2013-06-05 Alexander Ivchenko <alexander.ivchenko@intel.com>
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245  public:
246   Hash_task(const unsigned char* src,
247             size_t size,
248             unsigned char* dst,
249             Task_token* build_id_blocker,
250             Task_token* final_blocker)
251     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252       final_blocker_(final_blocker)
253   { }
254
255   void
256   run(Workqueue*)
257   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259   Task_token*
260   is_runnable();
261
262   // Unblock FINAL_BLOCKER_ when done.
263   void
264   locks(Task_locker* tl)
265   { tl->add(this, this->final_blocker_); }
266
267   std::string
268   get_name() const
269   { return "Hash_task"; }
270
271  private:
272   const unsigned char* const src_;
273   const size_t size_;
274   unsigned char* const dst_;
275   Task_token* const build_id_blocker_;
276   Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282   if (this->build_id_blocker_->is_blocked())
283     return this->build_id_blocker_;
284   return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295     const Layout::Section_list& sections,
296     const Layout::Data_list& special_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307 }
308
309 // Save information of SECTIONS for checking later.
310
311 void
312 Layout::Relaxation_debug_check::read_sections(
313     const Layout::Section_list& sections)
314 {
315   for(Layout::Section_list::const_iterator p = sections.begin();
316       p != sections.end();
317       ++p)
318     {
319       Output_section* os = *p;
320       Section_info info;
321       info.output_section = os;
322       info.address = os->is_address_valid() ? os->address() : 0;
323       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
324       info.offset = os->is_offset_valid()? os->offset() : -1 ;
325       this->section_infos_.push_back(info);
326     }
327 }
328
329 // Verify SECTIONS using previously recorded information.
330
331 void
332 Layout::Relaxation_debug_check::verify_sections(
333     const Layout::Section_list& sections)
334 {
335   size_t i = 0;
336   for(Layout::Section_list::const_iterator p = sections.begin();
337       p != sections.end();
338       ++p, ++i)
339     {
340       Output_section* os = *p;
341       uint64_t address = os->is_address_valid() ? os->address() : 0;
342       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
343       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
344
345       if (i >= this->section_infos_.size())
346         {
347           gold_fatal("Section_info of %s missing.\n", os->name());
348         }
349       const Section_info& info = this->section_infos_[i];
350       if (os != info.output_section)
351         gold_fatal("Section order changed.  Expecting %s but see %s\n",
352                    info.output_section->name(), os->name());
353       if (address != info.address
354           || data_size != info.data_size
355           || offset != info.offset)
356         gold_fatal("Section %s changed.\n", os->name());
357     }
358 }
359
360 // Layout_task_runner methods.
361
362 // Lay out the sections.  This is called after all the input objects
363 // have been read.
364
365 void
366 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
367 {
368   // See if any of the input definitions violate the One Definition Rule.
369   // TODO: if this is too slow, do this as a task, rather than inline.
370   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
371
372   Layout* layout = this->layout_;
373   off_t file_size = layout->finalize(this->input_objects_,
374                                      this->symtab_,
375                                      this->target_,
376                                      task);
377
378   // Now we know the final size of the output file and we know where
379   // each piece of information goes.
380
381   if (this->mapfile_ != NULL)
382     {
383       this->mapfile_->print_discarded_sections(this->input_objects_);
384       layout->print_to_mapfile(this->mapfile_);
385     }
386
387   Output_file* of;
388   if (layout->incremental_base() == NULL)
389     {
390       of = new Output_file(parameters->options().output_file_name());
391       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
392         of->set_is_temporary();
393       of->open(file_size);
394     }
395   else
396     {
397       of = layout->incremental_base()->output_file();
398
399       // Apply the incremental relocations for symbols whose values
400       // have changed.  We do this before we resize the file and start
401       // writing anything else to it, so that we can read the old
402       // incremental information from the file before (possibly)
403       // overwriting it.
404       if (parameters->incremental_update())
405         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
406                                                              this->layout_,
407                                                              of);
408
409       of->resize(file_size);
410     }
411
412   // Queue up the final set of tasks.
413   gold::queue_final_tasks(this->options_, this->input_objects_,
414                           this->symtab_, layout, workqueue, of);
415 }
416
417 // Layout methods.
418
419 Layout::Layout(int number_of_input_files, Script_options* script_options)
420   : number_of_input_files_(number_of_input_files),
421     script_options_(script_options),
422     namepool_(),
423     sympool_(),
424     dynpool_(),
425     signatures_(),
426     section_name_map_(),
427     segment_list_(),
428     section_list_(),
429     unattached_section_list_(),
430     special_output_list_(),
431     section_headers_(NULL),
432     tls_segment_(NULL),
433     relro_segment_(NULL),
434     interp_segment_(NULL),
435     increase_relro_(0),
436     symtab_section_(NULL),
437     symtab_xindex_(NULL),
438     dynsym_section_(NULL),
439     dynsym_xindex_(NULL),
440     dynamic_section_(NULL),
441     dynamic_symbol_(NULL),
442     dynamic_data_(NULL),
443     eh_frame_section_(NULL),
444     eh_frame_data_(NULL),
445     added_eh_frame_data_(false),
446     eh_frame_hdr_section_(NULL),
447     gdb_index_data_(NULL),
448     build_id_note_(NULL),
449     array_of_hashes_(NULL),
450     size_of_array_of_hashes_(0),
451     input_view_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "info",
525   "types",
526   "line",
527   "loc",
528   "macinfo",
529   "macro",
530   // "pubnames",  // not used by gdb as of 7.4
531   // "pubtypes",  // not used by gdb as of 7.4
532   "ranges",
533   "str",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   "info",
545   // "types",
546   "line",
547   // "loc",
548   // "macinfo",
549   // "macro",
550   // "pubnames",  // not used by gdb as of 7.4
551   // "pubtypes",  // not used by gdb as of 7.4
552   // "ranges",
553   "str",
554 };
555
556 // These sections are the DWARF fast-lookup tables, and are not needed
557 // when building a .gdb_index section.
558
559 static const char* gdb_fast_lookup_sections[] =
560 {
561   "aranges",
562   "pubnames",
563   "pubtypes",
564 };
565
566 // Returns whether the given debug section is in the list of
567 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
568 // portion of the name following ".debug_" or ".zdebug_".
569
570 static inline bool
571 is_gdb_debug_section(const char* suffix)
572 {
573   // We can do this faster: binary search or a hashtable.  But why bother?
574   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
575     if (strcmp(suffix, gdb_sections[i]) == 0)
576       return true;
577   return false;
578 }
579
580 // Returns whether the given section is needed for lines-only debugging.
581
582 static inline bool
583 is_lines_only_debug_section(const char* suffix)
584 {
585   // We can do this faster: binary search or a hashtable.  But why bother?
586   for (size_t i = 0;
587        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
588        ++i)
589     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
590       return true;
591   return false;
592 }
593
594 // Returns whether the given section is a fast-lookup section that
595 // will not be needed when building a .gdb_index section.
596
597 static inline bool
598 is_gdb_fast_lookup_section(const char* suffix)
599 {
600   // We can do this faster: binary search or a hashtable.  But why bother?
601   for (size_t i = 0;
602        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
603        ++i)
604     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
605       return true;
606   return false;
607 }
608
609 // Sometimes we compress sections.  This is typically done for
610 // sections that are not part of normal program execution (such as
611 // .debug_* sections), and where the readers of these sections know
612 // how to deal with compressed sections.  This routine doesn't say for
613 // certain whether we'll compress -- it depends on commandline options
614 // as well -- just whether this section is a candidate for compression.
615 // (The Output_compressed_section class decides whether to compress
616 // a given section, and picks the name of the compressed section.)
617
618 static bool
619 is_compressible_debug_section(const char* secname)
620 {
621   return (is_prefix_of(".debug", secname));
622 }
623
624 // We may see compressed debug sections in input files.  Return TRUE
625 // if this is the name of a compressed debug section.
626
627 bool
628 is_compressed_debug_section(const char* secname)
629 {
630   return (is_prefix_of(".zdebug", secname));
631 }
632
633 // Whether to include this section in the link.
634
635 template<int size, bool big_endian>
636 bool
637 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
638                         const elfcpp::Shdr<size, big_endian>& shdr)
639 {
640   if (!parameters->options().relocatable()
641       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
642     return false;
643
644   switch (shdr.get_sh_type())
645     {
646     case elfcpp::SHT_NULL:
647     case elfcpp::SHT_SYMTAB:
648     case elfcpp::SHT_DYNSYM:
649     case elfcpp::SHT_HASH:
650     case elfcpp::SHT_DYNAMIC:
651     case elfcpp::SHT_SYMTAB_SHNDX:
652       return false;
653
654     case elfcpp::SHT_STRTAB:
655       // Discard the sections which have special meanings in the ELF
656       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
657       // checking the sh_link fields of the appropriate sections.
658       return (strcmp(name, ".dynstr") != 0
659               && strcmp(name, ".strtab") != 0
660               && strcmp(name, ".shstrtab") != 0);
661
662     case elfcpp::SHT_RELA:
663     case elfcpp::SHT_REL:
664     case elfcpp::SHT_GROUP:
665       // If we are emitting relocations these should be handled
666       // elsewhere.
