PR gold/14566
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
586     return false;
587
588   switch (shdr.get_sh_type())
589     {
590     case elfcpp::SHT_NULL:
591     case elfcpp::SHT_SYMTAB:
592     case elfcpp::SHT_DYNSYM:
593     case elfcpp::SHT_HASH:
594     case elfcpp::SHT_DYNAMIC:
595     case elfcpp::SHT_SYMTAB_SHNDX:
596       return false;
597
598     case elfcpp::SHT_STRTAB:
599       // Discard the sections which have special meanings in the ELF
600       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
601       // checking the sh_link fields of the appropriate sections.
602       return (strcmp(name, ".dynstr") != 0
603               && strcmp(name, ".strtab") != 0
604               && strcmp(name, ".shstrtab") != 0);
605
606     case elfcpp::SHT_RELA:
607     case elfcpp::SHT_REL:
608     case elfcpp::SHT_GROUP:
609       // If we are emitting relocations these should be handled
610       // elsewhere.
611       gold_assert(!parameters->options().relocatable());
612       return false;
613
614     case elfcpp::SHT_PROGBITS:
615       if (parameters->options().strip_debug()
616           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
617         {
618           if (is_debug_info_section(name))
619             return false;
620         }
621       if (parameters->options().strip_debug_non_line()
622           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
623         {
624           // Debugging sections can only be recognized by name.
625           if (is_prefix_of(".debug_", name)
626               && !is_lines_only_debug_section(name + 7))
627             return false;
628           if (is_prefix_of(".zdebug_", name)
629               && !is_lines_only_debug_section(name + 8))
630             return false;
631         }
632       if (parameters->options().strip_debug_gdb()
633           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
634         {
635           // Debugging sections can only be recognized by name.
636           if (is_prefix_of(".debug_", name)
637               && !is_gdb_debug_section(name + 7))
638             return false;
639           if (is_prefix_of(".zdebug_", name)
640               && !is_gdb_debug_section(name + 8))
641             return false;
642         }
643       if (parameters->options().gdb_index()
644           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
645         {
646           // When building .gdb_index, we can strip .debug_pubnames,
647           // .debug_pubtypes, and .debug_aranges sections.
648           if (is_prefix_of(".debug_", name)
649               && is_gdb_fast_lookup_section(name + 7))
650             return false;
651           if (is_prefix_of(".zdebug_", name)
652               && is_gdb_fast_lookup_section(name + 8))
653             return false;
654         }
655       if (parameters->options().strip_lto_sections()
656           && !parameters->options().relocatable()
657           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
658         {
659           // Ignore LTO sections containing intermediate code.
660           if (is_prefix_of(".gnu.lto_", name))
661             return false;
662         }
663       // The GNU linker strips .gnu_debuglink sections, so we do too.
664       // This is a feature used to keep debugging information in
665       // separate files.
666       if (strcmp(name, ".gnu_debuglink") == 0)
667         return false;
668       return true;
669
670     default:
671       return true;
672     }
673 }
674
675 // Return an output section named NAME, or NULL if there is none.
676
677 Output_section*
678 Layout::find_output_section(const char* name) const
679 {
680   for (Section_list::const_iterator p = this->section_list_.begin();
681        p != this->section_list_.end();
682        ++p)
683     if (strcmp((*p)->name(), name) == 0)
684       return *p;
685   return NULL;
686 }
687
688 // Return an output segment of type TYPE, with segment flags SET set
689 // and segment flags CLEAR clear.  Return NULL if there is none.
690
691 Output_segment*
692 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
693                             elfcpp::Elf_Word clear) const
694 {
695   for (Segment_list::const_iterator p = this->segment_list_.begin();
696        p != this->segment_list_.end();
697        ++p)
698     if (static_cast<elfcpp::PT>((*p)->type()) == type
699         && ((*p)->flags() & set) == set
700         && ((*p)->flags() & clear) == 0)
701       return *p;
702   return NULL;
703 }
704
705 // When we put a .ctors or .dtors section with more than one word into
706 // a .init_array or .fini_array section, we need to reverse the words
707 // in the .ctors/.dtors section.  This is because .init_array executes
708 // constructors front to back, where .ctors executes them back to
709 // front, and vice-versa for .fini_array/.dtors.  Although we do want
710 // to remap .ctors/.dtors into .init_array/.fini_array because it can
711 // be more efficient, we don't want to change the order in which
712 // constructors/destructors are run.  This set just keeps track of
713 // these sections which need to be reversed.  It is only changed by
714 // Layout::layout.  It should be a private member of Layout, but that
715 // would require layout.h to #include object.h to get the definition
716 // of Section_id.
717 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
718
719 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
720 // .init_array/.fini_array section.
721
722 bool
723 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
724 {
725   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
726           != ctors_sections_in_init_array.end());
727 }
728
729 // Return the output section to use for section NAME with type TYPE
730 // and section flags FLAGS.  NAME must be canonicalized in the string
731 // pool, and NAME_KEY is the key.  ORDER is where this should appear
732 // in the output sections.  IS_RELRO is true for a relro section.
733
734 Output_section*
735 Layout::get_output_section(const char* name, Stringpool::Key name_key,
736                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
737                            Output_section_order order, bool is_relro)
738 {
739   elfcpp::Elf_Word lookup_type = type;
740
741   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
742   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
743   // .init_array, .fini_array, and .preinit_array sections by name
744   // whatever their type in the input file.  We do this because the
745   // types are not always right in the input files.
746   if (lookup_type == elfcpp::SHT_INIT_ARRAY
747       || lookup_type == elfcpp::SHT_FINI_ARRAY
748       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
749     lookup_type = elfcpp::SHT_PROGBITS;
750
751   elfcpp::Elf_Xword lookup_flags = flags;
752
753   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
754   // read-write with read-only sections.  Some other ELF linkers do
755   // not do this.  FIXME: Perhaps there should be an option
756   // controlling this.
757   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
758
759   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
760   const std::pair<Key, Output_section*> v(key, NULL);
761   std::pair<Section_name_map::iterator, bool> ins(
762     this->section_name_map_.insert(v));
763
764   if (!ins.second)
765     return ins.first->second;
766   else
767     {
768       // This is the first time we've seen this name/type/flags
769       // combination.  For compatibility with the GNU linker, we
770       // combine sections with contents and zero flags with sections
771       // with non-zero flags.  This is a workaround for cases where
772       // assembler code forgets to set section flags.  FIXME: Perhaps
773       // there should be an option to control this.
774       Output_section* os = NULL;
775
776       if (lookup_type == elfcpp::SHT_PROGBITS)
777         {
778           if (flags == 0)
779             {
780               Output_section* same_name = this->find_output_section(name);
781               if (same_name != NULL
782                   && (same_name->type() == elfcpp::SHT_PROGBITS
783                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
784                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
785                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
786                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
787                 os = same_name;
788             }
789           else if ((flags & elfcpp::SHF_TLS) == 0)
790             {
791               elfcpp::Elf_Xword zero_flags = 0;
792               const Key zero_key(name_key, std::make_pair(lookup_type,
793                                                           zero_flags));
794               Section_name_map::iterator p =
795                   this->section_name_map_.find(zero_key);
796               if (p != this->section_name_map_.end())
797                 os = p->second;
798             }
799         }
800
801       if (os == NULL)
802         os = this->make_output_section(name, type, flags, order, is_relro);
803
804       ins.first->second = os;
805       return os;
806     }
807 }
808
809 // Returns TRUE iff NAME (an input section from RELOBJ) will
810 // be mapped to an output section that should be KEPT.
811
812 bool
813 Layout::keep_input_section(const Relobj* relobj, const char* name)
814 {
815   if (! this->script_options_->saw_sections_clause())
816     return false;
817
818   Script_sections* ss = this->script_options_->script_sections();
819   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
820   Output_section** output_section_slot;
821   Script_sections::Section_type script_section_type;
822   bool keep;
823
824   name = ss->output_section_name(file_name, name, &output_section_slot,
825                                  &script_section_type, &keep);
826   return name != NULL && keep;
827 }
828
829 // Clear the input section flags that should not be copied to the
830 // output section.
831
832 elfcpp::Elf_Xword
833 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
834 {
835   // Some flags in the input section should not be automatically
836   // copied to the output section.
837   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
838                             | elfcpp::SHF_GROUP
839                             | elfcpp::SHF_MERGE
840                             | elfcpp::SHF_STRINGS);
841
842   // We only clear the SHF_LINK_ORDER flag in for
843   // a non-relocatable link.
844   if (!parameters->options().relocatable())
845     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
846
847   return input_section_flags;
848 }
849
850 // Pick the output section to use for section NAME, in input file
851 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
852 // linker created section.  IS_INPUT_SECTION is true if we are
853 // choosing an output section for an input section found in a input
854 // file.  ORDER is where this section should appear in the output
855 // sections.  IS_RELRO is true for a relro section.  This will return
856 // NULL if the input section should be discarded.
857
858 Output_section*
859 Layout::choose_output_section(const Relobj* relobj, const char* name,
860                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
861                               bool is_input_section, Output_section_order order,
862                               bool is_relro)
863 {
864   // We should not see any input sections after we have attached
865   // sections to segments.
866   gold_assert(!is_input_section || !this->sections_are_attached_);
867
868   flags = this->get_output_section_flags(flags);
869
870   if (this->script_options_->saw_sections_clause())
871     {
872       // We are using a SECTIONS clause, so the output section is
873       // chosen based only on the name.
874
875       Script_sections* ss = this->script_options_->script_sections();
876       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
877       Output_section** output_section_slot;
878       Script_sections::Section_type script_section_type;
879       const char* orig_name = name;
880       bool keep;
881       name = ss->output_section_name(file_name, name, &output_section_slot,
882                                      &script_section_type, &keep);
883
884       if (name == NULL)
885         {
886           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
887                                      "because it is not allowed by the "
888                                      "SECTIONS clause of the linker script"),
889                      orig_name);
890           // The SECTIONS clause says to discard this input section.
891           return NULL;
892         }
893
894       // We can only handle script section types ST_NONE and ST_NOLOAD.
895       switch (script_section_type)
896         {
897         case Script_sections::ST_NONE:
898           break;
899         case Script_sections::ST_NOLOAD:
900           flags &= elfcpp::SHF_ALLOC;
901           break;
902         default:
903           gold_unreachable();
904         }
905
906       // If this is an orphan section--one not mentioned in the linker
907       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
908       // default processing below.
909
910       if (output_section_slot != NULL)
911         {
912           if (*output_section_slot != NULL)
913             {
914               (*output_section_slot)->update_flags_for_input_section(flags);
915               return *output_section_slot;
916             }
917
918           // We don't put sections found in the linker script into
919           // SECTION_NAME_MAP_.  That keeps us from getting confused
920           // if an orphan section is mapped to a section with the same
921           // name as one in the linker script.
922
923           name = this->namepool_.add(name, false, NULL);
924
925           Output_section* os = this->make_output_section(name, type, flags,
926                                                          order, is_relro);
927
928           os->set_found_in_sections_clause();
929
930           // Special handling for NOLOAD sections.
931           if (script_section_type == Script_sections::ST_NOLOAD)
932             {
933               os->set_is_noload();
934
935               // The constructor of Output_section sets addresses of non-ALLOC
936               // sections to 0 by default.  We don't want that for NOLOAD
937               // sections even if they have no SHF_ALLOC flag.
938               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
939                   && os->is_address_valid())
940                 {
941                   gold_assert(os->address() == 0
942                               && !os->is_offset_valid()
943                               && !os->is_data_size_valid());
944                   os->reset_address_and_file_offset();
945                 }
946             }
947
948           *output_section_slot = os;
949           return os;
950         }
951     }
952
953   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
954
955   size_t len = strlen(name);
956   char* uncompressed_name = NULL;
957
958   // Compressed debug sections should be mapped to the corresponding
959   // uncompressed section.
960   if (is_compressed_debug_section(name))
961     {
962       uncompressed_name = new char[len];
963       uncompressed_name[0] = '.';
964       gold_assert(name[0] == '.' && name[1] == 'z');
965       strncpy(&uncompressed_name[1], &name[2], len - 2);
966       uncompressed_name[len - 1] = '\0';
967       len -= 1;
968       name = uncompressed_name;
969     }
970
971   // Turn NAME from the name of the input section into the name of the
972   // output section.
973   if (is_input_section
974       && !this->script_options_->saw_sections_clause()
975       && !parameters->options().relocatable())
976     {
977       const char *orig_name = name;
978       name = parameters->target().output_section_name(relobj, name, &len);
979       if (name == NULL)
980         name = Layout::output_section_name(relobj, orig_name, &len);
981     }
982
983   Stringpool::Key name_key;
984   name = this->namepool_.add_with_length(name, len, true, &name_key);
985
986   if (uncompressed_name != NULL)
987     delete[] uncompressed_name;
988
989   // Find or make the output section.  The output section is selected
990   // based on the section name, type, and flags.
991   return this->get_output_section(name, name_key, type, flags, order, is_relro);
992 }
993
994 // For incremental links, record the initial fixed layout of a section
995 // from the base file, and return a pointer to the Output_section.
996
997 template<int size, bool big_endian>
998 Output_section*
999 Layout::init_fixed_output_section(const char* name,
1000                                   elfcpp::Shdr<size, big_endian>& shdr)
1001 {
1002   unsigned int sh_type = shdr.get_sh_type();
1003
1004   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1005   // PRE_INIT_ARRAY, and NOTE sections.
1006   // All others will be created from scratch and reallocated.
1007   if (!can_incremental_update(sh_type))
1008     return NULL;
1009
1010   // If we're generating a .gdb_index section, we need to regenerate
1011   // it from scratch.
1012   if (parameters->options().gdb_index()
1013       && sh_type == elfcpp::SHT_PROGBITS
1014       && strcmp(name, ".gdb_index") == 0)
1015     return NULL;
1016
1017   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1018   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1019   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1022       shdr.get_sh_addralign();
1023
1024   // Make the output section.
1025   Stringpool::Key name_key;
1026   name = this->namepool_.add(name, true, &name_key);
1027   Output_section* os = this->get_output_section(name, name_key, sh_type,
1028                                                 sh_flags, ORDER_INVALID, false);
1029   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1030   if (sh_type != elfcpp::SHT_NOBITS)
1031     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1032   return os;
1033 }
1034
1035 // Return the output section to use for input section SHNDX, with name
1036 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1037 // index of a relocation section which applies to this section, or 0
1038 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1039 // relocation section if there is one.  Set *OFF to the offset of this
1040 // input section without the output section.  Return NULL if the
1041 // section should be discarded.  Set *OFF to -1 if the section
1042 // contents should not be written directly to the output file, but
1043 // will instead receive special handling.
1044
1045 template<int size, bool big_endian>
1046 Output_section*
1047 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1048                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1049                unsigned int reloc_shndx, unsigned int, off_t* off)
1050 {
1051   *off = 0;
1052
1053   if (!this->include_section(object, name, shdr))
1054     return NULL;
1055
1056   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1057
1058   // In a relocatable link a grouped section must not be combined with
1059   // any other sections.
1060   Output_section* os;
1061   if (parameters->options().relocatable()
1062       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1063     {
1064       name = this->namepool_.add(name, true, NULL);
1065       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1066                                      ORDER_INVALID, false);
1067     }
1068   else
1069     {
1070       // Plugins can choose to place one or more subsets of sections in
1071       // unique segments and this is done by mapping these section subsets
1072       // to unique output sections.  Check if this section needs to be
1073       // remapped to a unique output section.
1074       Section_segment_map::iterator it
1075           = this->section_segment_map_.find(Const_section_id(object, shndx));
1076       if (it == this->section_segment_map_.end())
1077         {
1078           os = this->choose_output_section(object, name, sh_type,
1079                                            shdr.get_sh_flags(), true,
1080                                            ORDER_INVALID, false);
1081         }
1082       else
1083         {
1084           // We know the name of the output section, directly call
1085           // get_output_section here by-passing choose_output_section.
1086           elfcpp::Elf_Xword flags
1087             = this->get_output_section_flags(shdr.get_sh_flags());
1088
1089           const char* os_name = it->second->name;
1090           Stringpool::Key name_key;
1091           os_name = this->namepool_.add(os_name, true, &name_key);
1092           os = this->get_output_section(os_name, name_key, sh_type, flags,
1093                                         ORDER_INVALID, false);
1094           if (!os->is_unique_segment())
1095             {
1096               os->set_is_unique_segment();
1097               os->set_extra_segment_flags(it->second->flags);
1098               os->set_segment_alignment(it->second->align);
1099             }
1100         }
1101       if (os == NULL)
1102         return NULL;
1103     }
1104
1105   // By default the GNU linker sorts input sections whose names match
1106   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1107   // sections are sorted by name.  This is used to implement
1108   // constructor priority ordering.  We are compatible.  When we put
1109   // .ctor sections in .init_array and .dtor sections in .fini_array,
1110   // we must also sort plain .ctor and .dtor sections.
1111   if (!this->script_options_->saw_sections_clause()
1112       && !parameters->options().relocatable()
1113       && (is_prefix_of(".ctors.", name)
1114           || is_prefix_of(".dtors.", name)
1115           || is_prefix_of(".init_array.", name)
1116           || is_prefix_of(".fini_array.", name)
1117           || (parameters->options().ctors_in_init_array()
1118               && (strcmp(name, ".ctors") == 0
1119                   || strcmp(name, ".dtors") == 0))))
1120     os->set_must_sort_attached_input_sections();
1121
1122   // If this is a .ctors or .ctors.* section being mapped to a
1123   // .init_array section, or a .dtors or .dtors.* section being mapped
1124   // to a .fini_array section, we will need to reverse the words if
1125   // there is more than one.  Record this section for later.  See
1126   // ctors_sections_in_init_array above.
1127   if (!this->script_options_->saw_sections_clause()
1128       && !parameters->options().relocatable()
1129       && shdr.get_sh_size() > size / 8
1130       && (((strcmp(name, ".ctors") == 0
1131             || is_prefix_of(".ctors.", name))
1132            && strcmp(os->name(), ".init_array") == 0)
1133           || ((strcmp(name, ".dtors") == 0
1134                || is_prefix_of(".dtors.", name))
1135               && strcmp(os->name(), ".fini_array") == 0)))
1136     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1137
1138   // FIXME: Handle SHF_LINK_ORDER somewhere.
1139
1140   elfcpp::Elf_Xword orig_flags = os->flags();
1141
1142   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1143                                this->script_options_->saw_sections_clause());
1144
1145   // If the flags changed, we may have to change the order.
1146   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1147     {
1148       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1149       elfcpp::Elf_Xword new_flags =
1150         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1151       if (orig_flags != new_flags)
1152         os->set_order(this->default_section_order(os, false));
1153     }
1154
1155   this->have_added_input_section_ = true;
1156
1157   return os;
1158 }
1159
1160 // Maps section SECN to SEGMENT s.
1161 void
1162 Layout::insert_section_segment_map(Const_section_id secn,
1163                                    Unique_segment_info *s)
1164 {
1165   gold_assert(this->unique_segment_for_sections_specified_); 
1166   this->section_segment_map_[secn] = s;
1167 }
1168
1169 // Handle a relocation section when doing a relocatable link.
1170
1171 template<int size, bool big_endian>
1172 Output_section*
1173 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1174                      unsigned int,
1175                      const elfcpp::Shdr<size, big_endian>& shdr,
1176                      Output_section* data_section,
1177                      Relocatable_relocs* rr)
1178 {
1179   gold_assert(parameters->options().relocatable()
1180               || parameters->options().emit_relocs());
1181
1182   int sh_type = shdr.get_sh_type();
1183
1184   std::string name;
1185   if (sh_type == elfcpp::SHT_REL)
1186     name = ".rel";
1187   else if (sh_type == elfcpp::SHT_RELA)
1188     name = ".rela";
1189   else
1190     gold_unreachable();
1191   name += data_section->name();
1192
1193   // In a relocatable link relocs for a grouped section must not be
1194   // combined with other reloc sections.
