gold/
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // Returns whether the given section is in the list of
457 // debug-sections-used-by-some-version-of-gdb.  Currently,
458 // we've checked versions of gdb up to and including 7.4.
459
460 static const char* gdb_sections[] =
461 { ".debug_abbrev",
462   ".debug_addr",         // Fission extension
463   // ".debug_aranges",   // not used by gdb as of 7.4
464   ".debug_frame",
465   ".debug_info",
466   ".debug_types",
467   ".debug_line",
468   ".debug_loc",
469   ".debug_macinfo",
470   // ".debug_pubnames",  // not used by gdb as of 7.4
471   // ".debug_pubtypes",  // not used by gdb as of 7.4
472   ".debug_ranges",
473   ".debug_str",
474 };
475
476 static const char* lines_only_debug_sections[] =
477 { ".debug_abbrev",
478   // ".debug_addr",      // Fission extension
479   // ".debug_aranges",   // not used by gdb as of 7.4
480   // ".debug_frame",
481   ".debug_info",
482   // ".debug_types",
483   ".debug_line",
484   // ".debug_loc",
485   // ".debug_macinfo",
486   // ".debug_pubnames",  // not used by gdb as of 7.4
487   // ".debug_pubtypes",  // not used by gdb as of 7.4
488   // ".debug_ranges",
489   ".debug_str",
490 };
491
492 static inline bool
493 is_gdb_debug_section(const char* str)
494 {
495   // We can do this faster: binary search or a hashtable.  But why bother?
496   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
497     if (strcmp(str, gdb_sections[i]) == 0)
498       return true;
499   return false;
500 }
501
502 static inline bool
503 is_lines_only_debug_section(const char* str)
504 {
505   // We can do this faster: binary search or a hashtable.  But why bother?
506   for (size_t i = 0;
507        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
508        ++i)
509     if (strcmp(str, lines_only_debug_sections[i]) == 0)
510       return true;
511   return false;
512 }
513
514 // Sometimes we compress sections.  This is typically done for
515 // sections that are not part of normal program execution (such as
516 // .debug_* sections), and where the readers of these sections know
517 // how to deal with compressed sections.  This routine doesn't say for
518 // certain whether we'll compress -- it depends on commandline options
519 // as well -- just whether this section is a candidate for compression.
520 // (The Output_compressed_section class decides whether to compress
521 // a given section, and picks the name of the compressed section.)
522
523 static bool
524 is_compressible_debug_section(const char* secname)
525 {
526   return (is_prefix_of(".debug", secname));
527 }
528
529 // We may see compressed debug sections in input files.  Return TRUE
530 // if this is the name of a compressed debug section.
531
532 bool
533 is_compressed_debug_section(const char* secname)
534 {
535   return (is_prefix_of(".zdebug", secname));
536 }
537
538 // Whether to include this section in the link.
539
540 template<int size, bool big_endian>
541 bool
542 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
543                         const elfcpp::Shdr<size, big_endian>& shdr)
544 {
545   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
546     return false;
547
548   switch (shdr.get_sh_type())
549     {
550     case elfcpp::SHT_NULL:
551     case elfcpp::SHT_SYMTAB:
552     case elfcpp::SHT_DYNSYM:
553     case elfcpp::SHT_HASH:
554     case elfcpp::SHT_DYNAMIC:
555     case elfcpp::SHT_SYMTAB_SHNDX:
556       return false;
557
558     case elfcpp::SHT_STRTAB:
559       // Discard the sections which have special meanings in the ELF
560       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
561       // checking the sh_link fields of the appropriate sections.
562       return (strcmp(name, ".dynstr") != 0
563               && strcmp(name, ".strtab") != 0
564               && strcmp(name, ".shstrtab") != 0);
565
566     case elfcpp::SHT_RELA:
567     case elfcpp::SHT_REL:
568     case elfcpp::SHT_GROUP:
569       // If we are emitting relocations these should be handled
570       // elsewhere.
571       gold_assert(!parameters->options().relocatable()
572                   && !parameters->options().emit_relocs());
573       return false;
574
575     case elfcpp::SHT_PROGBITS:
576       if (parameters->options().strip_debug()
577           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
578         {
579           if (is_debug_info_section(name))
580             return false;
581         }
582       if (parameters->options().strip_debug_non_line()
583           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
584         {
585           // Debugging sections can only be recognized by name.
586           if (is_prefix_of(".debug", name)
587               && !is_lines_only_debug_section(name))
588             return false;
589         }
590       if (parameters->options().strip_debug_gdb()
591           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592         {
593           // Debugging sections can only be recognized by name.
594           if (is_prefix_of(".debug", name)
595               && !is_gdb_debug_section(name))
596             return false;
597         }
598       if (parameters->options().strip_lto_sections()
599           && !parameters->options().relocatable()
600           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
601         {
602           // Ignore LTO sections containing intermediate code.
603           if (is_prefix_of(".gnu.lto_", name))
604             return false;
605         }
606       // The GNU linker strips .gnu_debuglink sections, so we do too.
607       // This is a feature used to keep debugging information in
608       // separate files.
609       if (strcmp(name, ".gnu_debuglink") == 0)
610         return false;
611       return true;
612
613     default:
614       return true;
615     }
616 }
617
618 // Return an output section named NAME, or NULL if there is none.
619
620 Output_section*
621 Layout::find_output_section(const char* name) const
622 {
623   for (Section_list::const_iterator p = this->section_list_.begin();
624        p != this->section_list_.end();
625        ++p)
626     if (strcmp((*p)->name(), name) == 0)
627       return *p;
628   return NULL;
629 }
630
631 // Return an output segment of type TYPE, with segment flags SET set
632 // and segment flags CLEAR clear.  Return NULL if there is none.
633
634 Output_segment*
635 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
636                             elfcpp::Elf_Word clear) const
637 {
638   for (Segment_list::const_iterator p = this->segment_list_.begin();
639        p != this->segment_list_.end();
640        ++p)
641     if (static_cast<elfcpp::PT>((*p)->type()) == type
642         && ((*p)->flags() & set) == set
643         && ((*p)->flags() & clear) == 0)
644       return *p;
645   return NULL;
646 }
647
648 // When we put a .ctors or .dtors section with more than one word into
649 // a .init_array or .fini_array section, we need to reverse the words
650 // in the .ctors/.dtors section.  This is because .init_array executes
651 // constructors front to back, where .ctors executes them back to
652 // front, and vice-versa for .fini_array/.dtors.  Although we do want
653 // to remap .ctors/.dtors into .init_array/.fini_array because it can
654 // be more efficient, we don't want to change the order in which
655 // constructors/destructors are run.  This set just keeps track of
656 // these sections which need to be reversed.  It is only changed by
657 // Layout::layout.  It should be a private member of Layout, but that
658 // would require layout.h to #include object.h to get the definition
659 // of Section_id.
660 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
661
662 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
663 // .init_array/.fini_array section.
664
665 bool
666 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
667 {
668   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
669           != ctors_sections_in_init_array.end());
670 }
671
672 // Return the output section to use for section NAME with type TYPE
673 // and section flags FLAGS.  NAME must be canonicalized in the string
674 // pool, and NAME_KEY is the key.  ORDER is where this should appear
675 // in the output sections.  IS_RELRO is true for a relro section.
676
677 Output_section*
678 Layout::get_output_section(const char* name, Stringpool::Key name_key,
679                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
680                            Output_section_order order, bool is_relro)
681 {
682   elfcpp::Elf_Word lookup_type = type;
683
684   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
685   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
686   // .init_array, .fini_array, and .preinit_array sections by name
687   // whatever their type in the input file.  We do this because the
688   // types are not always right in the input files.
689   if (lookup_type == elfcpp::SHT_INIT_ARRAY
690       || lookup_type == elfcpp::SHT_FINI_ARRAY
691       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
692     lookup_type = elfcpp::SHT_PROGBITS;
693
694   elfcpp::Elf_Xword lookup_flags = flags;
695
696   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
697   // read-write with read-only sections.  Some other ELF linkers do
698   // not do this.  FIXME: Perhaps there should be an option
699   // controlling this.
700   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
701
702   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
703   const std::pair<Key, Output_section*> v(key, NULL);
704   std::pair<Section_name_map::iterator, bool> ins(
705     this->section_name_map_.insert(v));
706
707   if (!ins.second)
708     return ins.first->second;
709   else
710     {
711       // This is the first time we've seen this name/type/flags
712       // combination.  For compatibility with the GNU linker, we
713       // combine sections with contents and zero flags with sections
714       // with non-zero flags.  This is a workaround for cases where
715       // assembler code forgets to set section flags.  FIXME: Perhaps
716       // there should be an option to control this.
717       Output_section* os = NULL;
718
719       if (lookup_type == elfcpp::SHT_PROGBITS)
720         {
721           if (flags == 0)
722             {
723               Output_section* same_name = this->find_output_section(name);
724               if (same_name != NULL
725                   && (same_name->type() == elfcpp::SHT_PROGBITS
726                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
727                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
728                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
729                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
730                 os = same_name;
731             }
732           else if ((flags & elfcpp::SHF_TLS) == 0)
733             {
734               elfcpp::Elf_Xword zero_flags = 0;
735               const Key zero_key(name_key, std::make_pair(lookup_type,
736                                                           zero_flags));
737               Section_name_map::iterator p =
738                   this->section_name_map_.find(zero_key);
739               if (p != this->section_name_map_.end())
740                 os = p->second;
741             }
742         }
743
744       if (os == NULL)
745         os = this->make_output_section(name, type, flags, order, is_relro);
746
747       ins.first->second = os;
748       return os;
749     }
750 }
751
752 // Pick the output section to use for section NAME, in input file
753 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
754 // linker created section.  IS_INPUT_SECTION is true if we are
755 // choosing an output section for an input section found in a input
756 // file.  ORDER is where this section should appear in the output
757 // sections.  IS_RELRO is true for a relro section.  This will return
758 // NULL if the input section should be discarded.
759
760 Output_section*
761 Layout::choose_output_section(const Relobj* relobj, const char* name,
762                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
763                               bool is_input_section, Output_section_order order,
764                               bool is_relro)
765 {
766   // We should not see any input sections after we have attached
767   // sections to segments.
768   gold_assert(!is_input_section || !this->sections_are_attached_);
769
770   // Some flags in the input section should not be automatically
771   // copied to the output section.
772   flags &= ~ (elfcpp::SHF_INFO_LINK
773               | elfcpp::SHF_GROUP
774               | elfcpp::SHF_MERGE
775               | elfcpp::SHF_STRINGS);
776
777   // We only clear the SHF_LINK_ORDER flag in for
778   // a non-relocatable link.
779   if (!parameters->options().relocatable())
780     flags &= ~elfcpp::SHF_LINK_ORDER;
781
782   if (this->script_options_->saw_sections_clause())
783     {
784       // We are using a SECTIONS clause, so the output section is
785       // chosen based only on the name.
786
787       Script_sections* ss = this->script_options_->script_sections();
788       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
789       Output_section** output_section_slot;
790       Script_sections::Section_type script_section_type;
791       const char* orig_name = name;
792       name = ss->output_section_name(file_name, name, &output_section_slot,
793                                      &script_section_type);
794       if (name == NULL)
795         {
796           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
797                                      "because it is not allowed by the "
798                                      "SECTIONS clause of the linker script"),
799                      orig_name);
800           // The SECTIONS clause says to discard this input section.
801           return NULL;
802         }
803
804       // We can only handle script section types ST_NONE and ST_NOLOAD.
805       switch (script_section_type)
806         {
807         case Script_sections::ST_NONE:
808           break;
809         case Script_sections::ST_NOLOAD:
810           flags &= elfcpp::SHF_ALLOC;
811           break;
812         default:
813           gold_unreachable();
814         }
815
816       // If this is an orphan section--one not mentioned in the linker
817       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
818       // default processing below.
819
820       if (output_section_slot != NULL)
821         {
822           if (*output_section_slot != NULL)
823             {
824               (*output_section_slot)->update_flags_for_input_section(flags);
825               return *output_section_slot;
826             }
827
828           // We don't put sections found in the linker script into
829           // SECTION_NAME_MAP_.  That keeps us from getting confused
830           // if an orphan section is mapped to a section with the same
831           // name as one in the linker script.
832
833           name = this->namepool_.add(name, false, NULL);
834
835           Output_section* os = this->make_output_section(name, type, flags,
836                                                          order, is_relro);
837
838           os->set_found_in_sections_clause();
839
840           // Special handling for NOLOAD sections.
841           if (script_section_type == Script_sections::ST_NOLOAD)
842             {
843               os->set_is_noload();
844
845               // The constructor of Output_section sets addresses of non-ALLOC
846               // sections to 0 by default.  We don't want that for NOLOAD
847               // sections even if they have no SHF_ALLOC flag.
848               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
849                   && os->is_address_valid())
850                 {
851                   gold_assert(os->address() == 0
852                               && !os->is_offset_valid()
853                               && !os->is_data_size_valid());
854                   os->reset_address_and_file_offset();
855                 }
856             }
857
858           *output_section_slot = os;
859           return os;
860         }
861     }
862
863   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
864
865   size_t len = strlen(name);
866   char* uncompressed_name = NULL;
867
868   // Compressed debug sections should be mapped to the corresponding
869   // uncompressed section.
870   if (is_compressed_debug_section(name))
871     {
872       uncompressed_name = new char[len];
873       uncompressed_name[0] = '.';
874       gold_assert(name[0] == '.' && name[1] == 'z');
875       strncpy(&uncompressed_name[1], &name[2], len - 2);
876       uncompressed_name[len - 1] = '\0';
877       len -= 1;
878       name = uncompressed_name;
879     }
880
881   // Turn NAME from the name of the input section into the name of the
882   // output section.
883   if (is_input_section
884       && !this->script_options_->saw_sections_clause()
885       && !parameters->options().relocatable())
886     name = Layout::output_section_name(relobj, name, &len);
887
888   Stringpool::Key name_key;
889   name = this->namepool_.add_with_length(name, len, true, &name_key);
890
891   if (uncompressed_name != NULL)
892     delete[] uncompressed_name;
893
894   // Find or make the output section.  The output section is selected
895   // based on the section name, type, and flags.
896   return this->get_output_section(name, name_key, type, flags, order, is_relro);
897 }
898
899 // For incremental links, record the initial fixed layout of a section
900 // from the base file, and return a pointer to the Output_section.
901
902 template<int size, bool big_endian>
903 Output_section*
904 Layout::init_fixed_output_section(const char* name,
905                                   elfcpp::Shdr<size, big_endian>& shdr)
906 {
907   unsigned int sh_type = shdr.get_sh_type();
908
909   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
910   // PRE_INIT_ARRAY, and NOTE sections.
911   // All others will be created from scratch and reallocated.
912   if (!can_incremental_update(sh_type))
913     return NULL;
914
915   // If we're generating a .gdb_index section, we need to regenerate
916   // it from scratch.
917   if (parameters->options().gdb_index()
918       && sh_type == elfcpp::SHT_PROGBITS
919       && strcmp(name, ".gdb_index") == 0)
920     return NULL;
921
922   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
923   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
924   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
926   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
927       shdr.get_sh_addralign();
928
929   // Make the output section.
930   Stringpool::Key name_key;
931   name = this->namepool_.add(name, true, &name_key);
932   Output_section* os = this->get_output_section(name, name_key, sh_type,
933                                                 sh_flags, ORDER_INVALID, false);
934   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
935   if (sh_type != elfcpp::SHT_NOBITS)
936     this->free_list_.remove(sh_offset, sh_offset + sh_size);
937   return os;
938 }
939
940 // Return the output section to use for input section SHNDX, with name
941 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
942 // index of a relocation section which applies to this section, or 0
943 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
944 // relocation section if there is one.  Set *OFF to the offset of this
945 // input section without the output section.  Return NULL if the
946 // section should be discarded.  Set *OFF to -1 if the section
947 // contents should not be written directly to the output file, but
948 // will instead receive special handling.
949
950 template<int size, bool big_endian>
951 Output_section*
952 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
953                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
954                unsigned int reloc_shndx, unsigned int, off_t* off)
955 {
956   *off = 0;
957
958   if (!this->include_section(object, name, shdr))
959     return NULL;
960
961   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
962
963   // In a relocatable link a grouped section must not be combined with
964   // any other sections.
965   Output_section* os;
966   if (parameters->options().relocatable()
967       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
968     {
969       name = this->namepool_.add(name, true, NULL);
970       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
971                                      ORDER_INVALID, false);
972     }
973   else
974     {
975       os = this->choose_output_section(object, name, sh_type,
976                                        shdr.get_sh_flags(), true,
977                                        ORDER_INVALID, false);
978       if (os == NULL)
979         return NULL;
980     }
981
982   // By default the GNU linker sorts input sections whose names match
983   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
984   // sections are sorted by name.  This is used to implement
985   // constructor priority ordering.  We are compatible.  When we put
986   // .ctor sections in .init_array and .dtor sections in .fini_array,
987   // we must also sort plain .ctor and .dtor sections.
988   if (!this->script_options_->saw_sections_clause()
989       && !parameters->options().relocatable()
990       && (is_prefix_of(".ctors.", name)
991           || is_prefix_of(".dtors.", name)
992           || is_prefix_of(".init_array.", name)
993           || is_prefix_of(".fini_array.", name)
994           || (parameters->options().ctors_in_init_array()
995               && (strcmp(name, ".ctors") == 0
996                   || strcmp(name, ".dtors") == 0))))
997     os->set_must_sort_attached_input_sections();
998
999   // If this is a .ctors or .ctors.* section being mapped to a
1000   // .init_array section, or a .dtors or .dtors.* section being mapped
1001   // to a .fini_array section, we will need to reverse the words if
1002   // there is more than one.  Record this section for later.  See
1003   // ctors_sections_in_init_array above.
1004   if (!this->script_options_->saw_sections_clause()
1005       && !parameters->options().relocatable()
1006       && shdr.get_sh_size() > size / 8
1007       && (((strcmp(name, ".ctors") == 0
1008             || is_prefix_of(".ctors.", name))
1009            && strcmp(os->name(), ".init_array") == 0)
1010           || ((strcmp(name, ".dtors") == 0
1011                || is_prefix_of(".dtors.", name))
1012               && strcmp(os->name(), ".fini_array") == 0)))
1013     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1014
1015   // FIXME: Handle SHF_LINK_ORDER somewhere.
1016
1017   elfcpp::Elf_Xword orig_flags = os->flags();
1018
1019   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1020                                this->script_options_->saw_sections_clause());
1021
1022   // If the flags changed, we may have to change the order.
1023   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1024     {
1025       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1026       elfcpp::Elf_Xword new_flags =
1027         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1028       if (orig_flags != new_flags)
1029         os->set_order(this->default_section_order(os, false));
1030     }
1031
1032   this->have_added_input_section_ = true;
1033
1034   return os;
1035 }
1036
1037 // Handle a relocation section when doing a relocatable link.
1038
1039 template<int size, bool big_endian>
1040 Output_section*
1041 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1042                      unsigned int,
1043                      const elfcpp::Shdr<size, big_endian>& shdr,
1044                      Output_section* data_section,
1045                      Relocatable_relocs* rr)
1046 {
1047   gold_assert(parameters->options().relocatable()
1048               || parameters->options().emit_relocs());
1049
1050   int sh_type = shdr.get_sh_type();
1051
1052   std::string name;
1053   if (sh_type == elfcpp::SHT_REL)
1054     name = ".rel";
1055   else if (sh_type == elfcpp::SHT_RELA)
1056     name = ".rela";
1057   else
1058     gold_unreachable();
1059   name += data_section->name();
1060
1061   // In a relocatable link relocs for a grouped section must not be
1062   // combined with other reloc sections.
