From Craig Silverstein and Cary Coutant: fix assignment of section
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1),
71     input_requires_executable_stack_(false),
72     input_with_gnu_stack_note_(false),
73     input_without_gnu_stack_note_(false)
74 {
75   // Make space for more than enough segments for a typical file.
76   // This is just for efficiency--it's OK if we wind up needing more.
77   this->segment_list_.reserve(12);
78
79   // We expect three unattached Output_data objects: the file header,
80   // the segment headers, and the section headers.
81   this->special_output_list_.reserve(3);
82 }
83
84 // Hash a key we use to look up an output section mapping.
85
86 size_t
87 Layout::Hash_key::operator()(const Layout::Key& k) const
88 {
89  return k.first + k.second.first + k.second.second;
90 }
91
92 // Return whether PREFIX is a prefix of STR.
93
94 static inline bool
95 is_prefix_of(const char* prefix, const char* str)
96 {
97   return strncmp(prefix, str, strlen(prefix)) == 0;
98 }
99
100 // Whether to include this section in the link.
101
102 template<int size, bool big_endian>
103 bool
104 Layout::include_section(Object*, const char* name,
105                         const elfcpp::Shdr<size, big_endian>& shdr)
106 {
107   // Some section types are never linked.  Some are only linked when
108   // doing a relocateable link.
109   switch (shdr.get_sh_type())
110     {
111     case elfcpp::SHT_NULL:
112     case elfcpp::SHT_SYMTAB:
113     case elfcpp::SHT_DYNSYM:
114     case elfcpp::SHT_STRTAB:
115     case elfcpp::SHT_HASH:
116     case elfcpp::SHT_DYNAMIC:
117     case elfcpp::SHT_SYMTAB_SHNDX:
118       return false;
119
120     case elfcpp::SHT_RELA:
121     case elfcpp::SHT_REL:
122     case elfcpp::SHT_GROUP:
123       return parameters->output_is_object();
124
125     case elfcpp::SHT_PROGBITS:
126       if (parameters->strip_debug()
127           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
128         {
129           // Debugging sections can only be recognized by name.
130           if (is_prefix_of(".debug", name)
131               || is_prefix_of(".gnu.linkonce.wi.", name)
132               || is_prefix_of(".line", name)
133               || is_prefix_of(".stab", name))
134             return false;
135         }
136       return true;
137
138     default:
139       return true;
140     }
141 }
142
143 // Return an output section named NAME, or NULL if there is none.
144
145 Output_section*
146 Layout::find_output_section(const char* name) const
147 {
148   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149        p != this->section_name_map_.end();
150        ++p)
151     if (strcmp(p->second->name(), name) == 0)
152       return p->second;
153   return NULL;
154 }
155
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear.  Return NULL if there is none.
158
159 Output_segment*
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161                             elfcpp::Elf_Word clear) const
162 {
163   for (Segment_list::const_iterator p = this->segment_list_.begin();
164        p != this->segment_list_.end();
165        ++p)
166     if (static_cast<elfcpp::PT>((*p)->type()) == type
167         && ((*p)->flags() & set) == set
168         && ((*p)->flags() & clear) == 0)
169       return *p;
170   return NULL;
171 }
172
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
175
176 Output_section*
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
179 {
180   // We should ignore some flags.
181   flags &= ~ (elfcpp::SHF_INFO_LINK
182               | elfcpp::SHF_LINK_ORDER
183               | elfcpp::SHF_GROUP
184               | elfcpp::SHF_MERGE
185               | elfcpp::SHF_STRINGS);
186
187   const Key key(name_key, std::make_pair(type, flags));
188   const std::pair<Key, Output_section*> v(key, NULL);
189   std::pair<Section_name_map::iterator, bool> ins(
190     this->section_name_map_.insert(v));
191
192   if (!ins.second)
193     return ins.first->second;
194   else
195     {
196       // This is the first time we've seen this name/type/flags
197       // combination.
198       Output_section* os = this->make_output_section(name, type, flags);
199       ins.first->second = os;
200       return os;
201     }
202 }
203
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
206 // offset of this input section without the output section.
207
208 template<int size, bool big_endian>
209 Output_section*
210 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
211                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
212 {
213   if (!this->include_section(object, name, shdr))
214     return NULL;
215
216   // If we are not doing a relocateable link, choose the name to use
217   // for the output section.
218   size_t len = strlen(name);
219   if (!parameters->output_is_object())
220     name = Layout::output_section_name(name, &len);
221
222   // FIXME: Handle SHF_OS_NONCONFORMING here.
223
224   // Canonicalize the section name.
225   Stringpool::Key name_key;
226   name = this->namepool_.add_prefix(name, len, &name_key);
227
228   // Find the output section.  The output section is selected based on
229   // the section name, type, and flags.
230   Output_section* os = this->get_output_section(name, name_key,
231                                                 shdr.get_sh_type(),
232                                                 shdr.get_sh_flags());
233
234   // Special GNU handling of sections named .eh_frame.
235   if (!parameters->output_is_object()
236       && strcmp(name, ".eh_frame") == 0
237       && shdr.get_sh_size() > 0
238       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
239       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
240     {
241       this->layout_eh_frame(object, shndx, name, shdr, os, off);
242       return os;
243     }
244
245   // FIXME: Handle SHF_LINK_ORDER somewhere.
246
247   *off = os->add_input_section(object, shndx, name, shdr);
248
249   return os;
250 }
251
252 // Special GNU handling of sections named .eh_frame.  They will
253 // normally hold exception frame data.
254
255 template<int size, bool big_endian>
256 void
257 Layout::layout_eh_frame(Relobj* object,
258                         unsigned int shndx,
259                         const char* name,
260                         const elfcpp::Shdr<size, big_endian>& shdr,
261                         Output_section* os, off_t* off)
262 {
263   if (this->eh_frame_section_ == NULL)
264     {
265       this->eh_frame_section_ = os;
266
267       if (this->options_.create_eh_frame_hdr())
268         {
269           Stringpool::Key hdr_name_key;
270           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
271                                                      false,
272                                                      &hdr_name_key);
273           Output_section* hdr_os =
274             this->get_output_section(hdr_name, hdr_name_key,
275                                      elfcpp::SHT_PROGBITS,
276                                      elfcpp::SHF_ALLOC);
277
278           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
279           hdr_os->add_output_section_data(hdr_posd);
280
281           Output_segment* hdr_oseg =
282             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
283           this->segment_list_.push_back(hdr_oseg);
284           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
285         }
286     }
287
288   gold_assert(this->eh_frame_section_ == os);
289
290   *off = os->add_input_section(object, shndx, name, shdr);
291 }
292
293 // Add POSD to an output section using NAME, TYPE, and FLAGS.
294
295 void
296 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
297                                 elfcpp::Elf_Xword flags,
298                                 Output_section_data* posd)
299 {
300   // Canonicalize the name.
