PR gold/12957
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end <= p->end_)
172         {
173           if (p->start_ + 3 >= start && p->end_ <= end + 3)
174             this->list_.erase(p);
175           else if (p->start_ + 3 >= start)
176             p->start_ = end;
177           else if (p->end_ <= end + 3)
178             p->end_ = start;
179           else
180             {
181               Free_list_node newnode(p->start_, start);
182               p->start_ = end;
183               this->list_.insert(p, newnode);
184               ++Free_list::num_nodes;
185             }
186           return start;
187         }
188     }
189   return -1;
190 }
191
192 // Dump the free list (for debugging).
193 void
194 Free_list::dump()
195 {
196   gold_info("Free list:\n     start      end   length\n");
197   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
198     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
199               static_cast<long>(p->end_),
200               static_cast<long>(p->end_ - p->start_));
201 }
202
203 // Print the statistics for the free lists.
204 void
205 Free_list::print_stats()
206 {
207   fprintf(stderr, _("%s: total free lists: %u\n"),
208           program_name, Free_list::num_lists);
209   fprintf(stderr, _("%s: total free list nodes: %u\n"),
210           program_name, Free_list::num_nodes);
211   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
212           program_name, Free_list::num_removes);
213   fprintf(stderr, _("%s: nodes visited: %u\n"),
214           program_name, Free_list::num_remove_visits);
215   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
216           program_name, Free_list::num_allocates);
217   fprintf(stderr, _("%s: nodes visited: %u\n"),
218           program_name, Free_list::num_allocate_visits);
219 }
220
221 // Layout::Relaxation_debug_check methods.
222
223 // Check that sections and special data are in reset states.
224 // We do not save states for Output_sections and special Output_data.
225 // So we check that they have not assigned any addresses or offsets.
226 // clean_up_after_relaxation simply resets their addresses and offsets.
227 void
228 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
229     const Layout::Section_list& sections,
230     const Layout::Data_list& special_outputs)
231 {
232   for(Layout::Section_list::const_iterator p = sections.begin();
233       p != sections.end();
234       ++p)
235     gold_assert((*p)->address_and_file_offset_have_reset_values());
236
237   for(Layout::Data_list::const_iterator p = special_outputs.begin();
238       p != special_outputs.end();
239       ++p)
240     gold_assert((*p)->address_and_file_offset_have_reset_values());
241 }
242   
243 // Save information of SECTIONS for checking later.
244
245 void
246 Layout::Relaxation_debug_check::read_sections(
247     const Layout::Section_list& sections)
248 {
249   for(Layout::Section_list::const_iterator p = sections.begin();
250       p != sections.end();
251       ++p)
252     {
253       Output_section* os = *p;
254       Section_info info;
255       info.output_section = os;
256       info.address = os->is_address_valid() ? os->address() : 0;
257       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
258       info.offset = os->is_offset_valid()? os->offset() : -1 ;
259       this->section_infos_.push_back(info);
260     }
261 }
262
263 // Verify SECTIONS using previously recorded information.
264
265 void
266 Layout::Relaxation_debug_check::verify_sections(
267     const Layout::Section_list& sections)
268 {
269   size_t i = 0;
270   for(Layout::Section_list::const_iterator p = sections.begin();
271       p != sections.end();
272       ++p, ++i)
273     {
274       Output_section* os = *p;
275       uint64_t address = os->is_address_valid() ? os->address() : 0;
276       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
277       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278
279       if (i >= this->section_infos_.size())
280         {
281           gold_fatal("Section_info of %s missing.\n", os->name());
282         }
283       const Section_info& info = this->section_infos_[i];
284       if (os != info.output_section)
285         gold_fatal("Section order changed.  Expecting %s but see %s\n",
286                    info.output_section->name(), os->name());
287       if (address != info.address
288           || data_size != info.data_size
289           || offset != info.offset)
290         gold_fatal("Section %s changed.\n", os->name());
291     }
292 }
293
294 // Layout_task_runner methods.
295
296 // Lay out the sections.  This is called after all the input objects
297 // have been read.
298
299 void
300 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 {
302   Layout* layout = this->layout_;
303   off_t file_size = layout->finalize(this->input_objects_,
304                                      this->symtab_,
305                                      this->target_,
306                                      task);
307
308   // Now we know the final size of the output file and we know where
309   // each piece of information goes.
310
311   if (this->mapfile_ != NULL)
312     {
313       this->mapfile_->print_discarded_sections(this->input_objects_);
314       layout->print_to_mapfile(this->mapfile_);
315     }
316
317   Output_file* of;
318   if (layout->incremental_base() == NULL)
319     {
320       of = new Output_file(parameters->options().output_file_name());
321       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
322         of->set_is_temporary();
323       of->open(file_size);
324     }
325   else
326     {
327       of = layout->incremental_base()->output_file();
328
329       // Apply the incremental relocations for symbols whose values
330       // have changed.  We do this before we resize the file and start
331       // writing anything else to it, so that we can read the old
332       // incremental information from the file before (possibly)
333       // overwriting it.
334       if (parameters->incremental_update())
335         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
336                                                              this->layout_,
337                                                              of);
338
339       of->resize(file_size);
340     }
341
342   // Queue up the final set of tasks.
343   gold::queue_final_tasks(this->options_, this->input_objects_,
344                           this->symtab_, layout, workqueue, of);
345 }
346
347 // Layout methods.
348
349 Layout::Layout(int number_of_input_files, Script_options* script_options)
350   : number_of_input_files_(number_of_input_files),
351     script_options_(script_options),
352     namepool_(),
353     sympool_(),
354     dynpool_(),
355     signatures_(),
356     section_name_map_(),
357     segment_list_(),
358     section_list_(),
359     unattached_section_list_(),
360     special_output_list_(),
361     section_headers_(NULL),
362     tls_segment_(NULL),
363     relro_segment_(NULL),
364     interp_segment_(NULL),
365     increase_relro_(0),
366     symtab_section_(NULL),
367     symtab_xindex_(NULL),
368     dynsym_section_(NULL),
369     dynsym_xindex_(NULL),
370     dynamic_section_(NULL),
371     dynamic_symbol_(NULL),
372     dynamic_data_(NULL),
373     eh_frame_section_(NULL),
374     eh_frame_data_(NULL),
375     added_eh_frame_data_(false),
376     eh_frame_hdr_section_(NULL),
377     build_id_note_(NULL),
378     debug_abbrev_(NULL),
379     debug_info_(NULL),
380     group_signatures_(),
381     output_file_size_(-1),
382     have_added_input_section_(false),
383     sections_are_attached_(false),
384     input_requires_executable_stack_(false),
385     input_with_gnu_stack_note_(false),
386     input_without_gnu_stack_note_(false),
387     has_static_tls_(false),
388     any_postprocessing_sections_(false),
389     resized_signatures_(false),
390     have_stabstr_section_(false),
391     incremental_inputs_(NULL),
392     record_output_section_data_from_script_(false),
393     script_output_section_data_list_(),
394     segment_states_(NULL),
395     relaxation_debug_check_(NULL),
396     incremental_base_(NULL),
397     free_list_()
398 {
399   // Make space for more than enough segments for a typical file.
400   // This is just for efficiency--it's OK if we wind up needing more.
401   this->segment_list_.reserve(12);
402
403   // We expect two unattached Output_data objects: the file header and
404   // the segment headers.
405   this->special_output_list_.reserve(2);
406
407   // Initialize structure needed for an incremental build.
408   if (parameters->incremental())
409     this->incremental_inputs_ = new Incremental_inputs;
410
411   // The section name pool is worth optimizing in all cases, because
412   // it is small, but there are often overlaps due to .rel sections.
413   this->namepool_.set_optimize();
414 }
415
416 // For incremental links, record the base file to be modified.
417
418 void
419 Layout::set_incremental_base(Incremental_binary* base)
420 {
421   this->incremental_base_ = base;
422   this->free_list_.init(base->output_file()->filesize(), true);
423 }
424
425 // Hash a key we use to look up an output section mapping.
426
427 size_t
428 Layout::Hash_key::operator()(const Layout::Key& k) const
429 {
430  return k.first + k.second.first + k.second.second;
431 }
432
433 // Returns whether the given section is in the list of
434 // debug-sections-used-by-some-version-of-gdb.  Currently,
435 // we've checked versions of gdb up to and including 6.7.1.
436
437 static const char* gdb_sections[] =
438 { ".debug_abbrev",
439   // ".debug_aranges",   // not used by gdb as of 6.7.1
440   ".debug_frame",
441   ".debug_info",
442   ".debug_types",
443   ".debug_line",
444   ".debug_loc",
445   ".debug_macinfo",
446   // ".debug_pubnames",  // not used by gdb as of 6.7.1
447   ".debug_ranges",
448   ".debug_str",
449 };
450
451 static const char* lines_only_debug_sections[] =
452 { ".debug_abbrev",
453   // ".debug_aranges",   // not used by gdb as of 6.7.1
454   // ".debug_frame",
455   ".debug_info",
456   // ".debug_types",
457   ".debug_line",
458   // ".debug_loc",
459   // ".debug_macinfo",
460   // ".debug_pubnames",  // not used by gdb as of 6.7.1
461   // ".debug_ranges",
462   ".debug_str",
463 };
464
465 static inline bool
466 is_gdb_debug_section(const char* str)
467 {
468   // We can do this faster: binary search or a hashtable.  But why bother?
469   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
470     if (strcmp(str, gdb_sections[i]) == 0)
471       return true;
472   return false;
473 }
474
475 static inline bool
476 is_lines_only_debug_section(const char* str)
477 {
478   // We can do this faster: binary search or a hashtable.  But why bother?
479   for (size_t i = 0;
480        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
481        ++i)
482     if (strcmp(str, lines_only_debug_sections[i]) == 0)
483       return true;
484   return false;
485 }
486
487 // Sometimes we compress sections.  This is typically done for
488 // sections that are not part of normal program execution (such as
489 // .debug_* sections), and where the readers of these sections know
490 // how to deal with compressed sections.  This routine doesn't say for
491 // certain whether we'll compress -- it depends on commandline options
492 // as well -- just whether this section is a candidate for compression.
493 // (The Output_compressed_section class decides whether to compress
494 // a given section, and picks the name of the compressed section.)
495
496 static bool
497 is_compressible_debug_section(const char* secname)
498 {
499   return (is_prefix_of(".debug", secname));
500 }
501
502 // We may see compressed debug sections in input files.  Return TRUE
503 // if this is the name of a compressed debug section.
504
505 bool
506 is_compressed_debug_section(const char* secname)
507 {
508   return (is_prefix_of(".zdebug", secname));
509 }
510
511 // Whether to include this section in the link.
512
513 template<int size, bool big_endian>
514 bool
515 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
516                         const elfcpp::Shdr<size, big_endian>& shdr)
517 {
518   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
519     return false;
520
521   switch (shdr.get_sh_type())
522     {
523     case elfcpp::SHT_NULL:
524     case elfcpp::SHT_SYMTAB:
525     case elfcpp::SHT_DYNSYM:
526     case elfcpp::SHT_HASH:
527     case elfcpp::SHT_DYNAMIC:
528     case elfcpp::SHT_SYMTAB_SHNDX:
529       return false;
530
531     case elfcpp::SHT_STRTAB:
532       // Discard the sections which have special meanings in the ELF
533       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
534       // checking the sh_link fields of the appropriate sections.
535       return (strcmp(name, ".dynstr") != 0
536               && strcmp(name, ".strtab") != 0
537               && strcmp(name, ".shstrtab") != 0);
538
539     case elfcpp::SHT_RELA:
540     case elfcpp::SHT_REL:
541     case elfcpp::SHT_GROUP:
542       // If we are emitting relocations these should be handled
543       // elsewhere.
544       gold_assert(!parameters->options().relocatable()
545                   && !parameters->options().emit_relocs());
546       return false;
547
548     case elfcpp::SHT_PROGBITS:
549       if (parameters->options().strip_debug()
550           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
551         {
552           if (is_debug_info_section(name))
553             return false;
554         }
555       if (parameters->options().strip_debug_non_line()
556           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
557         {
558           // Debugging sections can only be recognized by name.
559           if (is_prefix_of(".debug", name)
560               && !is_lines_only_debug_section(name))
561             return false;
562         }
563       if (parameters->options().strip_debug_gdb()
564           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565         {
566           // Debugging sections can only be recognized by name.
567           if (is_prefix_of(".debug", name)
568               && !is_gdb_debug_section(name))
569             return false;
570         }
571       if (parameters->options().strip_lto_sections()
572           && !parameters->options().relocatable()
573           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574         {
575           // Ignore LTO sections containing intermediate code.
576           if (is_prefix_of(".gnu.lto_", name))
577             return false;
578         }
579       // The GNU linker strips .gnu_debuglink sections, so we do too.
580       // This is a feature used to keep debugging information in
581       // separate files.
582       if (strcmp(name, ".gnu_debuglink") == 0)
583         return false;
584       return true;
585
586     default:
587       return true;
588     }
589 }
590
591 // Return an output section named NAME, or NULL if there is none.
592
593 Output_section*
594 Layout::find_output_section(const char* name) const
595 {
596   for (Section_list::const_iterator p = this->section_list_.begin();
597        p != this->section_list_.end();
598        ++p)
599     if (strcmp((*p)->name(), name) == 0)
600       return *p;
601   return NULL;
602 }
603
604 // Return an output segment of type TYPE, with segment flags SET set
605 // and segment flags CLEAR clear.  Return NULL if there is none.
606
607 Output_segment*
608 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
609                             elfcpp::Elf_Word clear) const
610 {
611   for (Segment_list::const_iterator p = this->segment_list_.begin();
612        p != this->segment_list_.end();
613        ++p)
614     if (static_cast<elfcpp::PT>((*p)->type()) == type
615         && ((*p)->flags() & set) == set
616         && ((*p)->flags() & clear) == 0)
617       return *p;
618   return NULL;
619 }
620
621 // When we put a .ctors or .dtors section with more than one word into
622 // a .init_array or .fini_array section, we need to reverse the words
623 // in the .ctors/.dtors section.  This is because .init_array executes
624 // constructors front to back, where .ctors executes them back to
625 // front, and vice-versa for .fini_array/.dtors.  Although we do want
626 // to remap .ctors/.dtors into .init_array/.fini_array because it can
627 // be more efficient, we don't want to change the order in which
628 // constructors/destructors are run.  This set just keeps track of
629 // these sections which need to be reversed.  It is only changed by
630 // Layout::layout.  It should be a private member of Layout, but that
631 // would require layout.h to #include object.h to get the definition
632 // of Section_id.
633 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
634
635 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
636 // .init_array/.fini_array section.
637
638 bool
639 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
640 {
641   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
642           != ctors_sections_in_init_array.end());
643 }
644
645 // Return the output section to use for section NAME with type TYPE
646 // and section flags FLAGS.  NAME must be canonicalized in the string
647 // pool, and NAME_KEY is the key.  ORDER is where this should appear
648 // in the output sections.  IS_RELRO is true for a relro section.
649
650 Output_section*
651 Layout::get_output_section(const char* name, Stringpool::Key name_key,
652                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
653                            Output_section_order order, bool is_relro)
654 {
655   elfcpp::Elf_Word lookup_type = type;
656
657   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
658   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
659   // .init_array, .fini_array, and .preinit_array sections by name
660   // whatever their type in the input file.  We do this because the
661   // types are not always right in the input files.
662   if (lookup_type == elfcpp::SHT_INIT_ARRAY
663       || lookup_type == elfcpp::SHT_FINI_ARRAY
664       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
665     lookup_type = elfcpp::SHT_PROGBITS;
666
667   elfcpp::Elf_Xword lookup_flags = flags;
668
669   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
670   // read-write with read-only sections.  Some other ELF linkers do
671   // not do this.  FIXME: Perhaps there should be an option
672   // controlling this.
673   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
674
675   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
676   const std::pair<Key, Output_section*> v(key, NULL);
677   std::pair<Section_name_map::iterator, bool> ins(
678     this->section_name_map_.insert(v));
679
680   if (!ins.second)
681     return ins.first->second;
682   else
683     {
684       // This is the first time we've seen this name/type/flags
685       // combination.  For compatibility with the GNU linker, we
686       // combine sections with contents and zero flags with sections
687       // with non-zero flags.  This is a workaround for cases where
688       // assembler code forgets to set section flags.  FIXME: Perhaps
689       // there should be an option to control this.
690       Output_section* os = NULL;
691
692       if (lookup_type == elfcpp::SHT_PROGBITS)
693         {
694           if (flags == 0)
695             {
696               Output_section* same_name = this->find_output_section(name);
697               if (same_name != NULL
698                   && (same_name->type() == elfcpp::SHT_PROGBITS
699                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
700                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
701                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
702                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
703                 os = same_name;
704             }
705           else if ((flags & elfcpp::SHF_TLS) == 0)
706             {
707               elfcpp::Elf_Xword zero_flags = 0;
708               const Key zero_key(name_key, std::make_pair(lookup_type,
709                                                           zero_flags));
710               Section_name_map::iterator p =
711                   this->section_name_map_.find(zero_key);
712               if (p != this->section_name_map_.end())
713                 os = p->second;
714             }
715         }
716
717       if (os == NULL)
718         os = this->make_output_section(name, type, flags, order, is_relro);
719
720       ins.first->second = os;
721       return os;
722     }
723 }
724
725 // Pick the output section to use for section NAME, in input file
726 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
727 // linker created section.  IS_INPUT_SECTION is true if we are
728 // choosing an output section for an input section found in a input
729 // file.  ORDER is where this section should appear in the output
730 // sections.  IS_RELRO is true for a relro section.  This will return
731 // NULL if the input section should be discarded.
732
733 Output_section*
734 Layout::choose_output_section(const Relobj* relobj, const char* name,
735                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736                               bool is_input_section, Output_section_order order,
737                               bool is_relro)
738 {
739   // We should not see any input sections after we have attached
740   // sections to segments.
741   gold_assert(!is_input_section || !this->sections_are_attached_);
742
743   // Some flags in the input section should not be automatically
744   // copied to the output section.
745   flags &= ~ (elfcpp::SHF_INFO_LINK
746               | elfcpp::SHF_GROUP
747               | elfcpp::SHF_MERGE
748               | elfcpp::SHF_STRINGS);
749
750   // We only clear the SHF_LINK_ORDER flag in for
751   // a non-relocatable link.
752   if (!parameters->options().relocatable())
753     flags &= ~elfcpp::SHF_LINK_ORDER;
754
755   if (this->script_options_->saw_sections_clause())
756     {
757       // We are using a SECTIONS clause, so the output section is
758       // chosen based only on the name.
759
760       Script_sections* ss = this->script_options_->script_sections();
761       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
762       Output_section** output_section_slot;
763       Script_sections::Section_type script_section_type;
764       const char* orig_name = name;
765       name = ss->output_section_name(file_name, name, &output_section_slot,
766                                      &script_section_type);
767       if (name == NULL)
768         {
769           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
770                                      "because it is not allowed by the "
771                                      "SECTIONS clause of the linker script"),
772                      orig_name);
773           // The SECTIONS clause says to discard this input section.
774           return NULL;
775         }
776
777       // We can only handle script section types ST_NONE and ST_NOLOAD.
778       switch (script_section_type)
779         {
780         case Script_sections::ST_NONE:
781           break;
782         case Script_sections::ST_NOLOAD:
783           flags &= elfcpp::SHF_ALLOC;
784           break;
785         default:
786           gold_unreachable();
787         }
788
789       // If this is an orphan section--one not mentioned in the linker
790       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
791       // default processing below.
792
793       if (output_section_slot != NULL)
794         {
795           if (*output_section_slot != NULL)
796             {
797               (*output_section_slot)->update_flags_for_input_section(flags);
798               return *output_section_slot;
799             }
800
801           // We don't put sections found in the linker script into
802           // SECTION_NAME_MAP_.  That keeps us from getting confused
803           // if an orphan section is mapped to a section with the same
804           // name as one in the linker script.