1063   Output_section* os;
1064   if (!parameters->options().relocatable()
1065       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1066     os = this->choose_output_section(object, name.c_str(), sh_type,
1067                                      shdr.get_sh_flags(), false,
1068                                      ORDER_INVALID, false);
1069   else
1070     {
1071       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1072       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1073                                      ORDER_INVALID, false);
1074     }
1075
1076   os->set_should_link_to_symtab();
1077   os->set_info_section(data_section);
1078
1079   Output_section_data* posd;
1080   if (sh_type == elfcpp::SHT_REL)
1081     {
1082       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1083       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1084                                            size,
1085                                            big_endian>(rr);
1086     }
1087   else if (sh_type == elfcpp::SHT_RELA)
1088     {
1089       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1090       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1091                                            size,
1092                                            big_endian>(rr);
1093     }
1094   else
1095     gold_unreachable();
1096
1097   os->add_output_section_data(posd);
1098   rr->set_output_data(posd);
1099
1100   return os;
1101 }
1102
1103 // Handle a group section when doing a relocatable link.
1104
1105 template<int size, bool big_endian>
1106 void
1107 Layout::layout_group(Symbol_table* symtab,
1108                      Sized_relobj_file<size, big_endian>* object,
1109                      unsigned int,
1110                      const char* group_section_name,
1111                      const char* signature,
1112                      const elfcpp::Shdr<size, big_endian>& shdr,
1113                      elfcpp::Elf_Word flags,
1114                      std::vector<unsigned int>* shndxes)
1115 {
1116   gold_assert(parameters->options().relocatable());
1117   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1118   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1119   Output_section* os = this->make_output_section(group_section_name,
1120                                                  elfcpp::SHT_GROUP,
1121                                                  shdr.get_sh_flags(),
1122                                                  ORDER_INVALID, false);
1123
1124   // We need to find a symbol with the signature in the symbol table.
1125   // If we don't find one now, we need to look again later.
1126   Symbol* sym = symtab->lookup(signature, NULL);
1127   if (sym != NULL)
1128     os->set_info_symndx(sym);
1129   else
1130     {
1131       // Reserve some space to minimize reallocations.
1132       if (this->group_signatures_.empty())
1133         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1134
1135       // We will wind up using a symbol whose name is the signature.
1136       // So just put the signature in the symbol name pool to save it.
1137       signature = symtab->canonicalize_name(signature);
1138       this->group_signatures_.push_back(Group_signature(os, signature));
1139     }
1140
1141   os->set_should_link_to_symtab();
1142   os->set_entsize(4);
1143
1144   section_size_type entry_count =
1145     convert_to_section_size_type(shdr.get_sh_size() / 4);
1146   Output_section_data* posd =
1147     new Output_data_group<size, big_endian>(object, entry_count, flags,
1148                                             shndxes);
1149   os->add_output_section_data(posd);
1150 }
1151
1152 // Special GNU handling of sections name .eh_frame.  They will
1153 // normally hold exception frame data as defined by the C++ ABI
1154 // (http://codesourcery.com/cxx-abi/).
1155
1156 template<int size, bool big_endian>
1157 Output_section*
1158 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1159                         const unsigned char* symbols,
1160                         off_t symbols_size,
1161                         const unsigned char* symbol_names,
1162                         off_t symbol_names_size,
1163                         unsigned int shndx,
1164                         const elfcpp::Shdr<size, big_endian>& shdr,
1165                         unsigned int reloc_shndx, unsigned int reloc_type,
1166                         off_t* off)
1167 {
1168   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1169               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1170   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1171
1172   Output_section* os = this->make_eh_frame_section(object);
1173   if (os == NULL)
1174     return NULL;
1175
1176   gold_assert(this->eh_frame_section_ == os);
1177
1178   elfcpp::Elf_Xword orig_flags = os->flags();
1179
1180   if (!parameters->incremental()
1181       && this->eh_frame_data_->add_ehframe_input_section(object,
1182                                                          symbols,
1183                                                          symbols_size,
1184                                                          symbol_names,
1185                                                          symbol_names_size,
1186                                                          shndx,
1187                                                          reloc_shndx,
1188                                                          reloc_type))
1189     {
1190       os->update_flags_for_input_section(shdr.get_sh_flags());
1191
1192       // A writable .eh_frame section is a RELRO section.
1193       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1194           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1195         {
1196           os->set_is_relro();
1197           os->set_order(ORDER_RELRO);
1198         }
1199
1200       // We found a .eh_frame section we are going to optimize, so now
1201       // we can add the set of optimized sections to the output
1202       // section.  We need to postpone adding this until we've found a
1203       // section we can optimize so that the .eh_frame section in
1204       // crtbegin.o winds up at the start of the output section.
1205       if (!this->added_eh_frame_data_)
1206         {
1207           os->add_output_section_data(this->eh_frame_data_);
1208           this->added_eh_frame_data_ = true;
1209         }
1210       *off = -1;
1211     }
1212   else
1213     {
1214       // We couldn't handle this .eh_frame section for some reason.
1215       // Add it as a normal section.
1216       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1217       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1218                                    reloc_shndx, saw_sections_clause);
1219       this->have_added_input_section_ = true;
1220
1221       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1222           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1223         os->set_order(this->default_section_order(os, false));
1224     }
1225
1226   return os;
1227 }
1228
1229 // Create and return the magic .eh_frame section.  Create
1230 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1231 // input .eh_frame section; it may be NULL.
1232
1233 Output_section*
1234 Layout::make_eh_frame_section(const Relobj* object)
1235 {
1236   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1237   // SHT_PROGBITS.
1238   Output_section* os = this->choose_output_section(object, ".eh_frame",
1239                                                    elfcpp::SHT_PROGBITS,
1240                                                    elfcpp::SHF_ALLOC, false,
1241                                                    ORDER_EHFRAME, false);
1242   if (os == NULL)
1243     return NULL;
1244
1245   if (this->eh_frame_section_ == NULL)
1246     {
1247       this->eh_frame_section_ = os;
1248       this->eh_frame_data_ = new Eh_frame();
1249
1250       // For incremental linking, we do not optimize .eh_frame sections
1251       // or create a .eh_frame_hdr section.
1252       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1253         {
1254           Output_section* hdr_os =
1255             this->choose_output_section(NULL, ".eh_frame_hdr",
1256                                         elfcpp::SHT_PROGBITS,
1257                                         elfcpp::SHF_ALLOC, false,
1258                                         ORDER_EHFRAME, false);
1259
1260           if (hdr_os != NULL)
1261             {
1262               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1263                                                         this->eh_frame_data_);
1264               hdr_os->add_output_section_data(hdr_posd);
1265
1266               hdr_os->set_after_input_sections();
1267
1268               if (!this->script_options_->saw_phdrs_clause())
1269                 {
1270                   Output_segment* hdr_oseg;
1271                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1272                                                        elfcpp::PF_R);
1273                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1274                                                           elfcpp::PF_R);
1275                 }
1276
1277               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1278             }
1279         }
1280     }
1281
1282   return os;
1283 }
1284
1285 // Add an exception frame for a PLT.  This is called from target code.
1286
1287 void
1288 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1289                              size_t cie_length, const unsigned char* fde_data,
1290                              size_t fde_length)
1291 {
1292   if (parameters->incremental())
1293     {
1294       // FIXME: Maybe this could work some day....
1295       return;
1296     }
1297   Output_section* os = this->make_eh_frame_section(NULL);
1298   if (os == NULL)
1299     return;
1300   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1301                                             fde_data, fde_length);
1302   if (!this->added_eh_frame_data_)
1303     {
1304       os->add_output_section_data(this->eh_frame_data_);
1305       this->added_eh_frame_data_ = true;
1306     }
1307 }
1308
1309 // Scan a .debug_info or .debug_types section, and add summary
1310 // information to the .gdb_index section.
1311
1312 template<int size, bool big_endian>
1313 void
1314 Layout::add_to_gdb_index(bool is_type_unit,
1315                          Sized_relobj<size, big_endian>* object,
1316                          const unsigned char* symbols,
1317                          off_t symbols_size,
1318                          unsigned int shndx,
1319                          unsigned int reloc_shndx,
1320                          unsigned int reloc_type)
1321 {
1322   if (this->gdb_index_data_ == NULL)
1323     {
1324       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1325                                                        elfcpp::SHT_PROGBITS, 0,
1326                                                        false, ORDER_INVALID,
1327                                                        false);
1328       if (os == NULL)
1329         return;
1330
1331       this->gdb_index_data_ = new Gdb_index(os);
1332       os->add_output_section_data(this->gdb_index_data_);
1333       os->set_after_input_sections();
1334     }
1335
1336   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1337                                          symbols_size, shndx, reloc_shndx,
1338                                          reloc_type);
1339 }
1340
1341 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1342 // the output section.
1343
1344 Output_section*
1345 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1346                                 elfcpp::Elf_Xword flags,
1347                                 Output_section_data* posd,
1348                                 Output_section_order order, bool is_relro)
1349 {
1350   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1351                                                    false, order, is_relro);
1352   if (os != NULL)
1353     os->add_output_section_data(posd);
1354   return os;
1355 }
1356
1357 // Map section flags to segment flags.
1358
1359 elfcpp::Elf_Word
1360 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1361 {
1362   elfcpp::Elf_Word ret = elfcpp::PF_R;
1363   if ((flags & elfcpp::SHF_WRITE) != 0)
1364     ret |= elfcpp::PF_W;
1365   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1366     ret |= elfcpp::PF_X;
1367   return ret;
1368 }
1369
1370 // Make a new Output_section, and attach it to segments as
1371 // appropriate.  ORDER is the order in which this section should
1372 // appear in the output segment.  IS_RELRO is true if this is a relro
1373 // (read-only after relocations) section.
1374
1375 Output_section*
1376 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1377                             elfcpp::Elf_Xword flags,
1378                             Output_section_order order, bool is_relro)
1379 {
1380   Output_section* os;
1381   if ((flags & elfcpp::SHF_ALLOC) == 0
1382       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1383       && is_compressible_debug_section(name))
1384     os = new Output_compressed_section(&parameters->options(), name, type,
1385                                        flags);
1386   else if ((flags & elfcpp::SHF_ALLOC) == 0
1387            && parameters->options().strip_debug_non_line()
1388            && strcmp(".debug_abbrev", name) == 0)
1389     {
1390       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1391           name, type, flags);
1392       if (this->debug_info_)
1393         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1394     }
1395   else if ((flags & elfcpp::SHF_ALLOC) == 0
1396            && parameters->options().strip_debug_non_line()
1397            && strcmp(".debug_info", name) == 0)
1398     {
1399       os = this->debug_info_ = new Output_reduced_debug_info_section(
1400           name, type, flags);
1401       if (this->debug_abbrev_)
1402         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1403     }
1404   else
1405     {
1406       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1407       // not have correct section types.  Force them here.
1408       if (type == elfcpp::SHT_PROGBITS)
1409         {
1410           if (is_prefix_of(".init_array", name))
1411             type = elfcpp::SHT_INIT_ARRAY;
1412           else if (is_prefix_of(".preinit_array", name))
1413             type = elfcpp::SHT_PREINIT_ARRAY;
1414           else if (is_prefix_of(".fini_array", name))
1415             type = elfcpp::SHT_FINI_ARRAY;
1416         }
1417
1418       // FIXME: const_cast is ugly.
1419       Target* target = const_cast<Target*>(&parameters->target());
1420       os = target->make_output_section(name, type, flags);
1421     }
1422
1423   // With -z relro, we have to recognize the special sections by name.
1424   // There is no other way.
1425   bool is_relro_local = false;
1426   if (!this->script_options_->saw_sections_clause()
1427       && parameters->options().relro()
1428       && (flags & elfcpp::SHF_ALLOC) != 0
1429       && (flags & elfcpp::SHF_WRITE) != 0)
1430     {
1431       if (type == elfcpp::SHT_PROGBITS)
1432         {
1433           if (strcmp(name, ".data.rel.ro") == 0)
1434             is_relro = true;
1435           else if (strcmp(name, ".data.rel.ro.local") == 0)
1436             {
1437               is_relro = true;
1438               is_relro_local = true;
1439             }
1440           else if (strcmp(name, ".ctors") == 0
1441                    || strcmp(name, ".dtors") == 0
1442                    || strcmp(name, ".jcr") == 0)
1443             is_relro = true;
1444         }
1445       else if (type == elfcpp::SHT_INIT_ARRAY
1446                || type == elfcpp::SHT_FINI_ARRAY
1447                || type == elfcpp::SHT_PREINIT_ARRAY)
1448         is_relro = true;
1449     }
1450
1451   if (is_relro)
1452     os->set_is_relro();
1453
1454   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1455     order = this->default_section_order(os, is_relro_local);
1456
1457   os->set_order(order);
1458
1459   parameters->target().new_output_section(os);
1460
1461   this->section_list_.push_back(os);
1462
1463   // The GNU linker by default sorts some sections by priority, so we
1464   // do the same.  We need to know that this might happen before we
1465   // attach any input sections.
1466   if (!this->script_options_->saw_sections_clause()
1467       && !parameters->options().relocatable()
1468       && (strcmp(name, ".init_array") == 0
1469           || strcmp(name, ".fini_array") == 0
1470           || (!parameters->options().ctors_in_init_array()
1471               && (strcmp(name, ".ctors") == 0
1472                   || strcmp(name, ".dtors") == 0))))
1473     os->set_may_sort_attached_input_sections();
1474
1475   // Check for .stab*str sections, as .stab* sections need to link to
1476   // them.
1477   if (type == elfcpp::SHT_STRTAB
1478       && !this->have_stabstr_section_
1479       && strncmp(name, ".stab", 5) == 0
1480       && strcmp(name + strlen(name) - 3, "str") == 0)
1481     this->have_stabstr_section_ = true;
1482
1483   // During a full incremental link, we add patch space to most
1484   // PROGBITS and NOBITS sections.  Flag those that may be
1485   // arbitrarily padded.
1486   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1487       && order != ORDER_INTERP
1488       && order != ORDER_INIT
1489       && order != ORDER_PLT
1490       && order != ORDER_FINI
1491       && order != ORDER_RELRO_LAST
1492       && order != ORDER_NON_RELRO_FIRST
1493       && strcmp(name, ".eh_frame") != 0
1494       && strcmp(name, ".ctors") != 0
1495       && strcmp(name, ".dtors") != 0
1496       && strcmp(name, ".jcr") != 0)
1497     {
1498       os->set_is_patch_space_allowed();
1499
1500       // Certain sections require "holes" to be filled with
1501       // specific fill patterns.  These fill patterns may have
1502       // a minimum size, so we must prevent allocations from the
1503       // free list that leave a hole smaller than the minimum.
1504       if (strcmp(name, ".debug_info") == 0)
1505         os->set_free_space_fill(new Output_fill_debug_info(false));
1506       else if (strcmp(name, ".debug_types") == 0)
1507         os->set_free_space_fill(new Output_fill_debug_info(true));
1508       else if (strcmp(name, ".debug_line") == 0)
1509         os->set_free_space_fill(new Output_fill_debug_line());
1510     }
1511
1512   // If we have already attached the sections to segments, then we
1513   // need to attach this one now.  This happens for sections created
1514   // directly by the linker.
1515   if (this->sections_are_attached_)
1516     this->attach_section_to_segment(&parameters->target(), os);
1517
1518   return os;
1519 }
1520
1521 // Return the default order in which a section should be placed in an
1522 // output segment.  This function captures a lot of the ideas in
1523 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1524 // linker created section is normally set when the section is created;
1525 // this function is used for input sections.
1526
1527 Output_section_order
1528 Layout::default_section_order(Output_section* os, bool is_relro_local)
1529 {
1530   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1531   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1532   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1533   bool is_bss = false;
1534
1535   switch (os->type())
1536     {
1537     default:
1538     case elfcpp::SHT_PROGBITS:
1539       break;
1540     case elfcpp::SHT_NOBITS:
1541       is_bss = true;
1542       break;
1543     case elfcpp::SHT_RELA:
1544     case elfcpp::SHT_REL:
1545       if (!is_write)
1546         return ORDER_DYNAMIC_RELOCS;
1547       break;
1548     case elfcpp::SHT_HASH:
1549     case elfcpp::SHT_DYNAMIC:
1550     case elfcpp::SHT_SHLIB:
1551     case elfcpp::SHT_DYNSYM:
1552     case elfcpp::SHT_GNU_HASH:
1553     case elfcpp::SHT_GNU_verdef:
1554     case elfcpp::SHT_GNU_verneed:
1555     case elfcpp::SHT_GNU_versym:
1556       if (!is_write)
1557         return ORDER_DYNAMIC_LINKER;
1558       break;
1559     case elfcpp::SHT_NOTE:
1560       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1561     }
1562
1563   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1564     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1565
1566   if (!is_bss && !is_write)
1567     {
1568       if (is_execinstr)
1569         {
1570           if (strcmp(os->name(), ".init") == 0)
1571             return ORDER_INIT;
1572           else if (strcmp(os->name(), ".fini") == 0)
1573             return ORDER_FINI;
1574         }
1575       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1576     }
1577
1578   if (os->is_relro())
1579     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1580
1581   if (os->is_small_section())
1582     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1583   if (os->is_large_section())
1584     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1585
1586   return is_bss ? ORDER_BSS : ORDER_DATA;
1587 }
1588
1589 // Attach output sections to segments.  This is called after we have
1590 // seen all the input sections.
1591
1592 void
1593 Layout::attach_sections_to_segments(const Target* target)
1594 {
1595   for (Section_list::iterator p = this->section_list_.begin();
1596        p != this->section_list_.end();
1597        ++p)
1598     this->attach_section_to_segment(target, *p);
1599
1600   this->sections_are_attached_ = true;
1601 }
1602
1603 // Attach an output section to a segment.
1604
1605 void
1606 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1607 {
1608   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1609     this->unattached_section_list_.push_back(os);
1610   else
1611     this->attach_allocated_section_to_segment(target, os);
1612 }
1613
1614 // Attach an allocated output section to a segment.
1615
1616 void
1617 Layout::attach_allocated_section_to_segment(const Target* target,
1618                                             Output_section* os)
1619 {
1620   elfcpp::Elf_Xword flags = os->flags();
1621   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1622
1623   if (parameters->options().relocatable())
1624     return;
1625
1626   // If we have a SECTIONS clause, we can't handle the attachment to
1627   // segments until after we've seen all the sections.
1628   if (this->script_options_->saw_sections_clause())
1629     return;
1630
1631   gold_assert(!this->script_options_->saw_phdrs_clause());
1632
1633   // This output section goes into a PT_LOAD segment.
1634
1635   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1636
1637   // Check for --section-start.
1638   uint64_t addr;
1639   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1640
1641   // In general the only thing we really care about for PT_LOAD
1642   // segments is whether or not they are writable or executable,
1643   // so that is how we search for them.
1644   // Large data sections also go into their own PT_LOAD segment.
1645   // People who need segments sorted on some other basis will
1646   // have to use a linker script.
1647
1648   Segment_list::const_iterator p;
1649   for (p = this->segment_list_.begin();
1650        p != this->segment_list_.end();
1651        ++p)
1652     {
1653       if ((*p)->type() != elfcpp::PT_LOAD)
1654         continue;
1655       if (!parameters->options().omagic()
1656           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1657         continue;
1658       if ((target->isolate_execinstr() || parameters->options().rosegment())
1659           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1660         continue;
1661       // If -Tbss was specified, we need to separate the data and BSS
1662       // segments.
1663       if (parameters->options().user_set_Tbss())
1664         {
1665           if ((os->type() == elfcpp::SHT_NOBITS)
1666               == (*p)->has_any_data_sections())
1667             continue;
1668         }
1669       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1670         continue;
1671
1672       if (is_address_set)
1673         {
1674           if ((*p)->are_addresses_set())
1675             continue;
1676
1677           (*p)->add_initial_output_data(os);
1678           (*p)->update_flags_for_output_section(seg_flags);
1679           (*p)->set_addresses(addr, addr);
1680           break;
1681         }
1682
1683       (*p)->add_output_section_to_load(this, os, seg_flags);
1684       break;
1685     }
1686
1687   if (p == this->segment_list_.end())
1688     {
1689       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1690                                                        seg_flags);
1691       if (os->is_large_data_section())
1692         oseg->set_is_large_data_segment();
1693       oseg->add_output_section_to_load(this, os, seg_flags);
1694       if (is_address_set)
1695         oseg->set_addresses(addr, addr);
1696     }
1697
1698   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1699   // segment.
