* layout.cc (Layout::find_or_add_kept_section): New function.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "layout.h"
50 #include "plugin.h"
51
52 namespace gold
53 {
54
55 // Layout_task_runner methods.
56
57 // Lay out the sections.  This is called after all the input objects
58 // have been read.
59
60 void
61 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
62 {
63   off_t file_size = this->layout_->finalize(this->input_objects_,
64                                             this->symtab_,
65                                             this->target_,
66                                             task);
67
68   // Now we know the final size of the output file and we know where
69   // each piece of information goes.
70
71   if (this->mapfile_ != NULL)
72     {
73       this->mapfile_->print_discarded_sections(this->input_objects_);
74       this->layout_->print_to_mapfile(this->mapfile_);
75     }
76
77   Output_file* of = new Output_file(parameters->options().output_file_name());
78   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
79     of->set_is_temporary();
80   of->open(file_size);
81
82   // Queue up the final set of tasks.
83   gold::queue_final_tasks(this->options_, this->input_objects_,
84                           this->symtab_, this->layout_, workqueue, of);
85 }
86
87 // Layout methods.
88
89 Layout::Layout(const General_options& options, Script_options* script_options)
90   : options_(options),
91     script_options_(script_options),
92     namepool_(),
93     sympool_(),
94     dynpool_(),
95     signatures_(),
96     section_name_map_(),
97     segment_list_(),
98     section_list_(),
99     unattached_section_list_(),
100     sections_are_attached_(false),
101     special_output_list_(),
102     section_headers_(NULL),
103     tls_segment_(NULL),
104     relro_segment_(NULL),
105     symtab_section_(NULL),
106     symtab_xindex_(NULL),
107     dynsym_section_(NULL),
108     dynsym_xindex_(NULL),
109     dynamic_section_(NULL),
110     dynamic_data_(NULL),
111     eh_frame_section_(NULL),
112     eh_frame_data_(NULL),
113     added_eh_frame_data_(false),
114     eh_frame_hdr_section_(NULL),
115     build_id_note_(NULL),
116     debug_abbrev_(NULL),
117     debug_info_(NULL),
118     group_signatures_(),
119     output_file_size_(-1),
120     input_requires_executable_stack_(false),
121     input_with_gnu_stack_note_(false),
122     input_without_gnu_stack_note_(false),
123     has_static_tls_(false),
124     any_postprocessing_sections_(false)
125 {
126   // Make space for more than enough segments for a typical file.
127   // This is just for efficiency--it's OK if we wind up needing more.
128   this->segment_list_.reserve(12);
129
130   // We expect two unattached Output_data objects: the file header and
131   // the segment headers.
132   this->special_output_list_.reserve(2);
133 }
134
135 // Hash a key we use to look up an output section mapping.
136
137 size_t
138 Layout::Hash_key::operator()(const Layout::Key& k) const
139 {
140  return k.first + k.second.first + k.second.second;
141 }
142
143 // Returns whether the given section is in the list of
144 // debug-sections-used-by-some-version-of-gdb.  Currently,
145 // we've checked versions of gdb up to and including 6.7.1.
146
147 static const char* gdb_sections[] =
148 { ".debug_abbrev",
149   // ".debug_aranges",   // not used by gdb as of 6.7.1
150   ".debug_frame",
151   ".debug_info",
152   ".debug_line",
153   ".debug_loc",
154   ".debug_macinfo",
155   // ".debug_pubnames",  // not used by gdb as of 6.7.1
156   ".debug_ranges",
157   ".debug_str",
158 };
159
160 static const char* lines_only_debug_sections[] =
161 { ".debug_abbrev",
162   // ".debug_aranges",   // not used by gdb as of 6.7.1
163   // ".debug_frame",
164   ".debug_info",
165   ".debug_line",
166   // ".debug_loc",
167   // ".debug_macinfo",
168   // ".debug_pubnames",  // not used by gdb as of 6.7.1
169   // ".debug_ranges",
170   ".debug_str",
171 };
172
173 static inline bool
174 is_gdb_debug_section(const char* str)
175 {
176   // We can do this faster: binary search or a hashtable.  But why bother?
177   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
178     if (strcmp(str, gdb_sections[i]) == 0)
179       return true;
180   return false;
181 }
182
183 static inline bool
184 is_lines_only_debug_section(const char* str)
185 {
186   // We can do this faster: binary search or a hashtable.  But why bother?
187   for (size_t i = 0;
188        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
189        ++i)
190     if (strcmp(str, lines_only_debug_sections[i]) == 0)
191       return true;
192   return false;
193 }
194
195 // Whether to include this section in the link.
196
197 template<int size, bool big_endian>
198 bool
199 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
200                         const elfcpp::Shdr<size, big_endian>& shdr)
201 {
202   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
203     return false;
204
205   switch (shdr.get_sh_type())
206     {
207     case elfcpp::SHT_NULL:
208     case elfcpp::SHT_SYMTAB:
209     case elfcpp::SHT_DYNSYM:
210     case elfcpp::SHT_HASH:
211     case elfcpp::SHT_DYNAMIC:
212     case elfcpp::SHT_SYMTAB_SHNDX:
213       return false;
214
215     case elfcpp::SHT_STRTAB:
216       // Discard the sections which have special meanings in the ELF
217       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
218       // checking the sh_link fields of the appropriate sections.
219       return (strcmp(name, ".dynstr") != 0
220               && strcmp(name, ".strtab") != 0
221               && strcmp(name, ".shstrtab") != 0);
222
223     case elfcpp::SHT_RELA:
224     case elfcpp::SHT_REL:
225     case elfcpp::SHT_GROUP:
226       // If we are emitting relocations these should be handled
227       // elsewhere.
228       gold_assert(!parameters->options().relocatable()
229                   && !parameters->options().emit_relocs());
230       return false;
231
232     case elfcpp::SHT_PROGBITS:
233       if (parameters->options().strip_debug()
234           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
235         {
236           if (is_debug_info_section(name))
237             return false;
238         }
239       if (parameters->options().strip_debug_non_line()
240           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
241         {
242           // Debugging sections can only be recognized by name.
243           if (is_prefix_of(".debug", name)
244               && !is_lines_only_debug_section(name))
245             return false;
246         }
247       if (parameters->options().strip_debug_gdb()
248           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
249         {
250           // Debugging sections can only be recognized by name.
251           if (is_prefix_of(".debug", name)
252               && !is_gdb_debug_section(name))
253             return false;
254         }
255       if (parameters->options().strip_lto_sections()
256           && !parameters->options().relocatable()
257           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
258         {
259           // Ignore LTO sections containing intermediate code.
260           if (is_prefix_of(".gnu.lto_", name))
261             return false;
262         }
263       return true;
264
265     default:
266       return true;
267     }
268 }
269
270 // Return an output section named NAME, or NULL if there is none.
271
272 Output_section*
273 Layout::find_output_section(const char* name) const
274 {
275   for (Section_list::const_iterator p = this->section_list_.begin();
276        p != this->section_list_.end();
277        ++p)
278     if (strcmp((*p)->name(), name) == 0)
279       return *p;
280   return NULL;
281 }
282
283 // Return an output segment of type TYPE, with segment flags SET set
284 // and segment flags CLEAR clear.  Return NULL if there is none.
285
286 Output_segment*
287 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
288                             elfcpp::Elf_Word clear) const
289 {
290   for (Segment_list::const_iterator p = this->segment_list_.begin();
291        p != this->segment_list_.end();
292        ++p)
293     if (static_cast<elfcpp::PT>((*p)->type()) == type
294         && ((*p)->flags() & set) == set
295         && ((*p)->flags() & clear) == 0)
296       return *p;
297   return NULL;
298 }
299
300 // Return the output section to use for section NAME with type TYPE
301 // and section flags FLAGS.  NAME must be canonicalized in the string
302 // pool, and NAME_KEY is the key.
303
304 Output_section*
305 Layout::get_output_section(const char* name, Stringpool::Key name_key,
306                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
307 {
308   elfcpp::Elf_Xword lookup_flags = flags;
309
310   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
311   // read-write with read-only sections.  Some other ELF linkers do
312   // not do this.  FIXME: Perhaps there should be an option
313   // controlling this.
314   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
315
316   const Key key(name_key, std::make_pair(type, lookup_flags));
317   const std::pair<Key, Output_section*> v(key, NULL);
318   std::pair<Section_name_map::iterator, bool> ins(
319     this->section_name_map_.insert(v));
320
321   if (!ins.second)
322     return ins.first->second;
323   else
324     {
325       // This is the first time we've seen this name/type/flags
326       // combination.  For compatibility with the GNU linker, we
327       // combine sections with contents and zero flags with sections
328       // with non-zero flags.  This is a workaround for cases where
329       // assembler code forgets to set section flags.  FIXME: Perhaps
330       // there should be an option to control this.
331       Output_section* os = NULL;
332
333       if (type == elfcpp::SHT_PROGBITS)
334         {
335           if (flags == 0)
336             {
337               Output_section* same_name = this->find_output_section(name);
338               if (same_name != NULL
339                   && same_name->type() == elfcpp::SHT_PROGBITS
340                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
341                 os = same_name;
342             }
343           else if ((flags & elfcpp::SHF_TLS) == 0)
344             {
345               elfcpp::Elf_Xword zero_flags = 0;
346               const Key zero_key(name_key, std::make_pair(type, zero_flags));
347               Section_name_map::iterator p =
348                   this->section_name_map_.find(zero_key);
349               if (p != this->section_name_map_.end())
350                 os = p->second;
351             }
352         }
353
354       if (os == NULL)
355         os = this->make_output_section(name, type, flags);
356       ins.first->second = os;
357       return os;
358     }
359 }
360
361 // Pick the output section to use for section NAME, in input file
362 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
363 // linker created section.  IS_INPUT_SECTION is true if we are
364 // choosing an output section for an input section found in a input
365 // file.  This will return NULL if the input section should be
366 // discarded.
367
368 Output_section*
369 Layout::choose_output_section(const Relobj* relobj, const char* name,
370                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
371                               bool is_input_section)
372 {
373   // We should not see any input sections after we have attached
374   // sections to segments.
375   gold_assert(!is_input_section || !this->sections_are_attached_);
376
377   // Some flags in the input section should not be automatically
378   // copied to the output section.
379   flags &= ~ (elfcpp::SHF_INFO_LINK
380               | elfcpp::SHF_LINK_ORDER
381               | elfcpp::SHF_GROUP
382               | elfcpp::SHF_MERGE
383               | elfcpp::SHF_STRINGS);
384
385   if (this->script_options_->saw_sections_clause())
386     {
387       // We are using a SECTIONS clause, so the output section is
388       // chosen based only on the name.
389
390       Script_sections* ss = this->script_options_->script_sections();
391       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
392       Output_section** output_section_slot;
393       name = ss->output_section_name(file_name, name, &output_section_slot);
394       if (name == NULL)
395         {
396           // The SECTIONS clause says to discard this input section.
397           return NULL;
398         }
399
400       // If this is an orphan section--one not mentioned in the linker
401       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
402       // default processing below.
403
404       if (output_section_slot != NULL)
405         {
406           if (*output_section_slot != NULL)
407             return *output_section_slot;
408
409           // We don't put sections found in the linker script into
410           // SECTION_NAME_MAP_.  That keeps us from getting confused
411           // if an orphan section is mapped to a section with the same
412           // name as one in the linker script.
413
414           name = this->namepool_.add(name, false, NULL);
415
416           Output_section* os = this->make_output_section(name, type, flags);
417           os->set_found_in_sections_clause();
418           *output_section_slot = os;
419           return os;
420         }
421     }
422
423   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
424
425   // Turn NAME from the name of the input section into the name of the
426   // output section.
427
428   size_t len = strlen(name);
429   if (is_input_section
430       && !this->script_options_->saw_sections_clause()
431       && !parameters->options().relocatable())
432     name = Layout::output_section_name(name, &len);
433
434   Stringpool::Key name_key;
435   name = this->namepool_.add_with_length(name, len, true, &name_key);
436
437   // Find or make the output section.  The output section is selected
438   // based on the section name, type, and flags.
439   return this->get_output_section(name, name_key, type, flags);
440 }
441
442 // Return the output section to use for input section SHNDX, with name
443 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
444 // index of a relocation section which applies to this section, or 0
445 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
446 // relocation section if there is one.  Set *OFF to the offset of this
447 // input section without the output section.  Return NULL if the
448 // section should be discarded.  Set *OFF to -1 if the section
449 // contents should not be written directly to the output file, but
450 // will instead receive special handling.
451
452 template<int size, bool big_endian>
453 Output_section*
454 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
455                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
456                unsigned int reloc_shndx, unsigned int, off_t* off)
457 {
458   *off = 0;
459
460   if (!this->include_section(object, name, shdr))
461     return NULL;
462
463   Output_section* os;
464
465   // In a relocatable link a grouped section must not be combined with
466   // any other sections.
467   if (parameters->options().relocatable()
468       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
469     {
470       name = this->namepool_.add(name, true, NULL);
471       os = this->make_output_section(name, shdr.get_sh_type(),
472                                      shdr.get_sh_flags());
473     }
474   else
475     {
476       os = this->choose_output_section(object, name, shdr.get_sh_type(),
477                                        shdr.get_sh_flags(), true);
478       if (os == NULL)
479         return NULL;
480     }
481
482   // By default the GNU linker sorts input sections whose names match
483   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
484   // are sorted by name.  This is used to implement constructor
485   // priority ordering.  We are compatible.
486   if (!this->script_options_->saw_sections_clause()
487       && (is_prefix_of(".ctors.", name)
488           || is_prefix_of(".dtors.", name)
489           || is_prefix_of(".init_array.", name)
490           || is_prefix_of(".fini_array.", name)))
491     os->set_must_sort_attached_input_sections();
492
493   // FIXME: Handle SHF_LINK_ORDER somewhere.