805
806           name = this->namepool_.add(name, false, NULL);
807
808           Output_section* os = this->make_output_section(name, type, flags,
809                                                          order, is_relro);
810
811           os->set_found_in_sections_clause();
812
813           // Special handling for NOLOAD sections.
814           if (script_section_type == Script_sections::ST_NOLOAD)
815             {
816               os->set_is_noload();
817
818               // The constructor of Output_section sets addresses of non-ALLOC
819               // sections to 0 by default.  We don't want that for NOLOAD
820               // sections even if they have no SHF_ALLOC flag.
821               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
822                   && os->is_address_valid())
823                 {
824                   gold_assert(os->address() == 0
825                               && !os->is_offset_valid()
826                               && !os->is_data_size_valid());
827                   os->reset_address_and_file_offset();
828                 }
829             }
830
831           *output_section_slot = os;
832           return os;
833         }
834     }
835
836   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
837
838   size_t len = strlen(name);
839   char* uncompressed_name = NULL;
840
841   // Compressed debug sections should be mapped to the corresponding
842   // uncompressed section.
843   if (is_compressed_debug_section(name))
844     {
845       uncompressed_name = new char[len];
846       uncompressed_name[0] = '.';
847       gold_assert(name[0] == '.' && name[1] == 'z');
848       strncpy(&uncompressed_name[1], &name[2], len - 2);
849       uncompressed_name[len - 1] = '\0';
850       len -= 1;
851       name = uncompressed_name;
852     }
853
854   // Turn NAME from the name of the input section into the name of the
855   // output section.
856   if (is_input_section
857       && !this->script_options_->saw_sections_clause()
858       && !parameters->options().relocatable())
859     name = Layout::output_section_name(relobj, name, &len);
860
861   Stringpool::Key name_key;
862   name = this->namepool_.add_with_length(name, len, true, &name_key);
863
864   if (uncompressed_name != NULL)
865     delete[] uncompressed_name;
866
867   // Find or make the output section.  The output section is selected
868   // based on the section name, type, and flags.
869   return this->get_output_section(name, name_key, type, flags, order, is_relro);
870 }
871
872 // For incremental links, record the initial fixed layout of a section
873 // from the base file, and return a pointer to the Output_section.
874
875 template<int size, bool big_endian>
876 Output_section*
877 Layout::init_fixed_output_section(const char* name,
878                                   elfcpp::Shdr<size, big_endian>& shdr)
879 {
880   unsigned int sh_type = shdr.get_sh_type();
881
882   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
883   // All others will be created from scratch and reallocated.
884   if (sh_type != elfcpp::SHT_PROGBITS
885       && sh_type != elfcpp::SHT_NOBITS
886       && sh_type != elfcpp::SHT_NOTE)
887     return NULL;
888
889   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
890   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
891   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
892   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
893   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
894       shdr.get_sh_addralign();
895
896   // Make the output section.
897   Stringpool::Key name_key;
898   name = this->namepool_.add(name, true, &name_key);
899   Output_section* os = this->get_output_section(name, name_key, sh_type,
900                                                 sh_flags, ORDER_INVALID, false);
901   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
902   if (sh_type != elfcpp::SHT_NOBITS)
903     this->free_list_.remove(sh_offset, sh_offset + sh_size);
904   return os;
905 }
906
907 // Return the output section to use for input section SHNDX, with name
908 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
909 // index of a relocation section which applies to this section, or 0
910 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
911 // relocation section if there is one.  Set *OFF to the offset of this
912 // input section without the output section.  Return NULL if the
913 // section should be discarded.  Set *OFF to -1 if the section
914 // contents should not be written directly to the output file, but
915 // will instead receive special handling.
916
917 template<int size, bool big_endian>
918 Output_section*
919 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
920                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
921                unsigned int reloc_shndx, unsigned int, off_t* off)
922 {
923   *off = 0;
924
925   if (!this->include_section(object, name, shdr))
926     return NULL;
927
928   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
929
930   // In a relocatable link a grouped section must not be combined with
931   // any other sections.
932   Output_section* os;
933   if (parameters->options().relocatable()
934       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
935     {
936       name = this->namepool_.add(name, true, NULL);
937       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
938                                      ORDER_INVALID, false);
939     }
940   else
941     {
942       os = this->choose_output_section(object, name, sh_type,
943                                        shdr.get_sh_flags(), true,
944                                        ORDER_INVALID, false);
945       if (os == NULL)
946         return NULL;
947     }
948
949   // By default the GNU linker sorts input sections whose names match
950   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
951   // sections are sorted by name.  This is used to implement
952   // constructor priority ordering.  We are compatible.  When we put
953   // .ctor sections in .init_array and .dtor sections in .fini_array,
954   // we must also sort plain .ctor and .dtor sections.
955   if (!this->script_options_->saw_sections_clause()
956       && !parameters->options().relocatable()
957       && (is_prefix_of(".ctors.", name)
958           || is_prefix_of(".dtors.", name)
959           || is_prefix_of(".init_array.", name)
960           || is_prefix_of(".fini_array.", name)
961           || (parameters->options().ctors_in_init_array()
962               && (strcmp(name, ".ctors") == 0
963                   || strcmp(name, ".dtors") == 0))))
964     os->set_must_sort_attached_input_sections();
965
966   // If this is a .ctors or .ctors.* section being mapped to a
967   // .init_array section, or a .dtors or .dtors.* section being mapped
968   // to a .fini_array section, we will need to reverse the words if
969   // there is more than one.  Record this section for later.  See
970   // ctors_sections_in_init_array above.
971   if (!this->script_options_->saw_sections_clause()
972       && !parameters->options().relocatable()
973       && shdr.get_sh_size() > size / 8
974       && (((strcmp(name, ".ctors") == 0
975             || is_prefix_of(".ctors.", name))
976            && strcmp(os->name(), ".init_array") == 0)
977           || ((strcmp(name, ".dtors") == 0
978                || is_prefix_of(".dtors.", name))
979               && strcmp(os->name(), ".fini_array") == 0)))
980     ctors_sections_in_init_array.insert(Section_id(object, shndx));
981
982   // FIXME: Handle SHF_LINK_ORDER somewhere.
983
984   elfcpp::Elf_Xword orig_flags = os->flags();
985
986   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
987                                this->script_options_->saw_sections_clause());
988
989   // If the flags changed, we may have to change the order.
990   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
991     {
992       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
993       elfcpp::Elf_Xword new_flags =
994         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
995       if (orig_flags != new_flags)
996         os->set_order(this->default_section_order(os, false));
997     }
998
999   this->have_added_input_section_ = true;
1000
1001   return os;
1002 }
1003
1004 // Handle a relocation section when doing a relocatable link.
1005
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1009                      unsigned int,
1010                      const elfcpp::Shdr<size, big_endian>& shdr,
1011                      Output_section* data_section,
1012                      Relocatable_relocs* rr)
1013 {
1014   gold_assert(parameters->options().relocatable()
1015               || parameters->options().emit_relocs());
1016
1017   int sh_type = shdr.get_sh_type();
1018
1019   std::string name;
1020   if (sh_type == elfcpp::SHT_REL)
1021     name = ".rel";
1022   else if (sh_type == elfcpp::SHT_RELA)
1023     name = ".rela";
1024   else
1025     gold_unreachable();
1026   name += data_section->name();
1027
1028   // In a relocatable link relocs for a grouped section must not be
1029   // combined with other reloc sections.
1030   Output_section* os;
1031   if (!parameters->options().relocatable()
1032       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1033     os = this->choose_output_section(object, name.c_str(), sh_type,
1034                                      shdr.get_sh_flags(), false,
1035                                      ORDER_INVALID, false);
1036   else
1037     {
1038       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1039       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1040                                      ORDER_INVALID, false);
1041     }
1042
1043   os->set_should_link_to_symtab();
1044   os->set_info_section(data_section);
1045
1046   Output_section_data* posd;
1047   if (sh_type == elfcpp::SHT_REL)
1048     {
1049       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1050       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1051                                            size,
1052                                            big_endian>(rr);
1053     }
1054   else if (sh_type == elfcpp::SHT_RELA)
1055     {
1056       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1057       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1058                                            size,
1059                                            big_endian>(rr);
1060     }
1061   else
1062     gold_unreachable();
1063
1064   os->add_output_section_data(posd);
1065   rr->set_output_data(posd);
1066
1067   return os;
1068 }
1069
1070 // Handle a group section when doing a relocatable link.
1071
1072 template<int size, bool big_endian>
1073 void
1074 Layout::layout_group(Symbol_table* symtab,
1075                      Sized_relobj_file<size, big_endian>* object,
1076                      unsigned int,
1077                      const char* group_section_name,
1078                      const char* signature,
1079                      const elfcpp::Shdr<size, big_endian>& shdr,
1080                      elfcpp::Elf_Word flags,
1081                      std::vector<unsigned int>* shndxes)
1082 {
1083   gold_assert(parameters->options().relocatable());
1084   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1085   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1086   Output_section* os = this->make_output_section(group_section_name,
1087                                                  elfcpp::SHT_GROUP,
1088                                                  shdr.get_sh_flags(),
1089                                                  ORDER_INVALID, false);
1090
1091   // We need to find a symbol with the signature in the symbol table.
1092   // If we don't find one now, we need to look again later.
1093   Symbol* sym = symtab->lookup(signature, NULL);
1094   if (sym != NULL)
1095     os->set_info_symndx(sym);
1096   else
1097     {
1098       // Reserve some space to minimize reallocations.
1099       if (this->group_signatures_.empty())
1100         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1101
1102       // We will wind up using a symbol whose name is the signature.
1103       // So just put the signature in the symbol name pool to save it.
1104       signature = symtab->canonicalize_name(signature);
1105       this->group_signatures_.push_back(Group_signature(os, signature));
1106     }
1107
1108   os->set_should_link_to_symtab();
1109   os->set_entsize(4);
1110
1111   section_size_type entry_count =
1112     convert_to_section_size_type(shdr.get_sh_size() / 4);
1113   Output_section_data* posd =
1114     new Output_data_group<size, big_endian>(object, entry_count, flags,
1115                                             shndxes);
1116   os->add_output_section_data(posd);
1117 }
1118
1119 // Special GNU handling of sections name .eh_frame.  They will
1120 // normally hold exception frame data as defined by the C++ ABI
1121 // (http://codesourcery.com/cxx-abi/).
1122
1123 template<int size, bool big_endian>
1124 Output_section*
1125 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1126                         const unsigned char* symbols,
1127                         off_t symbols_size,
1128                         const unsigned char* symbol_names,
1129                         off_t symbol_names_size,
1130                         unsigned int shndx,
1131                         const elfcpp::Shdr<size, big_endian>& shdr,
1132                         unsigned int reloc_shndx, unsigned int reloc_type,
1133                         off_t* off)
1134 {
1135   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1136               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1137   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1138
1139   Output_section* os = this->make_eh_frame_section(object);
1140   if (os == NULL)
1141     return NULL;
1142
1143   gold_assert(this->eh_frame_section_ == os);
1144
1145   elfcpp::Elf_Xword orig_flags = os->flags();
1146
1147   if (!parameters->incremental()
1148       && this->eh_frame_data_->add_ehframe_input_section(object,
1149                                                          symbols,
1150                                                          symbols_size,
1151                                                          symbol_names,
1152                                                          symbol_names_size,
1153                                                          shndx,
1154                                                          reloc_shndx,
1155                                                          reloc_type))
1156     {
1157       os->update_flags_for_input_section(shdr.get_sh_flags());
1158
1159       // A writable .eh_frame section is a RELRO section.
1160       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1161           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1162         {
1163           os->set_is_relro();
1164           os->set_order(ORDER_RELRO);
1165         }
1166
1167       // We found a .eh_frame section we are going to optimize, so now
1168       // we can add the set of optimized sections to the output
1169       // section.  We need to postpone adding this until we've found a
1170       // section we can optimize so that the .eh_frame section in
1171       // crtbegin.o winds up at the start of the output section.
1172       if (!this->added_eh_frame_data_)
1173         {
1174           os->add_output_section_data(this->eh_frame_data_);
1175           this->added_eh_frame_data_ = true;
1176         }
1177       *off = -1;
1178     }
1179   else
1180     {
1181       // We couldn't handle this .eh_frame section for some reason.
1182       // Add it as a normal section.
1183       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1184       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1185                                    reloc_shndx, saw_sections_clause);
1186       this->have_added_input_section_ = true;
1187
1188       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1189           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1190         os->set_order(this->default_section_order(os, false));
1191     }
1192
1193   return os;
1194 }
1195
1196 // Create and return the magic .eh_frame section.  Create
1197 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1198 // input .eh_frame section; it may be NULL.
1199
1200 Output_section*
1201 Layout::make_eh_frame_section(const Relobj* object)
1202 {
1203   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1204   // SHT_PROGBITS.
1205   Output_section* os = this->choose_output_section(object, ".eh_frame",
1206                                                    elfcpp::SHT_PROGBITS,
1207                                                    elfcpp::SHF_ALLOC, false,
1208                                                    ORDER_EHFRAME, false);
1209   if (os == NULL)
1210     return NULL;
1211
1212   if (this->eh_frame_section_ == NULL)
1213     {
1214       this->eh_frame_section_ = os;
1215       this->eh_frame_data_ = new Eh_frame();
1216
1217       // For incremental linking, we do not optimize .eh_frame sections
1218       // or create a .eh_frame_hdr section.
1219       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1220         {
1221           Output_section* hdr_os =
1222             this->choose_output_section(NULL, ".eh_frame_hdr",
1223                                         elfcpp::SHT_PROGBITS,
1224                                         elfcpp::SHF_ALLOC, false,
1225                                         ORDER_EHFRAME, false);
1226
1227           if (hdr_os != NULL)
1228             {
1229               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1230                                                         this->eh_frame_data_);
1231               hdr_os->add_output_section_data(hdr_posd);
1232
1233               hdr_os->set_after_input_sections();
1234
1235               if (!this->script_options_->saw_phdrs_clause())
1236                 {
1237                   Output_segment* hdr_oseg;
1238                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1239                                                        elfcpp::PF_R);
1240                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1241                                                           elfcpp::PF_R);
1242                 }
1243
1244               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1245             }
1246         }
1247     }
1248
1249   return os;
1250 }
1251
1252 // Add an exception frame for a PLT.  This is called from target code.
1253
1254 void
1255 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1256                              size_t cie_length, const unsigned char* fde_data,
1257                              size_t fde_length)
1258 {
1259   if (parameters->incremental())
1260     {
1261       // FIXME: Maybe this could work some day....
1262       return;
1263     }
1264   Output_section* os = this->make_eh_frame_section(NULL);
1265   if (os == NULL)
1266     return;
1267   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1268                                             fde_data, fde_length);
1269   if (!this->added_eh_frame_data_)
1270     {
1271       os->add_output_section_data(this->eh_frame_data_);
1272       this->added_eh_frame_data_ = true;
1273     }
1274 }
1275
1276 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1277 // the output section.
1278
1279 Output_section*
1280 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1281                                 elfcpp::Elf_Xword flags,
1282                                 Output_section_data* posd,
1283                                 Output_section_order order, bool is_relro)
1284 {
1285   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1286                                                    false, order, is_relro);
1287   if (os != NULL)
1288     os->add_output_section_data(posd);
1289   return os;
1290 }
1291
1292 // Map section flags to segment flags.
1293
1294 elfcpp::Elf_Word
1295 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1296 {
1297   elfcpp::Elf_Word ret = elfcpp::PF_R;
1298   if ((flags & elfcpp::SHF_WRITE) != 0)
1299     ret |= elfcpp::PF_W;
1300   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1301     ret |= elfcpp::PF_X;
1302   return ret;
1303 }
1304
1305 // Make a new Output_section, and attach it to segments as
1306 // appropriate.  ORDER is the order in which this section should
1307 // appear in the output segment.  IS_RELRO is true if this is a relro
1308 // (read-only after relocations) section.
1309
1310 Output_section*
1311 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1312                             elfcpp::Elf_Xword flags,
1313                             Output_section_order order, bool is_relro)
1314 {
1315   Output_section* os;
1316   if ((flags & elfcpp::SHF_ALLOC) == 0
1317       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1318       && is_compressible_debug_section(name))
1319     os = new Output_compressed_section(&parameters->options(), name, type,
1320                                        flags);
1321   else if ((flags & elfcpp::SHF_ALLOC) == 0
1322            && parameters->options().strip_debug_non_line()
1323            && strcmp(".debug_abbrev", name) == 0)
1324     {
1325       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1326           name, type, flags);
1327       if (this->debug_info_)
1328         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1329     }
1330   else if ((flags & elfcpp::SHF_ALLOC) == 0
1331            && parameters->options().strip_debug_non_line()
1332            && strcmp(".debug_info", name) == 0)
1333     {
1334       os = this->debug_info_ = new Output_reduced_debug_info_section(
1335           name, type, flags);
1336       if (this->debug_abbrev_)
1337         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1338     }
1339   else
1340     {
1341       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1342       // not have correct section types.  Force them here.
1343       if (type == elfcpp::SHT_PROGBITS)
1344         {
1345           if (is_prefix_of(".init_array", name))
1346             type = elfcpp::SHT_INIT_ARRAY;
1347           else if (is_prefix_of(".preinit_array", name))
1348             type = elfcpp::SHT_PREINIT_ARRAY;
1349           else if (is_prefix_of(".fini_array", name))
1350             type = elfcpp::SHT_FINI_ARRAY;
1351         }
1352
1353       // FIXME: const_cast is ugly.
1354       Target* target = const_cast<Target*>(&parameters->target());
1355       os = target->make_output_section(name, type, flags);
1356     }
1357
1358   // With -z relro, we have to recognize the special sections by name.
1359   // There is no other way.
1360   bool is_relro_local = false;
1361   if (!this->script_options_->saw_sections_clause()
1362       && parameters->options().relro()
1363       && type == elfcpp::SHT_PROGBITS
1364       && (flags & elfcpp::SHF_ALLOC) != 0
1365       && (flags & elfcpp::SHF_WRITE) != 0)
1366     {
1367       if (strcmp(name, ".data.rel.ro") == 0)
1368         is_relro = true;
1369       else if (strcmp(name, ".data.rel.ro.local") == 0)
1370         {
1371           is_relro = true;
1372           is_relro_local = true;
1373         }
1374       else if (type == elfcpp::SHT_INIT_ARRAY
1375                || type == elfcpp::SHT_FINI_ARRAY
1376                || type == elfcpp::SHT_PREINIT_ARRAY)
1377         is_relro = true;
1378       else if (strcmp(name, ".ctors") == 0
1379                || strcmp(name, ".dtors") == 0
1380                || strcmp(name, ".jcr") == 0)
1381         is_relro = true;
1382     }
1383
1384   if (is_relro)
1385     os->set_is_relro();
1386
1387   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1388     order = this->default_section_order(os, is_relro_local);
1389
1390   os->set_order(order);
1391
1392   parameters->target().new_output_section(os);
1393
1394   this->section_list_.push_back(os);
1395
1396   // The GNU linker by default sorts some sections by priority, so we
1397   // do the same.  We need to know that this might happen before we
1398   // attach any input sections.
1399   if (!this->script_options_->saw_sections_clause()
1400       && !parameters->options().relocatable()
1401       && (strcmp(name, ".init_array") == 0
1402           || strcmp(name, ".fini_array") == 0
1403           || (!parameters->options().ctors_in_init_array()
1404               && (strcmp(name, ".ctors") == 0
1405                   || strcmp(name, ".dtors") == 0))))
1406     os->set_may_sort_attached_input_sections();
1407
1408   // Check for .stab*str sections, as .stab* sections need to link to
1409   // them.