667       gold_assert(!parameters->options().relocatable());
668       return false;
669
670     case elfcpp::SHT_PROGBITS:
671       if (parameters->options().strip_debug()
672           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
673         {
674           if (is_debug_info_section(name))
675             return false;
676         }
677       if (parameters->options().strip_debug_non_line()
678           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
679         {
680           // Debugging sections can only be recognized by name.
681           if (is_prefix_of(".debug_", name)
682               && !is_lines_only_debug_section(name + 7))
683             return false;
684           if (is_prefix_of(".zdebug_", name)
685               && !is_lines_only_debug_section(name + 8))
686             return false;
687         }
688       if (parameters->options().strip_debug_gdb()
689           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690         {
691           // Debugging sections can only be recognized by name.
692           if (is_prefix_of(".debug_", name)
693               && !is_gdb_debug_section(name + 7))
694             return false;
695           if (is_prefix_of(".zdebug_", name)
696               && !is_gdb_debug_section(name + 8))
697             return false;
698         }
699       if (parameters->options().gdb_index()
700           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701         {
702           // When building .gdb_index, we can strip .debug_pubnames,
703           // .debug_pubtypes, and .debug_aranges sections.
704           if (is_prefix_of(".debug_", name)
705               && is_gdb_fast_lookup_section(name + 7))
706             return false;
707           if (is_prefix_of(".zdebug_", name)
708               && is_gdb_fast_lookup_section(name + 8))
709             return false;
710         }
711       if (parameters->options().strip_lto_sections()
712           && !parameters->options().relocatable()
713           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
714         {
715           // Ignore LTO sections containing intermediate code.
716           if (is_prefix_of(".gnu.lto_", name))
717             return false;
718         }
719       // The GNU linker strips .gnu_debuglink sections, so we do too.
720       // This is a feature used to keep debugging information in
721       // separate files.
722       if (strcmp(name, ".gnu_debuglink") == 0)
723         return false;
724       return true;
725
726     default:
727       return true;
728     }
729 }
730
731 // Return an output section named NAME, or NULL if there is none.
732
733 Output_section*
734 Layout::find_output_section(const char* name) const
735 {
736   for (Section_list::const_iterator p = this->section_list_.begin();
737        p != this->section_list_.end();
738        ++p)
739     if (strcmp((*p)->name(), name) == 0)
740       return *p;
741   return NULL;
742 }
743
744 // Return an output segment of type TYPE, with segment flags SET set
745 // and segment flags CLEAR clear.  Return NULL if there is none.
746
747 Output_segment*
748 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
749                             elfcpp::Elf_Word clear) const
750 {
751   for (Segment_list::const_iterator p = this->segment_list_.begin();
752        p != this->segment_list_.end();
753        ++p)
754     if (static_cast<elfcpp::PT>((*p)->type()) == type
755         && ((*p)->flags() & set) == set
756         && ((*p)->flags() & clear) == 0)
757       return *p;
758   return NULL;
759 }
760
761 // When we put a .ctors or .dtors section with more than one word into
762 // a .init_array or .fini_array section, we need to reverse the words
763 // in the .ctors/.dtors section.  This is because .init_array executes
764 // constructors front to back, where .ctors executes them back to
765 // front, and vice-versa for .fini_array/.dtors.  Although we do want
766 // to remap .ctors/.dtors into .init_array/.fini_array because it can
767 // be more efficient, we don't want to change the order in which
768 // constructors/destructors are run.  This set just keeps track of
769 // these sections which need to be reversed.  It is only changed by
770 // Layout::layout.  It should be a private member of Layout, but that
771 // would require layout.h to #include object.h to get the definition
772 // of Section_id.
773 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
774
775 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
776 // .init_array/.fini_array section.
777
778 bool
779 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
780 {
781   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
782           != ctors_sections_in_init_array.end());
783 }
784
785 // Return the output section to use for section NAME with type TYPE
786 // and section flags FLAGS.  NAME must be canonicalized in the string
787 // pool, and NAME_KEY is the key.  ORDER is where this should appear
788 // in the output sections.  IS_RELRO is true for a relro section.
789
790 Output_section*
791 Layout::get_output_section(const char* name, Stringpool::Key name_key,
792                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
793                            Output_section_order order, bool is_relro)
794 {
795   elfcpp::Elf_Word lookup_type = type;
796
797   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
798   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
799   // .init_array, .fini_array, and .preinit_array sections by name
800   // whatever their type in the input file.  We do this because the
801   // types are not always right in the input files.
802   if (lookup_type == elfcpp::SHT_INIT_ARRAY
803       || lookup_type == elfcpp::SHT_FINI_ARRAY
804       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
805     lookup_type = elfcpp::SHT_PROGBITS;
806
807   elfcpp::Elf_Xword lookup_flags = flags;
808
809   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
810   // read-write with read-only sections.  Some other ELF linkers do
811   // not do this.  FIXME: Perhaps there should be an option
812   // controlling this.
813   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
814
815   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
816   const std::pair<Key, Output_section*> v(key, NULL);
817   std::pair<Section_name_map::iterator, bool> ins(
818     this->section_name_map_.insert(v));
819
820   if (!ins.second)
821     return ins.first->second;
822   else
823     {
824       // This is the first time we've seen this name/type/flags
825       // combination.  For compatibility with the GNU linker, we
826       // combine sections with contents and zero flags with sections
827       // with non-zero flags.  This is a workaround for cases where
828       // assembler code forgets to set section flags.  FIXME: Perhaps
829       // there should be an option to control this.
830       Output_section* os = NULL;
831
832       if (lookup_type == elfcpp::SHT_PROGBITS)
833         {
834           if (flags == 0)
835             {
836               Output_section* same_name = this->find_output_section(name);
837               if (same_name != NULL
838                   && (same_name->type() == elfcpp::SHT_PROGBITS
839                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
840                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
841                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
842                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
843                 os = same_name;
844             }
845           else if ((flags & elfcpp::SHF_TLS) == 0)
846             {
847               elfcpp::Elf_Xword zero_flags = 0;
848               const Key zero_key(name_key, std::make_pair(lookup_type,
849                                                           zero_flags));
850               Section_name_map::iterator p =
851                   this->section_name_map_.find(zero_key);
852               if (p != this->section_name_map_.end())
853                 os = p->second;
854             }
855         }
856
857       if (os == NULL)
858         os = this->make_output_section(name, type, flags, order, is_relro);
859
860       ins.first->second = os;
861       return os;
862     }
863 }
864
865 // Returns TRUE iff NAME (an input section from RELOBJ) will
866 // be mapped to an output section that should be KEPT.
867
868 bool
869 Layout::keep_input_section(const Relobj* relobj, const char* name)
870 {
871   if (! this->script_options_->saw_sections_clause())
872     return false;
873
874   Script_sections* ss = this->script_options_->script_sections();
875   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
876   Output_section** output_section_slot;
877   Script_sections::Section_type script_section_type;
878   bool keep;
879
880   name = ss->output_section_name(file_name, name, &output_section_slot,
881                                  &script_section_type, &keep);
882   return name != NULL && keep;
883 }
884
885 // Clear the input section flags that should not be copied to the
886 // output section.
887
888 elfcpp::Elf_Xword
889 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
890 {
891   // Some flags in the input section should not be automatically
892   // copied to the output section.
893   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
894                             | elfcpp::SHF_GROUP
895                             | elfcpp::SHF_MERGE
896                             | elfcpp::SHF_STRINGS);
897
898   // We only clear the SHF_LINK_ORDER flag in for
899   // a non-relocatable link.
900   if (!parameters->options().relocatable())
901     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
902
903   return input_section_flags;
904 }
905
906 // Pick the output section to use for section NAME, in input file
907 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
908 // linker created section.  IS_INPUT_SECTION is true if we are
909 // choosing an output section for an input section found in a input
910 // file.  ORDER is where this section should appear in the output
911 // sections.  IS_RELRO is true for a relro section.  This will return
912 // NULL if the input section should be discarded.
913
914 Output_section*
915 Layout::choose_output_section(const Relobj* relobj, const char* name,
916                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
917                               bool is_input_section, Output_section_order order,
918                               bool is_relro)
919 {
920   // We should not see any input sections after we have attached
921   // sections to segments.
922   gold_assert(!is_input_section || !this->sections_are_attached_);
923
924   flags = this->get_output_section_flags(flags);
925
926   if (this->script_options_->saw_sections_clause())
927     {
928       // We are using a SECTIONS clause, so the output section is
929       // chosen based only on the name.
930
931       Script_sections* ss = this->script_options_->script_sections();
932       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
933       Output_section** output_section_slot;
934       Script_sections::Section_type script_section_type;
935       const char* orig_name = name;
936       bool keep;
937       name = ss->output_section_name(file_name, name, &output_section_slot,
938                                      &script_section_type, &keep);
939
940       if (name == NULL)
941         {
942           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
943                                      "because it is not allowed by the "
944                                      "SECTIONS clause of the linker script"),
945                      orig_name);
946           // The SECTIONS clause says to discard this input section.