301   Stringpool::Key name_key;
302   name = this->namepool_.add(name, true, &name_key);
303
304   Output_section* os = this->get_output_section(name, name_key, type, flags);
305   os->add_output_section_data(posd);
306 }
307
308 // Map section flags to segment flags.
309
310 elfcpp::Elf_Word
311 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
312 {
313   elfcpp::Elf_Word ret = elfcpp::PF_R;
314   if ((flags & elfcpp::SHF_WRITE) != 0)
315     ret |= elfcpp::PF_W;
316   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
317     ret |= elfcpp::PF_X;
318   return ret;
319 }
320
321 // Make a new Output_section, and attach it to segments as
322 // appropriate.
323
324 Output_section*
325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
326                             elfcpp::Elf_Xword flags)
327 {
328   Output_section* os = new Output_section(name, type, flags);
329   this->section_list_.push_back(os);
330
331   if ((flags & elfcpp::SHF_ALLOC) == 0)
332     this->unattached_section_list_.push_back(os);
333   else
334     {
335       // This output section goes into a PT_LOAD segment.
336
337       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
338
339       // The only thing we really care about for PT_LOAD segments is
340       // whether or not they are writable, so that is how we search
341       // for them.  People who need segments sorted on some other
342       // basis will have to wait until we implement a mechanism for
343       // them to describe the segments they want.
344
345       Segment_list::const_iterator p;
346       for (p = this->segment_list_.begin();
347            p != this->segment_list_.end();
348            ++p)
349         {
350           if ((*p)->type() == elfcpp::PT_LOAD
351               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
352             {
353               (*p)->add_output_section(os, seg_flags);
354               break;
355             }
356         }
357
358       if (p == this->segment_list_.end())
359         {
360           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
361                                                     seg_flags);
362           this->segment_list_.push_back(oseg);
363           oseg->add_output_section(os, seg_flags);
364         }
365
366       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
367       // segment.
368       if (type == elfcpp::SHT_NOTE)
369         {
370           // See if we already have an equivalent PT_NOTE segment.
371           for (p = this->segment_list_.begin();
372                p != segment_list_.end();
373                ++p)
374             {
375               if ((*p)->type() == elfcpp::PT_NOTE
376                   && (((*p)->flags() & elfcpp::PF_W)
377                       == (seg_flags & elfcpp::PF_W)))
378                 {
379                   (*p)->add_output_section(os, seg_flags);
380                   break;
381                 }
382             }
383
384           if (p == this->segment_list_.end())
385             {
386               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
387                                                         seg_flags);
388               this->segment_list_.push_back(oseg);
389               oseg->add_output_section(os, seg_flags);
390             }
391         }
392
393       // If we see a loadable SHF_TLS section, we create a PT_TLS
394       // segment.  There can only be one such segment.
395       if ((flags & elfcpp::SHF_TLS) != 0)
396         {
397           if (this->tls_segment_ == NULL)
398             {
399               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
400                                                       seg_flags);
401               this->segment_list_.push_back(this->tls_segment_);
402             }
403           this->tls_segment_->add_output_section(os, seg_flags);
404         }
405     }
406
407   return os;
408 }
409
410 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
411 // is whether we saw a .note.GNU-stack section in the object file.
412 // GNU_STACK_FLAGS is the section flags.  The flags give the
413 // protection required for stack memory.  We record this in an
414 // executable as a PT_GNU_STACK segment.  If an object file does not
415 // have a .note.GNU-stack segment, we must assume that it is an old
416 // object.  On some targets that will force an executable stack.
417
418 void
419 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
420 {
421   if (!seen_gnu_stack)
422     this->input_without_gnu_stack_note_ = true;
423   else
424     {
425       this->input_with_gnu_stack_note_ = true;
426       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
427         this->input_requires_executable_stack_ = true;
428     }
429 }
430
431 // Create the dynamic sections which are needed before we read the
432 // relocs.
433
434 void
435 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
436                                         Symbol_table* symtab)
437 {
438   if (parameters->doing_static_link())
439     return;
440
441   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
442   this->dynamic_section_ = this->make_output_section(dynamic_name,
443                                                      elfcpp::SHT_DYNAMIC,
444                                                      (elfcpp::SHF_ALLOC
445                                                       | elfcpp::SHF_WRITE));
446
447   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
448                                 this->dynamic_section_, 0, 0,
449                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
450                                 elfcpp::STV_HIDDEN, 0, false, false);
451
452   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
453
454   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
455 }
456
457 // For each output section whose name can be represented as C symbol,
458 // define __start and __stop symbols for the section.  This is a GNU
459 // extension.
460
461 void
462 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
463 {
464   for (Section_list::const_iterator p = this->section_list_.begin();
465        p != this->section_list_.end();
466        ++p)
467     {
468       const char* const name = (*p)->name();
469       if (name[strspn(name,
470                       ("0123456789"
471                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
472                        "abcdefghijklmnopqrstuvwxyz"
473                        "_"))]
474           == '\0')
475         {
476           const std::string name_string(name);
477           const std::string start_name("__start_" + name_string);
478           const std::string stop_name("__stop_" + name_string);
479
480           symtab->define_in_output_data(target,
481                                         start_name.c_str(),
482                                         NULL, // version
483                                         *p,
484                                         0, // value
485                                         0, // symsize
486                                         elfcpp::STT_NOTYPE,
487                                         elfcpp::STB_GLOBAL,
488                                         elfcpp::STV_DEFAULT,
489                                         0, // nonvis
490                                         false, // offset_is_from_end
491                                         false); // only_if_ref
492
493           symtab->define_in_output_data(target,
494                                         stop_name.c_str(),
495                                         NULL, // version
496                                         *p,
497                                         0, // value
498                                         0, // symsize
499                                         elfcpp::STT_NOTYPE,
500                                         elfcpp::STB_GLOBAL,
501                                         elfcpp::STV_DEFAULT,
502                                         0, // nonvis
503                                         true, // offset_is_from_end
504                                         false); // only_if_ref
505         }
506     }
507 }
508
509 // Find the first read-only PT_LOAD segment, creating one if
510 // necessary.
511
512 Output_segment*
513 Layout::find_first_load_seg()
514 {
515   for (Segment_list::const_iterator p = this->segment_list_.begin();
516        p != this->segment_list_.end();
517        ++p)
518     {
519       if ((*p)->type() == elfcpp::PT_LOAD
520           && ((*p)->flags() & elfcpp::PF_R) != 0
521           && ((*p)->flags() & elfcpp::PF_W) == 0)
522         return *p;
523     }
524
525   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
526   this->segment_list_.push_back(load_seg);
527   return load_seg;
528 }
529
530 // Finalize the layout.  When this is called, we have created all the
531 // output sections and all the output segments which are based on
532 // input sections.  We have several things to do, and we have to do
533 // them in the right order, so that we get the right results correctly
534 // and efficiently.
535
536 // 1) Finalize the list of output segments and create the segment
537 // table header.
538
539 // 2) Finalize the dynamic symbol table and associated sections.