1410   if (type == elfcpp::SHT_STRTAB
1411       && !this->have_stabstr_section_
1412       && strncmp(name, ".stab", 5) == 0
1413       && strcmp(name + strlen(name) - 3, "str") == 0)
1414     this->have_stabstr_section_ = true;
1415
1416   // If we have already attached the sections to segments, then we
1417   // need to attach this one now.  This happens for sections created
1418   // directly by the linker.
1419   if (this->sections_are_attached_)
1420     this->attach_section_to_segment(os);
1421
1422   return os;
1423 }
1424
1425 // Return the default order in which a section should be placed in an
1426 // output segment.  This function captures a lot of the ideas in
1427 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1428 // linker created section is normally set when the section is created;
1429 // this function is used for input sections.
1430
1431 Output_section_order
1432 Layout::default_section_order(Output_section* os, bool is_relro_local)
1433 {
1434   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1435   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1436   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1437   bool is_bss = false;
1438
1439   switch (os->type())
1440     {
1441     default:
1442     case elfcpp::SHT_PROGBITS:
1443       break;
1444     case elfcpp::SHT_NOBITS:
1445       is_bss = true;
1446       break;
1447     case elfcpp::SHT_RELA:
1448     case elfcpp::SHT_REL:
1449       if (!is_write)
1450         return ORDER_DYNAMIC_RELOCS;
1451       break;
1452     case elfcpp::SHT_HASH:
1453     case elfcpp::SHT_DYNAMIC:
1454     case elfcpp::SHT_SHLIB:
1455     case elfcpp::SHT_DYNSYM:
1456     case elfcpp::SHT_GNU_HASH:
1457     case elfcpp::SHT_GNU_verdef:
1458     case elfcpp::SHT_GNU_verneed:
1459     case elfcpp::SHT_GNU_versym:
1460       if (!is_write)
1461         return ORDER_DYNAMIC_LINKER;
1462       break;
1463     case elfcpp::SHT_NOTE:
1464       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1465     }
1466
1467   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1468     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1469
1470   if (!is_bss && !is_write)
1471     {
1472       if (is_execinstr)
1473         {
1474           if (strcmp(os->name(), ".init") == 0)
1475             return ORDER_INIT;
1476           else if (strcmp(os->name(), ".fini") == 0)
1477             return ORDER_FINI;
1478         }
1479       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1480     }
1481
1482   if (os->is_relro())
1483     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1484
1485   if (os->is_small_section())
1486     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1487   if (os->is_large_section())
1488     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1489
1490   return is_bss ? ORDER_BSS : ORDER_DATA;
1491 }
1492
1493 // Attach output sections to segments.  This is called after we have
1494 // seen all the input sections.
1495
1496 void
1497 Layout::attach_sections_to_segments()
1498 {
1499   for (Section_list::iterator p = this->section_list_.begin();
1500        p != this->section_list_.end();
1501        ++p)
1502     this->attach_section_to_segment(*p);
1503
1504   this->sections_are_attached_ = true;
1505 }
1506
1507 // Attach an output section to a segment.
1508
1509 void
1510 Layout::attach_section_to_segment(Output_section* os)
1511 {
1512   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1513     this->unattached_section_list_.push_back(os);
1514   else
1515     this->attach_allocated_section_to_segment(os);
1516 }
1517
1518 // Attach an allocated output section to a segment.
1519
1520 void
1521 Layout::attach_allocated_section_to_segment(Output_section* os)
1522 {
1523   elfcpp::Elf_Xword flags = os->flags();
1524   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1525
1526   if (parameters->options().relocatable())
1527     return;
1528
1529   // If we have a SECTIONS clause, we can't handle the attachment to
1530   // segments until after we've seen all the sections.
1531   if (this->script_options_->saw_sections_clause())
1532     return;
1533
1534   gold_assert(!this->script_options_->saw_phdrs_clause());
1535
1536   // This output section goes into a PT_LOAD segment.
1537
1538   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1539
1540   // Check for --section-start.
1541   uint64_t addr;
1542   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1543
1544   // In general the only thing we really care about for PT_LOAD
1545   // segments is whether or not they are writable or executable,
1546   // so that is how we search for them.
1547   // Large data sections also go into their own PT_LOAD segment.
1548   // People who need segments sorted on some other basis will
1549   // have to use a linker script.
1550
1551   Segment_list::const_iterator p;
1552   for (p = this->segment_list_.begin();
1553        p != this->segment_list_.end();
1554        ++p)
1555     {
1556       if ((*p)->type() != elfcpp::PT_LOAD)
1557         continue;
1558       if (!parameters->options().omagic()
1559           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1560         continue;
1561       if (parameters->options().rosegment()
1562           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1563         continue;
1564       // If -Tbss was specified, we need to separate the data and BSS
1565       // segments.
1566       if (parameters->options().user_set_Tbss())
1567         {
1568           if ((os->type() == elfcpp::SHT_NOBITS)
1569               == (*p)->has_any_data_sections())
1570             continue;
1571         }
1572       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1573         continue;
1574
1575       if (is_address_set)
1576         {
1577           if ((*p)->are_addresses_set())
1578             continue;
1579
1580           (*p)->add_initial_output_data(os);
1581           (*p)->update_flags_for_output_section(seg_flags);
1582           (*p)->set_addresses(addr, addr);
1583           break;
1584         }
1585
1586       (*p)->add_output_section_to_load(this, os, seg_flags);
1587       break;
1588     }
1589
1590   if (p == this->segment_list_.end())
1591     {
1592       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1593                                                        seg_flags);
1594       if (os->is_large_data_section())
1595         oseg->set_is_large_data_segment();
1596       oseg->add_output_section_to_load(this, os, seg_flags);
1597       if (is_address_set)
1598         oseg->set_addresses(addr, addr);
1599     }
1600
1601   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1602   // segment.
1603   if (os->type() == elfcpp::SHT_NOTE)
1604     {
1605       // See if we already have an equivalent PT_NOTE segment.
1606       for (p = this->segment_list_.begin();
1607            p != segment_list_.end();
1608            ++p)
1609         {
1610           if ((*p)->type() == elfcpp::PT_NOTE
1611               && (((*p)->flags() & elfcpp::PF_W)
1612                   == (seg_flags & elfcpp::PF_W)))
1613             {
1614               (*p)->add_output_section_to_nonload(os, seg_flags);
1615               break;
1616             }
1617         }
1618
1619       if (p == this->segment_list_.end())
1620         {
1621           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1622                                                            seg_flags);
1623           oseg->add_output_section_to_nonload(os, seg_flags);
1624         }
1625     }
1626
1627   // If we see a loadable SHF_TLS section, we create a PT_TLS
1628   // segment.  There can only be one such segment.
1629   if ((flags & elfcpp::SHF_TLS) != 0)
1630     {
1631       if (this->tls_segment_ == NULL)
1632         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1633       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1634     }
1635
1636   // If -z relro is in effect, and we see a relro section, we create a
1637   // PT_GNU_RELRO segment.  There can only be one such segment.
1638   if (os->is_relro() && parameters->options().relro())
1639     {
1640       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1641       if (this->relro_segment_ == NULL)
1642         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1643       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1644     }
1645
1646   // If we see a section named .interp, put it into a PT_INTERP
1647   // segment.  This seems broken to me, but this is what GNU ld does,
1648   // and glibc expects it.
1649   if (strcmp(os->name(), ".interp") == 0
1650       && !this->script_options_->saw_phdrs_clause())
1651     {
1652       if (this->interp_segment_ == NULL)
1653         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1654       else
1655         gold_warning(_("multiple '.interp' sections in input files "
1656                        "may cause confusing PT_INTERP segment"));
1657       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1658     }
1659 }
1660
1661 // Make an output section for a script.
1662
1663 Output_section*
1664 Layout::make_output_section_for_script(
1665     const char* name,
1666     Script_sections::Section_type section_type)
1667 {
1668   name = this->namepool_.add(name, false, NULL);
1669   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1670   if (section_type == Script_sections::ST_NOLOAD)
1671     sh_flags = 0;
1672   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1673                                                  sh_flags, ORDER_INVALID,
1674                                                  false);
1675   os->set_found_in_sections_clause();
1676   if (section_type == Script_sections::ST_NOLOAD)
1677     os->set_is_noload();
1678   return os;
1679 }
1680
1681 // Return the number of segments we expect to see.
1682
1683 size_t
1684 Layout::expected_segment_count() const
1685 {
1686   size_t ret = this->segment_list_.size();
1687
1688   // If we didn't see a SECTIONS clause in a linker script, we should
1689   // already have the complete list of segments.  Otherwise we ask the
1690   // SECTIONS clause how many segments it expects, and add in the ones
1691   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1692
1693   if (!this->script_options_->saw_sections_clause())
1694     return ret;
1695   else
1696     {
1697       const Script_sections* ss = this->script_options_->script_sections();
1698       return ret + ss->expected_segment_count(this);
1699     }
1700 }
1701
1702 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1703 // is whether we saw a .note.GNU-stack section in the object file.
1704 // GNU_STACK_FLAGS is the section flags.  The flags give the
1705 // protection required for stack memory.  We record this in an
1706 // executable as a PT_GNU_STACK segment.  If an object file does not
1707 // have a .note.GNU-stack segment, we must assume that it is an old
1708 // object.  On some targets that will force an executable stack.
1709
1710 void
1711 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1712                          const Object* obj)
1713 {
1714   if (!seen_gnu_stack)
1715     {
1716       this->input_without_gnu_stack_note_ = true;
1717       if (parameters->options().warn_execstack()
1718           && parameters->target().is_default_stack_executable())
1719         gold_warning(_("%s: missing .note.GNU-stack section"
1720                        " implies executable stack"),
1721                      obj->name().c_str());
1722     }
1723   else
1724     {
1725       this->input_with_gnu_stack_note_ = true;
1726       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1727         {
1728           this->input_requires_executable_stack_ = true;
1729           if (parameters->options().warn_execstack()
1730               || parameters->options().is_stack_executable())
1731             gold_warning(_("%s: requires executable stack"),
1732                          obj->name().c_str());
1733         }
1734     }
1735 }
1736
1737 // Create automatic note sections.
1738
1739 void
1740 Layout::create_notes()
1741 {
1742   this->create_gold_note();
1743   this->create_executable_stack_info();
1744   this->create_build_id();
1745 }
1746
1747 // Create the dynamic sections which are needed before we read the
1748 // relocs.
1749
1750 void
1751 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1752 {
1753   if (parameters->doing_static_link())
1754     return;
1755
1756   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1757                                                        elfcpp::SHT_DYNAMIC,
1758                                                        (elfcpp::SHF_ALLOC
1759                                                         | elfcpp::SHF_WRITE),
1760                                                        false, ORDER_RELRO,
1761                                                        true);
1762
1763   this->dynamic_symbol_ =
1764     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1765                                   this->dynamic_section_, 0, 0,
1766                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1767                                   elfcpp::STV_HIDDEN, 0, false, false);
1768
1769   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1770
1771   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1772 }
1773
1774 // For each output section whose name can be represented as C symbol,
1775 // define __start and __stop symbols for the section.  This is a GNU
1776 // extension.
1777
1778 void
1779 Layout::define_section_symbols(Symbol_table* symtab)
1780 {
1781   for (Section_list::const_iterator p = this->section_list_.begin();
1782        p != this->section_list_.end();
1783        ++p)
1784     {
1785       const char* const name = (*p)->name();
1786       if (is_cident(name))
1787         {
1788           const std::string name_string(name);
1789           const std::string start_name(cident_section_start_prefix
1790                                        + name_string);
1791           const std::string stop_name(cident_section_stop_prefix
1792                                       + name_string);
1793
1794           symtab->define_in_output_data(start_name.c_str(),
1795                                         NULL, // version
1796                                         Symbol_table::PREDEFINED,
1797                                         *p,
1798                                         0, // value
1799                                         0, // symsize
1800                                         elfcpp::STT_NOTYPE,
1801                                         elfcpp::STB_GLOBAL,
1802                                         elfcpp::STV_DEFAULT,
1803                                         0, // nonvis
1804                                         false, // offset_is_from_end
1805                                         true); // only_if_ref
1806
1807           symtab->define_in_output_data(stop_name.c_str(),
1808                                         NULL, // version
1809                                         Symbol_table::PREDEFINED,
1810                                         *p,
1811                                         0, // value
1812                                         0, // symsize
1813                                         elfcpp::STT_NOTYPE,
1814                                         elfcpp::STB_GLOBAL,
1815                                         elfcpp::STV_DEFAULT,
1816                                         0, // nonvis
1817                                         true, // offset_is_from_end
1818                                         true); // only_if_ref
1819         }
1820     }
1821 }
1822
1823 // Define symbols for group signatures.
1824
1825 void
1826 Layout::define_group_signatures(Symbol_table* symtab)
1827 {
1828   for (Group_signatures::iterator p = this->group_signatures_.begin();
1829        p != this->group_signatures_.end();
1830        ++p)
1831     {
1832       Symbol* sym = symtab->lookup(p->signature, NULL);
1833       if (sym != NULL)
1834         p->section->set_info_symndx(sym);
1835       else
1836         {
1837           // Force the name of the group section to the group
1838           // signature, and use the group's section symbol as the
1839           // signature symbol.
1840           if (strcmp(p->section->name(), p->signature) != 0)
1841             {
1842               const char* name = this->namepool_.add(p->signature,
1843                                                      true, NULL);
1844               p->section->set_name(name);
1845             }
1846           p->section->set_needs_symtab_index();
1847           p->section->set_info_section_symndx(p->section);
1848         }
1849     }
1850
1851   this->group_signatures_.clear();
1852 }
1853
1854 // Find the first read-only PT_LOAD segment, creating one if
1855 // necessary.
1856
1857 Output_segment*
1858 Layout::find_first_load_seg()
1859 {
1860   Output_segment* best = NULL;
1861   for (Segment_list::const_iterator p = this->segment_list_.begin();
1862        p != this->segment_list_.end();
1863        ++p)
1864     {
1865       if ((*p)->type() == elfcpp::PT_LOAD
1866           && ((*p)->flags() & elfcpp::PF_R) != 0
1867           && (parameters->options().omagic()
1868               || ((*p)->flags() & elfcpp::PF_W) == 0))
1869         {
1870           if (best == NULL || this->segment_precedes(*p, best))
1871             best = *p;
1872         }
1873     }
1874   if (best != NULL)
1875     return best;
1876
1877   gold_assert(!this->script_options_->saw_phdrs_clause());
1878
1879   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1880                                                        elfcpp::PF_R);
1881   return load_seg;
1882 }
1883
1884 // Save states of all current output segments.  Store saved states
1885 // in SEGMENT_STATES.
1886
1887 void
1888 Layout::save_segments(Segment_states* segment_states)
1889 {
1890   for (Segment_list::const_iterator p = this->segment_list_.begin();
1891        p != this->segment_list_.end();
1892        ++p)
1893     {
1894       Output_segment* segment = *p;
1895       // Shallow copy.
1896       Output_segment* copy = new Output_segment(*segment);
1897       (*segment_states)[segment] = copy;
1898     }
1899 }
1900
1901 // Restore states of output segments and delete any segment not found in
1902 // SEGMENT_STATES.
1903
1904 void
1905 Layout::restore_segments(const Segment_states* segment_states)
1906 {
1907   // Go through the segment list and remove any segment added in the
1908   // relaxation loop.
1909   this->tls_segment_ = NULL;
1910   this->relro_segment_ = NULL;
1911   Segment_list::iterator list_iter = this->segment_list_.begin();
1912   while (list_iter != this->segment_list_.end())
1913     {
1914       Output_segment* segment = *list_iter;
1915       Segment_states::const_iterator states_iter =
1916           segment_states->find(segment);
1917       if (states_iter != segment_states->end())
1918         {
1919           const Output_segment* copy = states_iter->second;
1920           // Shallow copy to restore states.
1921           *segment = *copy;
1922
1923           // Also fix up TLS and RELRO segment pointers as appropriate.
1924           if (segment->type() == elfcpp::PT_TLS)
1925             this->tls_segment_ = segment;
1926           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1927             this->relro_segment_ = segment;
1928
1929           ++list_iter;
1930         } 
1931       else
1932         {
1933           list_iter = this->segment_list_.erase(list_iter); 
1934           // This is a segment created during section layout.  It should be
1935           // safe to remove it since we should have removed all pointers to it.
1936           delete segment;
1937         }
1938     }
1939 }
1940
1941 // Clean up after relaxation so that sections can be laid out again.
1942
1943 void
1944 Layout::clean_up_after_relaxation()
1945 {
1946   // Restore the segments to point state just prior to the relaxation loop.
1947   Script_sections* script_section = this->script_options_->script_sections();
1948   script_section->release_segments();
1949   this->restore_segments(this->segment_states_);
1950
1951   // Reset section addresses and file offsets
1952   for (Section_list::iterator p = this->section_list_.begin();
1953        p != this->section_list_.end();
1954        ++p)
1955     {
1956       (*p)->restore_states();
1957
1958       // If an input section changes size because of relaxation,
1959       // we need to adjust the section offsets of all input sections.
1960       // after such a section.
1961       if ((*p)->section_offsets_need_adjustment())
1962         (*p)->adjust_section_offsets();
1963
1964       (*p)->reset_address_and_file_offset();
1965     }
1966   
1967   // Reset special output object address and file offsets.
1968   for (Data_list::iterator p = this->special_output_list_.begin();
1969        p != this->special_output_list_.end();
1970        ++p)
1971     (*p)->reset_address_and_file_offset();
1972
1973   // A linker script may have created some output section data objects.
1974   // They are useless now.
1975   for (Output_section_data_list::const_iterator p =
1976          this->script_output_section_data_list_.begin();
1977        p != this->script_output_section_data_list_.end();
1978        ++p)
1979     delete *p;
1980   this->script_output_section_data_list_.clear(); 
1981 }
1982
1983 // Prepare for relaxation.
1984
1985 void
1986 Layout::prepare_for_relaxation()
1987 {
1988   // Create an relaxation debug check if in debugging mode.
1989   if (is_debugging_enabled(DEBUG_RELAXATION))
1990     this->relaxation_debug_check_ = new Relaxation_debug_check();
1991
1992   // Save segment states.
1993   this->segment_states_ = new Segment_states();
1994   this->save_segments(this->segment_states_);
1995
1996   for(Section_list::const_iterator p = this->section_list_.begin();
1997       p != this->section_list_.end();
1998       ++p)
1999     (*p)->save_states();
2000
2001   if (is_debugging_enabled(DEBUG_RELAXATION))
2002     this->relaxation_debug_check_->check_output_data_for_reset_values(
2003         this->section_list_, this->special_output_list_);
2004
2005   // Also enable recording of output section data from scripts.
2006   this->record_output_section_data_from_script_ = true;
2007 }
2008
2009 // Relaxation loop body:  If target has no relaxation, this runs only once
2010 // Otherwise, the target relaxation hook is called at the end of
2011 // each iteration.  If the hook returns true, it means re-layout of
2012 // section is required.  
2013 //
2014 // The number of segments created by a linking script without a PHDRS
2015 // clause may be affected by section sizes and alignments.  There is
2016 // a remote chance that relaxation causes different number of PT_LOAD
2017 // segments are created and sections are attached to different segments.
2018 // Therefore, we always throw away all segments created during section
2019 // layout.  In order to be able to restart the section layout, we keep
2020 // a copy of the segment list right before the relaxation loop and use
2021 // that to restore the segments.
2022 // 
2023 // PASS is the current relaxation pass number. 
2024 // SYMTAB is a symbol table.
2025 // PLOAD_SEG is the address of a pointer for the load segment.
2026 // PHDR_SEG is a pointer to the PHDR segment.
2027 // SEGMENT_HEADERS points to the output segment header.
2028 // FILE_HEADER points to the output file header.
2029 // PSHNDX is the address to store the output section index.
2030
2031 off_t inline
2032 Layout::relaxation_loop_body(
2033     int pass,
2034     Target* target,
2035     Symbol_table* symtab,
2036     Output_segment** pload_seg,
2037     Output_segment* phdr_seg,
2038     Output_segment_headers* segment_headers,
2039     Output_file_header* file_header,
2040     unsigned int* pshndx)
2041 {
2042   // If this is not the first iteration, we need to clean up after
2043   // relaxation so that we can lay out the sections again.
