_.empty())
1194         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1195
1196       // We will wind up using a symbol whose name is the signature.
1197       // So just put the signature in the symbol name pool to save it.
1198       signature = symtab->canonicalize_name(signature);
1199       this->group_signatures_.push_back(Group_signature(os, signature));
1200     }
1201
1202   os->set_should_link_to_symtab();
1203   os->set_entsize(4);
1204
1205   section_size_type entry_count =
1206     convert_to_section_size_type(shdr.get_sh_size() / 4);
1207   Output_section_data* posd =
1208     new Output_data_group<size, big_endian>(object, entry_count, flags,
1209                                             shndxes);
1210   os->add_output_section_data(posd);
1211 }
1212
1213 // Special GNU handling of sections name .eh_frame.  They will
1214 // normally hold exception frame data as defined by the C++ ABI
1215 // (http://codesourcery.com/cxx-abi/).
1216
1217 template<int size, bool big_endian>
1218 Output_section*
1219 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1220                         const unsigned char* symbols,
1221                         off_t symbols_size,
1222                         const unsigned char* symbol_names,
1223                         off_t symbol_names_size,
1224                         unsigned int shndx,
1225                         const elfcpp::Shdr<size, big_endian>& shdr,
1226                         unsigned int reloc_shndx, unsigned int reloc_type,
1227                         off_t* off)
1228 {
1229   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1230               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1231   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1232
1233   Output_section* os = this->make_eh_frame_section(object);
1234   if (os == NULL)
1235     return NULL;
1236
1237   gold_assert(this->eh_frame_section_ == os);
1238
1239   elfcpp::Elf_Xword orig_flags = os->flags();
1240
1241   if (!parameters->incremental()
1242       && this->eh_frame_data_->add_ehframe_input_section(object,
1243                                                          symbols,
1244                                                          symbols_size,
1245                                                          symbol_names,
1246                                                          symbol_names_size,
1247                                                          shndx,
1248                                                          reloc_shndx,
1249                                                          reloc_type))
1250     {
1251       os->update_flags_for_input_section(shdr.get_sh_flags());
1252
1253       // A writable .eh_frame section is a RELRO section.
1254       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1255           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1256         {
1257           os->set_is_relro();
1258           os->set_order(ORDER_RELRO);
1259         }
1260
1261       // We found a .eh_frame section we are going to optimize, so now
1262       // we can add the set of optimized sections to the output
1263       // section.  We need to postpone adding this until we've found a
1264       // section we can optimize so that the .eh_frame section in
1265       // crtbegin.o winds up at the start of the output section.
1266       if (!this->added_eh_frame_data_)
1267         {
1268           os->add_output_section_data(this->eh_frame_data_);
1269           this->added_eh_frame_data_ = true;
1270         }
1271       *off = -1;
1272     }
1273   else
1274     {
1275       // We couldn't handle this .eh_frame section for some reason.
1276       // Add it as a normal section.
1277       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1278       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1279                                    reloc_shndx, saw_sections_clause);
1280       this->have_added_input_section_ = true;
1281
1282       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1283           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1284         os->set_order(this->default_section_order(os, false));
1285     }
1286
1287   return os;
1288 }
1289
1290 // Create and return the magic .eh_frame section.  Create
1291 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1292 // input .eh_frame section; it may be NULL.
1293
1294 Output_section*
1295 Layout::make_eh_frame_section(const Relobj* object)
1296 {
1297   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1298   // SHT_PROGBITS.
1299   Output_section* os = this->choose_output_section(object, ".eh_frame",
1300                                                    elfcpp::SHT_PROGBITS,
1301                                                    elfcpp::SHF_ALLOC, false,
1302                                                    ORDER_EHFRAME, false);
1303   if (os == NULL)
1304     return NULL;
1305
1306   if (this->eh_frame_section_ == NULL)
1307     {
1308       this->eh_frame_section_ = os;
1309       this->eh_frame_data_ = new Eh_frame();
1310
1311       // For incremental linking, we do not optimize .eh_frame sections
1312       // or create a .eh_frame_hdr section.
1313       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1314         {
1315           Output_section* hdr_os =
1316             this->choose_output_section(NULL, ".eh_frame_hdr",
1317                                         elfcpp::SHT_PROGBITS,
1318                                         elfcpp::SHF_ALLOC, false,
1319                                         ORDER_EHFRAME, false);
1320
1321           if (hdr_os != NULL)
1322             {
1323               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1324                                                         this->eh_frame_data_);
1325               hdr_os->add_output_section_data(hdr_posd);
1326
1327               hdr_os->set_after_input_sections();
1328
1329               if (!this->script_options_->saw_phdrs_clause())
1330                 {
1331                   Output_segment* hdr_oseg;
1332                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1333                                                        elfcpp::PF_R);
1334                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1335                                                           elfcpp::PF_R);
1336                 }
1337
1338               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1339             }
1340         }
1341     }
1342
1343   return os;
1344 }
1345
1346 // Add an exception frame for a PLT.  This is called from target code.
1347
1348 void
1349 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1350                              size_t cie_length, const unsigned char* fde_data,
1351                              size_t fde_length)
1352 {
1353   if (parameters->incremental())
1354     {
1355       // FIXME: Maybe this could work some day....
1356       return;
1357     }
1358   Output_section* os = this->make_eh_frame_section(NULL);
1359   if (os == NULL)
1360     return;
1361   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1362                                             fde_data, fde_length);
1363   if (!this->added_eh_frame_data_)
1364     {
1365       os->add_output_section_data(this->eh_frame_data_);
1366       this->added_eh_frame_data_ = true;
1367     }
1368 }
1369
1370 // Scan a .debug_info or .debug_types section, and add summary
1371 // information to the .gdb_index section.
1372
1373 template<int size, bool big_endian>
1374 void
1375 Layout::add_to_gdb_index(bool is_type_unit,
1376                          Sized_relobj<size, big_endian>* object,
1377                          const unsigned char* symbols,
1378                          off_t symbols_size,
1379                          unsigned int shndx,
1380                          unsigned int reloc_shndx,
1381                          unsigned int reloc_type)
1382 {
1383   if (this->gdb_index_data_ == NULL)
1384     {
1385       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1386                                                        elfcpp::SHT_PROGBITS, 0,
1387                                                        false, ORDER_INVALID,
1388                                                        false);
1389       if (os == NULL)
1390         return;
1391
1392       this->gdb_index_data_ = new Gdb_index(os);
1393       os->add_output_section_data(this->gdb_index_data_);
1394       os->set_after_input_sections();
1395     }
1396
1397   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1398                                          symbols_size, shndx, reloc_shndx,
1399                                          reloc_type);
1400 }
1401
1402 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1403 // the output section.
1404
1405 Output_section*
1406 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1407                                 elfcpp::Elf_Xword flags,
1408                                 Output_section_data* posd,
1409                                 Output_section_order order, bool is_relro)
1410 {
1411   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1412                                                    false, order, is_relro);
1413   if (os != NULL)
1414     os->add_output_section_data(posd);
1415   return os;
1416 }
1417
1418 // Map section flags to segment flags.
1419
1420 elfcpp::Elf_Word
1421 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1422 {
1423   elfcpp::Elf_Word ret = elfcpp::PF_R;
1424   if ((flags & elfcpp::SHF_WRITE) != 0)
1425     ret |= elfcpp::PF_W;
1426   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1427     ret |= elfcpp::PF_X;
1428   return ret;
1429 }
1430
1431 // Make a new Output_section, and attach it to segments as
1432 // appropriate.  ORDER is the order in which this section should
1433 // appear in the output segment.  IS_RELRO is true if this is a relro
1434 // (read-only after relocations) section.
1435
1436 Output_section*
1437 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1438                             elfcpp::Elf_Xword flags,
1439                             Output_section_order order, bool is_relro)
1440 {
1441   Output_section* os;
1442   if ((flags & elfcpp::SHF_ALLOC) == 0
1443       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1444       && is_compressible_debug_section(name))
1445     os = new Output_compressed_section(&parameters->options(), name, type,
1446                                        flags);
1447   else if ((flags & elfcpp::SHF_ALLOC) == 0
1448            && parameters->options().strip_debug_non_line()
1449            && strcmp(".debug_abbrev", name) == 0)
1450     {
1451       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1452           name, type, flags);
1453       if (this->debug_info_)
1454         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1455     }
1456   else if ((flags & elfcpp::SHF_ALLOC) == 0
1457            && parameters->options().strip_debug_non_line()
1458            && strcmp(".debug_info", name) == 0)
1459     {
1460       os = this->debug_info_ = new Output_reduced_debug_info_section(
1461           name, type, flags);
1462       if (this->debug_abbrev_)
1463         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1464     }
1465   else
1466     {
1467       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1468       // not have correct section types.  Force them here.
1469       if (type == elfcpp::SHT_PROGBITS)
1470         {
1471           if (is_prefix_of(".init_array", name))
1472             type = elfcpp::SHT_INIT_ARRAY;
1473           else if (is_prefix_of(".preinit_array", name))
1474             type = elfcpp::SHT_PREINIT_ARRAY;
1475           else if (is_prefix_of(".fini_array", name))
1476             type = elfcpp::SHT_FINI_ARRAY;
1477         }
1478
1479       // FIXME: const_cast is ugly.
1480       Target* target = const_cast<Target*>(&parameters->target());
1481       os = target->make_output_section(name, type, flags);
1482     }
1483
1484   // With -z relro, we have to recognize the special sections by name.
1485   // There is no other way.
1486   bool is_relro_local = false;
1487   if (!this->script_options_->saw_sections_clause()
1488       && parameters->options().relro()
1489       && (flags & elfcpp::SHF_ALLOC) != 0
1490       && (flags & elfcpp::SHF_WRITE) != 0)
1491     {
1492       if (type == elfcpp::SHT_PROGBITS)
1493         {
1494           if ((flags & elfcpp::SHF_TLS) != 0)
1495             is_relro = true;
1496           else if (strcmp(name, ".data.rel.ro") == 0)
1497             is_relro = true;
1498           else if (strcmp(name, ".data.rel.ro.local") == 0)
1499             {
1500               is_relro = true;
1501               is_relro_local = true;
1502             }
1503           else if (strcmp(name, ".ctors") == 0
1504                    || strcmp(name, ".dtors") == 0
1505                    || strcmp(name, ".jcr") == 0)
1506             is_relro = true;
1507         }
1508       else if (type == elfcpp::SHT_INIT_ARRAY
1509                || type == elfcpp::SHT_FINI_ARRAY
1510                || type == elfcpp::SHT_PREINIT_ARRAY)
1511         is_relro = true;
1512     }
1513
1514   if (is_relro)
1515     os->set_is_relro();
1516
1517   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1518     order = this->default_section_order(os, is_relro_local);
1519
1520   os->set_order(order);
1521
1522   parameters->target().new_output_section(os);
1523
1524   this->section_list_.push_back(os);
1525
1526   // The GNU linker by default sorts some sections by priority, so we
1527   // do the same.  We need to know that this might happen before we
1528   // attach any input sections.
1529   if (!this->script_options_->saw_sections_clause()
1530       && !parameters->options().relocatable()
1531       && (strcmp(name, ".init_array") == 0
1532           || strcmp(name, ".fini_array") == 0
1533           || (!parameters->options().ctors_in_init_array()
1534               && (strcmp(name, ".ctors") == 0
1535                   || strcmp(name, ".dtors") == 0))))
1536     os->set_may_sort_attached_input_sections();
1537
1538   // Check for .stab*str sections, as .stab* sections need to link to
1539   // them.
1540   if (type == elfcpp::SHT_STRTAB
1541       && !this->have_stabstr_section_
1542       && strncmp(name, ".stab", 5) == 0
1543       && strcmp(name + strlen(name) - 3, "str") == 0)
1544     this->have_stabstr_section_ = true;
1545
1546   // During a full incremental link, we add patch space to most
1547   // PROGBITS and NOBITS sections.  Flag those that may be
1548   // arbitrarily padded.
1549   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1550       && order != ORDER_INTERP
1551       && order != ORDER_INIT
1552       && order != ORDER_PLT
1553       && order != ORDER_FINI
1554       && order != ORDER_RELRO_LAST
1555       && order != ORDER_NON_RELRO_FIRST
1556       && strcmp(name, ".eh_frame") != 0
1557       && strcmp(name, ".ctors") != 0
1558       && strcmp(name, ".dtors") != 0
1559       && strcmp(name, ".jcr") != 0)
1560     {
1561       os->set_is_patch_space_allowed();
1562
1563       // Certain sections require "holes" to be filled with
1564       // specific fill patterns.  These fill patterns may have
1565       // a minimum size, so we must prevent allocations from the
1566       // free list that leave a hole smaller than the minimum.
1567       if (strcmp(name, ".debug_info") == 0)
1568         os->set_free_space_fill(new Output_fill_debug_info(false));
1569       else if (strcmp(name, ".debug_types") == 0)
1570         os->set_free_space_fill(new Output_fill_debug_info(true));
1571       else if (strcmp(name, ".debug_line") == 0)
1572         os->set_free_space_fill(new Output_fill_debug_line());
1573     }
1574
1575   // If we have already attached the sections to segments, then we
1576   // need to attach this one now.  This happens for sections created
1577   // directly by the linker.
1578   if (this->sections_are_attached_)
1579     this->attach_section_to_segment(&parameters->target(), os);
1580
1581   return os;
1582 }
1583
1584 // Return the default order in which a section should be placed in an
1585 // output segment.  This function captures a lot of the ideas in
1586 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1587 // linker created section is normally set when the section is created;
1588 // this function is used for input sections.
1589
1590 Output_section_order
1591 Layout::default_section_order(Output_section* os, bool is_relro_local)
1592 {
1593   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1594   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1595   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1596   bool is_bss = false;
1597
1598   switch (os->type())
1599     {
1600     default:
1601     case elfcpp::SHT_PROGBITS:
1602       break;
1603     case elfcpp::SHT_NOBITS:
1604       is_bss = true;
1605       break;
1606     case elfcpp::SHT_RELA:
1607     case elfcpp::SHT_REL:
1608       if (!is_write)
1609         return ORDER_DYNAMIC_RELOCS;
1610       break;
1611     case elfcpp::SHT_HASH:
1612     case elfcpp::SHT_DYNAMIC:
1613     case elfcpp::SHT_SHLIB:
1614     case elfcpp::SHT_DYNSYM:
1615     case elfcpp::SHT_GNU_HASH:
1616     case elfcpp::SHT_GNU_verdef:
1617     case elfcpp::SHT_GNU_verneed:
1618     case elfcpp::SHT_GNU_versym:
1619       if (!is_write)
1620         return ORDER_DYNAMIC_LINKER;
1621       break;
1622     case elfcpp::SHT_NOTE:
1623       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1624     }
1625
1626   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1627     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1628
1629   if (!is_bss && !is_write)
1630     {
1631       if (is_execinstr)
1632         {
1633           if (strcmp(os->name(), ".init") == 0)
1634             return ORDER_INIT;
1635           else if (strcmp(os->name(), ".fini") == 0)
1636             return ORDER_FINI;
1637         }
1638       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1639     }
1640
1641   if (os->is_relro())
1642     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1643
1644   if (os->is_small_section())
1645     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1646   if (os->is_large_section())
1647     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1648
1649   return is_bss ? ORDER_BSS : ORDER_DATA;
1650 }
1651
1652 // Attach output sections to segments.  This is called after we have
1653 // seen all the input sections.
1654
1655 void
1656 Layout::attach_sections_to_segments(const Target* target)
1657 {
1658   for (Section_list::iterator p = this->section_list_.begin();
1659        p != this->section_list_.end();
1660        ++p)
1661     this->attach_section_to_segment(target, *p);
1662
1663   this->sections_are_attached_ = true;
1664 }
1665
1666 // Attach an output section to a segment.
1667
1668 void
1669 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1670 {
1671   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1672     this->unattached_section_list_.push_back(os);
1673   else
1674     this->attach_allocated_section_to_segment(target, os);
1675 }
1676
1677 // Attach an allocated output section to a segment.
1678
1679 void
1680 Layout::attach_allocated_section_to_segment(const Target* target,
1681                                             Output_section* os)
1682 {
1683   elfcpp::Elf_Xword flags = os->flags();
1684   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1685
1686   if (parameters->options().relocatable())
1687     return;
1688
1689   // If we have a SECTIONS clause, we can't handle the attachment to
1690   // segments until after we've seen all the sections.
1691   if (this->script_options_->saw_sections_clause())
1692     return;
1693
1694   gold_assert(!this->script_options_->saw_phdrs_clause());
1695
1696   // This output section goes into a PT_LOAD segment.
1697
1698   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1699
1700   // Check for --section-start.
1701   uint64_t addr;
1702   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1703
1704   // In general the only thing we really care about for PT_LOAD
1705   // segments is whether or not they are writable or executable,
1706   // so that is how we search for them.
1707   // Large data sections also go into their own PT_LOAD segment.
1708   // People who need segments sorted on some other basis will
1709   // have to use a linker script.
1710
1711   Segment_list::const_iterator p;
1712   for (p = this->segment_list_.begin();
1713        p != this->segment_list_.end();
1714        ++p)
1715     {
1716       if ((*p)->type() != elfcpp::PT_LOAD)
1717         continue;
1718       if (!parameters->options().omagic()
1719           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1720         continue;
1721       if ((target->isolate_execinstr() || parameters->options().rosegment())
1722           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1723         continue;
1724       // If -Tbss was specified, we need to separate the data and BSS
1725       // segments.