494
495   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
496                                this->script_options_->saw_sections_clause());
497
498   return os;
499 }
500
501 // Handle a relocation section when doing a relocatable link.
502
503 template<int size, bool big_endian>
504 Output_section*
505 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
506                      unsigned int,
507                      const elfcpp::Shdr<size, big_endian>& shdr,
508                      Output_section* data_section,
509                      Relocatable_relocs* rr)
510 {
511   gold_assert(parameters->options().relocatable()
512               || parameters->options().emit_relocs());
513
514   int sh_type = shdr.get_sh_type();
515
516   std::string name;
517   if (sh_type == elfcpp::SHT_REL)
518     name = ".rel";
519   else if (sh_type == elfcpp::SHT_RELA)
520     name = ".rela";
521   else
522     gold_unreachable();
523   name += data_section->name();
524
525   Output_section* os = this->choose_output_section(object, name.c_str(),
526                                                    sh_type,
527                                                    shdr.get_sh_flags(),
528                                                    false);
529
530   os->set_should_link_to_symtab();
531   os->set_info_section(data_section);
532
533   Output_section_data* posd;
534   if (sh_type == elfcpp::SHT_REL)
535     {
536       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
537       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
538                                            size,
539                                            big_endian>(rr);
540     }
541   else if (sh_type == elfcpp::SHT_RELA)
542     {
543       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
544       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
545                                            size,
546                                            big_endian>(rr);
547     }
548   else
549     gold_unreachable();
550
551   os->add_output_section_data(posd);
552   rr->set_output_data(posd);
553
554   return os;
555 }
556
557 // Handle a group section when doing a relocatable link.
558
559 template<int size, bool big_endian>
560 void
561 Layout::layout_group(Symbol_table* symtab,
562                      Sized_relobj<size, big_endian>* object,
563                      unsigned int,
564                      const char* group_section_name,
565                      const char* signature,
566                      const elfcpp::Shdr<size, big_endian>& shdr,
567                      elfcpp::Elf_Word flags,
568                      std::vector<unsigned int>* shndxes)
569 {
570   gold_assert(parameters->options().relocatable());
571   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
572   group_section_name = this->namepool_.add(group_section_name, true, NULL);
573   Output_section* os = this->make_output_section(group_section_name,
574                                                  elfcpp::SHT_GROUP,
575                                                  shdr.get_sh_flags());
576
577   // We need to find a symbol with the signature in the symbol table.
578   // If we don't find one now, we need to look again later.
579   Symbol* sym = symtab->lookup(signature, NULL);
580   if (sym != NULL)
581     os->set_info_symndx(sym);
582   else
583     {
584       // We will wind up using a symbol whose name is the signature.
585       // So just put the signature in the symbol name pool to save it.
586       signature = symtab->canonicalize_name(signature);
587       this->group_signatures_.push_back(Group_signature(os, signature));
588     }
589
590   os->set_should_link_to_symtab();
591   os->set_entsize(4);
592
593   section_size_type entry_count =
594     convert_to_section_size_type(shdr.get_sh_size() / 4);
595   Output_section_data* posd =
596     new Output_data_group<size, big_endian>(object, entry_count, flags,
597                                             shndxes);
598   os->add_output_section_data(posd);
599 }
600
601 // Special GNU handling of sections name .eh_frame.  They will
602 // normally hold exception frame data as defined by the C++ ABI
603 // (http://codesourcery.com/cxx-abi/).
604
605 template<int size, bool big_endian>
606 Output_section*
607 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
608                         const unsigned char* symbols,
609                         off_t symbols_size,
610                         const unsigned char* symbol_names,
611                         off_t symbol_names_size,
612                         unsigned int shndx,
613                         const elfcpp::Shdr<size, big_endian>& shdr,
614                         unsigned int reloc_shndx, unsigned int reloc_type,
615                         off_t* off)
616 {
617   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
618   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
619
620   const char* const name = ".eh_frame";
621   Output_section* os = this->choose_output_section(object,
622                                                    name,
623                                                    elfcpp::SHT_PROGBITS,
624                                                    elfcpp::SHF_ALLOC,
625                                                    false);
626   if (os == NULL)
627     return NULL;
628
629   if (this->eh_frame_section_ == NULL)
630     {
631       this->eh_frame_section_ = os;
632       this->eh_frame_data_ = new Eh_frame();
633
634       if (this->options_.eh_frame_hdr())
635         {
636           Output_section* hdr_os =
637             this->choose_output_section(NULL,
638                                         ".eh_frame_hdr",
639                                         elfcpp::SHT_PROGBITS,
640                                         elfcpp::SHF_ALLOC,
641                                         false);
642
643           if (hdr_os != NULL)
644             {
645               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
646                                                         this->eh_frame_data_);
647               hdr_os->add_output_section_data(hdr_posd);
648
649               hdr_os->set_after_input_sections();
650
651               if (!this->script_options_->saw_phdrs_clause())
652                 {
653                   Output_segment* hdr_oseg;
654                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
655                                                        elfcpp::PF_R);
656                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
657                 }
658
659               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
660             }
661         }
662     }
663
664   gold_assert(this->eh_frame_section_ == os);
665
666   if (this->eh_frame_data_->add_ehframe_input_section(object,
667                                                       symbols,
668                                                       symbols_size,
669                                                       symbol_names,
670                                                       symbol_names_size,
671                                                       shndx,
672                                                       reloc_shndx,
673                                                       reloc_type))
674     {
675       os->update_flags_for_input_section(shdr.get_sh_flags());
676
677       // We found a .eh_frame section we are going to optimize, so now
678       // we can add the set of optimized sections to the output
679       // section.  We need to postpone adding this until we've found a
680       // section we can optimize so that the .eh_frame section in
681       // crtbegin.o winds up at the start of the output section.
682       if (!this->added_eh_frame_data_)
683         {
684           os->add_output_section_data(this->eh_frame_data_);
685           this->added_eh_frame_data_ = true;
686         }
687       *off = -1;
688     }
689   else
690     {
691       // We couldn't handle this .eh_frame section for some reason.
692       // Add it as a normal section.
693       bool saw_sections_clause = this->script_options_->saw_sections_clause();
694       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
695                                    saw_sections_clause);
696     }
697
698   return os;
699 }
700
701 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
702 // the output section.
703
704 Output_section*
705 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
706                                 elfcpp::Elf_Xword flags,
707                                 Output_section_data* posd)
708 {
709   Output_section* os = this->choose_output_section(NULL, name, type, flags,
710                                                    false);
711   if (os != NULL)
712     os->add_output_section_data(posd);
713   return os;
714 }
715
716 // Map section flags to segment flags.
717
718 elfcpp::Elf_Word
719 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
720 {
721   elfcpp::Elf_Word ret = elfcpp::PF_R;
722   if ((flags & elfcpp::SHF_WRITE) != 0)
723     ret |= elfcpp::PF_W;
724   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
725     ret |= elfcpp::PF_X;
726   return ret;
727 }
728
729 // Sometimes we compress sections.  This is typically done for
730 // sections that are not part of normal program execution (such as
731 // .debug_* sections), and where the readers of these sections know
732 // how to deal with compressed sections.  (To make it easier for them,
733 // we will rename the ouput section in such cases from .foo to
734 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
735 // doesn't say for certain whether we'll compress -- it depends on
736 // commandline options as well -- just whether this section is a
737 // candidate for compression.
738
739 static bool
740 is_compressible_debug_section(const char* secname)
741 {
742   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
743 }
744
745 // Make a new Output_section, and attach it to segments as
746 // appropriate.
747
748 Output_section*
749 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
750                             elfcpp::Elf_Xword flags)
751 {
752   Output_section* os;
753   if ((flags & elfcpp::SHF_ALLOC) == 0
754       && strcmp(this->options_.compress_debug_sections(), "none") != 0
755       && is_compressible_debug_section(name))
756     os = new Output_compressed_section(&this->options_, name, type, flags);
757
758   else if ((flags & elfcpp::SHF_ALLOC) == 0
759            && this->options_.strip_debug_non_line()
760            && strcmp(".debug_abbrev", name) == 0)
761     {
762       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
763           name, type, flags);
764       if (this->debug_info_)
765         this->debug_info_->set_abbreviations(this->debug_abbrev_);
766     }
767   else if ((flags & elfcpp::SHF_ALLOC) == 0
768            && this->options_.strip_debug_non_line()
769            && strcmp(".debug_info", name) == 0)
770     {
771       os = this->debug_info_ = new Output_reduced_debug_info_section(
772           name, type, flags);
773       if (this->debug_abbrev_)
774         this->debug_info_->set_abbreviations(this->debug_abbrev_);
775     }
776  else
777     os = new Output_section(name, type, flags);
778
779   this->section_list_.push_back(os);
780
781   // The GNU linker by default sorts some sections by priority, so we
782   // do the same.  We need to know that this might happen before we
783   // attach any input sections.
784   if (!this->script_options_->saw_sections_clause()
785       && (strcmp(name, ".ctors") == 0
786           || strcmp(name, ".dtors") == 0
787           || strcmp(name, ".init_array") == 0
788           || strcmp(name, ".fini_array") == 0))
789     os->set_may_sort_attached_input_sections();
790
791   // With -z relro, we have to recognize the special sections by name.
792   // There is no other way.
793   if (!this->script_options_->saw_sections_clause()
794       && parameters->options().relro()
795       && type == elfcpp::SHT_PROGBITS
796       && (flags & elfcpp::SHF_ALLOC) != 0
797       && (flags & elfcpp::SHF_WRITE) != 0)
798     {
799       if (strcmp(name, ".data.rel.ro") == 0)
800         os->set_is_relro();
801       else if (strcmp(name, ".data.rel.ro.local") == 0)
802         {
803           os->set_is_relro();
804           os->set_is_relro_local();
805         }
806     }
807
808   // If we have already attached the sections to segments, then we
809   // need to attach this one now.  This happens for sections created
810   // directly by the linker.
811   if (this->sections_are_attached_)
812     this->attach_section_to_segment(os);
813
814   return os;
815 }
816
817 // Attach output sections to segments.  This is called after we have
818 // seen all the input sections.
819
820 void
821 Layout::attach_sections_to_segments()
822 {
823   for (Section_list::iterator p = this->section_list_.begin();
824        p != this->section_list_.end();
825        ++p)
826     this->attach_section_to_segment(*p);
827
828   this->sections_are_attached_ = true;
829 }
830
831 // Attach an output section to a segment.
832
833 void
834 Layout::attach_section_to_segment(Output_section* os)
835 {
836   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
837     this->unattached_section_list_.push_back(os);
838   else
839     this->attach_allocated_section_to_segment(os);
840 }
841
842 // Attach an allocated output section to a segment.
843
844 void
845 Layout::attach_allocated_section_to_segment(Output_section* os)
846 {
847   elfcpp::Elf_Xword flags = os->flags();
848   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
849
850   if (parameters->options().relocatable())
851     return;
852
853   // If we have a SECTIONS clause, we can't handle the attachment to
854   // segments until after we've seen all the sections.
855   if (this->script_options_->saw_sections_clause())
856     return;
857
858   gold_assert(!this->script_options_->saw_phdrs_clause());
859
860   // This output section goes into a PT_LOAD segment.
861
862   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
863
864   // In general the only thing we really care about for PT_LOAD
865   // segments is whether or not they are writable, so that is how we
866   // search for them.  People who need segments sorted on some other
867   // basis will have to use a linker script.
868
869   Segment_list::const_iterator p;
870   for (p = this->segment_list_.begin();
871        p != this->segment_list_.end();
872        ++p)
873     {
874       if ((*p)->type() == elfcpp::PT_LOAD
875           && (parameters->options().omagic()
876               || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
877         {
878           // If -Tbss was specified, we need to separate the data
879           // and BSS segments.
880           if (this->options_.user_set_Tbss())
881             {
882               if ((os->type() == elfcpp::SHT_NOBITS)
883                   == (*p)->has_any_data_sections())
884                 continue;
885             }
886
887           (*p)->add_output_section(os, seg_flags);
888           break;
889         }
890     }
891
892   if (p == this->segment_list_.end())
893     {
894       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
895                                                        seg_flags);
896       oseg->add_output_section(os, seg_flags);
897     }
898
899   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
900   // segment.
901   if (os->type() == elfcpp::SHT_NOTE)
902     {
903       // See if we already have an equivalent PT_NOTE segment.
904       for (p = this->segment_list_.begin();
905            p != segment_list_.end();
906            ++p)
907         {
908           if ((*p)->type() == elfcpp::PT_NOTE
909               && (((*p)->flags() & elfcpp::PF_W)
910                   == (seg_flags & elfcpp::PF_W)))
911             {
912               (*p)->add_output_section(os, seg_flags);
913               break;
914             }
915         }
916
917       if (p == this->segment_list_.end())
918         {
919           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
920                                                            seg_flags);
921           oseg->add_output_section(os, seg_flags);
922         }
923     }
924
925   // If we see a loadable SHF_TLS section, we create a PT_TLS
926   // segment.  There can only be one such segment.
927   if ((flags & elfcpp::SHF_TLS) != 0)
928     {
929       if (this->tls_segment_ == NULL)
930         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
931       this->tls_segment_->add_output_section(os, seg_flags);
932     }
933
934   // If -z relro is in effect, and we see a relro section, we create a
935   // PT_GNU_RELRO segment.  There can only be one such segment.
936   if (os->is_relro() && parameters->options().relro())
937     {
938       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
939       if (this->relro_segment_ == NULL)
940         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
941       this->relro_segment_->add_output_section(os, seg_flags);
942     }
943 }
944
945 // Make an output section for a script.