2044   if (pass != 0)
2045     this->clean_up_after_relaxation();
2046
2047   // If there is a SECTIONS clause, put all the input sections into
2048   // the required order.
2049   Output_segment* load_seg;
2050   if (this->script_options_->saw_sections_clause())
2051     load_seg = this->set_section_addresses_from_script(symtab);
2052   else if (parameters->options().relocatable())
2053     load_seg = NULL;
2054   else
2055     load_seg = this->find_first_load_seg();
2056
2057   if (parameters->options().oformat_enum()
2058       != General_options::OBJECT_FORMAT_ELF)
2059     load_seg = NULL;
2060
2061   // If the user set the address of the text segment, that may not be
2062   // compatible with putting the segment headers and file headers into
2063   // that segment.
2064   if (parameters->options().user_set_Ttext())
2065     load_seg = NULL;
2066
2067   gold_assert(phdr_seg == NULL
2068               || load_seg != NULL
2069               || this->script_options_->saw_sections_clause());
2070
2071   // If the address of the load segment we found has been set by
2072   // --section-start rather than by a script, then adjust the VMA and
2073   // LMA downward if possible to include the file and section headers.
2074   uint64_t header_gap = 0;
2075   if (load_seg != NULL
2076       && load_seg->are_addresses_set()
2077       && !this->script_options_->saw_sections_clause()
2078       && !parameters->options().relocatable())
2079     {
2080       file_header->finalize_data_size();
2081       segment_headers->finalize_data_size();
2082       size_t sizeof_headers = (file_header->data_size()
2083                                + segment_headers->data_size());
2084       const uint64_t abi_pagesize = target->abi_pagesize();
2085       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2086       hdr_paddr &= ~(abi_pagesize - 1);
2087       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2088       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2089         load_seg = NULL;
2090       else
2091         {
2092           load_seg->set_addresses(load_seg->vaddr() - subtract,
2093                                   load_seg->paddr() - subtract);
2094           header_gap = subtract - sizeof_headers;
2095         }
2096     }
2097
2098   // Lay out the segment headers.
2099   if (!parameters->options().relocatable())
2100     {
2101       gold_assert(segment_headers != NULL);
2102       if (header_gap != 0 && load_seg != NULL)
2103         {
2104           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2105           load_seg->add_initial_output_data(z);
2106         }
2107       if (load_seg != NULL)
2108         load_seg->add_initial_output_data(segment_headers);
2109       if (phdr_seg != NULL)
2110         phdr_seg->add_initial_output_data(segment_headers);
2111     }
2112
2113   // Lay out the file header.
2114   if (load_seg != NULL)
2115     load_seg->add_initial_output_data(file_header);
2116
2117   if (this->script_options_->saw_phdrs_clause()
2118       && !parameters->options().relocatable())
2119     {
2120       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2121       // clause in a linker script.
2122       Script_sections* ss = this->script_options_->script_sections();
2123       ss->put_headers_in_phdrs(file_header, segment_headers);
2124     }
2125
2126   // We set the output section indexes in set_segment_offsets and
2127   // set_section_indexes.
2128   *pshndx = 1;
2129
2130   // Set the file offsets of all the segments, and all the sections
2131   // they contain.
2132   off_t off;
2133   if (!parameters->options().relocatable())
2134     off = this->set_segment_offsets(target, load_seg, pshndx);
2135   else
2136     off = this->set_relocatable_section_offsets(file_header, pshndx);
2137
2138    // Verify that the dummy relaxation does not change anything.
2139   if (is_debugging_enabled(DEBUG_RELAXATION))
2140     {
2141       if (pass == 0)
2142         this->relaxation_debug_check_->read_sections(this->section_list_);
2143       else
2144         this->relaxation_debug_check_->verify_sections(this->section_list_);
2145     }
2146
2147   *pload_seg = load_seg;
2148   return off;
2149 }
2150
2151 // Search the list of patterns and find the postion of the given section
2152 // name in the output section.  If the section name matches a glob
2153 // pattern and a non-glob name, then the non-glob position takes
2154 // precedence.  Return 0 if no match is found.
2155
2156 unsigned int
2157 Layout::find_section_order_index(const std::string& section_name)
2158 {
2159   Unordered_map<std::string, unsigned int>::iterator map_it;
2160   map_it = this->input_section_position_.find(section_name);
2161   if (map_it != this->input_section_position_.end())
2162     return map_it->second;
2163
2164   // Absolute match failed.  Linear search the glob patterns.
2165   std::vector<std::string>::iterator it;
2166   for (it = this->input_section_glob_.begin();
2167        it != this->input_section_glob_.end();
2168        ++it)
2169     {
2170        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2171          {
2172            map_it = this->input_section_position_.find(*it);
2173            gold_assert(map_it != this->input_section_position_.end());
2174            return map_it->second;
2175          }
2176     }
2177   return 0;
2178 }
2179
2180 // Read the sequence of input sections from the file specified with
2181 // --section-ordering-file.
2182
2183 void
2184 Layout::read_layout_from_file()
2185 {
2186   const char* filename = parameters->options().section_ordering_file();
2187   std::ifstream in;
2188   std::string line;
2189
2190   in.open(filename);
2191   if (!in)
2192     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2193                filename, strerror(errno));
2194
2195   std::getline(in, line);   // this chops off the trailing \n, if any
2196   unsigned int position = 1;
2197
2198   while (in)
2199     {
2200       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2201         line.resize(line.length() - 1);
2202       // Ignore comments, beginning with '#'
2203       if (line[0] == '#')
2204         {
2205           std::getline(in, line);
2206           continue;
2207         }
2208       this->input_section_position_[line] = position;
2209       // Store all glob patterns in a vector.
2210       if (is_wildcard_string(line.c_str()))
2211         this->input_section_glob_.push_back(line);
2212       position++;
2213       std::getline(in, line);
2214     }
2215 }
2216
2217 // Finalize the layout.  When this is called, we have created all the
2218 // output sections and all the output segments which are based on
2219 // input sections.  We have several things to do, and we have to do
2220 // them in the right order, so that we get the right results correctly
2221 // and efficiently.
2222
2223 // 1) Finalize the list of output segments and create the segment
2224 // table header.
2225
2226 // 2) Finalize the dynamic symbol table and associated sections.
2227
2228 // 3) Determine the final file offset of all the output segments.
2229
2230 // 4) Determine the final file offset of all the SHF_ALLOC output
2231 // sections.
2232
2233 // 5) Create the symbol table sections and the section name table
2234 // section.
2235
2236 // 6) Finalize the symbol table: set symbol values to their final
2237 // value and make a final determination of which symbols are going
2238 // into the output symbol table.
2239
2240 // 7) Create the section table header.
2241
2242 // 8) Determine the final file offset of all the output sections which
2243 // are not SHF_ALLOC, including the section table header.
2244
2245 // 9) Finalize the ELF file header.
2246
2247 // This function returns the size of the output file.
2248
2249 off_t
2250 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2251                  Target* target, const Task* task)
2252 {
2253   target->finalize_sections(this, input_objects, symtab);
2254
2255   this->count_local_symbols(task, input_objects);
2256
2257   this->link_stabs_sections();
2258
2259   Output_segment* phdr_seg = NULL;
2260   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2261     {
2262       // There was a dynamic object in the link.  We need to create
2263       // some information for the dynamic linker.
2264
2265       // Create the PT_PHDR segment which will hold the program
2266       // headers.
2267       if (!this->script_options_->saw_phdrs_clause())
2268         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2269
2270       // Create the dynamic symbol table, including the hash table.
2271       Output_section* dynstr;
2272       std::vector<Symbol*> dynamic_symbols;
2273       unsigned int local_dynamic_count;
2274       Versions versions(*this->script_options()->version_script_info(),
2275                         &this->dynpool_);
2276       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2277                                   &local_dynamic_count, &dynamic_symbols,
2278                                   &versions);
2279
2280       // Create the .interp section to hold the name of the
2281       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2282       // if we saw a .interp section in an input file.
2283       if ((!parameters->options().shared()
2284            || parameters->options().dynamic_linker() != NULL)
2285           && this->interp_segment_ == NULL)
2286         this->create_interp(target);
2287
2288       // Finish the .dynamic section to hold the dynamic data, and put
2289       // it in a PT_DYNAMIC segment.
2290       this->finish_dynamic_section(input_objects, symtab);
2291
2292       // We should have added everything we need to the dynamic string
2293       // table.
2294       this->dynpool_.set_string_offsets();
2295
2296       // Create the version sections.  We can't do this until the
2297       // dynamic string table is complete.
2298       this->create_version_sections(&versions, symtab, local_dynamic_count,
2299                                     dynamic_symbols, dynstr);
2300
2301       // Set the size of the _DYNAMIC symbol.  We can't do this until
2302       // after we call create_version_sections.
2303       this->set_dynamic_symbol_size(symtab);
2304     }
2305   
2306   // Create segment headers.
2307   Output_segment_headers* segment_headers =
2308     (parameters->options().relocatable()
2309      ? NULL
2310      : new Output_segment_headers(this->segment_list_));
2311
2312   // Lay out the file header.
2313   Output_file_header* file_header = new Output_file_header(target, symtab,
2314                                                            segment_headers);
2315
2316   this->special_output_list_.push_back(file_header);
2317   if (segment_headers != NULL)
2318     this->special_output_list_.push_back(segment_headers);
2319
2320   // Find approriate places for orphan output sections if we are using
2321   // a linker script.
2322   if (this->script_options_->saw_sections_clause())
2323     this->place_orphan_sections_in_script();
2324   
2325   Output_segment* load_seg;
2326   off_t off;
2327   unsigned int shndx;
2328   int pass = 0;
2329
2330   // Take a snapshot of the section layout as needed.
2331   if (target->may_relax())
2332     this->prepare_for_relaxation();
2333   
2334   // Run the relaxation loop to lay out sections.
2335   do
2336     {
2337       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2338                                        phdr_seg, segment_headers, file_header,
2339                                        &shndx);
2340       pass++;
2341     }
2342   while (target->may_relax()
2343          && target->relax(pass, input_objects, symtab, this, task));
2344
2345   // Set the file offsets of all the non-data sections we've seen so
2346   // far which don't have to wait for the input sections.  We need
2347   // this in order to finalize local symbols in non-allocated
2348   // sections.
2349   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2350
2351   // Set the section indexes of all unallocated sections seen so far,
2352   // in case any of them are somehow referenced by a symbol.
2353   shndx = this->set_section_indexes(shndx);
2354
2355   // Create the symbol table sections.
2356   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2357   if (!parameters->doing_static_link())
2358     this->assign_local_dynsym_offsets(input_objects);
2359
2360   // Process any symbol assignments from a linker script.  This must
2361   // be called after the symbol table has been finalized.
2362   this->script_options_->finalize_symbols(symtab, this);
2363
2364   // Create the incremental inputs sections.
2365   if (this->incremental_inputs_)
2366     {
2367       this->incremental_inputs_->finalize();
2368       this->create_incremental_info_sections(symtab);
2369     }
2370
2371   // Create the .shstrtab section.
2372   Output_section* shstrtab_section = this->create_shstrtab();
2373
2374   // Set the file offsets of the rest of the non-data sections which
2375   // don't have to wait for the input sections.
2376   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2377
2378   // Now that all sections have been created, set the section indexes
2379   // for any sections which haven't been done yet.
2380   shndx = this->set_section_indexes(shndx);
2381
2382   // Create the section table header.
2383   this->create_shdrs(shstrtab_section, &off);
2384
2385   // If there are no sections which require postprocessing, we can
2386   // handle the section names now, and avoid a resize later.
2387   if (!this->any_postprocessing_sections_)
2388     {
2389       off = this->set_section_offsets(off,
2390                                       POSTPROCESSING_SECTIONS_PASS);
2391       off =
2392           this->set_section_offsets(off,
2393                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2394     }
2395
2396   file_header->set_section_info(this->section_headers_, shstrtab_section);
2397
2398   // Now we know exactly where everything goes in the output file
2399   // (except for non-allocated sections which require postprocessing).
2400   Output_data::layout_complete();
2401
2402   this->output_file_size_ = off;
2403
2404   return off;
2405 }
2406
2407 // Create a note header following the format defined in the ELF ABI.
2408 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2409 // of the section to create, DESCSZ is the size of the descriptor.
2410 // ALLOCATE is true if the section should be allocated in memory.
2411 // This returns the new note section.  It sets *TRAILING_PADDING to
2412 // the number of trailing zero bytes required.
2413
2414 Output_section*
2415 Layout::create_note(const char* name, int note_type,
2416                     const char* section_name, size_t descsz,
2417                     bool allocate, size_t* trailing_padding)
2418 {
2419   // Authorities all agree that the values in a .note field should
2420   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2421   // they differ on what the alignment is for 64-bit binaries.
2422   // The GABI says unambiguously they take 8-byte alignment:
2423   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2424   // Other documentation says alignment should always be 4 bytes:
2425   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2426   // GNU ld and GNU readelf both support the latter (at least as of
2427   // version 2.16.91), and glibc always generates the latter for
2428   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2429   // here.
2430 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2431   const int size = parameters->target().get_size();
2432 #else
2433   const int size = 32;
2434 #endif
2435
2436   // The contents of the .note section.
2437   size_t namesz = strlen(name) + 1;
2438   size_t aligned_namesz = align_address(namesz, size / 8);
2439   size_t aligned_descsz = align_address(descsz, size / 8);
2440
2441   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2442
2443   unsigned char* buffer = new unsigned char[notehdrsz];
2444   memset(buffer, 0, notehdrsz);
2445
2446   bool is_big_endian = parameters->target().is_big_endian();
2447
2448   if (size == 32)
2449     {
2450       if (!is_big_endian)
2451         {
2452           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2453           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2454           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2455         }
2456       else
2457         {
2458           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2459           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2460           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2461         }
2462     }
2463   else if (size == 64)
2464     {
2465       if (!is_big_endian)
2466         {
2467           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2468           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2469           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2470         }
2471       else
2472         {
2473           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2474           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2475           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2476         }
2477     }
2478   else
2479     gold_unreachable();
2480
2481   memcpy(buffer + 3 * (size / 8), name, namesz);
2482
2483   elfcpp::Elf_Xword flags = 0;
2484   Output_section_order order = ORDER_INVALID;
2485   if (allocate)
2486     {
2487       flags = elfcpp::SHF_ALLOC;
2488       order = ORDER_RO_NOTE;
2489     }
2490   Output_section* os = this->choose_output_section(NULL, section_name,
2491                                                    elfcpp::SHT_NOTE,
2492                                                    flags, false, order, false);
2493   if (os == NULL)
2494     return NULL;
2495
2496   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2497                                                            size / 8,
2498                                                            "** note header");
2499   os->add_output_section_data(posd);
2500
2501   *trailing_padding = aligned_descsz - descsz;
2502
2503   return os;
2504 }
2505
2506 // For an executable or shared library, create a note to record the
2507 // version of gold used to create the binary.
2508
2509 void
2510 Layout::create_gold_note()
2511 {
2512   if (parameters->options().relocatable()
2513       || parameters->incremental_update())
2514     return;
2515
2516   std::string desc = std::string("gold ") + gold::get_version_string();
2517
2518   size_t trailing_padding;
2519   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2520                                          ".note.gnu.gold-version", desc.size(),
2521                                          false, &trailing_padding);
2522   if (os == NULL)
2523     return;
2524
2525   Output_section_data* posd = new Output_data_const(desc, 4);
2526   os->add_output_section_data(posd);
2527
2528   if (trailing_padding > 0)
2529     {
2530       posd = new Output_data_zero_fill(trailing_padding, 0);
2531       os->add_output_section_data(posd);
2532     }
2533 }
2534
2535 // Record whether the stack should be executable.  This can be set
2536 // from the command line using the -z execstack or -z noexecstack
2537 // options.  Otherwise, if any input file has a .note.GNU-stack
2538 // section with the SHF_EXECINSTR flag set, the stack should be
2539 // executable.  Otherwise, if at least one input file a
2540 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2541 // section, we use the target default for whether the stack should be
2542 // executable.  Otherwise, we don't generate a stack note.  When
2543 // generating a object file, we create a .note.GNU-stack section with
2544 // the appropriate marking.  When generating an executable or shared
2545 // library, we create a PT_GNU_STACK segment.
2546
2547 void
2548 Layout::create_executable_stack_info()
2549 {
2550   bool is_stack_executable;
2551   if (parameters->options().is_execstack_set())
2552     is_stack_executable = parameters->options().is_stack_executable();
2553   else if (!this->input_with_gnu_stack_note_)
2554     return;
2555   else
2556     {
2557       if (this->input_requires_executable_stack_)
2558         is_stack_executable = true;
2559       else if (this->input_without_gnu_stack_note_)
2560         is_stack_executable =
2561           parameters->target().is_default_stack_executable();
2562       else
2563         is_stack_executable = false;
2564     }
2565
2566   if (parameters->options().relocatable())
2567     {
2568       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2569       elfcpp::Elf_Xword flags = 0;
2570       if (is_stack_executable)
2571         flags |= elfcpp::SHF_EXECINSTR;
2572       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2573                                 ORDER_INVALID, false);
2574     }
2575   else
2576     {
2577       if (this->script_options_->saw_phdrs_clause())
2578         return;
2579       int flags = elfcpp::PF_R | elfcpp::PF_W;
2580       if (is_stack_executable)
2581         flags |= elfcpp::PF_X;
2582       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2583     }
2584 }
2585
2586 // If --build-id was used, set up the build ID note.
2587
2588 void
2589 Layout::create_build_id()
2590 {
2591   if (!parameters->options().user_set_build_id())
2592     return;
2593
2594   const char* style = parameters->options().build_id();
2595   if (strcmp(style, "none") == 0)
2596     return;
2597
2598   // Set DESCSZ to the size of the note descriptor.  When possible,
2599   // set DESC to the note descriptor contents.
2600   size_t descsz;
2601   std::string desc;
2602   if (strcmp(style, "md5") == 0)
2603     descsz = 128 / 8;
2604   else if (strcmp(style, "sha1") == 0)
2605     descsz = 160 / 8;
2606   else if (strcmp(style, "uuid") == 0)
2607     {
2608       const size_t uuidsz = 128 / 8;
2609
2610       char buffer[uuidsz];
2611       memset(buffer, 0, uuidsz);
2612
2613       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2614       if (descriptor < 0)
2615         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2616                    strerror(errno));
2617       else
2618         {
2619           ssize_t got = ::read(descriptor, buffer, uuidsz);
2620           release_descriptor(descriptor, true);
2621           if (got < 0)
2622             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2623           else if (static_cast<size_t>(got) != uuidsz)
2624             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2625                        uuidsz, got);
2626         }
2627
2628       desc.assign(buffer, uuidsz);
2629       descsz = uuidsz;
2630     }
2631   else if (strncmp(style, "0x", 2) == 0)
2632     {
2633       hex_init();
2634       const char* p = style + 2;
2635       while (*p != '\0')
2636         {
2637           if (hex_p(p[0]) && hex_p(p[1]))
2638             {
2639               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2640               desc += c;
2641               p += 2;
2642             }
2643           else if (*p == '-' || *p == ':')
2644             ++p;
2645           else
2646             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2647                        style);
2648         }
2649       descsz = desc.size();
2650     }
2651   else
2652     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2653
2654   // Create the note.
2655   size_t trailing_padding;
2656   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2657                                          ".note.gnu.build-id", descsz, true,
2658                                          &trailing_padding);
2659   if (os == NULL)
2660     return;
2661
2662   if (!desc.empty())
2663     {
2664       // We know the value already, so we fill it in now.