1726       if (parameters->options().user_set_Tbss())
1727         {
1728           if ((os->type() == elfcpp::SHT_NOBITS)
1729               == (*p)->has_any_data_sections())
1730             continue;
1731         }
1732       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1733         continue;
1734
1735       if (is_address_set)
1736         {
1737           if ((*p)->are_addresses_set())
1738             continue;
1739
1740           (*p)->add_initial_output_data(os);
1741           (*p)->update_flags_for_output_section(seg_flags);
1742           (*p)->set_addresses(addr, addr);
1743           break;
1744         }
1745
1746       (*p)->add_output_section_to_load(this, os, seg_flags);
1747       break;
1748     }
1749
1750   if (p == this->segment_list_.end())
1751     {
1752       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1753                                                        seg_flags);
1754       if (os->is_large_data_section())
1755         oseg->set_is_large_data_segment();
1756       oseg->add_output_section_to_load(this, os, seg_flags);
1757       if (is_address_set)
1758         oseg->set_addresses(addr, addr);
1759     }
1760
1761   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1762   // segment.
1763   if (os->type() == elfcpp::SHT_NOTE)
1764     {
1765       // See if we already have an equivalent PT_NOTE segment.
1766       for (p = this->segment_list_.begin();
1767            p != segment_list_.end();
1768            ++p)
1769         {
1770           if ((*p)->type() == elfcpp::PT_NOTE
1771               && (((*p)->flags() & elfcpp::PF_W)
1772                   == (seg_flags & elfcpp::PF_W)))
1773             {
1774               (*p)->add_output_section_to_nonload(os, seg_flags);
1775               break;
1776             }
1777         }
1778
1779       if (p == this->segment_list_.end())
1780         {
1781           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1782                                                            seg_flags);
1783           oseg->add_output_section_to_nonload(os, seg_flags);
1784         }
1785     }
1786
1787   // If we see a loadable SHF_TLS section, we create a PT_TLS
1788   // segment.  There can only be one such segment.
1789   if ((flags & elfcpp::SHF_TLS) != 0)
1790     {
1791       if (this->tls_segment_ == NULL)
1792         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1793       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1794     }
1795
1796   // If -z relro is in effect, and we see a relro section, we create a
1797   // PT_GNU_RELRO segment.  There can only be one such segment.
1798   if (os->is_relro() && parameters->options().relro())
1799     {
1800       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1801       if (this->relro_segment_ == NULL)
1802         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1803       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1804     }
1805
1806   // If we see a section named .interp, put it into a PT_INTERP
1807   // segment.  This seems broken to me, but this is what GNU ld does,
1808   // and glibc expects it.
1809   if (strcmp(os->name(), ".interp") == 0
1810       && !this->script_options_->saw_phdrs_clause())
1811     {
1812       if (this->interp_segment_ == NULL)
1813         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1814       else
1815         gold_warning(_("multiple '.interp' sections in input files "
1816                        "may cause confusing PT_INTERP segment"));
1817       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1818     }
1819 }
1820
1821 // Make an output section for a script.
1822
1823 Output_section*
1824 Layout::make_output_section_for_script(
1825     const char* name,
1826     Script_sections::Section_type section_type)
1827 {
1828   name = this->namepool_.add(name, false, NULL);
1829   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1830   if (section_type == Script_sections::ST_NOLOAD)
1831     sh_flags = 0;
1832   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1833                                                  sh_flags, ORDER_INVALID,
1834                                                  false);
1835   os->set_found_in_sections_clause();
1836   if (section_type == Script_sections::ST_NOLOAD)
1837     os->set_is_noload();
1838   return os;
1839 }
1840
1841 // Return the number of segments we expect to see.
1842
1843 size_t
1844 Layout::expected_segment_count() const
1845 {
1846   size_t ret = this->segment_list_.size();
1847
1848   // If we didn't see a SECTIONS clause in a linker script, we should
1849   // already have the complete list of segments.  Otherwise we ask the
1850   // SECTIONS clause how many segments it expects, and add in the ones
1851   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1852
1853   if (!this->script_options_->saw_sections_clause())
1854     return ret;
1855   else
1856     {
1857       const Script_sections* ss = this->script_options_->script_sections();
1858       return ret + ss->expected_segment_count(this);
1859     }
1860 }
1861
1862 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1863 // is whether we saw a .note.GNU-stack section in the object file.
1864 // GNU_STACK_FLAGS is the section flags.  The flags give the
1865 // protection required for stack memory.  We record this in an
1866 // executable as a PT_GNU_STACK segment.  If an object file does not
1867 // have a .note.GNU-stack segment, we must assume that it is an old
1868 // object.  On some targets that will force an executable stack.
1869
1870 void
1871 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1872                          const Object* obj)
1873 {
1874   if (!seen_gnu_stack)
1875     {
1876       this->input_without_gnu_stack_note_ = true;
1877       if (parameters->options().warn_execstack()
1878           && parameters->target().is_default_stack_executable())
1879         gold_warning(_("%s: missing .note.GNU-stack section"
1880                        " implies executable stack"),
1881                      obj->name().c_str());
1882     }
1883   else
1884     {
1885       this->input_with_gnu_stack_note_ = true;
1886       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1887         {
1888           this->input_requires_executable_stack_ = true;
1889           if (parameters->options().warn_execstack()
1890               || parameters->options().is_stack_executable())
1891             gold_warning(_("%s: requires executable stack"),
1892                          obj->name().c_str());
1893         }
1894     }
1895 }
1896
1897 // Create automatic note sections.
1898
1899 void
1900 Layout::create_notes()
1901 {
1902   this->create_gold_note();
1903   this->create_executable_stack_info();
1904   this->create_build_id();
1905 }
1906
1907 // Create the dynamic sections which are needed before we read the
1908 // relocs.
1909
1910 void
1911 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1912 {
1913   if (parameters->doing_static_link())
1914     return;
1915
1916   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1917                                                        elfcpp::SHT_DYNAMIC,
1918                                                        (elfcpp::SHF_ALLOC
1919                                                         | elfcpp::SHF_WRITE),
1920                                                        false, ORDER_RELRO,
1921                                                        true);
1922
1923   // A linker script may discard .dynamic, so check for NULL.
1924   if (this->dynamic_section_ != NULL)
1925     {
1926       this->dynamic_symbol_ =
1927         symtab->define_in_output_data("_DYNAMIC", NULL,
1928                                       Symbol_table::PREDEFINED,
1929                                       this->dynamic_section_, 0, 0,
1930                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1931                                       elfcpp::STV_HIDDEN, 0, false, false);
1932
1933       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1934
1935       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1936     }
1937 }
1938
1939 // For each output section whose name can be represented as C symbol,
1940 // define __start and __stop symbols for the section.  This is a GNU
1941 // extension.
1942
1943 void
1944 Layout::define_section_symbols(Symbol_table* symtab)
1945 {
1946   for (Section_list::const_iterator p = this->section_list_.begin();
1947        p != this->section_list_.end();
1948        ++p)
1949     {
1950       const char* const name = (*p)->name();
1951       if (is_cident(name))
1952         {
1953           const std::string name_string(name);
1954           const std::string start_name(cident_section_start_prefix
1955                                        + name_string);
1956           const std::string stop_name(cident_section_stop_prefix
1957                                       + name_string);
1958
1959           symtab->define_in_output_data(start_name.c_str(),
1960                                         NULL, // version
1961                                         Symbol_table::PREDEFINED,
1962                                         *p,
1963                                         0, // value
1964                                         0, // symsize
1965                                         elfcpp::STT_NOTYPE,
1966                                         elfcpp::STB_GLOBAL,
1967                                         elfcpp::STV_DEFAULT,
1968                                         0, // nonvis
1969                                         false, // offset_is_from_end
1970                                         true); // only_if_ref
1971
1972           symtab->define_in_output_data(stop_name.c_str(),
1973                                         NULL, // version
1974                                         Symbol_table::PREDEFINED,
1975                                         *p,
1976                                         0, // value
1977                                         0, // symsize
1978                                         elfcpp::STT_NOTYPE,
1979                                         elfcpp::STB_GLOBAL,
1980                                         elfcpp::STV_DEFAULT,
1981                                         0, // nonvis
1982                                         true, // offset_is_from_end
1983                                         true); // only_if_ref
1984         }
1985     }
1986 }
1987
1988 // Define symbols for group signatures.
1989
1990 void
1991 Layout::define_group_signatures(Symbol_table* symtab)
1992 {
1993   for (Group_signatures::iterator p = this->group_signatures_.begin();
1994        p != this->group_signatures_.end();
1995        ++p)
1996     {
1997       Symbol* sym = symtab->lookup(p->signature, NULL);
1998       if (sym != NULL)
1999         p->section->set_info_symndx(sym);
2000       else
2001         {
2002           // Force the name of the group section to the group
2003           // signature, and use the group's section symbol as the
2004           // signature symbol.
2005           if (strcmp(p->section->name(), p->signature) != 0)
2006             {
2007               const char* name = this->namepool_.add(p->signature,
2008                                                      true, NULL);
2009               p->section->set_name(name);
2010             }
2011           p->section->set_needs_symtab_index();
2012           p->section->set_info_section_symndx(p->section);
2013         }
2014     }
2015
2016   this->group_signatures_.clear();
2017 }
2018
2019 // Find the first read-only PT_LOAD segment, creating one if
2020 // necessary.
2021
2022 Output_segment*
2023 Layout::find_first_load_seg(const Target* target)
2024 {
2025   Output_segment* best = NULL;
2026   for (Segment_list::const_iterator p = this->segment_list_.begin();
2027        p != this->segment_list_.end();
2028        ++p)
2029     {
2030       if ((*p)->type() == elfcpp::PT_LOAD
2031           && ((*p)->flags() & elfcpp::PF_R) != 0
2032           && (parameters->options().omagic()
2033               || ((*p)->flags() & elfcpp::PF_W) == 0)
2034           && (!target->isolate_execinstr()
2035               || ((*p)->flags() & elfcpp::PF_X) == 0))
2036         {
2037           if (best == NULL || this->segment_precedes(*p, best))
2038             best = *p;
2039         }
2040     }
2041   if (best != NULL)
2042     return best;
2043
2044   gold_assert(!this->script_options_->saw_phdrs_clause());
2045
2046   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2047                                                        elfcpp::PF_R);
2048   return load_seg;
2049 }
2050
2051 // Save states of all current output segments.  Store saved states
2052 // in SEGMENT_STATES.
2053
2054 void
2055 Layout::save_segments(Segment_states* segment_states)
2056 {
2057   for (Segment_list::const_iterator p = this->segment_list_.begin();
2058        p != this->segment_list_.end();
2059        ++p)
2060     {
2061       Output_segment* segment = *p;
2062       // Shallow copy.
2063       Output_segment* copy = new Output_segment(*segment);
2064       (*segment_states)[segment] = copy;
2065     }
2066 }
2067
2068 // Restore states of output segments and delete any segment not found in
2069 // SEGMENT_STATES.
2070
2071 void
2072 Layout::restore_segments(const Segment_states* segment_states)
2073 {
2074   // Go through the segment list and remove any segment added in the
2075   // relaxation loop.
2076   this->tls_segment_ = NULL;
2077   this->relro_segment_ = NULL;
2078   Segment_list::iterator list_iter = this->segment_list_.begin();
2079   while (list_iter != this->segment_list_.end())
2080     {
2081       Output_segment* segment = *list_iter;
2082       Segment_states::const_iterator states_iter =
2083           segment_states->find(segment);
2084       if (states_iter != segment_states->end())
2085         {
2086           const Output_segment* copy = states_iter->second;
2087           // Shallow copy to restore states.
2088           *segment = *copy;
2089
2090           // Also fix up TLS and RELRO segment pointers as appropriate.
2091           if (segment->type() == elfcpp::PT_TLS)
2092             this->tls_segment_ = segment;
2093           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2094             this->relro_segment_ = segment;
2095
2096           ++list_iter;
2097         }
2098       else
2099         {
2100           list_iter = this->segment_list_.erase(list_iter);
2101           // This is a segment created during section layout.  It should be
2102           // safe to remove it since we should have removed all pointers to it.
2103           delete segment;
2104         }
2105     }
2106 }
2107
2108 // Clean up after relaxation so that sections can be laid out again.
2109
2110 void
2111 Layout::clean_up_after_relaxation()
2112 {
2113   // Restore the segments to point state just prior to the relaxation loop.
2114   Script_sections* script_section = this->script_options_->script_sections();
2115   script_section->release_segments();
2116   this->restore_segments(this->segment_states_);
2117
2118   // Reset section addresses and file offsets
2119   for (Section_list::iterator p = this->section_list_.begin();
2120        p != this->section_list_.end();
2121        ++p)
2122     {
2123       (*p)->restore_states();
2124
2125       // If an input section changes size because of relaxation,
2126       // we need to adjust the section offsets of all input sections.
2127       // after such a section.
2128       if ((*p)->section_offsets_need_adjustment())
2129         (*p)->adjust_section_offsets();
2130
2131       (*p)->reset_address_and_file_offset();
2132     }
2133
2134   // Reset special output object address and file offsets.
2135   for (Data_list::iterator p = this->special_output_list_.begin();
2136        p != this->special_output_list_.end();
2137        ++p)
2138     (*p)->reset_address_and_file_offset();
2139
2140   // A linker script may have created some output section data objects.
2141   // They are useless now.
2142   for (Output_section_data_list::const_iterator p =
2143          this->script_output_section_data_list_.begin();
2144        p != this->script_output_section_data_list_.end();
2145        ++p)
2146     delete *p;
2147   this->script_output_section_data_list_.clear();
2148 }
2149
2150 // Prepare for relaxation.
2151
2152 void
2153 Layout::prepare_for_relaxation()
2154 {
2155   // Create an relaxation debug check if in debugging mode.
2156   if (is_debugging_enabled(DEBUG_RELAXATION))
2157     this->relaxation_debug_check_ = new Relaxation_debug_check();
2158
2159   // Save segment states.
2160   this->segment_states_ = new Segment_states();
2161   this->save_segments(this->segment_states_);
2162
2163   for(Section_list::const_iterator p = this->section_list_.begin();
2164       p != this->section_list_.end();
2165       ++p)
2166     (*p)->save_states();
2167
2168   if (is_debugging_enabled(DEBUG_RELAXATION))
2169     this->relaxation_debug_check_->check_output_data_for_reset_values(
2170         this->section_list_, this->special_output_list_);
2171
2172   // Also enable recording of output section data from scripts.
2173   this->record_output_section_data_from_script_ = true;
2174 }
2175
2176 // Relaxation loop body:  If target has no relaxation, this runs only once
2177 // Otherwise, the target relaxation hook is called at the end of
2178 // each iteration.  If the hook returns true, it means re-layout of
2179 // section is required.
2180 //
2181 // The number of segments created by a linking script without a PHDRS
2182 // clause may be affected by section sizes and alignments.  There is
2183 // a remote chance that relaxation causes different number of PT_LOAD
2184 // segments are created and sections are attached to different segments.
2185 // Therefore, we always throw away all segments created during section
2186 // layout.  In order to be able to restart the section layout, we keep
2187 // a copy of the segment list right before the relaxation loop and use
2188 // that to restore the segments.
2189 //
2190 // PASS is the current relaxation pass number.
2191 // SYMTAB is a symbol table.
2192 // PLOAD_SEG is the address of a pointer for the load segment.
2193 // PHDR_SEG is a pointer to the PHDR segment.
2194 // SEGMENT_HEADERS points to the output segment header.
2195 // FILE_HEADER points to the output file header.
2196 // PSHNDX is the address to store the output section index.
2197
2198 off_t inline
2199 Layout::relaxation_loop_body(
2200     int pass,
2201     Target* target,
2202     Symbol_table* symtab,
2203     Output_segment** pload_seg,
2204     Output_segment* phdr_seg,
2205     Output_segment_headers* segment_headers,
2206     Output_file_header* file_header,
2207     unsigned int* pshndx)
2208 {
2209   // If this is not the first iteration, we need to clean up after
2210   // relaxation so that we can lay out the sections again.
2211   if (pass != 0)
2212     this->clean_up_after_relaxation();
2213
2214   // If there is a SECTIONS clause, put all the input sections into
2215   // the required order.
2216   Output_segment* load_seg;
2217   if (this->script_options_->saw_sections_clause())
2218     load_seg = this->set_section_addresses_from_script(symtab);
2219   else if (parameters->options().relocatable())
2220     load_seg = NULL;
2221   else
2222     load_seg = this->find_first_load_seg(target);
2223
2224   if (parameters->options().oformat_enum()
2225       != General_options::OBJECT_FORMAT_ELF)
2226     load_seg = NULL;
2227
2228   // If the user set the address of the text segment, that may not be
2229   // compatible with putting the segment headers and file headers into
2230   // that segment.
2231   if (parameters->options().user_set_Ttext()
2232       && parameters->options().Ttext() % target->common_pagesize() != 0)
2233     {
2234       load_seg = NULL;
2235       phdr_seg = NULL;
2236     }
2237
2238   gold_assert(phdr_seg == NULL
2239               || load_seg != NULL
2240               || this->script_options_->saw_sections_clause());
2241
2242   // If the address of the load segment we found has been set by
2243   // --section-start rather than by a script, then adjust the VMA and
2244   // LMA downward if possible to include the file and section headers.