947           return NULL;
948         }
949
950       // We can only handle script section types ST_NONE and ST_NOLOAD.
951       switch (script_section_type)
952         {
953         case Script_sections::ST_NONE:
954           break;
955         case Script_sections::ST_NOLOAD:
956           flags &= elfcpp::SHF_ALLOC;
957           break;
958         default:
959           gold_unreachable();
960         }
961
962       // If this is an orphan section--one not mentioned in the linker
963       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
964       // default processing below.
965
966       if (output_section_slot != NULL)
967         {
968           if (*output_section_slot != NULL)
969             {
970               (*output_section_slot)->update_flags_for_input_section(flags);
971               return *output_section_slot;
972             }
973
974           // We don't put sections found in the linker script into
975           // SECTION_NAME_MAP_.  That keeps us from getting confused
976           // if an orphan section is mapped to a section with the same
977           // name as one in the linker script.
978
979           name = this->namepool_.add(name, false, NULL);
980
981           Output_section* os = this->make_output_section(name, type, flags,
982                                                          order, is_relro);
983
984           os->set_found_in_sections_clause();
985
986           // Special handling for NOLOAD sections.
987           if (script_section_type == Script_sections::ST_NOLOAD)
988             {
989               os->set_is_noload();
990
991               // The constructor of Output_section sets addresses of non-ALLOC
992               // sections to 0 by default.  We don't want that for NOLOAD
993               // sections even if they have no SHF_ALLOC flag.
994               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
995                   && os->is_address_valid())
996                 {
997                   gold_assert(os->address() == 0
998                               && !os->is_offset_valid()
999                               && !os->is_data_size_valid());
1000                   os->reset_address_and_file_offset();
1001                 }
1002             }
1003
1004           *output_section_slot = os;
1005           return os;
1006         }
1007     }
1008
1009   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1010
1011   size_t len = strlen(name);
1012   char* uncompressed_name = NULL;
1013
1014   // Compressed debug sections should be mapped to the corresponding
1015   // uncompressed section.
1016   if (is_compressed_debug_section(name))
1017     {
1018       uncompressed_name = new char[len];
1019       uncompressed_name[0] = '.';
1020       gold_assert(name[0] == '.' && name[1] == 'z');
1021       strncpy(&uncompressed_name[1], &name[2], len - 2);
1022       uncompressed_name[len - 1] = '\0';
1023       len -= 1;
1024       name = uncompressed_name;
1025     }
1026
1027   // Turn NAME from the name of the input section into the name of the
1028   // output section.
1029   if (is_input_section
1030       && !this->script_options_->saw_sections_clause()
1031       && !parameters->options().relocatable())
1032     {
1033       const char *orig_name = name;
1034       name = parameters->target().output_section_name(relobj, name, &len);
1035       if (name == NULL)
1036         name = Layout::output_section_name(relobj, orig_name, &len);
1037     }
1038
1039   Stringpool::Key name_key;
1040   name = this->namepool_.add_with_length(name, len, true, &name_key);
1041
1042   if (uncompressed_name != NULL)
1043     delete[] uncompressed_name;
1044
1045   // Find or make the output section.  The output section is selected
1046   // based on the section name, type, and flags.
1047   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1048 }
1049
1050 // For incremental links, record the initial fixed layout of a section
1051 // from the base file, and return a pointer to the Output_section.
1052
1053 template<int size, bool big_endian>
1054 Output_section*
1055 Layout::init_fixed_output_section(const char* name,
1056                                   elfcpp::Shdr<size, big_endian>& shdr)
1057 {
1058   unsigned int sh_type = shdr.get_sh_type();
1059
1060   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1061   // PRE_INIT_ARRAY, and NOTE sections.
1062   // All others will be created from scratch and reallocated.
1063   if (!can_incremental_update(sh_type))
1064     return NULL;
1065
1066   // If we're generating a .gdb_index section, we need to regenerate
1067   // it from scratch.
1068   if (parameters->options().gdb_index()
1069       && sh_type == elfcpp::SHT_PROGBITS
1070       && strcmp(name, ".gdb_index") == 0)
1071     return NULL;
1072
1073   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1074   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1075   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1076   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1077   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1078       shdr.get_sh_addralign();
1079
1080   // Make the output section.
1081   Stringpool::Key name_key;
1082   name = this->namepool_.add(name, true, &name_key);
1083   Output_section* os = this->get_output_section(name, name_key, sh_type,
1084                                                 sh_flags, ORDER_INVALID, false);
1085   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1086   if (sh_type != elfcpp::SHT_NOBITS)
1087     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1088   return os;
1089 }
1090
1091 // Return the index by which an input section should be ordered.  This
1092 // is used to sort some .text sections, for compatibility with GNU ld.
1093
1094 int
1095 Layout::special_ordering_of_input_section(const char* name)
1096 {
1097   // The GNU linker has some special handling for some sections that
1098   // wind up in the .text section.  Sections that start with these
1099   // prefixes must appear first, and must appear in the order listed
1100   // here.
1101   static const char* const text_section_sort[] =
1102   {
1103     ".text.unlikely",
1104     ".text.exit",
1105     ".text.startup",
1106     ".text.hot"
1107   };
1108
1109   for (size_t i = 0;
1110        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1111        i++)
1112     if (is_prefix_of(text_section_sort[i], name))
1113       return i;
1114
1115   return -1;
1116 }
1117
1118 // Return the output section to use for input section SHNDX, with name
1119 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1120 // index of a relocation section which applies to this section, or 0
1121 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1122 // relocation section if there is one.  Set *OFF to the offset of this
1123 // input section without the output section.  Return NULL if the
1124 // section should be discarded.  Set *OFF to -1 if the section
1125 // contents should not be written directly to the output file, but
1126 // will instead receive special handling.
1127
1128 template<int size, bool big_endian>
1129 Output_section*
1130 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1131                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1132                unsigned int reloc_shndx, unsigned int, off_t* off)
1133 {
1134   *off = 0;
1135
1136   if (!this->include_section(object, name, shdr))
1137     return NULL;
1138
1139   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1140
1141   // In a relocatable link a grouped section must not be combined with
1142   // any other sections.
1143   Output_section* os;
1144   if (parameters->options().relocatable()
1145       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1146     {
1147       name = this->namepool_.add(name, true, NULL);
1148       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1149                                      ORDER_INVALID, false);
1150     }
1151   else
1152     {
1153       // Plugins can choose to place one or more subsets of sections in
1154       // unique segments and this is done by mapping these section subsets
1155       // to unique output sections.  Check if this section needs to be
1156       // remapped to a unique output section.
1157       Section_segment_map::iterator it
1158           = this->section_segment_map_.find(Const_section_id(object, shndx));
1159       if (it == this->section_segment_map_.end())
1160         {
1161           os = this->choose_output_section(object, name, sh_type,
1162                                            shdr.get_sh_flags(), true,
1163                                            ORDER_INVALID, false);
1164         }
1165       else
1166         {
1167           // We know the name of the output section, directly call
1168           // get_output_section here by-passing choose_output_section.
1169           elfcpp::Elf_Xword flags
1170             = this->get_output_section_flags(shdr.get_sh_flags());
1171
1172           const char* os_name = it->second->name;
1173           Stringpool::Key name_key;
1174           os_name = this->namepool_.add(os_name, true, &name_key);
1175           os = this->get_output_section(os_name, name_key, sh_type, flags,
1176                                         ORDER_INVALID, false);
1177           if (!os->is_unique_segment())
1178             {
1179               os->set_is_unique_segment();
1180               os->set_extra_segment_flags(it->second->flags);
1181               os->set_segment_alignment(it->second->align);
1182             }
1183         }
1184       if (os == NULL)
1185         return NULL;
1186     }
1187
1188   // By default the GNU linker sorts input sections whose names match
1189   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1190   // sections are sorted by name.  This is used to implement
1191   // constructor priority ordering.  We are compatible.  When we put
1192   // .ctor sections in .init_array and .dtor sections in .fini_array,
1193   // we must also sort plain .ctor and .dtor sections.
1194   if (!this->script_options_->saw_sections_clause()
1195       && !parameters->options().relocatable()
1196       && (is_prefix_of(".ctors.", name)
1197           || is_prefix_of(".dtors.", name)
1198           || is_prefix_of(".init_array.", name)
1199           || is_prefix_of(".fini_array.", name)
1200           || (parameters->options().ctors_in_init_array()
1201               && (strcmp(name, ".ctors") == 0
1202                   || strcmp(name, ".dtors") == 0))))
1203     os->set_must_sort_attached_input_sections();
1204
1205   // By default the GNU linker sorts some special text sections ahead
1206   // of others.  We are compatible.
1207   if (parameters->options().text_reorder()
1208       && !this->script_options_->saw_sections_clause()
1209       && !this->is_section_ordering_specified()
1210       && !parameters->options().relocatable()
1211       && Layout::special_ordering_of_input_section(name) >= 0)
1212     os->set_must_sort_attached_input_sections();
1213
1214   // If this is a .ctors or .ctors.* section being mapped to a
1215   // .init_array section, or a .dtors or .dtors.* section being mapped
1216   // to a .fini_array section, we will need to reverse the words if
1217   // there is more than one.  Record this section for later.  See
1218   // ctors_sections_in_init_array above.