2665       gold_assert(desc.size() == descsz);
2666
2667       Output_section_data* posd = new Output_data_const(desc, 4);
2668       os->add_output_section_data(posd);
2669
2670       if (trailing_padding != 0)
2671         {
2672           posd = new Output_data_zero_fill(trailing_padding, 0);
2673           os->add_output_section_data(posd);
2674         }
2675     }
2676   else
2677     {
2678       // We need to compute a checksum after we have completed the
2679       // link.
2680       gold_assert(trailing_padding == 0);
2681       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2682       os->add_output_section_data(this->build_id_note_);
2683     }
2684 }
2685
2686 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2687 // field of the former should point to the latter.  I'm not sure who
2688 // started this, but the GNU linker does it, and some tools depend
2689 // upon it.
2690
2691 void
2692 Layout::link_stabs_sections()
2693 {
2694   if (!this->have_stabstr_section_)
2695     return;
2696
2697   for (Section_list::iterator p = this->section_list_.begin();
2698        p != this->section_list_.end();
2699        ++p)
2700     {
2701       if ((*p)->type() != elfcpp::SHT_STRTAB)
2702         continue;
2703
2704       const char* name = (*p)->name();
2705       if (strncmp(name, ".stab", 5) != 0)
2706         continue;
2707
2708       size_t len = strlen(name);
2709       if (strcmp(name + len - 3, "str") != 0)
2710         continue;
2711
2712       std::string stab_name(name, len - 3);
2713       Output_section* stab_sec;
2714       stab_sec = this->find_output_section(stab_name.c_str());
2715       if (stab_sec != NULL)
2716         stab_sec->set_link_section(*p);
2717     }
2718 }
2719
2720 // Create .gnu_incremental_inputs and related sections needed
2721 // for the next run of incremental linking to check what has changed.
2722
2723 void
2724 Layout::create_incremental_info_sections(Symbol_table* symtab)
2725 {
2726   Incremental_inputs* incr = this->incremental_inputs_;
2727
2728   gold_assert(incr != NULL);
2729
2730   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2731   incr->create_data_sections(symtab);
2732
2733   // Add the .gnu_incremental_inputs section.
2734   const char* incremental_inputs_name =
2735     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2736   Output_section* incremental_inputs_os =
2737     this->make_output_section(incremental_inputs_name,
2738                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2739                               ORDER_INVALID, false);
2740   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2741
2742   // Add the .gnu_incremental_symtab section.
2743   const char* incremental_symtab_name =
2744     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2745   Output_section* incremental_symtab_os =
2746     this->make_output_section(incremental_symtab_name,
2747                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2748                               ORDER_INVALID, false);
2749   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2750   incremental_symtab_os->set_entsize(4);
2751
2752   // Add the .gnu_incremental_relocs section.
2753   const char* incremental_relocs_name =
2754     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2755   Output_section* incremental_relocs_os =
2756     this->make_output_section(incremental_relocs_name,
2757                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2758                               ORDER_INVALID, false);
2759   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2760   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2761
2762   // Add the .gnu_incremental_got_plt section.
2763   const char* incremental_got_plt_name =
2764     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2765   Output_section* incremental_got_plt_os =
2766     this->make_output_section(incremental_got_plt_name,
2767                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2768                               ORDER_INVALID, false);
2769   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2770
2771   // Add the .gnu_incremental_strtab section.
2772   const char* incremental_strtab_name =
2773     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2774   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2775                                                         elfcpp::SHT_STRTAB, 0,
2776                                                         ORDER_INVALID, false);
2777   Output_data_strtab* strtab_data =
2778       new Output_data_strtab(incr->get_stringpool());
2779   incremental_strtab_os->add_output_section_data(strtab_data);
2780
2781   incremental_inputs_os->set_after_input_sections();
2782   incremental_symtab_os->set_after_input_sections();
2783   incremental_relocs_os->set_after_input_sections();
2784   incremental_got_plt_os->set_after_input_sections();
2785
2786   incremental_inputs_os->set_link_section(incremental_strtab_os);
2787   incremental_symtab_os->set_link_section(incremental_inputs_os);
2788   incremental_relocs_os->set_link_section(incremental_inputs_os);
2789   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2790 }
2791
2792 // Return whether SEG1 should be before SEG2 in the output file.  This
2793 // is based entirely on the segment type and flags.  When this is
2794 // called the segment addresses have normally not yet been set.
2795
2796 bool
2797 Layout::segment_precedes(const Output_segment* seg1,
2798                          const Output_segment* seg2)
2799 {
2800   elfcpp::Elf_Word type1 = seg1->type();
2801   elfcpp::Elf_Word type2 = seg2->type();
2802
2803   // The single PT_PHDR segment is required to precede any loadable
2804   // segment.  We simply make it always first.
2805   if (type1 == elfcpp::PT_PHDR)
2806     {
2807       gold_assert(type2 != elfcpp::PT_PHDR);
2808       return true;
2809     }
2810   if (type2 == elfcpp::PT_PHDR)
2811     return false;
2812
2813   // The single PT_INTERP segment is required to precede any loadable
2814   // segment.  We simply make it always second.
2815   if (type1 == elfcpp::PT_INTERP)
2816     {
2817       gold_assert(type2 != elfcpp::PT_INTERP);
2818       return true;
2819     }
2820   if (type2 == elfcpp::PT_INTERP)
2821     return false;
2822
2823   // We then put PT_LOAD segments before any other segments.
2824   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2825     return true;
2826   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2827     return false;
2828
2829   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2830   // segment, because that is where the dynamic linker expects to find
2831   // it (this is just for efficiency; other positions would also work
2832   // correctly).
2833   if (type1 == elfcpp::PT_TLS
2834       && type2 != elfcpp::PT_TLS
2835       && type2 != elfcpp::PT_GNU_RELRO)
2836     return false;
2837   if (type2 == elfcpp::PT_TLS
2838       && type1 != elfcpp::PT_TLS
2839       && type1 != elfcpp::PT_GNU_RELRO)
2840     return true;
2841
2842   // We put the PT_GNU_RELRO segment last, because that is where the
2843   // dynamic linker expects to find it (as with PT_TLS, this is just
2844   // for efficiency).
2845   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2846     return false;
2847   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2848     return true;
2849
2850   const elfcpp::Elf_Word flags1 = seg1->flags();
2851   const elfcpp::Elf_Word flags2 = seg2->flags();
2852
2853   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2854   // by the numeric segment type and flags values.  There should not
2855   // be more than one segment with the same type and flags.
2856   if (type1 != elfcpp::PT_LOAD)
2857     {
2858       if (type1 != type2)
2859         return type1 < type2;
2860       gold_assert(flags1 != flags2);
2861       return flags1 < flags2;
2862     }
2863
2864   // If the addresses are set already, sort by load address.
2865   if (seg1->are_addresses_set())
2866     {
2867       if (!seg2->are_addresses_set())
2868         return true;
2869
2870       unsigned int section_count1 = seg1->output_section_count();
2871       unsigned int section_count2 = seg2->output_section_count();
2872       if (section_count1 == 0 && section_count2 > 0)
2873         return true;
2874       if (section_count1 > 0 && section_count2 == 0)
2875         return false;
2876
2877       uint64_t paddr1 = (seg1->are_addresses_set()
2878                          ? seg1->paddr()
2879                          : seg1->first_section_load_address());
2880       uint64_t paddr2 = (seg2->are_addresses_set()
2881                          ? seg2->paddr()
2882                          : seg2->first_section_load_address());
2883
2884       if (paddr1 != paddr2)
2885         return paddr1 < paddr2;
2886     }
2887   else if (seg2->are_addresses_set())
2888     return false;
2889
2890   // A segment which holds large data comes after a segment which does
2891   // not hold large data.
2892   if (seg1->is_large_data_segment())
2893     {
2894       if (!seg2->is_large_data_segment())
2895         return false;
2896     }
2897   else if (seg2->is_large_data_segment())
2898     return true;
2899
2900   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2901   // segments come before writable segments.  Then writable segments
2902   // with data come before writable segments without data.  Then
2903   // executable segments come before non-executable segments.  Then
2904   // the unlikely case of a non-readable segment comes before the
2905   // normal case of a readable segment.  If there are multiple
2906   // segments with the same type and flags, we require that the
2907   // address be set, and we sort by virtual address and then physical
2908   // address.
2909   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2910     return (flags1 & elfcpp::PF_W) == 0;
2911   if ((flags1 & elfcpp::PF_W) != 0
2912       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2913     return seg1->has_any_data_sections();
2914   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2915     return (flags1 & elfcpp::PF_X) != 0;
2916   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2917     return (flags1 & elfcpp::PF_R) == 0;
2918
2919   // We shouldn't get here--we shouldn't create segments which we
2920   // can't distinguish.  Unless of course we are using a weird linker
2921   // script.
2922   gold_assert(this->script_options_->saw_phdrs_clause());
2923   return false;
2924 }
2925
2926 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2927
2928 static off_t
2929 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2930 {
2931   uint64_t unsigned_off = off;
2932   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2933                           | (addr & (abi_pagesize - 1)));
2934   if (aligned_off < unsigned_off)
2935     aligned_off += abi_pagesize;
2936   return aligned_off;
2937 }
2938
2939 // Set the file offsets of all the segments, and all the sections they
2940 // contain.  They have all been created.  LOAD_SEG must be be laid out
2941 // first.  Return the offset of the data to follow.
2942
2943 off_t
2944 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2945                             unsigned int* pshndx)
2946 {
2947   // Sort them into the final order.  We use a stable sort so that we
2948   // don't randomize the order of indistinguishable segments created
2949   // by linker scripts.
2950   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2951                    Layout::Compare_segments(this));
2952
2953   // Find the PT_LOAD segments, and set their addresses and offsets
2954   // and their section's addresses and offsets.
2955   uint64_t addr;
2956   if (parameters->options().user_set_Ttext())
2957     addr = parameters->options().Ttext();
2958   else if (parameters->options().output_is_position_independent())
2959     addr = 0;
2960   else
2961     addr = target->default_text_segment_address();
2962   off_t off = 0;
2963
2964   // If LOAD_SEG is NULL, then the file header and segment headers
2965   // will not be loadable.  But they still need to be at offset 0 in
2966   // the file.  Set their offsets now.
2967   if (load_seg == NULL)
2968     {
2969       for (Data_list::iterator p = this->special_output_list_.begin();
2970            p != this->special_output_list_.end();
2971            ++p)
2972         {
2973           off = align_address(off, (*p)->addralign());
2974           (*p)->set_address_and_file_offset(0, off);
2975           off += (*p)->data_size();
2976         }
2977     }
2978
2979   unsigned int increase_relro = this->increase_relro_;
2980   if (this->script_options_->saw_sections_clause())
2981     increase_relro = 0;
2982
2983   const bool check_sections = parameters->options().check_sections();
2984   Output_segment* last_load_segment = NULL;
2985
2986   for (Segment_list::iterator p = this->segment_list_.begin();
2987        p != this->segment_list_.end();
2988        ++p)
2989     {
2990       if ((*p)->type() == elfcpp::PT_LOAD)
2991         {
2992           if (load_seg != NULL && load_seg != *p)
2993             gold_unreachable();
2994           load_seg = NULL;
2995
2996           bool are_addresses_set = (*p)->are_addresses_set();
2997           if (are_addresses_set)
2998             {
2999               // When it comes to setting file offsets, we care about
3000               // the physical address.
3001               addr = (*p)->paddr();
3002             }
3003           else if (parameters->options().user_set_Tdata()
3004                    && ((*p)->flags() & elfcpp::PF_W) != 0
3005                    && (!parameters->options().user_set_Tbss()
3006                        || (*p)->has_any_data_sections()))
3007             {
3008               addr = parameters->options().Tdata();
3009               are_addresses_set = true;
3010             }
3011           else if (parameters->options().user_set_Tbss()
3012                    && ((*p)->flags() & elfcpp::PF_W) != 0
3013                    && !(*p)->has_any_data_sections())
3014             {
3015               addr = parameters->options().Tbss();
3016               are_addresses_set = true;
3017             }
3018
3019           uint64_t orig_addr = addr;
3020           uint64_t orig_off = off;
3021
3022           uint64_t aligned_addr = 0;
3023           uint64_t abi_pagesize = target->abi_pagesize();
3024           uint64_t common_pagesize = target->common_pagesize();
3025
3026           if (!parameters->options().nmagic()
3027               && !parameters->options().omagic())
3028             (*p)->set_minimum_p_align(common_pagesize);
3029
3030           if (!are_addresses_set)
3031             {
3032               // Skip the address forward one page, maintaining the same
3033               // position within the page.  This lets us store both segments
3034               // overlapping on a single page in the file, but the loader will
3035               // put them on different pages in memory. We will revisit this
3036               // decision once we know the size of the segment.
3037
3038               addr = align_address(addr, (*p)->maximum_alignment());
3039               aligned_addr = addr;
3040
3041               if ((addr & (abi_pagesize - 1)) != 0)
3042                 addr = addr + abi_pagesize;
3043
3044               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3045             }
3046
3047           if (!parameters->options().nmagic()
3048               && !parameters->options().omagic())
3049             off = align_file_offset(off, addr, abi_pagesize);
3050           else if (load_seg == NULL)
3051             {
3052               // This is -N or -n with a section script which prevents
3053               // us from using a load segment.  We need to ensure that
3054               // the file offset is aligned to the alignment of the
3055               // segment.  This is because the linker script
3056               // implicitly assumed a zero offset.  If we don't align
3057               // here, then the alignment of the sections in the
3058               // linker script may not match the alignment of the
3059               // sections in the set_section_addresses call below,
3060               // causing an error about dot moving backward.
3061               off = align_address(off, (*p)->maximum_alignment());
3062             }
3063
3064           unsigned int shndx_hold = *pshndx;
3065           bool has_relro = false;
3066           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3067                                                           &increase_relro,
3068                                                           &has_relro,
3069                                                           &off, pshndx);
3070
3071           // Now that we know the size of this segment, we may be able
3072           // to save a page in memory, at the cost of wasting some
3073           // file space, by instead aligning to the start of a new
3074           // page.  Here we use the real machine page size rather than
3075           // the ABI mandated page size.  If the segment has been
3076           // aligned so that the relro data ends at a page boundary,
3077           // we do not try to realign it.
3078
3079           if (!are_addresses_set
3080               && !has_relro
3081               && aligned_addr != addr
3082               && !parameters->incremental())
3083             {
3084               uint64_t first_off = (common_pagesize
3085                                     - (aligned_addr
3086                                        & (common_pagesize - 1)));
3087               uint64_t last_off = new_addr & (common_pagesize - 1);
3088               if (first_off > 0
3089                   && last_off > 0
3090                   && ((aligned_addr & ~ (common_pagesize - 1))
3091                       != (new_addr & ~ (common_pagesize - 1)))
3092                   && first_off + last_off <= common_pagesize)
3093                 {
3094                   *pshndx = shndx_hold;
3095                   addr = align_address(aligned_addr, common_pagesize);
3096                   addr = align_address(addr, (*p)->maximum_alignment());
3097                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3098                   off = align_file_offset(off, addr, abi_pagesize);
3099
3100                   increase_relro = this->increase_relro_;
3101                   if (this->script_options_->saw_sections_clause())
3102                     increase_relro = 0;
3103                   has_relro = false;
3104
3105                   new_addr = (*p)->set_section_addresses(this, true, addr,
3106                                                          &increase_relro,
3107                                                          &has_relro,
3108                                                          &off, pshndx);
3109                 }
3110             }
3111
3112           addr = new_addr;
3113
3114           // Implement --check-sections.  We know that the segments
3115           // are sorted by LMA.
3116           if (check_sections && last_load_segment != NULL)
3117             {
3118               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3119               if (last_load_segment->paddr() + last_load_segment->memsz()
3120                   > (*p)->paddr())
3121                 {
3122                   unsigned long long lb1 = last_load_segment->paddr();
3123                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3124                   unsigned long long lb2 = (*p)->paddr();
3125                   unsigned long long le2 = lb2 + (*p)->memsz();
3126                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3127                                "[0x%llx -> 0x%llx]"),
3128                              lb1, le1, lb2, le2);
3129                 }
3130             }
3131           last_load_segment = *p;
3132         }
3133     }
3134
3135   // Handle the non-PT_LOAD segments, setting their offsets from their
3136   // section's offsets.
3137   for (Segment_list::iterator p = this->segment_list_.begin();
3138        p != this->segment_list_.end();
3139        ++p)
3140     {
3141       if ((*p)->type() != elfcpp::PT_LOAD)
3142         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3143                          ? increase_relro
3144                          : 0);
3145     }
3146
3147   // Set the TLS offsets for each section in the PT_TLS segment.
3148   if (this->tls_segment_ != NULL)
3149     this->tls_segment_->set_tls_offsets();
3150
3151   return off;
3152 }
3153
3154 // Set the offsets of all the allocated sections when doing a
3155 // relocatable link.  This does the same jobs as set_segment_offsets,
3156 // only for a relocatable link.
3157
3158 off_t
3159 Layout::set_relocatable_section_offsets(Output_data* file_header,
3160                                         unsigned int* pshndx)
3161 {
3162   off_t off = 0;
3163
3164   file_header->set_address_and_file_offset(0, 0);
3165   off += file_header->data_size();
3166
3167   for (Section_list::iterator p = this->section_list_.begin();
3168        p != this->section_list_.end();
3169        ++p)
3170     {
3171       // We skip unallocated sections here, except that group sections
3172       // have to come first.
3173       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3174           && (*p)->type() != elfcpp::SHT_GROUP)
3175         continue;
3176
3177       off = align_address(off, (*p)->addralign());
3178
3179       // The linker script might have set the address.
3180       if (!(*p)->is_address_valid())
3181         (*p)->set_address(0);
3182       (*p)->set_file_offset(off);
3183       (*p)->finalize_data_size();
3184       off += (*p)->data_size();
3185
3186       (*p)->set_out_shndx(*pshndx);
3187       ++*pshndx;
3188     }
3189
3190   return off;
3191 }
3192
3193 // Set the file offset of all the sections not associated with a
3194 // segment.
3195
3196 off_t
3197 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3198 {
3199   off_t startoff = off;
3200   off_t maxoff = off;
3201
3202   for (Section_list::iterator p = this->unattached_section_list_.begin();
3203        p != this->unattached_section_list_.end();
3204        ++p)
3205     {
3206       // The symtab section is handled in create_symtab_sections.
3207       if (*p == this->symtab_section_)
3208         continue;
3209
3210       // If we've already set the data size, don't set it again.
3211       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3212         continue;
3213
3214       if (pass == BEFORE_INPUT_SECTIONS_PASS
3215           && (*p)->requires_postprocessing())
3216         {
3217           (*p)->create_postprocessing_buffer();
3218           this->any_postprocessing_sections_ = true;
3219         }
3220
3221       if (pass == BEFORE_INPUT_SECTIONS_PASS
3222           && (*p)->after_input_sections())
3223         continue;
3224       else if (pass == POSTPROCESSING_SECTIONS_PASS
3225                && (!(*p)->after_input_sections()
3226                    || (*p)->type() == elfcpp::SHT_STRTAB))
3227         continue;
3228       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3229                && (!(*p)->after_input_sections()
3230                    || (*p)->type() != elfcpp::SHT_STRTAB))
3231         continue;
3232
3233       if (!parameters->incremental_update())
3234         {
3235           off = align_address(off, (*p)->addralign());
3236           (*p)->set_file_offset(off);
3237           (*p)->finalize_data_size();
3238         }
3239       else
3240         {
3241           // Incremental update: allocate file space from free list.