1700   if (os->type() == elfcpp::SHT_NOTE)
1701     {
1702       // See if we already have an equivalent PT_NOTE segment.
1703       for (p = this->segment_list_.begin();
1704            p != segment_list_.end();
1705            ++p)
1706         {
1707           if ((*p)->type() == elfcpp::PT_NOTE
1708               && (((*p)->flags() & elfcpp::PF_W)
1709                   == (seg_flags & elfcpp::PF_W)))
1710             {
1711               (*p)->add_output_section_to_nonload(os, seg_flags);
1712               break;
1713             }
1714         }
1715
1716       if (p == this->segment_list_.end())
1717         {
1718           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1719                                                            seg_flags);
1720           oseg->add_output_section_to_nonload(os, seg_flags);
1721         }
1722     }
1723
1724   // If we see a loadable SHF_TLS section, we create a PT_TLS
1725   // segment.  There can only be one such segment.
1726   if ((flags & elfcpp::SHF_TLS) != 0)
1727     {
1728       if (this->tls_segment_ == NULL)
1729         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1730       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1731     }
1732
1733   // If -z relro is in effect, and we see a relro section, we create a
1734   // PT_GNU_RELRO segment.  There can only be one such segment.
1735   if (os->is_relro() && parameters->options().relro())
1736     {
1737       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1738       if (this->relro_segment_ == NULL)
1739         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1740       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1741     }
1742
1743   // If we see a section named .interp, put it into a PT_INTERP
1744   // segment.  This seems broken to me, but this is what GNU ld does,
1745   // and glibc expects it.
1746   if (strcmp(os->name(), ".interp") == 0
1747       && !this->script_options_->saw_phdrs_clause())
1748     {
1749       if (this->interp_segment_ == NULL)
1750         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1751       else
1752         gold_warning(_("multiple '.interp' sections in input files "
1753                        "may cause confusing PT_INTERP segment"));
1754       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1755     }
1756 }
1757
1758 // Make an output section for a script.
1759
1760 Output_section*
1761 Layout::make_output_section_for_script(
1762     const char* name,
1763     Script_sections::Section_type section_type)
1764 {
1765   name = this->namepool_.add(name, false, NULL);
1766   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1767   if (section_type == Script_sections::ST_NOLOAD)
1768     sh_flags = 0;
1769   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1770                                                  sh_flags, ORDER_INVALID,
1771                                                  false);
1772   os->set_found_in_sections_clause();
1773   if (section_type == Script_sections::ST_NOLOAD)
1774     os->set_is_noload();
1775   return os;
1776 }
1777
1778 // Return the number of segments we expect to see.
1779
1780 size_t
1781 Layout::expected_segment_count() const
1782 {
1783   size_t ret = this->segment_list_.size();
1784
1785   // If we didn't see a SECTIONS clause in a linker script, we should
1786   // already have the complete list of segments.  Otherwise we ask the
1787   // SECTIONS clause how many segments it expects, and add in the ones
1788   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1789
1790   if (!this->script_options_->saw_sections_clause())
1791     return ret;
1792   else
1793     {
1794       const Script_sections* ss = this->script_options_->script_sections();
1795       return ret + ss->expected_segment_count(this);
1796     }
1797 }
1798
1799 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1800 // is whether we saw a .note.GNU-stack section in the object file.
1801 // GNU_STACK_FLAGS is the section flags.  The flags give the
1802 // protection required for stack memory.  We record this in an
1803 // executable as a PT_GNU_STACK segment.  If an object file does not
1804 // have a .note.GNU-stack segment, we must assume that it is an old
1805 // object.  On some targets that will force an executable stack.
1806
1807 void
1808 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1809                          const Object* obj)
1810 {
1811   if (!seen_gnu_stack)
1812     {
1813       this->input_without_gnu_stack_note_ = true;
1814       if (parameters->options().warn_execstack()
1815           && parameters->target().is_default_stack_executable())
1816         gold_warning(_("%s: missing .note.GNU-stack section"
1817                        " implies executable stack"),
1818                      obj->name().c_str());
1819     }
1820   else
1821     {
1822       this->input_with_gnu_stack_note_ = true;
1823       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1824         {
1825           this->input_requires_executable_stack_ = true;
1826           if (parameters->options().warn_execstack()
1827               || parameters->options().is_stack_executable())
1828             gold_warning(_("%s: requires executable stack"),
1829                          obj->name().c_str());
1830         }
1831     }
1832 }
1833
1834 // Create automatic note sections.
1835
1836 void
1837 Layout::create_notes()
1838 {
1839   this->create_gold_note();
1840   this->create_executable_stack_info();
1841   this->create_build_id();
1842 }
1843
1844 // Create the dynamic sections which are needed before we read the
1845 // relocs.
1846
1847 void
1848 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1849 {
1850   if (parameters->doing_static_link())
1851     return;
1852
1853   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1854                                                        elfcpp::SHT_DYNAMIC,
1855                                                        (elfcpp::SHF_ALLOC
1856                                                         | elfcpp::SHF_WRITE),
1857                                                        false, ORDER_RELRO,
1858                                                        true);
1859
1860   // A linker script may discard .dynamic, so check for NULL.
1861   if (this->dynamic_section_ != NULL)
1862     {
1863       this->dynamic_symbol_ =
1864         symtab->define_in_output_data("_DYNAMIC", NULL,
1865                                       Symbol_table::PREDEFINED,
1866                                       this->dynamic_section_, 0, 0,
1867                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1868                                       elfcpp::STV_HIDDEN, 0, false, false);
1869
1870       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1871
1872       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1873     }
1874 }
1875
1876 // For each output section whose name can be represented as C symbol,
1877 // define __start and __stop symbols for the section.  This is a GNU
1878 // extension.
1879
1880 void
1881 Layout::define_section_symbols(Symbol_table* symtab)
1882 {
1883   for (Section_list::const_iterator p = this->section_list_.begin();
1884        p != this->section_list_.end();
1885        ++p)
1886     {
1887       const char* const name = (*p)->name();
1888       if (is_cident(name))
1889         {
1890           const std::string name_string(name);
1891           const std::string start_name(cident_section_start_prefix
1892                                        + name_string);
1893           const std::string stop_name(cident_section_stop_prefix
1894                                       + name_string);
1895
1896           symtab->define_in_output_data(start_name.c_str(),
1897                                         NULL, // version
1898                                         Symbol_table::PREDEFINED,
1899                                         *p,
1900                                         0, // value
1901                                         0, // symsize
1902                                         elfcpp::STT_NOTYPE,
1903                                         elfcpp::STB_GLOBAL,
1904                                         elfcpp::STV_DEFAULT,
1905                                         0, // nonvis
1906                                         false, // offset_is_from_end
1907                                         true); // only_if_ref
1908
1909           symtab->define_in_output_data(stop_name.c_str(),
1910                                         NULL, // version
1911                                         Symbol_table::PREDEFINED,
1912                                         *p,
1913                                         0, // value
1914                                         0, // symsize
1915                                         elfcpp::STT_NOTYPE,
1916                                         elfcpp::STB_GLOBAL,
1917                                         elfcpp::STV_DEFAULT,
1918                                         0, // nonvis
1919                                         true, // offset_is_from_end
1920                                         true); // only_if_ref
1921         }
1922     }
1923 }
1924
1925 // Define symbols for group signatures.
1926
1927 void
1928 Layout::define_group_signatures(Symbol_table* symtab)
1929 {
1930   for (Group_signatures::iterator p = this->group_signatures_.begin();
1931        p != this->group_signatures_.end();
1932        ++p)
1933     {
1934       Symbol* sym = symtab->lookup(p->signature, NULL);
1935       if (sym != NULL)
1936         p->section->set_info_symndx(sym);
1937       else
1938         {
1939           // Force the name of the group section to the group
1940           // signature, and use the group's section symbol as the
1941           // signature symbol.
1942           if (strcmp(p->section->name(), p->signature) != 0)
1943             {
1944               const char* name = this->namepool_.add(p->signature,
1945                                                      true, NULL);
1946               p->section->set_name(name);
1947             }
1948           p->section->set_needs_symtab_index();
1949           p->section->set_info_section_symndx(p->section);
1950         }
1951     }
1952
1953   this->group_signatures_.clear();
1954 }
1955
1956 // Find the first read-only PT_LOAD segment, creating one if
1957 // necessary.
1958
1959 Output_segment*
1960 Layout::find_first_load_seg(const Target* target)
1961 {
1962   Output_segment* best = NULL;
1963   for (Segment_list::const_iterator p = this->segment_list_.begin();
1964        p != this->segment_list_.end();
1965        ++p)
1966     {
1967       if ((*p)->type() == elfcpp::PT_LOAD
1968           && ((*p)->flags() & elfcpp::PF_R) != 0
1969           && (parameters->options().omagic()
1970               || ((*p)->flags() & elfcpp::PF_W) == 0)
1971           && (!target->isolate_execinstr()
1972               || ((*p)->flags() & elfcpp::PF_X) == 0))
1973         {
1974           if (best == NULL || this->segment_precedes(*p, best))
1975             best = *p;
1976         }
1977     }
1978   if (best != NULL)
1979     return best;
1980
1981   gold_assert(!this->script_options_->saw_phdrs_clause());
1982
1983   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1984                                                        elfcpp::PF_R);
1985   return load_seg;
1986 }
1987
1988 // Save states of all current output segments.  Store saved states
1989 // in SEGMENT_STATES.
1990
1991 void
1992 Layout::save_segments(Segment_states* segment_states)
1993 {
1994   for (Segment_list::const_iterator p = this->segment_list_.begin();
1995        p != this->segment_list_.end();
1996        ++p)
1997     {
1998       Output_segment* segment = *p;
1999       // Shallow copy.
2000       Output_segment* copy = new Output_segment(*segment);
2001       (*segment_states)[segment] = copy;
2002     }
2003 }
2004
2005 // Restore states of output segments and delete any segment not found in
2006 // SEGMENT_STATES.
2007
2008 void
2009 Layout::restore_segments(const Segment_states* segment_states)
2010 {
2011   // Go through the segment list and remove any segment added in the
2012   // relaxation loop.
2013   this->tls_segment_ = NULL;
2014   this->relro_segment_ = NULL;
2015   Segment_list::iterator list_iter = this->segment_list_.begin();
2016   while (list_iter != this->segment_list_.end())
2017     {
2018       Output_segment* segment = *list_iter;
2019       Segment_states::const_iterator states_iter =
2020           segment_states->find(segment);
2021       if (states_iter != segment_states->end())
2022         {
2023           const Output_segment* copy = states_iter->second;
2024           // Shallow copy to restore states.
2025           *segment = *copy;
2026
2027           // Also fix up TLS and RELRO segment pointers as appropriate.
2028           if (segment->type() == elfcpp::PT_TLS)
2029             this->tls_segment_ = segment;
2030           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2031             this->relro_segment_ = segment;
2032
2033           ++list_iter;
2034         }
2035       else
2036         {
2037           list_iter = this->segment_list_.erase(list_iter);
2038           // This is a segment created during section layout.  It should be
2039           // safe to remove it since we should have removed all pointers to it.
2040           delete segment;
2041         }
2042     }
2043 }
2044
2045 // Clean up after relaxation so that sections can be laid out again.
2046
2047 void
2048 Layout::clean_up_after_relaxation()
2049 {
2050   // Restore the segments to point state just prior to the relaxation loop.
2051   Script_sections* script_section = this->script_options_->script_sections();
2052   script_section->release_segments();
2053   this->restore_segments(this->segment_states_);
2054
2055   // Reset section addresses and file offsets
2056   for (Section_list::iterator p = this->section_list_.begin();
2057        p != this->section_list_.end();
2058        ++p)
2059     {
2060       (*p)->restore_states();
2061
2062       // If an input section changes size because of relaxation,
2063       // we need to adjust the section offsets of all input sections.
2064       // after such a section.
2065       if ((*p)->section_offsets_need_adjustment())
2066         (*p)->adjust_section_offsets();
2067
2068       (*p)->reset_address_and_file_offset();
2069     }
2070
2071   // Reset special output object address and file offsets.
2072   for (Data_list::iterator p = this->special_output_list_.begin();
2073        p != this->special_output_list_.end();
2074        ++p)
2075     (*p)->reset_address_and_file_offset();
2076
2077   // A linker script may have created some output section data objects.
2078   // They are useless now.
2079   for (Output_section_data_list::const_iterator p =
2080          this->script_output_section_data_list_.begin();
2081        p != this->script_output_section_data_list_.end();
2082        ++p)
2083     delete *p;
2084   this->script_output_section_data_list_.clear();
2085 }
2086
2087 // Prepare for relaxation.
2088
2089 void
2090 Layout::prepare_for_relaxation()
2091 {
2092   // Create an relaxation debug check if in debugging mode.
2093   if (is_debugging_enabled(DEBUG_RELAXATION))
2094     this->relaxation_debug_check_ = new Relaxation_debug_check();
2095
2096   // Save segment states.
2097   this->segment_states_ = new Segment_states();
2098   this->save_segments(this->segment_states_);
2099
2100   for(Section_list::const_iterator p = this->section_list_.begin();
2101       p != this->section_list_.end();
2102       ++p)
2103     (*p)->save_states();
2104
2105   if (is_debugging_enabled(DEBUG_RELAXATION))
2106     this->relaxation_debug_check_->check_output_data_for_reset_values(
2107         this->section_list_, this->special_output_list_);
2108
2109   // Also enable recording of output section data from scripts.
2110   this->record_output_section_data_from_script_ = true;
2111 }
2112
2113 // Relaxation loop body:  If target has no relaxation, this runs only once
2114 // Otherwise, the target relaxation hook is called at the end of
2115 // each iteration.  If the hook returns true, it means re-layout of
2116 // section is required.
2117 //
2118 // The number of segments created by a linking script without a PHDRS
2119 // clause may be affected by section sizes and alignments.  There is
2120 // a remote chance that relaxation causes different number of PT_LOAD
2121 // segments are created and sections are attached to different segments.
2122 // Therefore, we always throw away all segments created during section
2123 // layout.  In order to be able to restart the section layout, we keep
2124 // a copy of the segment list right before the relaxation loop and use
2125 // that to restore the segments.
2126 //
2127 // PASS is the current relaxation pass number.
2128 // SYMTAB is a symbol table.
2129 // PLOAD_SEG is the address of a pointer for the load segment.
2130 // PHDR_SEG is a pointer to the PHDR segment.
2131 // SEGMENT_HEADERS points to the output segment header.
2132 // FILE_HEADER points to the output file header.
2133 // PSHNDX is the address to store the output section index.
2134
2135 off_t inline
2136 Layout::relaxation_loop_body(
2137     int pass,
2138     Target* target,
2139     Symbol_table* symtab,
2140     Output_segment** pload_seg,
2141     Output_segment* phdr_seg,
2142     Output_segment_headers* segment_headers,
2143     Output_file_header* file_header,
2144     unsigned int* pshndx)
2145 {
2146   // If this is not the first iteration, we need to clean up after
2147   // relaxation so that we can lay out the sections again.
2148   if (pass != 0)
2149     this->clean_up_after_relaxation();
2150
2151   // If there is a SECTIONS clause, put all the input sections into
2152   // the required order.
2153   Output_segment* load_seg;
2154   if (this->script_options_->saw_sections_clause())
2155     load_seg = this->set_section_addresses_from_script(symtab);
2156   else if (parameters->options().relocatable())
2157     load_seg = NULL;
2158   else
2159     load_seg = this->find_first_load_seg(target);
2160
2161   if (parameters->options().oformat_enum()
2162       != General_options::OBJECT_FORMAT_ELF)
2163     load_seg = NULL;
2164
2165   // If the user set the address of the text segment, that may not be
2166   // compatible with putting the segment headers and file headers into
2167   // that segment.
2168   if (parameters->options().user_set_Ttext()
2169       && parameters->options().Ttext() % target->common_pagesize() != 0)
2170     {
2171       load_seg = NULL;
2172       phdr_seg = NULL;
2173     }
2174
2175   gold_assert(phdr_seg == NULL
2176               || load_seg != NULL
2177               || this->script_options_->saw_sections_clause());
2178
2179   // If the address of the load segment we found has been set by
2180   // --section-start rather than by a script, then adjust the VMA and
2181   // LMA downward if possible to include the file and section headers.
2182   uint64_t header_gap = 0;
2183   if (load_seg != NULL
2184       && load_seg->are_addresses_set()
2185       && !this->script_options_->saw_sections_clause()
2186       && !parameters->options().relocatable())
2187     {
2188       file_header->finalize_data_size();
2189       segment_headers->finalize_data_size();
2190       size_t sizeof_headers = (file_header->data_size()
2191                                + segment_headers->data_size());
2192       const uint64_t abi_pagesize = target->abi_pagesize();
2193       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2194       hdr_paddr &= ~(abi_pagesize - 1);
2195       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2196       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2197         load_seg = NULL;
2198       else
2199         {
2200           load_seg->set_addresses(load_seg->vaddr() - subtract,
2201                                   load_seg->paddr() - subtract);
2202           header_gap = subtract - sizeof_headers;
2203         }
2204     }
2205
2206   // Lay out the segment headers.
2207   if (!parameters->options().relocatable())
2208     {
2209       gold_assert(segment_headers != NULL);
2210       if (header_gap != 0 && load_seg != NULL)
2211         {
2212           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2213           load_seg->add_initial_output_data(z);
2214         }
2215       if (load_seg != NULL)
2216         load_seg->add_initial_output_data(segment_headers);
2217       if (phdr_seg != NULL)
2218         phdr_seg->add_initial_output_data(segment_headers);
2219     }
2220
2221   // Lay out the file header.
2222   if (load_seg != NULL)
2223     load_seg->add_initial_output_data(file_header);
2224
2225   if (this->script_options_->saw_phdrs_clause()
2226       && !parameters->options().relocatable())
2227     {
2228       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2229       // clause in a linker script.
2230       Script_sections* ss = this->script_options_->script_sections();
2231       ss->put_headers_in_phdrs(file_header, segment_headers);
2232     }
2233
2234   // We set the output section indexes in set_segment_offsets and
2235   // set_section_indexes.
2236   *pshndx = 1;
2237
2238   // Set the file offsets of all the segments, and all the sections
2239   // they contain.
2240   off_t off;
2241   if (!parameters->options().relocatable())
2242     off = this->set_segment_offsets(target, load_seg, pshndx);
2243   else
2244     off = this->set_relocatable_section_offsets(file_header, pshndx);
2245
2246    // Verify that the dummy relaxation does not change anything.
2247   if (is_debugging_enabled(DEBUG_RELAXATION))
2248     {
2249       if (pass == 0)
2250         this->relaxation_debug_check_->read_sections(this->section_list_);
2251       else
2252         this->relaxation_debug_check_->verify_sections(this->section_list_);
2253     }
2254
2255   *pload_seg = load_seg;
2256   return off;
2257 }
2258
2259 // Search the list of patterns and find the postion of the given section
2260 // name in the output section.  If the section name matches a glob
2261 // pattern and a non-glob name, then the non-glob position takes
2262 // precedence.  Return 0 if no match is found.
2263
2264 unsigned int
2265 Layout::find_section_order_index(const std::string& section_name)
2266 {
2267   Unordered_map<std::string, unsigned int>::iterator map_it;
2268   map_it = this->input_section_position_.find(section_name);
2269   if (map_it != this->input_section_position_.end())
2270     return map_it->second;
2271
2272   // Absolute match failed.  Linear search the glob patterns.
2273   std::vector<std::string>::iterator it;
2274   for (it = this->input_section_glob_.begin();
2275        it != this->input_section_glob_.end();
2276        ++it)
2277     {
2278        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2279          {
2280            map_it = this->input_section_position_.find(*it);
2281            gold_assert(map_it != this->input_section_position_.end());
2282            return map_it->second;
2283          }
2284     }
2285   return 0;
2286 }
2287
2288 // Read the sequence of input sections from the file specified with
2289 // option --section-ordering-file.