1219   if (!this->script_options_->saw_sections_clause()
1220       && !parameters->options().relocatable()
1221       && shdr.get_sh_size() > size / 8
1222       && (((strcmp(name, ".ctors") == 0
1223             || is_prefix_of(".ctors.", name))
1224            && strcmp(os->name(), ".init_array") == 0)
1225           || ((strcmp(name, ".dtors") == 0
1226                || is_prefix_of(".dtors.", name))
1227               && strcmp(os->name(), ".fini_array") == 0)))
1228     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1229
1230   // FIXME: Handle SHF_LINK_ORDER somewhere.
1231
1232   elfcpp::Elf_Xword orig_flags = os->flags();
1233
1234   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1235                                this->script_options_->saw_sections_clause());
1236
1237   // If the flags changed, we may have to change the order.
1238   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1239     {
1240       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1241       elfcpp::Elf_Xword new_flags =
1242         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1243       if (orig_flags != new_flags)
1244         os->set_order(this->default_section_order(os, false));
1245     }
1246
1247   this->have_added_input_section_ = true;
1248
1249   return os;
1250 }
1251
1252 // Maps section SECN to SEGMENT s.
1253 void
1254 Layout::insert_section_segment_map(Const_section_id secn,
1255                                    Unique_segment_info *s)
1256 {
1257   gold_assert(this->unique_segment_for_sections_specified_);
1258   this->section_segment_map_[secn] = s;
1259 }
1260
1261 // Handle a relocation section when doing a relocatable link.
1262
1263 template<int size, bool big_endian>
1264 Output_section*
1265 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1266                      unsigned int,
1267                      const elfcpp::Shdr<size, big_endian>& shdr,
1268                      Output_section* data_section,
1269                      Relocatable_relocs* rr)
1270 {
1271   gold_assert(parameters->options().relocatable()
1272               || parameters->options().emit_relocs());
1273
1274   int sh_type = shdr.get_sh_type();
1275
1276   std::string name;
1277   if (sh_type == elfcpp::SHT_REL)
1278     name = ".rel";
1279   else if (sh_type == elfcpp::SHT_RELA)
1280     name = ".rela";
1281   else
1282     gold_unreachable();
1283   name += data_section->name();
1284
1285   // In a relocatable link relocs for a grouped section must not be
1286   // combined with other reloc sections.
1287   Output_section* os;
1288   if (!parameters->options().relocatable()
1289       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1290     os = this->choose_output_section(object, name.c_str(), sh_type,
1291                                      shdr.get_sh_flags(), false,
1292                                      ORDER_INVALID, false);
1293   else
1294     {
1295       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1296       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1297                                      ORDER_INVALID, false);
1298     }
1299
1300   os->set_should_link_to_symtab();
1301   os->set_info_section(data_section);
1302
1303   Output_section_data* posd;
1304   if (sh_type == elfcpp::SHT_REL)
1305     {
1306       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1307       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1308                                            size,
1309                                            big_endian>(rr);
1310     }
1311   else if (sh_type == elfcpp::SHT_RELA)
1312     {
1313       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1314       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1315                                            size,
1316                                            big_endian>(rr);
1317     }
1318   else
1319     gold_unreachable();
1320
1321   os->add_output_section_data(posd);
1322   rr->set_output_data(posd);
1323
1324   return os;
1325 }
1326
1327 // Handle a group section when doing a relocatable link.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Layout::layout_group(Symbol_table* symtab,
1332                      Sized_relobj_file<size, big_endian>* object,
1333                      unsigned int,
1334                      const char* group_section_name,
1335                      const char* signature,
1336                      const elfcpp::Shdr<size, big_endian>& shdr,
1337                      elfcpp::Elf_Word flags,
1338                      std::vector<unsigned int>* shndxes)
1339 {
1340   gold_assert(parameters->options().relocatable());
1341   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1342   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1343   Output_section* os = this->make_output_section(group_section_name,
1344                                                  elfcpp::SHT_GROUP,
1345                                                  shdr.get_sh_flags(),
1346                                                  ORDER_INVALID, false);
1347
1348   // We need to find a symbol with the signature in the symbol table.
1349   // If we don't find one now, we need to look again later.
1350   Symbol* sym = symtab->lookup(signature, NULL);
1351   if (sym != NULL)
1352     os->set_info_symndx(sym);
1353   else
1354     {
1355       // Reserve some space to minimize reallocations.
1356       if (this->group_signatures_.empty())
1357         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1358
1359       // We will wind up using a symbol whose name is the signature.
1360       // So just put the signature in the symbol name pool to save it.
1361       signature = symtab->canonicalize_name(signature);
1362       this->group_signatures_.push_back(Group_signature(os, signature));
1363     }
1364
1365   os->set_should_link_to_symtab();
1366   os->set_entsize(4);
1367
1368   section_size_type entry_count =
1369     convert_to_section_size_type(shdr.get_sh_size() / 4);
1370   Output_section_data* posd =
1371     new Output_data_group<size, big_endian>(object, entry_count, flags,
1372                                             shndxes);
1373   os->add_output_section_data(posd);
1374 }
1375
1376 // Special GNU handling of sections name .eh_frame.  They will
1377 // normally hold exception frame data as defined by the C++ ABI
1378 // (http://codesourcery.com/cxx-abi/).
1379
1380 template<int size, bool big_endian>
1381 Output_section*
1382 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1383                         const unsigned char* symbols,
1384                         off_t symbols_size,
1385                         const unsigned char* symbol_names,
1386                         off_t symbol_names_size,
1387                         unsigned int shndx,
1388                         const elfcpp::Shdr<size, big_endian>& shdr,
1389                         unsigned int reloc_shndx, unsigned int reloc_type,
1390                         off_t* off)
1391 {
1392   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1393               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1394   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1395
1396   Output_section* os = this->make_eh_frame_section(object);
1397   if (os == NULL)
1398     return NULL;
1399
1400   gold_assert(this->eh_frame_section_ == os);
1401
1402   elfcpp::Elf_Xword orig_flags = os->flags();
1403
1404   if (!parameters->incremental()
1405       && this->eh_frame_data_->add_ehframe_input_section(object,
1406                                                          symbols,
1407                                                          symbols_size,
1408                                                          symbol_names,
1409                                                          symbol_names_size,
1410                                                          shndx,
1411                                                          reloc_shndx,
1412                                                          reloc_type))
1413     {
1414       os->update_flags_for_input_section(shdr.get_sh_flags());
1415
1416       // A writable .eh_frame section is a RELRO section.
1417       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1418           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1419         {
1420           os->set_is_relro();
1421           os->set_order(ORDER_RELRO);
1422         }
1423
1424       // We found a .eh_frame section we are going to optimize, so now
1425       // we can add the set of optimized sections to the output
1426       // section.  We need to postpone adding this until we've found a
1427       // section we can optimize so that the .eh_frame section in
1428       // crtbegin.o winds up at the start of the output section.
1429       if (!this->added_eh_frame_data_)
1430         {
1431           os->add_output_section_data(this->eh_frame_data_);
1432           this->added_eh_frame_data_ = true;
1433         }
1434       *off = -1;
1435     }
1436   else
1437     {
1438       // We couldn't handle this .eh_frame section for some reason.
1439       // Add it as a normal section.
1440       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1441       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1442                                    reloc_shndx, saw_sections_clause);
1443       this->have_added_input_section_ = true;
1444
1445       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447         os->set_order(this->default_section_order(os, false));
1448     }
1449
1450   return os;
1451 }
1452
1453 // Create and return the magic .eh_frame section.  Create
1454 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1455 // input .eh_frame section; it may be NULL.
1456
1457 Output_section*
1458 Layout::make_eh_frame_section(const Relobj* object)
1459 {
1460   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1461   // SHT_PROGBITS.
1462   Output_section* os = this->choose_output_section(object, ".eh_frame",
1463                                                    elfcpp::SHT_PROGBITS,
1464                                                    elfcpp::SHF_ALLOC, false,
1465                                                    ORDER_EHFRAME, false);
1466   if (os == NULL)
1467     return NULL;
1468
1469   if (this->eh_frame_section_ == NULL)
1470     {
1471       this->eh_frame_section_ = os;
1472       this->eh_frame_data_ = new Eh_frame();
1473
1474       // For incremental linking, we do not optimize .eh_frame sections
1475       // or create a .eh_frame_hdr section.
1476       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1477         {
1478           Output_section* hdr_os =
1479             this->choose_output_section(NULL, ".eh_frame_hdr",
1480                                         elfcpp::SHT_PROGBITS,
1481                                         elfcpp::SHF_ALLOC, false,
1482                                         ORDER_EHFRAME, false);
1483
1484           if (hdr_os != NULL)
1485             {
1486               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1487                                                         this->eh_frame_data_);
1488               hdr_os->add_output_section_data(hdr_posd);
1489
1490               hdr_os->set_after_input_sections();
1491
1492               if (!this->script_options_->saw_phdrs_clause())
1493                 {
1494                   Output_segment* hdr_oseg;
1495                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1496                                                        elfcpp::PF_R);
1497                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1498                                                           elfcpp::PF_R);
1499                 }
1500
1501               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1502             }
1503         }
1504     }
1505
1506   return os;
1507 }
1508
1509 // Add an exception frame for a PLT.  This is called from target code.