3242           (*p)->pre_finalize_data_size();
3243           off_t current_size = (*p)->current_data_size();
3244           off = this->allocate(current_size, (*p)->addralign(), startoff);
3245           if (off == -1)
3246             {
3247               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3248                 this->free_list_.dump();
3249               gold_assert((*p)->output_section() != NULL);
3250               gold_fallback(_("out of patch space for section %s; "
3251                               "relink with --incremental-full"),
3252                             (*p)->output_section()->name());
3253             }
3254           (*p)->set_file_offset(off);
3255           (*p)->finalize_data_size();
3256           if ((*p)->data_size() > current_size)
3257             {
3258               gold_assert((*p)->output_section() != NULL);
3259               gold_fallback(_("%s: section changed size; "
3260                               "relink with --incremental-full"),
3261                             (*p)->output_section()->name());
3262             }
3263           gold_debug(DEBUG_INCREMENTAL,
3264                      "set_section_offsets: %08lx %08lx %s",
3265                      static_cast<long>(off),
3266                      static_cast<long>((*p)->data_size()),
3267                      ((*p)->output_section() != NULL
3268                       ? (*p)->output_section()->name() : "(special)"));
3269         }
3270
3271       off += (*p)->data_size();
3272       if (off > maxoff)
3273         maxoff = off;
3274
3275       // At this point the name must be set.
3276       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3277         this->namepool_.add((*p)->name(), false, NULL);
3278     }
3279   return maxoff;
3280 }
3281
3282 // Set the section indexes of all the sections not associated with a
3283 // segment.
3284
3285 unsigned int
3286 Layout::set_section_indexes(unsigned int shndx)
3287 {
3288   for (Section_list::iterator p = this->unattached_section_list_.begin();
3289        p != this->unattached_section_list_.end();
3290        ++p)
3291     {
3292       if (!(*p)->has_out_shndx())
3293         {
3294           (*p)->set_out_shndx(shndx);
3295           ++shndx;
3296         }
3297     }
3298   return shndx;
3299 }
3300
3301 // Set the section addresses according to the linker script.  This is
3302 // only called when we see a SECTIONS clause.  This returns the
3303 // program segment which should hold the file header and segment
3304 // headers, if any.  It will return NULL if they should not be in a
3305 // segment.
3306
3307 Output_segment*
3308 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3309 {
3310   Script_sections* ss = this->script_options_->script_sections();
3311   gold_assert(ss->saw_sections_clause());
3312   return this->script_options_->set_section_addresses(symtab, this);
3313 }
3314
3315 // Place the orphan sections in the linker script.
3316
3317 void
3318 Layout::place_orphan_sections_in_script()
3319 {
3320   Script_sections* ss = this->script_options_->script_sections();
3321   gold_assert(ss->saw_sections_clause());
3322
3323   // Place each orphaned output section in the script.
3324   for (Section_list::iterator p = this->section_list_.begin();
3325        p != this->section_list_.end();
3326        ++p)
3327     {
3328       if (!(*p)->found_in_sections_clause())
3329         ss->place_orphan(*p);
3330     }
3331 }
3332
3333 // Count the local symbols in the regular symbol table and the dynamic
3334 // symbol table, and build the respective string pools.
3335
3336 void
3337 Layout::count_local_symbols(const Task* task,
3338                             const Input_objects* input_objects)
3339 {
3340   // First, figure out an upper bound on the number of symbols we'll
3341   // be inserting into each pool.  This helps us create the pools with
3342   // the right size, to avoid unnecessary hashtable resizing.
3343   unsigned int symbol_count = 0;
3344   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3345        p != input_objects->relobj_end();
3346        ++p)
3347     symbol_count += (*p)->local_symbol_count();
3348
3349   // Go from "upper bound" to "estimate."  We overcount for two
3350   // reasons: we double-count symbols that occur in more than one
3351   // object file, and we count symbols that are dropped from the
3352   // output.  Add it all together and assume we overcount by 100%.
3353   symbol_count /= 2;
3354
3355   // We assume all symbols will go into both the sympool and dynpool.
3356   this->sympool_.reserve(symbol_count);
3357   this->dynpool_.reserve(symbol_count);
3358
3359   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3360        p != input_objects->relobj_end();
3361        ++p)
3362     {
3363       Task_lock_obj<Object> tlo(task, *p);
3364       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3365     }
3366 }
3367
3368 // Create the symbol table sections.  Here we also set the final
3369 // values of the symbols.  At this point all the loadable sections are
3370 // fully laid out.  SHNUM is the number of sections so far.
3371
3372 void
3373 Layout::create_symtab_sections(const Input_objects* input_objects,
3374                                Symbol_table* symtab,
3375                                unsigned int shnum,
3376                                off_t* poff)
3377 {
3378   int symsize;
3379   unsigned int align;
3380   if (parameters->target().get_size() == 32)
3381     {
3382       symsize = elfcpp::Elf_sizes<32>::sym_size;
3383       align = 4;
3384     }
3385   else if (parameters->target().get_size() == 64)
3386     {
3387       symsize = elfcpp::Elf_sizes<64>::sym_size;
3388       align = 8;
3389     }
3390   else
3391     gold_unreachable();
3392
3393   // Compute file offsets relative to the start of the symtab section.
3394   off_t off = 0;
3395
3396   // Save space for the dummy symbol at the start of the section.  We
3397   // never bother to write this out--it will just be left as zero.
3398   off += symsize;
3399   unsigned int local_symbol_index = 1;
3400
3401   // Add STT_SECTION symbols for each Output section which needs one.
3402   for (Section_list::iterator p = this->section_list_.begin();
3403        p != this->section_list_.end();
3404        ++p)
3405     {
3406       if (!(*p)->needs_symtab_index())
3407         (*p)->set_symtab_index(-1U);
3408       else
3409         {
3410           (*p)->set_symtab_index(local_symbol_index);
3411           ++local_symbol_index;
3412           off += symsize;
3413         }
3414     }
3415
3416   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3417        p != input_objects->relobj_end();
3418        ++p)
3419     {
3420       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3421                                                         off, symtab);
3422       off += (index - local_symbol_index) * symsize;
3423       local_symbol_index = index;
3424     }
3425
3426   unsigned int local_symcount = local_symbol_index;
3427   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3428
3429   off_t dynoff;
3430   size_t dyn_global_index;
3431   size_t dyncount;
3432   if (this->dynsym_section_ == NULL)
3433     {
3434       dynoff = 0;
3435       dyn_global_index = 0;
3436       dyncount = 0;
3437     }
3438   else
3439     {
3440       dyn_global_index = this->dynsym_section_->info();
3441       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3442       dynoff = this->dynsym_section_->offset() + locsize;
3443       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3444       gold_assert(static_cast<off_t>(dyncount * symsize)
3445                   == this->dynsym_section_->data_size() - locsize);
3446     }
3447
3448   off_t global_off = off;
3449   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3450                          &this->sympool_, &local_symcount);
3451
3452   if (!parameters->options().strip_all())
3453     {
3454       this->sympool_.set_string_offsets();
3455
3456       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3457       Output_section* osymtab = this->make_output_section(symtab_name,
3458                                                           elfcpp::SHT_SYMTAB,
3459                                                           0, ORDER_INVALID,
3460                                                           false);
3461       this->symtab_section_ = osymtab;
3462
3463       Output_section_data* pos = new Output_data_fixed_space(off, align,
3464                                                              "** symtab");
3465       osymtab->add_output_section_data(pos);
3466
3467       // We generate a .symtab_shndx section if we have more than
3468       // SHN_LORESERVE sections.  Technically it is possible that we
3469       // don't need one, because it is possible that there are no
3470       // symbols in any of sections with indexes larger than
3471       // SHN_LORESERVE.  That is probably unusual, though, and it is
3472       // easier to always create one than to compute section indexes
3473       // twice (once here, once when writing out the symbols).
3474       if (shnum >= elfcpp::SHN_LORESERVE)
3475         {
3476           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3477                                                                false, NULL);
3478           Output_section* osymtab_xindex =
3479             this->make_output_section(symtab_xindex_name,
3480                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3481                                       ORDER_INVALID, false);
3482
3483           size_t symcount = off / symsize;
3484           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3485
3486           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3487
3488           osymtab_xindex->set_link_section(osymtab);
3489           osymtab_xindex->set_addralign(4);
3490           osymtab_xindex->set_entsize(4);
3491
3492           osymtab_xindex->set_after_input_sections();
3493
3494           // This tells the driver code to wait until the symbol table
3495           // has written out before writing out the postprocessing
3496           // sections, including the .symtab_shndx section.
3497           this->any_postprocessing_sections_ = true;
3498         }
3499
3500       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3501       Output_section* ostrtab = this->make_output_section(strtab_name,
3502                                                           elfcpp::SHT_STRTAB,
3503                                                           0, ORDER_INVALID,
3504                                                           false);
3505
3506       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3507       ostrtab->add_output_section_data(pstr);
3508
3509       off_t symtab_off;
3510       if (!parameters->incremental_update())
3511         symtab_off = align_address(*poff, align);
3512       else
3513         {
3514           symtab_off = this->allocate(off, align, *poff);
3515           if (off == -1)
3516             gold_fallback(_("out of patch space for symbol table; "
3517                             "relink with --incremental-full"));
3518           gold_debug(DEBUG_INCREMENTAL,
3519                      "create_symtab_sections: %08lx %08lx .symtab",
3520                      static_cast<long>(symtab_off),
3521                      static_cast<long>(off));
3522         }
3523
3524       symtab->set_file_offset(symtab_off + global_off);
3525       osymtab->set_file_offset(symtab_off);
3526       osymtab->finalize_data_size();
3527       osymtab->set_link_section(ostrtab);
3528       osymtab->set_info(local_symcount);
3529       osymtab->set_entsize(symsize);
3530
3531       if (symtab_off + off > *poff)
3532         *poff = symtab_off + off;
3533     }
3534 }
3535
3536 // Create the .shstrtab section, which holds the names of the
3537 // sections.  At the time this is called, we have created all the
3538 // output sections except .shstrtab itself.
3539
3540 Output_section*
3541 Layout::create_shstrtab()
3542 {
3543   // FIXME: We don't need to create a .shstrtab section if we are
3544   // stripping everything.
3545
3546   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3547
3548   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3549                                                  ORDER_INVALID, false);
3550
3551   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3552     {
3553       // We can't write out this section until we've set all the
3554       // section names, and we don't set the names of compressed
3555       // output sections until relocations are complete.  FIXME: With
3556       // the current names we use, this is unnecessary.
3557       os->set_after_input_sections();
3558     }
3559
3560   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3561   os->add_output_section_data(posd);
3562
3563   return os;
3564 }
3565
3566 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3567 // offset.
3568
3569 void
3570 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3571 {
3572   Output_section_headers* oshdrs;
3573   oshdrs = new Output_section_headers(this,
3574                                       &this->segment_list_,
3575                                       &this->section_list_,
3576                                       &this->unattached_section_list_,
3577                                       &this->namepool_,
3578                                       shstrtab_section);
3579   off_t off;
3580   if (!parameters->incremental_update())
3581     off = align_address(*poff, oshdrs->addralign());
3582   else
3583     {
3584       oshdrs->pre_finalize_data_size();
3585       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3586       if (off == -1)
3587           gold_fallback(_("out of patch space for section header table; "
3588                           "relink with --incremental-full"));
3589       gold_debug(DEBUG_INCREMENTAL,
3590                  "create_shdrs: %08lx %08lx (section header table)",
3591                  static_cast<long>(off),
3592                  static_cast<long>(off + oshdrs->data_size()));
3593     }
3594   oshdrs->set_address_and_file_offset(0, off);
3595   off += oshdrs->data_size();
3596   if (off > *poff)
3597     *poff = off;
3598   this->section_headers_ = oshdrs;
3599 }
3600
3601 // Count the allocated sections.
3602
3603 size_t
3604 Layout::allocated_output_section_count() const
3605 {
3606   size_t section_count = 0;
3607   for (Segment_list::const_iterator p = this->segment_list_.begin();
3608        p != this->segment_list_.end();
3609        ++p)
3610     section_count += (*p)->output_section_count();
3611   return section_count;
3612 }
3613
3614 // Create the dynamic symbol table.
3615
3616 void
3617 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3618                               Symbol_table* symtab,
3619                               Output_section** pdynstr,
3620                               unsigned int* plocal_dynamic_count,
3621                               std::vector<Symbol*>* pdynamic_symbols,
3622                               Versions* pversions)
3623 {
3624   // Count all the symbols in the dynamic symbol table, and set the
3625   // dynamic symbol indexes.
3626
3627   // Skip symbol 0, which is always all zeroes.
3628   unsigned int index = 1;
3629
3630   // Add STT_SECTION symbols for each Output section which needs one.
3631   for (Section_list::iterator p = this->section_list_.begin();
3632        p != this->section_list_.end();
3633        ++p)
3634     {
3635       if (!(*p)->needs_dynsym_index())
3636         (*p)->set_dynsym_index(-1U);
3637       else
3638         {
3639           (*p)->set_dynsym_index(index);
3640           ++index;
3641         }
3642     }
3643
3644   // Count the local symbols that need to go in the dynamic symbol table,
3645   // and set the dynamic symbol indexes.
3646   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3647        p != input_objects->relobj_end();
3648        ++p)
3649     {
3650       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3651       index = new_index;
3652     }
3653
3654   unsigned int local_symcount = index;
3655   *plocal_dynamic_count = local_symcount;
3656
3657   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3658                                      &this->dynpool_, pversions);
3659
3660   int symsize;
3661   unsigned int align;
3662   const int size = parameters->target().get_size();
3663   if (size == 32)
3664     {
3665       symsize = elfcpp::Elf_sizes<32>::sym_size;
3666       align = 4;
3667     }
3668   else if (size == 64)
3669     {
3670       symsize = elfcpp::Elf_sizes<64>::sym_size;
3671       align = 8;
3672     }
3673   else
3674     gold_unreachable();
3675
3676   // Create the dynamic symbol table section.
3677
3678   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3679                                                        elfcpp::SHT_DYNSYM,
3680                                                        elfcpp::SHF_ALLOC,
3681                                                        false,
3682                                                        ORDER_DYNAMIC_LINKER,
3683                                                        false);
3684
3685   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3686                                                            align,
3687                                                            "** dynsym");
3688   dynsym->add_output_section_data(odata);
3689
3690   dynsym->set_info(local_symcount);
3691   dynsym->set_entsize(symsize);
3692   dynsym->set_addralign(align);
3693
3694   this->dynsym_section_ = dynsym;
3695
3696   Output_data_dynamic* const odyn = this->dynamic_data_;
3697   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3698   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3699
3700   // If there are more than SHN_LORESERVE allocated sections, we
3701   // create a .dynsym_shndx section.  It is possible that we don't
3702   // need one, because it is possible that there are no dynamic
3703   // symbols in any of the sections with indexes larger than
3704   // SHN_LORESERVE.  This is probably unusual, though, and at this
3705   // time we don't know the actual section indexes so it is
3706   // inconvenient to check.
3707   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3708     {
3709       Output_section* dynsym_xindex =
3710         this->choose_output_section(NULL, ".dynsym_shndx",
3711                                     elfcpp::SHT_SYMTAB_SHNDX,
3712                                     elfcpp::SHF_ALLOC,
3713                                     false, ORDER_DYNAMIC_LINKER, false);
3714
3715       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3716
3717       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3718
3719       dynsym_xindex->set_link_section(dynsym);
3720       dynsym_xindex->set_addralign(4);
3721       dynsym_xindex->set_entsize(4);
3722
3723       dynsym_xindex->set_after_input_sections();
3724
3725       // This tells the driver code to wait until the symbol table has
3726       // written out before writing out the postprocessing sections,
3727       // including the .dynsym_shndx section.
3728       this->any_postprocessing_sections_ = true;
3729     }
3730
3731   // Create the dynamic string table section.
3732
3733   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3734                                                        elfcpp::SHT_STRTAB,
3735                                                        elfcpp::SHF_ALLOC,
3736                                                        false,
3737                                                        ORDER_DYNAMIC_LINKER,
3738                                                        false);
3739
3740   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3741   dynstr->add_output_section_data(strdata);
3742
3743   dynsym->set_link_section(dynstr);
3744   this->dynamic_section_->set_link_section(dynstr);
3745
3746   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3747   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3748
3749   *pdynstr = dynstr;
3750
3751   // Create the hash tables.
3752
3753   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3754       || strcmp(parameters->options().hash_style(), "both") == 0)
3755     {
3756       unsigned char* phash;
3757       unsigned int hashlen;
3758       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3759                                     &phash, &hashlen);
3760
3761       Output_section* hashsec =
3762         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3763                                     elfcpp::SHF_ALLOC, false,
3764                                     ORDER_DYNAMIC_LINKER, false);
3765
3766       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3767                                                                    hashlen,
3768                                                                    align,
3769                                                                    "** hash");
3770       hashsec->add_output_section_data(hashdata);
3771
3772       hashsec->set_link_section(dynsym);
3773       hashsec->set_entsize(4);
3774
3775       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3776     }
3777
3778   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3779       || strcmp(parameters->options().hash_style(), "both") == 0)
3780     {
3781       unsigned char* phash;
3782       unsigned int hashlen;
3783       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3784                                     &phash, &hashlen);
3785
3786       Output_section* hashsec =
3787         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3788                                     elfcpp::SHF_ALLOC, false,
3789                                     ORDER_DYNAMIC_LINKER, false);
3790
3791       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3792                                                                    hashlen,
3793                                                                    align,
3794                                                                    "** hash");
3795       hashsec->add_output_section_data(hashdata);
3796
3797       hashsec->set_link_section(dynsym);
3798
3799       // For a 64-bit target, the entries in .gnu.hash do not have a
3800       // uniform size, so we only set the entry size for a 32-bit
3801       // target.
3802       if (parameters->target().get_size() == 32)
3803         hashsec->set_entsize(4);
3804
3805       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3806     }
3807 }
3808
3809 // Assign offsets to each local portion of the dynamic symbol table.
3810
3811 void
3812 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3813 {
3814   Output_section* dynsym = this->dynsym_section_;
3815   gold_assert(dynsym != NULL);
3816
3817   off_t off = dynsym->offset();
3818
3819   // Skip the dummy symbol at the start of the section.
3820   off += dynsym->entsize();
3821
3822   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3823        p != input_objects->relobj_end();
3824        ++p)
3825     {
3826       unsigned int count = (*p)->set_local_dynsym_offset(off);
3827       off += count * dynsym->entsize();
3828     }
3829 }
3830
3831 // Create the version sections.
3832
3833 void
3834 Layout::create_version_sections(const Versions* versions,
3835                                 const Symbol_table* symtab,
3836                                 unsigned int local_symcount,
3837                                 const std::vector<Symbol*>& dynamic_symbols,
3838                                 const Output_section* dynstr)
3839 {
3840   if (!versions->any_defs() && !versions->any_needs())
3841     return;
3842
3843   switch (parameters->size_and_endianness())
3844     {
3845 #ifdef HAVE_TARGET_32_LITTLE
3846     case Parameters::TARGET_32_LITTLE:
3847       this->sized_create_version_sections<32, false>(versions, symtab,
3848                                                      local_symcount,
3849                                                      dynamic_symbols, dynstr);
3850       break;
3851 #endif
3852 #ifdef HAVE_TARGET_32_BIG
3853     case Parameters::TARGET_32_BIG:
3854       this->sized_create_version_sections<32, true>(versions, symtab,
3855                                                     local_symcount,
3856                                                     dynamic_symbols, dynstr);
3857       break;
3858 #endif
3859 #ifdef HAVE_TARGET_64_LITTLE
3860     case Parameters::TARGET_64_LITTLE:
3861       this->sized_create_version_sections<64, false>(versions, symtab,
3862                                                      local_symcount,
3863                                                      dynamic_symbols, dynstr);
3864       break;
3865 #endif
3866 #ifdef HAVE_TARGET_64_BIG
3867     case Parameters::TARGET_64_BIG:
3868       this->sized_create_version_sections<64, true>(versions, symtab,
3869                                                     local_symcount,
3870                                                     dynamic_symbols, dynstr);
3871       break;
3872 #endif
3873     default:
3874       gold_unreachable();
3875     }
3876 }
3877
3878 // Create the version sections, sized version.