2290
2291 void
2292 Layout::read_layout_from_file()
2293 {
2294   const char* filename = parameters->options().section_ordering_file();
2295   std::ifstream in;
2296   std::string line;
2297
2298   in.open(filename);
2299   if (!in)
2300     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2301                filename, strerror(errno));
2302
2303   std::getline(in, line);   // this chops off the trailing \n, if any
2304   unsigned int position = 1;
2305   this->set_section_ordering_specified();
2306
2307   while (in)
2308     {
2309       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2310         line.resize(line.length() - 1);
2311       // Ignore comments, beginning with '#'
2312       if (line[0] == '#')
2313         {
2314           std::getline(in, line);
2315           continue;
2316         }
2317       this->input_section_position_[line] = position;
2318       // Store all glob patterns in a vector.
2319       if (is_wildcard_string(line.c_str()))
2320         this->input_section_glob_.push_back(line);
2321       position++;
2322       std::getline(in, line);
2323     }
2324 }
2325
2326 // Finalize the layout.  When this is called, we have created all the
2327 // output sections and all the output segments which are based on
2328 // input sections.  We have several things to do, and we have to do
2329 // them in the right order, so that we get the right results correctly
2330 // and efficiently.
2331
2332 // 1) Finalize the list of output segments and create the segment
2333 // table header.
2334
2335 // 2) Finalize the dynamic symbol table and associated sections.
2336
2337 // 3) Determine the final file offset of all the output segments.
2338
2339 // 4) Determine the final file offset of all the SHF_ALLOC output
2340 // sections.
2341
2342 // 5) Create the symbol table sections and the section name table
2343 // section.
2344
2345 // 6) Finalize the symbol table: set symbol values to their final
2346 // value and make a final determination of which symbols are going
2347 // into the output symbol table.
2348
2349 // 7) Create the section table header.
2350
2351 // 8) Determine the final file offset of all the output sections which
2352 // are not SHF_ALLOC, including the section table header.
2353
2354 // 9) Finalize the ELF file header.
2355
2356 // This function returns the size of the output file.
2357
2358 off_t
2359 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2360                  Target* target, const Task* task)
2361 {
2362   target->finalize_sections(this, input_objects, symtab);
2363
2364   this->count_local_symbols(task, input_objects);
2365
2366   this->link_stabs_sections();
2367
2368   Output_segment* phdr_seg = NULL;
2369   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2370     {
2371       // There was a dynamic object in the link.  We need to create
2372       // some information for the dynamic linker.
2373
2374       // Create the PT_PHDR segment which will hold the program
2375       // headers.
2376       if (!this->script_options_->saw_phdrs_clause())
2377         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2378
2379       // Create the dynamic symbol table, including the hash table.
2380       Output_section* dynstr;
2381       std::vector<Symbol*> dynamic_symbols;
2382       unsigned int local_dynamic_count;
2383       Versions versions(*this->script_options()->version_script_info(),
2384                         &this->dynpool_);
2385       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2386                                   &local_dynamic_count, &dynamic_symbols,
2387                                   &versions);
2388
2389       // Create the .interp section to hold the name of the
2390       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2391       // if we saw a .interp section in an input file.
2392       if ((!parameters->options().shared()
2393            || parameters->options().dynamic_linker() != NULL)
2394           && this->interp_segment_ == NULL)
2395         this->create_interp(target);
2396
2397       // Finish the .dynamic section to hold the dynamic data, and put
2398       // it in a PT_DYNAMIC segment.
2399       this->finish_dynamic_section(input_objects, symtab);
2400
2401       // We should have added everything we need to the dynamic string
2402       // table.
2403       this->dynpool_.set_string_offsets();
2404
2405       // Create the version sections.  We can't do this until the
2406       // dynamic string table is complete.
2407       this->create_version_sections(&versions, symtab, local_dynamic_count,
2408                                     dynamic_symbols, dynstr);
2409
2410       // Set the size of the _DYNAMIC symbol.  We can't do this until
2411       // after we call create_version_sections.
2412       this->set_dynamic_symbol_size(symtab);
2413     }
2414
2415   // Create segment headers.
2416   Output_segment_headers* segment_headers =
2417     (parameters->options().relocatable()
2418      ? NULL
2419      : new Output_segment_headers(this->segment_list_));
2420
2421   // Lay out the file header.
2422   Output_file_header* file_header = new Output_file_header(target, symtab,
2423                                                            segment_headers);
2424
2425   this->special_output_list_.push_back(file_header);
2426   if (segment_headers != NULL)
2427     this->special_output_list_.push_back(segment_headers);
2428
2429   // Find approriate places for orphan output sections if we are using
2430   // a linker script.
2431   if (this->script_options_->saw_sections_clause())
2432     this->place_orphan_sections_in_script();
2433
2434   Output_segment* load_seg;
2435   off_t off;
2436   unsigned int shndx;
2437   int pass = 0;
2438
2439   // Take a snapshot of the section layout as needed.
2440   if (target->may_relax())
2441     this->prepare_for_relaxation();
2442
2443   // Run the relaxation loop to lay out sections.
2444   do
2445     {
2446       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2447                                        phdr_seg, segment_headers, file_header,
2448                                        &shndx);
2449       pass++;
2450     }
2451   while (target->may_relax()
2452          && target->relax(pass, input_objects, symtab, this, task));
2453
2454   // Set the file offsets of all the non-data sections we've seen so
2455   // far which don't have to wait for the input sections.  We need
2456   // this in order to finalize local symbols in non-allocated
2457   // sections.
2458   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2459
2460   // Set the section indexes of all unallocated sections seen so far,
2461   // in case any of them are somehow referenced by a symbol.
2462   shndx = this->set_section_indexes(shndx);
2463
2464   // Create the symbol table sections.
2465   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2466   if (!parameters->doing_static_link())
2467     this->assign_local_dynsym_offsets(input_objects);
2468
2469   // Process any symbol assignments from a linker script.  This must
2470   // be called after the symbol table has been finalized.
2471   this->script_options_->finalize_symbols(symtab, this);
2472
2473   // Create the incremental inputs sections.
2474   if (this->incremental_inputs_)
2475     {
2476       this->incremental_inputs_->finalize();
2477       this->create_incremental_info_sections(symtab);
2478     }
2479
2480   // Create the .shstrtab section.
2481   Output_section* shstrtab_section = this->create_shstrtab();
2482
2483   // Set the file offsets of the rest of the non-data sections which
2484   // don't have to wait for the input sections.
2485   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2486
2487   // Now that all sections have been created, set the section indexes
2488   // for any sections which haven't been done yet.
2489   shndx = this->set_section_indexes(shndx);
2490
2491   // Create the section table header.
2492   this->create_shdrs(shstrtab_section, &off);
2493
2494   // If there are no sections which require postprocessing, we can
2495   // handle the section names now, and avoid a resize later.
2496   if (!this->any_postprocessing_sections_)
2497     {
2498       off = this->set_section_offsets(off,
2499                                       POSTPROCESSING_SECTIONS_PASS);
2500       off =
2501           this->set_section_offsets(off,
2502                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2503     }
2504
2505   file_header->set_section_info(this->section_headers_, shstrtab_section);
2506
2507   // Now we know exactly where everything goes in the output file
2508   // (except for non-allocated sections which require postprocessing).
2509   Output_data::layout_complete();
2510
2511   this->output_file_size_ = off;
2512
2513   return off;
2514 }
2515
2516 // Create a note header following the format defined in the ELF ABI.
2517 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2518 // of the section to create, DESCSZ is the size of the descriptor.
2519 // ALLOCATE is true if the section should be allocated in memory.
2520 // This returns the new note section.  It sets *TRAILING_PADDING to
2521 // the number of trailing zero bytes required.
2522
2523 Output_section*
2524 Layout::create_note(const char* name, int note_type,
2525                     const char* section_name, size_t descsz,
2526                     bool allocate, size_t* trailing_padding)
2527 {
2528   // Authorities all agree that the values in a .note field should
2529   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2530   // they differ on what the alignment is for 64-bit binaries.
2531   // The GABI says unambiguously they take 8-byte alignment:
2532   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2533   // Other documentation says alignment should always be 4 bytes:
2534   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2535   // GNU ld and GNU readelf both support the latter (at least as of
2536   // version 2.16.91), and glibc always generates the latter for
2537   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2538   // here.
2539 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2540   const int size = parameters->target().get_size();
2541 #else
2542   const int size = 32;
2543 #endif
2544
2545   // The contents of the .note section.
2546   size_t namesz = strlen(name) + 1;
2547   size_t aligned_namesz = align_address(namesz, size / 8);
2548   size_t aligned_descsz = align_address(descsz, size / 8);
2549
2550   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2551
2552   unsigned char* buffer = new unsigned char[notehdrsz];
2553   memset(buffer, 0, notehdrsz);
2554
2555   bool is_big_endian = parameters->target().is_big_endian();
2556
2557   if (size == 32)
2558     {
2559       if (!is_big_endian)
2560         {
2561           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2562           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2563           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2564         }
2565       else
2566         {
2567           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2568           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2569           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2570         }
2571     }
2572   else if (size == 64)
2573     {
2574       if (!is_big_endian)
2575         {
2576           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2577           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2578           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2579         }
2580       else
2581         {
2582           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2583           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2584           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2585         }
2586     }
2587   else
2588     gold_unreachable();
2589
2590   memcpy(buffer + 3 * (size / 8), name, namesz);
2591
2592   elfcpp::Elf_Xword flags = 0;
2593   Output_section_order order = ORDER_INVALID;
2594   if (allocate)
2595     {
2596       flags = elfcpp::SHF_ALLOC;
2597       order = ORDER_RO_NOTE;
2598     }
2599   Output_section* os = this->choose_output_section(NULL, section_name,
2600                                                    elfcpp::SHT_NOTE,
2601                                                    flags, false, order, false);
2602   if (os == NULL)
2603     return NULL;
2604
2605   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2606                                                            size / 8,
2607                                                            "** note header");
2608   os->add_output_section_data(posd);
2609
2610   *trailing_padding = aligned_descsz - descsz;
2611
2612   return os;
2613 }
2614
2615 // For an executable or shared library, create a note to record the
2616 // version of gold used to create the binary.
2617
2618 void
2619 Layout::create_gold_note()
2620 {
2621   if (parameters->options().relocatable()
2622       || parameters->incremental_update())
2623     return;
2624
2625   std::string desc = std::string("gold ") + gold::get_version_string();
2626
2627   size_t trailing_padding;
2628   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2629                                          ".note.gnu.gold-version", desc.size(),
2630                                          false, &trailing_padding);
2631   if (os == NULL)
2632     return;
2633
2634   Output_section_data* posd = new Output_data_const(desc, 4);
2635   os->add_output_section_data(posd);
2636
2637   if (trailing_padding > 0)
2638     {
2639       posd = new Output_data_zero_fill(trailing_padding, 0);
2640       os->add_output_section_data(posd);
2641     }
2642 }
2643
2644 // Record whether the stack should be executable.  This can be set
2645 // from the command line using the -z execstack or -z noexecstack
2646 // options.  Otherwise, if any input file has a .note.GNU-stack
2647 // section with the SHF_EXECINSTR flag set, the stack should be
2648 // executable.  Otherwise, if at least one input file a
2649 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2650 // section, we use the target default for whether the stack should be
2651 // executable.  Otherwise, we don't generate a stack note.  When
2652 // generating a object file, we create a .note.GNU-stack section with
2653 // the appropriate marking.  When generating an executable or shared
2654 // library, we create a PT_GNU_STACK segment.
2655
2656 void
2657 Layout::create_executable_stack_info()
2658 {
2659   bool is_stack_executable;
2660   if (parameters->options().is_execstack_set())
2661     is_stack_executable = parameters->options().is_stack_executable();
2662   else if (!this->input_with_gnu_stack_note_)
2663     return;
2664   else
2665     {
2666       if (this->input_requires_executable_stack_)
2667         is_stack_executable = true;
2668       else if (this->input_without_gnu_stack_note_)
2669         is_stack_executable =
2670           parameters->target().is_default_stack_executable();
2671       else
2672         is_stack_executable = false;
2673     }
2674
2675   if (parameters->options().relocatable())
2676     {
2677       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2678       elfcpp::Elf_Xword flags = 0;
2679       if (is_stack_executable)
2680         flags |= elfcpp::SHF_EXECINSTR;
2681       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2682                                 ORDER_INVALID, false);
2683     }
2684   else
2685     {
2686       if (this->script_options_->saw_phdrs_clause())
2687         return;
2688       int flags = elfcpp::PF_R | elfcpp::PF_W;
2689       if (is_stack_executable)
2690         flags |= elfcpp::PF_X;
2691       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2692     }
2693 }
2694
2695 // If --build-id was used, set up the build ID note.
2696
2697 void
2698 Layout::create_build_id()
2699 {
2700   if (!parameters->options().user_set_build_id())
2701     return;
2702
2703   const char* style = parameters->options().build_id();
2704   if (strcmp(style, "none") == 0)
2705     return;
2706
2707   // Set DESCSZ to the size of the note descriptor.  When possible,
2708   // set DESC to the note descriptor contents.
2709   size_t descsz;
2710   std::string desc;
2711   if (strcmp(style, "md5") == 0)
2712     descsz = 128 / 8;
2713   else if (strcmp(style, "sha1") == 0)
2714     descsz = 160 / 8;
2715   else if (strcmp(style, "uuid") == 0)
2716     {
2717       const size_t uuidsz = 128 / 8;
2718
2719       char buffer[uuidsz];
2720       memset(buffer, 0, uuidsz);
2721
2722       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2723       if (descriptor < 0)
2724         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2725                    strerror(errno));
2726       else
2727         {
2728           ssize_t got = ::read(descriptor, buffer, uuidsz);
2729           release_descriptor(descriptor, true);
2730           if (got < 0)
2731             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2732           else if (static_cast<size_t>(got) != uuidsz)
2733             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2734                        uuidsz, got);
2735         }
2736
2737       desc.assign(buffer, uuidsz);
2738       descsz = uuidsz;
2739     }
2740   else if (strncmp(style, "0x", 2) == 0)
2741     {
2742       hex_init();
2743       const char* p = style + 2;
2744       while (*p != '\0')
2745         {
2746           if (hex_p(p[0]) && hex_p(p[1]))
2747             {
2748               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2749               desc += c;
2750               p += 2;
2751             }
2752           else if (*p == '-' || *p == ':')
2753             ++p;
2754           else
2755             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2756                        style);
2757         }
2758       descsz = desc.size();
2759     }
2760   else
2761     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2762
2763   // Create the note.
2764   size_t trailing_padding;
2765   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2766                                          ".note.gnu.build-id", descsz, true,
2767                                          &trailing_padding);
2768   if (os == NULL)
2769     return;
2770
2771   if (!desc.empty())
2772     {
2773       // We know the value already, so we fill it in now.
2774       gold_assert(desc.size() == descsz);
2775
2776       Output_section_data* posd = new Output_data_const(desc, 4);
2777       os->add_output_section_data(posd);
2778
2779       if (trailing_padding != 0)
2780         {
2781           posd = new Output_data_zero_fill(trailing_padding, 0);
2782           os->add_output_section_data(posd);
2783         }
2784     }
2785   else
2786     {
2787       // We need to compute a checksum after we have completed the
2788       // link.
2789       gold_assert(trailing_padding == 0);
2790       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2791       os->add_output_section_data(this->build_id_note_);
2792     }
2793 }
2794
2795 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2796 // field of the former should point to the latter.  I'm not sure who
2797 // started this, but the GNU linker does it, and some tools depend
2798 // upon it.
2799
2800 void
2801 Layout::link_stabs_sections()
2802 {
2803   if (!this->have_stabstr_section_)
2804     return;
2805
2806   for (Section_list::iterator p = this->section_list_.begin();
2807        p != this->section_list_.end();
2808        ++p)
2809     {
2810       if ((*p)->type() != elfcpp::SHT_STRTAB)
2811         continue;
2812
2813       const char* name = (*p)->name();
2814       if (strncmp(name, ".stab", 5) != 0)
2815         continue;
2816
2817       size_t len = strlen(name);
2818       if (strcmp(name + len - 3, "str") != 0)
2819         continue;
2820
2821       std::string stab_name(name, len - 3);
2822       Output_section* stab_sec;
2823       stab_sec = this->find_output_section(stab_name.c_str());
2824       if (stab_sec != NULL)
2825         stab_sec->set_link_section(*p);
2826     }
2827 }
2828
2829 // Create .gnu_incremental_inputs and related sections needed
2830 // for the next run of incremental linking to check what has changed.
2831
2832 void
2833 Layout::create_incremental_info_sections(Symbol_table* symtab)
2834 {
2835   Incremental_inputs* incr = this->incremental_inputs_;
2836
2837   gold_assert(incr != NULL);
2838
2839   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2840   incr->create_data_sections(symtab);
2841
2842   // Add the .gnu_incremental_inputs section.
2843   const char* incremental_inputs_name =
2844     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2845   Output_section* incremental_inputs_os =
2846     this->make_output_section(incremental_inputs_name,
2847                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2848                               ORDER_INVALID, false);
2849   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2850
2851   // Add the .gnu_incremental_symtab section.
2852   const char* incremental_symtab_name =
2853     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2854   Output_section* incremental_symtab_os =
2855     this->make_output_section(incremental_symtab_name,
2856                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2857                               ORDER_INVALID, false);
2858   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2859   incremental_symtab_os->set_entsize(4);
2860
2861   // Add the .gnu_incremental_relocs section.
2862   const char* incremental_relocs_name =
2863     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2864   Output_section* incremental_relocs_os =
2865     this->make_output_section(incremental_relocs_name,
2866                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2867                               ORDER_INVALID, false);
2868   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2869   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2870
2871   // Add the .gnu_incremental_got_plt section.
2872   const char* incremental_got_plt_name =
2873     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2874   Output_section* incremental_got_plt_os =
2875     this->make_output_section(incremental_got_plt_name,
2876                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2877                               ORDER_INVALID, false);
2878   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2879
2880   // Add the .gnu_incremental_strtab section.
2881   const char* incremental_strtab_name =
2882     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2883   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2884                                                         elfcpp::SHT_STRTAB, 0,
2885                                                         ORDER_INVALID, false);
2886   Output_data_strtab* strtab_data =
2887       new Output_data_strtab(incr->get_stringpool());
2888   incremental_strtab_os->add_output_section_data(strtab_data);
2889
2890   incremental_inputs_os->set_after_input_sections();
2891   incremental_symtab_os->set_after_input_sections();
2892   incremental_relocs_os->set_after_input_sections();
2893   incremental_got_plt_os->set_after_input_sections();
2894
2895   incremental_inputs_os->set_link_section(incremental_strtab_os);
2896   incremental_symtab_os->set_link_section(incremental_inputs_os);
2897   incremental_relocs_os->set_link_section(incremental_inputs_os);
2898   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2899 }
2900
2901 // Return whether SEG1 should be before SEG2 in the output file.  This
2902 // is based entirely on the segment type and flags.  When this is
2903 // called the segment addresses have normally not yet been set.
2904
2905 bool
2906 Layout::segment_precedes(const Output_segment* seg1,
2907                          const Output_segment* seg2)
2908 {
2909   elfcpp::Elf_Word type1 = seg1->type();
2910   elfcpp::Elf_Word type2 = seg2->type();
2911
2912   // The single PT_PHDR segment is required to precede any loadable
2913   // segment.  We simply make it always first.
2914   if (type1 == elfcpp::PT_PHDR)
2915     {
2916       gold_assert(type2 != elfcpp::PT_PHDR);
2917       return true;
2918     }
2919   if (type2 == elfcpp::PT_PHDR)
2920     return false;
2921
2922   // The single PT_INTERP segment is required to precede any loadable
2923   // segment.  We simply make it always second.
2924   if (type1 == elfcpp::PT_INTERP)
2925     {
2926       gold_assert(type2 != elfcpp::PT_INTERP);
2927       return true;
2928     }
2929   if (type2 == elfcpp::PT_INTERP)
2930     return false;
2931
2932   // We then put PT_LOAD segments before any other segments.