540
541 // 3) Determine the final file offset of all the output segments.
542
543 // 4) Determine the final file offset of all the SHF_ALLOC output
544 // sections.
545
546 // 5) Create the symbol table sections and the section name table
547 // section.
548
549 // 6) Finalize the symbol table: set symbol values to their final
550 // value and make a final determination of which symbols are going
551 // into the output symbol table.
552
553 // 7) Create the section table header.
554
555 // 8) Determine the final file offset of all the output sections which
556 // are not SHF_ALLOC, including the section table header.
557
558 // 9) Finalize the ELF file header.
559
560 // This function returns the size of the output file.
561
562 off_t
563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
564 {
565   Target* const target = input_objects->target();
566
567   target->finalize_sections(this);
568
569   this->create_gold_note();
570   this->create_executable_stack_info(target);
571
572   Output_segment* phdr_seg = NULL;
573   if (!parameters->doing_static_link())
574     {
575       // There was a dynamic object in the link.  We need to create
576       // some information for the dynamic linker.
577
578       // Create the PT_PHDR segment which will hold the program
579       // headers.
580       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
581       this->segment_list_.push_back(phdr_seg);
582
583       // Create the dynamic symbol table, including the hash table.
584       Output_section* dynstr;
585       std::vector<Symbol*> dynamic_symbols;
586       unsigned int local_dynamic_count;
587       Versions versions;
588       this->create_dynamic_symtab(target, symtab, &dynstr,
589                                   &local_dynamic_count, &dynamic_symbols,
590                                   &versions);
591
592       // Create the .interp section to hold the name of the
593       // interpreter, and put it in a PT_INTERP segment.
594       if (!parameters->output_is_shared())
595         this->create_interp(target);
596
597       // Finish the .dynamic section to hold the dynamic data, and put
598       // it in a PT_DYNAMIC segment.
599       this->finish_dynamic_section(input_objects, symtab);
600
601       // We should have added everything we need to the dynamic string
602       // table.
603       this->dynpool_.set_string_offsets();
604
605       // Create the version sections.  We can't do this until the
606       // dynamic string table is complete.
607       this->create_version_sections(&versions, symtab, local_dynamic_count,
608                                     dynamic_symbols, dynstr);
609     }
610
611   // FIXME: Handle PT_GNU_STACK.
612
613   Output_segment* load_seg = this->find_first_load_seg();
614
615   // Lay out the segment headers.
616   Output_segment_headers* segment_headers;
617   segment_headers = new Output_segment_headers(this->segment_list_);
618   load_seg->add_initial_output_data(segment_headers);
619   this->special_output_list_.push_back(segment_headers);
620   if (phdr_seg != NULL)
621     phdr_seg->add_initial_output_data(segment_headers);
622
623   // Lay out the file header.
624   Output_file_header* file_header;
625   file_header = new Output_file_header(target, symtab, segment_headers);
626   load_seg->add_initial_output_data(file_header);
627   this->special_output_list_.push_back(file_header);
628
629   // We set the output section indexes in set_segment_offsets and
630   // set_section_offsets.
631   unsigned int shndx = 1;
632
633   // Set the file offsets of all the segments, and all the sections
634   // they contain.
635   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
636
637   // Set the file offsets of all the data sections not associated with
638   // segments. This makes sure that debug sections have their offsets
639   // before symbols are finalized.
640   off = this->set_section_offsets(off, true);
641
642   // Create the symbol table sections.
643   this->create_symtab_sections(input_objects, symtab, &off);
644
645   // Create the .shstrtab section.
646   Output_section* shstrtab_section = this->create_shstrtab();
647
648   // Set the file offsets of all the non-data sections not associated with
649   // segments.
650   off = this->set_section_offsets(off, false);
651
652   // Now that all sections have been created, set the section indexes.
653   shndx = this->set_section_indexes(shndx);
654
655   // Create the section table header.
656   Output_section_headers* oshdrs = this->create_shdrs(&off);
657
658   file_header->set_section_info(oshdrs, shstrtab_section);
659
660   // Now we know exactly where everything goes in the output file.
661   Output_data::layout_complete();
662
663   this->output_file_size_ = off;
664
665   return off;
666 }
667
668 // Create a .note section for an executable or shared library.  This
669 // records the version of gold used to create the binary.
670
671 void
672 Layout::create_gold_note()
673 {
674   if (parameters->output_is_object())
675     return;
676
677   // Authorities all agree that the values in a .note field should
678   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
679   // they differ on what the alignment is for 64-bit binaries.
680   // The GABI says unambiguously they take 8-byte alignment:
681   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
682   // Other documentation says alignment should always be 4 bytes:
683   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
684   // GNU ld and GNU readelf both support the latter (at least as of
685   // version 2.16.91), and glibc always generates the latter for
686   // .note.ABI-tag (as of version 1.6), so that's the one we go with
687   // here.
688 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
689   const int size = parameters->get_size();
690 #else
691   const int size = 32;
692 #endif
693
694   // The contents of the .note section.
695   const char* name = "GNU";
696   std::string desc(std::string("gold ") + gold::get_version_string());
697   size_t namesz = strlen(name) + 1;
698   size_t aligned_namesz = align_address(namesz, size / 8);
699   size_t descsz = desc.length() + 1;
700   size_t aligned_descsz = align_address(descsz, size / 8);
701   const int note_type = 4;
702
703   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
704
705   unsigned char buffer[128];
706   gold_assert(sizeof buffer >= notesz);
707   memset(buffer, 0, notesz);
708
709   bool is_big_endian = parameters->is_big_endian();
710
711   if (size == 32)
712     {
713       if (!is_big_endian)
714         {
715           elfcpp::Swap<32, false>::writeval(buffer, namesz);
716           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
717           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
718         }
719       else
720         {
721           elfcpp::Swap<32, true>::writeval(buffer, namesz);
722           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
723           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
724         }
725     }
726   else if (size == 64)
727     {
728       if (!is_big_endian)
729         {
730           elfcpp::Swap<64, false>::writeval(buffer, namesz);
731           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
732           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
733         }
734       else
735         {
736           elfcpp::Swap<64, true>::writeval(buffer, namesz);
737           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
738           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
739         }
740     }
741   else
742     gold_unreachable();
743
744   memcpy(buffer + 3 * (size / 8), name, namesz);
745   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
746
747   const char* note_name = this->namepool_.add(".note", false, NULL);
748   Output_section* os = this->make_output_section(note_name,
749                                                  elfcpp::SHT_NOTE,
750                                                  0);
751   Output_section_data* posd = new Output_data_const(buffer, notesz,
752                                                     size / 8);
753   os->add_output_section_data(posd);
754 }
755
756 // Record whether the stack should be executable.  This can be set
757 // from the command line using the -z execstack or -z noexecstack
758 // options.  Otherwise, if any input file has a .note.GNU-stack
759 // section with the SHF_EXECINSTR flag set, the stack should be
760 // executable.  Otherwise, if at least one input file a
761 // .note.GNU-stack section, and some input file has no .note.GNU-stack
762 // section, we use the target default for whether the stack should be
763 // executable.  Otherwise, we don't generate a stack note.  When
764 // generating a object file, we create a .note.GNU-stack section with
765 // the appropriate marking.  When generating an executable or shared
766 // library, we create a PT_GNU_STACK segment.