1195   Output_section* os;
1196   if (!parameters->options().relocatable()
1197       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1198     os = this->choose_output_section(object, name.c_str(), sh_type,
1199                                      shdr.get_sh_flags(), false,
1200                                      ORDER_INVALID, false);
1201   else
1202     {
1203       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1204       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1205                                      ORDER_INVALID, false);
1206     }
1207
1208   os->set_should_link_to_symtab();
1209   os->set_info_section(data_section);
1210
1211   Output_section_data* posd;
1212   if (sh_type == elfcpp::SHT_REL)
1213     {
1214       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1215       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1216                                            size,
1217                                            big_endian>(rr);
1218     }
1219   else if (sh_type == elfcpp::SHT_RELA)
1220     {
1221       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1222       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1223                                            size,
1224                                            big_endian>(rr);
1225     }
1226   else
1227     gold_unreachable();
1228
1229   os->add_output_section_data(posd);
1230   rr->set_output_data(posd);
1231
1232   return os;
1233 }
1234
1235 // Handle a group section when doing a relocatable link.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Layout::layout_group(Symbol_table* symtab,
1240                      Sized_relobj_file<size, big_endian>* object,
1241                      unsigned int,
1242                      const char* group_section_name,
1243                      const char* signature,
1244                      const elfcpp::Shdr<size, big_endian>& shdr,
1245                      elfcpp::Elf_Word flags,
1246                      std::vector<unsigned int>* shndxes)
1247 {
1248   gold_assert(parameters->options().relocatable());
1249   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1250   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1251   Output_section* os = this->make_output_section(group_section_name,
1252                                                  elfcpp::SHT_GROUP,
1253                                                  shdr.get_sh_flags(),
1254                                                  ORDER_INVALID, false);
1255
1256   // We need to find a symbol with the signature in the symbol table.
1257   // If we don't find one now, we need to look again later.
1258   Symbol* sym = symtab->lookup(signature, NULL);
1259   if (sym != NULL)
1260     os->set_info_symndx(sym);
1261   else
1262     {
1263       // Reserve some space to minimize reallocations.
1264       if (this->group_signatures_.empty())
1265         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1266
1267       // We will wind up using a symbol whose name is the signature.
1268       // So just put the signature in the symbol name pool to save it.
1269       signature = symtab->canonicalize_name(signature);
1270       this->group_signatures_.push_back(Group_signature(os, signature));
1271     }
1272
1273   os->set_should_link_to_symtab();
1274   os->set_entsize(4);
1275
1276   section_size_type entry_count =
1277     convert_to_section_size_type(shdr.get_sh_size() / 4);
1278   Output_section_data* posd =
1279     new Output_data_group<size, big_endian>(object, entry_count, flags,
1280                                             shndxes);
1281   os->add_output_section_data(posd);
1282 }
1283
1284 // Special GNU handling of sections name .eh_frame.  They will
1285 // normally hold exception frame data as defined by the C++ ABI
1286 // (http://codesourcery.com/cxx-abi/).
1287
1288 template<int size, bool big_endian>
1289 Output_section*
1290 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1291                         const unsigned char* symbols,
1292                         off_t symbols_size,
1293                         const unsigned char* symbol_names,
1294                         off_t symbol_names_size,
1295                         unsigned int shndx,
1296                         const elfcpp::Shdr<size, big_endian>& shdr,
1297                         unsigned int reloc_shndx, unsigned int reloc_type,
1298                         off_t* off)
1299 {
1300   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1301               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1302   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1303
1304   Output_section* os = this->make_eh_frame_section(object);
1305   if (os == NULL)
1306     return NULL;
1307
1308   gold_assert(this->eh_frame_section_ == os);
1309
1310   elfcpp::Elf_Xword orig_flags = os->flags();
1311
1312   if (!parameters->incremental()
1313       && this->eh_frame_data_->add_ehframe_input_section(object,
1314                                                          symbols,
1315                                                          symbols_size,
1316                                                          symbol_names,
1317                                                          symbol_names_size,
1318                                                          shndx,
1319                                                          reloc_shndx,
1320                                                          reloc_type))
1321     {
1322       os->update_flags_for_input_section(shdr.get_sh_flags());
1323
1324       // A writable .eh_frame section is a RELRO section.
1325       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1326           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1327         {
1328           os->set_is_relro();
1329           os->set_order(ORDER_RELRO);
1330         }
1331
1332       // We found a .eh_frame section we are going to optimize, so now
1333       // we can add the set of optimized sections to the output
1334       // section.  We need to postpone adding this until we've found a
1335       // section we can optimize so that the .eh_frame section in
1336       // crtbegin.o winds up at the start of the output section.
1337       if (!this->added_eh_frame_data_)
1338         {
1339           os->add_output_section_data(this->eh_frame_data_);
1340           this->added_eh_frame_data_ = true;
1341         }
1342       *off = -1;
1343     }
1344   else
1345     {
1346       // We couldn't handle this .eh_frame section for some reason.
1347       // Add it as a normal section.
1348       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1349       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1350                                    reloc_shndx, saw_sections_clause);
1351       this->have_added_input_section_ = true;
1352
1353       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1354           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1355         os->set_order(this->default_section_order(os, false));
1356     }
1357
1358   return os;
1359 }
1360
1361 // Create and return the magic .eh_frame section.  Create
1362 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1363 // input .eh_frame section; it may be NULL.
1364
1365 Output_section*
1366 Layout::make_eh_frame_section(const Relobj* object)
1367 {
1368   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1369   // SHT_PROGBITS.
1370   Output_section* os = this->choose_output_section(object, ".eh_frame",
1371                                                    elfcpp::SHT_PROGBITS,
1372                                                    elfcpp::SHF_ALLOC, false,
1373                                                    ORDER_EHFRAME, false);
1374   if (os == NULL)
1375     return NULL;
1376
1377   if (this->eh_frame_section_ == NULL)
1378     {
1379       this->eh_frame_section_ = os;
1380       this->eh_frame_data_ = new Eh_frame();
1381
1382       // For incremental linking, we do not optimize .eh_frame sections
1383       // or create a .eh_frame_hdr section.
1384       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1385         {
1386           Output_section* hdr_os =
1387             this->choose_output_section(NULL, ".eh_frame_hdr",
1388                                         elfcpp::SHT_PROGBITS,
1389                                         elfcpp::SHF_ALLOC, false,
1390                                         ORDER_EHFRAME, false);
1391
1392           if (hdr_os != NULL)
1393             {
1394               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1395                                                         this->eh_frame_data_);
1396               hdr_os->add_output_section_data(hdr_posd);
1397
1398               hdr_os->set_after_input_sections();
1399
1400               if (!this->script_options_->saw_phdrs_clause())
1401                 {
1402                   Output_segment* hdr_oseg;
1403                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1404                                                        elfcpp::PF_R);
1405                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1406                                                           elfcpp::PF_R);
1407                 }
1408
1409               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1410             }
1411         }
1412     }
1413
1414   return os;
1415 }
1416
1417 // Add an exception frame for a PLT.  This is called from target code.
1418
1419 void
1420 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1421                              size_t cie_length, const unsigned char* fde_data,
1422                              size_t fde_length)
1423 {
1424   if (parameters->incremental())
1425     {
1426       // FIXME: Maybe this could work some day....
1427       return;
1428     }
1429   Output_section* os = this->make_eh_frame_section(NULL);
1430   if (os == NULL)
1431     return;
1432   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1433                                             fde_data, fde_length);
1434   if (!this->added_eh_frame_data_)
1435     {
1436       os->add_output_section_data(this->eh_frame_data_);
1437       this->added_eh_frame_data_ = true;
1438     }
1439 }
1440
1441 // Scan a .debug_info or .debug_types section, and add summary
1442 // information to the .gdb_index section.
1443
1444 template<int size, bool big_endian>
1445 void
1446 Layout::add_to_gdb_index(bool is_type_unit,
1447                          Sized_relobj<size, big_endian>* object,
1448                          const unsigned char* symbols,
1449                          off_t symbols_size,
1450                          unsigned int shndx,
1451                          unsigned int reloc_shndx,
1452                          unsigned int reloc_type)
1453 {
1454   if (this->gdb_index_data_ == NULL)
1455     {
1456       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1457                                                        elfcpp::SHT_PROGBITS, 0,
1458                                                        false, ORDER_INVALID,
1459                                                        false);
1460       if (os == NULL)
1461         return;
1462
1463       this->gdb_index_data_ = new Gdb_index(os);
1464       os->add_output_section_data(this->gdb_index_data_);
1465       os->set_after_input_sections();
1466     }
1467
1468   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1469                                          symbols_size, shndx, reloc_shndx,
1470                                          reloc_type);
1471 }
1472
1473 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1474 // the output section.
1475
1476 Output_section*
1477 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1478                                 elfcpp::Elf_Xword flags,
1479                                 Output_section_data* posd,
1480                                 Output_section_order order, bool is_relro)
1481 {
1482   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1483                                                    false, order, is_relro);
1484   if (os != NULL)
1485     os->add_output_section_data(posd);
1486   return os;
1487 }
1488
1489 // Map section flags to segment flags.
1490
1491 elfcpp::Elf_Word
1492 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1493 {
1494   elfcpp::Elf_Word ret = elfcpp::PF_R;
1495   if ((flags & elfcpp::SHF_WRITE) != 0)
1496     ret |= elfcpp::PF_W;
1497   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1498     ret |= elfcpp::PF_X;
1499   return ret;
1500 }
1501
1502 // Make a new Output_section, and attach it to segments as
1503 // appropriate.  ORDER is the order in which this section should
1504 // appear in the output segment.  IS_RELRO is true if this is a relro
1505 // (read-only after relocations) section.
1506
1507 Output_section*
1508 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1509                             elfcpp::Elf_Xword flags,
1510                             Output_section_order order, bool is_relro)
1511 {
1512   Output_section* os;
1513   if ((flags & elfcpp::SHF_ALLOC) == 0
1514       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1515       && is_compressible_debug_section(name))
1516     os = new Output_compressed_section(&parameters->options(), name, type,
1517                                        flags);
1518   else if ((flags & elfcpp::SHF_ALLOC) == 0
1519            && parameters->options().strip_debug_non_line()
1520            && strcmp(".debug_abbrev", name) == 0)
1521     {
1522       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1523           name, type, flags);
1524       if (this->debug_info_)
1525         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1526     }
1527   else if ((flags & elfcpp::SHF_ALLOC) == 0
1528            && parameters->options().strip_debug_non_line()
1529            && strcmp(".debug_info", name) == 0)
1530     {
1531       os = this->debug_info_ = new Output_reduced_debug_info_section(
1532           name, type, flags);
1533       if (this->debug_abbrev_)
1534         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1535     }
1536   else
1537     {
1538       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1539       // not have correct section types.  Force them here.
1540       if (type == elfcpp::SHT_PROGBITS)
1541         {
1542           if (is_prefix_of(".init_array", name))
1543             type = elfcpp::SHT_INIT_ARRAY;
1544           else if (is_prefix_of(".preinit_array", name))
1545             type = elfcpp::SHT_PREINIT_ARRAY;
1546           else if (is_prefix_of(".fini_array", name))
1547             type = elfcpp::SHT_FINI_ARRAY;
1548         }
1549
1550       // FIXME: const_cast is ugly.
1551       Target* target = const_cast<Target*>(&parameters->target());
1552       os = target->make_output_section(name, type, flags);
1553     }
1554
1555   // With -z relro, we have to recognize the special sections by name.
1556   // There is no other way.
1557   bool is_relro_local = false;
1558   if (!this->script_options_->saw_sections_clause()
1559       && parameters->options().relro()
1560       && (flags & elfcpp::SHF_ALLOC) != 0
1561       && (flags & elfcpp::SHF_WRITE) != 0)
1562     {
1563       if (type == elfcpp::SHT_PROGBITS)
1564         {
1565           if ((flags & elfcpp::SHF_TLS) != 0)
1566             is_relro = true;
1567           else if (strcmp(name, ".data.rel.ro") == 0)
1568             is_relro = true;
1569           else if (strcmp(name, ".data.rel.ro.local") == 0)
1570             {
1571               is_relro = true;
1572               is_relro_local = true;
1573             }
1574           else if (strcmp(name, ".ctors") == 0
1575                    || strcmp(name, ".dtors") == 0
1576                    || strcmp(name, ".jcr") == 0)
1577             is_relro = true;
1578         }
1579       else if (type == elfcpp::SHT_INIT_ARRAY
1580                || type == elfcpp::SHT_FINI_ARRAY
1581                || type == elfcpp::SHT_PREINIT_ARRAY)
1582         is_relro = true;
1583     }
1584
1585   if (is_relro)
1586     os->set_is_relro();
1587
1588   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1589     order = this->default_section_order(os, is_relro_local);
1590
1591   os->set_order(order);
1592
1593   parameters->target().new_output_section(os);
1594
1595   this->section_list_.push_back(os);
1596
1597   // The GNU linker by default sorts some sections by priority, so we
1598   // do the same.  We need to know that this might happen before we
1599   // attach any input sections.
1600   if (!this->script_options_->saw_sections_clause()
1601       && !parameters->options().relocatable()
1602       && (strcmp(name, ".init_array") == 0
1603           || strcmp(name, ".fini_array") == 0
1604           || (!parameters->options().ctors_in_init_array()
1605               && (strcmp(name, ".ctors") == 0
1606                   || strcmp(name, ".dtors") == 0))))
1607     os->set_may_sort_attached_input_sections();
1608
1609   // Check for .stab*str sections, as .stab* sections need to link to
1610   // them.
1611   if (type == elfcpp::SHT_STRTAB
1612       && !this->have_stabstr_section_
1613       && strncmp(name, ".stab", 5) == 0
1614       && strcmp(name + strlen(name) - 3, "str") == 0)
1615     this->have_stabstr_section_ = true;
1616
1617   // During a full incremental link, we add patch space to most
1618   // PROGBITS and NOBITS sections.  Flag those that may be
1619   // arbitrarily padded.
1620   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1621       && order != ORDER_INTERP
1622       && order != ORDER_INIT
1623       && order != ORDER_PLT
1624       && order != ORDER_FINI
1625       && order != ORDER_RELRO_LAST
1626       && order != ORDER_NON_RELRO_FIRST
1627       && strcmp(name, ".eh_frame") != 0
1628       && strcmp(name, ".ctors") != 0
1629       && strcmp(name, ".dtors") != 0
1630       && strcmp(name, ".jcr") != 0)
1631     {
1632       os->set_is_patch_space_allowed();
1633
1634       // Certain sections require "holes" to be filled with
1635       // specific fill patterns.  These fill patterns may have
1636       // a minimum size, so we must prevent allocations from the
1637       // free list that leave a hole smaller than the minimum.
1638       if (strcmp(name, ".debug_info") == 0)
1639         os->set_free_space_fill(new Output_fill_debug_info(false));
1640       else if (strcmp(name, ".debug_types") == 0)
1641         os->set_free_space_fill(new Output_fill_debug_info(true));
1642       else if (strcmp(name, ".debug_line") == 0)
1643         os->set_free_space_fill(new Output_fill_debug_line());
1644     }
1645
1646   // If we have already attached the sections to segments, then we
1647   // need to attach this one now.  This happens for sections created
1648   // directly by the linker.
1649   if (this->sections_are_attached_)
1650     this->attach_section_to_segment(&parameters->target(), os);
1651
1652   return os;
1653 }
1654
1655 // Return the default order in which a section should be placed in an
1656 // output segment.  This function captures a lot of the ideas in
1657 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1658 // linker created section is normally set when the section is created;
1659 // this function is used for input sections.
1660
1661 Output_section_order
1662 Layout::default_section_order(Output_section* os, bool is_relro_local)
1663 {
1664   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1665   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1666   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1667   bool is_bss = false;
1668
1669   switch (os->type())
1670     {
1671     default:
1672     case elfcpp::SHT_PROGBITS:
1673       break;
1674     case elfcpp::SHT_NOBITS:
1675       is_bss = true;
1676       break;
1677     case elfcpp::SHT_RELA:
1678     case elfcpp::SHT_REL:
1679       if (!is_write)
1680         return ORDER_DYNAMIC_RELOCS;
1681       break;
1682     case elfcpp::SHT_HASH:
1683     case elfcpp::SHT_DYNAMIC:
1684     case elfcpp::SHT_SHLIB:
1685     case elfcpp::SHT_DYNSYM:
1686     case elfcpp::SHT_GNU_HASH:
1687     case elfcpp::SHT_GNU_verdef:
1688     case elfcpp::SHT_GNU_verneed:
1689     case elfcpp::SHT_GNU_versym:
1690       if (!is_write)
1691         return ORDER_DYNAMIC_LINKER;
1692       break;
1693     case elfcpp::SHT_NOTE:
1694       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1695     }
1696
1697   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1698     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1699
1700   if (!is_bss && !is_write)
1701     {
1702       if (is_execinstr)
1703         {
1704           if (strcmp(os->name(), ".init") == 0)
1705             return ORDER_INIT;
1706           else if (strcmp(os->name(), ".fini") == 0)
1707             return ORDER_FINI;
1708         }
1709       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1710     }
1711
1712   if (os->is_relro())
1713     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1714
1715   if (os->is_small_section())
1716     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1717   if (os->is_large_section())
1718     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1719
1720   return is_bss ? ORDER_BSS : ORDER_DATA;
1721 }
1722
1723 // Attach output sections to segments.  This is called after we have
1724 // seen all the input sections.
1725
1726 void
1727 Layout::attach_sections_to_segments(const Target* target)
1728 {
1729   for (Section_list::iterator p = this->section_list_.begin();
1730        p != this->section_list_.end();
1731        ++p)
1732     this->attach_section_to_segment(target, *p);
1733
1734   this->sections_are_attached_ = true;
1735 }
1736
1737 // Attach an output section to a segment.
1738
1739 void
1740 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1741 {
1742   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1743     this->unattached_section_list_.push_back(os);
1744   else
1745     this->attach_allocated_section_to_segment(target, os);
1746 }
1747
1748 // Attach an allocated output section to a segment.
1749
1750 void
1751 Layout::attach_allocated_section_to_segment(const Target* target,
1752                                             Output_section* os)
1753 {
1754   elfcpp::Elf_Xword flags = os->flags();
1755   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1756
1757   if (parameters->options().relocatable())
1758     return;
1759
1760   // If we have a SECTIONS clause, we can't handle the attachment to
1761   // segments until after we've seen all the sections.
1762   if (this->script_options_->saw_sections_clause())
1763     return;
1764
1765   gold_assert(!this->script_options_->saw_phdrs_clause());
1766
1767   // This output section goes into a PT_LOAD segment.
1768
1769   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1770
1771   // If this output section's segment has extra flags that need to be set,
1772   // coming from a linker plugin, do that.
1773   seg_flags |= os->extra_segment_flags();
1774
1775   // Check for --section-start.
1776   uint64_t addr;
1777   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1778
1779   // In general the only thing we really care about for PT_LOAD
1780   // segments is whether or not they are writable or executable,
1781   // so that is how we search for them.
1782   // Large data sections also go into their own PT_LOAD segment.
1783   // People who need segments sorted on some other basis will
1784   // have to use a linker script.
1785
1786   Segment_list::const_iterator p;
1787   if (!os->is_unique_segment())
1788     {
1789       for (p = this->segment_list_.begin();
1790            p != this->segment_list_.end();
1791            ++p)
1792         {
1793           if ((*p)->type() != elfcpp::PT_LOAD)                        
1794             continue;                        
1795           if ((*p)->is_unique_segment())                        
1796             continue;                        
1797           if (!parameters->options().omagic()                        
1798               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1799             continue;                        
1800           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1801               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1802             continue;                        
1803           // If -Tbss was specified, we need to separate the data and BSS                        
1804           // segments.                        
1805           if (parameters->options().user_set_Tbss())                        
1806             {                        
1807               if ((os->type() == elfcpp::SHT_NOBITS)                        
1808                   == (*p)->has_any_data_sections())                        
1809                 continue;                        
1810             }                        
1811           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1812             continue;                        
1813                             
1814           if (is_address_set)                        
1815             {                        
1816               if ((*p)->are_addresses_set())                        
1817                 continue;                        
1818                             
1819               (*p)->add_initial_output_data(os);                        
1820               (*p)->update_flags_for_output_section(seg_flags);                        
1821               (*p)->set_addresses(addr, addr);                        
1822               break;                        
1823             }                        
1824                             
1825           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1826           break;                        
1827         }                        
1828     }
1829
1830   if (p == this->segment_list_.end()
1831       || os->is_unique_segment())
1832     {
1833       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1834                                                        seg_flags);
1835       if (os->is_large_data_section())
1836         oseg->set_is_large_data_segment();
1837       oseg->add_output_section_to_load(this, os, seg_flags);
1838       if (is_address_set)
1839         oseg->set_addresses(addr, addr);
1840       // Check if segment should be marked unique.  For segments marked
1841       // unique by linker plugins, set the new alignment if specified.