3879
3880 template<int size, bool big_endian>
3881 void
3882 Layout::sized_create_version_sections(
3883     const Versions* versions,
3884     const Symbol_table* symtab,
3885     unsigned int local_symcount,
3886     const std::vector<Symbol*>& dynamic_symbols,
3887     const Output_section* dynstr)
3888 {
3889   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3890                                                      elfcpp::SHT_GNU_versym,
3891                                                      elfcpp::SHF_ALLOC,
3892                                                      false,
3893                                                      ORDER_DYNAMIC_LINKER,
3894                                                      false);
3895
3896   unsigned char* vbuf;
3897   unsigned int vsize;
3898   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3899                                                       local_symcount,
3900                                                       dynamic_symbols,
3901                                                       &vbuf, &vsize);
3902
3903   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3904                                                             "** versions");
3905
3906   vsec->add_output_section_data(vdata);
3907   vsec->set_entsize(2);
3908   vsec->set_link_section(this->dynsym_section_);
3909
3910   Output_data_dynamic* const odyn = this->dynamic_data_;
3911   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3912
3913   if (versions->any_defs())
3914     {
3915       Output_section* vdsec;
3916       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3917                                          elfcpp::SHT_GNU_verdef,
3918                                          elfcpp::SHF_ALLOC,
3919                                          false, ORDER_DYNAMIC_LINKER, false);
3920
3921       unsigned char* vdbuf;
3922       unsigned int vdsize;
3923       unsigned int vdentries;
3924       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3925                                                        &vdsize, &vdentries);
3926
3927       Output_section_data* vddata =
3928         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3929
3930       vdsec->add_output_section_data(vddata);
3931       vdsec->set_link_section(dynstr);
3932       vdsec->set_info(vdentries);
3933
3934       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3935       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3936     }
3937
3938   if (versions->any_needs())
3939     {
3940       Output_section* vnsec;
3941       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3942                                           elfcpp::SHT_GNU_verneed,
3943                                           elfcpp::SHF_ALLOC,
3944                                           false, ORDER_DYNAMIC_LINKER, false);
3945
3946       unsigned char* vnbuf;
3947       unsigned int vnsize;
3948       unsigned int vnentries;
3949       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3950                                                         &vnbuf, &vnsize,
3951                                                         &vnentries);
3952
3953       Output_section_data* vndata =
3954         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3955
3956       vnsec->add_output_section_data(vndata);
3957       vnsec->set_link_section(dynstr);
3958       vnsec->set_info(vnentries);
3959
3960       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3961       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3962     }
3963 }
3964
3965 // Create the .interp section and PT_INTERP segment.
3966
3967 void
3968 Layout::create_interp(const Target* target)
3969 {
3970   gold_assert(this->interp_segment_ == NULL);
3971
3972   const char* interp = parameters->options().dynamic_linker();
3973   if (interp == NULL)
3974     {
3975       interp = target->dynamic_linker();
3976       gold_assert(interp != NULL);
3977     }
3978
3979   size_t len = strlen(interp) + 1;
3980
3981   Output_section_data* odata = new Output_data_const(interp, len, 1);
3982
3983   Output_section* osec = this->choose_output_section(NULL, ".interp",
3984                                                      elfcpp::SHT_PROGBITS,
3985                                                      elfcpp::SHF_ALLOC,
3986                                                      false, ORDER_INTERP,
3987                                                      false);
3988   osec->add_output_section_data(odata);
3989 }
3990
3991 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3992 // called by the target-specific code.  This does nothing if not doing
3993 // a dynamic link.
3994
3995 // USE_REL is true for REL relocs rather than RELA relocs.
3996
3997 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3998
3999 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4000 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4001 // some targets have multiple reloc sections in PLT_REL.
4002
4003 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4004 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
4005
4006 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4007 // executable.
4008
4009 void
4010 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4011                                 const Output_data* plt_rel,
4012                                 const Output_data_reloc_generic* dyn_rel,
4013                                 bool add_debug, bool dynrel_includes_plt)
4014 {
4015   Output_data_dynamic* odyn = this->dynamic_data_;
4016   if (odyn == NULL)
4017     return;
4018
4019   if (plt_got != NULL && plt_got->output_section() != NULL)
4020     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4021
4022   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4023     {
4024       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4025       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4026       odyn->add_constant(elfcpp::DT_PLTREL,
4027                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4028     }
4029
4030   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4031     {
4032       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4033                                 dyn_rel);
4034       if (plt_rel != NULL && dynrel_includes_plt)
4035         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4036                                dyn_rel, plt_rel);
4037       else
4038         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4039                                dyn_rel);
4040       const int size = parameters->target().get_size();
4041       elfcpp::DT rel_tag;
4042       int rel_size;
4043       if (use_rel)
4044         {
4045           rel_tag = elfcpp::DT_RELENT;
4046           if (size == 32)
4047             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4048           else if (size == 64)
4049             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4050           else
4051             gold_unreachable();
4052         }
4053       else
4054         {
4055           rel_tag = elfcpp::DT_RELAENT;
4056           if (size == 32)
4057             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4058           else if (size == 64)
4059             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4060           else
4061             gold_unreachable();
4062         }
4063       odyn->add_constant(rel_tag, rel_size);
4064
4065       if (parameters->options().combreloc())
4066         {
4067           size_t c = dyn_rel->relative_reloc_count();
4068           if (c > 0)
4069             odyn->add_constant((use_rel
4070                                 ? elfcpp::DT_RELCOUNT
4071                                 : elfcpp::DT_RELACOUNT),
4072                                c);
4073         }
4074     }
4075
4076   if (add_debug && !parameters->options().shared())
4077     {
4078       // The value of the DT_DEBUG tag is filled in by the dynamic
4079       // linker at run time, and used by the debugger.
4080       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4081     }
4082 }
4083
4084 // Finish the .dynamic section and PT_DYNAMIC segment.
4085
4086 void
4087 Layout::finish_dynamic_section(const Input_objects* input_objects,
4088                                const Symbol_table* symtab)
4089 {
4090   if (!this->script_options_->saw_phdrs_clause())
4091     {
4092       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4093                                                        (elfcpp::PF_R
4094                                                         | elfcpp::PF_W));
4095       oseg->add_output_section_to_nonload(this->dynamic_section_,
4096                                           elfcpp::PF_R | elfcpp::PF_W);
4097     }
4098
4099   Output_data_dynamic* const odyn = this->dynamic_data_;
4100
4101   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4102        p != input_objects->dynobj_end();
4103        ++p)
4104     {
4105       if (!(*p)->is_needed() && (*p)->as_needed())
4106         {
4107           // This dynamic object was linked with --as-needed, but it
4108           // is not needed.
4109           continue;
4110         }
4111
4112       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4113     }
4114
4115   if (parameters->options().shared())
4116     {
4117       const char* soname = parameters->options().soname();
4118       if (soname != NULL)
4119         odyn->add_string(elfcpp::DT_SONAME, soname);
4120     }
4121
4122   Symbol* sym = symtab->lookup(parameters->options().init());
4123   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4124     odyn->add_symbol(elfcpp::DT_INIT, sym);
4125
4126   sym = symtab->lookup(parameters->options().fini());
4127   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4128     odyn->add_symbol(elfcpp::DT_FINI, sym);
4129
4130   // Look for .init_array, .preinit_array and .fini_array by checking
4131   // section types.
4132   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4133       p != this->section_list_.end();
4134       ++p)
4135     switch((*p)->type())
4136       {
4137       case elfcpp::SHT_FINI_ARRAY:
4138         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4139         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4140         break;
4141       case elfcpp::SHT_INIT_ARRAY:
4142         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4143         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4144         break;
4145       case elfcpp::SHT_PREINIT_ARRAY:
4146         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4147         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4148         break;
4149       default:
4150         break;
4151       }
4152   
4153   // Add a DT_RPATH entry if needed.
4154   const General_options::Dir_list& rpath(parameters->options().rpath());
4155   if (!rpath.empty())
4156     {
4157       std::string rpath_val;
4158       for (General_options::Dir_list::const_iterator p = rpath.begin();
4159            p != rpath.end();
4160            ++p)
4161         {
4162           if (rpath_val.empty())
4163             rpath_val = p->name();
4164           else
4165             {
4166               // Eliminate duplicates.
4167               General_options::Dir_list::const_iterator q;
4168               for (q = rpath.begin(); q != p; ++q)
4169                 if (q->name() == p->name())
4170                   break;
4171               if (q == p)
4172                 {
4173                   rpath_val += ':';
4174                   rpath_val += p->name();
4175                 }
4176             }
4177         }
4178
4179       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4180       if (parameters->options().enable_new_dtags())
4181         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4182     }
4183
4184   // Look for text segments that have dynamic relocations.
4185   bool have_textrel = false;
4186   if (!this->script_options_->saw_sections_clause())
4187     {
4188       for (Segment_list::const_iterator p = this->segment_list_.begin();
4189            p != this->segment_list_.end();
4190            ++p)
4191         {
4192           if ((*p)->type() == elfcpp::PT_LOAD
4193               && ((*p)->flags() & elfcpp::PF_W) == 0
4194               && (*p)->has_dynamic_reloc())
4195             {
4196               have_textrel = true;
4197               break;
4198             }
4199         }
4200     }
4201   else
4202     {
4203       // We don't know the section -> segment mapping, so we are
4204       // conservative and just look for readonly sections with
4205       // relocations.  If those sections wind up in writable segments,
4206       // then we have created an unnecessary DT_TEXTREL entry.
4207       for (Section_list::const_iterator p = this->section_list_.begin();
4208            p != this->section_list_.end();
4209            ++p)
4210         {
4211           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4212               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4213               && (*p)->has_dynamic_reloc())
4214             {
4215               have_textrel = true;
4216               break;
4217             }
4218         }
4219     }
4220
4221   if (parameters->options().filter() != NULL)
4222     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4223   if (parameters->options().any_auxiliary())
4224     {
4225       for (options::String_set::const_iterator p =
4226              parameters->options().auxiliary_begin();
4227            p != parameters->options().auxiliary_end();
4228            ++p)
4229         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4230     }
4231
4232   // Add a DT_FLAGS entry if necessary.
4233   unsigned int flags = 0;
4234   if (have_textrel)
4235     {
4236       // Add a DT_TEXTREL for compatibility with older loaders.
4237       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4238       flags |= elfcpp::DF_TEXTREL;
4239
4240       if (parameters->options().text())
4241         gold_error(_("read-only segment has dynamic relocations"));
4242       else if (parameters->options().warn_shared_textrel()
4243                && parameters->options().shared())
4244         gold_warning(_("shared library text segment is not shareable"));
4245     }
4246   if (parameters->options().shared() && this->has_static_tls())
4247     flags |= elfcpp::DF_STATIC_TLS;
4248   if (parameters->options().origin())
4249     flags |= elfcpp::DF_ORIGIN;
4250   if (parameters->options().Bsymbolic())
4251     {
4252       flags |= elfcpp::DF_SYMBOLIC;
4253       // Add DT_SYMBOLIC for compatibility with older loaders.
4254       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4255     }
4256   if (parameters->options().now())
4257     flags |= elfcpp::DF_BIND_NOW;
4258   if (flags != 0)
4259     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4260
4261   flags = 0;
4262   if (parameters->options().initfirst())
4263     flags |= elfcpp::DF_1_INITFIRST;
4264   if (parameters->options().interpose())
4265     flags |= elfcpp::DF_1_INTERPOSE;
4266   if (parameters->options().loadfltr())
4267     flags |= elfcpp::DF_1_LOADFLTR;
4268   if (parameters->options().nodefaultlib())
4269     flags |= elfcpp::DF_1_NODEFLIB;
4270   if (parameters->options().nodelete())
4271     flags |= elfcpp::DF_1_NODELETE;
4272   if (parameters->options().nodlopen())
4273     flags |= elfcpp::DF_1_NOOPEN;
4274   if (parameters->options().nodump())
4275     flags |= elfcpp::DF_1_NODUMP;
4276   if (!parameters->options().shared())
4277     flags &= ~(elfcpp::DF_1_INITFIRST
4278                | elfcpp::DF_1_NODELETE
4279                | elfcpp::DF_1_NOOPEN);
4280   if (parameters->options().origin())
4281     flags |= elfcpp::DF_1_ORIGIN;
4282   if (parameters->options().now())
4283     flags |= elfcpp::DF_1_NOW;
4284   if (flags != 0)
4285     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4286 }
4287
4288 // Set the size of the _DYNAMIC symbol table to be the size of the
4289 // dynamic data.
4290
4291 void
4292 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4293 {
4294   Output_data_dynamic* const odyn = this->dynamic_data_;
4295   odyn->finalize_data_size();
4296   off_t data_size = odyn->data_size();
4297   const int size = parameters->target().get_size();
4298   if (size == 32)
4299     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4300   else if (size == 64)
4301     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4302   else
4303     gold_unreachable();
4304 }
4305
4306 // The mapping of input section name prefixes to output section names.
4307 // In some cases one prefix is itself a prefix of another prefix; in
4308 // such a case the longer prefix must come first.  These prefixes are
4309 // based on the GNU linker default ELF linker script.
4310
4311 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4312 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4313 {
4314   MAPPING_INIT(".text.", ".text"),
4315   MAPPING_INIT(".rodata.", ".rodata"),
4316   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4317   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4318   MAPPING_INIT(".data.", ".data"),
4319   MAPPING_INIT(".bss.", ".bss"),
4320   MAPPING_INIT(".tdata.", ".tdata"),
4321   MAPPING_INIT(".tbss.", ".tbss"),
4322   MAPPING_INIT(".init_array.", ".init_array"),
4323   MAPPING_INIT(".fini_array.", ".fini_array"),
4324   MAPPING_INIT(".sdata.", ".sdata"),
4325   MAPPING_INIT(".sbss.", ".sbss"),
4326   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4327   // differently depending on whether it is creating a shared library.
4328   MAPPING_INIT(".sdata2.", ".sdata"),
4329   MAPPING_INIT(".sbss2.", ".sbss"),
4330   MAPPING_INIT(".lrodata.", ".lrodata"),
4331   MAPPING_INIT(".ldata.", ".ldata"),
4332   MAPPING_INIT(".lbss.", ".lbss"),
4333   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4334   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4335   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4336   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4337   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4338   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4339   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4340   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4341   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4342   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4343   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4344   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4345   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4346   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4347   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4348   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4349   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4350   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4351   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4352   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4353   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4354 };
4355 #undef MAPPING_INIT
4356
4357 const int Layout::section_name_mapping_count =
4358   (sizeof(Layout::section_name_mapping)
4359    / sizeof(Layout::section_name_mapping[0]));
4360
4361 // Choose the output section name to use given an input section name.
4362 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4363 // length of NAME.
4364
4365 const char*
4366 Layout::output_section_name(const Relobj* relobj, const char* name,
4367                             size_t* plen)
4368 {
4369   // gcc 4.3 generates the following sorts of section names when it
4370   // needs a section name specific to a function:
4371   //   .text.FN
4372   //   .rodata.FN
4373   //   .sdata2.FN
4374   //   .data.FN
4375   //   .data.rel.FN
4376   //   .data.rel.local.FN
4377   //   .data.rel.ro.FN
4378   //   .data.rel.ro.local.FN
4379   //   .sdata.FN
4380   //   .bss.FN
4381   //   .sbss.FN
4382   //   .tdata.FN
4383   //   .tbss.FN
4384
4385   // The GNU linker maps all of those to the part before the .FN,
4386   // except that .data.rel.local.FN is mapped to .data, and
4387   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4388   // beginning with .data.rel.ro.local are grouped together.
4389
4390   // For an anonymous namespace, the string FN can contain a '.'.
4391
4392   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4393   // GNU linker maps to .rodata.
4394
4395   // The .data.rel.ro sections are used with -z relro.  The sections
4396   // are recognized by name.  We use the same names that the GNU
4397   // linker does for these sections.
4398
4399   // It is hard to handle this in a principled way, so we don't even
4400   // try.  We use a table of mappings.  If the input section name is
4401   // not found in the table, we simply use it as the output section
4402   // name.
4403
4404   const Section_name_mapping* psnm = section_name_mapping;
4405   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4406     {
4407       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4408         {
4409           *plen = psnm->tolen;
4410           return psnm->to;
4411         }
4412     }
4413
4414   // As an additional complication, .ctors sections are output in
4415   // either .ctors or .init_array sections, and .dtors sections are
4416   // output in either .dtors or .fini_array sections.
4417   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4418     {
4419       if (parameters->options().ctors_in_init_array())
4420         {
4421           *plen = 11;
4422           return name[1] == 'c' ? ".init_array" : ".fini_array";
4423         }
4424       else
4425         {
4426           *plen = 6;
4427           return name[1] == 'c' ? ".ctors" : ".dtors";
4428         }
4429     }
4430   if (parameters->options().ctors_in_init_array()
4431       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4432     {
4433       // To make .init_array/.fini_array work with gcc we must exclude
4434       // .ctors and .dtors sections from the crtbegin and crtend
4435       // files.
4436       if (relobj == NULL
4437           || (!Layout::match_file_name(relobj, "crtbegin")
4438               && !Layout::match_file_name(relobj, "crtend")))
4439         {
4440           *plen = 11;
4441           return name[1] == 'c' ? ".init_array" : ".fini_array";
4442         }
4443     }
4444
4445   return name;
4446 }
4447
4448 // Return true if RELOBJ is an input file whose base name matches
4449 // FILE_NAME.  The base name must have an extension of ".o", and must
4450 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4451 // to match crtbegin.o as well as crtbeginS.o without getting confused
4452 // by other possibilities.  Overall matching the file name this way is
4453 // a dreadful hack, but the GNU linker does it in order to better
4454 // support gcc, and we need to be compatible.
4455
4456 bool
4457 Layout::match_file_name(const Relobj* relobj, const char* match)
4458 {
4459   const std::string& file_name(relobj->name());
4460   const char* base_name = lbasename(file_name.c_str());
4461   size_t match_len = strlen(match);
4462   if (strncmp(base_name, match, match_len) != 0)
4463     return false;
4464   size_t base_len = strlen(base_name);
4465   if (base_len != match_len + 2 && base_len != match_len + 3)
4466     return false;
4467   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4468 }
4469
4470 // Check if a comdat group or .gnu.linkonce section with the given
4471 // NAME is selected for the link.  If there is already a section,
4472 // *KEPT_SECTION is set to point to the existing section and the
4473 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4474 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4475 // *KEPT_SECTION is set to the internal copy and the function returns
4476 // true.
4477
4478 bool
4479 Layout::find_or_add_kept_section(const std::string& name,
4480                                  Relobj* object,
4481                                  unsigned int shndx,
4482                                  bool is_comdat,
4483                                  bool is_group_name,
4484                                  Kept_section** kept_section)
4485 {
4486   // It's normal to see a couple of entries here, for the x86 thunk
4487   // sections.  If we see more than a few, we're linking a C++
4488   // program, and we resize to get more space to minimize rehashing.
4489   if (this->signatures_.size() > 4
4490       && !this->resized_signatures_)
4491     {
4492       reserve_unordered_map(&this->signatures_,
4493                             this->number_of_input_files_ * 64);
4494       this->resized_signatures_ = true;
4495     }
4496
4497   Kept_section candidate;
4498   std::pair<Signatures::iterator, bool> ins =
4499     this->signatures_.insert(std::make_pair(name, candidate));
4500
4501   if (kept_section != NULL)
4502     *kept_section = &ins.first->second;
4503   if (ins.second)
4504     {
4505       // This is the first time we've seen this signature.
4506       ins.first->second.set_object(object);
4507       ins.first->second.set_shndx(shndx);
4508       if (is_comdat)
4509         ins.first->second.set_is_comdat();
4510       if (is_group_name)
4511         ins.first->second.set_is_group_name();
4512       return true;
4513     }
4514
4515   // We have already seen this signature.
4516
4517   if (ins.first->second.is_group_name())
4518     {
4519       // We've already seen a real section group with this signature.