2245   uint64_t header_gap = 0;
2246   if (load_seg != NULL
2247       && load_seg->are_addresses_set()
2248       && !this->script_options_->saw_sections_clause()
2249       && !parameters->options().relocatable())
2250     {
2251       file_header->finalize_data_size();
2252       segment_headers->finalize_data_size();
2253       size_t sizeof_headers = (file_header->data_size()
2254                                + segment_headers->data_size());
2255       const uint64_t abi_pagesize = target->abi_pagesize();
2256       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2257       hdr_paddr &= ~(abi_pagesize - 1);
2258       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2259       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2260         load_seg = NULL;
2261       else
2262         {
2263           load_seg->set_addresses(load_seg->vaddr() - subtract,
2264                                   load_seg->paddr() - subtract);
2265           header_gap = subtract - sizeof_headers;
2266         }
2267     }
2268
2269   // Lay out the segment headers.
2270   if (!parameters->options().relocatable())
2271     {
2272       gold_assert(segment_headers != NULL);
2273       if (header_gap != 0 && load_seg != NULL)
2274         {
2275           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2276           load_seg->add_initial_output_data(z);
2277         }
2278       if (load_seg != NULL)
2279         load_seg->add_initial_output_data(segment_headers);
2280       if (phdr_seg != NULL)
2281         phdr_seg->add_initial_output_data(segment_headers);
2282     }
2283
2284   // Lay out the file header.
2285   if (load_seg != NULL)
2286     load_seg->add_initial_output_data(file_header);
2287
2288   if (this->script_options_->saw_phdrs_clause()
2289       && !parameters->options().relocatable())
2290     {
2291       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2292       // clause in a linker script.
2293       Script_sections* ss = this->script_options_->script_sections();
2294       ss->put_headers_in_phdrs(file_header, segment_headers);
2295     }
2296
2297   // We set the output section indexes in set_segment_offsets and
2298   // set_section_indexes.
2299   *pshndx = 1;
2300
2301   // Set the file offsets of all the segments, and all the sections
2302   // they contain.
2303   off_t off;
2304   if (!parameters->options().relocatable())
2305     off = this->set_segment_offsets(target, load_seg, pshndx);
2306   else
2307     off = this->set_relocatable_section_offsets(file_header, pshndx);
2308
2309    // Verify that the dummy relaxation does not change anything.
2310   if (is_debugging_enabled(DEBUG_RELAXATION))
2311     {
2312       if (pass == 0)
2313         this->relaxation_debug_check_->read_sections(this->section_list_);
2314       else
2315         this->relaxation_debug_check_->verify_sections(this->section_list_);
2316     }
2317
2318   *pload_seg = load_seg;
2319   return off;
2320 }
2321
2322 // Search the list of patterns and find the postion of the given section
2323 // name in the output section.  If the section name matches a glob
2324 // pattern and a non-glob name, then the non-glob position takes
2325 // precedence.  Return 0 if no match is found.
2326
2327 unsigned int
2328 Layout::find_section_order_index(const std::string& section_name)
2329 {
2330   Unordered_map<std::string, unsigned int>::iterator map_it;
2331   map_it = this->input_section_position_.find(section_name);
2332   if (map_it != this->input_section_position_.end())
2333     return map_it->second;
2334
2335   // Absolute match failed.  Linear search the glob patterns.
2336   std::vector<std::string>::iterator it;
2337   for (it = this->input_section_glob_.begin();
2338        it != this->input_section_glob_.end();
2339        ++it)
2340     {
2341        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2342          {
2343            map_it = this->input_section_position_.find(*it);
2344            gold_assert(map_it != this->input_section_position_.end());
2345            return map_it->second;
2346          }
2347     }
2348   return 0;
2349 }
2350
2351 // Read the sequence of input sections from the file specified with
2352 // option --section-ordering-file.
2353
2354 void
2355 Layout::read_layout_from_file()
2356 {
2357   const char* filename = parameters->options().section_ordering_file();
2358   std::ifstream in;
2359   std::string line;
2360
2361   in.open(filename);
2362   if (!in)
2363     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2364                filename, strerror(errno));
2365
2366   std::getline(in, line);   // this chops off the trailing \n, if any
2367   unsigned int position = 1;
2368   this->set_section_ordering_specified();
2369
2370   while (in)
2371     {
2372       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2373         line.resize(line.length() - 1);
2374       // Ignore comments, beginning with '#'
2375       if (line[0] == '#')
2376         {
2377           std::getline(in, line);
2378           continue;
2379         }
2380       this->input_section_position_[line] = position;
2381       // Store all glob patterns in a vector.
2382       if (is_wildcard_string(line.c_str()))
2383         this->input_section_glob_.push_back(line);
2384       position++;
2385       std::getline(in, line);
2386     }
2387 }
2388
2389 // Finalize the layout.  When this is called, we have created all the
2390 // output sections and all the output segments which are based on
2391 // input sections.  We have several things to do, and we have to do
2392 // them in the right order, so that we get the right results correctly
2393 // and efficiently.
2394
2395 // 1) Finalize the list of output segments and create the segment
2396 // table header.
2397
2398 // 2) Finalize the dynamic symbol table and associated sections.
2399
2400 // 3) Determine the final file offset of all the output segments.
2401
2402 // 4) Determine the final file offset of all the SHF_ALLOC output
2403 // sections.
2404
2405 // 5) Create the symbol table sections and the section name table
2406 // section.
2407
2408 // 6) Finalize the symbol table: set symbol values to their final
2409 // value and make a final determination of which symbols are going
2410 // into the output symbol table.
2411
2412 // 7) Create the section table header.
2413
2414 // 8) Determine the final file offset of all the output sections which
2415 // are not SHF_ALLOC, including the section table header.
2416
2417 // 9) Finalize the ELF file header.
2418
2419 // This function returns the size of the output file.
2420
2421 off_t
2422 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2423                  Target* target, const Task* task)
2424 {
2425   target->finalize_sections(this, input_objects, symtab);
2426
2427   this->count_local_symbols(task, input_objects);
2428
2429   this->link_stabs_sections();
2430
2431   Output_segment* phdr_seg = NULL;
2432   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2433     {
2434       // There was a dynamic object in the link.  We need to create
2435       // some information for the dynamic linker.
2436
2437       // Create the PT_PHDR segment which will hold the program
2438       // headers.
2439       if (!this->script_options_->saw_phdrs_clause())
2440         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2441
2442       // Create the dynamic symbol table, including the hash table.
2443       Output_section* dynstr;
2444       std::vector<Symbol*> dynamic_symbols;
2445       unsigned int local_dynamic_count;
2446       Versions versions(*this->script_options()->version_script_info(),
2447                         &this->dynpool_);
2448       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2449                                   &local_dynamic_count, &dynamic_symbols,
2450                                   &versions);
2451
2452       // Create the .interp section to hold the name of the
2453       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2454       // if we saw a .interp section in an input file.
2455       if ((!parameters->options().shared()
2456            || parameters->options().dynamic_linker() != NULL)
2457           && this->interp_segment_ == NULL)
2458         this->create_interp(target);
2459
2460       // Finish the .dynamic section to hold the dynamic data, and put
2461       // it in a PT_DYNAMIC segment.
2462       this->finish_dynamic_section(input_objects, symtab);
2463
2464       // We should have added everything we need to the dynamic string
2465       // table.
2466       this->dynpool_.set_string_offsets();
2467
2468       // Create the version sections.  We can't do this until the
2469       // dynamic string table is complete.
2470       this->create_version_sections(&versions, symtab, local_dynamic_count,
2471                                     dynamic_symbols, dynstr);
2472
2473       // Set the size of the _DYNAMIC symbol.  We can't do this until
2474       // after we call create_version_sections.
2475       this->set_dynamic_symbol_size(symtab);
2476     }
2477
2478   // Create segment headers.
2479   Output_segment_headers* segment_headers =
2480     (parameters->options().relocatable()
2481      ? NULL
2482      : new Output_segment_headers(this->segment_list_));
2483
2484   // Lay out the file header.
2485   Output_file_header* file_header = new Output_file_header(target, symtab,
2486                                                            segment_headers);
2487
2488   this->special_output_list_.push_back(file_header);
2489   if (segment_headers != NULL)
2490     this->special_output_list_.push_back(segment_headers);
2491
2492   // Find approriate places for orphan output sections if we are using
2493   // a linker script.
2494   if (this->script_options_->saw_sections_clause())
2495     this->place_orphan_sections_in_script();
2496
2497   Output_segment* load_seg;
2498   off_t off;
2499   unsigned int shndx;
2500   int pass = 0;
2501
2502   // Take a snapshot of the section layout as needed.
2503   if (target->may_relax())
2504     this->prepare_for_relaxation();
2505
2506   // Run the relaxation loop to lay out sections.
2507   do
2508     {
2509       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2510                                        phdr_seg, segment_headers, file_header,
2511                                        &shndx);
2512       pass++;
2513     }
2514   while (target->may_relax()
2515          && target->relax(pass, input_objects, symtab, this, task));
2516
2517   // If there is a load segment that contains the file and program headers,
2518   // provide a symbol __ehdr_start pointing there.
2519   // A program can use this to examine itself robustly.
2520   if (load_seg != NULL)
2521     symtab->define_in_output_segment("__ehdr_start", NULL,
2522                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2523                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2524                                      elfcpp::STV_DEFAULT, 0,
2525                                      Symbol::SEGMENT_START, true);
2526
2527   // Set the file offsets of all the non-data sections we've seen so
2528   // far which don't have to wait for the input sections.  We need
2529   // this in order to finalize local symbols in non-allocated
2530   // sections.
2531   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2532
2533   // Set the section indexes of all unallocated sections seen so far,
2534   // in case any of them are somehow referenced by a symbol.
2535   shndx = this->set_section_indexes(shndx);
2536
2537   // Create the symbol table sections.
2538   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2539   if (!parameters->doing_static_link())
2540     this->assign_local_dynsym_offsets(input_objects);
2541
2542   // Process any symbol assignments from a linker script.  This must
2543   // be called after the symbol table has been finalized.
2544   this->script_options_->finalize_symbols(symtab, this);
2545
2546   // Create the incremental inputs sections.
2547   if (this->incremental_inputs_)
2548     {
2549       this->incremental_inputs_->finalize();
2550       this->create_incremental_info_sections(symtab);
2551     }
2552
2553   // Create the .shstrtab section.
2554   Output_section* shstrtab_section = this->create_shstrtab();
2555
2556   // Set the file offsets of the rest of the non-data sections which
2557   // don't have to wait for the input sections.
2558   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2559
2560   // Now that all sections have been created, set the section indexes
2561   // for any sections which haven't been done yet.
2562   shndx = this->set_section_indexes(shndx);
2563
2564   // Create the section table header.
2565   this->create_shdrs(shstrtab_section, &off);
2566
2567   // If there are no sections which require postprocessing, we can
2568   // handle the section names now, and avoid a resize later.
2569   if (!this->any_postprocessing_sections_)
2570     {
2571       off = this->set_section_offsets(off,
2572                                       POSTPROCESSING_SECTIONS_PASS);
2573       off =
2574           this->set_section_offsets(off,
2575                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2576     }
2577
2578   file_header->set_section_info(this->section_headers_, shstrtab_section);
2579
2580   // Now we know exactly where everything goes in the output file
2581   // (except for non-allocated sections which require postprocessing).
2582   Output_data::layout_complete();
2583
2584   this->output_file_size_ = off;
2585
2586   return off;
2587 }
2588
2589 // Create a note header following the format defined in the ELF ABI.
2590 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2591 // of the section to create, DESCSZ is the size of the descriptor.
2592 // ALLOCATE is true if the section should be allocated in memory.
2593 // This returns the new note section.  It sets *TRAILING_PADDING to
2594 // the number of trailing zero bytes required.
2595
2596 Output_section*
2597 Layout::create_note(const char* name, int note_type,
2598                     const char* section_name, size_t descsz,
2599                     bool allocate, size_t* trailing_padding)
2600 {
2601   // Authorities all agree that the values in a .note field should
2602   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2603   // they differ on what the alignment is for 64-bit binaries.
2604   // The GABI says unambiguously they take 8-byte alignment:
2605   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2606   // Other documentation says alignment should always be 4 bytes:
2607   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2608   // GNU ld and GNU readelf both support the latter (at least as of
2609   // version 2.16.91), and glibc always generates the latter for
2610   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2611   // here.
2612 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2613   const int size = parameters->target().get_size();
2614 #else
2615   const int size = 32;
2616 #endif
2617
2618   // The contents of the .note section.
2619   size_t namesz = strlen(name) + 1;
2620   size_t aligned_namesz = align_address(namesz, size / 8);
2621   size_t aligned_descsz = align_address(descsz, size / 8);
2622
2623   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2624
2625   unsigned char* buffer = new unsigned char[notehdrsz];
2626   memset(buffer, 0, notehdrsz);
2627
2628   bool is_big_endian = parameters->target().is_big_endian();
2629
2630   if (size == 32)
2631     {
2632       if (!is_big_endian)
2633         {
2634           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2635           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2636           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2637         }
2638       else
2639         {
2640           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2641           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2642           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2643         }
2644     }
2645   else if (size == 64)
2646     {
2647       if (!is_big_endian)
2648         {
2649           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2650           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2651           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2652         }
2653       else
2654         {
2655           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2656           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2657           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2658         }
2659     }
2660   else
2661     gold_unreachable();
2662
2663   memcpy(buffer + 3 * (size / 8), name, namesz);
2664
2665   elfcpp::Elf_Xword flags = 0;
2666   Output_section_order order = ORDER_INVALID;
2667   if (allocate)
2668     {
2669       flags = elfcpp::SHF_ALLOC;
2670       order = ORDER_RO_NOTE;
2671     }
2672   Output_section* os = this->choose_output_section(NULL, section_name,
2673                                                    elfcpp::SHT_NOTE,
2674                                                    flags, false, order, false);
2675   if (os == NULL)
2676     return NULL;
2677
2678   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2679                                                            size / 8,
2680                                                            "** note header");
2681   os->add_output_section_data(posd);
2682
2683   *trailing_padding = aligned_descsz - descsz;
2684
2685   return os;
2686 }
2687
2688 // For an executable or shared library, create a note to record the
2689 // version of gold used to create the binary.
2690
2691 void
2692 Layout::create_gold_note()
2693 {
2694   if (parameters->options().relocatable()
2695       || parameters->incremental_update())
2696     return;
2697
2698   std::string desc = std::string("gold ") + gold::get_version_string();
2699
2700   size_t trailing_padding;
2701   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2702                                          ".note.gnu.gold-version", desc.size(),
2703                                          false, &trailing_padding);
2704   if (os == NULL)
2705     return;
2706
2707   Output_section_data* posd = new Output_data_const(desc, 4);
2708   os->add_output_section_data(posd);
2709
2710   if (trailing_padding > 0)
2711     {
2712       posd = new Output_data_zero_fill(trailing_padding, 0);
2713       os->add_output_section_data(posd);
2714     }
2715 }
2716
2717 // Record whether the stack should be executable.  This can be set
2718 // from the command line using the -z execstack or -z noexecstack
2719 // options.  Otherwise, if any input file has a .note.GNU-stack
2720 // section with the SHF_EXECINSTR flag set, the stack should be
2721 // executable.  Otherwise, if at least one input file a
2722 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2723 // section, we use the target default for whether the stack should be
2724 // executable.  Otherwise, we don't generate a stack note.  When
2725 // generating a object file, we create a .note.GNU-stack section with
2726 // the appropriate marking.  When generating an executable or shared
2727 // library, we create a PT_GNU_STACK segment.
2728
2729 void
2730 Layout::create_executable_stack_info()
2731 {
2732   bool is_stack_executable;
2733   if (parameters->options().is_execstack_set())
2734     is_stack_executable = parameters->options().is_stack_executable();
2735   else if (!this->input_with_gnu_stack_note_)
2736     return;
2737   else
2738     {
2739       if (this->input_requires_executable_stack_)
2740         is_stack_executable = true;
2741       else if (this->input_without_gnu_stack_note_)
2742         is_stack_executable =
2743           parameters->target().is_default_stack_executable();
2744       else
2745         is_stack_executable = false;
2746     }
2747
2748   if (parameters->options().relocatable())
2749     {
2750       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2751       elfcpp::Elf_Xword flags = 0;
2752       if (is_stack_executable)
2753         flags |= elfcpp::SHF_EXECINSTR;
2754       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2755                                 ORDER_INVALID, false);
2756     }
2757   else
2758     {
2759       if (this->script_options_->saw_phdrs_clause())
2760         return;
2761       int flags = elfcpp::PF_R | elfcpp::PF_W;
2762       if (is_stack_executable)
2763         flags |= elfcpp::PF_X;
2764       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2765     }
2766 }
2767
2768 // If --build-id was used, set up the build ID note.
2769
2770 void
2771 Layout::create_build_id()
2772 {
2773   if (!parameters->options().user_set_build_id())
2774     return;
2775
2776   const char* style = parameters->options().build_id();
2777   if (strcmp(style, "none") == 0)
2778     return;
2779
2780   // Set DESCSZ to the size of the note descriptor.  When possible,
2781   // set DESC to the note descriptor contents.