767
768 void
769 Layout::create_executable_stack_info(const Target* target)
770 {
771   bool is_stack_executable;
772   if (this->options_.is_execstack_set())
773     is_stack_executable = this->options_.is_stack_executable();
774   else if (!this->input_with_gnu_stack_note_)
775     return;
776   else
777     {
778       if (this->input_requires_executable_stack_)
779         is_stack_executable = true;
780       else if (this->input_without_gnu_stack_note_)
781         is_stack_executable = target->is_default_stack_executable();
782       else
783         is_stack_executable = false;
784     }
785
786   if (parameters->output_is_object())
787     {
788       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
789       elfcpp::Elf_Xword flags = 0;
790       if (is_stack_executable)
791         flags |= elfcpp::SHF_EXECINSTR;
792       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
793     }
794   else
795     {
796       int flags = elfcpp::PF_R | elfcpp::PF_W;
797       if (is_stack_executable)
798         flags |= elfcpp::PF_X;
799       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
800       this->segment_list_.push_back(oseg);
801     }
802 }
803
804 // Return whether SEG1 should be before SEG2 in the output file.  This
805 // is based entirely on the segment type and flags.  When this is
806 // called the segment addresses has normally not yet been set.
807
808 bool
809 Layout::segment_precedes(const Output_segment* seg1,
810                          const Output_segment* seg2)
811 {
812   elfcpp::Elf_Word type1 = seg1->type();
813   elfcpp::Elf_Word type2 = seg2->type();
814
815   // The single PT_PHDR segment is required to precede any loadable
816   // segment.  We simply make it always first.
817   if (type1 == elfcpp::PT_PHDR)
818     {
819       gold_assert(type2 != elfcpp::PT_PHDR);
820       return true;
821     }
822   if (type2 == elfcpp::PT_PHDR)
823     return false;
824
825   // The single PT_INTERP segment is required to precede any loadable
826   // segment.  We simply make it always second.
827   if (type1 == elfcpp::PT_INTERP)
828     {
829       gold_assert(type2 != elfcpp::PT_INTERP);
830       return true;
831     }
832   if (type2 == elfcpp::PT_INTERP)
833     return false;
834
835   // We then put PT_LOAD segments before any other segments.
836   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
837     return true;
838   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
839     return false;
840
841   // We put the PT_TLS segment last, because that is where the dynamic
842   // linker expects to find it (this is just for efficiency; other
843   // positions would also work correctly).
844   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
845     return false;
846   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
847     return true;
848
849   const elfcpp::Elf_Word flags1 = seg1->flags();
850   const elfcpp::Elf_Word flags2 = seg2->flags();
851
852   // The order of non-PT_LOAD segments is unimportant.  We simply sort
853   // by the numeric segment type and flags values.  There should not
854   // be more than one segment with the same type and flags.
855   if (type1 != elfcpp::PT_LOAD)
856     {
857       if (type1 != type2)
858         return type1 < type2;
859       gold_assert(flags1 != flags2);
860       return flags1 < flags2;
861     }
862
863   // We sort PT_LOAD segments based on the flags.  Readonly segments
864   // come before writable segments.  Then executable segments come
865   // before non-executable segments.  Then the unlikely case of a
866   // non-readable segment comes before the normal case of a readable
867   // segment.  If there are multiple segments with the same type and
868   // flags, we require that the address be set, and we sort by
869   // virtual address and then physical address.
870   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
871     return (flags1 & elfcpp::PF_W) == 0;
872   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
873     return (flags1 & elfcpp::PF_X) != 0;
874   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
875     return (flags1 & elfcpp::PF_R) == 0;
876
877   uint64_t vaddr1 = seg1->vaddr();
878   uint64_t vaddr2 = seg2->vaddr();
879   if (vaddr1 != vaddr2)
880     return vaddr1 < vaddr2;
881
882   uint64_t paddr1 = seg1->paddr();
883   uint64_t paddr2 = seg2->paddr();
884   gold_assert(paddr1 != paddr2);
885   return paddr1 < paddr2;
886 }
887
888 // Set the file offsets of all the segments, and all the sections they
889 // contain.  They have all been created.  LOAD_SEG must be be laid out
890 // first.  Return the offset of the data to follow.
891
892 off_t
893 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
894                             unsigned int *pshndx)
895 {
896   // Sort them into the final order.
897   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
898             Layout::Compare_segments());
899
900   // Find the PT_LOAD segments, and set their addresses and offsets
901   // and their section's addresses and offsets.
902   uint64_t addr;
903   if (options_.user_set_text_segment_address())
904     addr = options_.text_segment_address();
905   else
906     addr = target->default_text_segment_address();
907   off_t off = 0;
908   bool was_readonly = false;
909   for (Segment_list::iterator p = this->segment_list_.begin();
910        p != this->segment_list_.end();
911        ++p)
912     {
913       if ((*p)->type() == elfcpp::PT_LOAD)
914         {
915           if (load_seg != NULL && load_seg != *p)
916             gold_unreachable();
917           load_seg = NULL;
918
919           // If the last segment was readonly, and this one is not,
920           // then skip the address forward one page, maintaining the
921           // same position within the page.  This lets us store both
922           // segments overlapping on a single page in the file, but
923           // the loader will put them on different pages in memory.
924
925           uint64_t orig_addr = addr;
926           uint64_t orig_off = off;
927
928           uint64_t aligned_addr = addr;
929           uint64_t abi_pagesize = target->abi_pagesize();
930
931           // FIXME: This should depend on the -n and -N options.
932           (*p)->set_minimum_addralign(target->common_pagesize());
933
934           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
935             {
936               uint64_t align = (*p)->addralign();
937
938               addr = align_address(addr, align);
939               aligned_addr = addr;
940               if ((addr & (abi_pagesize - 1)) != 0)
941                 addr = addr + abi_pagesize;
942             }
943
944           unsigned int shndx_hold = *pshndx;
945           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
946           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
947
948           // Now that we know the size of this segment, we may be able
949           // to save a page in memory, at the cost of wasting some
950           // file space, by instead aligning to the start of a new
951           // page.  Here we use the real machine page size rather than
952           // the ABI mandated page size.