1842       if (os->is_unique_segment())
1843         {
1844           oseg->set_is_unique_segment();
1845           if (os->segment_alignment() != 0)
1846             oseg->set_minimum_p_align(os->segment_alignment());
1847         }
1848     }
1849
1850   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1851   // segment.
1852   if (os->type() == elfcpp::SHT_NOTE)
1853     {
1854       // See if we already have an equivalent PT_NOTE segment.
1855       for (p = this->segment_list_.begin();
1856            p != segment_list_.end();
1857            ++p)
1858         {
1859           if ((*p)->type() == elfcpp::PT_NOTE
1860               && (((*p)->flags() & elfcpp::PF_W)
1861                   == (seg_flags & elfcpp::PF_W)))
1862             {
1863               (*p)->add_output_section_to_nonload(os, seg_flags);
1864               break;
1865             }
1866         }
1867
1868       if (p == this->segment_list_.end())
1869         {
1870           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1871                                                            seg_flags);
1872           oseg->add_output_section_to_nonload(os, seg_flags);
1873         }
1874     }
1875
1876   // If we see a loadable SHF_TLS section, we create a PT_TLS
1877   // segment.  There can only be one such segment.
1878   if ((flags & elfcpp::SHF_TLS) != 0)
1879     {
1880       if (this->tls_segment_ == NULL)
1881         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1882       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1883     }
1884
1885   // If -z relro is in effect, and we see a relro section, we create a
1886   // PT_GNU_RELRO segment.  There can only be one such segment.
1887   if (os->is_relro() && parameters->options().relro())
1888     {
1889       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1890       if (this->relro_segment_ == NULL)
1891         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1892       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1893     }
1894
1895   // If we see a section named .interp, put it into a PT_INTERP
1896   // segment.  This seems broken to me, but this is what GNU ld does,
1897   // and glibc expects it.
1898   if (strcmp(os->name(), ".interp") == 0
1899       && !this->script_options_->saw_phdrs_clause())
1900     {
1901       if (this->interp_segment_ == NULL)
1902         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1903       else
1904         gold_warning(_("multiple '.interp' sections in input files "
1905                        "may cause confusing PT_INTERP segment"));
1906       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1907     }
1908 }
1909
1910 // Make an output section for a script.
1911
1912 Output_section*
1913 Layout::make_output_section_for_script(
1914     const char* name,
1915     Script_sections::Section_type section_type)
1916 {
1917   name = this->namepool_.add(name, false, NULL);
1918   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1919   if (section_type == Script_sections::ST_NOLOAD)
1920     sh_flags = 0;
1921   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1922                                                  sh_flags, ORDER_INVALID,
1923                                                  false);
1924   os->set_found_in_sections_clause();
1925   if (section_type == Script_sections::ST_NOLOAD)
1926     os->set_is_noload();
1927   return os;
1928 }
1929
1930 // Return the number of segments we expect to see.
1931
1932 size_t
1933 Layout::expected_segment_count() const
1934 {
1935   size_t ret = this->segment_list_.size();
1936
1937   // If we didn't see a SECTIONS clause in a linker script, we should
1938   // already have the complete list of segments.  Otherwise we ask the
1939   // SECTIONS clause how many segments it expects, and add in the ones
1940   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1941
1942   if (!this->script_options_->saw_sections_clause())
1943     return ret;
1944   else
1945     {
1946       const Script_sections* ss = this->script_options_->script_sections();
1947       return ret + ss->expected_segment_count(this);
1948     }
1949 }
1950
1951 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1952 // is whether we saw a .note.GNU-stack section in the object file.
1953 // GNU_STACK_FLAGS is the section flags.  The flags give the
1954 // protection required for stack memory.  We record this in an
1955 // executable as a PT_GNU_STACK segment.  If an object file does not
1956 // have a .note.GNU-stack segment, we must assume that it is an old
1957 // object.  On some targets that will force an executable stack.
1958
1959 void
1960 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1961                          const Object* obj)
1962 {
1963   if (!seen_gnu_stack)
1964     {
1965       this->input_without_gnu_stack_note_ = true;
1966       if (parameters->options().warn_execstack()
1967           && parameters->target().is_default_stack_executable())
1968         gold_warning(_("%s: missing .note.GNU-stack section"
1969                        " implies executable stack"),
1970                      obj->name().c_str());
1971     }
1972   else
1973     {
1974       this->input_with_gnu_stack_note_ = true;
1975       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1976         {
1977           this->input_requires_executable_stack_ = true;
1978           if (parameters->options().warn_execstack()
1979               || parameters->options().is_stack_executable())
1980             gold_warning(_("%s: requires executable stack"),
1981                          obj->name().c_str());
1982         }
1983     }
1984 }
1985
1986 // Create automatic note sections.
1987
1988 void
1989 Layout::create_notes()
1990 {
1991   this->create_gold_note();
1992   this->create_executable_stack_info();
1993   this->create_build_id();
1994 }
1995
1996 // Create the dynamic sections which are needed before we read the
1997 // relocs.
1998
1999 void
2000 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2001 {
2002   if (parameters->doing_static_link())
2003     return;
2004
2005   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2006                                                        elfcpp::SHT_DYNAMIC,
2007                                                        (elfcpp::SHF_ALLOC
2008                                                         | elfcpp::SHF_WRITE),
2009                                                        false, ORDER_RELRO,
2010                                                        true);
2011
2012   // A linker script may discard .dynamic, so check for NULL.
2013   if (this->dynamic_section_ != NULL)
2014     {
2015       this->dynamic_symbol_ =
2016         symtab->define_in_output_data("_DYNAMIC", NULL,
2017                                       Symbol_table::PREDEFINED,
2018                                       this->dynamic_section_, 0, 0,
2019                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2020                                       elfcpp::STV_HIDDEN, 0, false, false);
2021
2022       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2023
2024       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2025     }
2026 }
2027
2028 // For each output section whose name can be represented as C symbol,
2029 // define __start and __stop symbols for the section.  This is a GNU
2030 // extension.
2031
2032 void
2033 Layout::define_section_symbols(Symbol_table* symtab)
2034 {
2035   for (Section_list::const_iterator p = this->section_list_.begin();
2036        p != this->section_list_.end();
2037        ++p)
2038     {
2039       const char* const name = (*p)->name();
2040       if (is_cident(name))
2041         {
2042           const std::string name_string(name);
2043           const std::string start_name(cident_section_start_prefix
2044                                        + name_string);
2045           const std::string stop_name(cident_section_stop_prefix
2046                                       + name_string);
2047
2048           symtab->define_in_output_data(start_name.c_str(),
2049                                         NULL, // version
2050                                         Symbol_table::PREDEFINED,
2051                                         *p,
2052                                         0, // value
2053                                         0, // symsize
2054                                         elfcpp::STT_NOTYPE,
2055                                         elfcpp::STB_GLOBAL,
2056                                         elfcpp::STV_DEFAULT,
2057                                         0, // nonvis
2058                                         false, // offset_is_from_end
2059                                         true); // only_if_ref
2060
2061           symtab->define_in_output_data(stop_name.c_str(),
2062                                         NULL, // version
2063                                         Symbol_table::PREDEFINED,
2064                                         *p,
2065                                         0, // value
2066                                         0, // symsize
2067                                         elfcpp::STT_NOTYPE,
2068                                         elfcpp::STB_GLOBAL,
2069                                         elfcpp::STV_DEFAULT,
2070                                         0, // nonvis
2071                                         true, // offset_is_from_end
2072                                         true); // only_if_ref
2073         }
2074     }
2075 }
2076
2077 // Define symbols for group signatures.
2078
2079 void
2080 Layout::define_group_signatures(Symbol_table* symtab)
2081 {
2082   for (Group_signatures::iterator p = this->group_signatures_.begin();
2083        p != this->group_signatures_.end();
2084        ++p)
2085     {
2086       Symbol* sym = symtab->lookup(p->signature, NULL);
2087       if (sym != NULL)
2088         p->section->set_info_symndx(sym);
2089       else
2090         {
2091           // Force the name of the group section to the group
2092           // signature, and use the group's section symbol as the
2093           // signature symbol.
2094           if (strcmp(p->section->name(), p->signature) != 0)
2095             {
2096               const char* name = this->namepool_.add(p->signature,
2097                                                      true, NULL);
2098               p->section->set_name(name);
2099             }
2100           p->section->set_needs_symtab_index();
2101           p->section->set_info_section_symndx(p->section);
2102         }
2103     }
2104
2105   this->group_signatures_.clear();
2106 }
2107
2108 // Find the first read-only PT_LOAD segment, creating one if
2109 // necessary.
2110
2111 Output_segment*
2112 Layout::find_first_load_seg(const Target* target)
2113 {
2114   Output_segment* best = NULL;
2115   for (Segment_list::const_iterator p = this->segment_list_.begin();
2116        p != this->segment_list_.end();
2117        ++p)
2118     {
2119       if ((*p)->type() == elfcpp::PT_LOAD
2120           && ((*p)->flags() & elfcpp::PF_R) != 0
2121           && (parameters->options().omagic()
2122               || ((*p)->flags() & elfcpp::PF_W) == 0)
2123           && (!target->isolate_execinstr()
2124               || ((*p)->flags() & elfcpp::PF_X) == 0))
2125         {
2126           if (best == NULL || this->segment_precedes(*p, best))
2127             best = *p;
2128         }
2129     }
2130   if (best != NULL)
2131     return best;
2132
2133   gold_assert(!this->script_options_->saw_phdrs_clause());
2134
2135   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2136                                                        elfcpp::PF_R);
2137   return load_seg;
2138 }
2139
2140 // Save states of all current output segments.  Store saved states
2141 // in SEGMENT_STATES.
2142
2143 void
2144 Layout::save_segments(Segment_states* segment_states)
2145 {
2146   for (Segment_list::const_iterator p = this->segment_list_.begin();
2147        p != this->segment_list_.end();
2148        ++p)
2149     {
2150       Output_segment* segment = *p;
2151       // Shallow copy.
2152       Output_segment* copy = new Output_segment(*segment);
2153       (*segment_states)[segment] = copy;
2154     }
2155 }
2156
2157 // Restore states of output segments and delete any segment not found in
2158 // SEGMENT_STATES.
2159
2160 void
2161 Layout::restore_segments(const Segment_states* segment_states)
2162 {
2163   // Go through the segment list and remove any segment added in the
2164   // relaxation loop.
2165   this->tls_segment_ = NULL;
2166   this->relro_segment_ = NULL;
2167   Segment_list::iterator list_iter = this->segment_list_.begin();
2168   while (list_iter != this->segment_list_.end())
2169     {
2170       Output_segment* segment = *list_iter;
2171       Segment_states::const_iterator states_iter =
2172           segment_states->find(segment);
2173       if (states_iter != segment_states->end())
2174         {
2175           const Output_segment* copy = states_iter->second;
2176           // Shallow copy to restore states.
2177           *segment = *copy;
2178
2179           // Also fix up TLS and RELRO segment pointers as appropriate.
2180           if (segment->type() == elfcpp::PT_TLS)
2181             this->tls_segment_ = segment;
2182           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2183             this->relro_segment_ = segment;
2184
2185           ++list_iter;
2186         }
2187       else
2188         {
2189           list_iter = this->segment_list_.erase(list_iter);
2190           // This is a segment created during section layout.  It should be
2191           // safe to remove it since we should have removed all pointers to it.
2192           delete segment;
2193         }
2194     }
2195 }
2196
2197 // Clean up after relaxation so that sections can be laid out again.
2198
2199 void
2200 Layout::clean_up_after_relaxation()
2201 {
2202   // Restore the segments to point state just prior to the relaxation loop.
2203   Script_sections* script_section = this->script_options_->script_sections();
2204   script_section->release_segments();
2205   this->restore_segments(this->segment_states_);
2206
2207   // Reset section addresses and file offsets
2208   for (Section_list::iterator p = this->section_list_.begin();
2209        p != this->section_list_.end();
2210        ++p)
2211     {
2212       (*p)->restore_states();
2213
2214       // If an input section changes size because of relaxation,
2215       // we need to adjust the section offsets of all input sections.
2216       // after such a section.
2217       if ((*p)->section_offsets_need_adjustment())
2218         (*p)->adjust_section_offsets();
2219
2220       (*p)->reset_address_and_file_offset();
2221     }
2222
2223   // Reset special output object address and file offsets.
2224   for (Data_list::iterator p = this->special_output_list_.begin();
2225        p != this->special_output_list_.end();
2226        ++p)
2227     (*p)->reset_address_and_file_offset();
2228
2229   // A linker script may have created some output section data objects.
2230   // They are useless now.
2231   for (Output_section_data_list::const_iterator p =
2232          this->script_output_section_data_list_.begin();
2233        p != this->script_output_section_data_list_.end();
2234        ++p)
2235     delete *p;
2236   this->script_output_section_data_list_.clear();
2237 }
2238
2239 // Prepare for relaxation.
2240
2241 void
2242 Layout::prepare_for_relaxation()
2243 {
2244   // Create an relaxation debug check if in debugging mode.
2245   if (is_debugging_enabled(DEBUG_RELAXATION))
2246     this->relaxation_debug_check_ = new Relaxation_debug_check();
2247
2248   // Save segment states.
2249   this->segment_states_ = new Segment_states();
2250   this->save_segments(this->segment_states_);
2251
2252   for(Section_list::const_iterator p = this->section_list_.begin();
2253       p != this->section_list_.end();
2254       ++p)
2255     (*p)->save_states();
2256
2257   if (is_debugging_enabled(DEBUG_RELAXATION))
2258     this->relaxation_debug_check_->check_output_data_for_reset_values(
2259         this->section_list_, this->special_output_list_);
2260
2261   // Also enable recording of output section data from scripts.
2262   this->record_output_section_data_from_script_ = true;
2263 }
2264
2265 // Relaxation loop body:  If target has no relaxation, this runs only once
2266 // Otherwise, the target relaxation hook is called at the end of
2267 // each iteration.  If the hook returns true, it means re-layout of
2268 // section is required.
2269 //
2270 // The number of segments created by a linking script without a PHDRS
2271 // clause may be affected by section sizes and alignments.  There is
2272 // a remote chance that relaxation causes different number of PT_LOAD
2273 // segments are created and sections are attached to different segments.
2274 // Therefore, we always throw away all segments created during section
2275 // layout.  In order to be able to restart the section layout, we keep
2276 // a copy of the segment list right before the relaxation loop and use
2277 // that to restore the segments.
2278 //
2279 // PASS is the current relaxation pass number.
2280 // SYMTAB is a symbol table.
2281 // PLOAD_SEG is the address of a pointer for the load segment.
2282 // PHDR_SEG is a pointer to the PHDR segment.
2283 // SEGMENT_HEADERS points to the output segment header.
2284 // FILE_HEADER points to the output file header.
2285 // PSHNDX is the address to store the output section index.
2286
2287 off_t inline
2288 Layout::relaxation_loop_body(
2289     int pass,
2290     Target* target,
2291     Symbol_table* symtab,
2292     Output_segment** pload_seg,
2293     Output_segment* phdr_seg,
2294     Output_segment_headers* segment_headers,
2295     Output_file_header* file_header,
2296     unsigned int* pshndx)
2297 {
2298   // If this is not the first iteration, we need to clean up after
2299   // relaxation so that we can lay out the sections again.
2300   if (pass != 0)
2301     this->clean_up_after_relaxation();
2302
2303   // If there is a SECTIONS clause, put all the input sections into
2304   // the required order.
2305   Output_segment* load_seg;
2306   if (this->script_options_->saw_sections_clause())
2307     load_seg = this->set_section_addresses_from_script(symtab);
2308   else if (parameters->options().relocatable())
2309     load_seg = NULL;
2310   else
2311     load_seg = this->find_first_load_seg(target);
2312
2313   if (parameters->options().oformat_enum()
2314       != General_options::OBJECT_FORMAT_ELF)
2315     load_seg = NULL;
2316
2317   // If the user set the address of the text segment, that may not be
2318   // compatible with putting the segment headers and file headers into
2319   // that segment.
2320   if (parameters->options().user_set_Ttext()
2321       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2322     {
2323       load_seg = NULL;
2324       phdr_seg = NULL;
2325     }
2326
2327   gold_assert(phdr_seg == NULL
2328               || load_seg != NULL
2329               || this->script_options_->saw_sections_clause());
2330
2331   // If the address of the load segment we found has been set by
2332   // --section-start rather than by a script, then adjust the VMA and
2333   // LMA downward if possible to include the file and section headers.
2334   uint64_t header_gap = 0;
2335   if (load_seg != NULL
2336       && load_seg->are_addresses_set()
2337       && !this->script_options_->saw_sections_clause()
2338       && !parameters->options().relocatable())
2339     {
2340       file_header->finalize_data_size();
2341       segment_headers->finalize_data_size();
2342       size_t sizeof_headers = (file_header->data_size()
2343                                + segment_headers->data_size());
2344       const uint64_t abi_pagesize = target->abi_pagesize();
2345       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2346       hdr_paddr &= ~(abi_pagesize - 1);
2347       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2348       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2349         load_seg = NULL;
2350       else
2351         {
2352           load_seg->set_addresses(load_seg->vaddr() - subtract,
2353                                   load_seg->paddr() - subtract);
2354           header_gap = subtract - sizeof_headers;
2355         }
2356     }
2357
2358   // Lay out the segment headers.
2359   if (!parameters->options().relocatable())
2360     {
2361       gold_assert(segment_headers != NULL);
2362       if (header_gap != 0 && load_seg != NULL)
2363         {
2364           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2365           load_seg->add_initial_output_data(z);
2366         }
2367       if (load_seg != NULL)
2368         load_seg->add_initial_output_data(segment_headers);
2369       if (phdr_seg != NULL)
2370         phdr_seg->add_initial_output_data(segment_headers);
2371     }
2372
2373   // Lay out the file header.
2374   if (load_seg != NULL)
2375     load_seg->add_initial_output_data(file_header);
2376
2377   if (this->script_options_->saw_phdrs_clause()
2378       && !parameters->options().relocatable())
2379     {
2380       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2381       // clause in a linker script.
2382       Script_sections* ss = this->script_options_->script_sections();
2383       ss->put_headers_in_phdrs(file_header, segment_headers);
2384     }
2385
2386   // We set the output section indexes in set_segment_offsets and
2387   // set_section_indexes.
2388   *pshndx = 1;
2389
2390   // Set the file offsets of all the segments, and all the sections
2391   // they contain.
2392   off_t off;
2393   if (!parameters->options().relocatable())
2394     off = this->set_segment_offsets(target, load_seg, pshndx);
2395   else
2396     off = this->set_relocatable_section_offsets(file_header, pshndx);
2397
2398    // Verify that the dummy relaxation does not change anything.
2399   if (is_debugging_enabled(DEBUG_RELAXATION))
2400     {
2401       if (pass == 0)
2402         this->relaxation_debug_check_->read_sections(this->section_list_);
2403       else
2404         this->relaxation_debug_check_->verify_sections(this->section_list_);
2405     }
2406
2407   *pload_seg = load_seg;
2408   return off;
2409 }
2410
2411 // Search the list of patterns and find the postion of the given section
2412 // name in the output section.  If the section name matches a glob
2413 // pattern and a non-glob name, then the non-glob position takes
2414 // precedence.  Return 0 if no match is found.
2415
2416 unsigned int
2417 Layout::find_section_order_index(const std::string& section_name)
2418 {
2419   Unordered_map<std::string, unsigned int>::iterator map_it;
2420   map_it = this->input_section_position_.find(section_name);
2421   if (map_it != this->input_section_position_.end())
2422     return map_it->second;
2423
2424   // Absolute match failed.  Linear search the glob patterns.
2425   std::vector<std::string>::iterator it;
2426   for (it = this->input_section_glob_.begin();
2427        it != this->input_section_glob_.end();
2428        ++it)
2429     {
2430        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2431          {
2432            map_it = this->input_section_position_.find(*it);
2433            gold_assert(map_it != this->input_section_position_.end());
2434            return map_it->second;
2435          }
2436     }
2437   return 0;
2438 }
2439
2440 // Read the sequence of input sections from the file specified with
2441 // option --section-ordering-file.