946
947 Output_section*
948 Layout::make_output_section_for_script(const char* name)
949 {
950   name = this->namepool_.add(name, false, NULL);
951   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
952                                                  elfcpp::SHF_ALLOC);
953   os->set_found_in_sections_clause();
954   return os;
955 }
956
957 // Return the number of segments we expect to see.
958
959 size_t
960 Layout::expected_segment_count() const
961 {
962   size_t ret = this->segment_list_.size();
963
964   // If we didn't see a SECTIONS clause in a linker script, we should
965   // already have the complete list of segments.  Otherwise we ask the
966   // SECTIONS clause how many segments it expects, and add in the ones
967   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
968
969   if (!this->script_options_->saw_sections_clause())
970     return ret;
971   else
972     {
973       const Script_sections* ss = this->script_options_->script_sections();
974       return ret + ss->expected_segment_count(this);
975     }
976 }
977
978 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
979 // is whether we saw a .note.GNU-stack section in the object file.
980 // GNU_STACK_FLAGS is the section flags.  The flags give the
981 // protection required for stack memory.  We record this in an
982 // executable as a PT_GNU_STACK segment.  If an object file does not
983 // have a .note.GNU-stack segment, we must assume that it is an old
984 // object.  On some targets that will force an executable stack.
985
986 void
987 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
988 {
989   if (!seen_gnu_stack)
990     this->input_without_gnu_stack_note_ = true;
991   else
992     {
993       this->input_with_gnu_stack_note_ = true;
994       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
995         this->input_requires_executable_stack_ = true;
996     }
997 }
998
999 // Create the dynamic sections which are needed before we read the
1000 // relocs.
1001
1002 void
1003 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1004 {
1005   if (parameters->doing_static_link())
1006     return;
1007
1008   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1009                                                        elfcpp::SHT_DYNAMIC,
1010                                                        (elfcpp::SHF_ALLOC
1011                                                         | elfcpp::SHF_WRITE),
1012                                                        false);
1013   this->dynamic_section_->set_is_relro();
1014
1015   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1016                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1017                                 elfcpp::STV_HIDDEN, 0, false, false);
1018
1019   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1020
1021   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1022 }
1023
1024 // For each output section whose name can be represented as C symbol,
1025 // define __start and __stop symbols for the section.  This is a GNU
1026 // extension.
1027
1028 void
1029 Layout::define_section_symbols(Symbol_table* symtab)
1030 {
1031   for (Section_list::const_iterator p = this->section_list_.begin();
1032        p != this->section_list_.end();
1033        ++p)
1034     {
1035       const char* const name = (*p)->name();
1036       if (name[strspn(name,
1037                       ("0123456789"
1038                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1039                        "abcdefghijklmnopqrstuvwxyz"
1040                        "_"))]
1041           == '\0')
1042         {
1043           const std::string name_string(name);
1044           const std::string start_name("__start_" + name_string);
1045           const std::string stop_name("__stop_" + name_string);
1046
1047           symtab->define_in_output_data(start_name.c_str(),
1048                                         NULL, // version
1049                                         *p,
1050                                         0, // value
1051                                         0, // symsize
1052                                         elfcpp::STT_NOTYPE,
1053                                         elfcpp::STB_GLOBAL,
1054                                         elfcpp::STV_DEFAULT,
1055                                         0, // nonvis
1056                                         false, // offset_is_from_end
1057                                         true); // only_if_ref
1058
1059           symtab->define_in_output_data(stop_name.c_str(),
1060                                         NULL, // version
1061                                         *p,
1062                                         0, // value
1063                                         0, // symsize
1064                                         elfcpp::STT_NOTYPE,
1065                                         elfcpp::STB_GLOBAL,
1066                                         elfcpp::STV_DEFAULT,
1067                                         0, // nonvis
1068                                         true, // offset_is_from_end
1069                                         true); // only_if_ref
1070         }
1071     }
1072 }
1073
1074 // Define symbols for group signatures.
1075
1076 void
1077 Layout::define_group_signatures(Symbol_table* symtab)
1078 {
1079   for (Group_signatures::iterator p = this->group_signatures_.begin();
1080        p != this->group_signatures_.end();
1081        ++p)
1082     {
1083       Symbol* sym = symtab->lookup(p->signature, NULL);
1084       if (sym != NULL)
1085         p->section->set_info_symndx(sym);
1086       else
1087         {
1088           // Force the name of the group section to the group
1089           // signature, and use the group's section symbol as the
1090           // signature symbol.
1091           if (strcmp(p->section->name(), p->signature) != 0)
1092             {
1093               const char* name = this->namepool_.add(p->signature,
1094                                                      true, NULL);
1095               p->section->set_name(name);
1096             }
1097           p->section->set_needs_symtab_index();
1098           p->section->set_info_section_symndx(p->section);
1099         }
1100     }
1101
1102   this->group_signatures_.clear();
1103 }
1104
1105 // Find the first read-only PT_LOAD segment, creating one if
1106 // necessary.
1107
1108 Output_segment*
1109 Layout::find_first_load_seg()
1110 {
1111   for (Segment_list::const_iterator p = this->segment_list_.begin();
1112        p != this->segment_list_.end();
1113        ++p)
1114     {
1115       if ((*p)->type() == elfcpp::PT_LOAD
1116           && ((*p)->flags() & elfcpp::PF_R) != 0
1117           && (parameters->options().omagic()
1118               || ((*p)->flags() & elfcpp::PF_W) == 0))
1119         return *p;
1120     }
1121
1122   gold_assert(!this->script_options_->saw_phdrs_clause());
1123
1124   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1125                                                        elfcpp::PF_R);
1126   return load_seg;
1127 }
1128
1129 // Finalize the layout.  When this is called, we have created all the
1130 // output sections and all the output segments which are based on
1131 // input sections.  We have several things to do, and we have to do
1132 // them in the right order, so that we get the right results correctly
1133 // and efficiently.
1134
1135 // 1) Finalize the list of output segments and create the segment
1136 // table header.
1137
1138 // 2) Finalize the dynamic symbol table and associated sections.
1139
1140 // 3) Determine the final file offset of all the output segments.
1141
1142 // 4) Determine the final file offset of all the SHF_ALLOC output
1143 // sections.
1144
1145 // 5) Create the symbol table sections and the section name table
1146 // section.
1147
1148 // 6) Finalize the symbol table: set symbol values to their final
1149 // value and make a final determination of which symbols are going
1150 // into the output symbol table.
1151
1152 // 7) Create the section table header.
1153
1154 // 8) Determine the final file offset of all the output sections which
1155 // are not SHF_ALLOC, including the section table header.
1156
1157 // 9) Finalize the ELF file header.
1158
1159 // This function returns the size of the output file.
1160
1161 off_t
1162 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1163                  Target* target, const Task* task)
1164 {
1165   target->finalize_sections(this);
1166
1167   this->count_local_symbols(task, input_objects);
1168
1169   this->create_gold_note();
1170   this->create_executable_stack_info(target);
1171   this->create_build_id();
1172
1173   Output_segment* phdr_seg = NULL;
1174   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1175     {
1176       // There was a dynamic object in the link.  We need to create
1177       // some information for the dynamic linker.
1178
1179       // Create the PT_PHDR segment which will hold the program
1180       // headers.
1181       if (!this->script_options_->saw_phdrs_clause())
1182         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1183
1184       // Create the dynamic symbol table, including the hash table.
1185       Output_section* dynstr;
1186       std::vector<Symbol*> dynamic_symbols;
1187       unsigned int local_dynamic_count;
1188       Versions versions(*this->script_options()->version_script_info(),
1189                         &this->dynpool_);
1190       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1191                                   &local_dynamic_count, &dynamic_symbols,
1192                                   &versions);
1193
1194       // Create the .interp section to hold the name of the
1195       // interpreter, and put it in a PT_INTERP segment.
1196       if (!parameters->options().shared())
1197         this->create_interp(target);
1198
1199       // Finish the .dynamic section to hold the dynamic data, and put
1200       // it in a PT_DYNAMIC segment.
1201       this->finish_dynamic_section(input_objects, symtab);
1202
1203       // We should have added everything we need to the dynamic string
1204       // table.
1205       this->dynpool_.set_string_offsets();
1206
1207       // Create the version sections.  We can't do this until the
1208       // dynamic string table is complete.
1209       this->create_version_sections(&versions, symtab, local_dynamic_count,
1210                                     dynamic_symbols, dynstr);
1211     }
1212
1213   // If there is a SECTIONS clause, put all the input sections into
1214   // the required order.
1215   Output_segment* load_seg;
1216   if (this->script_options_->saw_sections_clause())
1217     load_seg = this->set_section_addresses_from_script(symtab);
1218   else if (parameters->options().relocatable())
1219     load_seg = NULL;
1220   else
1221     load_seg = this->find_first_load_seg();
1222
1223   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1224     load_seg = NULL;
1225
1226   gold_assert(phdr_seg == NULL || load_seg != NULL);
1227
1228   // Lay out the segment headers.
1229   Output_segment_headers* segment_headers;
1230   if (parameters->options().relocatable())
1231     segment_headers = NULL;
1232   else
1233     {
1234       segment_headers = new Output_segment_headers(this->segment_list_);
1235       if (load_seg != NULL)
1236         load_seg->add_initial_output_data(segment_headers);
1237       if (phdr_seg != NULL)
1238         phdr_seg->add_initial_output_data(segment_headers);
1239     }
1240
1241   // Lay out the file header.
1242   Output_file_header* file_header;
1243   file_header = new Output_file_header(target, symtab, segment_headers,
1244                                        this->options_.entry());
1245   if (load_seg != NULL)
1246     load_seg->add_initial_output_data(file_header);
1247
1248   this->special_output_list_.push_back(file_header);
1249   if (segment_headers != NULL)
1250     this->special_output_list_.push_back(segment_headers);
1251
1252   if (this->script_options_->saw_phdrs_clause()
1253       && !parameters->options().relocatable())
1254     {
1255       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1256       // clause in a linker script.
1257       Script_sections* ss = this->script_options_->script_sections();
1258       ss->put_headers_in_phdrs(file_header, segment_headers);
1259     }
1260
1261   // We set the output section indexes in set_segment_offsets and
1262   // set_section_indexes.
1263   unsigned int shndx = 1;
1264
1265   // Set the file offsets of all the segments, and all the sections
1266   // they contain.
1267   off_t off;
1268   if (!parameters->options().relocatable())
1269     off = this->set_segment_offsets(target, load_seg, &shndx);
1270   else
1271     off = this->set_relocatable_section_offsets(file_header, &shndx);
1272
1273   // Set the file offsets of all the non-data sections we've seen so
1274   // far which don't have to wait for the input sections.  We need
1275   // this in order to finalize local symbols in non-allocated
1276   // sections.
1277   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1278
1279   // Set the section indexes of all unallocated sections seen so far,
1280   // in case any of them are somehow referenced by a symbol.
1281   shndx = this->set_section_indexes(shndx);
1282
1283   // Create the symbol table sections.
1284   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1285   if (!parameters->doing_static_link())
1286     this->assign_local_dynsym_offsets(input_objects);
1287
1288   // Process any symbol assignments from a linker script.  This must
1289   // be called after the symbol table has been finalized.
1290   this->script_options_->finalize_symbols(symtab, this);
1291
1292   // Create the .shstrtab section.
1293   Output_section* shstrtab_section = this->create_shstrtab();
1294
1295   // Set the file offsets of the rest of the non-data sections which
1296   // don't have to wait for the input sections.
1297   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1298
1299   // Now that all sections have been created, set the section indexes
1300   // for any sections which haven't been done yet.
1301   shndx = this->set_section_indexes(shndx);
1302
1303   // Create the section table header.
1304   this->create_shdrs(shstrtab_section, &off);
1305
1306   // If there are no sections which require postprocessing, we can
1307   // handle the section names now, and avoid a resize later.
1308   if (!this->any_postprocessing_sections_)
1309     off = this->set_section_offsets(off,
1310                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1311
1312   file_header->set_section_info(this->section_headers_, shstrtab_section);
1313
1314   // Now we know exactly where everything goes in the output file
1315   // (except for non-allocated sections which require postprocessing).
1316   Output_data::layout_complete();
1317
1318   this->output_file_size_ = off;
1319
1320   return off;
1321 }
1322
1323 // Create a note header following the format defined in the ELF ABI.
1324 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1325 // descriptor.  ALLOCATE is true if the section should be allocated in
1326 // memory.  This returns the new note section.  It sets
1327 // *TRAILING_PADDING to the number of trailing zero bytes required.
1328
1329 Output_section*
1330 Layout::create_note(const char* name, int note_type, size_t descsz,
1331                     bool allocate, size_t* trailing_padding)
1332 {
1333   // Authorities all agree that the values in a .note field should
1334   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1335   // they differ on what the alignment is for 64-bit binaries.
1336   // The GABI says unambiguously they take 8-byte alignment:
1337   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1338   // Other documentation says alignment should always be 4 bytes:
1339   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1340   // GNU ld and GNU readelf both support the latter (at least as of
1341   // version 2.16.91), and glibc always generates the latter for
1342   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1343   // here.
1344 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1345   const int size = parameters->target().get_size();
1346 #else
1347   const int size = 32;
1348 #endif
1349
1350   // The contents of the .note section.