953
954           if (aligned_addr != addr)
955             {
956               uint64_t common_pagesize = target->common_pagesize();
957               uint64_t first_off = (common_pagesize
958                                     - (aligned_addr
959                                        & (common_pagesize - 1)));
960               uint64_t last_off = new_addr & (common_pagesize - 1);
961               if (first_off > 0
962                   && last_off > 0
963                   && ((aligned_addr & ~ (common_pagesize - 1))
964                       != (new_addr & ~ (common_pagesize - 1)))
965                   && first_off + last_off <= common_pagesize)
966                 {
967                   *pshndx = shndx_hold;
968                   addr = align_address(aligned_addr, common_pagesize);
969                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
970                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
971                 }
972             }
973
974           addr = new_addr;
975
976           if (((*p)->flags() & elfcpp::PF_W) == 0)
977             was_readonly = true;
978         }
979     }
980
981   // Handle the non-PT_LOAD segments, setting their offsets from their
982   // section's offsets.
983   for (Segment_list::iterator p = this->segment_list_.begin();
984        p != this->segment_list_.end();
985        ++p)
986     {
987       if ((*p)->type() != elfcpp::PT_LOAD)
988         (*p)->set_offset();
989     }
990
991   return off;
992 }
993
994 // Set the file offset of all the sections not associated with a
995 // segment.
996
997 off_t
998 Layout::set_section_offsets(off_t off,
999                             bool do_bits_sections)
1000 {
1001   for (Section_list::iterator p = this->unattached_section_list_.begin();
1002        p != this->unattached_section_list_.end();
1003        ++p)
1004     {
1005       bool is_bits_section = ((*p)->type() == elfcpp::SHT_PROGBITS
1006                               || (*p)->type() == elfcpp::SHT_NOBITS);
1007       if (is_bits_section != do_bits_sections)
1008         continue;
1009       if ((*p)->offset() != -1)
1010         continue;
1011       off = align_address(off, (*p)->addralign());
1012       (*p)->set_address(0, off);
1013       off += (*p)->data_size();
1014     }
1015   return off;
1016 }
1017
1018 // Set the section indexes of all the sections not associated with a
1019 // segment.
1020
1021 unsigned int
1022 Layout::set_section_indexes(unsigned int shndx)
1023 {
1024   for (Section_list::iterator p = this->unattached_section_list_.begin();
1025        p != this->unattached_section_list_.end();
1026        ++p)
1027     {
1028       (*p)->set_out_shndx(shndx);
1029       ++shndx;
1030     }
1031   return shndx;
1032 }
1033
1034 // Create the symbol table sections.  Here we also set the final
1035 // values of the symbols.  At this point all the loadable sections are
1036 // fully laid out.
1037
1038 void
1039 Layout::create_symtab_sections(const Input_objects* input_objects,
1040                                Symbol_table* symtab,
1041                                off_t* poff)
1042 {
1043   int symsize;
1044   unsigned int align;
1045   if (parameters->get_size() == 32)
1046     {
1047       symsize = elfcpp::Elf_sizes<32>::sym_size;
1048       align = 4;
1049     }
1050   else if (parameters->get_size() == 64)
1051     {
1052       symsize = elfcpp::Elf_sizes<64>::sym_size;
1053       align = 8;
1054     }
1055   else
1056     gold_unreachable();
1057
1058   off_t off = *poff;
1059   off = align_address(off, align);
1060   off_t startoff = off;
1061
1062   // Save space for the dummy symbol at the start of the section.  We
1063   // never bother to write this out--it will just be left as zero.
1064   off += symsize;
1065   unsigned int local_symbol_index = 1;
1066
1067   // Add STT_SECTION symbols for each Output section which needs one.
1068   for (Section_list::iterator p = this->section_list_.begin();
1069        p != this->section_list_.end();
1070        ++p)
1071     {
1072       if (!(*p)->needs_symtab_index())
1073         (*p)->set_symtab_index(-1U);
1074       else
1075         {
1076           (*p)->set_symtab_index(local_symbol_index);
1077           ++local_symbol_index;
1078           off += symsize;
1079         }
1080     }
1081
1082   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1083        p != input_objects->relobj_end();
1084        ++p)
1085     {
1086       Task_lock_obj<Object> tlo(**p);
1087       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1088                                                         off,
1089                                                         &this->sympool_);
1090       off += (index - local_symbol_index) * symsize;
1091       local_symbol_index = index;
1092     }
1093
1094   unsigned int local_symcount = local_symbol_index;
1095   gold_assert(local_symcount * symsize == off - startoff);
1096
1097   off_t dynoff;
1098   size_t dyn_global_index;
1099   size_t dyncount;
1100   if (this->dynsym_section_ == NULL)
1101     {
1102       dynoff = 0;
1103       dyn_global_index = 0;
1104       dyncount = 0;
1105     }
1106   else
1107     {
1108       dyn_global_index = this->dynsym_section_->info();
1109       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1110       dynoff = this->dynsym_section_->offset() + locsize;
1111       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1112       gold_assert(static_cast<off_t>(dyncount * symsize)
1113                   == this->dynsym_section_->data_size() - locsize);
1114     }
1115
1116   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1117                          dyncount, &this->sympool_);
1118
1119   if (!parameters->strip_all())
1120     {
1121       this->sympool_.set_string_offsets();
1122
1123       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1124       Output_section* osymtab = this->make_output_section(symtab_name,
1125                                                           elfcpp::SHT_SYMTAB,
1126                                                           0);
1127       this->symtab_section_ = osymtab;
1128
1129       Output_section_data* pos = new Output_data_space(off - startoff,
1130                                                        align);
1131       osymtab->add_output_section_data(pos);
1132
1133       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1134       Output_section* ostrtab = this->make_output_section(strtab_name,
1135                                                           elfcpp::SHT_STRTAB,
1136                                                           0);
1137
1138       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1139       ostrtab->add_output_section_data(pstr);
1140
1141       osymtab->set_address(0, startoff);
1142       osymtab->set_link_section(ostrtab);
1143       osymtab->set_info(local_symcount);
1144       osymtab->set_entsize(symsize);
1145
1146       *poff = off;
1147     }
1148 }
1149
1150 // Create the .shstrtab section, which holds the names of the
1151 // sections.  At the time this is called, we have created all the
1152 // output sections except .shstrtab itself.
1153
1154 Output_section*
1155 Layout::create_shstrtab()
1156 {
1157   // FIXME: We don't need to create a .shstrtab section if we are
1158   // stripping everything.
1159
1160   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1161
1162   this->namepool_.set_string_offsets();
1163
1164   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1165
1166   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1167   os->add_output_section_data(posd);
1168
1169   return os;
1170 }
1171
1172 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1173 // offset.
1174
1175 Output_section_headers*
1176 Layout::create_shdrs(off_t* poff)
1177 {
1178   Output_section_headers* oshdrs;
1179   oshdrs = new Output_section_headers(this,
1180                                       &this->segment_list_,
1181                                       &this->unattached_section_list_,
1182                                       &this->namepool_);
1183   off_t off = align_address(*poff, oshdrs->addralign());
1184   oshdrs->set_address(0, off);
1185   off += oshdrs->data_size();
1186   *poff = off;
1187   this->special_output_list_.push_back(oshdrs);
1188   return oshdrs;
1189 }
1190
1191 // Create the dynamic symbol table.