1510
1511 void
1512 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1513                              size_t cie_length, const unsigned char* fde_data,
1514                              size_t fde_length)
1515 {
1516   if (parameters->incremental())
1517     {
1518       // FIXME: Maybe this could work some day....
1519       return;
1520     }
1521   Output_section* os = this->make_eh_frame_section(NULL);
1522   if (os == NULL)
1523     return;
1524   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1525                                             fde_data, fde_length);
1526   if (!this->added_eh_frame_data_)
1527     {
1528       os->add_output_section_data(this->eh_frame_data_);
1529       this->added_eh_frame_data_ = true;
1530     }
1531 }
1532
1533 // Scan a .debug_info or .debug_types section, and add summary
1534 // information to the .gdb_index section.
1535
1536 template<int size, bool big_endian>
1537 void
1538 Layout::add_to_gdb_index(bool is_type_unit,
1539                          Sized_relobj<size, big_endian>* object,
1540                          const unsigned char* symbols,
1541                          off_t symbols_size,
1542                          unsigned int shndx,
1543                          unsigned int reloc_shndx,
1544                          unsigned int reloc_type)
1545 {
1546   if (this->gdb_index_data_ == NULL)
1547     {
1548       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1549                                                        elfcpp::SHT_PROGBITS, 0,
1550                                                        false, ORDER_INVALID,
1551                                                        false);
1552       if (os == NULL)
1553         return;
1554
1555       this->gdb_index_data_ = new Gdb_index(os);
1556       os->add_output_section_data(this->gdb_index_data_);
1557       os->set_after_input_sections();
1558     }
1559
1560   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1561                                          symbols_size, shndx, reloc_shndx,
1562                                          reloc_type);
1563 }
1564
1565 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1566 // the output section.
1567
1568 Output_section*
1569 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1570                                 elfcpp::Elf_Xword flags,
1571                                 Output_section_data* posd,
1572                                 Output_section_order order, bool is_relro)
1573 {
1574   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1575                                                    false, order, is_relro);
1576   if (os != NULL)
1577     os->add_output_section_data(posd);
1578   return os;
1579 }
1580
1581 // Map section flags to segment flags.
1582
1583 elfcpp::Elf_Word
1584 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1585 {
1586   elfcpp::Elf_Word ret = elfcpp::PF_R;
1587   if ((flags & elfcpp::SHF_WRITE) != 0)
1588     ret |= elfcpp::PF_W;
1589   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1590     ret |= elfcpp::PF_X;
1591   return ret;
1592 }
1593
1594 // Make a new Output_section, and attach it to segments as
1595 // appropriate.  ORDER is the order in which this section should
1596 // appear in the output segment.  IS_RELRO is true if this is a relro
1597 // (read-only after relocations) section.
1598
1599 Output_section*
1600 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1601                             elfcpp::Elf_Xword flags,
1602                             Output_section_order order, bool is_relro)
1603 {
1604   Output_section* os;
1605   if ((flags & elfcpp::SHF_ALLOC) == 0
1606       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1607       && is_compressible_debug_section(name))
1608     os = new Output_compressed_section(&parameters->options(), name, type,
1609                                        flags);
1610   else if ((flags & elfcpp::SHF_ALLOC) == 0
1611            && parameters->options().strip_debug_non_line()
1612            && strcmp(".debug_abbrev", name) == 0)
1613     {
1614       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1615           name, type, flags);
1616       if (this->debug_info_)
1617         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1618     }
1619   else if ((flags & elfcpp::SHF_ALLOC) == 0
1620            && parameters->options().strip_debug_non_line()
1621            && strcmp(".debug_info", name) == 0)
1622     {
1623       os = this->debug_info_ = new Output_reduced_debug_info_section(
1624           name, type, flags);
1625       if (this->debug_abbrev_)
1626         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627     }
1628   else
1629     {
1630       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1631       // not have correct section types.  Force them here.
1632       if (type == elfcpp::SHT_PROGBITS)
1633         {
1634           if (is_prefix_of(".init_array", name))
1635             type = elfcpp::SHT_INIT_ARRAY;
1636           else if (is_prefix_of(".preinit_array", name))
1637             type = elfcpp::SHT_PREINIT_ARRAY;
1638           else if (is_prefix_of(".fini_array", name))
1639             type = elfcpp::SHT_FINI_ARRAY;
1640         }
1641
1642       // FIXME: const_cast is ugly.
1643       Target* target = const_cast<Target*>(&parameters->target());
1644       os = target->make_output_section(name, type, flags);
1645     }
1646
1647   // With -z relro, we have to recognize the special sections by name.
1648   // There is no other way.
1649   bool is_relro_local = false;
1650   if (!this->script_options_->saw_sections_clause()
1651       && parameters->options().relro()
1652       && (flags & elfcpp::SHF_ALLOC) != 0
1653       && (flags & elfcpp::SHF_WRITE) != 0)
1654     {
1655       if (type == elfcpp::SHT_PROGBITS)
1656         {
1657           if ((flags & elfcpp::SHF_TLS) != 0)
1658             is_relro = true;
1659           else if (strcmp(name, ".data.rel.ro") == 0)
1660             is_relro = true;
1661           else if (strcmp(name, ".data.rel.ro.local") == 0)
1662             {
1663               is_relro = true;
1664               is_relro_local = true;
1665             }
1666           else if (strcmp(name, ".ctors") == 0
1667                    || strcmp(name, ".dtors") == 0
1668                    || strcmp(name, ".jcr") == 0)
1669             is_relro = true;
1670         }
1671       else if (type == elfcpp::SHT_INIT_ARRAY
1672                || type == elfcpp::SHT_FINI_ARRAY
1673                || type == elfcpp::SHT_PREINIT_ARRAY)
1674         is_relro = true;
1675     }
1676
1677   if (is_relro)
1678     os->set_is_relro();
1679
1680   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1681     order = this->default_section_order(os, is_relro_local);
1682
1683   os->set_order(order);
1684
1685   parameters->target().new_output_section(os);
1686
1687   this->section_list_.push_back(os);
1688
1689   // The GNU linker by default sorts some sections by priority, so we
1690   // do the same.  We need to know that this might happen before we
1691   // attach any input sections.
1692   if (!this->script_options_->saw_sections_clause()
1693       && !parameters->options().relocatable()
1694       && (strcmp(name, ".init_array") == 0
1695           || strcmp(name, ".fini_array") == 0
1696           || (!parameters->options().ctors_in_init_array()
1697               && (strcmp(name, ".ctors") == 0
1698                   || strcmp(name, ".dtors") == 0))))
1699     os->set_may_sort_attached_input_sections();
1700
1701   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1702   // sections before other .text sections.  We are compatible.  We
1703   // need to know that this might happen before we attach any input
1704   // sections.
1705   if (parameters->options().text_reorder()
1706       && !this->script_options_->saw_sections_clause()
1707       && !this->is_section_ordering_specified()
1708       && !parameters->options().relocatable()
1709       && strcmp(name, ".text") == 0)
1710     os->set_may_sort_attached_input_sections();
1711
1712   // GNU linker sorts section by name with --sort-section=name.
1713   if (strcmp(parameters->options().sort_section(), "name") == 0)
1714       os->set_must_sort_attached_input_sections();
1715
1716   // Check for .stab*str sections, as .stab* sections need to link to
1717   // them.
1718   if (type == elfcpp::SHT_STRTAB
1719       && !this->have_stabstr_section_
1720       && strncmp(name, ".stab", 5) == 0
1721       && strcmp(name + strlen(name) - 3, "str") == 0)
1722     this->have_stabstr_section_ = true;
1723
1724   // During a full incremental link, we add patch space to most
1725   // PROGBITS and NOBITS sections.  Flag those that may be
1726   // arbitrarily padded.
1727   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1728       && order != ORDER_INTERP
1729       && order != ORDER_INIT
1730       && order != ORDER_PLT
1731       && order != ORDER_FINI
1732       && order != ORDER_RELRO_LAST
1733       && order != ORDER_NON_RELRO_FIRST
1734       && strcmp(name, ".eh_frame") != 0
1735       && strcmp(name, ".ctors") != 0
1736       && strcmp(name, ".dtors") != 0
1737       && strcmp(name, ".jcr") != 0)
1738     {
1739       os->set_is_patch_space_allowed();
1740
1741       // Certain sections require "holes" to be filled with
1742       // specific fill patterns.  These fill patterns may have
1743       // a minimum size, so we must prevent allocations from the
1744       // free list that leave a hole smaller than the minimum.