1351   size_t namesz = strlen(name) + 1;
1352   size_t aligned_namesz = align_address(namesz, size / 8);
1353   size_t aligned_descsz = align_address(descsz, size / 8);
1354
1355   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1356
1357   unsigned char* buffer = new unsigned char[notehdrsz];
1358   memset(buffer, 0, notehdrsz);
1359
1360   bool is_big_endian = parameters->target().is_big_endian();
1361
1362   if (size == 32)
1363     {
1364       if (!is_big_endian)
1365         {
1366           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1367           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1368           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1369         }
1370       else
1371         {
1372           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1373           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1374           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1375         }
1376     }
1377   else if (size == 64)
1378     {
1379       if (!is_big_endian)
1380         {
1381           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1382           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1383           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1384         }
1385       else
1386         {
1387           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1388           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1389           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1390         }
1391     }
1392   else
1393     gold_unreachable();
1394
1395   memcpy(buffer + 3 * (size / 8), name, namesz);
1396
1397   const char* note_name = this->namepool_.add(".note", false, NULL);
1398   elfcpp::Elf_Xword flags = 0;
1399   if (allocate)
1400     flags = elfcpp::SHF_ALLOC;
1401   Output_section* os = this->make_output_section(note_name,
1402                                                  elfcpp::SHT_NOTE,
1403                                                  flags);
1404   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1405                                                            size / 8,
1406                                                            "** note header");
1407   os->add_output_section_data(posd);
1408
1409   *trailing_padding = aligned_descsz - descsz;
1410
1411   return os;
1412 }
1413
1414 // For an executable or shared library, create a note to record the
1415 // version of gold used to create the binary.
1416
1417 void
1418 Layout::create_gold_note()
1419 {
1420   if (parameters->options().relocatable())
1421     return;
1422
1423   std::string desc = std::string("gold ") + gold::get_version_string();
1424
1425   size_t trailing_padding;
1426   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1427                                          desc.size(), false, &trailing_padding);
1428
1429   Output_section_data* posd = new Output_data_const(desc, 4);
1430   os->add_output_section_data(posd);
1431
1432   if (trailing_padding > 0)
1433     {
1434       posd = new Output_data_zero_fill(trailing_padding, 0);
1435       os->add_output_section_data(posd);
1436     }
1437 }
1438
1439 // Record whether the stack should be executable.  This can be set
1440 // from the command line using the -z execstack or -z noexecstack
1441 // options.  Otherwise, if any input file has a .note.GNU-stack
1442 // section with the SHF_EXECINSTR flag set, the stack should be
1443 // executable.  Otherwise, if at least one input file a
1444 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1445 // section, we use the target default for whether the stack should be
1446 // executable.  Otherwise, we don't generate a stack note.  When
1447 // generating a object file, we create a .note.GNU-stack section with
1448 // the appropriate marking.  When generating an executable or shared
1449 // library, we create a PT_GNU_STACK segment.
1450
1451 void
1452 Layout::create_executable_stack_info(const Target* target)
1453 {
1454   bool is_stack_executable;
1455   if (this->options_.is_execstack_set())
1456     is_stack_executable = this->options_.is_stack_executable();
1457   else if (!this->input_with_gnu_stack_note_)
1458     return;
1459   else
1460     {
1461       if (this->input_requires_executable_stack_)
1462         is_stack_executable = true;
1463       else if (this->input_without_gnu_stack_note_)
1464         is_stack_executable = target->is_default_stack_executable();
1465       else
1466         is_stack_executable = false;
1467     }
1468
1469   if (parameters->options().relocatable())
1470     {
1471       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1472       elfcpp::Elf_Xword flags = 0;
1473       if (is_stack_executable)
1474         flags |= elfcpp::SHF_EXECINSTR;
1475       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1476     }
1477   else
1478     {
1479       if (this->script_options_->saw_phdrs_clause())
1480         return;
1481       int flags = elfcpp::PF_R | elfcpp::PF_W;
1482       if (is_stack_executable)
1483         flags |= elfcpp::PF_X;
1484       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1485     }
1486 }
1487
1488 // If --build-id was used, set up the build ID note.
1489
1490 void
1491 Layout::create_build_id()
1492 {
1493   if (!parameters->options().user_set_build_id())
1494     return;
1495
1496   const char* style = parameters->options().build_id();
1497   if (strcmp(style, "none") == 0)
1498     return;
1499
1500   // Set DESCSZ to the size of the note descriptor.  When possible,
1501   // set DESC to the note descriptor contents.
1502   size_t descsz;
1503   std::string desc;
1504   if (strcmp(style, "md5") == 0)
1505     descsz = 128 / 8;
1506   else if (strcmp(style, "sha1") == 0)
1507     descsz = 160 / 8;
1508   else if (strcmp(style, "uuid") == 0)
1509     {
1510       const size_t uuidsz = 128 / 8;
1511
1512       char buffer[uuidsz];
1513       memset(buffer, 0, uuidsz);
1514
1515       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1516       if (descriptor < 0)
1517         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1518                    strerror(errno));
1519       else
1520         {
1521           ssize_t got = ::read(descriptor, buffer, uuidsz);
1522           release_descriptor(descriptor, true);
1523           if (got < 0)
1524             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1525           else if (static_cast<size_t>(got) != uuidsz)
1526             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1527                        uuidsz, got);
1528         }
1529
1530       desc.assign(buffer, uuidsz);
1531       descsz = uuidsz;
1532     }
1533   else if (strncmp(style, "0x", 2) == 0)
1534     {
1535       hex_init();
1536       const char* p = style + 2;
1537       while (*p != '\0')
1538         {
1539           if (hex_p(p[0]) && hex_p(p[1]))
1540             {
1541               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1542               desc += c;
1543               p += 2;
1544             }
1545           else if (*p == '-' || *p == ':')
1546             ++p;
1547           else
1548             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1549                        style);
1550         }
1551       descsz = desc.size();
1552     }
1553   else
1554     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1555
1556   // Create the note.
1557   size_t trailing_padding;
1558   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1559                                          descsz, true, &trailing_padding);
1560
1561   if (!desc.empty())
1562     {
1563       // We know the value already, so we fill it in now.
1564       gold_assert(desc.size() == descsz);
1565
1566       Output_section_data* posd = new Output_data_const(desc, 4);
1567       os->add_output_section_data(posd);
1568
1569       if (trailing_padding != 0)
1570         {
1571           posd = new Output_data_zero_fill(trailing_padding, 0);
1572           os->add_output_section_data(posd);
1573         }
1574     }
1575   else
1576     {
1577       // We need to compute a checksum after we have completed the
1578       // link.
1579       gold_assert(trailing_padding == 0);
1580       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1581       os->add_output_section_data(this->build_id_note_);
1582       os->set_after_input_sections();
1583     }
1584 }
1585
1586 // Return whether SEG1 should be before SEG2 in the output file.  This
1587 // is based entirely on the segment type and flags.  When this is
1588 // called the segment addresses has normally not yet been set.
1589
1590 bool
1591 Layout::segment_precedes(const Output_segment* seg1,
1592                          const Output_segment* seg2)
1593 {
1594   elfcpp::Elf_Word type1 = seg1->type();
1595   elfcpp::Elf_Word type2 = seg2->type();
1596
1597   // The single PT_PHDR segment is required to precede any loadable
1598   // segment.  We simply make it always first.
1599   if (type1 == elfcpp::PT_PHDR)
1600     {
1601       gold_assert(type2 != elfcpp::PT_PHDR);
1602       return true;
1603     }
1604   if (type2 == elfcpp::PT_PHDR)
1605     return false;
1606
1607   // The single PT_INTERP segment is required to precede any loadable
1608   // segment.  We simply make it always second.
1609   if (type1 == elfcpp::PT_INTERP)
1610     {
1611       gold_assert(type2 != elfcpp::PT_INTERP);
1612       return true;
1613     }
1614   if (type2 == elfcpp::PT_INTERP)
1615     return false;
1616
1617   // We then put PT_LOAD segments before any other segments.
1618   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1619     return true;
1620   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1621     return false;
1622
1623   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1624   // segment, because that is where the dynamic linker expects to find
1625   // it (this is just for efficiency; other positions would also work
1626   // correctly).
1627   if (type1 == elfcpp::PT_TLS
1628       && type2 != elfcpp::PT_TLS
1629       && type2 != elfcpp::PT_GNU_RELRO)
1630     return false;
1631   if (type2 == elfcpp::PT_TLS
1632       && type1 != elfcpp::PT_TLS
1633       && type1 != elfcpp::PT_GNU_RELRO)
1634     return true;
1635
1636   // We put the PT_GNU_RELRO segment last, because that is where the
1637   // dynamic linker expects to find it (as with PT_TLS, this is just
1638   // for efficiency).
1639   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1640     return false;
1641   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1642     return true;
1643
1644   const elfcpp::Elf_Word flags1 = seg1->flags();
1645   const elfcpp::Elf_Word flags2 = seg2->flags();
1646
1647   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1648   // by the numeric segment type and flags values.  There should not
1649   // be more than one segment with the same type and flags.
1650   if (type1 != elfcpp::PT_LOAD)
1651     {
1652       if (type1 != type2)
1653         return type1 < type2;
1654       gold_assert(flags1 != flags2);
1655       return flags1 < flags2;
1656     }
1657
1658   // If the addresses are set already, sort by load address.
1659   if (seg1->are_addresses_set())
1660     {
1661       if (!seg2->are_addresses_set())
1662         return true;
1663
1664       unsigned int section_count1 = seg1->output_section_count();
1665       unsigned int section_count2 = seg2->output_section_count();
1666       if (section_count1 == 0 && section_count2 > 0)
1667         return true;
1668       if (section_count1 > 0 && section_count2 == 0)
1669         return false;
1670
1671       uint64_t paddr1 = seg1->first_section_load_address();
1672       uint64_t paddr2 = seg2->first_section_load_address();
1673       if (paddr1 != paddr2)
1674         return paddr1 < paddr2;
1675     }
1676   else if (seg2->are_addresses_set())
1677     return false;
1678
1679   // We sort PT_LOAD segments based on the flags.  Readonly segments
1680   // come before writable segments.  Then writable segments with data
1681   // come before writable segments without data.  Then executable
1682   // segments come before non-executable segments.  Then the unlikely
1683   // case of a non-readable segment comes before the normal case of a
1684   // readable segment.  If there are multiple segments with the same
1685   // type and flags, we require that the address be set, and we sort
1686   // by virtual address and then physical address.
1687   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1688     return (flags1 & elfcpp::PF_W) == 0;
1689   if ((flags1 & elfcpp::PF_W) != 0
1690       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1691     return seg1->has_any_data_sections();
1692   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1693     return (flags1 & elfcpp::PF_X) != 0;
1694   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1695     return (flags1 & elfcpp::PF_R) == 0;
1696
1697   // We shouldn't get here--we shouldn't create segments which we
1698   // can't distinguish.
1699   gold_unreachable();
1700 }
1701
1702 // Set the file offsets of all the segments, and all the sections they
1703 // contain.  They have all been created.  LOAD_SEG must be be laid out
1704 // first.  Return the offset of the data to follow.
1705
1706 off_t
1707 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1708                             unsigned int *pshndx)
1709 {
1710   // Sort them into the final order.
1711   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1712             Layout::Compare_segments());
1713
1714   // Find the PT_LOAD segments, and set their addresses and offsets
1715   // and their section's addresses and offsets.
1716   uint64_t addr;
1717   if (this->options_.user_set_Ttext())
1718     addr = this->options_.Ttext();
1719   else if (parameters->options().shared())
1720     addr = 0;
1721   else
1722     addr = target->default_text_segment_address();
1723   off_t off = 0;
1724
1725   // If LOAD_SEG is NULL, then the file header and segment headers
1726   // will not be loadable.  But they still need to be at offset 0 in
1727   // the file.  Set their offsets now.
1728   if (load_seg == NULL)
1729     {
1730       for (Data_list::iterator p = this->special_output_list_.begin();
1731            p != this->special_output_list_.end();
1732            ++p)
1733         {
1734           off = align_address(off, (*p)->addralign());
1735           (*p)->set_address_and_file_offset(0, off);
1736           off += (*p)->data_size();
1737         }
1738     }
1739
1740   const bool check_sections = parameters->options().check_sections();
1741   Output_segment* last_load_segment = NULL;
1742
1743   bool was_readonly = false;
1744   for (Segment_list::iterator p = this->segment_list_.begin();
1745        p != this->segment_list_.end();
1746        ++p)
1747     {
1748       if ((*p)->type() == elfcpp::PT_LOAD)
1749         {
1750           if (load_seg != NULL && load_seg != *p)
1751             gold_unreachable();
1752           load_seg = NULL;
1753
1754           bool are_addresses_set = (*p)->are_addresses_set();
1755           if (are_addresses_set)
1756             {
1757               // When it comes to setting file offsets, we care about
1758               // the physical address.
1759               addr = (*p)->paddr();
1760             }
1761           else if (this->options_.user_set_Tdata()
1762                    && ((*p)->flags() & elfcpp::PF_W) != 0
1763                    && (!this->options_.user_set_Tbss()
1764                        || (*p)->has_any_data_sections()))
1765             {
1766               addr = this->options_.Tdata();
1767               are_addresses_set = true;
1768             }
1769           else if (this->options_.user_set_Tbss()
1770                    && ((*p)->flags() & elfcpp::PF_W) != 0
1771                    && !(*p)->has_any_data_sections())
1772             {
1773               addr = this->options_.Tbss();
1774               are_addresses_set = true;
1775             }
1776
1777           uint64_t orig_addr = addr;
1778           uint64_t orig_off = off;
1779
1780           uint64_t aligned_addr = 0;
1781           uint64_t abi_pagesize = target->abi_pagesize();
1782           uint64_t common_pagesize = target->common_pagesize();
1783
1784           if (!parameters->options().nmagic()
1785               && !parameters->options().omagic())
1786             (*p)->set_minimum_p_align(common_pagesize);
1787
1788           if (are_addresses_set)
1789             {
1790               if (!parameters->options().nmagic()
1791                   && !parameters->options().omagic())
1792                 {
1793                   // Adjust the file offset to the same address modulo
1794                   // the page size.
1795                   uint64_t unsigned_off = off;
1796                   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1797                                           | (addr & (abi_pagesize - 1)));
1798                   if (aligned_off < unsigned_off)
1799                     aligned_off += abi_pagesize;
1800                   off = aligned_off;
1801                 }
1802             }
1803           else
1804             {
1805               // If the last segment was readonly, and this one is
1806               // not, then skip the address forward one page,
1807               // maintaining the same position within the page.  This
1808               // lets us store both segments overlapping on a single
1809               // page in the file, but the loader will put them on
1810               // different pages in memory.