1192
1193 void
1194 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1195                               Output_section **pdynstr,
1196                               unsigned int* plocal_dynamic_count,
1197                               std::vector<Symbol*>* pdynamic_symbols,
1198                               Versions* pversions)
1199 {
1200   // Count all the symbols in the dynamic symbol table, and set the
1201   // dynamic symbol indexes.
1202
1203   // Skip symbol 0, which is always all zeroes.
1204   unsigned int index = 1;
1205
1206   // Add STT_SECTION symbols for each Output section which needs one.
1207   for (Section_list::iterator p = this->section_list_.begin();
1208        p != this->section_list_.end();
1209        ++p)
1210     {
1211       if (!(*p)->needs_dynsym_index())
1212         (*p)->set_dynsym_index(-1U);
1213       else
1214         {
1215           (*p)->set_dynsym_index(index);
1216           ++index;
1217         }
1218     }
1219
1220   // FIXME: Some targets apparently require local symbols in the
1221   // dynamic symbol table.  Here is where we will have to count them,
1222   // and set the dynamic symbol indexes, and add the names to
1223   // this->dynpool_.
1224
1225   unsigned int local_symcount = index;
1226   *plocal_dynamic_count = local_symcount;
1227
1228   // FIXME: We have to tell set_dynsym_indexes whether the
1229   // -E/--export-dynamic option was used.
1230   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1231                                      &this->dynpool_, pversions);
1232
1233   int symsize;
1234   unsigned int align;
1235   const int size = parameters->get_size();
1236   if (size == 32)
1237     {
1238       symsize = elfcpp::Elf_sizes<32>::sym_size;
1239       align = 4;
1240     }
1241   else if (size == 64)
1242     {
1243       symsize = elfcpp::Elf_sizes<64>::sym_size;
1244       align = 8;
1245     }
1246   else
1247     gold_unreachable();
1248
1249   // Create the dynamic symbol table section.
1250
1251   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1252   Output_section* dynsym = this->make_output_section(dynsym_name,
1253                                                      elfcpp::SHT_DYNSYM,
1254                                                      elfcpp::SHF_ALLOC);
1255
1256   Output_section_data* odata = new Output_data_space(index * symsize,
1257                                                      align);
1258   dynsym->add_output_section_data(odata);
1259
1260   dynsym->set_info(local_symcount);
1261   dynsym->set_entsize(symsize);
1262   dynsym->set_addralign(align);
1263
1264   this->dynsym_section_ = dynsym;
1265
1266   Output_data_dynamic* const odyn = this->dynamic_data_;
1267   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1268   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1269
1270   // Create the dynamic string table section.
1271
1272   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1273   Output_section* dynstr = this->make_output_section(dynstr_name,
1274                                                      elfcpp::SHT_STRTAB,
1275                                                      elfcpp::SHF_ALLOC);
1276
1277   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1278   dynstr->add_output_section_data(strdata);
1279
1280   dynsym->set_link_section(dynstr);
1281   this->dynamic_section_->set_link_section(dynstr);
1282
1283   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1284   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1285
1286   *pdynstr = dynstr;
1287
1288   // Create the hash tables.
1289
1290   // FIXME: We need an option to create a GNU hash table.
1291
1292   unsigned char* phash;
1293   unsigned int hashlen;
1294   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1295                                 &phash, &hashlen);
1296
1297   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1298   Output_section* hashsec = this->make_output_section(hash_name,
1299                                                       elfcpp::SHT_HASH,
1300                                                       elfcpp::SHF_ALLOC);
1301
1302   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1303                                                                hashlen,
1304                                                                align);
1305   hashsec->add_output_section_data(hashdata);
1306
1307   hashsec->set_link_section(dynsym);
1308   hashsec->set_entsize(4);
1309
1310   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1311 }
1312
1313 // Create the version sections.
1314
1315 void
1316 Layout::create_version_sections(const Versions* versions,
1317                                 const Symbol_table* symtab,
1318                                 unsigned int local_symcount,
1319                                 const std::vector<Symbol*>& dynamic_symbols,
1320                                 const Output_section* dynstr)
1321 {
1322   if (!versions->any_defs() && !versions->any_needs())
1323     return;
1324
1325   if (parameters->get_size() == 32)
1326     {
1327       if (parameters->is_big_endian())
1328         {
1329 #ifdef HAVE_TARGET_32_BIG
1330           this->sized_create_version_sections
1331               SELECT_SIZE_ENDIAN_NAME(32, true)(
1332                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1333                   SELECT_SIZE_ENDIAN(32, true));
1334 #else
1335           gold_unreachable();
1336 #endif
1337         }
1338       else
1339         {
1340 #ifdef HAVE_TARGET_32_LITTLE
1341           this->sized_create_version_sections
1342               SELECT_SIZE_ENDIAN_NAME(32, false)(
1343                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1344                   SELECT_SIZE_ENDIAN(32, false));
1345 #else
1346           gold_unreachable();
1347 #endif
1348         }
1349     }
1350   else if (parameters->get_size() == 64)
1351     {
1352       if (parameters->is_big_endian())
1353         {
1354 #ifdef HAVE_TARGET_64_BIG
1355           this->sized_create_version_sections
1356               SELECT_SIZE_ENDIAN_NAME(64, true)(
1357                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1358                   SELECT_SIZE_ENDIAN(64, true));
1359 #else
1360           gold_unreachable();
1361 #endif
1362         }
1363       else
1364         {
1365 #ifdef HAVE_TARGET_64_LITTLE
1366           this->sized_create_version_sections
1367               SELECT_SIZE_ENDIAN_NAME(64, false)(
1368                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1369                   SELECT_SIZE_ENDIAN(64, false));
1370 #else
1371           gold_unreachable();
1372 #endif
1373         }
1374     }
1375   else
1376     gold_unreachable();
1377 }
1378
1379 // Create the version sections, sized version.