1745       if (strcmp(name, ".debug_info") == 0)
1746         os->set_free_space_fill(new Output_fill_debug_info(false));
1747       else if (strcmp(name, ".debug_types") == 0)
1748         os->set_free_space_fill(new Output_fill_debug_info(true));
1749       else if (strcmp(name, ".debug_line") == 0)
1750         os->set_free_space_fill(new Output_fill_debug_line());
1751     }
1752
1753   // If we have already attached the sections to segments, then we
1754   // need to attach this one now.  This happens for sections created
1755   // directly by the linker.
1756   if (this->sections_are_attached_)
1757     this->attach_section_to_segment(&parameters->target(), os);
1758
1759   return os;
1760 }
1761
1762 // Return the default order in which a section should be placed in an
1763 // output segment.  This function captures a lot of the ideas in
1764 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1765 // linker created section is normally set when the section is created;
1766 // this function is used for input sections.
1767
1768 Output_section_order
1769 Layout::default_section_order(Output_section* os, bool is_relro_local)
1770 {
1771   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1772   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1773   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1774   bool is_bss = false;
1775
1776   switch (os->type())
1777     {
1778     default:
1779     case elfcpp::SHT_PROGBITS:
1780       break;
1781     case elfcpp::SHT_NOBITS:
1782       is_bss = true;
1783       break;
1784     case elfcpp::SHT_RELA:
1785     case elfcpp::SHT_REL:
1786       if (!is_write)
1787         return ORDER_DYNAMIC_RELOCS;
1788       break;
1789     case elfcpp::SHT_HASH:
1790     case elfcpp::SHT_DYNAMIC:
1791     case elfcpp::SHT_SHLIB:
1792     case elfcpp::SHT_DYNSYM:
1793     case elfcpp::SHT_GNU_HASH:
1794     case elfcpp::SHT_GNU_verdef:
1795     case elfcpp::SHT_GNU_verneed:
1796     case elfcpp::SHT_GNU_versym:
1797       if (!is_write)
1798         return ORDER_DYNAMIC_LINKER;
1799       break;
1800     case elfcpp::SHT_NOTE:
1801       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1802     }
1803
1804   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1805     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1806
1807   if (!is_bss && !is_write)
1808     {
1809       if (is_execinstr)
1810         {
1811           if (strcmp(os->name(), ".init") == 0)
1812             return ORDER_INIT;
1813           else if (strcmp(os->name(), ".fini") == 0)
1814             return ORDER_FINI;
1815         }
1816       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1817     }
1818
1819   if (os->is_relro())
1820     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1821
1822   if (os->is_small_section())
1823     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1824   if (os->is_large_section())
1825     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1826
1827   return is_bss ? ORDER_BSS : ORDER_DATA;
1828 }
1829
1830 // Attach output sections to segments.  This is called after we have
1831 // seen all the input sections.
1832
1833 void
1834 Layout::attach_sections_to_segments(const Target* target)
1835 {
1836   for (Section_list::iterator p = this->section_list_.begin();
1837        p != this->section_list_.end();
1838        ++p)
1839     this->attach_section_to_segment(target, *p);
1840
1841   this->sections_are_attached_ = true;
1842 }
1843
1844 // Attach an output section to a segment.
1845
1846 void
1847 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1848 {
1849   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1850     this->unattached_section_list_.push_back(os);
1851   else
1852     this->attach_allocated_section_to_segment(target, os);
1853 }
1854
1855 // Attach an allocated output section to a segment.
1856
1857 void
1858 Layout::attach_allocated_section_to_segment(const Target* target,
1859                                             Output_section* os)
1860 {
1861   elfcpp::Elf_Xword flags = os->flags();
1862   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1863
1864   if (parameters->options().relocatable())
1865     return;
1866
1867   // If we have a SECTIONS clause, we can't handle the attachment to
1868   // segments until after we've seen all the sections.
1869   if (this->script_options_->saw_sections_clause())
1870     return;
1871
1872   gold_assert(!this->script_options_->saw_phdrs_clause());
1873
1874   // This output section goes into a PT_LOAD segment.
1875
1876   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1877
1878   // If this output section's segment has extra flags that need to be set,
1879   // coming from a linker plugin, do that.
1880   seg_flags |= os->extra_segment_flags();
1881
1882   // Check for --section-start.
1883   uint64_t addr;
1884   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1885
1886   // In general the only thing we really care about for PT_LOAD
1887   // segments is whether or not they are writable or executable,
1888   // so that is how we search for them.
1889   // Large data sections also go into their own PT_LOAD segment.
1890   // People who need segments sorted on some other basis will
1891   // have to use a linker script.
1892
1893   Segment_list::const_iterator p;
1894   if (!os->is_unique_segment())
1895     {
1896       for (p = this->segment_list_.begin();
1897            p != this->segment_list_.end();
1898            ++p)
1899         {
1900           if ((*p)->type() != elfcpp::PT_LOAD)
1901             continue;
1902           if ((*p)->is_unique_segment())
1903             continue;
1904           if (!parameters->options().omagic()
1905               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1906             continue;
1907           if ((target->isolate_execinstr() || parameters->options().rosegment())
1908               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1909             continue;
1910           // If -Tbss was specified, we need to separate the data and BSS
1911           // segments.
1912           if (parameters->options().user_set_Tbss())
1913             {
1914               if ((os->type() == elfcpp::SHT_NOBITS)
1915                   == (*p)->has_any_data_sections())
1916                 continue;
1917             }
1918           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1919             continue;
1920
1921           if (is_address_set)
1922             {
1923               if ((*p)->are_addresses_set())
1924                 continue;
1925
1926               (*p)->add_initial_output_data(os);
1927               (*p)->update_flags_for_output_section(seg_flags);
1928               (*p)->set_addresses(addr, addr);
1929               break;
1930             }
1931
1932           (*p)->add_output_section_to_load(this, os, seg_flags);
1933           break;
1934         }
1935     }
1936
1937   if (p == this->segment_list_.end()
1938       || os->is_unique_segment())
1939     {
1940       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1941                                                        seg_flags);
1942       if (os->is_large_data_section())
1943         oseg->set_is_large_data_segment();
1944       oseg->add_output_section_to_load(this, os, seg_flags);
1945       if (is_address_set)
1946         oseg->set_addresses(addr, addr);
1947       // Check if segment should be marked unique.  For segments marked
1948       // unique by linker plugins, set the new alignment if specified.
1949       if (os->is_unique_segment())
1950         {
1951           oseg->set_is_unique_segment();
1952           if (os->segment_alignment() != 0)
1953             oseg->set_minimum_p_align(os->segment_alignment());
1954         }
1955     }
1956
1957   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1958   // segment.
1959   if (os->type() == elfcpp::SHT_NOTE)
1960     {
1961       // See if we already have an equivalent PT_NOTE segment.
1962       for (p = this->segment_list_.begin();
1963            p != segment_list_.end();
1964            ++p)
1965         {
1966           if ((*p)->type() == elfcpp::PT_NOTE
1967               && (((*p)->flags() & elfcpp::PF_W)
1968                   == (seg_flags & elfcpp::PF_W)))
1969             {
1970               (*p)->add_output_section_to_nonload(os, seg_flags);
1971               break;
1972             }
1973         }
1974
1975       if (p == this->segment_list_.end())
1976         {
1977           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1978                                                            seg_flags);
1979           oseg->add_output_section_to_nonload(os, seg_flags);
1980         }
1981     }
1982
1983   // If we see a loadable SHF_TLS section, we create a PT_TLS
1984   // segment.  There can only be one such segment.
1985   if ((flags & elfcpp::SHF_TLS) != 0)
1986     {
1987       if (this->tls_segment_ == NULL)
1988         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1989       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1990     }
1991
1992   // If -z relro is in effect, and we see a relro section, we create a
1993   // PT_GNU_RELRO segment.  There can only be one such segment.
1994   if (os->is_relro() && parameters->options().relro())
1995     {
1996       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1997       if (this->relro_segment_ == NULL)
1998         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1999       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2000     }
2001
2002   // If we see a section named .interp, put it into a PT_INTERP
2003   // segment.  This seems broken to me, but this is what GNU ld does,
2004   // and glibc expects it.
2005   if (strcmp(os->name(), ".interp") == 0
2006       && !this->script_options_->saw_phdrs_clause())
2007     {
2008       if (this->interp_segment_ == NULL)
2009         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2010       else
2011         gold_warning(_("multiple '.interp' sections in input files "
2012                        "may cause confusing PT_INTERP segment"));
2013       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2014     }
2015 }
2016
2017 // Make an output section for a script.
2018
2019 Output_section*
2020 Layout::make_output_section_for_script(
2021     const char* name,
2022     Script_sections::Section_type section_type)
2023 {
2024   name = this->namepool_.add(name, false, NULL);
2025   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2026   if (section_type == Script_sections::ST_NOLOAD)
2027     sh_flags = 0;
2028   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2029                                                  sh_flags, ORDER_INVALID,
2030                                                  false);
2031   os->set_found_in_sections_clause();
2032   if (section_type == Script_sections::ST_NOLOAD)
2033     os->set_is_noload();
2034   return os;
2035 }
2036
2037 // Return the number of segments we expect to see.