1811
1812               addr = align_address(addr, (*p)->maximum_alignment());
1813               aligned_addr = addr;
1814
1815               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1816                 {
1817                   if ((addr & (abi_pagesize - 1)) != 0)
1818                     addr = addr + abi_pagesize;
1819                 }
1820
1821               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1822             }
1823
1824           unsigned int shndx_hold = *pshndx;
1825           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1826                                                           &off, pshndx);
1827
1828           // Now that we know the size of this segment, we may be able
1829           // to save a page in memory, at the cost of wasting some
1830           // file space, by instead aligning to the start of a new
1831           // page.  Here we use the real machine page size rather than
1832           // the ABI mandated page size.
1833
1834           if (!are_addresses_set && aligned_addr != addr)
1835             {
1836               uint64_t first_off = (common_pagesize
1837                                     - (aligned_addr
1838                                        & (common_pagesize - 1)));
1839               uint64_t last_off = new_addr & (common_pagesize - 1);
1840               if (first_off > 0
1841                   && last_off > 0
1842                   && ((aligned_addr & ~ (common_pagesize - 1))
1843                       != (new_addr & ~ (common_pagesize - 1)))
1844                   && first_off + last_off <= common_pagesize)
1845                 {
1846                   *pshndx = shndx_hold;
1847                   addr = align_address(aligned_addr, common_pagesize);
1848                   addr = align_address(addr, (*p)->maximum_alignment());
1849                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1850                   new_addr = (*p)->set_section_addresses(this, true, addr,
1851                                                          &off, pshndx);
1852                 }
1853             }
1854
1855           addr = new_addr;
1856
1857           if (((*p)->flags() & elfcpp::PF_W) == 0)
1858             was_readonly = true;
1859
1860           // Implement --check-sections.  We know that the segments
1861           // are sorted by LMA.
1862           if (check_sections && last_load_segment != NULL)
1863             {
1864               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1865               if (last_load_segment->paddr() + last_load_segment->memsz()
1866                   > (*p)->paddr())
1867                 {
1868                   unsigned long long lb1 = last_load_segment->paddr();
1869                   unsigned long long le1 = lb1 + last_load_segment->memsz();
1870                   unsigned long long lb2 = (*p)->paddr();
1871                   unsigned long long le2 = lb2 + (*p)->memsz();
1872                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1873                                "[0x%llx -> 0x%llx]"),
1874                              lb1, le1, lb2, le2);
1875                 }
1876             }
1877           last_load_segment = *p;
1878         }
1879     }
1880
1881   // Handle the non-PT_LOAD segments, setting their offsets from their
1882   // section's offsets.
1883   for (Segment_list::iterator p = this->segment_list_.begin();
1884        p != this->segment_list_.end();
1885        ++p)
1886     {
1887       if ((*p)->type() != elfcpp::PT_LOAD)
1888         (*p)->set_offset();
1889     }
1890
1891   // Set the TLS offsets for each section in the PT_TLS segment.
1892   if (this->tls_segment_ != NULL)
1893     this->tls_segment_->set_tls_offsets();
1894
1895   return off;
1896 }
1897
1898 // Set the offsets of all the allocated sections when doing a
1899 // relocatable link.  This does the same jobs as set_segment_offsets,
1900 // only for a relocatable link.
1901
1902 off_t
1903 Layout::set_relocatable_section_offsets(Output_data* file_header,
1904                                         unsigned int *pshndx)
1905 {
1906   off_t off = 0;
1907
1908   file_header->set_address_and_file_offset(0, 0);
1909   off += file_header->data_size();
1910
1911   for (Section_list::iterator p = this->section_list_.begin();
1912        p != this->section_list_.end();
1913        ++p)
1914     {
1915       // We skip unallocated sections here, except that group sections
1916       // have to come first.
1917       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1918           && (*p)->type() != elfcpp::SHT_GROUP)
1919         continue;
1920
1921       off = align_address(off, (*p)->addralign());
1922
1923       // The linker script might have set the address.
1924       if (!(*p)->is_address_valid())
1925         (*p)->set_address(0);
1926       (*p)->set_file_offset(off);
1927       (*p)->finalize_data_size();
1928       off += (*p)->data_size();
1929
1930       (*p)->set_out_shndx(*pshndx);
1931       ++*pshndx;
1932     }
1933
1934   return off;
1935 }
1936
1937 // Set the file offset of all the sections not associated with a
1938 // segment.
1939
1940 off_t
1941 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1942 {
1943   for (Section_list::iterator p = this->unattached_section_list_.begin();
1944        p != this->unattached_section_list_.end();
1945        ++p)
1946     {
1947       // The symtab section is handled in create_symtab_sections.
1948       if (*p == this->symtab_section_)
1949         continue;
1950
1951       // If we've already set the data size, don't set it again.
1952       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1953         continue;
1954
1955       if (pass == BEFORE_INPUT_SECTIONS_PASS
1956           && (*p)->requires_postprocessing())
1957         {
1958           (*p)->create_postprocessing_buffer();
1959           this->any_postprocessing_sections_ = true;
1960         }
1961
1962       if (pass == BEFORE_INPUT_SECTIONS_PASS
1963           && (*p)->after_input_sections())
1964         continue;
1965       else if (pass == POSTPROCESSING_SECTIONS_PASS
1966                && (!(*p)->after_input_sections()
1967                    || (*p)->type() == elfcpp::SHT_STRTAB))
1968         continue;
1969       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1970                && (!(*p)->after_input_sections()
1971                    || (*p)->type() != elfcpp::SHT_STRTAB))
1972         continue;
1973
1974       off = align_address(off, (*p)->addralign());
1975       (*p)->set_file_offset(off);
1976       (*p)->finalize_data_size();
1977       off += (*p)->data_size();
1978
1979       // At this point the name must be set.
1980       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1981         this->namepool_.add((*p)->name(), false, NULL);
1982     }
1983   return off;
1984 }
1985
1986 // Set the section indexes of all the sections not associated with a
1987 // segment.
1988
1989 unsigned int
1990 Layout::set_section_indexes(unsigned int shndx)
1991 {
1992   for (Section_list::iterator p = this->unattached_section_list_.begin();
1993        p != this->unattached_section_list_.end();
1994        ++p)
1995     {
1996       if (!(*p)->has_out_shndx())
1997         {
1998           (*p)->set_out_shndx(shndx);
1999           ++shndx;
2000         }
2001     }
2002   return shndx;
2003 }
2004
2005 // Set the section addresses according to the linker script.  This is
2006 // only called when we see a SECTIONS clause.  This returns the
2007 // program segment which should hold the file header and segment
2008 // headers, if any.  It will return NULL if they should not be in a
2009 // segment.
2010
2011 Output_segment*
2012 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2013 {
2014   Script_sections* ss = this->script_options_->script_sections();
2015   gold_assert(ss->saw_sections_clause());
2016
2017   // Place each orphaned output section in the script.
2018   for (Section_list::iterator p = this->section_list_.begin();
2019        p != this->section_list_.end();
2020        ++p)
2021     {
2022       if (!(*p)->found_in_sections_clause())
2023         ss->place_orphan(*p);
2024     }
2025
2026   return this->script_options_->set_section_addresses(symtab, this);
2027 }
2028
2029 // Count the local symbols in the regular symbol table and the dynamic
2030 // symbol table, and build the respective string pools.
2031
2032 void
2033 Layout::count_local_symbols(const Task* task,
2034                             const Input_objects* input_objects)
2035 {
2036   // First, figure out an upper bound on the number of symbols we'll
2037   // be inserting into each pool.  This helps us create the pools with
2038   // the right size, to avoid unnecessary hashtable resizing.
2039   unsigned int symbol_count = 0;
2040   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2041        p != input_objects->relobj_end();
2042        ++p)
2043     symbol_count += (*p)->local_symbol_count();
2044
2045   // Go from "upper bound" to "estimate."  We overcount for two
2046   // reasons: we double-count symbols that occur in more than one
2047   // object file, and we count symbols that are dropped from the
2048   // output.  Add it all together and assume we overcount by 100%.
2049   symbol_count /= 2;
2050
2051   // We assume all symbols will go into both the sympool and dynpool.
2052   this->sympool_.reserve(symbol_count);
2053   this->dynpool_.reserve(symbol_count);
2054
2055   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2056        p != input_objects->relobj_end();
2057        ++p)
2058     {
2059       Task_lock_obj<Object> tlo(task, *p);
2060       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2061     }
2062 }
2063
2064 // Create the symbol table sections.  Here we also set the final
2065 // values of the symbols.  At this point all the loadable sections are
2066 // fully laid out.  SHNUM is the number of sections so far.
2067
2068 void
2069 Layout::create_symtab_sections(const Input_objects* input_objects,
2070                                Symbol_table* symtab,
2071                                unsigned int shnum,
2072                                off_t* poff)
2073 {
2074   int symsize;
2075   unsigned int align;
2076   if (parameters->target().get_size() == 32)
2077     {
2078       symsize = elfcpp::Elf_sizes<32>::sym_size;
2079       align = 4;
2080     }
2081   else if (parameters->target().get_size() == 64)
2082     {
2083       symsize = elfcpp::Elf_sizes<64>::sym_size;
2084       align = 8;
2085     }
2086   else
2087     gold_unreachable();
2088
2089   off_t off = *poff;
2090   off = align_address(off, align);
2091   off_t startoff = off;
2092
2093   // Save space for the dummy symbol at the start of the section.  We
2094   // never bother to write this out--it will just be left as zero.
2095   off += symsize;
2096   unsigned int local_symbol_index = 1;
2097
2098   // Add STT_SECTION symbols for each Output section which needs one.
2099   for (Section_list::iterator p = this->section_list_.begin();
2100        p != this->section_list_.end();
2101        ++p)
2102     {
2103       if (!(*p)->needs_symtab_index())
2104         (*p)->set_symtab_index(-1U);
2105       else
2106         {
2107           (*p)->set_symtab_index(local_symbol_index);
2108           ++local_symbol_index;
2109           off += symsize;
2110         }
2111     }
2112
2113   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2114        p != input_objects->relobj_end();
2115        ++p)
2116     {
2117       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2118                                                         off);
2119       off += (index - local_symbol_index) * symsize;
2120       local_symbol_index = index;
2121     }
2122
2123   unsigned int local_symcount = local_symbol_index;
2124   gold_assert(local_symcount * symsize == off - startoff);
2125
2126   off_t dynoff;
2127   size_t dyn_global_index;
2128   size_t dyncount;
2129   if (this->dynsym_section_ == NULL)
2130     {
2131       dynoff = 0;
2132       dyn_global_index = 0;
2133       dyncount = 0;
2134     }
2135   else
2136     {
2137       dyn_global_index = this->dynsym_section_->info();
2138       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2139       dynoff = this->dynsym_section_->offset() + locsize;
2140       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2141       gold_assert(static_cast<off_t>(dyncount * symsize)
2142                   == this->dynsym_section_->data_size() - locsize);
2143     }
2144
2145   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2146                          &this->sympool_, &local_symcount);
2147
2148   if (!parameters->options().strip_all())
2149     {
2150       this->sympool_.set_string_offsets();
2151
2152       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2153       Output_section* osymtab = this->make_output_section(symtab_name,
2154                                                           elfcpp::SHT_SYMTAB,
2155                                                           0);
2156       this->symtab_section_ = osymtab;
2157
2158       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2159                                                              align,
2160                                                              "** symtab");
2161       osymtab->add_output_section_data(pos);
2162
2163       // We generate a .symtab_shndx section if we have more than
2164       // SHN_LORESERVE sections.  Technically it is possible that we
2165       // don't need one, because it is possible that there are no
2166       // symbols in any of sections with indexes larger than
2167       // SHN_LORESERVE.  That is probably unusual, though, and it is
2168       // easier to always create one than to compute section indexes
2169       // twice (once here, once when writing out the symbols).
2170       if (shnum >= elfcpp::SHN_LORESERVE)
2171         {
2172           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2173                                                                false, NULL);
2174           Output_section* osymtab_xindex =
2175             this->make_output_section(symtab_xindex_name,
2176                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2177
2178           size_t symcount = (off - startoff) / symsize;
2179           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2180
2181           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2182
2183           osymtab_xindex->set_link_section(osymtab);
2184           osymtab_xindex->set_addralign(4);
2185           osymtab_xindex->set_entsize(4);
2186
2187           osymtab_xindex->set_after_input_sections();
2188
2189           // This tells the driver code to wait until the symbol table
2190           // has written out before writing out the postprocessing
2191           // sections, including the .symtab_shndx section.
2192           this->any_postprocessing_sections_ = true;
2193         }
2194
2195       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2196       Output_section* ostrtab = this->make_output_section(strtab_name,
2197                                                           elfcpp::SHT_STRTAB,
2198                                                           0);
2199
2200       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2201       ostrtab->add_output_section_data(pstr);
2202
2203       osymtab->set_file_offset(startoff);
2204       osymtab->finalize_data_size();
2205       osymtab->set_link_section(ostrtab);
2206       osymtab->set_info(local_symcount);
2207       osymtab->set_entsize(symsize);
2208
2209       *poff = off;
2210     }
2211 }
2212
2213 // Create the .shstrtab section, which holds the names of the
2214 // sections.  At the time this is called, we have created all the
2215 // output sections except .shstrtab itself.
2216
2217 Output_section*
2218 Layout::create_shstrtab()
2219 {
2220   // FIXME: We don't need to create a .shstrtab section if we are
2221   // stripping everything.