1380
1381 template<int size, bool big_endian>
1382 void
1383 Layout::sized_create_version_sections(
1384     const Versions* versions,
1385     const Symbol_table* symtab,
1386     unsigned int local_symcount,
1387     const std::vector<Symbol*>& dynamic_symbols,
1388     const Output_section* dynstr
1389     ACCEPT_SIZE_ENDIAN)
1390 {
1391   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1392   Output_section* vsec = this->make_output_section(vname,
1393                                                    elfcpp::SHT_GNU_versym,
1394                                                    elfcpp::SHF_ALLOC);
1395
1396   unsigned char* vbuf;
1397   unsigned int vsize;
1398   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1399       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1400       SELECT_SIZE_ENDIAN(size, big_endian));
1401
1402   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1403
1404   vsec->add_output_section_data(vdata);
1405   vsec->set_entsize(2);
1406   vsec->set_link_section(this->dynsym_section_);
1407
1408   Output_data_dynamic* const odyn = this->dynamic_data_;
1409   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1410
1411   if (versions->any_defs())
1412     {
1413       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1414       Output_section *vdsec;
1415       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1416                                         elfcpp::SHF_ALLOC);
1417
1418       unsigned char* vdbuf;
1419       unsigned int vdsize;
1420       unsigned int vdentries;
1421       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1422           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1423           SELECT_SIZE_ENDIAN(size, big_endian));
1424
1425       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1426                                                                  vdsize,
1427                                                                  4);
1428
1429       vdsec->add_output_section_data(vddata);
1430       vdsec->set_link_section(dynstr);
1431       vdsec->set_info(vdentries);
1432
1433       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1434       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1435     }
1436
1437   if (versions->any_needs())
1438     {
1439       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1440       Output_section* vnsec;
1441       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1442                                         elfcpp::SHF_ALLOC);
1443
1444       unsigned char* vnbuf;
1445       unsigned int vnsize;
1446       unsigned int vnentries;
1447       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1448         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1449          SELECT_SIZE_ENDIAN(size, big_endian));
1450
1451       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1452                                                                  vnsize,
1453                                                                  4);
1454
1455       vnsec->add_output_section_data(vndata);
1456       vnsec->set_link_section(dynstr);
1457       vnsec->set_info(vnentries);
1458
1459       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1460       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1461     }
1462 }
1463
1464 // Create the .interp section and PT_INTERP segment.
1465
1466 void
1467 Layout::create_interp(const Target* target)
1468 {
1469   const char* interp = this->options_.dynamic_linker();
1470   if (interp == NULL)
1471     {
1472       interp = target->dynamic_linker();
1473       gold_assert(interp != NULL);
1474     }
1475
1476   size_t len = strlen(interp) + 1;
1477
1478   Output_section_data* odata = new Output_data_const(interp, len, 1);
1479
1480   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1481   Output_section* osec = this->make_output_section(interp_name,
1482                                                    elfcpp::SHT_PROGBITS,
1483                                                    elfcpp::SHF_ALLOC);
1484   osec->add_output_section_data(odata);
1485
1486   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1487   this->segment_list_.push_back(oseg);
1488   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1489 }
1490
1491 // Finish the .dynamic section and PT_DYNAMIC segment.
1492
1493 void
1494 Layout::finish_dynamic_section(const Input_objects* input_objects,
1495                                const Symbol_table* symtab)
1496 {
1497   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1498                                             elfcpp::PF_R | elfcpp::PF_W);
1499   this->segment_list_.push_back(oseg);
1500   oseg->add_initial_output_section(this->dynamic_section_,
1501                                    elfcpp::PF_R | elfcpp::PF_W);
1502
1503   Output_data_dynamic* const odyn = this->dynamic_data_;
1504
1505   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1506        p != input_objects->dynobj_end();
1507        ++p)
1508     {
1509       // FIXME: Handle --as-needed.
1510       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1511     }
1512
1513   // FIXME: Support --init and --fini.
1514   Symbol* sym = symtab->lookup("_init");
1515   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1516     odyn->add_symbol(elfcpp::DT_INIT, sym);
1517
1518   sym = symtab->lookup("_fini");
1519   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1520     odyn->add_symbol(elfcpp::DT_FINI, sym);
1521
1522   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1523
1524   // Add a DT_RPATH entry if needed.
1525   const General_options::Dir_list& rpath(this->options_.rpath());
1526   if (!rpath.empty())
1527     {
1528       std::string rpath_val;
1529       for (General_options::Dir_list::const_iterator p = rpath.begin();
1530            p != rpath.end();
1531            ++p)
1532         {
1533           if (rpath_val.empty())
1534             rpath_val = p->name();
1535           else
1536             {
1537               // Eliminate duplicates.
1538               General_options::Dir_list::const_iterator q;
1539               for (q = rpath.begin(); q != p; ++q)
1540                 if (q->name() == p->name())
1541                   break;
1542               if (q == p)
1543                 {
1544                   rpath_val += ':';
1545                   rpath_val += p->name();
1546                 }
1547             }
1548         }
1549
1550       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1551     }
1552 }
1553
1554 // The mapping of .gnu.linkonce section names to real section names.
1555
1556 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1557 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1558 {
1559   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1560   MAPPING_INIT("t", ".text"),
1561   MAPPING_INIT("r", ".rodata"),
1562   MAPPING_INIT("d", ".data"),
1563   MAPPING_INIT("b", ".bss"),
1564   MAPPING_INIT("s", ".sdata"),
1565   MAPPING_INIT("sb", ".sbss"),
1566   MAPPING_INIT("s2", ".sdata2"),
1567   MAPPING_INIT("sb2", ".sbss2"),
1568   MAPPING_INIT("wi", ".debug_info"),
1569   MAPPING_INIT("td", ".tdata"),
1570   MAPPING_INIT("tb", ".tbss"),
1571   MAPPING_INIT("lr", ".lrodata"),
1572   MAPPING_INIT("l", ".ldata"),
1573   MAPPING_INIT("lb", ".lbss"),
1574 };
1575 #undef MAPPING_INIT
1576
1577 const int Layout::linkonce_mapping_count =
1578   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1579
1580 // Return the name of the output section to use for a .gnu.linkonce
1581 // section.  This is based on the default ELF linker script of the old
1582 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1583 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1584 // initialized to the length of NAME.
1585
1586 const char*
1587 Layout::linkonce_output_name(const char* name, size_t *plen)
1588 {
1589   const char* s = name + sizeof(".gnu.linkonce") - 1;
1590   if (*s != '.')
1591     return name;
1592   ++s;
1593   const Linkonce_mapping* plm = linkonce_mapping;
1594   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1595     {
1596       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1597         {
1598           *plen = plm->tolen;
1599           return plm->to;
1600         }
1601     }
1602   return name;
1603 }
1604
1605 // Choose the output section name to use given an input section name.
1606 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1607 // length of NAME.
1608
1609 const char*
1610 Layout::output_section_name(const char* name, size_t* plen)
1611 {
1612   if (Layout::is_linkonce(name))
1613     {
1614       // .gnu.linkonce sections are laid out as though they were named
1615       // for the sections are placed into.
1616       return Layout::linkonce_output_name(name, plen);
1617     }
1618
1619   // gcc 4.3 generates the following sorts of section names when it
1620   // needs a section name specific to a function:
1621   //   .text.FN
1622   //   .rodata.FN
1623   //   .sdata2.FN
1624   //   .data.FN
1625   //   .data.rel.FN
1626   //   .data.rel.local.FN
1627   //   .data.rel.ro.FN
1628   //   .data.rel.ro.local.FN
1629   //   .sdata.FN
1630   //   .bss.FN
1631   //   .sbss.FN
1632   //   .tdata.FN
1633   //   .tbss.FN
1634
1635   // The GNU linker maps all of those to the part before the .FN,
1636   // except that .data.rel.local.FN is mapped to .data, and
1637   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1638   // beginning with .data.rel.ro.local are grouped together.
1639
1640   // For an anonymous namespace, the string FN can contain a '.'.
1641
1642   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1643   // GNU linker maps to .rodata.