4520       // If the kept group is from a plugin object, and we're in the
4521       // replacement phase, accept the new one as a replacement.
4522       if (ins.first->second.object() == NULL
4523           && parameters->options().plugins()->in_replacement_phase())
4524         {
4525           ins.first->second.set_object(object);
4526           ins.first->second.set_shndx(shndx);
4527           return true;
4528         }
4529       return false;
4530     }
4531   else if (is_group_name)
4532     {
4533       // This is a real section group, and we've already seen a
4534       // linkonce section with this signature.  Record that we've seen
4535       // a section group, and don't include this section group.
4536       ins.first->second.set_is_group_name();
4537       return false;
4538     }
4539   else
4540     {
4541       // We've already seen a linkonce section and this is a linkonce
4542       // section.  These don't block each other--this may be the same
4543       // symbol name with different section types.
4544       return true;
4545     }
4546 }
4547
4548 // Store the allocated sections into the section list.
4549
4550 void
4551 Layout::get_allocated_sections(Section_list* section_list) const
4552 {
4553   for (Section_list::const_iterator p = this->section_list_.begin();
4554        p != this->section_list_.end();
4555        ++p)
4556     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4557       section_list->push_back(*p);
4558 }
4559
4560 // Create an output segment.
4561
4562 Output_segment*
4563 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4564 {
4565   gold_assert(!parameters->options().relocatable());
4566   Output_segment* oseg = new Output_segment(type, flags);
4567   this->segment_list_.push_back(oseg);
4568
4569   if (type == elfcpp::PT_TLS)
4570     this->tls_segment_ = oseg;
4571   else if (type == elfcpp::PT_GNU_RELRO)
4572     this->relro_segment_ = oseg;
4573   else if (type == elfcpp::PT_INTERP)
4574     this->interp_segment_ = oseg;
4575
4576   return oseg;
4577 }
4578
4579 // Return the file offset of the normal symbol table.
4580
4581 off_t
4582 Layout::symtab_section_offset() const
4583 {
4584   if (this->symtab_section_ != NULL)
4585     return this->symtab_section_->offset();
4586   return 0;
4587 }
4588
4589 // Return the section index of the normal symbol table.  It may have
4590 // been stripped by the -s/--strip-all option.
4591
4592 unsigned int
4593 Layout::symtab_section_shndx() const
4594 {
4595   if (this->symtab_section_ != NULL)
4596     return this->symtab_section_->out_shndx();
4597   return 0;
4598 }
4599
4600 // Write out the Output_sections.  Most won't have anything to write,
4601 // since most of the data will come from input sections which are
4602 // handled elsewhere.  But some Output_sections do have Output_data.
4603
4604 void
4605 Layout::write_output_sections(Output_file* of) const
4606 {
4607   for (Section_list::const_iterator p = this->section_list_.begin();
4608        p != this->section_list_.end();
4609        ++p)
4610     {
4611       if (!(*p)->after_input_sections())
4612         (*p)->write(of);
4613     }
4614 }
4615
4616 // Write out data not associated with a section or the symbol table.
4617
4618 void
4619 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4620 {
4621   if (!parameters->options().strip_all())
4622     {
4623       const Output_section* symtab_section = this->symtab_section_;
4624       for (Section_list::const_iterator p = this->section_list_.begin();
4625            p != this->section_list_.end();
4626            ++p)
4627         {
4628           if ((*p)->needs_symtab_index())
4629             {
4630               gold_assert(symtab_section != NULL);
4631               unsigned int index = (*p)->symtab_index();
4632               gold_assert(index > 0 && index != -1U);
4633               off_t off = (symtab_section->offset()
4634                            + index * symtab_section->entsize());
4635               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4636             }
4637         }
4638     }
4639
4640   const Output_section* dynsym_section = this->dynsym_section_;
4641   for (Section_list::const_iterator p = this->section_list_.begin();
4642        p != this->section_list_.end();
4643        ++p)
4644     {
4645       if ((*p)->needs_dynsym_index())
4646         {
4647           gold_assert(dynsym_section != NULL);
4648           unsigned int index = (*p)->dynsym_index();
4649           gold_assert(index > 0 && index != -1U);
4650           off_t off = (dynsym_section->offset()
4651                        + index * dynsym_section->entsize());
4652           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4653         }
4654     }
4655
4656   // Write out the Output_data which are not in an Output_section.
4657   for (Data_list::const_iterator p = this->special_output_list_.begin();
4658        p != this->special_output_list_.end();
4659        ++p)
4660     (*p)->write(of);
4661 }
4662
4663 // Write out the Output_sections which can only be written after the
4664 // input sections are complete.
4665
4666 void
4667 Layout::write_sections_after_input_sections(Output_file* of)
4668 {
4669   // Determine the final section offsets, and thus the final output
4670   // file size.  Note we finalize the .shstrab last, to allow the
4671   // after_input_section sections to modify their section-names before
4672   // writing.
4673   if (this->any_postprocessing_sections_)
4674     {
4675       off_t off = this->output_file_size_;
4676       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4677
4678       // Now that we've finalized the names, we can finalize the shstrab.
4679       off =
4680         this->set_section_offsets(off,
4681                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4682
4683       if (off > this->output_file_size_)
4684         {
4685           of->resize(off);
4686           this->output_file_size_ = off;
4687         }
4688     }
4689
4690   for (Section_list::const_iterator p = this->section_list_.begin();
4691        p != this->section_list_.end();
4692        ++p)
4693     {
4694       if ((*p)->after_input_sections())
4695         (*p)->write(of);
4696     }
4697
4698   this->section_headers_->write(of);
4699 }
4700
4701 // If the build ID requires computing a checksum, do so here, and
4702 // write it out.  We compute a checksum over the entire file because
4703 // that is simplest.
4704
4705 void
4706 Layout::write_build_id(Output_file* of) const
4707 {
4708   if (this->build_id_note_ == NULL)
4709     return;
4710
4711   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4712
4713   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4714                                           this->build_id_note_->data_size());
4715
4716   const char* style = parameters->options().build_id();
4717   if (strcmp(style, "sha1") == 0)
4718     {
4719       sha1_ctx ctx;
4720       sha1_init_ctx(&ctx);
4721       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4722       sha1_finish_ctx(&ctx, ov);
4723     }
4724   else if (strcmp(style, "md5") == 0)
4725     {
4726       md5_ctx ctx;
4727       md5_init_ctx(&ctx);
4728       md5_process_bytes(iv, this->output_file_size_, &ctx);
4729       md5_finish_ctx(&ctx, ov);
4730     }
4731   else
4732     gold_unreachable();
4733
4734   of->write_output_view(this->build_id_note_->offset(),
4735                         this->build_id_note_->data_size(),
4736                         ov);
4737
4738   of->free_input_view(0, this->output_file_size_, iv);
4739 }
4740
4741 // Write out a binary file.  This is called after the link is
4742 // complete.  IN is the temporary output file we used to generate the
4743 // ELF code.  We simply walk through the segments, read them from
4744 // their file offset in IN, and write them to their load address in
4745 // the output file.  FIXME: with a bit more work, we could support
4746 // S-records and/or Intel hex format here.
4747
4748 void
4749 Layout::write_binary(Output_file* in) const
4750 {
4751   gold_assert(parameters->options().oformat_enum()
4752               == General_options::OBJECT_FORMAT_BINARY);
4753
4754   // Get the size of the binary file.
4755   uint64_t max_load_address = 0;
4756   for (Segment_list::const_iterator p = this->segment_list_.begin();
4757        p != this->segment_list_.end();
4758        ++p)
4759     {
4760       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4761         {
4762           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4763           if (max_paddr > max_load_address)
4764             max_load_address = max_paddr;
4765         }
4766     }
4767
4768   Output_file out(parameters->options().output_file_name());
4769   out.open(max_load_address);
4770
4771   for (Segment_list::const_iterator p = this->segment_list_.begin();
4772        p != this->segment_list_.end();
4773        ++p)
4774     {
4775       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4776         {
4777           const unsigned char* vin = in->get_input_view((*p)->offset(),
4778                                                         (*p)->filesz());
4779           unsigned char* vout = out.get_output_view((*p)->paddr(),
4780                                                     (*p)->filesz());
4781           memcpy(vout, vin, (*p)->filesz());
4782           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4783           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4784         }
4785     }
4786
4787   out.close();
4788 }
4789
4790 // Print the output sections to the map file.
4791
4792 void
4793 Layout::print_to_mapfile(Mapfile* mapfile) const
4794 {
4795   for (Segment_list::const_iterator p = this->segment_list_.begin();
4796        p != this->segment_list_.end();
4797        ++p)
4798     (*p)->print_sections_to_mapfile(mapfile);
4799 }
4800
4801 // Print statistical information to stderr.  This is used for --stats.
4802
4803 void
4804 Layout::print_stats() const
4805 {
4806   this->namepool_.print_stats("section name pool");
4807   this->sympool_.print_stats("output symbol name pool");
4808   this->dynpool_.print_stats("dynamic name pool");
4809
4810   for (Section_list::const_iterator p = this->section_list_.begin();
4811        p != this->section_list_.end();
4812        ++p)
4813     (*p)->print_merge_stats();
4814 }
4815
4816 // Write_sections_task methods.
4817
4818 // We can always run this task.
4819
4820 Task_token*
4821 Write_sections_task::is_runnable()
4822 {
4823   return NULL;
4824 }
4825
4826 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4827 // when finished.
4828
4829 void
4830 Write_sections_task::locks(Task_locker* tl)
4831 {
4832   tl->add(this, this->output_sections_blocker_);
4833   tl->add(this, this->final_blocker_);
4834 }
4835
4836 // Run the task--write out the data.
4837
4838 void
4839 Write_sections_task::run(Workqueue*)
4840 {
4841   this->layout_->write_output_sections(this->of_);
4842 }
4843
4844 // Write_data_task methods.
4845
4846 // We can always run this task.
4847
4848 Task_token*
4849 Write_data_task::is_runnable()
4850 {
4851   return NULL;
4852 }
4853
4854 // We need to unlock FINAL_BLOCKER when finished.
4855
4856 void
4857 Write_data_task::locks(Task_locker* tl)
4858 {
4859   tl->add(this, this->final_blocker_);
4860 }
4861
4862 // Run the task--write out the data.
4863
4864 void
4865 Write_data_task::run(Workqueue*)
4866 {
4867   this->layout_->write_data(this->symtab_, this->of_);
4868 }
4869
4870 // Write_symbols_task methods.
4871
4872 // We can always run this task.
4873
4874 Task_token*
4875 Write_symbols_task::is_runnable()
4876 {
4877   return NULL;
4878 }
4879
4880 // We need to unlock FINAL_BLOCKER when finished.
4881
4882 void
4883 Write_symbols_task::locks(Task_locker* tl)
4884 {
4885   tl->add(this, this->final_blocker_);
4886 }
4887
4888 // Run the task--write out the symbols.
4889
4890 void
4891 Write_symbols_task::run(Workqueue*)
4892 {
4893   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4894                                this->layout_->symtab_xindex(),
4895                                this->layout_->dynsym_xindex(), this->of_);
4896 }
4897
4898 // Write_after_input_sections_task methods.
4899
4900 // We can only run this task after the input sections have completed.
4901
4902 Task_token*
4903 Write_after_input_sections_task::is_runnable()
4904 {
4905   if (this->input_sections_blocker_->is_blocked())
4906     return this->input_sections_blocker_;
4907   return NULL;
4908 }
4909
4910 // We need to unlock FINAL_BLOCKER when finished.
4911
4912 void
4913 Write_after_input_sections_task::locks(Task_locker* tl)
4914 {
4915   tl->add(this, this->final_blocker_);
4916 }
4917
4918 // Run the task.
4919
4920 void
4921 Write_after_input_sections_task::run(Workqueue*)
4922 {
4923   this->layout_->write_sections_after_input_sections(this->of_);
4924 }
4925
4926 // Close_task_runner methods.
4927
4928 // Run the task--close the file.
4929
4930 void
4931 Close_task_runner::run(Workqueue*, const Task*)
4932 {
4933   // If we need to compute a checksum for the BUILD if, we do so here.
4934   this->layout_->write_build_id(this->of_);
4935
4936   // If we've been asked to create a binary file, we do so here.
4937   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4938     this->layout_->write_binary(this->of_);
4939
4940   this->of_->close();
4941 }
4942
4943 // Instantiate the templates we need.  We could use the configure
4944 // script to restrict this to only the ones for implemented targets.
4945
4946 #ifdef HAVE_TARGET_32_LITTLE
4947 template
4948 Output_section*
4949 Layout::init_fixed_output_section<32, false>(
4950     const char* name,
4951     elfcpp::Shdr<32, false>& shdr);
4952 #endif
4953
4954 #ifdef HAVE_TARGET_32_BIG
4955 template
4956 Output_section*
4957 Layout::init_fixed_output_section<32, true>(
4958     const char* name,
4959     elfcpp::Shdr<32, true>& shdr);
4960 #endif
4961
4962 #ifdef HAVE_TARGET_64_LITTLE
4963 template
4964 Output_section*
4965 Layout::init_fixed_output_section<64, false>(
4966     const char* name,
4967     elfcpp::Shdr<64, false>& shdr);
4968 #endif
4969
4970 #ifdef HAVE_TARGET_64_BIG
4971 template
4972 Output_section*
4973 Layout::init_fixed_output_section<64, true>(
4974     const char* name,
4975     elfcpp::Shdr<64, true>& shdr);
4976 #endif
4977
4978 #ifdef HAVE_TARGET_32_LITTLE
4979 template
4980 Output_section*
4981 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4982                           unsigned int shndx,
4983                           const char* name,
4984                           const elfcpp::Shdr<32, false>& shdr,
4985                           unsigned int, unsigned int, off_t*);
4986 #endif
4987
4988 #ifdef HAVE_TARGET_32_BIG
4989 template
4990 Output_section*
4991 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4992                          unsigned int shndx,
4993                          const char* name,
4994                          const elfcpp::Shdr<32, true>& shdr,
4995                          unsigned int, unsigned int, off_t*);
4996 #endif
4997
4998 #ifdef HAVE_TARGET_64_LITTLE
4999 template
5000 Output_section*
5001 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5002                           unsigned int shndx,
5003                           const char* name,
5004                           const elfcpp::Shdr<64, false>& shdr,
5005                           unsigned int, unsigned int, off_t*);
5006 #endif
5007
5008 #ifdef HAVE_TARGET_64_BIG
5009 template
5010 Output_section*
5011 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5012                          unsigned int shndx,
5013                          const char* name,
5014                          const elfcpp::Shdr<64, true>& shdr,
5015                          unsigned int, unsigned int, off_t*);
5016 #endif
5017
5018 #ifdef HAVE_TARGET_32_LITTLE
5019 template
5020 Output_section*
5021 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5022                                 unsigned int reloc_shndx,
5023                                 const elfcpp::Shdr<32, false>& shdr,
5024                                 Output_section* data_section,
5025                                 Relocatable_relocs* rr);
5026 #endif
5027
5028 #ifdef HAVE_TARGET_32_BIG
5029 template
5030 Output_section*
5031 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5032                                unsigned int reloc_shndx,
5033                                const elfcpp::Shdr<32, true>& shdr,
5034                                Output_section* data_section,
5035                                Relocatable_relocs* rr);
5036 #endif
5037
5038 #ifdef HAVE_TARGET_64_LITTLE
5039 template
5040 Output_section*
5041 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5042                                 unsigned int reloc_shndx,
5043                                 const elfcpp::Shdr<64, false>& shdr,
5044                                 Output_section* data_section,
5045                                 Relocatable_relocs* rr);
5046 #endif
5047
5048 #ifdef HAVE_TARGET_64_BIG
5049 template
5050 Output_section*
5051 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5052                                unsigned int reloc_shndx,
5053                                const elfcpp::Shdr<64, true>& shdr,
5054                                Output_section* data_section,
5055                                Relocatable_relocs* rr);
5056 #endif
5057
5058 #ifdef HAVE_TARGET_32_LITTLE
5059 template
5060 void
5061 Layout::layout_group<32, false>(Symbol_table* symtab,
5062                                 Sized_relobj_file<32, false>* object,
5063                                 unsigned int,
5064                                 const char* group_section_name,
5065                                 const char* signature,
5066                                 const elfcpp::Shdr<32, false>& shdr,
5067                                 elfcpp::Elf_Word flags,
5068                                 std::vector<unsigned int>* shndxes);
5069 #endif
5070
5071 #ifdef HAVE_TARGET_32_BIG
5072 template
5073 void
5074 Layout::layout_group<32, true>(Symbol_table* symtab,
5075                                Sized_relobj_file<32, true>* object,
5076                                unsigned int,
5077                                const char* group_section_name,
5078                                const char* signature,
5079                                const elfcpp::Shdr<32, true>& shdr,
5080                                elfcpp::Elf_Word flags,
5081                                std::vector<unsigned int>* shndxes);
5082 #endif
5083
5084 #ifdef HAVE_TARGET_64_LITTLE
5085 template
5086 void
5087 Layout::layout_group<64, false>(Symbol_table* symtab,
5088                                 Sized_relobj_file<64, false>* object,
5089                                 unsigned int,
5090                                 const char* group_section_name,
5091                                 const char* signature,
5092                                 const elfcpp::Shdr<64, false>& shdr,
5093                                 elfcpp::Elf_Word flags,
5094                                 std::vector<unsigned int>* shndxes);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_64_BIG
5098 template
5099 void
5100 Layout::layout_group<64, true>(Symbol_table* symtab,
5101                                Sized_relobj_file<64, true>* object,
5102                                unsigned int,
5103                                const char* group_section_name,
5104                                const char* signature,
5105                                const elfcpp::Shdr<64, true>& shdr,
5106                                elfcpp::Elf_Word flags,
5107                                std::vector<unsigned int>* shndxes);
5108 #endif
5109
5110 #ifdef HAVE_TARGET_32_LITTLE
5111 template
5112 Output_section*
5113 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5114                                    const unsigned char* symbols,
5115                                    off_t symbols_size,
5116                                    const unsigned char* symbol_names,
5117                                    off_t symbol_names_size,
5118                                    unsigned int shndx,
5119                                    const elfcpp::Shdr<32, false>& shdr,
5120                                    unsigned int reloc_shndx,
5121                                    unsigned int reloc_type,
5122                                    off_t* off);
5123 #endif
5124
5125 #ifdef HAVE_TARGET_32_BIG
5126 template
5127 Output_section*
5128 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5129                                   const unsigned char* symbols,
5130                                   off_t symbols_size,
5131                                   const unsigned char* symbol_names,
5132                                   off_t symbol_names_size,
5133                                   unsigned int shndx,
5134                                   const elfcpp::Shdr<32, true>& shdr,
5135                                   unsigned int reloc_shndx,
5136                                   unsigned int reloc_type,
5137                                   off_t* off);
5138 #endif
5139
5140 #ifdef HAVE_TARGET_64_LITTLE
5141 template
5142 Output_section*
5143 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5144                                    const unsigned char* symbols,
5145                                    off_t symbols_size,
5146                                    const unsigned char* symbol_names,
5147                                    off_t symbol_names_size,
5148                                    unsigned int shndx,
5149                                    const elfcpp::Shdr<64, false>& shdr,
5150                                    unsigned int reloc_shndx,
5151                                    unsigned int reloc_type,
5152                                    off_t* off);
5153 #endif
5154
5155 #ifdef HAVE_TARGET_64_BIG
5156 template
5157 Output_section*
5158 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5159                                   const unsigned char* symbols,
5160                                   off_t symbols_size,
5161                                   const unsigned char* symbol_names,
5162                                   off_t symbol_names_size,
5163                                   unsigned int shndx,
5164                                   const elfcpp::Shdr<64, true>& shdr,
5165                                   unsigned int reloc_shndx,
5166                                   unsigned int reloc_type,
5167                                   off_t* off);
5168 #endif
5169
5170 } // End namespace gold.