2222
2223   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2224
2225   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2226
2227   // We can't write out this section until we've set all the section
2228   // names, and we don't set the names of compressed output sections
2229   // until relocations are complete.
2230   os->set_after_input_sections();
2231
2232   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2233   os->add_output_section_data(posd);
2234
2235   return os;
2236 }
2237
2238 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2239 // offset.
2240
2241 void
2242 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2243 {
2244   Output_section_headers* oshdrs;
2245   oshdrs = new Output_section_headers(this,
2246                                       &this->segment_list_,
2247                                       &this->section_list_,
2248                                       &this->unattached_section_list_,
2249                                       &this->namepool_,
2250                                       shstrtab_section);
2251   off_t off = align_address(*poff, oshdrs->addralign());
2252   oshdrs->set_address_and_file_offset(0, off);
2253   off += oshdrs->data_size();
2254   *poff = off;
2255   this->section_headers_ = oshdrs;
2256 }
2257
2258 // Count the allocated sections.
2259
2260 size_t
2261 Layout::allocated_output_section_count() const
2262 {
2263   size_t section_count = 0;
2264   for (Segment_list::const_iterator p = this->segment_list_.begin();
2265        p != this->segment_list_.end();
2266        ++p)
2267     section_count += (*p)->output_section_count();
2268   return section_count;
2269 }
2270
2271 // Create the dynamic symbol table.
2272
2273 void
2274 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2275                               Symbol_table* symtab,
2276                               Output_section **pdynstr,
2277                               unsigned int* plocal_dynamic_count,
2278                               std::vector<Symbol*>* pdynamic_symbols,
2279                               Versions* pversions)
2280 {
2281   // Count all the symbols in the dynamic symbol table, and set the
2282   // dynamic symbol indexes.
2283
2284   // Skip symbol 0, which is always all zeroes.
2285   unsigned int index = 1;
2286
2287   // Add STT_SECTION symbols for each Output section which needs one.
2288   for (Section_list::iterator p = this->section_list_.begin();
2289        p != this->section_list_.end();
2290        ++p)
2291     {
2292       if (!(*p)->needs_dynsym_index())
2293         (*p)->set_dynsym_index(-1U);
2294       else
2295         {
2296           (*p)->set_dynsym_index(index);
2297           ++index;
2298         }
2299     }
2300
2301   // Count the local symbols that need to go in the dynamic symbol table,
2302   // and set the dynamic symbol indexes.
2303   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2304        p != input_objects->relobj_end();
2305        ++p)
2306     {
2307       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2308       index = new_index;
2309     }
2310
2311   unsigned int local_symcount = index;
2312   *plocal_dynamic_count = local_symcount;
2313
2314   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2315                                      &this->dynpool_, pversions);
2316
2317   int symsize;
2318   unsigned int align;
2319   const int size = parameters->target().get_size();
2320   if (size == 32)
2321     {
2322       symsize = elfcpp::Elf_sizes<32>::sym_size;
2323       align = 4;
2324     }
2325   else if (size == 64)
2326     {
2327       symsize = elfcpp::Elf_sizes<64>::sym_size;
2328       align = 8;
2329     }
2330   else
2331     gold_unreachable();
2332
2333   // Create the dynamic symbol table section.
2334
2335   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2336                                                        elfcpp::SHT_DYNSYM,
2337                                                        elfcpp::SHF_ALLOC,
2338                                                        false);
2339
2340   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2341                                                            align,
2342                                                            "** dynsym");
2343   dynsym->add_output_section_data(odata);
2344
2345   dynsym->set_info(local_symcount);
2346   dynsym->set_entsize(symsize);
2347   dynsym->set_addralign(align);
2348
2349   this->dynsym_section_ = dynsym;
2350
2351   Output_data_dynamic* const odyn = this->dynamic_data_;
2352   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2353   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2354
2355   // If there are more than SHN_LORESERVE allocated sections, we
2356   // create a .dynsym_shndx section.  It is possible that we don't
2357   // need one, because it is possible that there are no dynamic
2358   // symbols in any of the sections with indexes larger than
2359   // SHN_LORESERVE.  This is probably unusual, though, and at this
2360   // time we don't know the actual section indexes so it is
2361   // inconvenient to check.
2362   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2363     {
2364       Output_section* dynsym_xindex =
2365         this->choose_output_section(NULL, ".dynsym_shndx",
2366                                     elfcpp::SHT_SYMTAB_SHNDX,
2367                                     elfcpp::SHF_ALLOC,
2368                                     false);
2369
2370       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2371
2372       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2373
2374       dynsym_xindex->set_link_section(dynsym);
2375       dynsym_xindex->set_addralign(4);
2376       dynsym_xindex->set_entsize(4);
2377
2378       dynsym_xindex->set_after_input_sections();
2379
2380       // This tells the driver code to wait until the symbol table has
2381       // written out before writing out the postprocessing sections,
2382       // including the .dynsym_shndx section.
2383       this->any_postprocessing_sections_ = true;
2384     }
2385
2386   // Create the dynamic string table section.
2387
2388   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2389                                                        elfcpp::SHT_STRTAB,
2390                                                        elfcpp::SHF_ALLOC,
2391                                                        false);
2392
2393   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2394   dynstr->add_output_section_data(strdata);
2395
2396   dynsym->set_link_section(dynstr);
2397   this->dynamic_section_->set_link_section(dynstr);
2398
2399   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2400   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2401
2402   *pdynstr = dynstr;
2403
2404   // Create the hash tables.
2405
2406   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2407       || strcmp(parameters->options().hash_style(), "both") == 0)
2408     {
2409       unsigned char* phash;
2410       unsigned int hashlen;
2411       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2412                                     &phash, &hashlen);
2413
2414       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2415                                                             elfcpp::SHT_HASH,
2416                                                             elfcpp::SHF_ALLOC,
2417                                                             false);
2418
2419       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2420                                                                    hashlen,
2421                                                                    align,
2422                                                                    "** hash");
2423       hashsec->add_output_section_data(hashdata);
2424
2425       hashsec->set_link_section(dynsym);
2426       hashsec->set_entsize(4);
2427
2428       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2429     }
2430
2431   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2432       || strcmp(parameters->options().hash_style(), "both") == 0)
2433     {
2434       unsigned char* phash;
2435       unsigned int hashlen;
2436       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2437                                     &phash, &hashlen);
2438
2439       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2440                                                             elfcpp::SHT_GNU_HASH,
2441                                                             elfcpp::SHF_ALLOC,
2442                                                             false);
2443
2444       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2445                                                                    hashlen,
2446                                                                    align,
2447                                                                    "** hash");
2448       hashsec->add_output_section_data(hashdata);
2449
2450       hashsec->set_link_section(dynsym);
2451       hashsec->set_entsize(4);
2452
2453       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2454     }
2455 }
2456
2457 // Assign offsets to each local portion of the dynamic symbol table.
2458
2459 void
2460 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2461 {
2462   Output_section* dynsym = this->dynsym_section_;
2463   gold_assert(dynsym != NULL);
2464
2465   off_t off = dynsym->offset();
2466
2467   // Skip the dummy symbol at the start of the section.
2468   off += dynsym->entsize();
2469
2470   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2471        p != input_objects->relobj_end();
2472        ++p)
2473     {
2474       unsigned int count = (*p)->set_local_dynsym_offset(off);
2475       off += count * dynsym->entsize();
2476     }
2477 }
2478
2479 // Create the version sections.
2480
2481 void
2482 Layout::create_version_sections(const Versions* versions,
2483                                 const Symbol_table* symtab,
2484                                 unsigned int local_symcount,
2485                                 const std::vector<Symbol*>& dynamic_symbols,
2486                                 const Output_section* dynstr)
2487 {
2488   if (!versions->any_defs() && !versions->any_needs())
2489     return;
2490
2491   switch (parameters->size_and_endianness())
2492     {
2493 #ifdef HAVE_TARGET_32_LITTLE
2494     case Parameters::TARGET_32_LITTLE:
2495       this->sized_create_version_sections<32, false>(versions, symtab,
2496                                                      local_symcount,
2497                                                      dynamic_symbols, dynstr);
2498       break;
2499 #endif
2500 #ifdef HAVE_TARGET_32_BIG
2501     case Parameters::TARGET_32_BIG:
2502       this->sized_create_version_sections<32, true>(versions, symtab,
2503                                                     local_symcount,
2504                                                     dynamic_symbols, dynstr);
2505       break;
2506 #endif
2507 #ifdef HAVE_TARGET_64_LITTLE
2508     case Parameters::TARGET_64_LITTLE:
2509       this->sized_create_version_sections<64, false>(versions, symtab,
2510                                                      local_symcount,
2511                                                      dynamic_symbols, dynstr);
2512       break;
2513 #endif
2514 #ifdef HAVE_TARGET_64_BIG
2515     case Parameters::TARGET_64_BIG:
2516       this->sized_create_version_sections<64, true>(versions, symtab,
2517                                                     local_symcount,
2518                                                     dynamic_symbols, dynstr);
2519       break;
2520 #endif
2521     default:
2522       gold_unreachable();
2523     }
2524 }
2525
2526 // Create the version sections, sized version.
2527
2528 template<int size, bool big_endian>
2529 void
2530 Layout::sized_create_version_sections(
2531     const Versions* versions,
2532     const Symbol_table* symtab,
2533     unsigned int local_symcount,
2534     const std::vector<Symbol*>& dynamic_symbols,
2535     const Output_section* dynstr)
2536 {
2537   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2538                                                      elfcpp::SHT_GNU_versym,
2539                                                      elfcpp::SHF_ALLOC,
2540                                                      false);
2541
2542   unsigned char* vbuf;
2543   unsigned int vsize;
2544   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2545                                                       local_symcount,
2546                                                       dynamic_symbols,
2547                                                       &vbuf, &vsize);
2548
2549   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2550                                                             "** versions");
2551
2552   vsec->add_output_section_data(vdata);
2553   vsec->set_entsize(2);
2554   vsec->set_link_section(this->dynsym_section_);
2555
2556   Output_data_dynamic* const odyn = this->dynamic_data_;
2557   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2558
2559   if (versions->any_defs())
2560     {
2561       Output_section* vdsec;
2562       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2563                                          elfcpp::SHT_GNU_verdef,
2564                                          elfcpp::SHF_ALLOC,
2565                                          false);
2566
2567       unsigned char* vdbuf;
2568       unsigned int vdsize;
2569       unsigned int vdentries;
2570       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2571                                                        &vdsize, &vdentries);
2572
2573       Output_section_data* vddata =
2574         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2575
2576       vdsec->add_output_section_data(vddata);
2577       vdsec->set_link_section(dynstr);
2578       vdsec->set_info(vdentries);
2579
2580       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2581       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2582     }
2583
2584   if (versions->any_needs())
2585     {
2586       Output_section* vnsec;
2587       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2588                                           elfcpp::SHT_GNU_verneed,
2589                                           elfcpp::SHF_ALLOC,
2590                                           false);
2591
2592       unsigned char* vnbuf;
2593       unsigned int vnsize;
2594       unsigned int vnentries;
2595       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2596                                                         &vnbuf, &vnsize,
2597                                                         &vnentries);
2598
2599       Output_section_data* vndata =
2600         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2601
2602       vnsec->add_output_section_data(vndata);
2603       vnsec->set_link_section(dynstr);
2604       vnsec->set_info(vnentries);
2605
2606       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2607       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2608     }
2609 }
2610
2611 // Create the .interp section and PT_INTERP segment.
2612
2613 void
2614 Layout::create_interp(const Target* target)
2615 {
2616   const char* interp = this->options_.dynamic_linker();
2617   if (interp == NULL)
2618     {
2619       interp = target->dynamic_linker();
2620       gold_assert(interp != NULL);
2621     }
2622
2623   size_t len = strlen(interp) + 1;
2624
2625   Output_section_data* odata = new Output_data_const(interp, len, 1);
2626
2627   Output_section* osec = this->choose_output_section(NULL, ".interp",
2628                                                      elfcpp::SHT_PROGBITS,
2629                                                      elfcpp::SHF_ALLOC,
2630                                                      false);
2631   osec->add_output_section_data(odata);
2632
2633   if (!this->script_options_->saw_phdrs_clause())
2634     {
2635       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2636                                                        elfcpp::PF_R);
2637       oseg->add_output_section(osec, elfcpp::PF_R);
2638     }
2639 }
2640
2641 // Finish the .dynamic section and PT_DYNAMIC segment.
2642
2643 void
2644 Layout::finish_dynamic_section(const Input_objects* input_objects,
2645                                const Symbol_table* symtab)
2646 {
2647   if (!this->script_options_->saw_phdrs_clause())
2648     {
2649       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2650                                                        (elfcpp::PF_R
2651                                                         | elfcpp::PF_W));
2652       oseg->add_output_section(this->dynamic_section_,
2653                                elfcpp::PF_R | elfcpp::PF_W);
2654     }
2655
2656   Output_data_dynamic* const odyn = this->dynamic_data_;
2657
2658   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2659        p != input_objects->dynobj_end();
2660        ++p)
2661     {
2662       // FIXME: Handle --as-needed.
2663       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2664     }
2665
2666   if (parameters->options().shared())
2667     {
2668       const char* soname = this->options_.soname();
2669       if (soname != NULL)
2670         odyn->add_string(elfcpp::DT_SONAME, soname);
2671     }
2672
2673   // FIXME: Support --init and --fini.
2674   Symbol* sym = symtab->lookup("_init");
2675   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2676     odyn->add_symbol(elfcpp::DT_INIT, sym);
2677
2678   sym = symtab->lookup("_fini");
2679   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2680     odyn->add_symbol(elfcpp::DT_FINI, sym);
2681
2682   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2683
2684   // Add a DT_RPATH entry if needed.