2933   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2934     return true;
2935   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2936     return false;
2937
2938   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2939   // segment, because that is where the dynamic linker expects to find
2940   // it (this is just for efficiency; other positions would also work
2941   // correctly).
2942   if (type1 == elfcpp::PT_TLS
2943       && type2 != elfcpp::PT_TLS
2944       && type2 != elfcpp::PT_GNU_RELRO)
2945     return false;
2946   if (type2 == elfcpp::PT_TLS
2947       && type1 != elfcpp::PT_TLS
2948       && type1 != elfcpp::PT_GNU_RELRO)
2949     return true;
2950
2951   // We put the PT_GNU_RELRO segment last, because that is where the
2952   // dynamic linker expects to find it (as with PT_TLS, this is just
2953   // for efficiency).
2954   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2955     return false;
2956   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2957     return true;
2958
2959   const elfcpp::Elf_Word flags1 = seg1->flags();
2960   const elfcpp::Elf_Word flags2 = seg2->flags();
2961
2962   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2963   // by the numeric segment type and flags values.  There should not
2964   // be more than one segment with the same type and flags.
2965   if (type1 != elfcpp::PT_LOAD)
2966     {
2967       if (type1 != type2)
2968         return type1 < type2;
2969       gold_assert(flags1 != flags2);
2970       return flags1 < flags2;
2971     }
2972
2973   // If the addresses are set already, sort by load address.
2974   if (seg1->are_addresses_set())
2975     {
2976       if (!seg2->are_addresses_set())
2977         return true;
2978
2979       unsigned int section_count1 = seg1->output_section_count();
2980       unsigned int section_count2 = seg2->output_section_count();
2981       if (section_count1 == 0 && section_count2 > 0)
2982         return true;
2983       if (section_count1 > 0 && section_count2 == 0)
2984         return false;
2985
2986       uint64_t paddr1 = (seg1->are_addresses_set()
2987                          ? seg1->paddr()
2988                          : seg1->first_section_load_address());
2989       uint64_t paddr2 = (seg2->are_addresses_set()
2990                          ? seg2->paddr()
2991                          : seg2->first_section_load_address());
2992
2993       if (paddr1 != paddr2)
2994         return paddr1 < paddr2;
2995     }
2996   else if (seg2->are_addresses_set())
2997     return false;
2998
2999   // A segment which holds large data comes after a segment which does
3000   // not hold large data.
3001   if (seg1->is_large_data_segment())
3002     {
3003       if (!seg2->is_large_data_segment())
3004         return false;
3005     }
3006   else if (seg2->is_large_data_segment())
3007     return true;
3008
3009   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3010   // segments come before writable segments.  Then writable segments
3011   // with data come before writable segments without data.  Then
3012   // executable segments come before non-executable segments.  Then
3013   // the unlikely case of a non-readable segment comes before the
3014   // normal case of a readable segment.  If there are multiple
3015   // segments with the same type and flags, we require that the
3016   // address be set, and we sort by virtual address and then physical
3017   // address.
3018   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3019     return (flags1 & elfcpp::PF_W) == 0;
3020   if ((flags1 & elfcpp::PF_W) != 0
3021       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3022     return seg1->has_any_data_sections();
3023   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3024     return (flags1 & elfcpp::PF_X) != 0;
3025   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3026     return (flags1 & elfcpp::PF_R) == 0;
3027
3028   // We shouldn't get here--we shouldn't create segments which we
3029   // can't distinguish.  Unless of course we are using a weird linker
3030   // script or overlapping --section-start options.
3031   gold_assert(this->script_options_->saw_phdrs_clause()
3032               || parameters->options().any_section_start());
3033   return false;
3034 }
3035
3036 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3037
3038 static off_t
3039 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3040 {
3041   uint64_t unsigned_off = off;
3042   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3043                           | (addr & (abi_pagesize - 1)));
3044   if (aligned_off < unsigned_off)
3045     aligned_off += abi_pagesize;
3046   return aligned_off;
3047 }
3048
3049 // Set the file offsets of all the segments, and all the sections they
3050 // contain.  They have all been created.  LOAD_SEG must be be laid out
3051 // first.  Return the offset of the data to follow.
3052
3053 off_t
3054 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3055                             unsigned int* pshndx)
3056 {
3057   // Sort them into the final order.  We use a stable sort so that we
3058   // don't randomize the order of indistinguishable segments created
3059   // by linker scripts.
3060   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3061                    Layout::Compare_segments(this));
3062
3063   // Find the PT_LOAD segments, and set their addresses and offsets
3064   // and their section's addresses and offsets.
3065   uint64_t start_addr;
3066   if (parameters->options().user_set_Ttext())
3067     start_addr = parameters->options().Ttext();
3068   else if (parameters->options().output_is_position_independent())
3069     start_addr = 0;
3070   else
3071     start_addr = target->default_text_segment_address();
3072
3073   uint64_t addr = start_addr;
3074   off_t off = 0;
3075
3076   // If LOAD_SEG is NULL, then the file header and segment headers
3077   // will not be loadable.  But they still need to be at offset 0 in
3078   // the file.  Set their offsets now.
3079   if (load_seg == NULL)
3080     {
3081       for (Data_list::iterator p = this->special_output_list_.begin();
3082            p != this->special_output_list_.end();
3083            ++p)
3084         {
3085           off = align_address(off, (*p)->addralign());
3086           (*p)->set_address_and_file_offset(0, off);
3087           off += (*p)->data_size();
3088         }
3089     }
3090
3091   unsigned int increase_relro = this->increase_relro_;
3092   if (this->script_options_->saw_sections_clause())
3093     increase_relro = 0;
3094
3095   const bool check_sections = parameters->options().check_sections();
3096   Output_segment* last_load_segment = NULL;
3097
3098   unsigned int shndx_begin = *pshndx;
3099   unsigned int shndx_load_seg = *pshndx;
3100
3101   for (Segment_list::iterator p = this->segment_list_.begin();
3102        p != this->segment_list_.end();
3103        ++p)
3104     {
3105       if ((*p)->type() == elfcpp::PT_LOAD)
3106         {
3107           if (target->isolate_execinstr())
3108             {
3109               // When we hit the segment that should contain the
3110               // file headers, reset the file offset so we place
3111               // it and subsequent segments appropriately.
3112               // We'll fix up the preceding segments below.
3113               if (load_seg == *p)
3114                 {
3115                   if (off == 0)
3116                     load_seg = NULL;
3117                   else
3118                     {
3119                       off = 0;
3120                       shndx_load_seg = *pshndx;
3121                     }
3122                 }
3123             }
3124           else
3125             {
3126               // Verify that the file headers fall into the first segment.
3127               if (load_seg != NULL && load_seg != *p)
3128                 gold_unreachable();
3129               load_seg = NULL;
3130             }
3131
3132           bool are_addresses_set = (*p)->are_addresses_set();
3133           if (are_addresses_set)
3134             {
3135               // When it comes to setting file offsets, we care about
3136               // the physical address.
3137               addr = (*p)->paddr();
3138             }
3139           else if (parameters->options().user_set_Ttext()
3140                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3141             {
3142               are_addresses_set = true;
3143             }
3144           else if (parameters->options().user_set_Tdata()
3145                    && ((*p)->flags() & elfcpp::PF_W) != 0
3146                    && (!parameters->options().user_set_Tbss()
3147                        || (*p)->has_any_data_sections()))
3148             {
3149               addr = parameters->options().Tdata();
3150               are_addresses_set = true;
3151             }
3152           else if (parameters->options().user_set_Tbss()
3153                    && ((*p)->flags() & elfcpp::PF_W) != 0
3154                    && !(*p)->has_any_data_sections())
3155             {
3156               addr = parameters->options().Tbss();
3157               are_addresses_set = true;
3158             }
3159
3160           uint64_t orig_addr = addr;
3161           uint64_t orig_off = off;
3162
3163           uint64_t aligned_addr = 0;
3164           uint64_t abi_pagesize = target->abi_pagesize();
3165           uint64_t common_pagesize = target->common_pagesize();
3166
3167           if (!parameters->options().nmagic()
3168               && !parameters->options().omagic())
3169             (*p)->set_minimum_p_align(common_pagesize);
3170
3171           if (!are_addresses_set)
3172             {
3173               // Skip the address forward one page, maintaining the same
3174               // position within the page.  This lets us store both segments
3175               // overlapping on a single page in the file, but the loader will
3176               // put them on different pages in memory. We will revisit this
3177               // decision once we know the size of the segment.
3178
3179               addr = align_address(addr, (*p)->maximum_alignment());
3180               aligned_addr = addr;
3181
3182               if (load_seg == *p)
3183                 {
3184                   // This is the segment that will contain the file
3185                   // headers, so its offset will have to be exactly zero.
3186                   gold_assert(orig_off == 0);
3187
3188                   // If the target wants a fixed minimum distance from the
3189                   // text segment to the read-only segment, move up now.
3190                   uint64_t min_addr = start_addr + target->rosegment_gap();
3191                   if (addr < min_addr)
3192                     addr = min_addr;
3193
3194                   // But this is not the first segment!  To make its
3195                   // address congruent with its offset, that address better
3196                   // be aligned to the ABI-mandated page size.
3197                   addr = align_address(addr, abi_pagesize);
3198                   aligned_addr = addr;
3199                 }
3200               else
3201                 {
3202                   if ((addr & (abi_pagesize - 1)) != 0)
3203                     addr = addr + abi_pagesize;
3204
3205                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3206                 }
3207             }
3208
3209           if (!parameters->options().nmagic()
3210               && !parameters->options().omagic())
3211             off = align_file_offset(off, addr, abi_pagesize);
3212           else
3213             {
3214               // This is -N or -n with a section script which prevents
3215               // us from using a load segment.  We need to ensure that
3216               // the file offset is aligned to the alignment of the
3217               // segment.  This is because the linker script
3218               // implicitly assumed a zero offset.  If we don't align
3219               // here, then the alignment of the sections in the
3220               // linker script may not match the alignment of the
3221               // sections in the set_section_addresses call below,
3222               // causing an error about dot moving backward.
3223               off = align_address(off, (*p)->maximum_alignment());
3224             }
3225
3226           unsigned int shndx_hold = *pshndx;
3227           bool has_relro = false;
3228           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3229                                                           &increase_relro,
3230                                                           &has_relro,
3231                                                           &off, pshndx);
3232
3233           // Now that we know the size of this segment, we may be able
3234           // to save a page in memory, at the cost of wasting some
3235           // file space, by instead aligning to the start of a new
3236           // page.  Here we use the real machine page size rather than
3237           // the ABI mandated page size.  If the segment has been
3238           // aligned so that the relro data ends at a page boundary,
3239           // we do not try to realign it.
3240
3241           if (!are_addresses_set
3242               && !has_relro
3243               && aligned_addr != addr
3244               && !parameters->incremental())
3245             {
3246               uint64_t first_off = (common_pagesize
3247                                     - (aligned_addr
3248                                        & (common_pagesize - 1)));
3249               uint64_t last_off = new_addr & (common_pagesize - 1);
3250               if (first_off > 0
3251                   && last_off > 0
3252                   && ((aligned_addr & ~ (common_pagesize - 1))
3253                       != (new_addr & ~ (common_pagesize - 1)))
3254                   && first_off + last_off <= common_pagesize)
3255                 {
3256                   *pshndx = shndx_hold;
3257                   addr = align_address(aligned_addr, common_pagesize);
3258                   addr = align_address(addr, (*p)->maximum_alignment());
3259                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3260                   off = align_file_offset(off, addr, abi_pagesize);
3261
3262                   increase_relro = this->increase_relro_;
3263                   if (this->script_options_->saw_sections_clause())
3264                     increase_relro = 0;
3265                   has_relro = false;
3266
3267                   new_addr = (*p)->set_section_addresses(this, true, addr,
3268                                                          &increase_relro,
3269                                                          &has_relro,
3270                                                          &off, pshndx);
3271                 }
3272             }
3273
3274           addr = new_addr;
3275
3276           // Implement --check-sections.  We know that the segments
3277           // are sorted by LMA.
3278           if (check_sections && last_load_segment != NULL)
3279             {
3280               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3281               if (last_load_segment->paddr() + last_load_segment->memsz()
3282                   > (*p)->paddr())
3283                 {
3284                   unsigned long long lb1 = last_load_segment->paddr();
3285                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3286                   unsigned long long lb2 = (*p)->paddr();
3287                   unsigned long long le2 = lb2 + (*p)->memsz();
3288                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3289                                "[0x%llx -> 0x%llx]"),
3290                              lb1, le1, lb2, le2);
3291                 }
3292             }
3293           last_load_segment = *p;
3294         }
3295     }
3296
3297   if (load_seg != NULL && target->isolate_execinstr())
3298     {
3299       // Process the early segments again, setting their file offsets
3300       // so they land after the segments starting at LOAD_SEG.
3301       off = align_file_offset(off, 0, target->abi_pagesize());
3302
3303       for (Segment_list::iterator p = this->segment_list_.begin();
3304            *p != load_seg;
3305            ++p)
3306         {
3307           if ((*p)->type() == elfcpp::PT_LOAD)
3308             {
3309               // We repeat the whole job of assigning addresses and
3310               // offsets, but we really only want to change the offsets and
3311               // must ensure that the addresses all come out the same as
3312               // they did the first time through.
3313               bool has_relro = false;
3314               const uint64_t old_addr = (*p)->vaddr();
3315               const uint64_t old_end = old_addr + (*p)->memsz();
3316               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3317                                                               old_addr,
3318                                                               &increase_relro,
3319                                                               &has_relro,
3320                                                               &off,
3321                                                               &shndx_begin);
3322               gold_assert(new_addr == old_end);
3323             }
3324         }
3325
3326       gold_assert(shndx_begin == shndx_load_seg);
3327     }
3328
3329   // Handle the non-PT_LOAD segments, setting their offsets from their
3330   // section's offsets.
3331   for (Segment_list::iterator p = this->segment_list_.begin();
3332        p != this->segment_list_.end();
3333        ++p)
3334     {
3335       if ((*p)->type() != elfcpp::PT_LOAD)
3336         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3337                          ? increase_relro
3338                          : 0);
3339     }
3340
3341   // Set the TLS offsets for each section in the PT_TLS segment.
3342   if (this->tls_segment_ != NULL)
3343     this->tls_segment_->set_tls_offsets();
3344
3345   return off;
3346 }
3347
3348 // Set the offsets of all the allocated sections when doing a
3349 // relocatable link.  This does the same jobs as set_segment_offsets,
3350 // only for a relocatable link.
3351
3352 off_t
3353 Layout::set_relocatable_section_offsets(Output_data* file_header,
3354                                         unsigned int* pshndx)
3355 {
3356   off_t off = 0;
3357
3358   file_header->set_address_and_file_offset(0, 0);
3359   off += file_header->data_size();
3360
3361   for (Section_list::iterator p = this->section_list_.begin();
3362        p != this->section_list_.end();
3363        ++p)
3364     {
3365       // We skip unallocated sections here, except that group sections
3366       // have to come first.
3367       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3368           && (*p)->type() != elfcpp::SHT_GROUP)
3369         continue;
3370
3371       off = align_address(off, (*p)->addralign());
3372
3373       // The linker script might have set the address.
3374       if (!(*p)->is_address_valid())
3375         (*p)->set_address(0);
3376       (*p)->set_file_offset(off);
3377       (*p)->finalize_data_size();
3378       off += (*p)->data_size();
3379
3380       (*p)->set_out_shndx(*pshndx);
3381       ++*pshndx;
3382     }
3383
3384   return off;
3385 }
3386
3387 // Set the file offset of all the sections not associated with a
3388 // segment.
3389
3390 off_t
3391 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3392 {
3393   off_t startoff = off;
3394   off_t maxoff = off;
3395
3396   for (Section_list::iterator p = this->unattached_section_list_.begin();
3397        p != this->unattached_section_list_.end();
3398        ++p)
3399     {
3400       // The symtab section is handled in create_symtab_sections.
3401       if (*p == this->symtab_section_)
3402         continue;
3403
3404       // If we've already set the data size, don't set it again.
3405       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3406         continue;
3407
3408       if (pass == BEFORE_INPUT_SECTIONS_PASS
3409           && (*p)->requires_postprocessing())
3410         {
3411           (*p)->create_postprocessing_buffer();
3412           this->any_postprocessing_sections_ = true;
3413         }
3414
3415       if (pass == BEFORE_INPUT_SECTIONS_PASS
3416           && (*p)->after_input_sections())
3417         continue;
3418       else if (pass == POSTPROCESSING_SECTIONS_PASS
3419                && (!(*p)->after_input_sections()
3420                    || (*p)->type() == elfcpp::SHT_STRTAB))
3421         continue;
3422       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3423                && (!(*p)->after_input_sections()
3424                    || (*p)->type() != elfcpp::SHT_STRTAB))
3425         continue;
3426
3427       if (!parameters->incremental_update())
3428         {
3429           off = align_address(off, (*p)->addralign());
3430           (*p)->set_file_offset(off);
3431           (*p)->finalize_data_size();
3432         }
3433       else
3434         {
3435           // Incremental update: allocate file space from free list.
3436           (*p)->pre_finalize_data_size();
3437           off_t current_size = (*p)->current_data_size();
3438           off = this->allocate(current_size, (*p)->addralign(), startoff);
3439           if (off == -1)
3440             {
3441               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3442                 this->free_list_.dump();
3443               gold_assert((*p)->output_section() != NULL);
3444               gold_fallback(_("out of patch space for section %s; "
3445                               "relink with --incremental-full"),
3446                             (*p)->output_section()->name());
3447             }
3448           (*p)->set_file_offset(off);
3449           (*p)->finalize_data_size();
3450           if ((*p)->data_size() > current_size)
3451             {
3452               gold_assert((*p)->output_section() != NULL);
3453               gold_fallback(_("%s: section changed size; "
3454                               "relink with --incremental-full"),
3455                             (*p)->output_section()->name());
3456             }
3457           gold_debug(DEBUG_INCREMENTAL,
3458                      "set_section_offsets: %08lx %08lx %s",
3459                      static_cast<long>(off),
3460                      static_cast<long>((*p)->data_size()),
3461                      ((*p)->output_section() != NULL
3462                       ? (*p)->output_section()->name() : "(special)"));
3463         }
3464
3465       off += (*p)->data_size();
3466       if (off > maxoff)
3467         maxoff = off;
3468
3469       // At this point the name must be set.
3470       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3471         this->namepool_.add((*p)->name(), false, NULL);
3472     }
3473   return maxoff;
3474 }
3475
3476 // Set the section indexes of all the sections not associated with a
3477 // segment.
3478
3479 unsigned int
3480 Layout::set_section_indexes(unsigned int shndx)
3481 {
3482   for (Section_list::iterator p = this->unattached_section_list_.begin();
3483        p != this->unattached_section_list_.end();
3484        ++p)
3485     {
3486       if (!(*p)->has_out_shndx())
3487         {
3488           (*p)->set_out_shndx(shndx);
3489           ++shndx;
3490         }
3491     }
3492   return shndx;
3493 }
3494
3495 // Set the section addresses according to the linker script.  This is
3496 // only called when we see a SECTIONS clause.  This returns the
3497 // program segment which should hold the file header and segment
3498 // headers, if any.  It will return NULL if they should not be in a
3499 // segment.
3500
3501 Output_segment*
3502 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3503 {
3504   Script_sections* ss = this->script_options_->script_sections();
3505   gold_assert(ss->saw_sections_clause());
3506   return this->script_options_->set_section_addresses(symtab, this);
3507 }
3508
3509 // Place the orphan sections in the linker script.
3510
3511 void
3512 Layout::place_orphan_sections_in_script()
3513 {
3514   Script_sections* ss = this->script_options_->script_sections();
3515   gold_assert(ss->saw_sections_clause());
3516
3517   // Place each orphaned output section in the script.
3518   for (Section_list::iterator p = this->section_list_.begin();
3519        p != this->section_list_.end();
3520        ++p)
3521     {
3522       if (!(*p)->found_in_sections_clause())
3523         ss->place_orphan(*p);
3524     }
3525 }
3526
3527 // Count the local symbols in the regular symbol table and the dynamic
3528 // symbol table, and build the respective string pools.