2442
2443 void
2444 Layout::read_layout_from_file()
2445 {
2446   const char* filename = parameters->options().section_ordering_file();
2447   std::ifstream in;
2448   std::string line;
2449
2450   in.open(filename);
2451   if (!in)
2452     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2453                filename, strerror(errno));
2454
2455   std::getline(in, line);   // this chops off the trailing \n, if any
2456   unsigned int position = 1;
2457   this->set_section_ordering_specified();
2458
2459   while (in)
2460     {
2461       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2462         line.resize(line.length() - 1);
2463       // Ignore comments, beginning with '#'
2464       if (line[0] == '#')
2465         {
2466           std::getline(in, line);
2467           continue;
2468         }
2469       this->input_section_position_[line] = position;
2470       // Store all glob patterns in a vector.
2471       if (is_wildcard_string(line.c_str()))
2472         this->input_section_glob_.push_back(line);
2473       position++;
2474       std::getline(in, line);
2475     }
2476 }
2477
2478 // Finalize the layout.  When this is called, we have created all the
2479 // output sections and all the output segments which are based on
2480 // input sections.  We have several things to do, and we have to do
2481 // them in the right order, so that we get the right results correctly
2482 // and efficiently.
2483
2484 // 1) Finalize the list of output segments and create the segment
2485 // table header.
2486
2487 // 2) Finalize the dynamic symbol table and associated sections.
2488
2489 // 3) Determine the final file offset of all the output segments.
2490
2491 // 4) Determine the final file offset of all the SHF_ALLOC output
2492 // sections.
2493
2494 // 5) Create the symbol table sections and the section name table
2495 // section.
2496
2497 // 6) Finalize the symbol table: set symbol values to their final
2498 // value and make a final determination of which symbols are going
2499 // into the output symbol table.
2500
2501 // 7) Create the section table header.
2502
2503 // 8) Determine the final file offset of all the output sections which
2504 // are not SHF_ALLOC, including the section table header.
2505
2506 // 9) Finalize the ELF file header.
2507
2508 // This function returns the size of the output file.
2509
2510 off_t
2511 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2512                  Target* target, const Task* task)
2513 {
2514   target->finalize_sections(this, input_objects, symtab);
2515
2516   this->count_local_symbols(task, input_objects);
2517
2518   this->link_stabs_sections();
2519
2520   Output_segment* phdr_seg = NULL;
2521   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2522     {
2523       // There was a dynamic object in the link.  We need to create
2524       // some information for the dynamic linker.
2525
2526       // Create the PT_PHDR segment which will hold the program
2527       // headers.
2528       if (!this->script_options_->saw_phdrs_clause())
2529         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2530
2531       // Create the dynamic symbol table, including the hash table.
2532       Output_section* dynstr;
2533       std::vector<Symbol*> dynamic_symbols;
2534       unsigned int local_dynamic_count;
2535       Versions versions(*this->script_options()->version_script_info(),
2536                         &this->dynpool_);
2537       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2538                                   &local_dynamic_count, &dynamic_symbols,
2539                                   &versions);
2540
2541       // Create the .interp section to hold the name of the
2542       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2543       // if we saw a .interp section in an input file.
2544       if ((!parameters->options().shared()
2545            || parameters->options().dynamic_linker() != NULL)
2546           && this->interp_segment_ == NULL)
2547         this->create_interp(target);
2548
2549       // Finish the .dynamic section to hold the dynamic data, and put
2550       // it in a PT_DYNAMIC segment.
2551       this->finish_dynamic_section(input_objects, symtab);
2552
2553       // We should have added everything we need to the dynamic string
2554       // table.
2555       this->dynpool_.set_string_offsets();
2556
2557       // Create the version sections.  We can't do this until the
2558       // dynamic string table is complete.
2559       this->create_version_sections(&versions, symtab, local_dynamic_count,
2560                                     dynamic_symbols, dynstr);
2561
2562       // Set the size of the _DYNAMIC symbol.  We can't do this until
2563       // after we call create_version_sections.
2564       this->set_dynamic_symbol_size(symtab);
2565     }
2566
2567   // Create segment headers.
2568   Output_segment_headers* segment_headers =
2569     (parameters->options().relocatable()
2570      ? NULL
2571      : new Output_segment_headers(this->segment_list_));
2572
2573   // Lay out the file header.
2574   Output_file_header* file_header = new Output_file_header(target, symtab,
2575                                                            segment_headers);
2576
2577   this->special_output_list_.push_back(file_header);
2578   if (segment_headers != NULL)
2579     this->special_output_list_.push_back(segment_headers);
2580
2581   // Find approriate places for orphan output sections if we are using
2582   // a linker script.
2583   if (this->script_options_->saw_sections_clause())
2584     this->place_orphan_sections_in_script();
2585
2586   Output_segment* load_seg;
2587   off_t off;
2588   unsigned int shndx;
2589   int pass = 0;
2590
2591   // Take a snapshot of the section layout as needed.
2592   if (target->may_relax())
2593     this->prepare_for_relaxation();
2594
2595   // Run the relaxation loop to lay out sections.
2596   do
2597     {
2598       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2599                                        phdr_seg, segment_headers, file_header,
2600                                        &shndx);
2601       pass++;
2602     }
2603   while (target->may_relax()
2604          && target->relax(pass, input_objects, symtab, this, task));
2605
2606   // If there is a load segment that contains the file and program headers,
2607   // provide a symbol __ehdr_start pointing there.
2608   // A program can use this to examine itself robustly.
2609   if (load_seg != NULL)
2610     symtab->define_in_output_segment("__ehdr_start", NULL,
2611                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2612                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2613                                      elfcpp::STV_DEFAULT, 0,
2614                                      Symbol::SEGMENT_START, true);
2615
2616   // Set the file offsets of all the non-data sections we've seen so
2617   // far which don't have to wait for the input sections.  We need
2618   // this in order to finalize local symbols in non-allocated
2619   // sections.
2620   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2621
2622   // Set the section indexes of all unallocated sections seen so far,
2623   // in case any of them are somehow referenced by a symbol.
2624   shndx = this->set_section_indexes(shndx);
2625
2626   // Create the symbol table sections.
2627   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2628   if (!parameters->doing_static_link())
2629     this->assign_local_dynsym_offsets(input_objects);
2630
2631   // Process any symbol assignments from a linker script.  This must
2632   // be called after the symbol table has been finalized.
2633   this->script_options_->finalize_symbols(symtab, this);
2634
2635   // Create the incremental inputs sections.
2636   if (this->incremental_inputs_)
2637     {
2638       this->incremental_inputs_->finalize();
2639       this->create_incremental_info_sections(symtab);
2640     }
2641
2642   // Create the .shstrtab section.
2643   Output_section* shstrtab_section = this->create_shstrtab();
2644
2645   // Set the file offsets of the rest of the non-data sections which
2646   // don't have to wait for the input sections.
2647   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2648
2649   // Now that all sections have been created, set the section indexes
2650   // for any sections which haven't been done yet.
2651   shndx = this->set_section_indexes(shndx);
2652
2653   // Create the section table header.
2654   this->create_shdrs(shstrtab_section, &off);
2655
2656   // If there are no sections which require postprocessing, we can
2657   // handle the section names now, and avoid a resize later.
2658   if (!this->any_postprocessing_sections_)
2659     {
2660       off = this->set_section_offsets(off,
2661                                       POSTPROCESSING_SECTIONS_PASS);
2662       off =
2663           this->set_section_offsets(off,
2664                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2665     }
2666
2667   file_header->set_section_info(this->section_headers_, shstrtab_section);
2668
2669   // Now we know exactly where everything goes in the output file
2670   // (except for non-allocated sections which require postprocessing).
2671   Output_data::layout_complete();
2672
2673   this->output_file_size_ = off;
2674
2675   return off;
2676 }
2677
2678 // Create a note header following the format defined in the ELF ABI.
2679 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2680 // of the section to create, DESCSZ is the size of the descriptor.
2681 // ALLOCATE is true if the section should be allocated in memory.
2682 // This returns the new note section.  It sets *TRAILING_PADDING to
2683 // the number of trailing zero bytes required.
2684
2685 Output_section*
2686 Layout::create_note(const char* name, int note_type,
2687                     const char* section_name, size_t descsz,
2688                     bool allocate, size_t* trailing_padding)
2689 {
2690   // Authorities all agree that the values in a .note field should
2691   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2692   // they differ on what the alignment is for 64-bit binaries.
2693   // The GABI says unambiguously they take 8-byte alignment:
2694   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2695   // Other documentation says alignment should always be 4 bytes:
2696   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2697   // GNU ld and GNU readelf both support the latter (at least as of
2698   // version 2.16.91), and glibc always generates the latter for
2699   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2700   // here.
2701 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2702   const int size = parameters->target().get_size();
2703 #else
2704   const int size = 32;
2705 #endif
2706
2707   // The contents of the .note section.
2708   size_t namesz = strlen(name) + 1;
2709   size_t aligned_namesz = align_address(namesz, size / 8);
2710   size_t aligned_descsz = align_address(descsz, size / 8);
2711
2712   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2713
2714   unsigned char* buffer = new unsigned char[notehdrsz];
2715   memset(buffer, 0, notehdrsz);
2716
2717   bool is_big_endian = parameters->target().is_big_endian();
2718
2719   if (size == 32)
2720     {
2721       if (!is_big_endian)
2722         {
2723           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2724           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2725           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2726         }
2727       else
2728         {
2729           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2730           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2731           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2732         }
2733     }
2734   else if (size == 64)
2735     {
2736       if (!is_big_endian)
2737         {
2738           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2739           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2740           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2741         }
2742       else
2743         {
2744           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2745           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2746           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2747         }
2748     }
2749   else
2750     gold_unreachable();
2751
2752   memcpy(buffer + 3 * (size / 8), name, namesz);
2753
2754   elfcpp::Elf_Xword flags = 0;
2755   Output_section_order order = ORDER_INVALID;
2756   if (allocate)
2757     {
2758       flags = elfcpp::SHF_ALLOC;
2759       order = ORDER_RO_NOTE;
2760     }
2761   Output_section* os = this->choose_output_section(NULL, section_name,
2762                                                    elfcpp::SHT_NOTE,
2763                                                    flags, false, order, false);
2764   if (os == NULL)
2765     return NULL;
2766
2767   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2768                                                            size / 8,
2769                                                            "** note header");
2770   os->add_output_section_data(posd);
2771
2772   *trailing_padding = aligned_descsz - descsz;
2773
2774   return os;
2775 }
2776
2777 // For an executable or shared library, create a note to record the
2778 // version of gold used to create the binary.
2779
2780 void
2781 Layout::create_gold_note()
2782 {
2783   if (parameters->options().relocatable()
2784       || parameters->incremental_update())
2785     return;
2786
2787   std::string desc = std::string("gold ") + gold::get_version_string();
2788
2789   size_t trailing_padding;
2790   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2791                                          ".note.gnu.gold-version", desc.size(),
2792                                          false, &trailing_padding);
2793   if (os == NULL)
2794     return;
2795
2796   Output_section_data* posd = new Output_data_const(desc, 4);
2797   os->add_output_section_data(posd);
2798
2799   if (trailing_padding > 0)
2800     {
2801       posd = new Output_data_zero_fill(trailing_padding, 0);
2802       os->add_output_section_data(posd);
2803     }
2804 }
2805
2806 // Record whether the stack should be executable.  This can be set
2807 // from the command line using the -z execstack or -z noexecstack
2808 // options.  Otherwise, if any input file has a .note.GNU-stack
2809 // section with the SHF_EXECINSTR flag set, the stack should be
2810 // executable.  Otherwise, if at least one input file a
2811 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2812 // section, we use the target default for whether the stack should be
2813 // executable.  Otherwise, we don't generate a stack note.  When
2814 // generating a object file, we create a .note.GNU-stack section with
2815 // the appropriate marking.  When generating an executable or shared
2816 // library, we create a PT_GNU_STACK segment.
2817
2818 void
2819 Layout::create_executable_stack_info()
2820 {
2821   bool is_stack_executable;
2822   if (parameters->options().is_execstack_set())
2823     is_stack_executable = parameters->options().is_stack_executable();
2824   else if (!this->input_with_gnu_stack_note_)
2825     return;
2826   else
2827     {
2828       if (this->input_requires_executable_stack_)
2829         is_stack_executable = true;
2830       else if (this->input_without_gnu_stack_note_)
2831         is_stack_executable =
2832           parameters->target().is_default_stack_executable();
2833       else
2834         is_stack_executable = false;
2835     }
2836
2837   if (parameters->options().relocatable())
2838     {
2839       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2840       elfcpp::Elf_Xword flags = 0;
2841       if (is_stack_executable)
2842         flags |= elfcpp::SHF_EXECINSTR;
2843       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2844                                 ORDER_INVALID, false);
2845     }
2846   else
2847     {
2848       if (this->script_options_->saw_phdrs_clause())
2849         return;
2850       int flags = elfcpp::PF_R | elfcpp::PF_W;
2851       if (is_stack_executable)
2852         flags |= elfcpp::PF_X;
2853       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2854     }
2855 }
2856
2857 // If --build-id was used, set up the build ID note.
2858
2859 void
2860 Layout::create_build_id()
2861 {
2862   if (!parameters->options().user_set_build_id())
2863     return;
2864
2865   const char* style = parameters->options().build_id();
2866   if (strcmp(style, "none") == 0)
2867     return;
2868
2869   // Set DESCSZ to the size of the note descriptor.  When possible,
2870   // set DESC to the note descriptor contents.
2871   size_t descsz;
2872   std::string desc;
2873   if (strcmp(style, "md5") == 0)
2874     descsz = 128 / 8;
2875   else if (strcmp(style, "sha1") == 0)
2876     descsz = 160 / 8;
2877   else if (strcmp(style, "uuid") == 0)
2878     {
2879       const size_t uuidsz = 128 / 8;
2880
2881       char buffer[uuidsz];
2882       memset(buffer, 0, uuidsz);
2883
2884       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2885       if (descriptor < 0)
2886         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2887                    strerror(errno));
2888       else
2889         {
2890           ssize_t got = ::read(descriptor, buffer, uuidsz);
2891           release_descriptor(descriptor, true);
2892           if (got < 0)
2893             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2894           else if (static_cast<size_t>(got) != uuidsz)
2895             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2896                        uuidsz, got);
2897         }
2898
2899       desc.assign(buffer, uuidsz);
2900       descsz = uuidsz;
2901     }
2902   else if (strncmp(style, "0x", 2) == 0)
2903     {
2904       hex_init();
2905       const char* p = style + 2;
2906       while (*p != '\0')
2907         {
2908           if (hex_p(p[0]) && hex_p(p[1]))
2909             {
2910               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2911               desc += c;
2912               p += 2;
2913             }
2914           else if (*p == '-' || *p == ':')
2915             ++p;
2916           else
2917             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2918                        style);
2919         }
2920       descsz = desc.size();
2921     }
2922   else
2923     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2924
2925   // Create the note.
2926   size_t trailing_padding;
2927   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2928                                          ".note.gnu.build-id", descsz, true,
2929                                          &trailing_padding);
2930   if (os == NULL)
2931     return;
2932
2933   if (!desc.empty())
2934     {
2935       // We know the value already, so we fill it in now.
2936       gold_assert(desc.size() == descsz);
2937
2938       Output_section_data* posd = new Output_data_const(desc, 4);
2939       os->add_output_section_data(posd);
2940
2941       if (trailing_padding != 0)
2942         {
2943           posd = new Output_data_zero_fill(trailing_padding, 0);
2944           os->add_output_section_data(posd);
2945         }
2946     }
2947   else
2948     {
2949       // We need to compute a checksum after we have completed the
2950       // link.
2951       gold_assert(trailing_padding == 0);
2952       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2953       os->add_output_section_data(this->build_id_note_);
2954     }
2955 }
2956
2957 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2958 // field of the former should point to the latter.  I'm not sure who
2959 // started this, but the GNU linker does it, and some tools depend
2960 // upon it.
2961
2962 void
2963 Layout::link_stabs_sections()
2964 {
2965   if (!this->have_stabstr_section_)
2966     return;
2967
2968   for (Section_list::iterator p = this->section_list_.begin();
2969        p != this->section_list_.end();
2970        ++p)
2971     {
2972       if ((*p)->type() != elfcpp::SHT_STRTAB)
2973         continue;
2974
2975       const char* name = (*p)->name();
2976       if (strncmp(name, ".stab", 5) != 0)
2977         continue;
2978
2979       size_t len = strlen(name);
2980       if (strcmp(name + len - 3, "str") != 0)
2981         continue;
2982
2983       std::string stab_name(name, len - 3);
2984       Output_section* stab_sec;
2985       stab_sec = this->find_output_section(stab_name.c_str());
2986       if (stab_sec != NULL)
2987         stab_sec->set_link_section(*p);
2988     }
2989 }
2990
2991 // Create .gnu_incremental_inputs and related sections needed
2992 // for the next run of incremental linking to check what has changed.
2993
2994 void
2995 Layout::create_incremental_info_sections(Symbol_table* symtab)
2996 {
2997   Incremental_inputs* incr = this->incremental_inputs_;
2998
2999   gold_assert(incr != NULL);
3000
3001   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3002   incr->create_data_sections(symtab);
3003
3004   // Add the .gnu_incremental_inputs section.
3005   const char* incremental_inputs_name =
3006     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3007   Output_section* incremental_inputs_os =
3008     this->make_output_section(incremental_inputs_name,
3009                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3010                               ORDER_INVALID, false);
3011   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3012
3013   // Add the .gnu_incremental_symtab section.
3014   const char* incremental_symtab_name =
3015     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3016   Output_section* incremental_symtab_os =
3017     this->make_output_section(incremental_symtab_name,
3018                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3019                               ORDER_INVALID, false);
3020   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3021   incremental_symtab_os->set_entsize(4);
3022
3023   // Add the .gnu_incremental_relocs section.
3024   const char* incremental_relocs_name =
3025     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3026   Output_section* incremental_relocs_os =
3027     this->make_output_section(incremental_relocs_name,
3028                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3029                               ORDER_INVALID, false);
3030   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3031   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3032
3033   // Add the .gnu_incremental_got_plt section.
3034   const char* incremental_got_plt_name =
3035     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3036   Output_section* incremental_got_plt_os =
3037     this->make_output_section(incremental_got_plt_name,
3038                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3039                               ORDER_INVALID, false);
3040   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3041
3042   // Add the .gnu_incremental_strtab section.
3043   const char* incremental_strtab_name =
3044     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3045   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3046                                                         elfcpp::SHT_STRTAB, 0,
3047                                                         ORDER_INVALID, false);
3048   Output_data_strtab* strtab_data =
3049       new Output_data_strtab(incr->get_stringpool());
3050   incremental_strtab_os->add_output_section_data(strtab_data);
3051
3052   incremental_inputs_os->set_after_input_sections();
3053   incremental_symtab_os->set_after_input_sections();
3054   incremental_relocs_os->set_after_input_sections();
3055   incremental_got_plt_os->set_after_input_sections();
3056
3057   incremental_inputs_os->set_link_section(incremental_strtab_os);
3058   incremental_symtab_os->set_link_section(incremental_inputs_os);
3059   incremental_relocs_os->set_link_section(incremental_inputs_os);
3060   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3061 }
3062
3063 // Return whether SEG1 should be before SEG2 in the output file.  This
3064 // is based entirely on the segment type and flags.  When this is
3065 // called the segment addresses have normally not yet been set.
3066
3067 bool
3068 Layout::segment_precedes(const Output_segment* seg1,
3069                          const Output_segment* seg2)
3070 {
3071   elfcpp::Elf_Word type1 = seg1->type();
3072   elfcpp::Elf_Word type2 = seg2->type();
3073
3074   // The single PT_PHDR segment is required to precede any loadable
3075   // segment.  We simply make it always first.
3076   if (type1 == elfcpp::PT_PHDR)
3077     {
3078       gold_assert(type2 != elfcpp::PT_PHDR);
3079       return true;
3080     }
3081   if (type2 == elfcpp::PT_PHDR)
3082     return false;
3083
3084   // The single PT_INTERP segment is required to precede any loadable
3085   // segment.  We simply make it always second.
3086   if (type1 == elfcpp::PT_INTERP)
3087     {
3088       gold_assert(type2 != elfcpp::PT_INTERP);
3089       return true;
3090     }
3091   if (type2 == elfcpp::PT_INTERP)
3092     return false;
3093
3094   // We then put PT_LOAD segments before any other segments.