2685   const General_options::Dir_list& rpath(this->options_.rpath());
2686   if (!rpath.empty())
2687     {
2688       std::string rpath_val;
2689       for (General_options::Dir_list::const_iterator p = rpath.begin();
2690            p != rpath.end();
2691            ++p)
2692         {
2693           if (rpath_val.empty())
2694             rpath_val = p->name();
2695           else
2696             {
2697               // Eliminate duplicates.
2698               General_options::Dir_list::const_iterator q;
2699               for (q = rpath.begin(); q != p; ++q)
2700                 if (q->name() == p->name())
2701                   break;
2702               if (q == p)
2703                 {
2704                   rpath_val += ':';
2705                   rpath_val += p->name();
2706                 }
2707             }
2708         }
2709
2710       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2711       if (parameters->options().enable_new_dtags())
2712         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2713     }
2714
2715   // Look for text segments that have dynamic relocations.
2716   bool have_textrel = false;
2717   if (!this->script_options_->saw_sections_clause())
2718     {
2719       for (Segment_list::const_iterator p = this->segment_list_.begin();
2720            p != this->segment_list_.end();
2721            ++p)
2722         {
2723           if (((*p)->flags() & elfcpp::PF_W) == 0
2724               && (*p)->dynamic_reloc_count() > 0)
2725             {
2726               have_textrel = true;
2727               break;
2728             }
2729         }
2730     }
2731   else
2732     {
2733       // We don't know the section -> segment mapping, so we are
2734       // conservative and just look for readonly sections with
2735       // relocations.  If those sections wind up in writable segments,
2736       // then we have created an unnecessary DT_TEXTREL entry.
2737       for (Section_list::const_iterator p = this->section_list_.begin();
2738            p != this->section_list_.end();
2739            ++p)
2740         {
2741           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2742               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2743               && ((*p)->dynamic_reloc_count() > 0))
2744             {
2745               have_textrel = true;
2746               break;
2747             }
2748         }
2749     }
2750
2751   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2752   // post-link tools can easily modify these flags if desired.
2753   unsigned int flags = 0;
2754   if (have_textrel)
2755     {
2756       // Add a DT_TEXTREL for compatibility with older loaders.
2757       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2758       flags |= elfcpp::DF_TEXTREL;
2759     }
2760   if (parameters->options().shared() && this->has_static_tls())
2761     flags |= elfcpp::DF_STATIC_TLS;
2762   if (parameters->options().origin())
2763     flags |= elfcpp::DF_ORIGIN;
2764   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2765
2766   flags = 0;
2767   if (parameters->options().initfirst())
2768     flags |= elfcpp::DF_1_INITFIRST;
2769   if (parameters->options().interpose())
2770     flags |= elfcpp::DF_1_INTERPOSE;
2771   if (parameters->options().loadfltr())
2772     flags |= elfcpp::DF_1_LOADFLTR;
2773   if (parameters->options().nodefaultlib())
2774     flags |= elfcpp::DF_1_NODEFLIB;
2775   if (parameters->options().nodelete())
2776     flags |= elfcpp::DF_1_NODELETE;
2777   if (parameters->options().nodlopen())
2778     flags |= elfcpp::DF_1_NOOPEN;
2779   if (parameters->options().nodump())
2780     flags |= elfcpp::DF_1_NODUMP;
2781   if (!parameters->options().shared())
2782     flags &= ~(elfcpp::DF_1_INITFIRST
2783                | elfcpp::DF_1_NODELETE
2784                | elfcpp::DF_1_NOOPEN);
2785   if (parameters->options().origin())
2786     flags |= elfcpp::DF_1_ORIGIN;
2787   if (flags)
2788     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2789 }
2790
2791 // The mapping of .gnu.linkonce section names to real section names.
2792
2793 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2794 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2795 {
2796   MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2797   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),             // Before "d".
2798   MAPPING_INIT("t", ".text"),
2799   MAPPING_INIT("r", ".rodata"),
2800   MAPPING_INIT("d", ".data"),
2801   MAPPING_INIT("b", ".bss"),
2802   MAPPING_INIT("s", ".sdata"),
2803   MAPPING_INIT("sb", ".sbss"),
2804   MAPPING_INIT("s2", ".sdata2"),
2805   MAPPING_INIT("sb2", ".sbss2"),
2806   MAPPING_INIT("wi", ".debug_info"),
2807   MAPPING_INIT("td", ".tdata"),
2808   MAPPING_INIT("tb", ".tbss"),
2809   MAPPING_INIT("lr", ".lrodata"),
2810   MAPPING_INIT("l", ".ldata"),
2811   MAPPING_INIT("lb", ".lbss"),
2812 };
2813 #undef MAPPING_INIT
2814
2815 const int Layout::linkonce_mapping_count =
2816   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2817
2818 // Return the name of the output section to use for a .gnu.linkonce
2819 // section.  This is based on the default ELF linker script of the old
2820 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2821 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2822 // initialized to the length of NAME.
2823
2824 const char*
2825 Layout::linkonce_output_name(const char* name, size_t *plen)
2826 {
2827   const char* s = name + sizeof(".gnu.linkonce") - 1;
2828   if (*s != '.')
2829     return name;
2830   ++s;
2831   const Linkonce_mapping* plm = linkonce_mapping;
2832   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2833     {
2834       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2835         {
2836           *plen = plm->tolen;
2837           return plm->to;
2838         }
2839     }
2840   return name;
2841 }
2842
2843 // Choose the output section name to use given an input section name.
2844 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2845 // length of NAME.
2846
2847 const char*
2848 Layout::output_section_name(const char* name, size_t* plen)
2849 {
2850   if (Layout::is_linkonce(name))
2851     {
2852       // .gnu.linkonce sections are laid out as though they were named
2853       // for the sections are placed into.
2854       return Layout::linkonce_output_name(name, plen);
2855     }
2856
2857   // gcc 4.3 generates the following sorts of section names when it
2858   // needs a section name specific to a function:
2859   //   .text.FN
2860   //   .rodata.FN
2861   //   .sdata2.FN
2862   //   .data.FN
2863   //   .data.rel.FN
2864   //   .data.rel.local.FN
2865   //   .data.rel.ro.FN
2866   //   .data.rel.ro.local.FN
2867   //   .sdata.FN
2868   //   .bss.FN
2869   //   .sbss.FN
2870   //   .tdata.FN
2871   //   .tbss.FN
2872
2873   // The GNU linker maps all of those to the part before the .FN,
2874   // except that .data.rel.local.FN is mapped to .data, and
2875   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2876   // beginning with .data.rel.ro.local are grouped together.
2877
2878   // For an anonymous namespace, the string FN can contain a '.'.
2879
2880   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2881   // GNU linker maps to .rodata.
2882
2883   // The .data.rel.ro sections enable a security feature triggered by
2884   // the -z relro option.  Section which need to be relocated at
2885   // program startup time but which may be readonly after startup are
2886   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2887   // segment.  The dynamic linker will make that segment writable,
2888   // perform relocations, and then make it read-only.  FIXME: We do
2889   // not yet implement this optimization.
2890
2891   // It is hard to handle this in a principled way.
2892
2893   // These are the rules we follow:
2894
2895   // If the section name has no initial '.', or no dot other than an
2896   // initial '.', we use the name unchanged (i.e., "mysection" and
2897   // ".text" are unchanged).
2898
2899   // If the name starts with ".data.rel.ro.local" we use
2900   // ".data.rel.ro.local".
2901
2902   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2903
2904   // Otherwise, we drop the second '.' and everything that comes after
2905   // it (i.e., ".text.XXX" becomes ".text").
2906
2907   const char* s = name;
2908   if (*s != '.')
2909     return name;
2910   ++s;
2911   const char* sdot = strchr(s, '.');
2912   if (sdot == NULL)
2913     return name;
2914
2915   const char* const data_rel_ro_local = ".data.rel.ro.local";
2916   if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2917     {
2918       *plen = strlen(data_rel_ro_local);
2919       return data_rel_ro_local;
2920     }
2921
2922   const char* const data_rel_ro = ".data.rel.ro";
2923   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2924     {
2925       *plen = strlen(data_rel_ro);
2926       return data_rel_ro;
2927     }
2928
2929   *plen = sdot - name;
2930   return name;
2931 }
2932
2933 // Check if a comdat group or .gnu.linkonce section with the given
2934 // NAME is selected for the link.  If there is already a section,
2935 // *KEPT_SECTION is set to point to the signature and the function
2936 // returns false.  Otherwise, the CANDIDATE signature is recorded for
2937 // this NAME in the layout object, *KEPT_SECTION is set to the
2938 // internal copy and the function return false.  In some cases, with
2939 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2940 // CANDIDATE.
2941
2942 bool
2943 Layout::find_or_add_kept_section(const std::string name,
2944                                  Kept_section* candidate,
2945                                  Kept_section** kept_section)
2946 {
2947   std::pair<Signatures::iterator, bool> ins(
2948     this->signatures_.insert(std::make_pair(name, *candidate)));
2949
2950   if (kept_section)
2951     *kept_section = &ins.first->second;
2952   if (ins.second)
2953     {
2954       // This is the first time we've seen this signature.
2955       return true;
2956     }
2957
2958   if (ins.first->second.is_group)
2959     {
2960       // We've already seen a real section group with this signature.
2961       // If the kept group is from a plugin object, and we're in
2962       // the replacement phase, accept the new one as a replacement.
2963       if (ins.first->second.object == NULL
2964           && parameters->options().plugins()->in_replacement_phase())
2965         {
2966           ins.first->second = *candidate;
2967           return true;
2968         }
2969       return false;
2970     }
2971   else if (candidate->is_group)
2972     {
2973       // This is a real section group, and we've already seen a
2974       // linkonce section with this signature.  Record that we've seen
2975       // a section group, and don't include this section group.
2976       ins.first->second.is_group = true;
2977       return false;
2978     }
2979   else
2980     {
2981       // We've already seen a linkonce section and this is a linkonce
2982       // section.  These don't block each other--this may be the same
2983       // symbol name with different section types.
2984       *kept_section = candidate;
2985       return true;
2986     }
2987 }
2988
2989 // Find the given comdat signature, and return the object and section
2990 // index of the kept group.
2991 Relobj*
2992 Layout::find_kept_object(const std::string& signature,
2993                          unsigned int* pshndx) const
2994 {
2995   Signatures::const_iterator p = this->signatures_.find(signature);
2996   if (p == this->signatures_.end())
2997     return NULL;
2998   if (pshndx != NULL)
2999     *pshndx = p->second.shndx;
3000   return p->second.object;
3001 }
3002
3003 // Store the allocated sections into the section list.
3004
3005 void
3006 Layout::get_allocated_sections(Section_list* section_list) const
3007 {
3008   for (Section_list::const_iterator p = this->section_list_.begin();
3009        p != this->section_list_.end();
3010        ++p)
3011     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3012       section_list->push_back(*p);
3013 }
3014
3015 // Create an output segment.
3016
3017 Output_segment*
3018 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3019 {
3020   gold_assert(!parameters->options().relocatable());
3021   Output_segment* oseg = new Output_segment(type, flags);
3022   this->segment_list_.push_back(oseg);
3023
3024   if (type == elfcpp::PT_TLS)
3025     this->tls_segment_ = oseg;
3026   else if (type == elfcpp::PT_GNU_RELRO)
3027     this->relro_segment_ = oseg;
3028
3029   return oseg;
3030 }
3031
3032 // Write out the Output_sections.  Most won't have anything to write,
3033 // since most of the data will come from input sections which are
3034 // handled elsewhere.  But some Output_sections do have Output_data.
3035
3036 void
3037 Layout::write_output_sections(Output_file* of) const
3038 {
3039   for (Section_list::const_iterator p = this->section_list_.begin();
3040        p != this->section_list_.end();
3041        ++p)
3042     {
3043       if (!(*p)->after_input_sections())
3044         (*p)->write(of);
3045     }
3046 }
3047
3048 // Write out data not associated with a section or the symbol table.
3049
3050 void
3051 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3052 {
3053   if (!parameters->options().strip_all())
3054     {
3055       const Output_section* symtab_section = this->symtab_section_;
3056       for (Section_list::const_iterator p = this->section_list_.begin();
3057            p != this->section_list_.end();
3058            ++p)
3059         {
3060           if ((*p)->needs_symtab_index())
3061             {
3062               gold_assert(symtab_section != NULL);
3063               unsigned int index = (*p)->symtab_index();
3064               gold_assert(index > 0 && index != -1U);
3065               off_t off = (symtab_section->offset()
3066                            + index * symtab_section->entsize());
3067               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3068             }
3069         }
3070     }
3071
3072   const Output_section* dynsym_section = this->dynsym_section_;
3073   for (Section_list::const_iterator p = this->section_list_.begin();
3074        p != this->section_list_.end();
3075        ++p)
3076     {
3077       if ((*p)->needs_dynsym_index())
3078         {
3079           gold_assert(dynsym_section != NULL);
3080           unsigned int index = (*p)->dynsym_index();
3081           gold_assert(index > 0 && index != -1U);
3082           off_t off = (dynsym_section->offset()
3083                        + index * dynsym_section->entsize());
3084           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3085         }
3086     }
3087
3088   // Write out the Output_data which are not in an Output_section.
3089   for (Data_list::const_iterator p = this->special_output_list_.begin();
3090        p != this->special_output_list_.end();
3091        ++p)
3092     (*p)->write(of);
3093 }
3094
3095 // Write out the Output_sections which can only be written after the
3096 // input sections are complete.
3097
3098 void
3099 Layout::write_sections_after_input_sections(Output_file* of)
3100 {
3101   // Determine the final section offsets, and thus the final output
3102   // file size.  Note we finalize the .shstrab last, to allow the
3103   // after_input_section sections to modify their section-names before
3104   // writing.
3105   if (this->any_postprocessing_sections_)
3106     {
3107       off_t off = this->output_file_size_;
3108       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3109
3110       // Now that we've finalized the names, we can finalize the shstrab.