2038
2039 size_t
2040 Layout::expected_segment_count() const
2041 {
2042   size_t ret = this->segment_list_.size();
2043
2044   // If we didn't see a SECTIONS clause in a linker script, we should
2045   // already have the complete list of segments.  Otherwise we ask the
2046   // SECTIONS clause how many segments it expects, and add in the ones
2047   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2048
2049   if (!this->script_options_->saw_sections_clause())
2050     return ret;
2051   else
2052     {
2053       const Script_sections* ss = this->script_options_->script_sections();
2054       return ret + ss->expected_segment_count(this);
2055     }
2056 }
2057
2058 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2059 // is whether we saw a .note.GNU-stack section in the object file.
2060 // GNU_STACK_FLAGS is the section flags.  The flags give the
2061 // protection required for stack memory.  We record this in an
2062 // executable as a PT_GNU_STACK segment.  If an object file does not
2063 // have a .note.GNU-stack segment, we must assume that it is an old
2064 // object.  On some targets that will force an executable stack.
2065
2066 void
2067 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2068                          const Object* obj)
2069 {
2070   if (!seen_gnu_stack)
2071     {
2072       this->input_without_gnu_stack_note_ = true;
2073       if (parameters->options().warn_execstack()
2074           && parameters->target().is_default_stack_executable())
2075         gold_warning(_("%s: missing .note.GNU-stack section"
2076                        " implies executable stack"),
2077                      obj->name().c_str());
2078     }
2079   else
2080     {
2081       this->input_with_gnu_stack_note_ = true;
2082       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2083         {
2084           this->input_requires_executable_stack_ = true;
2085           if (parameters->options().warn_execstack()
2086               || parameters->options().is_stack_executable())
2087             gold_warning(_("%s: requires executable stack"),
2088                          obj->name().c_str());
2089         }
2090     }
2091 }
2092
2093 // Create automatic note sections.
2094
2095 void
2096 Layout::create_notes()
2097 {
2098   this->create_gold_note();
2099   this->create_executable_stack_info();
2100   this->create_build_id();
2101 }
2102
2103 // Create the dynamic sections which are needed before we read the
2104 // relocs.
2105
2106 void
2107 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2108 {
2109   if (parameters->doing_static_link())
2110     return;
2111
2112   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2113                                                        elfcpp::SHT_DYNAMIC,
2114                                                        (elfcpp::SHF_ALLOC
2115                                                         | elfcpp::SHF_WRITE),
2116                                                        false, ORDER_RELRO,
2117                                                        true);
2118
2119   // A linker script may discard .dynamic, so check for NULL.
2120   if (this->dynamic_section_ != NULL)
2121     {
2122       this->dynamic_symbol_ =
2123         symtab->define_in_output_data("_DYNAMIC", NULL,
2124                                       Symbol_table::PREDEFINED,
2125                                       this->dynamic_section_, 0, 0,
2126                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2127                                       elfcpp::STV_HIDDEN, 0, false, false);
2128
2129       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2130
2131       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2132     }
2133 }
2134
2135 // For each output section whose name can be represented as C symbol,
2136 // define __start and __stop symbols for the section.  This is a GNU
2137 // extension.
2138
2139 void
2140 Layout::define_section_symbols(Symbol_table* symtab)
2141 {
2142   for (Section_list::const_iterator p = this->section_list_.begin();
2143        p != this->section_list_.end();
2144        ++p)
2145     {
2146       const char* const name = (*p)->name();
2147       if (is_cident(name))
2148         {
2149           const std::string name_string(name);
2150           const std::string start_name(cident_section_start_prefix
2151                                        + name_string);
2152           const std::string stop_name(cident_section_stop_prefix
2153                                       + name_string);
2154
2155           symtab->define_in_output_data(start_name.c_str(),
2156                                         NULL, // version
2157                                         Symbol_table::PREDEFINED,
2158                                         *p,
2159                                         0, // value
2160                                         0, // symsize
2161                                         elfcpp::STT_NOTYPE,
2162                                         elfcpp::STB_GLOBAL,
2163                                         elfcpp::STV_DEFAULT,
2164                                         0, // nonvis
2165                                         false, // offset_is_from_end
2166                                         true); // only_if_ref
2167
2168           symtab->define_in_output_data(stop_name.c_str(),
2169                                         NULL, // version
2170                                         Symbol_table::PREDEFINED,
2171                                         *p,
2172                                         0, // value
2173                                         0, // symsize
2174                                         elfcpp::STT_NOTYPE,
2175                                         elfcpp::STB_GLOBAL,
2176                                         elfcpp::STV_DEFAULT,
2177                                         0, // nonvis
2178                                         true, // offset_is_from_end
2179                                         true); // only_if_ref
2180         }
2181     }
2182 }
2183
2184 // Define symbols for group signatures.
2185
2186 void
2187 Layout::define_group_signatures(Symbol_table* symtab)
2188 {
2189   for (Group_signatures::iterator p = this->group_signatures_.begin();
2190        p != this->group_signatures_.end();
2191        ++p)
2192     {
2193       Symbol* sym = symtab->lookup(p->signature, NULL);
2194       if (sym != NULL)
2195         p->section->set_info_symndx(sym);
2196       else
2197         {
2198           // Force the name of the group section to the group
2199           // signature, and use the group's section symbol as the
2200           // signature symbol.
2201           if (strcmp(p->section->name(), p->signature) != 0)
2202             {
2203               const char* name = this->namepool_.add(p->signature,
2204                                                      true, NULL);
2205               p->section->set_name(name);
2206             }
2207           p->section->set_needs_symtab_index();
2208           p->section->set_info_section_symndx(p->section);
2209         }
2210     }
2211
2212   this->group_signatures_.clear();
2213 }
2214
2215 // Find the first read-only PT_LOAD segment, creating one if
2216 // necessary.
2217
2218 Output_segment*
2219 Layout::find_first_load_seg(const Target* target)
2220 {
2221   Output_segment* best = NULL;
2222   for (Segment_list::const_iterator p = this->segment_list_.begin();
2223        p != this->segment_list_.end();
2224        ++p)
2225     {
2226       if ((*p)->type() == elfcpp::PT_LOAD
2227           && ((*p)->flags() & elfcpp::PF_R) != 0
2228           && (parameters->options().omagic()
2229               || ((*p)->flags() & elfcpp::PF_W) == 0)
2230           && (!target->isolate_execinstr()
2231               || ((*p)->flags() & elfcpp::PF_X) == 0))
2232         {
2233           if (best == NULL || this->segment_precedes(*p, best))
2234             best = *p;
2235         }
2236     }
2237   if (best != NULL)
2238     return best;
2239
2240   gold_assert(!this->script_options_->saw_phdrs_clause());
2241
2242   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2243                                                        elfcpp::PF_R);
2244   return load_seg;
2245 }
2246
2247 // Save states of all current output segments.  Store saved states
2248 // in SEGMENT_STATES.
2249
2250 void
2251 Layout::save_segments(Segment_states* segment_states)
2252 {
2253   for (Segment_list::const_iterator p = this->segment_list_.begin();
2254        p != this->segment_list_.end();
2255        ++p)
2256     {
2257       Output_segment* segment = *p;
2258       // Shallow copy.
2259       Output_segment* copy = new Output_segment(*segment);
2260       (*segment_states)[segment] = copy;
2261     }
2262 }
2263
2264 // Restore states of output segments and delete any segment not found in
2265 // SEGMENT_STATES.
2266
2267 void
2268 Layout::restore_segments(const Segment_states* segment_states)
2269 {
2270   // Go through the segment list and remove any segment added in the
2271   // relaxation loop.
2272   this->tls_segment_ = NULL;
2273   this->relro_segment_ = NULL;
2274   Segment_list::iterator list_iter = this->segment_list_.begin();
2275   while (list_iter != this->segment_list_.end())
2276     {
2277       Output_segment* segment = *list_iter;
2278       Segment_states::const_iterator states_iter =
2279           segment_states->find(segment);
2280       if (states_iter != segment_states->end())
2281         {
2282           const Output_segment* copy = states_iter->second;
2283           // Shallow copy to restore states.
2284           *segment = *copy;
2285
2286           // Also fix up TLS and RELRO segment pointers as appropriate.
2287           if (segment->type() == elfcpp::PT_TLS)
2288             this->tls_segment_ = segment;
2289           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2290             this->relro_segment_ = segment;
2291
2292           ++list_iter;
2293         }
2294       else
2295         {
2296           list_iter = this->segment_list_.erase(list_iter);
2297           // This is a segment created during section layout.  It should be
2298           // safe to remove it since we should have removed all pointers to it.
2299           delete segment;
2300         }
2301     }
2302 }
2303
2304 // Clean up after relaxation so that sections can be laid out again.
2305
2306 void
2307 Layout::clean_up_after_relaxation()
2308 {
2309   // Restore the segments to point state just prior to the relaxation loop.
2310   Script_sections* script_section = this->script_options_->script_sections();
2311   script_section->release_segments();
2312   this->restore_segments(this->segment_states_);
2313
2314   // Reset section addresses and file offsets
2315   for (Section_list::iterator p = this->section_list_.begin();
2316        p != this->section_list_.end();
2317        ++p)
2318     {
2319       (*p)->restore_states();
2320
2321       // If an input section changes size because of relaxation,
2322       // we need to adjust the section offsets of all input sections.