3095   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3096     return true;
3097   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3098     return false;
3099
3100   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3101   // segment, because that is where the dynamic linker expects to find
3102   // it (this is just for efficiency; other positions would also work
3103   // correctly).
3104   if (type1 == elfcpp::PT_TLS
3105       && type2 != elfcpp::PT_TLS
3106       && type2 != elfcpp::PT_GNU_RELRO)
3107     return false;
3108   if (type2 == elfcpp::PT_TLS
3109       && type1 != elfcpp::PT_TLS
3110       && type1 != elfcpp::PT_GNU_RELRO)
3111     return true;
3112
3113   // We put the PT_GNU_RELRO segment last, because that is where the
3114   // dynamic linker expects to find it (as with PT_TLS, this is just
3115   // for efficiency).
3116   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3117     return false;
3118   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3119     return true;
3120
3121   const elfcpp::Elf_Word flags1 = seg1->flags();
3122   const elfcpp::Elf_Word flags2 = seg2->flags();
3123
3124   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3125   // by the numeric segment type and flags values.  There should not
3126   // be more than one segment with the same type and flags.
3127   if (type1 != elfcpp::PT_LOAD)
3128     {
3129       if (type1 != type2)
3130         return type1 < type2;
3131       gold_assert(flags1 != flags2);
3132       return flags1 < flags2;
3133     }
3134
3135   // If the addresses are set already, sort by load address.
3136   if (seg1->are_addresses_set())
3137     {
3138       if (!seg2->are_addresses_set())
3139         return true;
3140
3141       unsigned int section_count1 = seg1->output_section_count();
3142       unsigned int section_count2 = seg2->output_section_count();
3143       if (section_count1 == 0 && section_count2 > 0)
3144         return true;
3145       if (section_count1 > 0 && section_count2 == 0)
3146         return false;
3147
3148       uint64_t paddr1 = (seg1->are_addresses_set()
3149                          ? seg1->paddr()
3150                          : seg1->first_section_load_address());
3151       uint64_t paddr2 = (seg2->are_addresses_set()
3152                          ? seg2->paddr()
3153                          : seg2->first_section_load_address());
3154
3155       if (paddr1 != paddr2)
3156         return paddr1 < paddr2;
3157     }
3158   else if (seg2->are_addresses_set())
3159     return false;
3160
3161   // A segment which holds large data comes after a segment which does
3162   // not hold large data.
3163   if (seg1->is_large_data_segment())
3164     {
3165       if (!seg2->is_large_data_segment())
3166         return false;
3167     }
3168   else if (seg2->is_large_data_segment())
3169     return true;
3170
3171   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3172   // segments come before writable segments.  Then writable segments
3173   // with data come before writable segments without data.  Then
3174   // executable segments come before non-executable segments.  Then
3175   // the unlikely case of a non-readable segment comes before the
3176   // normal case of a readable segment.  If there are multiple
3177   // segments with the same type and flags, we require that the
3178   // address be set, and we sort by virtual address and then physical
3179   // address.
3180   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3181     return (flags1 & elfcpp::PF_W) == 0;
3182   if ((flags1 & elfcpp::PF_W) != 0
3183       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3184     return seg1->has_any_data_sections();
3185   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3186     return (flags1 & elfcpp::PF_X) != 0;
3187   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3188     return (flags1 & elfcpp::PF_R) == 0;
3189
3190   // We shouldn't get here--we shouldn't create segments which we
3191   // can't distinguish.  Unless of course we are using a weird linker
3192   // script or overlapping --section-start options.  We could also get
3193   // here if plugins want unique segments for subsets of sections.
3194   gold_assert(this->script_options_->saw_phdrs_clause()
3195               || parameters->options().any_section_start()
3196               || this->is_unique_segment_for_sections_specified());
3197   return false;
3198 }
3199
3200 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3201
3202 static off_t
3203 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3204 {
3205   uint64_t unsigned_off = off;
3206   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3207                           | (addr & (abi_pagesize - 1)));
3208   if (aligned_off < unsigned_off)
3209     aligned_off += abi_pagesize;
3210   return aligned_off;
3211 }
3212
3213 // Set the file offsets of all the segments, and all the sections they
3214 // contain.  They have all been created.  LOAD_SEG must be be laid out
3215 // first.  Return the offset of the data to follow.
3216
3217 off_t
3218 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3219                             unsigned int* pshndx)
3220 {
3221   // Sort them into the final order.  We use a stable sort so that we
3222   // don't randomize the order of indistinguishable segments created
3223   // by linker scripts.
3224   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3225                    Layout::Compare_segments(this));
3226
3227   // Find the PT_LOAD segments, and set their addresses and offsets
3228   // and their section's addresses and offsets.
3229   uint64_t start_addr;
3230   if (parameters->options().user_set_Ttext())
3231     start_addr = parameters->options().Ttext();
3232   else if (parameters->options().output_is_position_independent())
3233     start_addr = 0;
3234   else
3235     start_addr = target->default_text_segment_address();
3236
3237   uint64_t addr = start_addr;
3238   off_t off = 0;
3239
3240   // If LOAD_SEG is NULL, then the file header and segment headers
3241   // will not be loadable.  But they still need to be at offset 0 in
3242   // the file.  Set their offsets now.
3243   if (load_seg == NULL)
3244     {
3245       for (Data_list::iterator p = this->special_output_list_.begin();
3246            p != this->special_output_list_.end();
3247            ++p)
3248         {
3249           off = align_address(off, (*p)->addralign());
3250           (*p)->set_address_and_file_offset(0, off);
3251           off += (*p)->data_size();
3252         }
3253     }
3254
3255   unsigned int increase_relro = this->increase_relro_;
3256   if (this->script_options_->saw_sections_clause())
3257     increase_relro = 0;
3258
3259   const bool check_sections = parameters->options().check_sections();
3260   Output_segment* last_load_segment = NULL;
3261
3262   unsigned int shndx_begin = *pshndx;
3263   unsigned int shndx_load_seg = *pshndx;
3264
3265   for (Segment_list::iterator p = this->segment_list_.begin();
3266        p != this->segment_list_.end();
3267        ++p)
3268     {
3269       if ((*p)->type() == elfcpp::PT_LOAD)
3270         {
3271           if (target->isolate_execinstr())
3272             {
3273               // When we hit the segment that should contain the
3274               // file headers, reset the file offset so we place
3275               // it and subsequent segments appropriately.
3276               // We'll fix up the preceding segments below.
3277               if (load_seg == *p)
3278                 {
3279                   if (off == 0)
3280                     load_seg = NULL;
3281                   else
3282                     {
3283                       off = 0;
3284                       shndx_load_seg = *pshndx;
3285                     }
3286                 }
3287             }
3288           else
3289             {
3290               // Verify that the file headers fall into the first segment.
3291               if (load_seg != NULL && load_seg != *p)
3292                 gold_unreachable();
3293               load_seg = NULL;
3294             }
3295
3296           bool are_addresses_set = (*p)->are_addresses_set();
3297           if (are_addresses_set)
3298             {
3299               // When it comes to setting file offsets, we care about
3300               // the physical address.
3301               addr = (*p)->paddr();
3302             }
3303           else if (parameters->options().user_set_Ttext()
3304                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3305             {
3306               are_addresses_set = true;
3307             }
3308           else if (parameters->options().user_set_Tdata()
3309                    && ((*p)->flags() & elfcpp::PF_W) != 0
3310                    && (!parameters->options().user_set_Tbss()
3311                        || (*p)->has_any_data_sections()))
3312             {
3313               addr = parameters->options().Tdata();
3314               are_addresses_set = true;
3315             }
3316           else if (parameters->options().user_set_Tbss()
3317                    && ((*p)->flags() & elfcpp::PF_W) != 0
3318                    && !(*p)->has_any_data_sections())
3319             {
3320               addr = parameters->options().Tbss();
3321               are_addresses_set = true;
3322             }
3323
3324           uint64_t orig_addr = addr;
3325           uint64_t orig_off = off;
3326
3327           uint64_t aligned_addr = 0;
3328           uint64_t abi_pagesize = target->abi_pagesize();
3329           uint64_t common_pagesize = target->common_pagesize();
3330
3331           if (!parameters->options().nmagic()
3332               && !parameters->options().omagic())
3333             (*p)->set_minimum_p_align(abi_pagesize);
3334
3335           if (!are_addresses_set)
3336             {
3337               // Skip the address forward one page, maintaining the same
3338               // position within the page.  This lets us store both segments
3339               // overlapping on a single page in the file, but the loader will
3340               // put them on different pages in memory. We will revisit this
3341               // decision once we know the size of the segment.
3342
3343               addr = align_address(addr, (*p)->maximum_alignment());
3344               aligned_addr = addr;
3345
3346               if (load_seg == *p)
3347                 {
3348                   // This is the segment that will contain the file
3349                   // headers, so its offset will have to be exactly zero.
3350                   gold_assert(orig_off == 0);
3351
3352                   // If the target wants a fixed minimum distance from the
3353                   // text segment to the read-only segment, move up now.
3354                   uint64_t min_addr = start_addr + target->rosegment_gap();
3355                   if (addr < min_addr)
3356                     addr = min_addr;
3357
3358                   // But this is not the first segment!  To make its
3359                   // address congruent with its offset, that address better
3360                   // be aligned to the ABI-mandated page size.
3361                   addr = align_address(addr, abi_pagesize);
3362                   aligned_addr = addr;
3363                 }
3364               else
3365                 {
3366                   if ((addr & (abi_pagesize - 1)) != 0)
3367                     addr = addr + abi_pagesize;
3368
3369                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3370                 }
3371             }
3372
3373           if (!parameters->options().nmagic()
3374               && !parameters->options().omagic())
3375             off = align_file_offset(off, addr, abi_pagesize);
3376           else
3377             {
3378               // This is -N or -n with a section script which prevents
3379               // us from using a load segment.  We need to ensure that
3380               // the file offset is aligned to the alignment of the
3381               // segment.  This is because the linker script
3382               // implicitly assumed a zero offset.  If we don't align
3383               // here, then the alignment of the sections in the
3384               // linker script may not match the alignment of the
3385               // sections in the set_section_addresses call below,
3386               // causing an error about dot moving backward.
3387               off = align_address(off, (*p)->maximum_alignment());
3388             }
3389
3390           unsigned int shndx_hold = *pshndx;
3391           bool has_relro = false;
3392           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3393                                                           &increase_relro,
3394                                                           &has_relro,
3395                                                           &off, pshndx);
3396
3397           // Now that we know the size of this segment, we may be able
3398           // to save a page in memory, at the cost of wasting some
3399           // file space, by instead aligning to the start of a new
3400           // page.  Here we use the real machine page size rather than
3401           // the ABI mandated page size.  If the segment has been
3402           // aligned so that the relro data ends at a page boundary,
3403           // we do not try to realign it.
3404
3405           if (!are_addresses_set
3406               && !has_relro
3407               && aligned_addr != addr
3408               && !parameters->incremental())
3409             {
3410               uint64_t first_off = (common_pagesize
3411                                     - (aligned_addr
3412                                        & (common_pagesize - 1)));
3413               uint64_t last_off = new_addr & (common_pagesize - 1);
3414               if (first_off > 0
3415                   && last_off > 0
3416                   && ((aligned_addr & ~ (common_pagesize - 1))
3417                       != (new_addr & ~ (common_pagesize - 1)))
3418                   && first_off + last_off <= common_pagesize)
3419                 {
3420                   *pshndx = shndx_hold;
3421                   addr = align_address(aligned_addr, common_pagesize);
3422                   addr = align_address(addr, (*p)->maximum_alignment());
3423                   if ((addr & (abi_pagesize - 1)) != 0)
3424                     addr = addr + abi_pagesize;
3425                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3426                   off = align_file_offset(off, addr, abi_pagesize);
3427
3428                   increase_relro = this->increase_relro_;
3429                   if (this->script_options_->saw_sections_clause())
3430                     increase_relro = 0;
3431                   has_relro = false;
3432
3433                   new_addr = (*p)->set_section_addresses(this, true, addr,
3434                                                          &increase_relro,
3435                                                          &has_relro,
3436                                                          &off, pshndx);
3437                 }
3438             }
3439
3440           addr = new_addr;
3441
3442           // Implement --check-sections.  We know that the segments
3443           // are sorted by LMA.
3444           if (check_sections && last_load_segment != NULL)
3445             {
3446               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3447               if (last_load_segment->paddr() + last_load_segment->memsz()
3448                   > (*p)->paddr())
3449                 {
3450                   unsigned long long lb1 = last_load_segment->paddr();
3451                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3452                   unsigned long long lb2 = (*p)->paddr();
3453                   unsigned long long le2 = lb2 + (*p)->memsz();
3454                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3455                                "[0x%llx -> 0x%llx]"),
3456                              lb1, le1, lb2, le2);
3457                 }
3458             }
3459           last_load_segment = *p;
3460         }
3461     }
3462
3463   if (load_seg != NULL && target->isolate_execinstr())
3464     {
3465       // Process the early segments again, setting their file offsets
3466       // so they land after the segments starting at LOAD_SEG.
3467       off = align_file_offset(off, 0, target->abi_pagesize());
3468
3469       for (Segment_list::iterator p = this->segment_list_.begin();
3470            *p != load_seg;
3471            ++p)
3472         {
3473           if ((*p)->type() == elfcpp::PT_LOAD)
3474             {
3475               // We repeat the whole job of assigning addresses and
3476               // offsets, but we really only want to change the offsets and
3477               // must ensure that the addresses all come out the same as
3478               // they did the first time through.
3479               bool has_relro = false;
3480               const uint64_t old_addr = (*p)->vaddr();
3481               const uint64_t old_end = old_addr + (*p)->memsz();
3482               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3483                                                               old_addr,
3484                                                               &increase_relro,
3485                                                               &has_relro,
3486                                                               &off,
3487                                                               &shndx_begin);
3488               gold_assert(new_addr == old_end);
3489             }
3490         }
3491
3492       gold_assert(shndx_begin == shndx_load_seg);
3493     }
3494
3495   // Handle the non-PT_LOAD segments, setting their offsets from their
3496   // section's offsets.
3497   for (Segment_list::iterator p = this->segment_list_.begin();
3498        p != this->segment_list_.end();
3499        ++p)
3500     {
3501       if ((*p)->type() != elfcpp::PT_LOAD)
3502         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3503                          ? increase_relro
3504                          : 0);
3505     }
3506
3507   // Set the TLS offsets for each section in the PT_TLS segment.
3508   if (this->tls_segment_ != NULL)
3509     this->tls_segment_->set_tls_offsets();
3510
3511   return off;
3512 }
3513
3514 // Set the offsets of all the allocated sections when doing a
3515 // relocatable link.  This does the same jobs as set_segment_offsets,
3516 // only for a relocatable link.
3517
3518 off_t
3519 Layout::set_relocatable_section_offsets(Output_data* file_header,
3520                                         unsigned int* pshndx)
3521 {
3522   off_t off = 0;
3523
3524   file_header->set_address_and_file_offset(0, 0);
3525   off += file_header->data_size();
3526
3527   for (Section_list::iterator p = this->section_list_.begin();
3528        p != this->section_list_.end();
3529        ++p)
3530     {
3531       // We skip unallocated sections here, except that group sections
3532       // have to come first.
3533       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3534           && (*p)->type() != elfcpp::SHT_GROUP)
3535         continue;
3536
3537       off = align_address(off, (*p)->addralign());
3538
3539       // The linker script might have set the address.
3540       if (!(*p)->is_address_valid())
3541         (*p)->set_address(0);
3542       (*p)->set_file_offset(off);
3543       (*p)->finalize_data_size();
3544       off += (*p)->data_size();
3545
3546       (*p)->set_out_shndx(*pshndx);
3547       ++*pshndx;
3548     }
3549
3550   return off;
3551 }
3552
3553 // Set the file offset of all the sections not associated with a
3554 // segment.
3555
3556 off_t
3557 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3558 {
3559   off_t startoff = off;
3560   off_t maxoff = off;
3561
3562   for (Section_list::iterator p = this->unattached_section_list_.begin();
3563        p != this->unattached_section_list_.end();
3564        ++p)
3565     {
3566       // The symtab section is handled in create_symtab_sections.
3567       if (*p == this->symtab_section_)
3568         continue;
3569
3570       // If we've already set the data size, don't set it again.
3571       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3572         continue;
3573
3574       if (pass == BEFORE_INPUT_SECTIONS_PASS
3575           && (*p)->requires_postprocessing())
3576         {
3577           (*p)->create_postprocessing_buffer();
3578           this->any_postprocessing_sections_ = true;
3579         }
3580
3581       if (pass == BEFORE_INPUT_SECTIONS_PASS
3582           && (*p)->after_input_sections())
3583         continue;
3584       else if (pass == POSTPROCESSING_SECTIONS_PASS
3585                && (!(*p)->after_input_sections()
3586                    || (*p)->type() == elfcpp::SHT_STRTAB))
3587         continue;
3588       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3589                && (!(*p)->after_input_sections()
3590                    || (*p)->type() != elfcpp::SHT_STRTAB))
3591         continue;
3592
3593       if (!parameters->incremental_update())
3594         {
3595           off = align_address(off, (*p)->addralign());
3596           (*p)->set_file_offset(off);
3597           (*p)->finalize_data_size();
3598         }
3599       else
3600         {
3601           // Incremental update: allocate file space from free list.
3602           (*p)->pre_finalize_data_size();
3603           off_t current_size = (*p)->current_data_size();
3604           off = this->allocate(current_size, (*p)->addralign(), startoff);
3605           if (off == -1)
3606             {
3607               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3608                 this->free_list_.dump();
3609               gold_assert((*p)->output_section() != NULL);
3610               gold_fallback(_("out of patch space for section %s; "
3611                               "relink with --incremental-full"),
3612                             (*p)->output_section()->name());
3613             }
3614           (*p)->set_file_offset(off);
3615           (*p)->finalize_data_size();
3616           if ((*p)->data_size() > current_size)
3617             {
3618               gold_assert((*p)->output_section() != NULL);
3619               gold_fallback(_("%s: section changed size; "
3620                               "relink with --incremental-full"),
3621                             (*p)->output_section()->name());
3622             }
3623           gold_debug(DEBUG_INCREMENTAL,
3624                      "set_section_offsets: %08lx %08lx %s",
3625                      static_cast<long>(off),
3626                      static_cast<long>((*p)->data_size()),
3627                      ((*p)->output_section() != NULL
3628                       ? (*p)->output_section()->name() : "(special)"));
3629         }
3630
3631       off += (*p)->data_size();
3632       if (off > maxoff)
3633         maxoff = off;
3634
3635       // At this point the name must be set.
3636       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3637         this->namepool_.add((*p)->name(), false, NULL);
3638     }
3639   return maxoff;
3640 }
3641
3642 // Set the section indexes of all the sections not associated with a
3643 // segment.
3644
3645 unsigned int
3646 Layout::set_section_indexes(unsigned int shndx)
3647 {
3648   for (Section_list::iterator p = this->unattached_section_list_.begin();
3649        p != this->unattached_section_list_.end();
3650        ++p)
3651     {
3652       if (!(*p)->has_out_shndx())
3653         {
3654           (*p)->set_out_shndx(shndx);
3655           ++shndx;
3656         }
3657     }
3658   return shndx;
3659 }
3660
3661 // Set the section addresses according to the linker script.  This is
3662 // only called when we see a SECTIONS clause.  This returns the
3663 // program segment which should hold the file header and segment
3664 // headers, if any.  It will return NULL if they should not be in a
3665 // segment.
3666
3667 Output_segment*
3668 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3669 {
3670   Script_sections* ss = this->script_options_->script_sections();
3671   gold_assert(ss->saw_sections_clause());
3672   return this->script_options_->set_section_addresses(symtab, this);
3673 }
3674
3675 // Place the orphan sections in the linker script.
3676
3677 void
3678 Layout::place_orphan_sections_in_script()
3679 {
3680   Script_sections* ss = this->script_options_->script_sections();
3681   gold_assert(ss->saw_sections_clause());
3682
3683   // Place each orphaned output section in the script.