3111       off =
3112         this->set_section_offsets(off,
3113                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3114
3115       if (off > this->output_file_size_)
3116         {
3117           of->resize(off);
3118           this->output_file_size_ = off;
3119         }
3120     }
3121
3122   for (Section_list::const_iterator p = this->section_list_.begin();
3123        p != this->section_list_.end();
3124        ++p)
3125     {
3126       if ((*p)->after_input_sections())
3127         (*p)->write(of);
3128     }
3129
3130   this->section_headers_->write(of);
3131 }
3132
3133 // If the build ID requires computing a checksum, do so here, and
3134 // write it out.  We compute a checksum over the entire file because
3135 // that is simplest.
3136
3137 void
3138 Layout::write_build_id(Output_file* of) const
3139 {
3140   if (this->build_id_note_ == NULL)
3141     return;
3142
3143   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3144
3145   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3146                                           this->build_id_note_->data_size());
3147
3148   const char* style = parameters->options().build_id();
3149   if (strcmp(style, "sha1") == 0)
3150     {
3151       sha1_ctx ctx;
3152       sha1_init_ctx(&ctx);
3153       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3154       sha1_finish_ctx(&ctx, ov);
3155     }
3156   else if (strcmp(style, "md5") == 0)
3157     {
3158       md5_ctx ctx;
3159       md5_init_ctx(&ctx);
3160       md5_process_bytes(iv, this->output_file_size_, &ctx);
3161       md5_finish_ctx(&ctx, ov);
3162     }
3163   else
3164     gold_unreachable();
3165
3166   of->write_output_view(this->build_id_note_->offset(),
3167                         this->build_id_note_->data_size(),
3168                         ov);
3169
3170   of->free_input_view(0, this->output_file_size_, iv);
3171 }
3172
3173 // Write out a binary file.  This is called after the link is
3174 // complete.  IN is the temporary output file we used to generate the
3175 // ELF code.  We simply walk through the segments, read them from
3176 // their file offset in IN, and write them to their load address in
3177 // the output file.  FIXME: with a bit more work, we could support
3178 // S-records and/or Intel hex format here.
3179
3180 void
3181 Layout::write_binary(Output_file* in) const
3182 {
3183   gold_assert(this->options_.oformat_enum()
3184               == General_options::OBJECT_FORMAT_BINARY);
3185
3186   // Get the size of the binary file.
3187   uint64_t max_load_address = 0;
3188   for (Segment_list::const_iterator p = this->segment_list_.begin();
3189        p != this->segment_list_.end();
3190        ++p)
3191     {
3192       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3193         {
3194           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3195           if (max_paddr > max_load_address)
3196             max_load_address = max_paddr;
3197         }
3198     }
3199
3200   Output_file out(parameters->options().output_file_name());
3201   out.open(max_load_address);
3202
3203   for (Segment_list::const_iterator p = this->segment_list_.begin();
3204        p != this->segment_list_.end();
3205        ++p)
3206     {
3207       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3208         {
3209           const unsigned char* vin = in->get_input_view((*p)->offset(),
3210                                                         (*p)->filesz());
3211           unsigned char* vout = out.get_output_view((*p)->paddr(),
3212                                                     (*p)->filesz());
3213           memcpy(vout, vin, (*p)->filesz());
3214           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3215           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3216         }
3217     }
3218
3219   out.close();
3220 }
3221
3222 // Print the output sections to the map file.
3223
3224 void
3225 Layout::print_to_mapfile(Mapfile* mapfile) const
3226 {
3227   for (Segment_list::const_iterator p = this->segment_list_.begin();
3228        p != this->segment_list_.end();
3229        ++p)
3230     (*p)->print_sections_to_mapfile(mapfile);
3231 }
3232
3233 // Print statistical information to stderr.  This is used for --stats.
3234
3235 void
3236 Layout::print_stats() const
3237 {
3238   this->namepool_.print_stats("section name pool");
3239   this->sympool_.print_stats("output symbol name pool");
3240   this->dynpool_.print_stats("dynamic name pool");
3241
3242   for (Section_list::const_iterator p = this->section_list_.begin();
3243        p != this->section_list_.end();
3244        ++p)
3245     (*p)->print_merge_stats();
3246 }
3247
3248 // Write_sections_task methods.
3249
3250 // We can always run this task.
3251
3252 Task_token*
3253 Write_sections_task::is_runnable()
3254 {
3255   return NULL;
3256 }
3257
3258 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3259 // when finished.
3260
3261 void
3262 Write_sections_task::locks(Task_locker* tl)
3263 {
3264   tl->add(this, this->output_sections_blocker_);
3265   tl->add(this, this->final_blocker_);
3266 }
3267
3268 // Run the task--write out the data.
3269
3270 void
3271 Write_sections_task::run(Workqueue*)
3272 {
3273   this->layout_->write_output_sections(this->of_);
3274 }
3275
3276 // Write_data_task methods.
3277
3278 // We can always run this task.
3279
3280 Task_token*
3281 Write_data_task::is_runnable()
3282 {
3283   return NULL;
3284 }
3285
3286 // We need to unlock FINAL_BLOCKER when finished.
3287
3288 void
3289 Write_data_task::locks(Task_locker* tl)
3290 {
3291   tl->add(this, this->final_blocker_);
3292 }
3293
3294 // Run the task--write out the data.
3295
3296 void
3297 Write_data_task::run(Workqueue*)
3298 {
3299   this->layout_->write_data(this->symtab_, this->of_);
3300 }
3301
3302 // Write_symbols_task methods.
3303
3304 // We can always run this task.
3305
3306 Task_token*
3307 Write_symbols_task::is_runnable()
3308 {
3309   return NULL;
3310 }
3311
3312 // We need to unlock FINAL_BLOCKER when finished.
3313
3314 void
3315 Write_symbols_task::locks(Task_locker* tl)
3316 {
3317   tl->add(this, this->final_blocker_);
3318 }
3319
3320 // Run the task--write out the symbols.
3321
3322 void
3323 Write_symbols_task::run(Workqueue*)
3324 {
3325   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3326                                this->layout_->symtab_xindex(),
3327                                this->layout_->dynsym_xindex(), this->of_);
3328 }
3329
3330 // Write_after_input_sections_task methods.
3331
3332 // We can only run this task after the input sections have completed.
3333
3334 Task_token*
3335 Write_after_input_sections_task::is_runnable()
3336 {
3337   if (this->input_sections_blocker_->is_blocked())
3338     return this->input_sections_blocker_;
3339   return NULL;
3340 }
3341
3342 // We need to unlock FINAL_BLOCKER when finished.
3343
3344 void
3345 Write_after_input_sections_task::locks(Task_locker* tl)
3346 {
3347   tl->add(this, this->final_blocker_);
3348 }
3349
3350 // Run the task.
3351
3352 void
3353 Write_after_input_sections_task::run(Workqueue*)
3354 {
3355   this->layout_->write_sections_after_input_sections(this->of_);
3356 }
3357
3358 // Close_task_runner methods.
3359
3360 // Run the task--close the file.
3361
3362 void
3363 Close_task_runner::run(Workqueue*, const Task*)
3364 {
3365   // If we need to compute a checksum for the BUILD if, we do so here.
3366   this->layout_->write_build_id(this->of_);
3367
3368   // If we've been asked to create a binary file, we do so here.
3369   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3370     this->layout_->write_binary(this->of_);
3371
3372   this->of_->close();
3373 }
3374
3375 // Instantiate the templates we need.  We could use the configure
3376 // script to restrict this to only the ones for implemented targets.
3377
3378 #ifdef HAVE_TARGET_32_LITTLE
3379 template
3380 Output_section*
3381 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3382                           const char* name,
3383                           const elfcpp::Shdr<32, false>& shdr,
3384                           unsigned int, unsigned int, off_t*);
3385 #endif
3386
3387 #ifdef HAVE_TARGET_32_BIG
3388 template
3389 Output_section*
3390 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3391                          const char* name,
3392                          const elfcpp::Shdr<32, true>& shdr,
3393                          unsigned int, unsigned int, off_t*);
3394 #endif
3395
3396 #ifdef HAVE_TARGET_64_LITTLE
3397 template
3398 Output_section*
3399 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3400                           const char* name,
3401                           const elfcpp::Shdr<64, false>& shdr,
3402                           unsigned int, unsigned int, off_t*);
3403 #endif
3404
3405 #ifdef HAVE_TARGET_64_BIG
3406 template
3407 Output_section*
3408 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3409                          const char* name,
3410                          const elfcpp::Shdr<64, true>& shdr,
3411                          unsigned int, unsigned int, off_t*);
3412 #endif
3413
3414 #ifdef HAVE_TARGET_32_LITTLE
3415 template
3416 Output_section*
3417 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3418                                 unsigned int reloc_shndx,
3419                                 const elfcpp::Shdr<32, false>& shdr,
3420                                 Output_section* data_section,
3421                                 Relocatable_relocs* rr);
3422 #endif
3423
3424 #ifdef HAVE_TARGET_32_BIG
3425 template
3426 Output_section*
3427 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3428                                unsigned int reloc_shndx,
3429                                const elfcpp::Shdr<32, true>& shdr,
3430                                Output_section* data_section,
3431                                Relocatable_relocs* rr);
3432 #endif
3433
3434 #ifdef HAVE_TARGET_64_LITTLE
3435 template
3436 Output_section*
3437 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3438                                 unsigned int reloc_shndx,
3439                                 const elfcpp::Shdr<64, false>& shdr,
3440                                 Output_section* data_section,
3441                                 Relocatable_relocs* rr);
3442 #endif
3443
3444 #ifdef HAVE_TARGET_64_BIG
3445 template
3446 Output_section*
3447 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3448                                unsigned int reloc_shndx,
3449                                const elfcpp::Shdr<64, true>& shdr,
3450                                Output_section* data_section,
3451                                Relocatable_relocs* rr);
3452 #endif
3453
3454 #ifdef HAVE_TARGET_32_LITTLE
3455 template
3456 void
3457 Layout::layout_group<32, false>(Symbol_table* symtab,
3458                                 Sized_relobj<32, false>* object,
3459                                 unsigned int,
3460                                 const char* group_section_name,
3461                                 const char* signature,
3462                                 const elfcpp::Shdr<32, false>& shdr,
3463                                 elfcpp::Elf_Word flags,
3464                                 std::vector<unsigned int>* shndxes);
3465 #endif
3466
3467 #ifdef HAVE_TARGET_32_BIG
3468 template
3469 void
3470 Layout::layout_group<32, true>(Symbol_table* symtab,
3471                                Sized_relobj<32, true>* object,
3472                                unsigned int,
3473                                const char* group_section_name,
3474                                const char* signature,
3475                                const elfcpp::Shdr<32, true>& shdr,
3476                                elfcpp::Elf_Word flags,
3477                                std::vector<unsigned int>* shndxes);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_64_LITTLE
3481 template
3482 void
3483 Layout::layout_group<64, false>(Symbol_table* symtab,
3484                                 Sized_relobj<64, false>* object,
3485                                 unsigned int,
3486                                 const char* group_section_name,
3487                                 const char* signature,
3488                                 const elfcpp::Shdr<64, false>& shdr,
3489                                 elfcpp::Elf_Word flags,
3490                                 std::vector<unsigned int>* shndxes);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_64_BIG
3494 template
3495 void
3496 Layout::layout_group<64, true>(Symbol_table* symtab,
3497                                Sized_relobj<64, true>* object,
3498                                unsigned int,
3499                                const char* group_section_name,
3500                                const char* signature,
3501                                const elfcpp::Shdr<64, true>& shdr,
3502                                elfcpp::Elf_Word flags,
3503                                std::vector<unsigned int>* shndxes);
3504 #endif
3505
3506 #ifdef HAVE_TARGET_32_LITTLE
3507 template
3508 Output_section*
3509 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3510                                    const unsigned char* symbols,
3511                                    off_t symbols_size,
3512                                    const unsigned char* symbol_names,
3513                                    off_t symbol_names_size,
3514                                    unsigned int shndx,
3515                                    const elfcpp::Shdr<32, false>& shdr,
3516                                    unsigned int reloc_shndx,
3517                                    unsigned int reloc_type,
3518                                    off_t* off);
3519 #endif
3520
3521 #ifdef HAVE_TARGET_32_BIG
3522 template
3523 Output_section*
3524 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3525                                    const unsigned char* symbols,
3526                                    off_t symbols_size,
3527                                   const unsigned char* symbol_names,
3528                                   off_t symbol_names_size,
3529                                   unsigned int shndx,
3530                                   const elfcpp::Shdr<32, true>& shdr,
3531                                   unsigned int reloc_shndx,
3532                                   unsigned int reloc_type,
3533                                   off_t* off);
3534 #endif
3535
3536 #ifdef HAVE_TARGET_64_LITTLE
3537 template
3538 Output_section*
3539 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3540                                    const unsigned char* symbols,
3541                                    off_t symbols_size,
3542                                    const unsigned char* symbol_names,
3543                                    off_t symbol_names_size,
3544                                    unsigned int shndx,
3545                                    const elfcpp::Shdr<64, false>& shdr,
3546                                    unsigned int reloc_shndx,
3547                                    unsigned int reloc_type,
3548                                    off_t* off);
3549 #endif
3550
3551 #ifdef HAVE_TARGET_64_BIG
3552 template
3553 Output_section*
3554 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3555                                    const unsigned char* symbols,
3556                                    off_t symbols_size,
3557                                   const unsigned char* symbol_names,
3558                                   off_t symbol_names_size,
3559                                   unsigned int shndx,
3560                                   const elfcpp::Shdr<64, true>& shdr,
3561                                   unsigned int reloc_shndx,
3562                                   unsigned int reloc_type,
3563                                   off_t* off);
3564 #endif
3565
3566 } // End namespace gold.