3529
3530 void
3531 Layout::count_local_symbols(const Task* task,
3532                             const Input_objects* input_objects)
3533 {
3534   // First, figure out an upper bound on the number of symbols we'll
3535   // be inserting into each pool.  This helps us create the pools with
3536   // the right size, to avoid unnecessary hashtable resizing.
3537   unsigned int symbol_count = 0;
3538   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3539        p != input_objects->relobj_end();
3540        ++p)
3541     symbol_count += (*p)->local_symbol_count();
3542
3543   // Go from "upper bound" to "estimate."  We overcount for two
3544   // reasons: we double-count symbols that occur in more than one
3545   // object file, and we count symbols that are dropped from the
3546   // output.  Add it all together and assume we overcount by 100%.
3547   symbol_count /= 2;
3548
3549   // We assume all symbols will go into both the sympool and dynpool.
3550   this->sympool_.reserve(symbol_count);
3551   this->dynpool_.reserve(symbol_count);
3552
3553   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3554        p != input_objects->relobj_end();
3555        ++p)
3556     {
3557       Task_lock_obj<Object> tlo(task, *p);
3558       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3559     }
3560 }
3561
3562 // Create the symbol table sections.  Here we also set the final
3563 // values of the symbols.  At this point all the loadable sections are
3564 // fully laid out.  SHNUM is the number of sections so far.
3565
3566 void
3567 Layout::create_symtab_sections(const Input_objects* input_objects,
3568                                Symbol_table* symtab,
3569                                unsigned int shnum,
3570                                off_t* poff)
3571 {
3572   int symsize;
3573   unsigned int align;
3574   if (parameters->target().get_size() == 32)
3575     {
3576       symsize = elfcpp::Elf_sizes<32>::sym_size;
3577       align = 4;
3578     }
3579   else if (parameters->target().get_size() == 64)
3580     {
3581       symsize = elfcpp::Elf_sizes<64>::sym_size;
3582       align = 8;
3583     }
3584   else
3585     gold_unreachable();
3586
3587   // Compute file offsets relative to the start of the symtab section.
3588   off_t off = 0;
3589
3590   // Save space for the dummy symbol at the start of the section.  We
3591   // never bother to write this out--it will just be left as zero.
3592   off += symsize;
3593   unsigned int local_symbol_index = 1;
3594
3595   // Add STT_SECTION symbols for each Output section which needs one.
3596   for (Section_list::iterator p = this->section_list_.begin();
3597        p != this->section_list_.end();
3598        ++p)
3599     {
3600       if (!(*p)->needs_symtab_index())
3601         (*p)->set_symtab_index(-1U);
3602       else
3603         {
3604           (*p)->set_symtab_index(local_symbol_index);
3605           ++local_symbol_index;
3606           off += symsize;
3607         }
3608     }
3609
3610   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3611        p != input_objects->relobj_end();
3612        ++p)
3613     {
3614       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3615                                                         off, symtab);
3616       off += (index - local_symbol_index) * symsize;
3617       local_symbol_index = index;
3618     }
3619
3620   unsigned int local_symcount = local_symbol_index;
3621   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3622
3623   off_t dynoff;
3624   size_t dyn_global_index;
3625   size_t dyncount;
3626   if (this->dynsym_section_ == NULL)
3627     {
3628       dynoff = 0;
3629       dyn_global_index = 0;
3630       dyncount = 0;
3631     }
3632   else
3633     {
3634       dyn_global_index = this->dynsym_section_->info();
3635       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3636       dynoff = this->dynsym_section_->offset() + locsize;
3637       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3638       gold_assert(static_cast<off_t>(dyncount * symsize)
3639                   == this->dynsym_section_->data_size() - locsize);
3640     }
3641
3642   off_t global_off = off;
3643   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3644                          &this->sympool_, &local_symcount);
3645
3646   if (!parameters->options().strip_all())
3647     {
3648       this->sympool_.set_string_offsets();
3649
3650       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3651       Output_section* osymtab = this->make_output_section(symtab_name,
3652                                                           elfcpp::SHT_SYMTAB,
3653                                                           0, ORDER_INVALID,
3654                                                           false);
3655       this->symtab_section_ = osymtab;
3656
3657       Output_section_data* pos = new Output_data_fixed_space(off, align,
3658                                                              "** symtab");
3659       osymtab->add_output_section_data(pos);
3660
3661       // We generate a .symtab_shndx section if we have more than
3662       // SHN_LORESERVE sections.  Technically it is possible that we
3663       // don't need one, because it is possible that there are no
3664       // symbols in any of sections with indexes larger than
3665       // SHN_LORESERVE.  That is probably unusual, though, and it is
3666       // easier to always create one than to compute section indexes
3667       // twice (once here, once when writing out the symbols).
3668       if (shnum >= elfcpp::SHN_LORESERVE)
3669         {
3670           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3671                                                                false, NULL);
3672           Output_section* osymtab_xindex =
3673             this->make_output_section(symtab_xindex_name,
3674                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3675                                       ORDER_INVALID, false);
3676
3677           size_t symcount = off / symsize;
3678           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3679
3680           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3681
3682           osymtab_xindex->set_link_section(osymtab);
3683           osymtab_xindex->set_addralign(4);
3684           osymtab_xindex->set_entsize(4);
3685
3686           osymtab_xindex->set_after_input_sections();
3687
3688           // This tells the driver code to wait until the symbol table
3689           // has written out before writing out the postprocessing
3690           // sections, including the .symtab_shndx section.
3691           this->any_postprocessing_sections_ = true;
3692         }
3693
3694       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3695       Output_section* ostrtab = this->make_output_section(strtab_name,
3696                                                           elfcpp::SHT_STRTAB,
3697                                                           0, ORDER_INVALID,
3698                                                           false);
3699
3700       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3701       ostrtab->add_output_section_data(pstr);
3702
3703       off_t symtab_off;
3704       if (!parameters->incremental_update())
3705         symtab_off = align_address(*poff, align);
3706       else
3707         {
3708           symtab_off = this->allocate(off, align, *poff);
3709           if (off == -1)
3710             gold_fallback(_("out of patch space for symbol table; "
3711                             "relink with --incremental-full"));
3712           gold_debug(DEBUG_INCREMENTAL,
3713                      "create_symtab_sections: %08lx %08lx .symtab",
3714                      static_cast<long>(symtab_off),
3715                      static_cast<long>(off));
3716         }
3717
3718       symtab->set_file_offset(symtab_off + global_off);
3719       osymtab->set_file_offset(symtab_off);
3720       osymtab->finalize_data_size();
3721       osymtab->set_link_section(ostrtab);
3722       osymtab->set_info(local_symcount);
3723       osymtab->set_entsize(symsize);
3724
3725       if (symtab_off + off > *poff)
3726         *poff = symtab_off + off;
3727     }
3728 }
3729
3730 // Create the .shstrtab section, which holds the names of the
3731 // sections.  At the time this is called, we have created all the
3732 // output sections except .shstrtab itself.
3733
3734 Output_section*
3735 Layout::create_shstrtab()
3736 {
3737   // FIXME: We don't need to create a .shstrtab section if we are
3738   // stripping everything.
3739
3740   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3741
3742   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3743                                                  ORDER_INVALID, false);
3744
3745   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3746     {
3747       // We can't write out this section until we've set all the
3748       // section names, and we don't set the names of compressed
3749       // output sections until relocations are complete.  FIXME: With
3750       // the current names we use, this is unnecessary.
3751       os->set_after_input_sections();
3752     }
3753
3754   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3755   os->add_output_section_data(posd);
3756
3757   return os;
3758 }
3759
3760 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3761 // offset.
3762
3763 void
3764 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3765 {
3766   Output_section_headers* oshdrs;
3767   oshdrs = new Output_section_headers(this,
3768                                       &this->segment_list_,
3769                                       &this->section_list_,
3770                                       &this->unattached_section_list_,
3771                                       &this->namepool_,
3772                                       shstrtab_section);
3773   off_t off;
3774   if (!parameters->incremental_update())
3775     off = align_address(*poff, oshdrs->addralign());
3776   else
3777     {
3778       oshdrs->pre_finalize_data_size();
3779       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3780       if (off == -1)
3781           gold_fallback(_("out of patch space for section header table; "
3782                           "relink with --incremental-full"));
3783       gold_debug(DEBUG_INCREMENTAL,
3784                  "create_shdrs: %08lx %08lx (section header table)",
3785                  static_cast<long>(off),
3786                  static_cast<long>(off + oshdrs->data_size()));
3787     }
3788   oshdrs->set_address_and_file_offset(0, off);
3789   off += oshdrs->data_size();
3790   if (off > *poff)
3791     *poff = off;
3792   this->section_headers_ = oshdrs;
3793 }
3794
3795 // Count the allocated sections.
3796
3797 size_t
3798 Layout::allocated_output_section_count() const
3799 {
3800   size_t section_count = 0;
3801   for (Segment_list::const_iterator p = this->segment_list_.begin();
3802        p != this->segment_list_.end();
3803        ++p)
3804     section_count += (*p)->output_section_count();
3805   return section_count;
3806 }
3807
3808 // Create the dynamic symbol table.
3809
3810 void
3811 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3812                               Symbol_table* symtab,
3813                               Output_section** pdynstr,
3814                               unsigned int* plocal_dynamic_count,
3815                               std::vector<Symbol*>* pdynamic_symbols,
3816                               Versions* pversions)
3817 {
3818   // Count all the symbols in the dynamic symbol table, and set the
3819   // dynamic symbol indexes.
3820
3821   // Skip symbol 0, which is always all zeroes.
3822   unsigned int index = 1;
3823
3824   // Add STT_SECTION symbols for each Output section which needs one.
3825   for (Section_list::iterator p = this->section_list_.begin();
3826        p != this->section_list_.end();
3827        ++p)
3828     {
3829       if (!(*p)->needs_dynsym_index())
3830         (*p)->set_dynsym_index(-1U);
3831       else
3832         {
3833           (*p)->set_dynsym_index(index);
3834           ++index;
3835         }
3836     }
3837
3838   // Count the local symbols that need to go in the dynamic symbol table,
3839   // and set the dynamic symbol indexes.
3840   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3841        p != input_objects->relobj_end();
3842        ++p)
3843     {
3844       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3845       index = new_index;
3846     }
3847
3848   unsigned int local_symcount = index;
3849   *plocal_dynamic_count = local_symcount;
3850
3851   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3852                                      &this->dynpool_, pversions);
3853
3854   int symsize;
3855   unsigned int align;
3856   const int size = parameters->target().get_size();
3857   if (size == 32)
3858     {
3859       symsize = elfcpp::Elf_sizes<32>::sym_size;
3860       align = 4;
3861     }
3862   else if (size == 64)
3863     {
3864       symsize = elfcpp::Elf_sizes<64>::sym_size;
3865       align = 8;
3866     }
3867   else
3868     gold_unreachable();
3869
3870   // Create the dynamic symbol table section.
3871
3872   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3873                                                        elfcpp::SHT_DYNSYM,
3874                                                        elfcpp::SHF_ALLOC,
3875                                                        false,
3876                                                        ORDER_DYNAMIC_LINKER,
3877                                                        false);
3878
3879   // Check for NULL as a linker script may discard .dynsym.
3880   if (dynsym != NULL)
3881     {
3882       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3883                                                                align,
3884                                                                "** dynsym");
3885       dynsym->add_output_section_data(odata);
3886
3887       dynsym->set_info(local_symcount);
3888       dynsym->set_entsize(symsize);
3889       dynsym->set_addralign(align);
3890
3891       this->dynsym_section_ = dynsym;
3892     }
3893
3894   Output_data_dynamic* const odyn = this->dynamic_data_;
3895   if (odyn != NULL)
3896     {
3897       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3898       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3899     }
3900
3901   // If there are more than SHN_LORESERVE allocated sections, we
3902   // create a .dynsym_shndx section.  It is possible that we don't
3903   // need one, because it is possible that there are no dynamic
3904   // symbols in any of the sections with indexes larger than
3905   // SHN_LORESERVE.  This is probably unusual, though, and at this
3906   // time we don't know the actual section indexes so it is
3907   // inconvenient to check.
3908   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3909     {
3910       Output_section* dynsym_xindex =
3911         this->choose_output_section(NULL, ".dynsym_shndx",
3912                                     elfcpp::SHT_SYMTAB_SHNDX,
3913                                     elfcpp::SHF_ALLOC,
3914                                     false, ORDER_DYNAMIC_LINKER, false);
3915
3916       if (dynsym_xindex != NULL)
3917         {
3918           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3919
3920           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3921
3922           dynsym_xindex->set_link_section(dynsym);
3923           dynsym_xindex->set_addralign(4);
3924           dynsym_xindex->set_entsize(4);
3925
3926           dynsym_xindex->set_after_input_sections();
3927
3928           // This tells the driver code to wait until the symbol table
3929           // has written out before writing out the postprocessing
3930           // sections, including the .dynsym_shndx section.
3931           this->any_postprocessing_sections_ = true;
3932         }
3933     }
3934
3935   // Create the dynamic string table section.
3936
3937   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3938                                                        elfcpp::SHT_STRTAB,
3939                                                        elfcpp::SHF_ALLOC,
3940                                                        false,
3941                                                        ORDER_DYNAMIC_LINKER,
3942                                                        false);
3943
3944   if (dynstr != NULL)
3945     {
3946       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3947       dynstr->add_output_section_data(strdata);
3948
3949       if (dynsym != NULL)
3950         dynsym->set_link_section(dynstr);
3951       if (this->dynamic_section_ != NULL)
3952         this->dynamic_section_->set_link_section(dynstr);
3953
3954       if (odyn != NULL)
3955         {
3956           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3957           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3958         }
3959
3960       *pdynstr = dynstr;
3961     }
3962
3963   // Create the hash tables.
3964
3965   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3966       || strcmp(parameters->options().hash_style(), "both") == 0)
3967     {
3968       unsigned char* phash;
3969       unsigned int hashlen;
3970       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3971                                     &phash, &hashlen);
3972
3973       Output_section* hashsec =
3974         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3975                                     elfcpp::SHF_ALLOC, false,
3976                                     ORDER_DYNAMIC_LINKER, false);
3977
3978       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3979                                                                    hashlen,
3980                                                                    align,
3981                                                                    "** hash");
3982       if (hashsec != NULL && hashdata != NULL)
3983         hashsec->add_output_section_data(hashdata);
3984
3985       if (hashsec != NULL)
3986         {
3987           if (dynsym != NULL)
3988             hashsec->set_link_section(dynsym);
3989           hashsec->set_entsize(4);
3990         }
3991
3992       if (odyn != NULL)
3993         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3994     }
3995
3996   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3997       || strcmp(parameters->options().hash_style(), "both") == 0)
3998     {
3999       unsigned char* phash;
4000       unsigned int hashlen;
4001       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4002                                     &phash, &hashlen);
4003
4004       Output_section* hashsec =
4005         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4006                                     elfcpp::SHF_ALLOC, false,
4007                                     ORDER_DYNAMIC_LINKER, false);
4008
4009       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4010                                                                    hashlen,
4011                                                                    align,
4012                                                                    "** hash");
4013       if (hashsec != NULL && hashdata != NULL)
4014         hashsec->add_output_section_data(hashdata);
4015
4016       if (hashsec != NULL)
4017         {
4018           if (dynsym != NULL)
4019             hashsec->set_link_section(dynsym);
4020
4021           // For a 64-bit target, the entries in .gnu.hash do not have
4022           // a uniform size, so we only set the entry size for a
4023           // 32-bit target.
4024           if (parameters->target().get_size() == 32)
4025             hashsec->set_entsize(4);
4026
4027           if (odyn != NULL)
4028             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4029         }
4030     }
4031 }
4032
4033 // Assign offsets to each local portion of the dynamic symbol table.
4034
4035 void
4036 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4037 {
4038   Output_section* dynsym = this->dynsym_section_;
4039   if (dynsym == NULL)
4040     return;
4041
4042   off_t off = dynsym->offset();
4043
4044   // Skip the dummy symbol at the start of the section.
4045   off += dynsym->entsize();
4046
4047   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4048        p != input_objects->relobj_end();
4049        ++p)
4050     {
4051       unsigned int count = (*p)->set_local_dynsym_offset(off);
4052       off += count * dynsym->entsize();
4053     }
4054 }
4055
4056 // Create the version sections.
4057
4058 void
4059 Layout::create_version_sections(const Versions* versions,
4060                                 const Symbol_table* symtab,
4061                                 unsigned int local_symcount,
4062                                 const std::vector<Symbol*>& dynamic_symbols,
4063                                 const Output_section* dynstr)
4064 {
4065   if (!versions->any_defs() && !versions->any_needs())
4066     return;
4067
4068   switch (parameters->size_and_endianness())
4069     {
4070 #ifdef HAVE_TARGET_32_LITTLE
4071     case Parameters::TARGET_32_LITTLE:
4072       this->sized_create_version_sections<32, false>(versions, symtab,
4073                                                      local_symcount,
4074                                                      dynamic_symbols, dynstr);
4075       break;
4076 #endif
4077 #ifdef HAVE_TARGET_32_BIG
4078     case Parameters::TARGET_32_BIG:
4079       this->sized_create_version_sections<32, true>(versions, symtab,
4080                                                     local_symcount,
4081                                                     dynamic_symbols, dynstr);
4082       break;
4083 #endif
4084 #ifdef HAVE_TARGET_64_LITTLE
4085     case Parameters::TARGET_64_LITTLE:
4086       this->sized_create_version_sections<64, false>(versions, symtab,
4087                                                      local_symcount,
4088                                                      dynamic_symbols, dynstr);
4089       break;
4090 #endif
4091 #ifdef HAVE_TARGET_64_BIG
4092     case Parameters::TARGET_64_BIG:
4093       this->sized_create_version_sections<64, true>(versions, symtab,
4094                                                     local_symcount,
4095                                                     dynamic_symbols, dynstr);
4096       break;
4097 #endif
4098     default:
4099       gold_unreachable();
4100     }
4101 }
4102
4103 // Create the version sections, sized version.
4104
4105 template<int size, bool big_endian>
4106 void
4107 Layout::sized_create_version_sections(
4108     const Versions* versions,
4109     const Symbol_table* symtab,
4110     unsigned int local_symcount,
4111     const std::vector<Symbol*>& dynamic_symbols,
4112     const Output_section* dynstr)
4113 {
4114   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4115                                                      elfcpp::SHT_GNU_versym,
4116                                                      elfcpp::SHF_ALLOC,
4117                                                      false,
4118                                                      ORDER_DYNAMIC_LINKER,
4119                                                      false);
4120
4121   // Check for NULL since a linker script may discard this section.
4122   if (vsec != NULL)
4123     {
4124       unsigned char* vbuf;
4125       unsigned int vsize;
4126       versions->symbol_section_contents<size, big_endian>(symtab,
4127                                                           &this->dynpool_,
4128                                                           local_symcount,
4129                                                           dynamic_symbols,
4130                                                           &vbuf, &vsize);
4131
4132       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4133                                                                 "** versions");
4134
4135       vsec->add_output_section_data(vdata);
4136       vsec->set_entsize(2);
4137       vsec->set_link_section(this->dynsym_section_);
4138     }
4139
4140   Output_data_dynamic* const odyn = this->dynamic_data_;
4141   if (odyn != NULL && vsec != NULL)
4142     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4143
4144   if (versions->any_defs())
4145     {
4146       Output_section* vdsec;
4147       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4148                                           elfcpp::SHT_GNU_verdef,
4149                                           elfcpp::SHF_ALLOC,
4150                                           false, ORDER_DYNAMIC_LINKER, false);
4151
4152       if (vdsec != NULL)
4153         {
4154           unsigned char* vdbuf;
4155           unsigned int vdsize;
4156           unsigned int vdentries;
4157           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4158                                                            &vdbuf, &vdsize,
4159                                                            &vdentries);
4160
4161           Output_section_data* vddata =
4162             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4163
4164           vdsec->add_output_section_data(vddata);
4165           vdsec->set_link_section(dynstr);
4166           vdsec->set_info(vdentries);
4167
4168           if (odyn != NULL)
4169             {
4170               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4171               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4172             }
4173         }
4174     }
4175
4176   if (versions->any_needs())
4177     {
4178       Output_section* vnsec;
4179       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4180                                           elfcpp::SHT_GNU_verneed,
4181                                           elfcpp::SHF_ALLOC,
4182                                           false, ORDER_DYNAMIC_LINKER, false);
4183
4184       if (vnsec != NULL)
4185         {
4186           unsigned char* vnbuf;
4187           unsigned int vnsize;
4188           unsigned int vnentries;
4189           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4190                                                             &vnbuf, &vnsize,
4191                                                             &vnentries);
4192
4193           Output_section_data* vndata =
4194             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4195
4196           vnsec->add_output_section_data(vndata);
4197           vnsec->set_link_section(dynstr);
4198           vnsec->set_info(vnentries);
4199
4200           if (odyn != NULL)
4201             {
4202               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4203               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4204             }
4205         }
4206     }
4207 }
4208
4209 // Create the .interp section and PT_INTERP segment.