3684   for (Section_list::iterator p = this->section_list_.begin();
3685        p != this->section_list_.end();
3686        ++p)
3687     {
3688       if (!(*p)->found_in_sections_clause())
3689         ss->place_orphan(*p);
3690     }
3691 }
3692
3693 // Count the local symbols in the regular symbol table and the dynamic
3694 // symbol table, and build the respective string pools.
3695
3696 void
3697 Layout::count_local_symbols(const Task* task,
3698                             const Input_objects* input_objects)
3699 {
3700   // First, figure out an upper bound on the number of symbols we'll
3701   // be inserting into each pool.  This helps us create the pools with
3702   // the right size, to avoid unnecessary hashtable resizing.
3703   unsigned int symbol_count = 0;
3704   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3705        p != input_objects->relobj_end();
3706        ++p)
3707     symbol_count += (*p)->local_symbol_count();
3708
3709   // Go from "upper bound" to "estimate."  We overcount for two
3710   // reasons: we double-count symbols that occur in more than one
3711   // object file, and we count symbols that are dropped from the
3712   // output.  Add it all together and assume we overcount by 100%.
3713   symbol_count /= 2;
3714
3715   // We assume all symbols will go into both the sympool and dynpool.
3716   this->sympool_.reserve(symbol_count);
3717   this->dynpool_.reserve(symbol_count);
3718
3719   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3720        p != input_objects->relobj_end();
3721        ++p)
3722     {
3723       Task_lock_obj<Object> tlo(task, *p);
3724       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3725     }
3726 }
3727
3728 // Create the symbol table sections.  Here we also set the final
3729 // values of the symbols.  At this point all the loadable sections are
3730 // fully laid out.  SHNUM is the number of sections so far.
3731
3732 void
3733 Layout::create_symtab_sections(const Input_objects* input_objects,
3734                                Symbol_table* symtab,
3735                                unsigned int shnum,
3736                                off_t* poff)
3737 {
3738   int symsize;
3739   unsigned int align;
3740   if (parameters->target().get_size() == 32)
3741     {
3742       symsize = elfcpp::Elf_sizes<32>::sym_size;
3743       align = 4;
3744     }
3745   else if (parameters->target().get_size() == 64)
3746     {
3747       symsize = elfcpp::Elf_sizes<64>::sym_size;
3748       align = 8;
3749     }
3750   else
3751     gold_unreachable();
3752
3753   // Compute file offsets relative to the start of the symtab section.
3754   off_t off = 0;
3755
3756   // Save space for the dummy symbol at the start of the section.  We
3757   // never bother to write this out--it will just be left as zero.
3758   off += symsize;
3759   unsigned int local_symbol_index = 1;
3760
3761   // Add STT_SECTION symbols for each Output section which needs one.
3762   for (Section_list::iterator p = this->section_list_.begin();
3763        p != this->section_list_.end();
3764        ++p)
3765     {
3766       if (!(*p)->needs_symtab_index())
3767         (*p)->set_symtab_index(-1U);
3768       else
3769         {
3770           (*p)->set_symtab_index(local_symbol_index);
3771           ++local_symbol_index;
3772           off += symsize;
3773         }
3774     }
3775
3776   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3777        p != input_objects->relobj_end();
3778        ++p)
3779     {
3780       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3781                                                         off, symtab);
3782       off += (index - local_symbol_index) * symsize;
3783       local_symbol_index = index;
3784     }
3785
3786   unsigned int local_symcount = local_symbol_index;
3787   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3788
3789   off_t dynoff;
3790   size_t dyn_global_index;
3791   size_t dyncount;
3792   if (this->dynsym_section_ == NULL)
3793     {
3794       dynoff = 0;
3795       dyn_global_index = 0;
3796       dyncount = 0;
3797     }
3798   else
3799     {
3800       dyn_global_index = this->dynsym_section_->info();
3801       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3802       dynoff = this->dynsym_section_->offset() + locsize;
3803       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3804       gold_assert(static_cast<off_t>(dyncount * symsize)
3805                   == this->dynsym_section_->data_size() - locsize);
3806     }
3807
3808   off_t global_off = off;
3809   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3810                          &this->sympool_, &local_symcount);
3811
3812   if (!parameters->options().strip_all())
3813     {
3814       this->sympool_.set_string_offsets();
3815
3816       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3817       Output_section* osymtab = this->make_output_section(symtab_name,
3818                                                           elfcpp::SHT_SYMTAB,
3819                                                           0, ORDER_INVALID,
3820                                                           false);
3821       this->symtab_section_ = osymtab;
3822
3823       Output_section_data* pos = new Output_data_fixed_space(off, align,
3824                                                              "** symtab");
3825       osymtab->add_output_section_data(pos);
3826
3827       // We generate a .symtab_shndx section if we have more than
3828       // SHN_LORESERVE sections.  Technically it is possible that we
3829       // don't need one, because it is possible that there are no
3830       // symbols in any of sections with indexes larger than
3831       // SHN_LORESERVE.  That is probably unusual, though, and it is
3832       // easier to always create one than to compute section indexes
3833       // twice (once here, once when writing out the symbols).
3834       if (shnum >= elfcpp::SHN_LORESERVE)
3835         {
3836           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3837                                                                false, NULL);
3838           Output_section* osymtab_xindex =
3839             this->make_output_section(symtab_xindex_name,
3840                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3841                                       ORDER_INVALID, false);
3842
3843           size_t symcount = off / symsize;
3844           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3845
3846           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3847
3848           osymtab_xindex->set_link_section(osymtab);
3849           osymtab_xindex->set_addralign(4);
3850           osymtab_xindex->set_entsize(4);
3851
3852           osymtab_xindex->set_after_input_sections();
3853
3854           // This tells the driver code to wait until the symbol table
3855           // has written out before writing out the postprocessing
3856           // sections, including the .symtab_shndx section.
3857           this->any_postprocessing_sections_ = true;
3858         }
3859
3860       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3861       Output_section* ostrtab = this->make_output_section(strtab_name,
3862                                                           elfcpp::SHT_STRTAB,
3863                                                           0, ORDER_INVALID,
3864                                                           false);
3865
3866       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3867       ostrtab->add_output_section_data(pstr);
3868
3869       off_t symtab_off;
3870       if (!parameters->incremental_update())
3871         symtab_off = align_address(*poff, align);
3872       else
3873         {
3874           symtab_off = this->allocate(off, align, *poff);
3875           if (off == -1)
3876             gold_fallback(_("out of patch space for symbol table; "
3877                             "relink with --incremental-full"));
3878           gold_debug(DEBUG_INCREMENTAL,
3879                      "create_symtab_sections: %08lx %08lx .symtab",
3880                      static_cast<long>(symtab_off),
3881                      static_cast<long>(off));
3882         }
3883
3884       symtab->set_file_offset(symtab_off + global_off);
3885       osymtab->set_file_offset(symtab_off);
3886       osymtab->finalize_data_size();
3887       osymtab->set_link_section(ostrtab);
3888       osymtab->set_info(local_symcount);
3889       osymtab->set_entsize(symsize);
3890
3891       if (symtab_off + off > *poff)
3892         *poff = symtab_off + off;
3893     }
3894 }
3895
3896 // Create the .shstrtab section, which holds the names of the
3897 // sections.  At the time this is called, we have created all the
3898 // output sections except .shstrtab itself.
3899
3900 Output_section*
3901 Layout::create_shstrtab()
3902 {
3903   // FIXME: We don't need to create a .shstrtab section if we are
3904   // stripping everything.
3905
3906   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3907
3908   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3909                                                  ORDER_INVALID, false);
3910
3911   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3912     {
3913       // We can't write out this section until we've set all the
3914       // section names, and we don't set the names of compressed
3915       // output sections until relocations are complete.  FIXME: With
3916       // the current names we use, this is unnecessary.
3917       os->set_after_input_sections();
3918     }
3919
3920   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3921   os->add_output_section_data(posd);
3922
3923   return os;
3924 }
3925
3926 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3927 // offset.
3928
3929 void
3930 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3931 {
3932   Output_section_headers* oshdrs;
3933   oshdrs = new Output_section_headers(this,
3934                                       &this->segment_list_,
3935                                       &this->section_list_,
3936                                       &this->unattached_section_list_,
3937                                       &this->namepool_,
3938                                       shstrtab_section);
3939   off_t off;
3940   if (!parameters->incremental_update())
3941     off = align_address(*poff, oshdrs->addralign());
3942   else
3943     {
3944       oshdrs->pre_finalize_data_size();
3945       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3946       if (off == -1)
3947           gold_fallback(_("out of patch space for section header table; "
3948                           "relink with --incremental-full"));
3949       gold_debug(DEBUG_INCREMENTAL,
3950                  "create_shdrs: %08lx %08lx (section header table)",
3951                  static_cast<long>(off),
3952                  static_cast<long>(off + oshdrs->data_size()));
3953     }
3954   oshdrs->set_address_and_file_offset(0, off);
3955   off += oshdrs->data_size();
3956   if (off > *poff)
3957     *poff = off;
3958   this->section_headers_ = oshdrs;
3959 }
3960
3961 // Count the allocated sections.
3962
3963 size_t
3964 Layout::allocated_output_section_count() const
3965 {
3966   size_t section_count = 0;
3967   for (Segment_list::const_iterator p = this->segment_list_.begin();
3968        p != this->segment_list_.end();
3969        ++p)
3970     section_count += (*p)->output_section_count();
3971   return section_count;
3972 }
3973
3974 // Create the dynamic symbol table.
3975
3976 void
3977 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3978                               Symbol_table* symtab,
3979                               Output_section** pdynstr,
3980                               unsigned int* plocal_dynamic_count,
3981                               std::vector<Symbol*>* pdynamic_symbols,
3982                               Versions* pversions)
3983 {
3984   // Count all the symbols in the dynamic symbol table, and set the
3985   // dynamic symbol indexes.
3986
3987   // Skip symbol 0, which is always all zeroes.
3988   unsigned int index = 1;
3989
3990   // Add STT_SECTION symbols for each Output section which needs one.
3991   for (Section_list::iterator p = this->section_list_.begin();
3992        p != this->section_list_.end();
3993        ++p)
3994     {
3995       if (!(*p)->needs_dynsym_index())
3996         (*p)->set_dynsym_index(-1U);
3997       else
3998         {
3999           (*p)->set_dynsym_index(index);
4000           ++index;
4001         }
4002     }
4003
4004   // Count the local symbols that need to go in the dynamic symbol table,
4005   // and set the dynamic symbol indexes.
4006   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4007        p != input_objects->relobj_end();
4008        ++p)
4009     {
4010       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4011       index = new_index;
4012     }
4013
4014   unsigned int local_symcount = index;
4015   *plocal_dynamic_count = local_symcount;
4016
4017   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4018                                      &this->dynpool_, pversions);
4019
4020   int symsize;
4021   unsigned int align;
4022   const int size = parameters->target().get_size();
4023   if (size == 32)
4024     {
4025       symsize = elfcpp::Elf_sizes<32>::sym_size;
4026       align = 4;
4027     }
4028   else if (size == 64)
4029     {
4030       symsize = elfcpp::Elf_sizes<64>::sym_size;
4031       align = 8;
4032     }
4033   else
4034     gold_unreachable();
4035
4036   // Create the dynamic symbol table section.
4037
4038   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4039                                                        elfcpp::SHT_DYNSYM,
4040                                                        elfcpp::SHF_ALLOC,
4041                                                        false,
4042                                                        ORDER_DYNAMIC_LINKER,
4043                                                        false);
4044
4045   // Check for NULL as a linker script may discard .dynsym.
4046   if (dynsym != NULL)
4047     {
4048       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4049                                                                align,
4050                                                                "** dynsym");
4051       dynsym->add_output_section_data(odata);
4052
4053       dynsym->set_info(local_symcount);
4054       dynsym->set_entsize(symsize);
4055       dynsym->set_addralign(align);
4056
4057       this->dynsym_section_ = dynsym;
4058     }
4059
4060   Output_data_dynamic* const odyn = this->dynamic_data_;
4061   if (odyn != NULL)
4062     {
4063       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4064       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4065     }
4066
4067   // If there are more than SHN_LORESERVE allocated sections, we
4068   // create a .dynsym_shndx section.  It is possible that we don't
4069   // need one, because it is possible that there are no dynamic
4070   // symbols in any of the sections with indexes larger than
4071   // SHN_LORESERVE.  This is probably unusual, though, and at this
4072   // time we don't know the actual section indexes so it is
4073   // inconvenient to check.
4074   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4075     {
4076       Output_section* dynsym_xindex =
4077         this->choose_output_section(NULL, ".dynsym_shndx",
4078                                     elfcpp::SHT_SYMTAB_SHNDX,
4079                                     elfcpp::SHF_ALLOC,
4080                                     false, ORDER_DYNAMIC_LINKER, false);
4081
4082       if (dynsym_xindex != NULL)
4083         {
4084           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4085
4086           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4087
4088           dynsym_xindex->set_link_section(dynsym);
4089           dynsym_xindex->set_addralign(4);
4090           dynsym_xindex->set_entsize(4);
4091
4092           dynsym_xindex->set_after_input_sections();
4093
4094           // This tells the driver code to wait until the symbol table
4095           // has written out before writing out the postprocessing
4096           // sections, including the .dynsym_shndx section.
4097           this->any_postprocessing_sections_ = true;
4098         }
4099     }
4100
4101   // Create the dynamic string table section.
4102
4103   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4104                                                        elfcpp::SHT_STRTAB,
4105                                                        elfcpp::SHF_ALLOC,
4106                                                        false,
4107                                                        ORDER_DYNAMIC_LINKER,
4108                                                        false);
4109
4110   if (dynstr != NULL)
4111     {
4112       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4113       dynstr->add_output_section_data(strdata);
4114
4115       if (dynsym != NULL)
4116         dynsym->set_link_section(dynstr);
4117       if (this->dynamic_section_ != NULL)
4118         this->dynamic_section_->set_link_section(dynstr);
4119
4120       if (odyn != NULL)
4121         {
4122           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4123           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4124         }
4125
4126       *pdynstr = dynstr;
4127     }
4128
4129   // Create the hash tables.
4130
4131   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4132       || strcmp(parameters->options().hash_style(), "both") == 0)
4133     {
4134       unsigned char* phash;
4135       unsigned int hashlen;
4136       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4137                                     &phash, &hashlen);
4138
4139       Output_section* hashsec =
4140         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4141                                     elfcpp::SHF_ALLOC, false,
4142                                     ORDER_DYNAMIC_LINKER, false);
4143
4144       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4145                                                                    hashlen,
4146                                                                    align,
4147                                                                    "** hash");
4148       if (hashsec != NULL && hashdata != NULL)
4149         hashsec->add_output_section_data(hashdata);
4150
4151       if (hashsec != NULL)
4152         {
4153           if (dynsym != NULL)
4154             hashsec->set_link_section(dynsym);
4155           hashsec->set_entsize(4);
4156         }
4157
4158       if (odyn != NULL)
4159         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4160     }
4161
4162   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4163       || strcmp(parameters->options().hash_style(), "both") == 0)
4164     {
4165       unsigned char* phash;
4166       unsigned int hashlen;
4167       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4168                                     &phash, &hashlen);
4169
4170       Output_section* hashsec =
4171         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4172                                     elfcpp::SHF_ALLOC, false,
4173                                     ORDER_DYNAMIC_LINKER, false);
4174
4175       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4176                                                                    hashlen,
4177                                                                    align,
4178                                                                    "** hash");
4179       if (hashsec != NULL && hashdata != NULL)
4180         hashsec->add_output_section_data(hashdata);
4181
4182       if (hashsec != NULL)
4183         {
4184           if (dynsym != NULL)
4185             hashsec->set_link_section(dynsym);
4186
4187           // For a 64-bit target, the entries in .gnu.hash do not have
4188           // a uniform size, so we only set the entry size for a
4189           // 32-bit target.
4190           if (parameters->target().get_size() == 32)
4191             hashsec->set_entsize(4);
4192
4193           if (odyn != NULL)
4194             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4195         }
4196     }
4197 }
4198
4199 // Assign offsets to each local portion of the dynamic symbol table.
4200
4201 void
4202 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4203 {
4204   Output_section* dynsym = this->dynsym_section_;
4205   if (dynsym == NULL)
4206     return;
4207
4208   off_t off = dynsym->offset();
4209
4210   // Skip the dummy symbol at the start of the section.
4211   off += dynsym->entsize();
4212
4213   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4214        p != input_objects->relobj_end();
4215        ++p)
4216     {
4217       unsigned int count = (*p)->set_local_dynsym_offset(off);
4218       off += count * dynsym->entsize();
4219     }
4220 }
4221
4222 // Create the version sections.
4223
4224 void
4225 Layout::create_version_sections(const Versions* versions,
4226                                 const Symbol_table* symtab,
4227                                 unsigned int local_symcount,
4228                                 const std::vector<Symbol*>& dynamic_symbols,
4229                                 const Output_section* dynstr)
4230 {
4231   if (!versions->any_defs() && !versions->any_needs())
4232     return;
4233
4234   switch (parameters->size_and_endianness())
4235     {
4236 #ifdef HAVE_TARGET_32_LITTLE
4237     case Parameters::TARGET_32_LITTLE:
4238       this->sized_create_version_sections<32, false>(versions, symtab,
4239                                                      local_symcount,
4240                                                      dynamic_symbols, dynstr);
4241       break;
4242 #endif
4243 #ifdef HAVE_TARGET_32_BIG
4244     case Parameters::TARGET_32_BIG:
4245       this->sized_create_version_sections<32, true>(versions, symtab,
4246                                                     local_symcount,
4247                                                     dynamic_symbols, dynstr);
4248       break;
4249 #endif
4250 #ifdef HAVE_TARGET_64_LITTLE
4251     case Parameters::TARGET_64_LITTLE:
4252       this->sized_create_version_sections<64, false>(versions, symtab,
4253                                                      local_symcount,
4254                                                      dynamic_symbols, dynstr);
4255       break;
4256 #endif
4257 #ifdef HAVE_TARGET_64_BIG
4258     case Parameters::TARGET_64_BIG:
4259       this->sized_create_version_sections<64, true>(versions, symtab,
4260                                                     local_symcount,
4261                                                     dynamic_symbols, dynstr);
4262       break;
4263 #endif
4264     default:
4265       gold_unreachable();
4266     }
4267 }
4268
4269 // Create the version sections, sized version.
4270
4271 template<int size, bool big_endian>
4272 void
4273 Layout::sized_create_version_sections(
4274     const Versions* versions,
4275     const Symbol_table* symtab,
4276     unsigned int local_symcount,
4277     const std::vector<Symbol*>& dynamic_symbols,
4278     const Output_section* dynstr)
4279 {
4280   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4281                                                      elfcpp::SHT_GNU_versym,
4282                                                      elfcpp::SHF_ALLOC,
4283                                                      false,
4284                                                      ORDER_DYNAMIC_LINKER,
4285                                                      false);
4286
4287   // Check for NULL since a linker script may discard this section.
4288   if (vsec != NULL)
4289     {
4290       unsigned char* vbuf;
4291       unsigned int vsize;
4292       versions->symbol_section_contents<size, big_endian>(symtab,
4293                                                           &this->dynpool_,
4294                                                           local_symcount,
4295                                                           dynamic_symbols,
4296                                                           &vbuf, &vsize);
4297
4298       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4299                                                                 "** versions");
4300
4301       vsec->add_output_section_data(vdata);
4302       vsec->set_entsize(2);
4303       vsec->set_link_section(this->dynsym_section_);
4304     }
4305
4306   Output_data_dynamic* const odyn = this->dynamic_data_;
4307   if (odyn != NULL && vsec != NULL)
4308     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4309
4310   if (versions->any_defs())
4311     {
4312       Output_section* vdsec;
4313       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4314                                           elfcpp::SHT_GNU_verdef,
4315                                           elfcpp::SHF_ALLOC,
4316                                           false, ORDER_DYNAMIC_LINKER, false);
4317
4318       if (vdsec != NULL)
4319         {
4320           unsigned char* vdbuf;
4321           unsigned int vdsize;
4322           unsigned int vdentries;
4323           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4324                                                            &vdbuf, &vdsize,
4325                                                            &vdentries);
4326
4327           Output_section_data* vddata =
4328             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4329
4330           vdsec->add_output_section_data(vddata);
4331           vdsec->set_link_section(dynstr);
4332           vdsec->set_info(vdentries);
4333
4334           if (odyn != NULL)
4335             {
4336               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4337               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4338             }
4339         }
4340     }
4341
4342   if (versions->any_needs())
4343     {
4344       Output_section* vnsec;
4345       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4346                                           elfcpp::SHT_GNU_verneed,
4347                                           elfcpp::SHF_ALLOC,
4348                                           false, ORDER_DYNAMIC_LINKER, false);
4349
4350       if (vnsec != NULL)
4351         {
4352           unsigned char* vnbuf;
4353           unsigned int vnsize;
4354           unsigned int vnentries;
4355           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4356                                                             &vnbuf, &vnsize,
4357                                                             &vnentries);
4358
4359           Output_section_data* vndata =
4360             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4361
4362           vnsec->add_output_section_data(vndata);
4363           vnsec->set_link_section(dynstr);
4364           vnsec->set_info(vnentries);
4365
4366           if (odyn != NULL)
4367             {
4368               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4369               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4370             }
4371         }
4372     }
4373 }
4374
4375 // Create the .interp section and PT_INTERP segment.