2782   size_t descsz;
2783   std::string desc;
2784   if (strcmp(style, "md5") == 0)
2785     descsz = 128 / 8;
2786   else if (strcmp(style, "sha1") == 0)
2787     descsz = 160 / 8;
2788   else if (strcmp(style, "uuid") == 0)
2789     {
2790       const size_t uuidsz = 128 / 8;
2791
2792       char buffer[uuidsz];
2793       memset(buffer, 0, uuidsz);
2794
2795       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2796       if (descriptor < 0)
2797         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2798                    strerror(errno));
2799       else
2800         {
2801           ssize_t got = ::read(descriptor, buffer, uuidsz);
2802           release_descriptor(descriptor, true);
2803           if (got < 0)
2804             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2805           else if (static_cast<size_t>(got) != uuidsz)
2806             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2807                        uuidsz, got);
2808         }
2809
2810       desc.assign(buffer, uuidsz);
2811       descsz = uuidsz;
2812     }
2813   else if (strncmp(style, "0x", 2) == 0)
2814     {
2815       hex_init();
2816       const char* p = style + 2;
2817       while (*p != '\0')
2818         {
2819           if (hex_p(p[0]) && hex_p(p[1]))
2820             {
2821               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2822               desc += c;
2823               p += 2;
2824             }
2825           else if (*p == '-' || *p == ':')
2826             ++p;
2827           else
2828             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2829                        style);
2830         }
2831       descsz = desc.size();
2832     }
2833   else
2834     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2835
2836   // Create the note.
2837   size_t trailing_padding;
2838   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2839                                          ".note.gnu.build-id", descsz, true,
2840                                          &trailing_padding);
2841   if (os == NULL)
2842     return;
2843
2844   if (!desc.empty())
2845     {
2846       // We know the value already, so we fill it in now.
2847       gold_assert(desc.size() == descsz);
2848
2849       Output_section_data* posd = new Output_data_const(desc, 4);
2850       os->add_output_section_data(posd);
2851
2852       if (trailing_padding != 0)
2853         {
2854           posd = new Output_data_zero_fill(trailing_padding, 0);
2855           os->add_output_section_data(posd);
2856         }
2857     }
2858   else
2859     {
2860       // We need to compute a checksum after we have completed the
2861       // link.
2862       gold_assert(trailing_padding == 0);
2863       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2864       os->add_output_section_data(this->build_id_note_);
2865     }
2866 }
2867
2868 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2869 // field of the former should point to the latter.  I'm not sure who
2870 // started this, but the GNU linker does it, and some tools depend
2871 // upon it.
2872
2873 void
2874 Layout::link_stabs_sections()
2875 {
2876   if (!this->have_stabstr_section_)
2877     return;
2878
2879   for (Section_list::iterator p = this->section_list_.begin();
2880        p != this->section_list_.end();
2881        ++p)
2882     {
2883       if ((*p)->type() != elfcpp::SHT_STRTAB)
2884         continue;
2885
2886       const char* name = (*p)->name();
2887       if (strncmp(name, ".stab", 5) != 0)
2888         continue;
2889
2890       size_t len = strlen(name);
2891       if (strcmp(name + len - 3, "str") != 0)
2892         continue;
2893
2894       std::string stab_name(name, len - 3);
2895       Output_section* stab_sec;
2896       stab_sec = this->find_output_section(stab_name.c_str());
2897       if (stab_sec != NULL)
2898         stab_sec->set_link_section(*p);
2899     }
2900 }
2901
2902 // Create .gnu_incremental_inputs and related sections needed
2903 // for the next run of incremental linking to check what has changed.
2904
2905 void
2906 Layout::create_incremental_info_sections(Symbol_table* symtab)
2907 {
2908   Incremental_inputs* incr = this->incremental_inputs_;
2909
2910   gold_assert(incr != NULL);
2911
2912   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2913   incr->create_data_sections(symtab);
2914
2915   // Add the .gnu_incremental_inputs section.
2916   const char* incremental_inputs_name =
2917     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2918   Output_section* incremental_inputs_os =
2919     this->make_output_section(incremental_inputs_name,
2920                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2921                               ORDER_INVALID, false);
2922   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2923
2924   // Add the .gnu_incremental_symtab section.
2925   const char* incremental_symtab_name =
2926     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2927   Output_section* incremental_symtab_os =
2928     this->make_output_section(incremental_symtab_name,
2929                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2930                               ORDER_INVALID, false);
2931   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2932   incremental_symtab_os->set_entsize(4);
2933
2934   // Add the .gnu_incremental_relocs section.
2935   const char* incremental_relocs_name =
2936     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2937   Output_section* incremental_relocs_os =
2938     this->make_output_section(incremental_relocs_name,
2939                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2940                               ORDER_INVALID, false);
2941   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2942   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2943
2944   // Add the .gnu_incremental_got_plt section.
2945   const char* incremental_got_plt_name =
2946     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2947   Output_section* incremental_got_plt_os =
2948     this->make_output_section(incremental_got_plt_name,
2949                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2950                               ORDER_INVALID, false);
2951   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2952
2953   // Add the .gnu_incremental_strtab section.
2954   const char* incremental_strtab_name =
2955     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2956   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2957                                                         elfcpp::SHT_STRTAB, 0,
2958                                                         ORDER_INVALID, false);
2959   Output_data_strtab* strtab_data =
2960       new Output_data_strtab(incr->get_stringpool());
2961   incremental_strtab_os->add_output_section_data(strtab_data);
2962
2963   incremental_inputs_os->set_after_input_sections();
2964   incremental_symtab_os->set_after_input_sections();
2965   incremental_relocs_os->set_after_input_sections();
2966   incremental_got_plt_os->set_after_input_sections();
2967
2968   incremental_inputs_os->set_link_section(incremental_strtab_os);
2969   incremental_symtab_os->set_link_section(incremental_inputs_os);
2970   incremental_relocs_os->set_link_section(incremental_inputs_os);
2971   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2972 }
2973
2974 // Return whether SEG1 should be before SEG2 in the output file.  This
2975 // is based entirely on the segment type and flags.  When this is
2976 // called the segment addresses have normally not yet been set.
2977
2978 bool
2979 Layout::segment_precedes(const Output_segment* seg1,
2980                          const Output_segment* seg2)
2981 {
2982   elfcpp::Elf_Word type1 = seg1->type();
2983   elfcpp::Elf_Word type2 = seg2->type();
2984
2985   // The single PT_PHDR segment is required to precede any loadable
2986   // segment.  We simply make it always first.
2987   if (type1 == elfcpp::PT_PHDR)
2988     {
2989       gold_assert(type2 != elfcpp::PT_PHDR);
2990       return true;
2991     }
2992   if (type2 == elfcpp::PT_PHDR)
2993     return false;
2994
2995   // The single PT_INTERP segment is required to precede any loadable
2996   // segment.  We simply make it always second.
2997   if (type1 == elfcpp::PT_INTERP)
2998     {
2999       gold_assert(type2 != elfcpp::PT_INTERP);
3000       return true;
3001     }
3002   if (type2 == elfcpp::PT_INTERP)
3003     return false;
3004
3005   // We then put PT_LOAD segments before any other segments.
3006   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3007     return true;
3008   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3009     return false;
3010
3011   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3012   // segment, because that is where the dynamic linker expects to find
3013   // it (this is just for efficiency; other positions would also work
3014   // correctly).
3015   if (type1 == elfcpp::PT_TLS
3016       && type2 != elfcpp::PT_TLS
3017       && type2 != elfcpp::PT_GNU_RELRO)
3018     return false;
3019   if (type2 == elfcpp::PT_TLS
3020       && type1 != elfcpp::PT_TLS
3021       && type1 != elfcpp::PT_GNU_RELRO)
3022     return true;
3023
3024   // We put the PT_GNU_RELRO segment last, because that is where the
3025   // dynamic linker expects to find it (as with PT_TLS, this is just
3026   // for efficiency).
3027   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3028     return false;
3029   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3030     return true;
3031
3032   const elfcpp::Elf_Word flags1 = seg1->flags();
3033   const elfcpp::Elf_Word flags2 = seg2->flags();
3034
3035   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3036   // by the numeric segment type and flags values.  There should not
3037   // be more than one segment with the same type and flags.
3038   if (type1 != elfcpp::PT_LOAD)
3039     {
3040       if (type1 != type2)
3041         return type1 < type2;
3042       gold_assert(flags1 != flags2);
3043       return flags1 < flags2;
3044     }
3045
3046   // If the addresses are set already, sort by load address.
3047   if (seg1->are_addresses_set())
3048     {
3049       if (!seg2->are_addresses_set())
3050         return true;
3051
3052       unsigned int section_count1 = seg1->output_section_count();
3053       unsigned int section_count2 = seg2->output_section_count();
3054       if (section_count1 == 0 && section_count2 > 0)
3055         return true;
3056       if (section_count1 > 0 && section_count2 == 0)
3057         return false;
3058
3059       uint64_t paddr1 = (seg1->are_addresses_set()
3060                          ? seg1->paddr()
3061                          : seg1->first_section_load_address());
3062       uint64_t paddr2 = (seg2->are_addresses_set()
3063                          ? seg2->paddr()
3064                          : seg2->first_section_load_address());
3065
3066       if (paddr1 != paddr2)
3067         return paddr1 < paddr2;
3068     }
3069   else if (seg2->are_addresses_set())
3070     return false;
3071
3072   // A segment which holds large data comes after a segment which does
3073   // not hold large data.
3074   if (seg1->is_large_data_segment())
3075     {
3076       if (!seg2->is_large_data_segment())
3077         return false;
3078     }
3079   else if (seg2->is_large_data_segment())
3080     return true;
3081
3082   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3083   // segments come before writable segments.  Then writable segments
3084   // with data come before writable segments without data.  Then
3085   // executable segments come before non-executable segments.  Then
3086   // the unlikely case of a non-readable segment comes before the
3087   // normal case of a readable segment.  If there are multiple
3088   // segments with the same type and flags, we require that the
3089   // address be set, and we sort by virtual address and then physical
3090   // address.
3091   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3092     return (flags1 & elfcpp::PF_W) == 0;
3093   if ((flags1 & elfcpp::PF_W) != 0
3094       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3095     return seg1->has_any_data_sections();
3096   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3097     return (flags1 & elfcpp::PF_X) != 0;
3098   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3099     return (flags1 & elfcpp::PF_R) == 0;
3100
3101   // We shouldn't get here--we shouldn't create segments which we
3102   // can't distinguish.  Unless of course we are using a weird linker
3103   // script or overlapping --section-start options.
3104   gold_assert(this->script_options_->saw_phdrs_clause()
3105               || parameters->options().any_section_start());
3106   return false;
3107 }
3108
3109 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3110
3111 static off_t
3112 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3113 {
3114   uint64_t unsigned_off = off;
3115   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3116                           | (addr & (abi_pagesize - 1)));
3117   if (aligned_off < unsigned_off)
3118     aligned_off += abi_pagesize;
3119   return aligned_off;
3120 }
3121
3122 // Set the file offsets of all the segments, and all the sections they
3123 // contain.  They have all been created.  LOAD_SEG must be be laid out
3124 // first.  Return the offset of the data to follow.
3125
3126 off_t
3127 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3128                             unsigned int* pshndx)
3129 {
3130   // Sort them into the final order.  We use a stable sort so that we
3131   // don't randomize the order of indistinguishable segments created
3132   // by linker scripts.
3133   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3134                    Layout::Compare_segments(this));
3135
3136   // Find the PT_LOAD segments, and set their addresses and offsets
3137   // and their section's addresses and offsets.
3138   uint64_t start_addr;
3139   if (parameters->options().user_set_Ttext())
3140     start_addr = parameters->options().Ttext();
3141   else if (parameters->options().output_is_position_independent())
3142     start_addr = 0;
3143   else
3144     start_addr = target->default_text_segment_address();
3145
3146   uint64_t addr = start_addr;
3147   off_t off = 0;
3148
3149   // If LOAD_SEG is NULL, then the file header and segment headers
3150   // will not be loadable.  But they still need to be at offset 0 in
3151   // the file.  Set their offsets now.
3152   if (load_seg == NULL)
3153     {
3154       for (Data_list::iterator p = this->special_output_list_.begin();
3155            p != this->special_output_list_.end();
3156            ++p)
3157         {
3158           off = align_address(off, (*p)->addralign());
3159           (*p)->set_address_and_file_offset(0, off);
3160           off += (*p)->data_size();
3161         }
3162     }
3163
3164   unsigned int increase_relro = this->increase_relro_;
3165   if (this->script_options_->saw_sections_clause())
3166     increase_relro = 0;
3167
3168   const bool check_sections = parameters->options().check_sections();
3169   Output_segment* last_load_segment = NULL;
3170
3171   unsigned int shndx_begin = *pshndx;
3172   unsigned int shndx_load_seg = *pshndx;
3173
3174   for (Segment_list::iterator p = this->segment_list_.begin();
3175        p != this->segment_list_.end();
3176        ++p)
3177     {
3178       if ((*p)->type() == elfcpp::PT_LOAD)
3179         {
3180           if (target->isolate_execinstr())
3181             {
3182               // When we hit the segment that should contain the
3183               // file headers, reset the file offset so we place
3184               // it and subsequent segments appropriately.
3185               // We'll fix up the preceding segments below.
3186               if (load_seg == *p)
3187                 {
3188                   if (off == 0)
3189                     load_seg = NULL;
3190                   else
3191                     {
3192                       off = 0;
3193                       shndx_load_seg = *pshndx;
3194                     }
3195                 }
3196             }
3197           else
3198             {
3199               // Verify that the file headers fall into the first segment.
3200               if (load_seg != NULL && load_seg != *p)
3201                 gold_unreachable();
3202               load_seg = NULL;
3203             }
3204
3205           bool are_addresses_set = (*p)->are_addresses_set();
3206           if (are_addresses_set)
3207             {
3208               // When it comes to setting file offsets, we care about
3209               // the physical address.
3210               addr = (*p)->paddr();
3211             }
3212           else if (parameters->options().user_set_Ttext()
3213                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3214             {
3215               are_addresses_set = true;
3216             }
3217           else if (parameters->options().user_set_Tdata()
3218                    && ((*p)->flags() & elfcpp::PF_W) != 0
3219                    && (!parameters->options().user_set_Tbss()
3220                        || (*p)->has_any_data_sections()))
3221             {
3222               addr = parameters->options().Tdata();
3223               are_addresses_set = true;
3224             }
3225           else if (parameters->options().user_set_Tbss()
3226                    && ((*p)->flags() & elfcpp::PF_W) != 0
3227                    && !(*p)->has_any_data_sections())
3228             {
3229               addr = parameters->options().Tbss();
3230               are_addresses_set = true;
3231             }
3232
3233           uint64_t orig_addr = addr;
3234           uint64_t orig_off = off;
3235
3236           uint64_t aligned_addr = 0;
3237           uint64_t abi_pagesize = target->abi_pagesize();
3238           uint64_t common_pagesize = target->common_pagesize();
3239
3240           if (!parameters->options().nmagic()
3241               && !parameters->options().omagic())
3242             (*p)->set_minimum_p_align(common_pagesize);
3243
3244           if (!are_addresses_set)
3245             {
3246               // Skip the address forward one page, maintaining the same
3247               // position within the page.  This lets us store both segments
3248               // overlapping on a single page in the file, but the loader will
3249               // put them on different pages in memory. We will revisit this
3250               // decision once we know the size of the segment.
3251
3252               addr = align_address(addr, (*p)->maximum_alignment());
3253               aligned_addr = addr;
3254
3255               if (load_seg == *p)
3256                 {
3257                   // This is the segment that will contain the file
3258                   // headers, so its offset will have to be exactly zero.
3259                   gold_assert(orig_off == 0);
3260
3261                   // If the target wants a fixed minimum distance from the
3262                   // text segment to the read-only segment, move up now.
3263                   uint64_t min_addr = start_addr + target->rosegment_gap();
3264                   if (addr < min_addr)
3265                     addr = min_addr;
3266
3267                   // But this is not the first segment!  To make its
3268                   // address congruent with its offset, that address better
3269                   // be aligned to the ABI-mandated page size.
3270                   addr = align_address(addr, abi_pagesize);
3271                   aligned_addr = addr;
3272                 }
3273               else
3274                 {
3275                   if ((addr & (abi_pagesize - 1)) != 0)
3276                     addr = addr + abi_pagesize;
3277
3278                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3279                 }
3280             }
3281
3282           if (!parameters->options().nmagic()
3283               && !parameters->options().omagic())
3284             off = align_file_offset(off, addr, abi_pagesize);
3285           else
3286             {
3287               // This is -N or -n with a section script which prevents
3288               // us from using a load segment.  We need to ensure that
3289               // the file offset is aligned to the alignment of the
3290               // segment.  This is because the linker script
3291               // implicitly assumed a zero offset.  If we don't align
3292               // here, then the alignment of the sections in the
3293               // linker script may not match the alignment of the
3294               // sections in the set_section_addresses call below,
3295               // causing an error about dot moving backward.
3296               off = align_address(off, (*p)->maximum_alignment());
3297             }
3298
3299           unsigned int shndx_hold = *pshndx;
3300           bool has_relro = false;
3301           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3302                                                           &increase_relro,
3303                                                           &has_relro,
3304                                                           &off, pshndx);
3305
3306           // Now that we know the size of this segment, we may be able
3307           // to save a page in memory, at the cost of wasting some
3308           // file space, by instead aligning to the start of a new
3309           // page.  Here we use the real machine page size rather than
3310           // the ABI mandated page size.  If the segment has been
3311           // aligned so that the relro data ends at a page boundary,
3312           // we do not try to realign it.