4210
4211 void
4212 Layout::create_interp(const Target* target)
4213 {
4214   gold_assert(this->interp_segment_ == NULL);
4215
4216   const char* interp = parameters->options().dynamic_linker();
4217   if (interp == NULL)
4218     {
4219       interp = target->dynamic_linker();
4220       gold_assert(interp != NULL);
4221     }
4222
4223   size_t len = strlen(interp) + 1;
4224
4225   Output_section_data* odata = new Output_data_const(interp, len, 1);
4226
4227   Output_section* osec = this->choose_output_section(NULL, ".interp",
4228                                                      elfcpp::SHT_PROGBITS,
4229                                                      elfcpp::SHF_ALLOC,
4230                                                      false, ORDER_INTERP,
4231                                                      false);
4232   if (osec != NULL)
4233     osec->add_output_section_data(odata);
4234 }
4235
4236 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4237 // called by the target-specific code.  This does nothing if not doing
4238 // a dynamic link.
4239
4240 // USE_REL is true for REL relocs rather than RELA relocs.
4241
4242 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4243
4244 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4245 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4246 // some targets have multiple reloc sections in PLT_REL.
4247
4248 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4249 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4250 // section.
4251
4252 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4253 // executable.
4254
4255 void
4256 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4257                                 const Output_data* plt_rel,
4258                                 const Output_data_reloc_generic* dyn_rel,
4259                                 bool add_debug, bool dynrel_includes_plt)
4260 {
4261   Output_data_dynamic* odyn = this->dynamic_data_;
4262   if (odyn == NULL)
4263     return;
4264
4265   if (plt_got != NULL && plt_got->output_section() != NULL)
4266     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4267
4268   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4269     {
4270       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4271       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4272       odyn->add_constant(elfcpp::DT_PLTREL,
4273                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4274     }
4275
4276   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4277     {
4278       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4279                                 dyn_rel->output_section());
4280       if (plt_rel != NULL
4281           && plt_rel->output_section() != NULL
4282           && dynrel_includes_plt)
4283         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4284                                dyn_rel->output_section(),
4285                                plt_rel->output_section());
4286       else
4287         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4288                                dyn_rel->output_section());
4289       const int size = parameters->target().get_size();
4290       elfcpp::DT rel_tag;
4291       int rel_size;
4292       if (use_rel)
4293         {
4294           rel_tag = elfcpp::DT_RELENT;
4295           if (size == 32)
4296             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4297           else if (size == 64)
4298             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4299           else
4300             gold_unreachable();
4301         }
4302       else
4303         {
4304           rel_tag = elfcpp::DT_RELAENT;
4305           if (size == 32)
4306             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4307           else if (size == 64)
4308             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4309           else
4310             gold_unreachable();
4311         }
4312       odyn->add_constant(rel_tag, rel_size);
4313
4314       if (parameters->options().combreloc())
4315         {
4316           size_t c = dyn_rel->relative_reloc_count();
4317           if (c > 0)
4318             odyn->add_constant((use_rel
4319                                 ? elfcpp::DT_RELCOUNT
4320                                 : elfcpp::DT_RELACOUNT),
4321                                c);
4322         }
4323     }
4324
4325   if (add_debug && !parameters->options().shared())
4326     {
4327       // The value of the DT_DEBUG tag is filled in by the dynamic
4328       // linker at run time, and used by the debugger.
4329       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4330     }
4331 }
4332
4333 // Finish the .dynamic section and PT_DYNAMIC segment.
4334
4335 void
4336 Layout::finish_dynamic_section(const Input_objects* input_objects,
4337                                const Symbol_table* symtab)
4338 {
4339   if (!this->script_options_->saw_phdrs_clause()
4340       && this->dynamic_section_ != NULL)
4341     {
4342       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4343                                                        (elfcpp::PF_R
4344                                                         | elfcpp::PF_W));
4345       oseg->add_output_section_to_nonload(this->dynamic_section_,
4346                                           elfcpp::PF_R | elfcpp::PF_W);
4347     }
4348
4349   Output_data_dynamic* const odyn = this->dynamic_data_;
4350   if (odyn == NULL)
4351     return;
4352
4353   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4354        p != input_objects->dynobj_end();
4355        ++p)
4356     {
4357       if (!(*p)->is_needed() && (*p)->as_needed())
4358         {
4359           // This dynamic object was linked with --as-needed, but it
4360           // is not needed.
4361           continue;
4362         }
4363
4364       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4365     }
4366
4367   if (parameters->options().shared())
4368     {
4369       const char* soname = parameters->options().soname();
4370       if (soname != NULL)
4371         odyn->add_string(elfcpp::DT_SONAME, soname);
4372     }
4373
4374   Symbol* sym = symtab->lookup(parameters->options().init());
4375   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4376     odyn->add_symbol(elfcpp::DT_INIT, sym);
4377
4378   sym = symtab->lookup(parameters->options().fini());
4379   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4380     odyn->add_symbol(elfcpp::DT_FINI, sym);
4381
4382   // Look for .init_array, .preinit_array and .fini_array by checking
4383   // section types.
4384   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4385       p != this->section_list_.end();
4386       ++p)
4387     switch((*p)->type())
4388       {
4389       case elfcpp::SHT_FINI_ARRAY:
4390         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4391         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4392         break;
4393       case elfcpp::SHT_INIT_ARRAY:
4394         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4395         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4396         break;
4397       case elfcpp::SHT_PREINIT_ARRAY:
4398         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4399         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4400         break;
4401       default:
4402         break;
4403       }
4404
4405   // Add a DT_RPATH entry if needed.
4406   const General_options::Dir_list& rpath(parameters->options().rpath());
4407   if (!rpath.empty())
4408     {
4409       std::string rpath_val;
4410       for (General_options::Dir_list::const_iterator p = rpath.begin();
4411            p != rpath.end();
4412            ++p)
4413         {
4414           if (rpath_val.empty())
4415             rpath_val = p->name();
4416           else
4417             {
4418               // Eliminate duplicates.
4419               General_options::Dir_list::const_iterator q;
4420               for (q = rpath.begin(); q != p; ++q)
4421                 if (q->name() == p->name())
4422                   break;
4423               if (q == p)
4424                 {
4425                   rpath_val += ':';
4426                   rpath_val += p->name();
4427                 }
4428             }
4429         }
4430
4431       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4432       if (parameters->options().enable_new_dtags())
4433         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4434     }
4435
4436   // Look for text segments that have dynamic relocations.
4437   bool have_textrel = false;
4438   if (!this->script_options_->saw_sections_clause())
4439     {
4440       for (Segment_list::const_iterator p = this->segment_list_.begin();
4441            p != this->segment_list_.end();
4442            ++p)
4443         {
4444           if ((*p)->type() == elfcpp::PT_LOAD
4445               && ((*p)->flags() & elfcpp::PF_W) == 0
4446               && (*p)->has_dynamic_reloc())
4447             {
4448               have_textrel = true;
4449               break;
4450             }
4451         }
4452     }
4453   else
4454     {
4455       // We don't know the section -> segment mapping, so we are
4456       // conservative and just look for readonly sections with
4457       // relocations.  If those sections wind up in writable segments,
4458       // then we have created an unnecessary DT_TEXTREL entry.
4459       for (Section_list::const_iterator p = this->section_list_.begin();
4460            p != this->section_list_.end();
4461            ++p)
4462         {
4463           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4464               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4465               && (*p)->has_dynamic_reloc())
4466             {
4467               have_textrel = true;
4468               break;
4469             }
4470         }
4471     }
4472
4473   if (parameters->options().filter() != NULL)
4474     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4475   if (parameters->options().any_auxiliary())
4476     {
4477       for (options::String_set::const_iterator p =
4478              parameters->options().auxiliary_begin();
4479            p != parameters->options().auxiliary_end();
4480            ++p)
4481         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4482     }
4483
4484   // Add a DT_FLAGS entry if necessary.
4485   unsigned int flags = 0;
4486   if (have_textrel)
4487     {
4488       // Add a DT_TEXTREL for compatibility with older loaders.
4489       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4490       flags |= elfcpp::DF_TEXTREL;
4491
4492       if (parameters->options().text())
4493         gold_error(_("read-only segment has dynamic relocations"));
4494       else if (parameters->options().warn_shared_textrel()
4495                && parameters->options().shared())
4496         gold_warning(_("shared library text segment is not shareable"));
4497     }
4498   if (parameters->options().shared() && this->has_static_tls())
4499     flags |= elfcpp::DF_STATIC_TLS;
4500   if (parameters->options().origin())
4501     flags |= elfcpp::DF_ORIGIN;
4502   if (parameters->options().Bsymbolic())
4503     {
4504       flags |= elfcpp::DF_SYMBOLIC;
4505       // Add DT_SYMBOLIC for compatibility with older loaders.
4506       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4507     }
4508   if (parameters->options().now())
4509     flags |= elfcpp::DF_BIND_NOW;
4510   if (flags != 0)
4511     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4512
4513   flags = 0;
4514   if (parameters->options().initfirst())
4515     flags |= elfcpp::DF_1_INITFIRST;
4516   if (parameters->options().interpose())
4517     flags |= elfcpp::DF_1_INTERPOSE;
4518   if (parameters->options().loadfltr())
4519     flags |= elfcpp::DF_1_LOADFLTR;
4520   if (parameters->options().nodefaultlib())
4521     flags |= elfcpp::DF_1_NODEFLIB;
4522   if (parameters->options().nodelete())
4523     flags |= elfcpp::DF_1_NODELETE;
4524   if (parameters->options().nodlopen())
4525     flags |= elfcpp::DF_1_NOOPEN;
4526   if (parameters->options().nodump())
4527     flags |= elfcpp::DF_1_NODUMP;
4528   if (!parameters->options().shared())
4529     flags &= ~(elfcpp::DF_1_INITFIRST
4530                | elfcpp::DF_1_NODELETE
4531                | elfcpp::DF_1_NOOPEN);
4532   if (parameters->options().origin())
4533     flags |= elfcpp::DF_1_ORIGIN;
4534   if (parameters->options().now())
4535     flags |= elfcpp::DF_1_NOW;
4536   if (parameters->options().Bgroup())
4537     flags |= elfcpp::DF_1_GROUP;
4538   if (flags != 0)
4539     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4540 }
4541
4542 // Set the size of the _DYNAMIC symbol table to be the size of the
4543 // dynamic data.
4544
4545 void
4546 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4547 {
4548   Output_data_dynamic* const odyn = this->dynamic_data_;
4549   if (odyn == NULL)
4550     return;
4551   odyn->finalize_data_size();
4552   if (this->dynamic_symbol_ == NULL)
4553     return;
4554   off_t data_size = odyn->data_size();
4555   const int size = parameters->target().get_size();
4556   if (size == 32)
4557     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4558   else if (size == 64)
4559     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4560   else
4561     gold_unreachable();
4562 }
4563
4564 // The mapping of input section name prefixes to output section names.
4565 // In some cases one prefix is itself a prefix of another prefix; in
4566 // such a case the longer prefix must come first.  These prefixes are
4567 // based on the GNU linker default ELF linker script.
4568
4569 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4570 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4571 {
4572   MAPPING_INIT(".text.", ".text"),
4573   MAPPING_INIT(".rodata.", ".rodata"),
4574   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4575   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4576   MAPPING_INIT(".data.", ".data"),
4577   MAPPING_INIT(".bss.", ".bss"),
4578   MAPPING_INIT(".tdata.", ".tdata"),
4579   MAPPING_INIT(".tbss.", ".tbss"),
4580   MAPPING_INIT(".init_array.", ".init_array"),
4581   MAPPING_INIT(".fini_array.", ".fini_array"),
4582   MAPPING_INIT(".sdata.", ".sdata"),
4583   MAPPING_INIT(".sbss.", ".sbss"),
4584   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4585   // differently depending on whether it is creating a shared library.
4586   MAPPING_INIT(".sdata2.", ".sdata"),
4587   MAPPING_INIT(".sbss2.", ".sbss"),
4588   MAPPING_INIT(".lrodata.", ".lrodata"),
4589   MAPPING_INIT(".ldata.", ".ldata"),
4590   MAPPING_INIT(".lbss.", ".lbss"),
4591   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4592   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4593   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4594   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4595   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4596   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4597   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4598   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4599   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4600   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4601   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4602   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4603   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4604   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4605   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4606   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4607   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4608   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4609   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4610   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4611   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4612 };
4613 #undef MAPPING_INIT
4614
4615 const int Layout::section_name_mapping_count =
4616   (sizeof(Layout::section_name_mapping)
4617    / sizeof(Layout::section_name_mapping[0]));
4618
4619 // Choose the output section name to use given an input section name.
4620 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4621 // length of NAME.
4622
4623 const char*
4624 Layout::output_section_name(const Relobj* relobj, const char* name,
4625                             size_t* plen)
4626 {
4627   // gcc 4.3 generates the following sorts of section names when it
4628   // needs a section name specific to a function:
4629   //   .text.FN
4630   //   .rodata.FN
4631   //   .sdata2.FN
4632   //   .data.FN
4633   //   .data.rel.FN
4634   //   .data.rel.local.FN
4635   //   .data.rel.ro.FN
4636   //   .data.rel.ro.local.FN
4637   //   .sdata.FN
4638   //   .bss.FN
4639   //   .sbss.FN
4640   //   .tdata.FN
4641   //   .tbss.FN
4642
4643   // The GNU linker maps all of those to the part before the .FN,
4644   // except that .data.rel.local.FN is mapped to .data, and
4645   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4646   // beginning with .data.rel.ro.local are grouped together.
4647
4648   // For an anonymous namespace, the string FN can contain a '.'.
4649
4650   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4651   // GNU linker maps to .rodata.
4652
4653   // The .data.rel.ro sections are used with -z relro.  The sections
4654   // are recognized by name.  We use the same names that the GNU
4655   // linker does for these sections.
4656
4657   // It is hard to handle this in a principled way, so we don't even
4658   // try.  We use a table of mappings.  If the input section name is
4659   // not found in the table, we simply use it as the output section
4660   // name.
4661
4662   const Section_name_mapping* psnm = section_name_mapping;
4663   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4664     {
4665       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4666         {
4667           *plen = psnm->tolen;
4668           return psnm->to;
4669         }
4670     }
4671
4672   // As an additional complication, .ctors sections are output in
4673   // either .ctors or .init_array sections, and .dtors sections are
4674   // output in either .dtors or .fini_array sections.
4675   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4676     {
4677       if (parameters->options().ctors_in_init_array())
4678         {
4679           *plen = 11;
4680           return name[1] == 'c' ? ".init_array" : ".fini_array";
4681         }
4682       else
4683         {
4684           *plen = 6;
4685           return name[1] == 'c' ? ".ctors" : ".dtors";
4686         }
4687     }
4688   if (parameters->options().ctors_in_init_array()
4689       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4690     {
4691       // To make .init_array/.fini_array work with gcc we must exclude
4692       // .ctors and .dtors sections from the crtbegin and crtend
4693       // files.
4694       if (relobj == NULL
4695           || (!Layout::match_file_name(relobj, "crtbegin")
4696               && !Layout::match_file_name(relobj, "crtend")))
4697         {
4698           *plen = 11;
4699           return name[1] == 'c' ? ".init_array" : ".fini_array";
4700         }
4701     }
4702
4703   return name;
4704 }
4705
4706 // Return true if RELOBJ is an input file whose base name matches
4707 // FILE_NAME.  The base name must have an extension of ".o", and must
4708 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4709 // to match crtbegin.o as well as crtbeginS.o without getting confused
4710 // by other possibilities.  Overall matching the file name this way is
4711 // a dreadful hack, but the GNU linker does it in order to better
4712 // support gcc, and we need to be compatible.
4713
4714 bool
4715 Layout::match_file_name(const Relobj* relobj, const char* match)
4716 {
4717   const std::string& file_name(relobj->name());
4718   const char* base_name = lbasename(file_name.c_str());
4719   size_t match_len = strlen(match);
4720   if (strncmp(base_name, match, match_len) != 0)
4721     return false;
4722   size_t base_len = strlen(base_name);
4723   if (base_len != match_len + 2 && base_len != match_len + 3)
4724     return false;
4725   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4726 }
4727
4728 // Check if a comdat group or .gnu.linkonce section with the given
4729 // NAME is selected for the link.  If there is already a section,
4730 // *KEPT_SECTION is set to point to the existing section and the
4731 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4732 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4733 // *KEPT_SECTION is set to the internal copy and the function returns
4734 // true.
4735
4736 bool
4737 Layout::find_or_add_kept_section(const std::string& name,
4738                                  Relobj* object,
4739                                  unsigned int shndx,
4740                                  bool is_comdat,
4741                                  bool is_group_name,
4742                                  Kept_section** kept_section)
4743 {
4744   // It's normal to see a couple of entries here, for the x86 thunk
4745   // sections.  If we see more than a few, we're linking a C++
4746   // program, and we resize to get more space to minimize rehashing.
4747   if (this->signatures_.size() > 4
4748       && !this->resized_signatures_)
4749     {
4750       reserve_unordered_map(&this->signatures_,
4751                             this->number_of_input_files_ * 64);
4752       this->resized_signatures_ = true;
4753     }
4754
4755   Kept_section candidate;
4756   std::pair<Signatures::iterator, bool> ins =
4757     this->signatures_.insert(std::make_pair(name, candidate));
4758
4759   if (kept_section != NULL)
4760     *kept_section = &ins.first->second;
4761   if (ins.second)
4762     {
4763       // This is the first time we've seen this signature.
4764       ins.first->second.set_object(object);
4765       ins.first->second.set_shndx(shndx);
4766       if (is_comdat)
4767         ins.first->second.set_is_comdat();
4768       if (is_group_name)
4769         ins.first->second.set_is_group_name();
4770       return true;
4771     }
4772
4773   // We have already seen this signature.
4774
4775   if (ins.first->second.is_group_name())
4776     {
4777       // We've already seen a real section group with this signature.
4778       // If the kept group is from a plugin object, and we're in the
4779       // replacement phase, accept the new one as a replacement.
4780       if (ins.first->second.object() == NULL
4781           && parameters->options().plugins()->in_replacement_phase())
4782         {
4783           ins.first->second.set_object(object);
4784           ins.first->second.set_shndx(shndx);
4785           return true;
4786         }
4787       return false;
4788     }
4789   else if (is_group_name)
4790     {
4791       // This is a real section group, and we've already seen a
4792       // linkonce section with this signature.  Record that we've seen
4793       // a section group, and don't include this section group.
4794       ins.first->second.set_is_group_name();
4795       return false;
4796     }
4797   else
4798     {
4799       // We've already seen a linkonce section and this is a linkonce
4800       // section.  These don't block each other--this may be the same
4801       // symbol name with different section types.
4802       return true;
4803     }
4804 }
4805
4806 // Store the allocated sections into the section list.
4807
4808 void
4809 Layout::get_allocated_sections(Section_list* section_list) const
4810 {
4811   for (Section_list::const_iterator p = this->section_list_.begin();
4812        p != this->section_list_.end();
4813        ++p)
4814     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4815       section_list->push_back(*p);
4816 }
4817
4818 // Create an output segment.