4376
4377 void
4378 Layout::create_interp(const Target* target)
4379 {
4380   gold_assert(this->interp_segment_ == NULL);
4381
4382   const char* interp = parameters->options().dynamic_linker();
4383   if (interp == NULL)
4384     {
4385       interp = target->dynamic_linker();
4386       gold_assert(interp != NULL);
4387     }
4388
4389   size_t len = strlen(interp) + 1;
4390
4391   Output_section_data* odata = new Output_data_const(interp, len, 1);
4392
4393   Output_section* osec = this->choose_output_section(NULL, ".interp",
4394                                                      elfcpp::SHT_PROGBITS,
4395                                                      elfcpp::SHF_ALLOC,
4396                                                      false, ORDER_INTERP,
4397                                                      false);
4398   if (osec != NULL)
4399     osec->add_output_section_data(odata);
4400 }
4401
4402 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4403 // called by the target-specific code.  This does nothing if not doing
4404 // a dynamic link.
4405
4406 // USE_REL is true for REL relocs rather than RELA relocs.
4407
4408 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4409
4410 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4411 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4412 // some targets have multiple reloc sections in PLT_REL.
4413
4414 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4415 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4416 // section.
4417
4418 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4419 // executable.
4420
4421 void
4422 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4423                                 const Output_data* plt_rel,
4424                                 const Output_data_reloc_generic* dyn_rel,
4425                                 bool add_debug, bool dynrel_includes_plt)
4426 {
4427   Output_data_dynamic* odyn = this->dynamic_data_;
4428   if (odyn == NULL)
4429     return;
4430
4431   if (plt_got != NULL && plt_got->output_section() != NULL)
4432     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4433
4434   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4435     {
4436       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4437       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4438       odyn->add_constant(elfcpp::DT_PLTREL,
4439                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4440     }
4441
4442   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4443       || (dynrel_includes_plt
4444           && plt_rel != NULL
4445           && plt_rel->output_section() != NULL))
4446     {
4447       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4448       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4449       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4450                                 (have_dyn_rel
4451                                  ? dyn_rel->output_section()
4452                                  : plt_rel->output_section()));
4453       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4454       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4455         odyn->add_section_size(size_tag,
4456                                dyn_rel->output_section(),
4457                                plt_rel->output_section());
4458       else if (have_dyn_rel)
4459         odyn->add_section_size(size_tag, dyn_rel->output_section());
4460       else
4461         odyn->add_section_size(size_tag, plt_rel->output_section());
4462       const int size = parameters->target().get_size();
4463       elfcpp::DT rel_tag;
4464       int rel_size;
4465       if (use_rel)
4466         {
4467           rel_tag = elfcpp::DT_RELENT;
4468           if (size == 32)
4469             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4470           else if (size == 64)
4471             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4472           else
4473             gold_unreachable();
4474         }
4475       else
4476         {
4477           rel_tag = elfcpp::DT_RELAENT;
4478           if (size == 32)
4479             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4480           else if (size == 64)
4481             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4482           else
4483             gold_unreachable();
4484         }
4485       odyn->add_constant(rel_tag, rel_size);
4486
4487       if (parameters->options().combreloc() && have_dyn_rel)
4488         {
4489           size_t c = dyn_rel->relative_reloc_count();
4490           if (c > 0)
4491             odyn->add_constant((use_rel
4492                                 ? elfcpp::DT_RELCOUNT
4493                                 : elfcpp::DT_RELACOUNT),
4494                                c);
4495         }
4496     }
4497
4498   if (add_debug && !parameters->options().shared())
4499     {
4500       // The value of the DT_DEBUG tag is filled in by the dynamic
4501       // linker at run time, and used by the debugger.
4502       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4503     }
4504 }
4505
4506 // Finish the .dynamic section and PT_DYNAMIC segment.
4507
4508 void
4509 Layout::finish_dynamic_section(const Input_objects* input_objects,
4510                                const Symbol_table* symtab)
4511 {
4512   if (!this->script_options_->saw_phdrs_clause()
4513       && this->dynamic_section_ != NULL)
4514     {
4515       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4516                                                        (elfcpp::PF_R
4517                                                         | elfcpp::PF_W));
4518       oseg->add_output_section_to_nonload(this->dynamic_section_,
4519                                           elfcpp::PF_R | elfcpp::PF_W);
4520     }
4521
4522   Output_data_dynamic* const odyn = this->dynamic_data_;
4523   if (odyn == NULL)
4524     return;
4525
4526   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4527        p != input_objects->dynobj_end();
4528        ++p)
4529     {
4530       if (!(*p)->is_needed() && (*p)->as_needed())
4531         {
4532           // This dynamic object was linked with --as-needed, but it
4533           // is not needed.
4534           continue;
4535         }
4536
4537       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4538     }
4539
4540   if (parameters->options().shared())
4541     {
4542       const char* soname = parameters->options().soname();
4543       if (soname != NULL)
4544         odyn->add_string(elfcpp::DT_SONAME, soname);
4545     }
4546
4547   Symbol* sym = symtab->lookup(parameters->options().init());
4548   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4549     odyn->add_symbol(elfcpp::DT_INIT, sym);
4550
4551   sym = symtab->lookup(parameters->options().fini());
4552   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4553     odyn->add_symbol(elfcpp::DT_FINI, sym);
4554
4555   // Look for .init_array, .preinit_array and .fini_array by checking
4556   // section types.
4557   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4558       p != this->section_list_.end();
4559       ++p)
4560     switch((*p)->type())
4561       {
4562       case elfcpp::SHT_FINI_ARRAY:
4563         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4564         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4565         break;
4566       case elfcpp::SHT_INIT_ARRAY:
4567         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4568         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4569         break;
4570       case elfcpp::SHT_PREINIT_ARRAY:
4571         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4572         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4573         break;
4574       default:
4575         break;
4576       }
4577
4578   // Add a DT_RPATH entry if needed.
4579   const General_options::Dir_list& rpath(parameters->options().rpath());
4580   if (!rpath.empty())
4581     {
4582       std::string rpath_val;
4583       for (General_options::Dir_list::const_iterator p = rpath.begin();
4584            p != rpath.end();
4585            ++p)
4586         {
4587           if (rpath_val.empty())
4588             rpath_val = p->name();
4589           else
4590             {
4591               // Eliminate duplicates.
4592               General_options::Dir_list::const_iterator q;
4593               for (q = rpath.begin(); q != p; ++q)
4594                 if (q->name() == p->name())
4595                   break;
4596               if (q == p)
4597                 {
4598                   rpath_val += ':';
4599                   rpath_val += p->name();
4600                 }
4601             }
4602         }
4603
4604       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4605       if (parameters->options().enable_new_dtags())
4606         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4607     }
4608
4609   // Look for text segments that have dynamic relocations.
4610   bool have_textrel = false;
4611   if (!this->script_options_->saw_sections_clause())
4612     {
4613       for (Segment_list::const_iterator p = this->segment_list_.begin();
4614            p != this->segment_list_.end();
4615            ++p)
4616         {
4617           if ((*p)->type() == elfcpp::PT_LOAD
4618               && ((*p)->flags() & elfcpp::PF_W) == 0
4619               && (*p)->has_dynamic_reloc())
4620             {
4621               have_textrel = true;
4622               break;
4623             }
4624         }
4625     }
4626   else
4627     {
4628       // We don't know the section -> segment mapping, so we are
4629       // conservative and just look for readonly sections with
4630       // relocations.  If those sections wind up in writable segments,
4631       // then we have created an unnecessary DT_TEXTREL entry.
4632       for (Section_list::const_iterator p = this->section_list_.begin();
4633            p != this->section_list_.end();
4634            ++p)
4635         {
4636           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4637               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4638               && (*p)->has_dynamic_reloc())
4639             {
4640               have_textrel = true;
4641               break;
4642             }
4643         }
4644     }
4645
4646   if (parameters->options().filter() != NULL)
4647     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4648   if (parameters->options().any_auxiliary())
4649     {
4650       for (options::String_set::const_iterator p =
4651              parameters->options().auxiliary_begin();
4652            p != parameters->options().auxiliary_end();
4653            ++p)
4654         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4655     }
4656
4657   // Add a DT_FLAGS entry if necessary.
4658   unsigned int flags = 0;
4659   if (have_textrel)
4660     {
4661       // Add a DT_TEXTREL for compatibility with older loaders.
4662       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4663       flags |= elfcpp::DF_TEXTREL;
4664
4665       if (parameters->options().text())
4666         gold_error(_("read-only segment has dynamic relocations"));
4667       else if (parameters->options().warn_shared_textrel()
4668                && parameters->options().shared())
4669         gold_warning(_("shared library text segment is not shareable"));
4670     }
4671   if (parameters->options().shared() && this->has_static_tls())
4672     flags |= elfcpp::DF_STATIC_TLS;
4673   if (parameters->options().origin())
4674     flags |= elfcpp::DF_ORIGIN;
4675   if (parameters->options().Bsymbolic())
4676     {
4677       flags |= elfcpp::DF_SYMBOLIC;
4678       // Add DT_SYMBOLIC for compatibility with older loaders.
4679       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4680     }
4681   if (parameters->options().now())
4682     flags |= elfcpp::DF_BIND_NOW;
4683   if (flags != 0)
4684     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4685
4686   flags = 0;
4687   if (parameters->options().initfirst())
4688     flags |= elfcpp::DF_1_INITFIRST;
4689   if (parameters->options().interpose())
4690     flags |= elfcpp::DF_1_INTERPOSE;
4691   if (parameters->options().loadfltr())
4692     flags |= elfcpp::DF_1_LOADFLTR;
4693   if (parameters->options().nodefaultlib())
4694     flags |= elfcpp::DF_1_NODEFLIB;
4695   if (parameters->options().nodelete())
4696     flags |= elfcpp::DF_1_NODELETE;
4697   if (parameters->options().nodlopen())
4698     flags |= elfcpp::DF_1_NOOPEN;
4699   if (parameters->options().nodump())
4700     flags |= elfcpp::DF_1_NODUMP;
4701   if (!parameters->options().shared())
4702     flags &= ~(elfcpp::DF_1_INITFIRST
4703                | elfcpp::DF_1_NODELETE
4704                | elfcpp::DF_1_NOOPEN);
4705   if (parameters->options().origin())
4706     flags |= elfcpp::DF_1_ORIGIN;
4707   if (parameters->options().now())
4708     flags |= elfcpp::DF_1_NOW;
4709   if (parameters->options().Bgroup())
4710     flags |= elfcpp::DF_1_GROUP;
4711   if (flags != 0)
4712     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4713 }
4714
4715 // Set the size of the _DYNAMIC symbol table to be the size of the
4716 // dynamic data.
4717
4718 void
4719 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4720 {
4721   Output_data_dynamic* const odyn = this->dynamic_data_;
4722   if (odyn == NULL)
4723     return;
4724   odyn->finalize_data_size();
4725   if (this->dynamic_symbol_ == NULL)
4726     return;
4727   off_t data_size = odyn->data_size();
4728   const int size = parameters->target().get_size();
4729   if (size == 32)
4730     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4731   else if (size == 64)
4732     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4733   else
4734     gold_unreachable();
4735 }
4736
4737 // The mapping of input section name prefixes to output section names.
4738 // In some cases one prefix is itself a prefix of another prefix; in
4739 // such a case the longer prefix must come first.  These prefixes are
4740 // based on the GNU linker default ELF linker script.
4741
4742 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4743 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4744 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4745 {
4746   MAPPING_INIT(".text.", ".text"),
4747   MAPPING_INIT(".rodata.", ".rodata"),
4748   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4749   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4750   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4751   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4752   MAPPING_INIT(".data.", ".data"),
4753   MAPPING_INIT(".bss.", ".bss"),
4754   MAPPING_INIT(".tdata.", ".tdata"),
4755   MAPPING_INIT(".tbss.", ".tbss"),
4756   MAPPING_INIT(".init_array.", ".init_array"),
4757   MAPPING_INIT(".fini_array.", ".fini_array"),
4758   MAPPING_INIT(".sdata.", ".sdata"),
4759   MAPPING_INIT(".sbss.", ".sbss"),
4760   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4761   // differently depending on whether it is creating a shared library.
4762   MAPPING_INIT(".sdata2.", ".sdata"),
4763   MAPPING_INIT(".sbss2.", ".sbss"),
4764   MAPPING_INIT(".lrodata.", ".lrodata"),
4765   MAPPING_INIT(".ldata.", ".ldata"),
4766   MAPPING_INIT(".lbss.", ".lbss"),
4767   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4768   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4769   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4770   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4771   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4772   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4773   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4774   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4775   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4776   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4777   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4778   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4779   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4780   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4781   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4782   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4783   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4784   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4785   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4786   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4787   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4788 };
4789 #undef MAPPING_INIT
4790 #undef MAPPING_INIT_EXACT
4791
4792 const int Layout::section_name_mapping_count =
4793   (sizeof(Layout::section_name_mapping)
4794    / sizeof(Layout::section_name_mapping[0]));
4795
4796 // Choose the output section name to use given an input section name.
4797 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4798 // length of NAME.
4799
4800 const char*
4801 Layout::output_section_name(const Relobj* relobj, const char* name,
4802                             size_t* plen)
4803 {
4804   // gcc 4.3 generates the following sorts of section names when it
4805   // needs a section name specific to a function:
4806   //   .text.FN
4807   //   .rodata.FN
4808   //   .sdata2.FN
4809   //   .data.FN
4810   //   .data.rel.FN
4811   //   .data.rel.local.FN
4812   //   .data.rel.ro.FN
4813   //   .data.rel.ro.local.FN
4814   //   .sdata.FN
4815   //   .bss.FN
4816   //   .sbss.FN
4817   //   .tdata.FN
4818   //   .tbss.FN
4819
4820   // The GNU linker maps all of those to the part before the .FN,
4821   // except that .data.rel.local.FN is mapped to .data, and
4822   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4823   // beginning with .data.rel.ro.local are grouped together.
4824
4825   // For an anonymous namespace, the string FN can contain a '.'.
4826
4827   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4828   // GNU linker maps to .rodata.
4829
4830   // The .data.rel.ro sections are used with -z relro.  The sections
4831   // are recognized by name.  We use the same names that the GNU
4832   // linker does for these sections.
4833
4834   // It is hard to handle this in a principled way, so we don't even
4835   // try.  We use a table of mappings.  If the input section name is
4836   // not found in the table, we simply use it as the output section
4837   // name.
4838
4839   const Section_name_mapping* psnm = section_name_mapping;
4840   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4841     {
4842       if (psnm->fromlen > 0)
4843         {
4844           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4845             {
4846               *plen = psnm->tolen;
4847               return psnm->to;
4848             }
4849         }
4850       else
4851         {
4852           if (strcmp(name, psnm->from) == 0)
4853             {
4854               *plen = psnm->tolen;
4855               return psnm->to;
4856             }
4857         }
4858     }
4859
4860   // As an additional complication, .ctors sections are output in
4861   // either .ctors or .init_array sections, and .dtors sections are
4862   // output in either .dtors or .fini_array sections.
4863   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4864     {
4865       if (parameters->options().ctors_in_init_array())
4866         {
4867           *plen = 11;
4868           return name[1] == 'c' ? ".init_array" : ".fini_array";
4869         }
4870       else
4871         {
4872           *plen = 6;
4873           return name[1] == 'c' ? ".ctors" : ".dtors";
4874         }
4875     }
4876   if (parameters->options().ctors_in_init_array()
4877       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4878     {
4879       // To make .init_array/.fini_array work with gcc we must exclude
4880       // .ctors and .dtors sections from the crtbegin and crtend
4881       // files.
4882       if (relobj == NULL
4883           || (!Layout::match_file_name(relobj, "crtbegin")
4884               && !Layout::match_file_name(relobj, "crtend")))
4885         {
4886           *plen = 11;
4887           return name[1] == 'c' ? ".init_array" : ".fini_array";
4888         }
4889     }
4890
4891   return name;
4892 }
4893
4894 // Return true if RELOBJ is an input file whose base name matches
4895 // FILE_NAME.  The base name must have an extension of ".o", and must
4896 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4897 // to match crtbegin.o as well as crtbeginS.o without getting confused
4898 // by other possibilities.  Overall matching the file name this way is
4899 // a dreadful hack, but the GNU linker does it in order to better
4900 // support gcc, and we need to be compatible.
4901
4902 bool
4903 Layout::match_file_name(const Relobj* relobj, const char* match)
4904 {
4905   const std::string& file_name(relobj->name());
4906   const char* base_name = lbasename(file_name.c_str());
4907   size_t match_len = strlen(match);
4908   if (strncmp(base_name, match, match_len) != 0)
4909     return false;
4910   size_t base_len = strlen(base_name);
4911   if (base_len != match_len + 2 && base_len != match_len + 3)
4912     return false;
4913   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4914 }
4915
4916 // Check if a comdat group or .gnu.linkonce section with the given
4917 // NAME is selected for the link.  If there is already a section,
4918 // *KEPT_SECTION is set to point to the existing section and the
4919 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4920 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4921 // *KEPT_SECTION is set to the internal copy and the function returns
4922 // true.
4923
4924 bool
4925 Layout::find_or_add_kept_section(const std::string& name,
4926                                  Relobj* object,
4927                                  unsigned int shndx,
4928                                  bool is_comdat,
4929                                  bool is_group_name,
4930                                  Kept_section** kept_section)
4931 {
4932   // It's normal to see a couple of entries here, for the x86 thunk
4933   // sections.  If we see more than a few, we're linking a C++
4934   // program, and we resize to get more space to minimize rehashing.
4935   if (this->signatures_.size() > 4
4936       && !this->resized_signatures_)
4937     {
4938       reserve_unordered_map(&this->signatures_,
4939                             this->number_of_input_files_ * 64);
4940       this->resized_signatures_ = true;
4941     }
4942
4943   Kept_section candidate;
4944   std::pair<Signatures::iterator, bool> ins =
4945     this->signatures_.insert(std::make_pair(name, candidate));
4946
4947   if (kept_section != NULL)
4948     *kept_section = &ins.first->second;
4949   if (ins.second)
4950     {
4951       // This is the first time we've seen this signature.
4952       ins.first->second.set_object(object);
4953       ins.first->second.set_shndx(shndx);
4954       if (is_comdat)
4955         ins.first->second.set_is_comdat();
4956       if (is_group_name)
4957         ins.first->second.set_is_group_name();
4958       return true;
4959     }
4960
4961   // We have already seen this signature.
4962
4963   if (ins.first->second.is_group_name())
4964     {
4965       // We've already seen a real section group with this signature.
4966       // If the kept group is from a plugin object, and we're in the
4967       // replacement phase, accept the new one as a replacement.
4968       if (ins.first->second.object() == NULL
4969           && parameters->options().plugins()->in_replacement_phase())
4970         {
4971           ins.first->second.set_object(object);
4972           ins.first->second.set_shndx(shndx);
4973           return true;
4974         }
4975       return false;
4976     }
4977   else if (is_group_name)
4978     {
4979       // This is a real section group, and we've already seen a
4980       // linkonce section with this signature.  Record that we've seen
4981       // a section group, and don't include this section group.
4982       ins.first->second.set_is_group_name();
4983       return false;
4984     }
4985   else
4986     {
4987       // We've already seen a linkonce section and this is a linkonce
4988       // section.  These don't block each other--this may be the same
4989       // symbol name with different section types.
4990       return true;
4991     }
4992 }
4993
4994 // Store the allocated sections into the section list.