3313
3314           if (!are_addresses_set
3315               && !has_relro
3316               && aligned_addr != addr
3317               && !parameters->incremental())
3318             {
3319               uint64_t first_off = (common_pagesize
3320                                     - (aligned_addr
3321                                        & (common_pagesize - 1)));
3322               uint64_t last_off = new_addr & (common_pagesize - 1);
3323               if (first_off > 0
3324                   && last_off > 0
3325                   && ((aligned_addr & ~ (common_pagesize - 1))
3326                       != (new_addr & ~ (common_pagesize - 1)))
3327                   && first_off + last_off <= common_pagesize)
3328                 {
3329                   *pshndx = shndx_hold;
3330                   addr = align_address(aligned_addr, common_pagesize);
3331                   addr = align_address(addr, (*p)->maximum_alignment());
3332                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3333                   off = align_file_offset(off, addr, abi_pagesize);
3334
3335                   increase_relro = this->increase_relro_;
3336                   if (this->script_options_->saw_sections_clause())
3337                     increase_relro = 0;
3338                   has_relro = false;
3339
3340                   new_addr = (*p)->set_section_addresses(this, true, addr,
3341                                                          &increase_relro,
3342                                                          &has_relro,
3343                                                          &off, pshndx);
3344                 }
3345             }
3346
3347           addr = new_addr;
3348
3349           // Implement --check-sections.  We know that the segments
3350           // are sorted by LMA.
3351           if (check_sections && last_load_segment != NULL)
3352             {
3353               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3354               if (last_load_segment->paddr() + last_load_segment->memsz()
3355                   > (*p)->paddr())
3356                 {
3357                   unsigned long long lb1 = last_load_segment->paddr();
3358                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3359                   unsigned long long lb2 = (*p)->paddr();
3360                   unsigned long long le2 = lb2 + (*p)->memsz();
3361                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3362                                "[0x%llx -> 0x%llx]"),
3363                              lb1, le1, lb2, le2);
3364                 }
3365             }
3366           last_load_segment = *p;
3367         }
3368     }
3369
3370   if (load_seg != NULL && target->isolate_execinstr())
3371     {
3372       // Process the early segments again, setting their file offsets
3373       // so they land after the segments starting at LOAD_SEG.
3374       off = align_file_offset(off, 0, target->abi_pagesize());
3375
3376       for (Segment_list::iterator p = this->segment_list_.begin();
3377            *p != load_seg;
3378            ++p)
3379         {
3380           if ((*p)->type() == elfcpp::PT_LOAD)
3381             {
3382               // We repeat the whole job of assigning addresses and
3383               // offsets, but we really only want to change the offsets and
3384               // must ensure that the addresses all come out the same as
3385               // they did the first time through.
3386               bool has_relro = false;
3387               const uint64_t old_addr = (*p)->vaddr();
3388               const uint64_t old_end = old_addr + (*p)->memsz();
3389               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3390                                                               old_addr,
3391                                                               &increase_relro,
3392                                                               &has_relro,
3393                                                               &off,
3394                                                               &shndx_begin);
3395               gold_assert(new_addr == old_end);
3396             }
3397         }
3398
3399       gold_assert(shndx_begin == shndx_load_seg);
3400     }
3401
3402   // Handle the non-PT_LOAD segments, setting their offsets from their
3403   // section's offsets.
3404   for (Segment_list::iterator p = this->segment_list_.begin();
3405        p != this->segment_list_.end();
3406        ++p)
3407     {
3408       if ((*p)->type() != elfcpp::PT_LOAD)
3409         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3410                          ? increase_relro
3411                          : 0);
3412     }
3413
3414   // Set the TLS offsets for each section in the PT_TLS segment.
3415   if (this->tls_segment_ != NULL)
3416     this->tls_segment_->set_tls_offsets();
3417
3418   return off;
3419 }
3420
3421 // Set the offsets of all the allocated sections when doing a
3422 // relocatable link.  This does the same jobs as set_segment_offsets,
3423 // only for a relocatable link.
3424
3425 off_t
3426 Layout::set_relocatable_section_offsets(Output_data* file_header,
3427                                         unsigned int* pshndx)
3428 {
3429   off_t off = 0;
3430
3431   file_header->set_address_and_file_offset(0, 0);
3432   off += file_header->data_size();
3433
3434   for (Section_list::iterator p = this->section_list_.begin();
3435        p != this->section_list_.end();
3436        ++p)
3437     {
3438       // We skip unallocated sections here, except that group sections
3439       // have to come first.
3440       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3441           && (*p)->type() != elfcpp::SHT_GROUP)
3442         continue;
3443
3444       off = align_address(off, (*p)->addralign());
3445
3446       // The linker script might have set the address.
3447       if (!(*p)->is_address_valid())
3448         (*p)->set_address(0);
3449       (*p)->set_file_offset(off);
3450       (*p)->finalize_data_size();
3451       off += (*p)->data_size();
3452
3453       (*p)->set_out_shndx(*pshndx);
3454       ++*pshndx;
3455     }
3456
3457   return off;
3458 }
3459
3460 // Set the file offset of all the sections not associated with a
3461 // segment.
3462
3463 off_t
3464 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3465 {
3466   off_t startoff = off;
3467   off_t maxoff = off;
3468
3469   for (Section_list::iterator p = this->unattached_section_list_.begin();
3470        p != this->unattached_section_list_.end();
3471        ++p)
3472     {
3473       // The symtab section is handled in create_symtab_sections.
3474       if (*p == this->symtab_section_)
3475         continue;
3476
3477       // If we've already set the data size, don't set it again.
3478       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3479         continue;
3480
3481       if (pass == BEFORE_INPUT_SECTIONS_PASS
3482           && (*p)->requires_postprocessing())
3483         {
3484           (*p)->create_postprocessing_buffer();
3485           this->any_postprocessing_sections_ = true;
3486         }
3487
3488       if (pass == BEFORE_INPUT_SECTIONS_PASS
3489           && (*p)->after_input_sections())
3490         continue;
3491       else if (pass == POSTPROCESSING_SECTIONS_PASS
3492                && (!(*p)->after_input_sections()
3493                    || (*p)->type() == elfcpp::SHT_STRTAB))
3494         continue;
3495       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3496                && (!(*p)->after_input_sections()
3497                    || (*p)->type() != elfcpp::SHT_STRTAB))
3498         continue;
3499
3500       if (!parameters->incremental_update())
3501         {
3502           off = align_address(off, (*p)->addralign());
3503           (*p)->set_file_offset(off);
3504           (*p)->finalize_data_size();
3505         }
3506       else
3507         {
3508           // Incremental update: allocate file space from free list.
3509           (*p)->pre_finalize_data_size();
3510           off_t current_size = (*p)->current_data_size();
3511           off = this->allocate(current_size, (*p)->addralign(), startoff);
3512           if (off == -1)
3513             {
3514               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3515                 this->free_list_.dump();
3516               gold_assert((*p)->output_section() != NULL);
3517               gold_fallback(_("out of patch space for section %s; "
3518                               "relink with --incremental-full"),
3519                             (*p)->output_section()->name());
3520             }
3521           (*p)->set_file_offset(off);
3522           (*p)->finalize_data_size();
3523           if ((*p)->data_size() > current_size)
3524             {
3525               gold_assert((*p)->output_section() != NULL);
3526               gold_fallback(_("%s: section changed size; "
3527                               "relink with --incremental-full"),
3528                             (*p)->output_section()->name());
3529             }
3530           gold_debug(DEBUG_INCREMENTAL,
3531                      "set_section_offsets: %08lx %08lx %s",
3532                      static_cast<long>(off),
3533                      static_cast<long>((*p)->data_size()),
3534                      ((*p)->output_section() != NULL
3535                       ? (*p)->output_section()->name() : "(special)"));
3536         }
3537
3538       off += (*p)->data_size();
3539       if (off > maxoff)
3540         maxoff = off;
3541
3542       // At this point the name must be set.
3543       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3544         this->namepool_.add((*p)->name(), false, NULL);
3545     }
3546   return maxoff;
3547 }
3548
3549 // Set the section indexes of all the sections not associated with a
3550 // segment.
3551
3552 unsigned int
3553 Layout::set_section_indexes(unsigned int shndx)
3554 {
3555   for (Section_list::iterator p = this->unattached_section_list_.begin();
3556        p != this->unattached_section_list_.end();
3557        ++p)
3558     {
3559       if (!(*p)->has_out_shndx())
3560         {
3561           (*p)->set_out_shndx(shndx);
3562           ++shndx;
3563         }
3564     }
3565   return shndx;
3566 }
3567
3568 // Set the section addresses according to the linker script.  This is
3569 // only called when we see a SECTIONS clause.  This returns the
3570 // program segment which should hold the file header and segment
3571 // headers, if any.  It will return NULL if they should not be in a
3572 // segment.
3573
3574 Output_segment*
3575 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3576 {
3577   Script_sections* ss = this->script_options_->script_sections();
3578   gold_assert(ss->saw_sections_clause());
3579   return this->script_options_->set_section_addresses(symtab, this);
3580 }
3581
3582 // Place the orphan sections in the linker script.
3583
3584 void
3585 Layout::place_orphan_sections_in_script()
3586 {
3587   Script_sections* ss = this->script_options_->script_sections();
3588   gold_assert(ss->saw_sections_clause());
3589
3590   // Place each orphaned output section in the script.
3591   for (Section_list::iterator p = this->section_list_.begin();
3592        p != this->section_list_.end();
3593        ++p)
3594     {
3595       if (!(*p)->found_in_sections_clause())
3596         ss->place_orphan(*p);
3597     }
3598 }
3599
3600 // Count the local symbols in the regular symbol table and the dynamic
3601 // symbol table, and build the respective string pools.
3602
3603 void
3604 Layout::count_local_symbols(const Task* task,
3605                             const Input_objects* input_objects)
3606 {
3607   // First, figure out an upper bound on the number of symbols we'll
3608   // be inserting into each pool.  This helps us create the pools with
3609   // the right size, to avoid unnecessary hashtable resizing.
3610   unsigned int symbol_count = 0;
3611   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3612        p != input_objects->relobj_end();
3613        ++p)
3614     symbol_count += (*p)->local_symbol_count();
3615
3616   // Go from "upper bound" to "estimate."  We overcount for two
3617   // reasons: we double-count symbols that occur in more than one
3618   // object file, and we count symbols that are dropped from the
3619   // output.  Add it all together and assume we overcount by 100%.
3620   symbol_count /= 2;
3621
3622   // We assume all symbols will go into both the sympool and dynpool.
3623   this->sympool_.reserve(symbol_count);
3624   this->dynpool_.reserve(symbol_count);
3625
3626   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3627        p != input_objects->relobj_end();
3628        ++p)
3629     {
3630       Task_lock_obj<Object> tlo(task, *p);
3631       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3632     }
3633 }
3634
3635 // Create the symbol table sections.  Here we also set the final
3636 // values of the symbols.  At this point all the loadable sections are
3637 // fully laid out.  SHNUM is the number of sections so far.
3638
3639 void
3640 Layout::create_symtab_sections(const Input_objects* input_objects,
3641                                Symbol_table* symtab,
3642                                unsigned int shnum,
3643                                off_t* poff)
3644 {
3645   int symsize;
3646   unsigned int align;
3647   if (parameters->target().get_size() == 32)
3648     {
3649       symsize = elfcpp::Elf_sizes<32>::sym_size;
3650       align = 4;
3651     }
3652   else if (parameters->target().get_size() == 64)
3653     {
3654       symsize = elfcpp::Elf_sizes<64>::sym_size;
3655       align = 8;
3656     }
3657   else
3658     gold_unreachable();
3659
3660   // Compute file offsets relative to the start of the symtab section.
3661   off_t off = 0;
3662
3663   // Save space for the dummy symbol at the start of the section.  We
3664   // never bother to write this out--it will just be left as zero.
3665   off += symsize;
3666   unsigned int local_symbol_index = 1;
3667
3668   // Add STT_SECTION symbols for each Output section which needs one.
3669   for (Section_list::iterator p = this->section_list_.begin();
3670        p != this->section_list_.end();
3671        ++p)
3672     {
3673       if (!(*p)->needs_symtab_index())
3674         (*p)->set_symtab_index(-1U);
3675       else
3676         {
3677           (*p)->set_symtab_index(local_symbol_index);
3678           ++local_symbol_index;
3679           off += symsize;
3680         }
3681     }
3682
3683   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3684        p != input_objects->relobj_end();
3685        ++p)
3686     {
3687       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3688                                                         off, symtab);
3689       off += (index - local_symbol_index) * symsize;
3690       local_symbol_index = index;
3691     }
3692
3693   unsigned int local_symcount = local_symbol_index;
3694   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3695
3696   off_t dynoff;
3697   size_t dyn_global_index;
3698   size_t dyncount;
3699   if (this->dynsym_section_ == NULL)
3700     {
3701       dynoff = 0;
3702       dyn_global_index = 0;
3703       dyncount = 0;
3704     }
3705   else
3706     {
3707       dyn_global_index = this->dynsym_section_->info();
3708       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3709       dynoff = this->dynsym_section_->offset() + locsize;
3710       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3711       gold_assert(static_cast<off_t>(dyncount * symsize)
3712                   == this->dynsym_section_->data_size() - locsize);
3713     }
3714
3715   off_t global_off = off;
3716   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3717                          &this->sympool_, &local_symcount);
3718
3719   if (!parameters->options().strip_all())
3720     {
3721       this->sympool_.set_string_offsets();
3722
3723       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3724       Output_section* osymtab = this->make_output_section(symtab_name,
3725                                                           elfcpp::SHT_SYMTAB,
3726                                                           0, ORDER_INVALID,
3727                                                           false);
3728       this->symtab_section_ = osymtab;
3729
3730       Output_section_data* pos = new Output_data_fixed_space(off, align,
3731                                                              "** symtab");
3732       osymtab->add_output_section_data(pos);
3733
3734       // We generate a .symtab_shndx section if we have more than
3735       // SHN_LORESERVE sections.  Technically it is possible that we
3736       // don't need one, because it is possible that there are no
3737       // symbols in any of sections with indexes larger than
3738       // SHN_LORESERVE.  That is probably unusual, though, and it is
3739       // easier to always create one than to compute section indexes
3740       // twice (once here, once when writing out the symbols).
3741       if (shnum >= elfcpp::SHN_LORESERVE)
3742         {
3743           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3744                                                                false, NULL);
3745           Output_section* osymtab_xindex =
3746             this->make_output_section(symtab_xindex_name,
3747                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3748                                       ORDER_INVALID, false);
3749
3750           size_t symcount = off / symsize;
3751           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3752
3753           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3754
3755           osymtab_xindex->set_link_section(osymtab);
3756           osymtab_xindex->set_addralign(4);
3757           osymtab_xindex->set_entsize(4);
3758
3759           osymtab_xindex->set_after_input_sections();
3760
3761           // This tells the driver code to wait until the symbol table
3762           // has written out before writing out the postprocessing
3763           // sections, including the .symtab_shndx section.
3764           this->any_postprocessing_sections_ = true;
3765         }
3766
3767       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3768       Output_section* ostrtab = this->make_output_section(strtab_name,
3769                                                           elfcpp::SHT_STRTAB,
3770                                                           0, ORDER_INVALID,
3771                                                           false);
3772
3773       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3774       ostrtab->add_output_section_data(pstr);
3775
3776       off_t symtab_off;
3777       if (!parameters->incremental_update())
3778         symtab_off = align_address(*poff, align);
3779       else
3780         {
3781           symtab_off = this->allocate(off, align, *poff);
3782           if (off == -1)
3783             gold_fallback(_("out of patch space for symbol table; "
3784                             "relink with --incremental-full"));
3785           gold_debug(DEBUG_INCREMENTAL,
3786                      "create_symtab_sections: %08lx %08lx .symtab",
3787                      static_cast<long>(symtab_off),
3788                      static_cast<long>(off));
3789         }
3790
3791       symtab->set_file_offset(symtab_off + global_off);
3792       osymtab->set_file_offset(symtab_off);
3793       osymtab->finalize_data_size();
3794       osymtab->set_link_section(ostrtab);
3795       osymtab->set_info(local_symcount);
3796       osymtab->set_entsize(symsize);
3797
3798       if (symtab_off + off > *poff)
3799         *poff = symtab_off + off;
3800     }
3801 }
3802
3803 // Create the .shstrtab section, which holds the names of the
3804 // sections.  At the time this is called, we have created all the
3805 // output sections except .shstrtab itself.
3806
3807 Output_section*
3808 Layout::create_shstrtab()
3809 {
3810   // FIXME: We don't need to create a .shstrtab section if we are
3811   // stripping everything.
3812
3813   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3814
3815   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3816                                                  ORDER_INVALID, false);
3817
3818   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3819     {
3820       // We can't write out this section until we've set all the
3821       // section names, and we don't set the names of compressed
3822       // output sections until relocations are complete.  FIXME: With
3823       // the current names we use, this is unnecessary.
3824       os->set_after_input_sections();
3825     }
3826
3827   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3828   os->add_output_section_data(posd);
3829
3830   return os;
3831 }
3832
3833 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3834 // offset.
3835
3836 void
3837 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3838 {
3839   Output_section_headers* oshdrs;
3840   oshdrs = new Output_section_headers(this,
3841                                       &this->segment_list_,
3842                                       &this->section_list_,
3843                                       &this->unattached_section_list_,
3844                                       &this->namepool_,
3845                                       shstrtab_section);
3846   off_t off;
3847   if (!parameters->incremental_update())
3848     off = align_address(*poff, oshdrs->addralign());
3849   else
3850     {
3851       oshdrs->pre_finalize_data_size();
3852       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3853       if (off == -1)
3854           gold_fallback(_("out of patch space for section header table; "
3855                           "relink with --incremental-full"));
3856       gold_debug(DEBUG_INCREMENTAL,
3857                  "create_shdrs: %08lx %08lx (section header table)",
3858                  static_cast<long>(off),
3859                  static_cast<long>(off + oshdrs->data_size()));
3860     }
3861   oshdrs->set_address_and_file_offset(0, off);
3862   off += oshdrs->data_size();
3863   if (off > *poff)
3864     *poff = off;
3865   this->section_headers_ = oshdrs;
3866 }
3867
3868 // Count the allocated sections.