1644
1645   // The .data.rel.ro sections enable a security feature triggered by
1646   // the -z relro option.  Section which need to be relocated at
1647   // program startup time but which may be readonly after startup are
1648   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1649   // segment.  The dynamic linker will make that segment writable,
1650   // perform relocations, and then make it read-only.  FIXME: We do
1651   // not yet implement this optimization.
1652
1653   // It is hard to handle this in a principled way.
1654
1655   // These are the rules we follow:
1656
1657   // If the section name has no initial '.', or no dot other than an
1658   // initial '.', we use the name unchanged (i.e., "mysection" and
1659   // ".text" are unchanged).
1660
1661   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1662
1663   // Otherwise, we drop the second '.' and everything that comes after
1664   // it (i.e., ".text.XXX" becomes ".text").
1665
1666   const char* s = name;
1667   if (*s != '.')
1668     return name;
1669   ++s;
1670   const char* sdot = strchr(s, '.');
1671   if (sdot == NULL)
1672     return name;
1673
1674   const char* const data_rel_ro = ".data.rel.ro";
1675   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1676     {
1677       *plen = strlen(data_rel_ro);
1678       return data_rel_ro;
1679     }
1680
1681   *plen = sdot - name;
1682   return name;
1683 }
1684
1685 // Record the signature of a comdat section, and return whether to
1686 // include it in the link.  If GROUP is true, this is a regular
1687 // section group.  If GROUP is false, this is a group signature
1688 // derived from the name of a linkonce section.  We want linkonce
1689 // signatures and group signatures to block each other, but we don't
1690 // want a linkonce signature to block another linkonce signature.
1691
1692 bool
1693 Layout::add_comdat(const char* signature, bool group)
1694 {
1695   std::string sig(signature);
1696   std::pair<Signatures::iterator, bool> ins(
1697     this->signatures_.insert(std::make_pair(sig, group)));
1698
1699   if (ins.second)
1700     {
1701       // This is the first time we've seen this signature.
1702       return true;
1703     }
1704
1705   if (ins.first->second)
1706     {
1707       // We've already seen a real section group with this signature.
1708       return false;
1709     }
1710   else if (group)
1711     {
1712       // This is a real section group, and we've already seen a
1713       // linkonce section with this signature.  Record that we've seen
1714       // a section group, and don't include this section group.
1715       ins.first->second = true;
1716       return false;
1717     }
1718   else
1719     {
1720       // We've already seen a linkonce section and this is a linkonce
1721       // section.  These don't block each other--this may be the same
1722       // symbol name with different section types.
1723       return true;
1724     }
1725 }
1726
1727 // Write out data not associated with a section or the symbol table.
1728
1729 void
1730 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1731 {
1732   if (!parameters->strip_all())
1733     {
1734       const Output_section* symtab_section = this->symtab_section_;
1735       for (Section_list::const_iterator p = this->section_list_.begin();
1736            p != this->section_list_.end();
1737            ++p)
1738         {
1739           if ((*p)->needs_symtab_index())
1740             {
1741               gold_assert(symtab_section != NULL);
1742               unsigned int index = (*p)->symtab_index();
1743               gold_assert(index > 0 && index != -1U);
1744               off_t off = (symtab_section->offset()
1745                            + index * symtab_section->entsize());
1746               symtab->write_section_symbol(*p, of, off);
1747             }
1748         }
1749     }
1750
1751   const Output_section* dynsym_section = this->dynsym_section_;
1752   for (Section_list::const_iterator p = this->section_list_.begin();
1753        p != this->section_list_.end();
1754        ++p)
1755     {
1756       if ((*p)->needs_dynsym_index())
1757         {
1758           gold_assert(dynsym_section != NULL);
1759           unsigned int index = (*p)->dynsym_index();
1760           gold_assert(index > 0 && index != -1U);
1761           off_t off = (dynsym_section->offset()
1762                        + index * dynsym_section->entsize());
1763           symtab->write_section_symbol(*p, of, off);
1764         }
1765     }
1766
1767   // Write out the Output_sections.  Most won't have anything to
1768   // write, since most of the data will come from input sections which
1769   // are handled elsewhere.  But some Output_sections do have
1770   // Output_data.
1771   for (Section_list::const_iterator p = this->section_list_.begin();
1772        p != this->section_list_.end();
1773        ++p)
1774     (*p)->write(of);
1775
1776   // Write out the Output_data which are not in an Output_section.
1777   for (Data_list::const_iterator p = this->special_output_list_.begin();
1778        p != this->special_output_list_.end();
1779        ++p)
1780     (*p)->write(of);
1781 }
1782
1783 // Write_data_task methods.
1784
1785 // We can always run this task.
1786
1787 Task::Is_runnable_type
1788 Write_data_task::is_runnable(Workqueue*)
1789 {
1790   return IS_RUNNABLE;
1791 }
1792
1793 // We need to unlock FINAL_BLOCKER when finished.
1794
1795 Task_locker*
1796 Write_data_task::locks(Workqueue* workqueue)
1797 {
1798   return new Task_locker_block(*this->final_blocker_, workqueue);
1799 }
1800
1801 // Run the task--write out the data.
1802
1803 void
1804 Write_data_task::run(Workqueue*)
1805 {
1806   this->layout_->write_data(this->symtab_, this->of_);
1807 }
1808
1809 // Write_symbols_task methods.
1810
1811 // We can always run this task.
1812
1813 Task::Is_runnable_type
1814 Write_symbols_task::is_runnable(Workqueue*)
1815 {
1816   return IS_RUNNABLE;
1817 }
1818
1819 // We need to unlock FINAL_BLOCKER when finished.
1820
1821 Task_locker*
1822 Write_symbols_task::locks(Workqueue* workqueue)
1823 {
1824   return new Task_locker_block(*this->final_blocker_, workqueue);
1825 }
1826
1827 // Run the task--write out the symbols.
1828
1829 void
1830 Write_symbols_task::run(Workqueue*)
1831 {
1832   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1833                                this->of_);
1834 }
1835
1836 // Close_task_runner methods.
1837
1838 // Run the task--close the file.
1839
1840 void
1841 Close_task_runner::run(Workqueue*)
1842 {
1843   this->of_->close();
1844 }
1845
1846 // Instantiate the templates we need.  We could use the configure
1847 // script to restrict this to only the ones for implemented targets.
1848
1849 #ifdef HAVE_TARGET_32_LITTLE
1850 template
1851 Output_section*
1852 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1853                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1854 #endif
1855
1856 #ifdef HAVE_TARGET_32_BIG
1857 template
1858 Output_section*
1859 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1860                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1861 #endif
1862
1863 #ifdef HAVE_TARGET_64_LITTLE
1864 template
1865 Output_section*
1866 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1867                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1868 #endif
1869
1870 #ifdef HAVE_TARGET_64_BIG
1871 template
1872 Output_section*
1873 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1874                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1875 #endif
1876
1877
1878 } // End namespace gold.