4819
4820 Output_segment*
4821 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4822 {
4823   gold_assert(!parameters->options().relocatable());
4824   Output_segment* oseg = new Output_segment(type, flags);
4825   this->segment_list_.push_back(oseg);
4826
4827   if (type == elfcpp::PT_TLS)
4828     this->tls_segment_ = oseg;
4829   else if (type == elfcpp::PT_GNU_RELRO)
4830     this->relro_segment_ = oseg;
4831   else if (type == elfcpp::PT_INTERP)
4832     this->interp_segment_ = oseg;
4833
4834   return oseg;
4835 }
4836
4837 // Return the file offset of the normal symbol table.
4838
4839 off_t
4840 Layout::symtab_section_offset() const
4841 {
4842   if (this->symtab_section_ != NULL)
4843     return this->symtab_section_->offset();
4844   return 0;
4845 }
4846
4847 // Return the section index of the normal symbol table.  It may have
4848 // been stripped by the -s/--strip-all option.
4849
4850 unsigned int
4851 Layout::symtab_section_shndx() const
4852 {
4853   if (this->symtab_section_ != NULL)
4854     return this->symtab_section_->out_shndx();
4855   return 0;
4856 }
4857
4858 // Write out the Output_sections.  Most won't have anything to write,
4859 // since most of the data will come from input sections which are
4860 // handled elsewhere.  But some Output_sections do have Output_data.
4861
4862 void
4863 Layout::write_output_sections(Output_file* of) const
4864 {
4865   for (Section_list::const_iterator p = this->section_list_.begin();
4866        p != this->section_list_.end();
4867        ++p)
4868     {
4869       if (!(*p)->after_input_sections())
4870         (*p)->write(of);
4871     }
4872 }
4873
4874 // Write out data not associated with a section or the symbol table.
4875
4876 void
4877 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4878 {
4879   if (!parameters->options().strip_all())
4880     {
4881       const Output_section* symtab_section = this->symtab_section_;
4882       for (Section_list::const_iterator p = this->section_list_.begin();
4883            p != this->section_list_.end();
4884            ++p)
4885         {
4886           if ((*p)->needs_symtab_index())
4887             {
4888               gold_assert(symtab_section != NULL);
4889               unsigned int index = (*p)->symtab_index();
4890               gold_assert(index > 0 && index != -1U);
4891               off_t off = (symtab_section->offset()
4892                            + index * symtab_section->entsize());
4893               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4894             }
4895         }
4896     }
4897
4898   const Output_section* dynsym_section = this->dynsym_section_;
4899   for (Section_list::const_iterator p = this->section_list_.begin();
4900        p != this->section_list_.end();
4901        ++p)
4902     {
4903       if ((*p)->needs_dynsym_index())
4904         {
4905           gold_assert(dynsym_section != NULL);
4906           unsigned int index = (*p)->dynsym_index();
4907           gold_assert(index > 0 && index != -1U);
4908           off_t off = (dynsym_section->offset()
4909                        + index * dynsym_section->entsize());
4910           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4911         }
4912     }
4913
4914   // Write out the Output_data which are not in an Output_section.
4915   for (Data_list::const_iterator p = this->special_output_list_.begin();
4916        p != this->special_output_list_.end();
4917        ++p)
4918     (*p)->write(of);
4919 }
4920
4921 // Write out the Output_sections which can only be written after the
4922 // input sections are complete.
4923
4924 void
4925 Layout::write_sections_after_input_sections(Output_file* of)
4926 {
4927   // Determine the final section offsets, and thus the final output
4928   // file size.  Note we finalize the .shstrab last, to allow the
4929   // after_input_section sections to modify their section-names before
4930   // writing.
4931   if (this->any_postprocessing_sections_)
4932     {
4933       off_t off = this->output_file_size_;
4934       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4935
4936       // Now that we've finalized the names, we can finalize the shstrab.
4937       off =
4938         this->set_section_offsets(off,
4939                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4940
4941       if (off > this->output_file_size_)
4942         {
4943           of->resize(off);
4944           this->output_file_size_ = off;
4945         }
4946     }
4947
4948   for (Section_list::const_iterator p = this->section_list_.begin();
4949        p != this->section_list_.end();
4950        ++p)
4951     {
4952       if ((*p)->after_input_sections())
4953         (*p)->write(of);
4954     }
4955
4956   this->section_headers_->write(of);
4957 }
4958
4959 // If the build ID requires computing a checksum, do so here, and
4960 // write it out.  We compute a checksum over the entire file because
4961 // that is simplest.
4962
4963 void
4964 Layout::write_build_id(Output_file* of) const
4965 {
4966   if (this->build_id_note_ == NULL)
4967     return;
4968
4969   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4970
4971   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4972                                           this->build_id_note_->data_size());
4973
4974   const char* style = parameters->options().build_id();
4975   if (strcmp(style, "sha1") == 0)
4976     {
4977       sha1_ctx ctx;
4978       sha1_init_ctx(&ctx);
4979       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4980       sha1_finish_ctx(&ctx, ov);
4981     }
4982   else if (strcmp(style, "md5") == 0)
4983     {
4984       md5_ctx ctx;
4985       md5_init_ctx(&ctx);
4986       md5_process_bytes(iv, this->output_file_size_, &ctx);
4987       md5_finish_ctx(&ctx, ov);
4988     }
4989   else
4990     gold_unreachable();
4991
4992   of->write_output_view(this->build_id_note_->offset(),
4993                         this->build_id_note_->data_size(),
4994                         ov);
4995
4996   of->free_input_view(0, this->output_file_size_, iv);
4997 }
4998
4999 // Write out a binary file.  This is called after the link is
5000 // complete.  IN is the temporary output file we used to generate the
5001 // ELF code.  We simply walk through the segments, read them from
5002 // their file offset in IN, and write them to their load address in
5003 // the output file.  FIXME: with a bit more work, we could support
5004 // S-records and/or Intel hex format here.
5005
5006 void
5007 Layout::write_binary(Output_file* in) const
5008 {
5009   gold_assert(parameters->options().oformat_enum()
5010               == General_options::OBJECT_FORMAT_BINARY);
5011
5012   // Get the size of the binary file.
5013   uint64_t max_load_address = 0;
5014   for (Segment_list::const_iterator p = this->segment_list_.begin();
5015        p != this->segment_list_.end();
5016        ++p)
5017     {
5018       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5019         {
5020           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5021           if (max_paddr > max_load_address)
5022             max_load_address = max_paddr;
5023         }
5024     }
5025
5026   Output_file out(parameters->options().output_file_name());
5027   out.open(max_load_address);
5028
5029   for (Segment_list::const_iterator p = this->segment_list_.begin();
5030        p != this->segment_list_.end();
5031        ++p)
5032     {
5033       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5034         {
5035           const unsigned char* vin = in->get_input_view((*p)->offset(),
5036                                                         (*p)->filesz());
5037           unsigned char* vout = out.get_output_view((*p)->paddr(),
5038                                                     (*p)->filesz());
5039           memcpy(vout, vin, (*p)->filesz());
5040           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5041           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5042         }
5043     }
5044
5045   out.close();
5046 }
5047
5048 // Print the output sections to the map file.
5049
5050 void
5051 Layout::print_to_mapfile(Mapfile* mapfile) const
5052 {
5053   for (Segment_list::const_iterator p = this->segment_list_.begin();
5054        p != this->segment_list_.end();
5055        ++p)
5056     (*p)->print_sections_to_mapfile(mapfile);
5057 }
5058
5059 // Print statistical information to stderr.  This is used for --stats.
5060
5061 void
5062 Layout::print_stats() const
5063 {
5064   this->namepool_.print_stats("section name pool");
5065   this->sympool_.print_stats("output symbol name pool");
5066   this->dynpool_.print_stats("dynamic name pool");
5067
5068   for (Section_list::const_iterator p = this->section_list_.begin();
5069        p != this->section_list_.end();
5070        ++p)
5071     (*p)->print_merge_stats();
5072 }
5073
5074 // Write_sections_task methods.
5075
5076 // We can always run this task.
5077
5078 Task_token*
5079 Write_sections_task::is_runnable()
5080 {
5081   return NULL;
5082 }
5083
5084 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5085 // when finished.
5086
5087 void
5088 Write_sections_task::locks(Task_locker* tl)
5089 {
5090   tl->add(this, this->output_sections_blocker_);
5091   tl->add(this, this->final_blocker_);
5092 }
5093
5094 // Run the task--write out the data.
5095
5096 void
5097 Write_sections_task::run(Workqueue*)
5098 {
5099   this->layout_->write_output_sections(this->of_);
5100 }
5101
5102 // Write_data_task methods.
5103
5104 // We can always run this task.
5105
5106 Task_token*
5107 Write_data_task::is_runnable()
5108 {
5109   return NULL;
5110 }
5111
5112 // We need to unlock FINAL_BLOCKER when finished.
5113
5114 void
5115 Write_data_task::locks(Task_locker* tl)
5116 {
5117   tl->add(this, this->final_blocker_);
5118 }
5119
5120 // Run the task--write out the data.
5121
5122 void
5123 Write_data_task::run(Workqueue*)
5124 {
5125   this->layout_->write_data(this->symtab_, this->of_);
5126 }
5127
5128 // Write_symbols_task methods.
5129
5130 // We can always run this task.
5131
5132 Task_token*
5133 Write_symbols_task::is_runnable()
5134 {
5135   return NULL;
5136 }
5137
5138 // We need to unlock FINAL_BLOCKER when finished.
5139
5140 void
5141 Write_symbols_task::locks(Task_locker* tl)
5142 {
5143   tl->add(this, this->final_blocker_);
5144 }
5145
5146 // Run the task--write out the symbols.
5147
5148 void
5149 Write_symbols_task::run(Workqueue*)
5150 {
5151   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5152                                this->layout_->symtab_xindex(),
5153                                this->layout_->dynsym_xindex(), this->of_);
5154 }
5155
5156 // Write_after_input_sections_task methods.
5157
5158 // We can only run this task after the input sections have completed.
5159
5160 Task_token*
5161 Write_after_input_sections_task::is_runnable()
5162 {
5163   if (this->input_sections_blocker_->is_blocked())
5164     return this->input_sections_blocker_;
5165   return NULL;
5166 }
5167
5168 // We need to unlock FINAL_BLOCKER when finished.
5169
5170 void
5171 Write_after_input_sections_task::locks(Task_locker* tl)
5172 {
5173   tl->add(this, this->final_blocker_);
5174 }
5175
5176 // Run the task.
5177
5178 void
5179 Write_after_input_sections_task::run(Workqueue*)
5180 {
5181   this->layout_->write_sections_after_input_sections(this->of_);
5182 }
5183
5184 // Close_task_runner methods.
5185
5186 // Run the task--close the file.
5187
5188 void
5189 Close_task_runner::run(Workqueue*, const Task*)
5190 {
5191   // If we need to compute a checksum for the BUILD if, we do so here.
5192   this->layout_->write_build_id(this->of_);
5193
5194   // If we've been asked to create a binary file, we do so here.
5195   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5196     this->layout_->write_binary(this->of_);
5197
5198   this->of_->close();
5199 }
5200
5201 // Instantiate the templates we need.  We could use the configure
5202 // script to restrict this to only the ones for implemented targets.
5203
5204 #ifdef HAVE_TARGET_32_LITTLE
5205 template
5206 Output_section*
5207 Layout::init_fixed_output_section<32, false>(
5208     const char* name,
5209     elfcpp::Shdr<32, false>& shdr);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_32_BIG
5213 template
5214 Output_section*
5215 Layout::init_fixed_output_section<32, true>(
5216     const char* name,
5217     elfcpp::Shdr<32, true>& shdr);
5218 #endif
5219
5220 #ifdef HAVE_TARGET_64_LITTLE
5221 template
5222 Output_section*
5223 Layout::init_fixed_output_section<64, false>(
5224     const char* name,
5225     elfcpp::Shdr<64, false>& shdr);
5226 #endif
5227
5228 #ifdef HAVE_TARGET_64_BIG
5229 template
5230 Output_section*
5231 Layout::init_fixed_output_section<64, true>(
5232     const char* name,
5233     elfcpp::Shdr<64, true>& shdr);
5234 #endif
5235
5236 #ifdef HAVE_TARGET_32_LITTLE
5237 template
5238 Output_section*
5239 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5240                           unsigned int shndx,
5241                           const char* name,
5242                           const elfcpp::Shdr<32, false>& shdr,
5243                           unsigned int, unsigned int, off_t*);
5244 #endif
5245
5246 #ifdef HAVE_TARGET_32_BIG
5247 template
5248 Output_section*
5249 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5250                          unsigned int shndx,
5251                          const char* name,
5252                          const elfcpp::Shdr<32, true>& shdr,
5253                          unsigned int, unsigned int, off_t*);
5254 #endif
5255
5256 #ifdef HAVE_TARGET_64_LITTLE
5257 template
5258 Output_section*
5259 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5260                           unsigned int shndx,
5261                           const char* name,
5262                           const elfcpp::Shdr<64, false>& shdr,
5263                           unsigned int, unsigned int, off_t*);
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_BIG
5267 template
5268 Output_section*
5269 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5270                          unsigned int shndx,
5271                          const char* name,
5272                          const elfcpp::Shdr<64, true>& shdr,
5273                          unsigned int, unsigned int, off_t*);
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_LITTLE
5277 template
5278 Output_section*
5279 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5280                                 unsigned int reloc_shndx,
5281                                 const elfcpp::Shdr<32, false>& shdr,
5282                                 Output_section* data_section,
5283                                 Relocatable_relocs* rr);
5284 #endif
5285
5286 #ifdef HAVE_TARGET_32_BIG
5287 template
5288 Output_section*
5289 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5290                                unsigned int reloc_shndx,
5291                                const elfcpp::Shdr<32, true>& shdr,
5292                                Output_section* data_section,
5293                                Relocatable_relocs* rr);
5294 #endif
5295
5296 #ifdef HAVE_TARGET_64_LITTLE
5297 template
5298 Output_section*
5299 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5300                                 unsigned int reloc_shndx,
5301                                 const elfcpp::Shdr<64, false>& shdr,
5302                                 Output_section* data_section,
5303                                 Relocatable_relocs* rr);
5304 #endif
5305
5306 #ifdef HAVE_TARGET_64_BIG
5307 template
5308 Output_section*
5309 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5310                                unsigned int reloc_shndx,
5311                                const elfcpp::Shdr<64, true>& shdr,
5312                                Output_section* data_section,
5313                                Relocatable_relocs* rr);
5314 #endif
5315
5316 #ifdef HAVE_TARGET_32_LITTLE
5317 template
5318 void
5319 Layout::layout_group<32, false>(Symbol_table* symtab,
5320                                 Sized_relobj_file<32, false>* object,
5321                                 unsigned int,
5322                                 const char* group_section_name,
5323                                 const char* signature,
5324                                 const elfcpp::Shdr<32, false>& shdr,
5325                                 elfcpp::Elf_Word flags,
5326                                 std::vector<unsigned int>* shndxes);
5327 #endif
5328
5329 #ifdef HAVE_TARGET_32_BIG
5330 template
5331 void
5332 Layout::layout_group<32, true>(Symbol_table* symtab,
5333                                Sized_relobj_file<32, true>* object,
5334                                unsigned int,
5335                                const char* group_section_name,
5336                                const char* signature,
5337                                const elfcpp::Shdr<32, true>& shdr,
5338                                elfcpp::Elf_Word flags,
5339                                std::vector<unsigned int>* shndxes);
5340 #endif
5341
5342 #ifdef HAVE_TARGET_64_LITTLE
5343 template
5344 void
5345 Layout::layout_group<64, false>(Symbol_table* symtab,
5346                                 Sized_relobj_file<64, false>* object,
5347                                 unsigned int,
5348                                 const char* group_section_name,
5349                                 const char* signature,
5350                                 const elfcpp::Shdr<64, false>& shdr,
5351                                 elfcpp::Elf_Word flags,
5352                                 std::vector<unsigned int>* shndxes);
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_BIG
5356 template
5357 void
5358 Layout::layout_group<64, true>(Symbol_table* symtab,
5359                                Sized_relobj_file<64, true>* object,
5360                                unsigned int,
5361                                const char* group_section_name,
5362                                const char* signature,
5363                                const elfcpp::Shdr<64, true>& shdr,
5364                                elfcpp::Elf_Word flags,
5365                                std::vector<unsigned int>* shndxes);
5366 #endif
5367
5368 #ifdef HAVE_TARGET_32_LITTLE
5369 template
5370 Output_section*
5371 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5372                                    const unsigned char* symbols,
5373                                    off_t symbols_size,
5374                                    const unsigned char* symbol_names,
5375                                    off_t symbol_names_size,
5376                                    unsigned int shndx,
5377                                    const elfcpp::Shdr<32, false>& shdr,
5378                                    unsigned int reloc_shndx,
5379                                    unsigned int reloc_type,
5380                                    off_t* off);
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_BIG
5384 template
5385 Output_section*
5386 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5387                                   const unsigned char* symbols,
5388                                   off_t symbols_size,
5389                                   const unsigned char* symbol_names,
5390                                   off_t symbol_names_size,
5391                                   unsigned int shndx,
5392                                   const elfcpp::Shdr<32, true>& shdr,
5393                                   unsigned int reloc_shndx,
5394                                   unsigned int reloc_type,
5395                                   off_t* off);
5396 #endif
5397
5398 #ifdef HAVE_TARGET_64_LITTLE
5399 template
5400 Output_section*
5401 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5402                                    const unsigned char* symbols,
5403                                    off_t symbols_size,
5404                                    const unsigned char* symbol_names,
5405                                    off_t symbol_names_size,
5406                                    unsigned int shndx,
5407                                    const elfcpp::Shdr<64, false>& shdr,
5408                                    unsigned int reloc_shndx,
5409                                    unsigned int reloc_type,
5410                                    off_t* off);
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_BIG
5414 template
5415 Output_section*
5416 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5417                                   const unsigned char* symbols,
5418                                   off_t symbols_size,
5419                                   const unsigned char* symbol_names,
5420                                   off_t symbol_names_size,
5421                                   unsigned int shndx,
5422                                   const elfcpp::Shdr<64, true>& shdr,
5423                                   unsigned int reloc_shndx,
5424                                   unsigned int reloc_type,
5425                                   off_t* off);
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_LITTLE
5429 template
5430 void
5431 Layout::add_to_gdb_index(bool is_type_unit,
5432                          Sized_relobj<32, false>* object,
5433                          const unsigned char* symbols,
5434                          off_t symbols_size,
5435                          unsigned int shndx,
5436                          unsigned int reloc_shndx,
5437                          unsigned int reloc_type);
5438 #endif
5439
5440 #ifdef HAVE_TARGET_32_BIG
5441 template
5442 void
5443 Layout::add_to_gdb_index(bool is_type_unit,
5444                          Sized_relobj<32, true>* object,
5445                          const unsigned char* symbols,
5446                          off_t symbols_size,
5447                          unsigned int shndx,
5448                          unsigned int reloc_shndx,
5449                          unsigned int reloc_type);
5450 #endif
5451
5452 #ifdef HAVE_TARGET_64_LITTLE
5453 template
5454 void
5455 Layout::add_to_gdb_index(bool is_type_unit,
5456                          Sized_relobj<64, false>* object,
5457                          const unsigned char* symbols,
5458                          off_t symbols_size,
5459                          unsigned int shndx,
5460                          unsigned int reloc_shndx,
5461                          unsigned int reloc_type);
5462 #endif
5463
5464 #ifdef HAVE_TARGET_64_BIG
5465 template
5466 void
5467 Layout::add_to_gdb_index(bool is_type_unit,
5468                          Sized_relobj<64, true>* object,
5469                          const unsigned char* symbols,
5470                          off_t symbols_size,
5471                          unsigned int shndx,
5472                          unsigned int reloc_shndx,
5473                          unsigned int reloc_type);
5474 #endif
5475
5476 } // End namespace gold.