3869
3870 size_t
3871 Layout::allocated_output_section_count() const
3872 {
3873   size_t section_count = 0;
3874   for (Segment_list::const_iterator p = this->segment_list_.begin();
3875        p != this->segment_list_.end();
3876        ++p)
3877     section_count += (*p)->output_section_count();
3878   return section_count;
3879 }
3880
3881 // Create the dynamic symbol table.
3882
3883 void
3884 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3885                               Symbol_table* symtab,
3886                               Output_section** pdynstr,
3887                               unsigned int* plocal_dynamic_count,
3888                               std::vector<Symbol*>* pdynamic_symbols,
3889                               Versions* pversions)
3890 {
3891   // Count all the symbols in the dynamic symbol table, and set the
3892   // dynamic symbol indexes.
3893
3894   // Skip symbol 0, which is always all zeroes.
3895   unsigned int index = 1;
3896
3897   // Add STT_SECTION symbols for each Output section which needs one.
3898   for (Section_list::iterator p = this->section_list_.begin();
3899        p != this->section_list_.end();
3900        ++p)
3901     {
3902       if (!(*p)->needs_dynsym_index())
3903         (*p)->set_dynsym_index(-1U);
3904       else
3905         {
3906           (*p)->set_dynsym_index(index);
3907           ++index;
3908         }
3909     }
3910
3911   // Count the local symbols that need to go in the dynamic symbol table,
3912   // and set the dynamic symbol indexes.
3913   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3914        p != input_objects->relobj_end();
3915        ++p)
3916     {
3917       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3918       index = new_index;
3919     }
3920
3921   unsigned int local_symcount = index;
3922   *plocal_dynamic_count = local_symcount;
3923
3924   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3925                                      &this->dynpool_, pversions);
3926
3927   int symsize;
3928   unsigned int align;
3929   const int size = parameters->target().get_size();
3930   if (size == 32)
3931     {
3932       symsize = elfcpp::Elf_sizes<32>::sym_size;
3933       align = 4;
3934     }
3935   else if (size == 64)
3936     {
3937       symsize = elfcpp::Elf_sizes<64>::sym_size;
3938       align = 8;
3939     }
3940   else
3941     gold_unreachable();
3942
3943   // Create the dynamic symbol table section.
3944
3945   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3946                                                        elfcpp::SHT_DYNSYM,
3947                                                        elfcpp::SHF_ALLOC,
3948                                                        false,
3949                                                        ORDER_DYNAMIC_LINKER,
3950                                                        false);
3951
3952   // Check for NULL as a linker script may discard .dynsym.
3953   if (dynsym != NULL)
3954     {
3955       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3956                                                                align,
3957                                                                "** dynsym");
3958       dynsym->add_output_section_data(odata);
3959
3960       dynsym->set_info(local_symcount);
3961       dynsym->set_entsize(symsize);
3962       dynsym->set_addralign(align);
3963
3964       this->dynsym_section_ = dynsym;
3965     }
3966
3967   Output_data_dynamic* const odyn = this->dynamic_data_;
3968   if (odyn != NULL)
3969     {
3970       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3971       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3972     }
3973
3974   // If there are more than SHN_LORESERVE allocated sections, we
3975   // create a .dynsym_shndx section.  It is possible that we don't
3976   // need one, because it is possible that there are no dynamic
3977   // symbols in any of the sections with indexes larger than
3978   // SHN_LORESERVE.  This is probably unusual, though, and at this
3979   // time we don't know the actual section indexes so it is
3980   // inconvenient to check.
3981   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3982     {
3983       Output_section* dynsym_xindex =
3984         this->choose_output_section(NULL, ".dynsym_shndx",
3985                                     elfcpp::SHT_SYMTAB_SHNDX,
3986                                     elfcpp::SHF_ALLOC,
3987                                     false, ORDER_DYNAMIC_LINKER, false);
3988
3989       if (dynsym_xindex != NULL)
3990         {
3991           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3992
3993           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3994
3995           dynsym_xindex->set_link_section(dynsym);
3996           dynsym_xindex->set_addralign(4);
3997           dynsym_xindex->set_entsize(4);
3998
3999           dynsym_xindex->set_after_input_sections();
4000
4001           // This tells the driver code to wait until the symbol table
4002           // has written out before writing out the postprocessing
4003           // sections, including the .dynsym_shndx section.
4004           this->any_postprocessing_sections_ = true;
4005         }
4006     }
4007
4008   // Create the dynamic string table section.
4009
4010   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4011                                                        elfcpp::SHT_STRTAB,
4012                                                        elfcpp::SHF_ALLOC,
4013                                                        false,
4014                                                        ORDER_DYNAMIC_LINKER,
4015                                                        false);
4016
4017   if (dynstr != NULL)
4018     {
4019       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4020       dynstr->add_output_section_data(strdata);
4021
4022       if (dynsym != NULL)
4023         dynsym->set_link_section(dynstr);
4024       if (this->dynamic_section_ != NULL)
4025         this->dynamic_section_->set_link_section(dynstr);
4026
4027       if (odyn != NULL)
4028         {
4029           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4030           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4031         }
4032
4033       *pdynstr = dynstr;
4034     }
4035
4036   // Create the hash tables.
4037
4038   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4039       || strcmp(parameters->options().hash_style(), "both") == 0)
4040     {
4041       unsigned char* phash;
4042       unsigned int hashlen;
4043       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4044                                     &phash, &hashlen);
4045
4046       Output_section* hashsec =
4047         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4048                                     elfcpp::SHF_ALLOC, false,
4049                                     ORDER_DYNAMIC_LINKER, false);
4050
4051       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4052                                                                    hashlen,
4053                                                                    align,
4054                                                                    "** hash");
4055       if (hashsec != NULL && hashdata != NULL)
4056         hashsec->add_output_section_data(hashdata);
4057
4058       if (hashsec != NULL)
4059         {
4060           if (dynsym != NULL)
4061             hashsec->set_link_section(dynsym);
4062           hashsec->set_entsize(4);
4063         }
4064
4065       if (odyn != NULL)
4066         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4067     }
4068
4069   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4070       || strcmp(parameters->options().hash_style(), "both") == 0)
4071     {
4072       unsigned char* phash;
4073       unsigned int hashlen;
4074       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4075                                     &phash, &hashlen);
4076
4077       Output_section* hashsec =
4078         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4079                                     elfcpp::SHF_ALLOC, false,
4080                                     ORDER_DYNAMIC_LINKER, false);
4081
4082       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4083                                                                    hashlen,
4084                                                                    align,
4085                                                                    "** hash");
4086       if (hashsec != NULL && hashdata != NULL)
4087         hashsec->add_output_section_data(hashdata);
4088
4089       if (hashsec != NULL)
4090         {
4091           if (dynsym != NULL)
4092             hashsec->set_link_section(dynsym);
4093
4094           // For a 64-bit target, the entries in .gnu.hash do not have
4095           // a uniform size, so we only set the entry size for a
4096           // 32-bit target.
4097           if (parameters->target().get_size() == 32)
4098             hashsec->set_entsize(4);
4099
4100           if (odyn != NULL)
4101             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4102         }
4103     }
4104 }
4105
4106 // Assign offsets to each local portion of the dynamic symbol table.
4107
4108 void
4109 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4110 {
4111   Output_section* dynsym = this->dynsym_section_;
4112   if (dynsym == NULL)
4113     return;
4114
4115   off_t off = dynsym->offset();
4116
4117   // Skip the dummy symbol at the start of the section.
4118   off += dynsym->entsize();
4119
4120   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4121        p != input_objects->relobj_end();
4122        ++p)
4123     {
4124       unsigned int count = (*p)->set_local_dynsym_offset(off);
4125       off += count * dynsym->entsize();
4126     }
4127 }
4128
4129 // Create the version sections.
4130
4131 void
4132 Layout::create_version_sections(const Versions* versions,
4133                                 const Symbol_table* symtab,
4134                                 unsigned int local_symcount,
4135                                 const std::vector<Symbol*>& dynamic_symbols,
4136                                 const Output_section* dynstr)
4137 {
4138   if (!versions->any_defs() && !versions->any_needs())
4139     return;
4140
4141   switch (parameters->size_and_endianness())
4142     {
4143 #ifdef HAVE_TARGET_32_LITTLE
4144     case Parameters::TARGET_32_LITTLE:
4145       this->sized_create_version_sections<32, false>(versions, symtab,
4146                                                      local_symcount,
4147                                                      dynamic_symbols, dynstr);
4148       break;
4149 #endif
4150 #ifdef HAVE_TARGET_32_BIG
4151     case Parameters::TARGET_32_BIG:
4152       this->sized_create_version_sections<32, true>(versions, symtab,
4153                                                     local_symcount,
4154                                                     dynamic_symbols, dynstr);
4155       break;
4156 #endif
4157 #ifdef HAVE_TARGET_64_LITTLE
4158     case Parameters::TARGET_64_LITTLE:
4159       this->sized_create_version_sections<64, false>(versions, symtab,
4160                                                      local_symcount,
4161                                                      dynamic_symbols, dynstr);
4162       break;
4163 #endif
4164 #ifdef HAVE_TARGET_64_BIG
4165     case Parameters::TARGET_64_BIG:
4166       this->sized_create_version_sections<64, true>(versions, symtab,
4167                                                     local_symcount,
4168                                                     dynamic_symbols, dynstr);
4169       break;
4170 #endif
4171     default:
4172       gold_unreachable();
4173     }
4174 }
4175
4176 // Create the version sections, sized version.
4177
4178 template<int size, bool big_endian>
4179 void
4180 Layout::sized_create_version_sections(
4181     const Versions* versions,
4182     const Symbol_table* symtab,
4183     unsigned int local_symcount,
4184     const std::vector<Symbol*>& dynamic_symbols,
4185     const Output_section* dynstr)
4186 {
4187   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4188                                                      elfcpp::SHT_GNU_versym,
4189                                                      elfcpp::SHF_ALLOC,
4190                                                      false,
4191                                                      ORDER_DYNAMIC_LINKER,
4192                                                      false);
4193
4194   // Check for NULL since a linker script may discard this section.
4195   if (vsec != NULL)
4196     {
4197       unsigned char* vbuf;
4198       unsigned int vsize;
4199       versions->symbol_section_contents<size, big_endian>(symtab,
4200                                                           &this->dynpool_,
4201                                                           local_symcount,
4202                                                           dynamic_symbols,
4203                                                           &vbuf, &vsize);
4204
4205       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4206                                                                 "** versions");
4207
4208       vsec->add_output_section_data(vdata);
4209       vsec->set_entsize(2);
4210       vsec->set_link_section(this->dynsym_section_);
4211     }
4212
4213   Output_data_dynamic* const odyn = this->dynamic_data_;
4214   if (odyn != NULL && vsec != NULL)
4215     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4216
4217   if (versions->any_defs())
4218     {
4219       Output_section* vdsec;
4220       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4221                                           elfcpp::SHT_GNU_verdef,
4222                                           elfcpp::SHF_ALLOC,
4223                                           false, ORDER_DYNAMIC_LINKER, false);
4224
4225       if (vdsec != NULL)
4226         {
4227           unsigned char* vdbuf;
4228           unsigned int vdsize;
4229           unsigned int vdentries;
4230           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4231                                                            &vdbuf, &vdsize,
4232                                                            &vdentries);
4233
4234           Output_section_data* vddata =
4235             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4236
4237           vdsec->add_output_section_data(vddata);
4238           vdsec->set_link_section(dynstr);
4239           vdsec->set_info(vdentries);
4240
4241           if (odyn != NULL)
4242             {
4243               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4244               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4245             }
4246         }
4247     }
4248
4249   if (versions->any_needs())
4250     {
4251       Output_section* vnsec;
4252       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4253                                           elfcpp::SHT_GNU_verneed,
4254                                           elfcpp::SHF_ALLOC,
4255                                           false, ORDER_DYNAMIC_LINKER, false);
4256
4257       if (vnsec != NULL)
4258         {
4259           unsigned char* vnbuf;
4260           unsigned int vnsize;
4261           unsigned int vnentries;
4262           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4263                                                             &vnbuf, &vnsize,
4264                                                             &vnentries);
4265
4266           Output_section_data* vndata =
4267             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4268
4269           vnsec->add_output_section_data(vndata);
4270           vnsec->set_link_section(dynstr);
4271           vnsec->set_info(vnentries);
4272
4273           if (odyn != NULL)
4274             {
4275               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4276               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4277             }
4278         }
4279     }
4280 }
4281
4282 // Create the .interp section and PT_INTERP segment.
4283
4284 void
4285 Layout::create_interp(const Target* target)
4286 {
4287   gold_assert(this->interp_segment_ == NULL);
4288
4289   const char* interp = parameters->options().dynamic_linker();
4290   if (interp == NULL)
4291     {
4292       interp = target->dynamic_linker();
4293       gold_assert(interp != NULL);
4294     }
4295
4296   size_t len = strlen(interp) + 1;
4297
4298   Output_section_data* odata = new Output_data_const(interp, len, 1);
4299
4300   Output_section* osec = this->choose_output_section(NULL, ".interp",
4301                                                      elfcpp::SHT_PROGBITS,
4302                                                      elfcpp::SHF_ALLOC,
4303                                                      false, ORDER_INTERP,
4304                                                      false);
4305   if (osec != NULL)
4306     osec->add_output_section_data(odata);
4307 }
4308
4309 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4310 // called by the target-specific code.  This does nothing if not doing
4311 // a dynamic link.
4312
4313 // USE_REL is true for REL relocs rather than RELA relocs.
4314
4315 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4316
4317 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4318 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4319 // some targets have multiple reloc sections in PLT_REL.
4320
4321 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4322 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4323 // section.
4324
4325 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4326 // executable.
4327
4328 void
4329 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4330                                 const Output_data* plt_rel,
4331                                 const Output_data_reloc_generic* dyn_rel,
4332                                 bool add_debug, bool dynrel_includes_plt)
4333 {
4334   Output_data_dynamic* odyn = this->dynamic_data_;
4335   if (odyn == NULL)
4336     return;
4337
4338   if (plt_got != NULL && plt_got->output_section() != NULL)
4339     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4340
4341   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4342     {
4343       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4344       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4345       odyn->add_constant(elfcpp::DT_PLTREL,
4346                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4347     }
4348
4349   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4350       || (dynrel_includes_plt
4351           && plt_rel != NULL
4352           && plt_rel->output_section() != NULL))
4353     {
4354       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4355       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4356       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4357                                 (have_dyn_rel
4358                                  ? dyn_rel->output_section()
4359                                  : plt_rel->output_section()));
4360       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4361       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4362         odyn->add_section_size(size_tag,
4363                                dyn_rel->output_section(),
4364                                plt_rel->output_section());
4365       else if (have_dyn_rel)
4366         odyn->add_section_size(size_tag, dyn_rel->output_section());
4367       else
4368         odyn->add_section_size(size_tag, plt_rel->output_section());
4369       const int size = parameters->target().get_size();
4370       elfcpp::DT rel_tag;
4371       int rel_size;
4372       if (use_rel)
4373         {
4374           rel_tag = elfcpp::DT_RELENT;
4375           if (size == 32)
4376             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4377           else if (size == 64)
4378             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4379           else
4380             gold_unreachable();
4381         }
4382       else
4383         {
4384           rel_tag = elfcpp::DT_RELAENT;
4385           if (size == 32)
4386             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4387           else if (size == 64)
4388             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4389           else
4390             gold_unreachable();
4391         }
4392       odyn->add_constant(rel_tag, rel_size);
4393
4394       if (parameters->options().combreloc() && have_dyn_rel)
4395         {
4396           size_t c = dyn_rel->relative_reloc_count();
4397           if (c > 0)
4398             odyn->add_constant((use_rel
4399                                 ? elfcpp::DT_RELCOUNT
4400                                 : elfcpp::DT_RELACOUNT),
4401                                c);
4402         }
4403     }
4404
4405   if (add_debug && !parameters->options().shared())
4406     {
4407       // The value of the DT_DEBUG tag is filled in by the dynamic
4408       // linker at run time, and used by the debugger.
4409       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4410     }
4411 }
4412
4413 // Finish the .dynamic section and PT_DYNAMIC segment.
4414
4415 void
4416 Layout::finish_dynamic_section(const Input_objects* input_objects,
4417                                const Symbol_table* symtab)
4418 {
4419   if (!this->script_options_->saw_phdrs_clause()
4420       && this->dynamic_section_ != NULL)
4421     {
4422       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4423                                                        (elfcpp::PF_R
4424                                                         | elfcpp::PF_W));
4425       oseg->add_output_section_to_nonload(this->dynamic_section_,
4426                                           elfcpp::PF_R | elfcpp::PF_W);
4427     }
4428
4429   Output_data_dynamic* const odyn = this->dynamic_data_;
4430   if (odyn == NULL)
4431     return;
4432
4433   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4434        p != input_objects->dynobj_end();
4435        ++p)
4436     {
4437       if (!(*p)->is_needed() && (*p)->as_needed())
4438         {
4439           // This dynamic object was linked with --as-needed, but it
4440           // is not needed.