4995
4996 void
4997 Layout::get_allocated_sections(Section_list* section_list) const
4998 {
4999   for (Section_list::const_iterator p = this->section_list_.begin();
5000        p != this->section_list_.end();
5001        ++p)
5002     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5003       section_list->push_back(*p);
5004 }
5005
5006 // Create an output segment.
5007
5008 Output_segment*
5009 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5010 {
5011   gold_assert(!parameters->options().relocatable());
5012   Output_segment* oseg = new Output_segment(type, flags);
5013   this->segment_list_.push_back(oseg);
5014
5015   if (type == elfcpp::PT_TLS)
5016     this->tls_segment_ = oseg;
5017   else if (type == elfcpp::PT_GNU_RELRO)
5018     this->relro_segment_ = oseg;
5019   else if (type == elfcpp::PT_INTERP)
5020     this->interp_segment_ = oseg;
5021
5022   return oseg;
5023 }
5024
5025 // Return the file offset of the normal symbol table.
5026
5027 off_t
5028 Layout::symtab_section_offset() const
5029 {
5030   if (this->symtab_section_ != NULL)
5031     return this->symtab_section_->offset();
5032   return 0;
5033 }
5034
5035 // Return the section index of the normal symbol table.  It may have
5036 // been stripped by the -s/--strip-all option.
5037
5038 unsigned int
5039 Layout::symtab_section_shndx() const
5040 {
5041   if (this->symtab_section_ != NULL)
5042     return this->symtab_section_->out_shndx();
5043   return 0;
5044 }
5045
5046 // Write out the Output_sections.  Most won't have anything to write,
5047 // since most of the data will come from input sections which are
5048 // handled elsewhere.  But some Output_sections do have Output_data.
5049
5050 void
5051 Layout::write_output_sections(Output_file* of) const
5052 {
5053   for (Section_list::const_iterator p = this->section_list_.begin();
5054        p != this->section_list_.end();
5055        ++p)
5056     {
5057       if (!(*p)->after_input_sections())
5058         (*p)->write(of);
5059     }
5060 }
5061
5062 // Write out data not associated with a section or the symbol table.
5063
5064 void
5065 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5066 {
5067   if (!parameters->options().strip_all())
5068     {
5069       const Output_section* symtab_section = this->symtab_section_;
5070       for (Section_list::const_iterator p = this->section_list_.begin();
5071            p != this->section_list_.end();
5072            ++p)
5073         {
5074           if ((*p)->needs_symtab_index())
5075             {
5076               gold_assert(symtab_section != NULL);
5077               unsigned int index = (*p)->symtab_index();
5078               gold_assert(index > 0 && index != -1U);
5079               off_t off = (symtab_section->offset()
5080                            + index * symtab_section->entsize());
5081               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5082             }
5083         }
5084     }
5085
5086   const Output_section* dynsym_section = this->dynsym_section_;
5087   for (Section_list::const_iterator p = this->section_list_.begin();
5088        p != this->section_list_.end();
5089        ++p)
5090     {
5091       if ((*p)->needs_dynsym_index())
5092         {
5093           gold_assert(dynsym_section != NULL);
5094           unsigned int index = (*p)->dynsym_index();
5095           gold_assert(index > 0 && index != -1U);
5096           off_t off = (dynsym_section->offset()
5097                        + index * dynsym_section->entsize());
5098           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5099         }
5100     }
5101
5102   // Write out the Output_data which are not in an Output_section.
5103   for (Data_list::const_iterator p = this->special_output_list_.begin();
5104        p != this->special_output_list_.end();
5105        ++p)
5106     (*p)->write(of);
5107 }
5108
5109 // Write out the Output_sections which can only be written after the
5110 // input sections are complete.
5111
5112 void
5113 Layout::write_sections_after_input_sections(Output_file* of)
5114 {
5115   // Determine the final section offsets, and thus the final output
5116   // file size.  Note we finalize the .shstrab last, to allow the
5117   // after_input_section sections to modify their section-names before
5118   // writing.
5119   if (this->any_postprocessing_sections_)
5120     {
5121       off_t off = this->output_file_size_;
5122       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5123
5124       // Now that we've finalized the names, we can finalize the shstrab.
5125       off =
5126         this->set_section_offsets(off,
5127                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5128
5129       if (off > this->output_file_size_)
5130         {
5131           of->resize(off);
5132           this->output_file_size_ = off;
5133         }
5134     }
5135
5136   for (Section_list::const_iterator p = this->section_list_.begin();
5137        p != this->section_list_.end();
5138        ++p)
5139     {
5140       if ((*p)->after_input_sections())
5141         (*p)->write(of);
5142     }
5143
5144   this->section_headers_->write(of);
5145 }
5146
5147 // If the build ID requires computing a checksum, do so here, and
5148 // write it out.  We compute a checksum over the entire file because
5149 // that is simplest.
5150
5151 void
5152 Layout::write_build_id(Output_file* of) const
5153 {
5154   if (this->build_id_note_ == NULL)
5155     return;
5156
5157   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5158
5159   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5160                                           this->build_id_note_->data_size());
5161
5162   const char* style = parameters->options().build_id();
5163   if (strcmp(style, "sha1") == 0)
5164     {
5165       sha1_ctx ctx;
5166       sha1_init_ctx(&ctx);
5167       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5168       sha1_finish_ctx(&ctx, ov);
5169     }
5170   else if (strcmp(style, "md5") == 0)
5171     {
5172       md5_ctx ctx;
5173       md5_init_ctx(&ctx);
5174       md5_process_bytes(iv, this->output_file_size_, &ctx);
5175       md5_finish_ctx(&ctx, ov);
5176     }
5177   else
5178     gold_unreachable();
5179
5180   of->write_output_view(this->build_id_note_->offset(),
5181                         this->build_id_note_->data_size(),
5182                         ov);
5183
5184   of->free_input_view(0, this->output_file_size_, iv);
5185 }
5186
5187 // Write out a binary file.  This is called after the link is
5188 // complete.  IN is the temporary output file we used to generate the
5189 // ELF code.  We simply walk through the segments, read them from
5190 // their file offset in IN, and write them to their load address in
5191 // the output file.  FIXME: with a bit more work, we could support
5192 // S-records and/or Intel hex format here.
5193
5194 void
5195 Layout::write_binary(Output_file* in) const
5196 {
5197   gold_assert(parameters->options().oformat_enum()
5198               == General_options::OBJECT_FORMAT_BINARY);
5199
5200   // Get the size of the binary file.
5201   uint64_t max_load_address = 0;
5202   for (Segment_list::const_iterator p = this->segment_list_.begin();
5203        p != this->segment_list_.end();
5204        ++p)
5205     {
5206       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5207         {
5208           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5209           if (max_paddr > max_load_address)
5210             max_load_address = max_paddr;
5211         }
5212     }
5213
5214   Output_file out(parameters->options().output_file_name());
5215   out.open(max_load_address);
5216
5217   for (Segment_list::const_iterator p = this->segment_list_.begin();
5218        p != this->segment_list_.end();
5219        ++p)
5220     {
5221       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5222         {
5223           const unsigned char* vin = in->get_input_view((*p)->offset(),
5224                                                         (*p)->filesz());
5225           unsigned char* vout = out.get_output_view((*p)->paddr(),
5226                                                     (*p)->filesz());
5227           memcpy(vout, vin, (*p)->filesz());
5228           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5229           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5230         }
5231     }
5232
5233   out.close();
5234 }
5235
5236 // Print the output sections to the map file.
5237
5238 void
5239 Layout::print_to_mapfile(Mapfile* mapfile) const
5240 {
5241   for (Segment_list::const_iterator p = this->segment_list_.begin();
5242        p != this->segment_list_.end();
5243        ++p)
5244     (*p)->print_sections_to_mapfile(mapfile);
5245 }
5246
5247 // Print statistical information to stderr.  This is used for --stats.
5248
5249 void
5250 Layout::print_stats() const
5251 {
5252   this->namepool_.print_stats("section name pool");
5253   this->sympool_.print_stats("output symbol name pool");
5254   this->dynpool_.print_stats("dynamic name pool");
5255
5256   for (Section_list::const_iterator p = this->section_list_.begin();
5257        p != this->section_list_.end();
5258        ++p)
5259     (*p)->print_merge_stats();
5260 }
5261
5262 // Write_sections_task methods.
5263
5264 // We can always run this task.
5265
5266 Task_token*
5267 Write_sections_task::is_runnable()
5268 {
5269   return NULL;
5270 }
5271
5272 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5273 // when finished.
5274
5275 void
5276 Write_sections_task::locks(Task_locker* tl)
5277 {
5278   tl->add(this, this->output_sections_blocker_);
5279   tl->add(this, this->final_blocker_);
5280 }
5281
5282 // Run the task--write out the data.
5283
5284 void
5285 Write_sections_task::run(Workqueue*)
5286 {
5287   this->layout_->write_output_sections(this->of_);
5288 }
5289
5290 // Write_data_task methods.
5291
5292 // We can always run this task.
5293
5294 Task_token*
5295 Write_data_task::is_runnable()
5296 {
5297   return NULL;
5298 }
5299
5300 // We need to unlock FINAL_BLOCKER when finished.
5301
5302 void
5303 Write_data_task::locks(Task_locker* tl)
5304 {
5305   tl->add(this, this->final_blocker_);
5306 }
5307
5308 // Run the task--write out the data.
5309
5310 void
5311 Write_data_task::run(Workqueue*)
5312 {
5313   this->layout_->write_data(this->symtab_, this->of_);
5314 }
5315
5316 // Write_symbols_task methods.
5317
5318 // We can always run this task.
5319
5320 Task_token*
5321 Write_symbols_task::is_runnable()
5322 {
5323   return NULL;
5324 }
5325
5326 // We need to unlock FINAL_BLOCKER when finished.
5327
5328 void
5329 Write_symbols_task::locks(Task_locker* tl)
5330 {
5331   tl->add(this, this->final_blocker_);
5332 }
5333
5334 // Run the task--write out the symbols.
5335
5336 void
5337 Write_symbols_task::run(Workqueue*)
5338 {
5339   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5340                                this->layout_->symtab_xindex(),
5341                                this->layout_->dynsym_xindex(), this->of_);
5342 }
5343
5344 // Write_after_input_sections_task methods.
5345
5346 // We can only run this task after the input sections have completed.
5347
5348 Task_token*
5349 Write_after_input_sections_task::is_runnable()
5350 {
5351   if (this->input_sections_blocker_->is_blocked())
5352     return this->input_sections_blocker_;
5353   return NULL;
5354 }
5355
5356 // We need to unlock FINAL_BLOCKER when finished.
5357
5358 void
5359 Write_after_input_sections_task::locks(Task_locker* tl)
5360 {
5361   tl->add(this, this->final_blocker_);
5362 }
5363
5364 // Run the task.
5365
5366 void
5367 Write_after_input_sections_task::run(Workqueue*)
5368 {
5369   this->layout_->write_sections_after_input_sections(this->of_);
5370 }
5371
5372 // Close_task_runner methods.
5373
5374 // Run the task--close the file.
5375
5376 void
5377 Close_task_runner::run(Workqueue*, const Task*)
5378 {
5379   // If we need to compute a checksum for the BUILD if, we do so here.
5380   this->layout_->write_build_id(this->of_);
5381
5382   // If we've been asked to create a binary file, we do so here.
5383   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5384     this->layout_->write_binary(this->of_);
5385
5386   this->of_->close();
5387 }
5388
5389 // Instantiate the templates we need.  We could use the configure
5390 // script to restrict this to only the ones for implemented targets.
5391
5392 #ifdef HAVE_TARGET_32_LITTLE
5393 template
5394 Output_section*
5395 Layout::init_fixed_output_section<32, false>(
5396     const char* name,
5397     elfcpp::Shdr<32, false>& shdr);
5398 #endif
5399
5400 #ifdef HAVE_TARGET_32_BIG
5401 template
5402 Output_section*
5403 Layout::init_fixed_output_section<32, true>(
5404     const char* name,
5405     elfcpp::Shdr<32, true>& shdr);
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 Output_section*
5411 Layout::init_fixed_output_section<64, false>(
5412     const char* name,
5413     elfcpp::Shdr<64, false>& shdr);
5414 #endif
5415
5416 #ifdef HAVE_TARGET_64_BIG
5417 template
5418 Output_section*
5419 Layout::init_fixed_output_section<64, true>(
5420     const char* name,
5421     elfcpp::Shdr<64, true>& shdr);
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_LITTLE
5425 template
5426 Output_section*
5427 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5428                           unsigned int shndx,
5429                           const char* name,
5430                           const elfcpp::Shdr<32, false>& shdr,
5431                           unsigned int, unsigned int, off_t*);
5432 #endif
5433
5434 #ifdef HAVE_TARGET_32_BIG
5435 template
5436 Output_section*
5437 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5438                          unsigned int shndx,
5439                          const char* name,
5440                          const elfcpp::Shdr<32, true>& shdr,
5441                          unsigned int, unsigned int, off_t*);
5442 #endif
5443
5444 #ifdef HAVE_TARGET_64_LITTLE
5445 template
5446 Output_section*
5447 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5448                           unsigned int shndx,
5449                           const char* name,
5450                           const elfcpp::Shdr<64, false>& shdr,
5451                           unsigned int, unsigned int, off_t*);
5452 #endif
5453
5454 #ifdef HAVE_TARGET_64_BIG
5455 template
5456 Output_section*
5457 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5458                          unsigned int shndx,
5459                          const char* name,
5460                          const elfcpp::Shdr<64, true>& shdr,
5461                          unsigned int, unsigned int, off_t*);
5462 #endif
5463
5464 #ifdef HAVE_TARGET_32_LITTLE
5465 template
5466 Output_section*
5467 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5468                                 unsigned int reloc_shndx,
5469                                 const elfcpp::Shdr<32, false>& shdr,
5470                                 Output_section* data_section,
5471                                 Relocatable_relocs* rr);
5472 #endif
5473
5474 #ifdef HAVE_TARGET_32_BIG
5475 template
5476 Output_section*
5477 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5478                                unsigned int reloc_shndx,
5479                                const elfcpp::Shdr<32, true>& shdr,
5480                                Output_section* data_section,
5481                                Relocatable_relocs* rr);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_64_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5488                                 unsigned int reloc_shndx,
5489                                 const elfcpp::Shdr<64, false>& shdr,
5490                                 Output_section* data_section,
5491                                 Relocatable_relocs* rr);
5492 #endif
5493
5494 #ifdef HAVE_TARGET_64_BIG
5495 template
5496 Output_section*
5497 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5498                                unsigned int reloc_shndx,
5499                                const elfcpp::Shdr<64, true>& shdr,
5500                                Output_section* data_section,
5501                                Relocatable_relocs* rr);
5502 #endif
5503
5504 #ifdef HAVE_TARGET_32_LITTLE
5505 template
5506 void
5507 Layout::layout_group<32, false>(Symbol_table* symtab,
5508                                 Sized_relobj_file<32, false>* object,
5509                                 unsigned int,
5510                                 const char* group_section_name,
5511                                 const char* signature,
5512                                 const elfcpp::Shdr<32, false>& shdr,
5513                                 elfcpp::Elf_Word flags,
5514                                 std::vector<unsigned int>* shndxes);
5515 #endif
5516
5517 #ifdef HAVE_TARGET_32_BIG
5518 template
5519 void
5520 Layout::layout_group<32, true>(Symbol_table* symtab,
5521                                Sized_relobj_file<32, true>* object,
5522                                unsigned int,
5523                                const char* group_section_name,
5524                                const char* signature,
5525                                const elfcpp::Shdr<32, true>& shdr,
5526                                elfcpp::Elf_Word flags,
5527                                std::vector<unsigned int>* shndxes);
5528 #endif
5529
5530 #ifdef HAVE_TARGET_64_LITTLE
5531 template
5532 void
5533 Layout::layout_group<64, false>(Symbol_table* symtab,
5534                                 Sized_relobj_file<64, false>* object,
5535                                 unsigned int,
5536                                 const char* group_section_name,
5537                                 const char* signature,
5538                                 const elfcpp::Shdr<64, false>& shdr,
5539                                 elfcpp::Elf_Word flags,
5540                                 std::vector<unsigned int>* shndxes);
5541 #endif
5542
5543 #ifdef HAVE_TARGET_64_BIG
5544 template
5545 void
5546 Layout::layout_group<64, true>(Symbol_table* symtab,
5547                                Sized_relobj_file<64, true>* object,
5548                                unsigned int,
5549                                const char* group_section_name,
5550                                const char* signature,
5551                                const elfcpp::Shdr<64, true>& shdr,
5552                                elfcpp::Elf_Word flags,
5553                                std::vector<unsigned int>* shndxes);
5554 #endif
5555
5556 #ifdef HAVE_TARGET_32_LITTLE
5557 template
5558 Output_section*
5559 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5560                                    const unsigned char* symbols,
5561                                    off_t symbols_size,
5562                                    const unsigned char* symbol_names,
5563                                    off_t symbol_names_size,
5564                                    unsigned int shndx,
5565                                    const elfcpp::Shdr<32, false>& shdr,
5566                                    unsigned int reloc_shndx,
5567                                    unsigned int reloc_type,
5568                                    off_t* off);
5569 #endif
5570
5571 #ifdef HAVE_TARGET_32_BIG
5572 template
5573 Output_section*
5574 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5575                                   const unsigned char* symbols,
5576                                   off_t symbols_size,
5577                                   const unsigned char* symbol_names,
5578                                   off_t symbol_names_size,
5579                                   unsigned int shndx,
5580                                   const elfcpp::Shdr<32, true>& shdr,
5581                                   unsigned int reloc_shndx,
5582                                   unsigned int reloc_type,
5583                                   off_t* off);
5584 #endif
5585
5586 #ifdef HAVE_TARGET_64_LITTLE
5587 template
5588 Output_section*
5589 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5590                                    const unsigned char* symbols,
5591                                    off_t symbols_size,
5592                                    const unsigned char* symbol_names,
5593                                    off_t symbol_names_size,
5594                                    unsigned int shndx,
5595                                    const elfcpp::Shdr<64, false>& shdr,
5596                                    unsigned int reloc_shndx,
5597                                    unsigned int reloc_type,
5598                                    off_t* off);
5599 #endif
5600
5601 #ifdef HAVE_TARGET_64_BIG
5602 template
5603 Output_section*
5604 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5605                                   const unsigned char* symbols,
5606                                   off_t symbols_size,
5607                                   const unsigned char* symbol_names,
5608                                   off_t symbol_names_size,
5609                                   unsigned int shndx,
5610                                   const elfcpp::Shdr<64, true>& shdr,
5611                                   unsigned int reloc_shndx,
5612                                   unsigned int reloc_type,
5613                                   off_t* off);
5614 #endif
5615
5616 #ifdef HAVE_TARGET_32_LITTLE
5617 template
5618 void
5619 Layout::add_to_gdb_index(bool is_type_unit,
5620                          Sized_relobj<32, false>* object,
5621                          const unsigned char* symbols,
5622                          off_t symbols_size,
5623                          unsigned int shndx,
5624                          unsigned int reloc_shndx,
5625                          unsigned int reloc_type);
5626 #endif
5627
5628 #ifdef HAVE_TARGET_32_BIG
5629 template
5630 void
5631 Layout::add_to_gdb_index(bool is_type_unit,
5632                          Sized_relobj<32, true>* object,
5633                          const unsigned char* symbols,
5634                          off_t symbols_size,
5635                          unsigned int shndx,
5636                          unsigned int reloc_shndx,
5637                          unsigned int reloc_type);
5638 #endif
5639
5640 #ifdef HAVE_TARGET_64_LITTLE
5641 template
5642 void
5643 Layout::add_to_gdb_index(bool is_type_unit,
5644                          Sized_relobj<64, false>* object,
5645                          const unsigned char* symbols,
5646                          off_t symbols_size,
5647                          unsigned int shndx,
5648                          unsigned int reloc_shndx,
5649                          unsigned int reloc_type);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_64_BIG
5653 template
5654 void
5655 Layout::add_to_gdb_index(bool is_type_unit,
5656                          Sized_relobj<64, true>* object,
5657                          const unsigned char* symbols,
5658                          off_t symbols_size,
5659                          unsigned int shndx,
5660                          unsigned int reloc_shndx,
5661                          unsigned int reloc_type);
5662 #endif
5663
5664 } // End namespace gold.