4441           continue;
4442         }
4443
4444       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4445     }
4446
4447   if (parameters->options().shared())
4448     {
4449       const char* soname = parameters->options().soname();
4450       if (soname != NULL)
4451         odyn->add_string(elfcpp::DT_SONAME, soname);
4452     }
4453
4454   Symbol* sym = symtab->lookup(parameters->options().init());
4455   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4456     odyn->add_symbol(elfcpp::DT_INIT, sym);
4457
4458   sym = symtab->lookup(parameters->options().fini());
4459   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4460     odyn->add_symbol(elfcpp::DT_FINI, sym);
4461
4462   // Look for .init_array, .preinit_array and .fini_array by checking
4463   // section types.
4464   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4465       p != this->section_list_.end();
4466       ++p)
4467     switch((*p)->type())
4468       {
4469       case elfcpp::SHT_FINI_ARRAY:
4470         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4471         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4472         break;
4473       case elfcpp::SHT_INIT_ARRAY:
4474         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4475         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4476         break;
4477       case elfcpp::SHT_PREINIT_ARRAY:
4478         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4479         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4480         break;
4481       default:
4482         break;
4483       }
4484
4485   // Add a DT_RPATH entry if needed.
4486   const General_options::Dir_list& rpath(parameters->options().rpath());
4487   if (!rpath.empty())
4488     {
4489       std::string rpath_val;
4490       for (General_options::Dir_list::const_iterator p = rpath.begin();
4491            p != rpath.end();
4492            ++p)
4493         {
4494           if (rpath_val.empty())
4495             rpath_val = p->name();
4496           else
4497             {
4498               // Eliminate duplicates.
4499               General_options::Dir_list::const_iterator q;
4500               for (q = rpath.begin(); q != p; ++q)
4501                 if (q->name() == p->name())
4502                   break;
4503               if (q == p)
4504                 {
4505                   rpath_val += ':';
4506                   rpath_val += p->name();
4507                 }
4508             }
4509         }
4510
4511       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4512       if (parameters->options().enable_new_dtags())
4513         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4514     }
4515
4516   // Look for text segments that have dynamic relocations.
4517   bool have_textrel = false;
4518   if (!this->script_options_->saw_sections_clause())
4519     {
4520       for (Segment_list::const_iterator p = this->segment_list_.begin();
4521            p != this->segment_list_.end();
4522            ++p)
4523         {
4524           if ((*p)->type() == elfcpp::PT_LOAD
4525               && ((*p)->flags() & elfcpp::PF_W) == 0
4526               && (*p)->has_dynamic_reloc())
4527             {
4528               have_textrel = true;
4529               break;
4530             }
4531         }
4532     }
4533   else
4534     {
4535       // We don't know the section -> segment mapping, so we are
4536       // conservative and just look for readonly sections with
4537       // relocations.  If those sections wind up in writable segments,
4538       // then we have created an unnecessary DT_TEXTREL entry.
4539       for (Section_list::const_iterator p = this->section_list_.begin();
4540            p != this->section_list_.end();
4541            ++p)
4542         {
4543           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4544               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4545               && (*p)->has_dynamic_reloc())
4546             {
4547               have_textrel = true;
4548               break;
4549             }
4550         }
4551     }
4552
4553   if (parameters->options().filter() != NULL)
4554     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4555   if (parameters->options().any_auxiliary())
4556     {
4557       for (options::String_set::const_iterator p =
4558              parameters->options().auxiliary_begin();
4559            p != parameters->options().auxiliary_end();
4560            ++p)
4561         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4562     }
4563
4564   // Add a DT_FLAGS entry if necessary.
4565   unsigned int flags = 0;
4566   if (have_textrel)
4567     {
4568       // Add a DT_TEXTREL for compatibility with older loaders.
4569       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4570       flags |= elfcpp::DF_TEXTREL;
4571
4572       if (parameters->options().text())
4573         gold_error(_("read-only segment has dynamic relocations"));
4574       else if (parameters->options().warn_shared_textrel()
4575                && parameters->options().shared())
4576         gold_warning(_("shared library text segment is not shareable"));
4577     }
4578   if (parameters->options().shared() && this->has_static_tls())
4579     flags |= elfcpp::DF_STATIC_TLS;
4580   if (parameters->options().origin())
4581     flags |= elfcpp::DF_ORIGIN;
4582   if (parameters->options().Bsymbolic())
4583     {
4584       flags |= elfcpp::DF_SYMBOLIC;
4585       // Add DT_SYMBOLIC for compatibility with older loaders.
4586       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4587     }
4588   if (parameters->options().now())
4589     flags |= elfcpp::DF_BIND_NOW;
4590   if (flags != 0)
4591     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4592
4593   flags = 0;
4594   if (parameters->options().initfirst())
4595     flags |= elfcpp::DF_1_INITFIRST;
4596   if (parameters->options().interpose())
4597     flags |= elfcpp::DF_1_INTERPOSE;
4598   if (parameters->options().loadfltr())
4599     flags |= elfcpp::DF_1_LOADFLTR;
4600   if (parameters->options().nodefaultlib())
4601     flags |= elfcpp::DF_1_NODEFLIB;
4602   if (parameters->options().nodelete())
4603     flags |= elfcpp::DF_1_NODELETE;
4604   if (parameters->options().nodlopen())
4605     flags |= elfcpp::DF_1_NOOPEN;
4606   if (parameters->options().nodump())
4607     flags |= elfcpp::DF_1_NODUMP;
4608   if (!parameters->options().shared())
4609     flags &= ~(elfcpp::DF_1_INITFIRST
4610                | elfcpp::DF_1_NODELETE
4611                | elfcpp::DF_1_NOOPEN);
4612   if (parameters->options().origin())
4613     flags |= elfcpp::DF_1_ORIGIN;
4614   if (parameters->options().now())
4615     flags |= elfcpp::DF_1_NOW;
4616   if (parameters->options().Bgroup())
4617     flags |= elfcpp::DF_1_GROUP;
4618   if (flags != 0)
4619     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4620 }
4621
4622 // Set the size of the _DYNAMIC symbol table to be the size of the
4623 // dynamic data.
4624
4625 void
4626 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4627 {
4628   Output_data_dynamic* const odyn = this->dynamic_data_;
4629   if (odyn == NULL)
4630     return;
4631   odyn->finalize_data_size();
4632   if (this->dynamic_symbol_ == NULL)
4633     return;
4634   off_t data_size = odyn->data_size();
4635   const int size = parameters->target().get_size();
4636   if (size == 32)
4637     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4638   else if (size == 64)
4639     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4640   else
4641     gold_unreachable();
4642 }
4643
4644 // The mapping of input section name prefixes to output section names.
4645 // In some cases one prefix is itself a prefix of another prefix; in
4646 // such a case the longer prefix must come first.  These prefixes are
4647 // based on the GNU linker default ELF linker script.
4648
4649 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4650 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4651 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4652 {
4653   MAPPING_INIT(".text.", ".text"),
4654   MAPPING_INIT(".rodata.", ".rodata"),
4655   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4656   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4657   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4658   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4659   MAPPING_INIT(".data.", ".data"),
4660   MAPPING_INIT(".bss.", ".bss"),
4661   MAPPING_INIT(".tdata.", ".tdata"),
4662   MAPPING_INIT(".tbss.", ".tbss"),
4663   MAPPING_INIT(".init_array.", ".init_array"),
4664   MAPPING_INIT(".fini_array.", ".fini_array"),
4665   MAPPING_INIT(".sdata.", ".sdata"),
4666   MAPPING_INIT(".sbss.", ".sbss"),
4667   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4668   // differently depending on whether it is creating a shared library.
4669   MAPPING_INIT(".sdata2.", ".sdata"),
4670   MAPPING_INIT(".sbss2.", ".sbss"),
4671   MAPPING_INIT(".lrodata.", ".lrodata"),
4672   MAPPING_INIT(".ldata.", ".ldata"),
4673   MAPPING_INIT(".lbss.", ".lbss"),
4674   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4675   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4676   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4677   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4678   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4679   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4680   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4681   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4682   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4683   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4684   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4685   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4686   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4687   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4688   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4689   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4690   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4691   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4692   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4693   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4694   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4695 };
4696 #undef MAPPING_INIT
4697 #undef MAPPING_INIT_EXACT
4698
4699 const int Layout::section_name_mapping_count =
4700   (sizeof(Layout::section_name_mapping)
4701    / sizeof(Layout::section_name_mapping[0]));
4702
4703 // Choose the output section name to use given an input section name.
4704 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4705 // length of NAME.
4706
4707 const char*
4708 Layout::output_section_name(const Relobj* relobj, const char* name,
4709                             size_t* plen)
4710 {
4711   // gcc 4.3 generates the following sorts of section names when it
4712   // needs a section name specific to a function:
4713   //   .text.FN
4714   //   .rodata.FN
4715   //   .sdata2.FN
4716   //   .data.FN
4717   //   .data.rel.FN
4718   //   .data.rel.local.FN
4719   //   .data.rel.ro.FN
4720   //   .data.rel.ro.local.FN
4721   //   .sdata.FN
4722   //   .bss.FN
4723   //   .sbss.FN
4724   //   .tdata.FN
4725   //   .tbss.FN
4726
4727   // The GNU linker maps all of those to the part before the .FN,
4728   // except that .data.rel.local.FN is mapped to .data, and
4729   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4730   // beginning with .data.rel.ro.local are grouped together.
4731
4732   // For an anonymous namespace, the string FN can contain a '.'.
4733
4734   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4735   // GNU linker maps to .rodata.
4736
4737   // The .data.rel.ro sections are used with -z relro.  The sections
4738   // are recognized by name.  We use the same names that the GNU
4739   // linker does for these sections.
4740
4741   // It is hard to handle this in a principled way, so we don't even
4742   // try.  We use a table of mappings.  If the input section name is
4743   // not found in the table, we simply use it as the output section
4744   // name.
4745
4746   const Section_name_mapping* psnm = section_name_mapping;
4747   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4748     {
4749       if (psnm->fromlen > 0)
4750         {
4751           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4752             {
4753               *plen = psnm->tolen;
4754               return psnm->to;
4755             }
4756         }
4757       else
4758         {
4759           if (strcmp(name, psnm->from) == 0)
4760             {
4761               *plen = psnm->tolen;
4762               return psnm->to;
4763             }
4764         }
4765     }
4766
4767   // As an additional complication, .ctors sections are output in
4768   // either .ctors or .init_array sections, and .dtors sections are
4769   // output in either .dtors or .fini_array sections.
4770   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4771     {
4772       if (parameters->options().ctors_in_init_array())
4773         {
4774           *plen = 11;
4775           return name[1] == 'c' ? ".init_array" : ".fini_array";
4776         }
4777       else
4778         {
4779           *plen = 6;
4780           return name[1] == 'c' ? ".ctors" : ".dtors";
4781         }
4782     }
4783   if (parameters->options().ctors_in_init_array()
4784       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4785     {
4786       // To make .init_array/.fini_array work with gcc we must exclude
4787       // .ctors and .dtors sections from the crtbegin and crtend
4788       // files.
4789       if (relobj == NULL
4790           || (!Layout::match_file_name(relobj, "crtbegin")
4791               && !Layout::match_file_name(relobj, "crtend")))
4792         {
4793           *plen = 11;
4794           return name[1] == 'c' ? ".init_array" : ".fini_array";
4795         }
4796     }
4797
4798   return name;
4799 }
4800
4801 // Return true if RELOBJ is an input file whose base name matches
4802 // FILE_NAME.  The base name must have an extension of ".o", and must
4803 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4804 // to match crtbegin.o as well as crtbeginS.o without getting confused
4805 // by other possibilities.  Overall matching the file name this way is
4806 // a dreadful hack, but the GNU linker does it in order to better
4807 // support gcc, and we need to be compatible.
4808
4809 bool
4810 Layout::match_file_name(const Relobj* relobj, const char* match)
4811 {
4812   const std::string& file_name(relobj->name());
4813   const char* base_name = lbasename(file_name.c_str());
4814   size_t match_len = strlen(match);
4815   if (strncmp(base_name, match, match_len) != 0)
4816     return false;
4817   size_t base_len = strlen(base_name);
4818   if (base_len != match_len + 2 && base_len != match_len + 3)
4819     return false;
4820   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4821 }
4822
4823 // Check if a comdat group or .gnu.linkonce section with the given
4824 // NAME is selected for the link.  If there is already a section,
4825 // *KEPT_SECTION is set to point to the existing section and the
4826 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4827 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4828 // *KEPT_SECTION is set to the internal copy and the function returns
4829 // true.
4830
4831 bool
4832 Layout::find_or_add_kept_section(const std::string& name,
4833                                  Relobj* object,
4834                                  unsigned int shndx,
4835                                  bool is_comdat,
4836                                  bool is_group_name,
4837                                  Kept_section** kept_section)
4838 {
4839   // It's normal to see a couple of entries here, for the x86 thunk
4840   // sections.  If we see more than a few, we're linking a C++
4841   // program, and we resize to get more space to minimize rehashing.
4842   if (this->signatures_.size() > 4
4843       && !this->resized_signatures_)
4844     {
4845       reserve_unordered_map(&this->signatures_,
4846                             this->number_of_input_files_ * 64);
4847       this->resized_signatures_ = true;
4848     }
4849
4850   Kept_section candidate;
4851   std::pair<Signatures::iterator, bool> ins =
4852     this->signatures_.insert(std::make_pair(name, candidate));
4853
4854   if (kept_section != NULL)
4855     *kept_section = &ins.first->second;
4856   if (ins.second)
4857     {
4858       // This is the first time we've seen this signature.
4859       ins.first->second.set_object(object);
4860       ins.first->second.set_shndx(shndx);
4861       if (is_comdat)
4862         ins.first->second.set_is_comdat();
4863       if (is_group_name)
4864         ins.first->second.set_is_group_name();
4865       return true;
4866     }
4867
4868   // We have already seen this signature.
4869
4870   if (ins.first->second.is_group_name())
4871     {
4872       // We've already seen a real section group with this signature.
4873       // If the kept group is from a plugin object, and we're in the
4874       // replacement phase, accept the new one as a replacement.
4875       if (ins.first->second.object() == NULL
4876           && parameters->options().plugins()->in_replacement_phase())
4877         {
4878           ins.first->second.set_object(object);
4879           ins.first->second.set_shndx(shndx);
4880           return true;
4881         }
4882       return false;
4883     }
4884   else if (is_group_name)
4885     {
4886       // This is a real section group, and we've already seen a
4887       // linkonce section with this signature.  Record that we've seen
4888       // a section group, and don't include this section group.
4889       ins.first->second.set_is_group_name();
4890       return false;
4891     }
4892   else
4893     {
4894       // We've already seen a linkonce section and this is a linkonce
4895       // section.  These don't block each other--this may be the same
4896       // symbol name with different section types.
4897       return true;
4898     }
4899 }
4900
4901 // Store the allocated sections into the section list.
4902
4903 void
4904 Layout::get_allocated_sections(Section_list* section_list) const
4905 {
4906   for (Section_list::const_iterator p = this->section_list_.begin();
4907        p != this->section_list_.end();
4908        ++p)
4909     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4910       section_list->push_back(*p);
4911 }
4912
4913 // Create an output segment.
4914
4915 Output_segment*
4916 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4917 {
4918   gold_assert(!parameters->options().relocatable());
4919   Output_segment* oseg = new Output_segment(type, flags);
4920   this->segment_list_.push_back(oseg);
4921
4922   if (type == elfcpp::PT_TLS)
4923     this->tls_segment_ = oseg;
4924   else if (type == elfcpp::PT_GNU_RELRO)
4925     this->relro_segment_ = oseg;
4926   else if (type == elfcpp::PT_INTERP)
4927     this->interp_segment_ = oseg;
4928
4929   return oseg;
4930 }
4931
4932 // Return the file offset of the normal symbol table.
4933
4934 off_t
4935 Layout::symtab_section_offset() const
4936 {
4937   if (this->symtab_section_ != NULL)
4938     return this->symtab_section_->offset();
4939   return 0;
4940 }
4941
4942 // Return the section index of the normal symbol table.  It may have
4943 // been stripped by the -s/--strip-all option.
4944
4945 unsigned int
4946 Layout::symtab_section_shndx() const
4947 {
4948   if (this->symtab_section_ != NULL)
4949     return this->symtab_section_->out_shndx();
4950   return 0;
4951 }
4952
4953 // Write out the Output_sections.  Most won't have anything to write,
4954 // since most of the data will come from input sections which are
4955 // handled elsewhere.  But some Output_sections do have Output_data.
4956
4957 void
4958 Layout::write_output_sections(Output_file* of) const
4959 {
4960   for (Section_list::const_iterator p = this->section_list_.begin();
4961        p != this->section_list_.end();
4962        ++p)
4963     {
4964       if (!(*p)->after_input_sections())
4965         (*p)->write(of);
4966     }
4967 }
4968
4969 // Write out data not associated with a section or the symbol table.
4970
4971 void
4972 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4973 {
4974   if (!parameters->options().strip_all())
4975     {
4976       const Output_section* symtab_section = this->symtab_section_;
4977       for (Section_list::const_iterator p = this->section_list_.begin();
4978            p != this->section_list_.end();
4979            ++p)
4980         {
4981           if ((*p)->needs_symtab_index())
4982             {
4983               gold_assert(symtab_section != NULL);
4984               unsigned int index = (*p)->symtab_index();
4985               gold_assert(index > 0 && index != -1U);
4986               off_t off = (symtab_section->offset()
4987                            + index * symtab_section->entsize());
4988               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4989             }
4990         }
4991     }
4992
4993   const Output_section* dynsym_section = this->dynsym_section_;
4994   for (Section_list::const_iterator p = this->section_list_.begin();
4995        p != this->section_list_.end();
4996        ++p)
4997     {
4998       if ((*p)->needs_dynsym_index())
4999         {
5000           gold_assert(dynsym_section != NULL);
5001           unsigned int index = (*p)->dynsym_index();
5002           gold_assert(index > 0 && index != -1U);
5003           off_t off = (dynsym_section->offset()
5004                        + index * dynsym_section->entsize());
5005           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5006         }
5007     }
5008
5009   // Write out the Output_data which are not in an Output_section.
5010   for (Data_list::const_iterator p = this->special_output_list_.begin();
5011        p != this->special_output_list_.end();
5012        ++p)
5013     (*p)->write(of);
5014 }
5015
5016 // Write out the Output_sections which can only be written after the
5017 // input sections are complete.
5018
5019 void
5020 Layout::write_sections_after_input_sections(Output_file* of)
5021 {
5022   // Determine the final section offsets, and thus the final output
5023   // file size.  Note we finalize the .shstrab last, to allow the
5024   // after_input_section sections to modify their section-names before
5025   // writing.
5026   if (this->any_postprocessing_sections_)
5027     {
5028       off_t off = this->output_file_size_;
5029       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5030
5031       // Now that we've finalized the names, we can finalize the shstrab.
5032       off =
5033         this->set_section_offsets(off,
5034                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5035
5036       if (off > this->output_file_size_)
5037         {
5038           of->resize(off);
5039           this->output_file_size_ = off;
5040         }
5041     }
5042
5043   for (Section_list::const_iterator p = this->section_list_.begin();
5044        p != this->section_list_.end();
5045        ++p)
5046     {
5047       if ((*p)->after_input_sections())
5048         (*p)->write(of);
5049     }
5050
5051   this->section_headers_->write(of);
5052 }
5053
5054 // If the build ID requires computing a checksum, do so here, and
5055 // write it out.  We compute a checksum over the entire file because
5056 // that is simplest.
5057
5058 void
5059 Layout::write_build_id(Output_file* of) const
5060 {
5061   if (this->build_id_note_ == NULL)
5062     return;
5063
5064   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5065
5066   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5067                                           this->build_id_note_->data_size());
5068
5069   const char* style = parameters->options().build_id();
5070   if (strcmp(style, "sha1") == 0)
5071     {
5072       sha1_ctx ctx;
5073       sha1_init_ctx(&ctx);
5074       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5075       sha1_finish_ctx(&ctx, ov);
5076     }
5077   else if (strcmp(style, "md5") == 0)
5078     {
5079       md5_ctx ctx;
5080       md5_init_ctx(&ctx);
5081       md5_process_bytes(iv, this->output_file_size_, &ctx);
5082       md5_finish_ctx(&ctx, ov);
5083     }
5084   else
5085     gold_unreachable();
5086
5087   of->write_output_view(this->build_id_note_->offset(),
5088                         this->build_id_note_->data_size(),
5089                         ov);
5090
5091   of->free_input_view(0, this->output_file_size_, iv);
5092 }
5093
5094 // Write out a binary file.  This is called after the link is
5095 // complete.  IN is the temporary output file we used to generate the
5096 // ELF code.  We simply walk through the segments, read them from
5097 // their file offset in IN, and write them to their load address in
5098 // the output file.  FIXME: with a bit more work, we could support
5099 // S-records and/or Intel hex format here.
5100
5101 void
5102 Layout::write_binary(Output_file* in) const
5103 {
5104   gold_assert(parameters->options().oformat_enum()
5105               == General_options::OBJECT_FORMAT_BINARY);
5106
5107   // Get the size of the binary file.
5108   uint64_t max_load_address = 0;
5109   for (Segment_list::const_iterator p = this->segment_list_.begin();
5110        p != this->segment_list_.end();
5111        ++p)
5112     {
5113       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5114         {
5115           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5116           if (max_paddr > max_load_address)
5117             max_load_address = max_paddr;
5118         }
5119     }
5120
5121   Output_file out(parameters->options().output_file_name());
5122   out.open(max_load_address);
5123
5124   for (Segment_list::const_iterator p = this->segment_list_.begin();
5125        p != this->segment_list_.end();
5126        ++p)
5127     {
5128       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5129         {
5130           const unsigned char* vin = in->get_input_view((*p)->offset(),
5131                                                         (*p)->filesz());
5132           unsigned char* vout = out.get_output_view((*p)->paddr(),
5133                                                     (*p)->filesz());
5134           memcpy(vout, vin, (*p)->filesz());
5135           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5136           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5137         }
5138     }
5139
5140   out.close();
5141 }
5142
5143 // Print the output sections to the map file.
5144
5145 void
5146 Layout::print_to_mapfile(Mapfile* mapfile) const
5147 {
5148   for (Segment_list::const_iterator p = this->segment_list_.begin();
5149        p != this->segment_list_.end();
5150        ++p)
5151     (*p)->print_sections_to_mapfile(mapfile);
5152 }
5153
5154 // Print statistical information to stderr.  This is used for --stats.
5155
5156 void
5157 Layout::print_stats() const
5158 {
5159   this->namepool_.print_stats("section name pool");
5160   this->sympool_.print_stats("output symbol name pool");
5161   this->dynpool_.print_stats("dynamic name pool");
5162
5163   for (Section_list::const_iterator p = this->section_list_.begin();
5164        p != this->section_list_.end();
5165        ++p)
5166     (*p)->print_merge_stats();
5167 }
5168
5169 // Write_sections_task methods.
5170
5171 // We can always run this task.
5172
5173 Task_token*
5174 Write_sections_task::is_runnable()
5175 {
5176   return NULL;
5177 }
5178
5179 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5180 // when finished.
5181
5182 void
5183 Write_sections_task::locks(Task_locker* tl)
5184 {
5185   tl->add(this, this->output_sections_blocker_);
5186   tl->add(this, this->final_blocker_);
5187 }
5188
5189 // Run the task--write out the data.
5190
5191 void
5192 Write_sections_task::run(Workqueue*)
5193 {
5194   this->layout_->write_output_sections(this->of_);
5195 }
5196
5197 // Write_data_task methods.
5198
5199 // We can always run this task.
5200
5201 Task_token*
5202 Write_data_task::is_runnable()
5203 {
5204   return NULL;
5205 }
5206
5207 // We need to unlock FINAL_BLOCKER when finished.
5208
5209 void
5210 Write_data_task::locks(Task_locker* tl)
5211 {
5212   tl->add(this, this->final_blocker_);
5213 }
5214
5215 // Run the task--write out the data.
5216
5217 void
5218 Write_data_task::run(Workqueue*)
5219 {
5220   this->layout_->write_data(this->symtab_, this->of_);
5221 }
5222
5223 // Write_symbols_task methods.
5224
5225 // We can always run this task.
5226
5227 Task_token*
5228 Write_symbols_task::is_runnable()
5229 {
5230   return NULL;
5231 }
5232
5233 // We need to unlock FINAL_BLOCKER when finished.
5234
5235 void
5236 Write_symbols_task::locks(Task_locker* tl)
5237 {
5238   tl->add(this, this->final_blocker_);
5239 }
5240
5241 // Run the task--write out the symbols.
5242
5243 void
5244 Write_symbols_task::run(Workqueue*)
5245 {
5246   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5247                                this->layout_->symtab_xindex(),
5248                                this->layout_->dynsym_xindex(), this->of_);
5249 }
5250
5251 // Write_after_input_sections_task methods.
5252
5253 // We can only run this task after the input sections have completed.
5254
5255 Task_token*
5256 Write_after_input_sections_task::is_runnable()
5257 {
5258   if (this->input_sections_blocker_->is_blocked())
5259     return this->input_sections_blocker_;
5260   return NULL;
5261 }
5262
5263 // We need to unlock FINAL_BLOCKER when finished.
5264
5265 void
5266 Write_after_input_sections_task::locks(Task_locker* tl)
5267 {
5268   tl->add(this, this->final_blocker_);
5269 }
5270
5271 // Run the task.
5272
5273 void
5274 Write_after_input_sections_task::run(Workqueue*)
5275 {
5276   this->layout_->write_sections_after_input_sections(this->of_);
5277 }
5278
5279 // Close_task_runner methods.
5280
5281 // Run the task--close the file.
5282
5283 void
5284 Close_task_runner::run(Workqueue*, const Task*)
5285 {
5286   // If we need to compute a checksum for the BUILD if, we do so here.
5287   this->layout_->write_build_id(this->of_);
5288
5289   // If we've been asked to create a binary file, we do so here.
5290   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5291     this->layout_->write_binary(this->of_);
5292
5293   this->of_->close();
5294 }
5295
5296 // Instantiate the templates we need.  We could use the configure
5297 // script to restrict this to only the ones for implemented targets.
5298
5299 #ifdef HAVE_TARGET_32_LITTLE
5300 template
5301 Output_section*
5302 Layout::init_fixed_output_section<32, false>(
5303     const char* name,
5304     elfcpp::Shdr<32, false>& shdr);
5305 #endif
5306
5307 #ifdef HAVE_TARGET_32_BIG
5308 template
5309 Output_section*
5310 Layout::init_fixed_output_section<32, true>(
5311     const char* name,
5312     elfcpp::Shdr<32, true>& shdr);
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 Output_section*
5318 Layout::init_fixed_output_section<64, false>(
5319     const char* name,
5320     elfcpp::Shdr<64, false>& shdr);
5321 #endif
5322
5323 #ifdef HAVE_TARGET_64_BIG
5324 template
5325 Output_section*
5326 Layout::init_fixed_output_section<64, true>(
5327     const char* name,
5328     elfcpp::Shdr<64, true>& shdr);
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_LITTLE
5332 template
5333 Output_section*
5334 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5335                           unsigned int shndx,
5336                           const char* name,
5337                           const elfcpp::Shdr<32, false>& shdr,
5338                           unsigned int, unsigned int, off_t*);
5339 #endif
5340
5341 #ifdef HAVE_TARGET_32_BIG
5342 template
5343 Output_section*
5344 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5345                          unsigned int shndx,
5346                          const char* name,
5347                          const elfcpp::Shdr<32, true>& shdr,
5348                          unsigned int, unsigned int, off_t*);
5349 #endif
5350
5351 #ifdef HAVE_TARGET_64_LITTLE
5352 template
5353 Output_section*
5354 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5355                           unsigned int shndx,
5356                           const char* name,
5357                           const elfcpp::Shdr<64, false>& shdr,
5358                           unsigned int, unsigned int, off_t*);
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_BIG
5362 template
5363 Output_section*
5364 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5365                          unsigned int shndx,
5366                          const char* name,
5367                          const elfcpp::Shdr<64, true>& shdr,
5368                          unsigned int, unsigned int, off_t*);
5369 #endif
5370
5371 #ifdef HAVE_TARGET_32_LITTLE
5372 template
5373 Output_section*
5374 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5375                                 unsigned int reloc_shndx,
5376                                 const elfcpp::Shdr<32, false>& shdr,
5377                                 Output_section* data_section,
5378                                 Relocatable_relocs* rr);
5379 #endif
5380
5381 #ifdef HAVE_TARGET_32_BIG
5382 template
5383 Output_section*
5384 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5385                                unsigned int reloc_shndx,
5386                                const elfcpp::Shdr<32, true>& shdr,
5387                                Output_section* data_section,
5388                                Relocatable_relocs* rr);
5389 #endif
5390
5391 #ifdef HAVE_TARGET_64_LITTLE
5392 template
5393 Output_section*
5394 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5395                                 unsigned int reloc_shndx,
5396                                 const elfcpp::Shdr<64, false>& shdr,
5397                                 Output_section* data_section,
5398                                 Relocatable_relocs* rr);
5399 #endif
5400
5401 #ifdef HAVE_TARGET_64_BIG
5402 template
5403 Output_section*
5404 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5405                                unsigned int reloc_shndx,
5406                                const elfcpp::Shdr<64, true>& shdr,
5407                                Output_section* data_section,
5408                                Relocatable_relocs* rr);
5409 #endif
5410
5411 #ifdef HAVE_TARGET_32_LITTLE
5412 template
5413 void
5414 Layout::layout_group<32, false>(Symbol_table* symtab,
5415                                 Sized_relobj_file<32, false>* object,
5416                                 unsigned int,
5417                                 const char* group_section_name,
5418                                 const char* signature,
5419                                 const elfcpp::Shdr<32, false>& shdr,
5420                                 elfcpp::Elf_Word flags,
5421                                 std::vector<unsigned int>* shndxes);
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_BIG
5425 template
5426 void
5427 Layout::layout_group<32, true>(Symbol_table* symtab,
5428                                Sized_relobj_file<32, true>* object,
5429                                unsigned int,
5430                                const char* group_section_name,
5431                                const char* signature,
5432                                const elfcpp::Shdr<32, true>& shdr,
5433                                elfcpp::Elf_Word flags,
5434                                std::vector<unsigned int>* shndxes);
5435 #endif
5436
5437 #ifdef HAVE_TARGET_64_LITTLE
5438 template
5439 void
5440 Layout::layout_group<64, false>(Symbol_table* symtab,
5441                                 Sized_relobj_file<64, false>* object,
5442                                 unsigned int,
5443                                 const char* group_section_name,
5444                                 const char* signature,
5445                                 const elfcpp::Shdr<64, false>& shdr,
5446                                 elfcpp::Elf_Word flags,
5447                                 std::vector<unsigned int>* shndxes);
5448 #endif
5449
5450 #ifdef HAVE_TARGET_64_BIG
5451 template
5452 void
5453 Layout::layout_group<64, true>(Symbol_table* symtab,
5454                                Sized_relobj_file<64, true>* object,
5455                                unsigned int,
5456                                const char* group_section_name,
5457                                const char* signature,
5458                                const elfcpp::Shdr<64, true>& shdr,
5459                                elfcpp::Elf_Word flags,
5460                                std::vector<unsigned int>* shndxes);
5461 #endif
5462
5463 #ifdef HAVE_TARGET_32_LITTLE
5464 template
5465 Output_section*
5466 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5467                                    const unsigned char* symbols,
5468                                    off_t symbols_size,
5469                                    const unsigned char* symbol_names,
5470                                    off_t symbol_names_size,
5471                                    unsigned int shndx,
5472                                    const elfcpp::Shdr<32, false>& shdr,
5473                                    unsigned int reloc_shndx,
5474                                    unsigned int reloc_type,
5475                                    off_t* off);
5476 #endif
5477
5478 #ifdef HAVE_TARGET_32_BIG
5479 template
5480 Output_section*
5481 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5482                                   const unsigned char* symbols,
5483                                   off_t symbols_size,
5484                                   const unsigned char* symbol_names,
5485                                   off_t symbol_names_size,
5486                                   unsigned int shndx,
5487                                   const elfcpp::Shdr<32, true>& shdr,
5488                                   unsigned int reloc_shndx,
5489                                   unsigned int reloc_type,
5490                                   off_t* off);
5491 #endif
5492
5493 #ifdef HAVE_TARGET_64_LITTLE
5494 template
5495 Output_section*
5496 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5497                                    const unsigned char* symbols,
5498                                    off_t symbols_size,
5499                                    const unsigned char* symbol_names,
5500                                    off_t symbol_names_size,
5501                                    unsigned int shndx,
5502                                    const elfcpp::Shdr<64, false>& shdr,
5503                                    unsigned int reloc_shndx,
5504                                    unsigned int reloc_type,
5505                                    off_t* off);
5506 #endif
5507
5508 #ifdef HAVE_TARGET_64_BIG
5509 template
5510 Output_section*
5511 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5512                                   const unsigned char* symbols,
5513                                   off_t symbols_size,
5514                                   const unsigned char* symbol_names,
5515                                   off_t symbol_names_size,
5516                                   unsigned int shndx,
5517                                   const elfcpp::Shdr<64, true>& shdr,
5518                                   unsigned int reloc_shndx,
5519                                   unsigned int reloc_type,
5520                                   off_t* off);
5521 #endif
5522
5523 #ifdef HAVE_TARGET_32_LITTLE
5524 template
5525 void
5526 Layout::add_to_gdb_index(bool is_type_unit,
5527                          Sized_relobj<32, false>* object,
5528                          const unsigned char* symbols,
5529                          off_t symbols_size,
5530                          unsigned int shndx,
5531                          unsigned int reloc_shndx,
5532                          unsigned int reloc_type);
5533 #endif
5534
5535 #ifdef HAVE_TARGET_32_BIG
5536 template
5537 void
5538 Layout::add_to_gdb_index(bool is_type_unit,
5539                          Sized_relobj<32, true>* object,
5540                          const unsigned char* symbols,
5541                          off_t symbols_size,
5542                          unsigned int shndx,
5543                          unsigned int reloc_shndx,
5544                          unsigned int reloc_type);
5545 #endif
5546
5547 #ifdef HAVE_TARGET_64_LITTLE
5548 template
5549 void
5550 Layout::add_to_gdb_index(bool is_type_unit,
5551                          Sized_relobj<64, false>* object,
5552                          const unsigned char* symbols,
5553                          off_t symbols_size,
5554                          unsigned int shndx,
5555                          unsigned int reloc_shndx,
5556                          unsigned int reloc_type);
5557 #endif
5558
5559 #ifdef HAVE_TARGET_64_BIG
5560 template
5561 void
5562 Layout::add_to_gdb_index(bool is_type_unit,
5563                          Sized_relobj<64, true>* object,
5564                          const unsigned char* symbols,
5565                          off_t symbols_size,
5566                          unsigned int shndx,
5567                          unsigned int reloc_shndx,
5568                          unsigned int reloc_type);
5569 #endif
5570
5571 } // End namespace gold.