2323       // after such a section.
2324       if ((*p)->section_offsets_need_adjustment())
2325         (*p)->adjust_section_offsets();
2326
2327       (*p)->reset_address_and_file_offset();
2328     }
2329
2330   // Reset special output object address and file offsets.
2331   for (Data_list::iterator p = this->special_output_list_.begin();
2332        p != this->special_output_list_.end();
2333        ++p)
2334     (*p)->reset_address_and_file_offset();
2335
2336   // A linker script may have created some output section data objects.
2337   // They are useless now.
2338   for (Output_section_data_list::const_iterator p =
2339          this->script_output_section_data_list_.begin();
2340        p != this->script_output_section_data_list_.end();
2341        ++p)
2342     delete *p;
2343   this->script_output_section_data_list_.clear();
2344 }
2345
2346 // Prepare for relaxation.
2347
2348 void
2349 Layout::prepare_for_relaxation()
2350 {
2351   // Create an relaxation debug check if in debugging mode.
2352   if (is_debugging_enabled(DEBUG_RELAXATION))
2353     this->relaxation_debug_check_ = new Relaxation_debug_check();
2354
2355   // Save segment states.
2356   this->segment_states_ = new Segment_states();
2357   this->save_segments(this->segment_states_);
2358
2359   for(Section_list::const_iterator p = this->section_list_.begin();
2360       p != this->section_list_.end();
2361       ++p)
2362     (*p)->save_states();
2363
2364   if (is_debugging_enabled(DEBUG_RELAXATION))
2365     this->relaxation_debug_check_->check_output_data_for_reset_values(
2366         this->section_list_, this->special_output_list_);
2367
2368   // Also enable recording of output section data from scripts.
2369   this->record_output_section_data_from_script_ = true;
2370 }
2371
2372 // Relaxation loop body:  If target has no relaxation, this runs only once
2373 // Otherwise, the target relaxation hook is called at the end of
2374 // each iteration.  If the hook returns true, it means re-layout of
2375 // section is required.
2376 //
2377 // The number of segments created by a linking script without a PHDRS
2378 // clause may be affected by section sizes and alignments.  There is
2379 // a remote chance that relaxation causes different number of PT_LOAD
2380 // segments are created and sections are attached to different segments.
2381 // Therefore, we always throw away all segments created during section
2382 // layout.  In order to be able to restart the section layout, we keep
2383 // a copy of the segment list right before the relaxation loop and use
2384 // that to restore the segments.
2385 //
2386 // PASS is the current relaxation pass number.
2387 // SYMTAB is a symbol table.
2388 // PLOAD_SEG is the address of a pointer for the load segment.
2389 // PHDR_SEG is a pointer to the PHDR segment.
2390 // SEGMENT_HEADERS points to the output segment header.
2391 // FILE_HEADER points to the output file header.
2392 // PSHNDX is the address to store the output section index.
2393
2394 off_t inline
2395 Layout::relaxation_loop_body(
2396     int pass,
2397     Target* target,
2398     Symbol_table* symtab,
2399     Output_segment** pload_seg,
2400     Output_segment* phdr_seg,
2401     Output_segment_headers* segment_headers,
2402     Output_file_header* file_header,
2403     unsigned int* pshndx)
2404 {
2405   // If this is not the first iteration, we need to clean up after
2406   // relaxation so that we can lay out the sections again.
2407   if (pass != 0)
2408     this->clean_up_after_relaxation();
2409
2410   // If there is a SECTIONS clause, put all the input sections into
2411   // the required order.
2412   Output_segment* load_seg;
2413   if (this->script_options_->saw_sections_clause())
2414     load_seg = this->set_section_addresses_from_script(symtab);
2415   else if (parameters->options().relocatable())
2416     load_seg = NULL;
2417   else
2418     load_seg = this->find_first_load_seg(target);
2419
2420   if (parameters->options().oformat_enum()
2421       != General_options::OBJECT_FORMAT_ELF)
2422     load_seg = NULL;
2423
2424   // If the user set the address of the text segment, that may not be
2425   // compatible with putting the segment headers and file headers into
2426   // that segment.
2427   if (parameters->options().user_set_Ttext()
2428       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2429     {
2430       load_seg = NULL;
2431       phdr_seg = NULL;
2432     }
2433
2434   gold_assert(phdr_seg == NULL
2435               || load_seg != NULL
2436               || this->script_options_->saw_sections_clause());
2437
2438   // If the address of the load segment we found has been set by
2439   // --section-start rather than by a script, then adjust the VMA and
2440   // LMA downward if possible to include the file and section headers.
2441   uint64_t header_gap = 0;
2442   if (load_seg != NULL
2443       && load_seg->are_addresses_set()
2444       && !this->script_options_->saw_sections_clause()
2445       && !parameters->options().relocatable())
2446     {
2447       file_header->finalize_data_size();
2448       segment_headers->finalize_data_size();
2449       size_t sizeof_headers = (file_header->data_size()
2450                                + segment_headers->data_size());
2451       const uint64_t abi_pagesize = target->abi_pagesize();
2452       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2453       hdr_paddr &= ~(abi_pagesize - 1);
2454       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2455       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2456         load_seg = NULL;
2457       else
2458         {
2459           load_seg->set_addresses(load_seg->vaddr() - subtract,
2460                                   load_seg->paddr() - subtract);
2461           header_gap = subtract - sizeof_headers;
2462         }
2463     }
2464
2465   // Lay out the segment headers.
2466   if (!parameters->options().relocatable())
2467     {
2468       gold_assert(segment_headers != NULL);
2469       if (header_gap != 0 && load_seg != NULL)
2470         {
2471           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2472           load_seg->add_initial_output_data(z);
2473         }
2474       if (load_seg != NULL)
2475         load_seg->add_initial_output_data(segment_headers);
2476       if (phdr_seg != NULL)
2477         phdr_seg->add_initial_output_data(segment_headers);
2478     }
2479
2480   // Lay out the file header.
2481   if (load_seg != NULL)
2482     load_seg->add_initial_output_data(file_header);
2483
2484   if (this->script_options_->saw_phdrs_clause()
2485       && !parameters->options().relocatable())
2486     {
2487       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2488       // clause in a linker script.
2489       Script_sections* ss = this->script_options_->script_sections();
2490       ss->put_headers_in_phdrs(file_header, segment_headers);
2491     }
2492
2493   // We set the output section indexes in set_segment_offsets and
2494   // set_section_indexes.
2495   *pshndx = 1;
2496
2497   // Set the file offsets of all the segments, and all the sections
2498   // they contain.
2499   off_t off;
2500   if (!parameters->options().relocatable())
2501     off = this->set_segment_offsets(target, load_seg, pshndx);
2502   else
2503     off = this->set_relocatable_section_offsets(file_header, pshndx);
2504
2505    // Verify that the dummy relaxation does not change anything.
2506   if (is_debugging_enabled(DEBUG_RELAXATION))
2507     {
2508       if (pass == 0)
2509         this->relaxation_debug_check_->read_sections(this->section_list_);
2510       else
2511         this->relaxation_debug_check_->verify_sections(this->section_list_);
2512     }
2513
2514   *pload_seg = load_seg;
2515   return off;
2516 }
2517
2518 // Search the list of patterns and find the postion of the given section
2519 // name in the output section.  If the section name matches a glob
2520 // pattern and a non-glob name, then the non-glob position takes
2521 // precedence.  Return 0 if no match is found.
2522
2523 unsigned int
2524 Layout::find_section_order_index(const std::string& section_name)
2525 {
2526   Unordered_map<std::string, unsigned int>::iterator map_it;
2527   map_it = this->input_section_position_.find(section_name);
2528   if (map_it != this->input_section_position_.end())
2529     return map_it->second;
2530
2531   // Absolute match failed.  Linear search the glob patterns.
2532   std::vector<std::string>::iterator it;
2533   for (it = this->input_section_glob_.begin();
2534        it != this->input_section_glob_.end();
2535        ++it)
2536     {
2537        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2538          {
2539            map_it = this->input_section_position_.find(*it);
2540            gold_assert(map_it != this->input_section_position_.end());
2541            return map_it->second;
2542          }
2543     }
2544   return 0;
2545 }
2546
2547 // Read the sequence of input sections from the file specified with
2548 // option --section-ordering-file.
2549
2550 void
2551 Layout::read_layout_from_file()
2552 {
2553   const char* filename = parameters->options().section_ordering_file();
2554   std::ifstream in;
2555   std::string line;
2556
2557   in.open(filename);
2558   if (!in)
2559     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2560                filename, strerror(errno));
2561
2562   std::getline(in, line);   // this chops off the trailing \n, if any
2563   unsigned int position = 1;
2564   this->set_section_ordering_specified();
2565
2566   while (in)
2567     {
2568       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2569         line.resize(line.length() - 1);
2570       // Ignore comments, beginning with '#'
2571       if (line[0] == '#')
2572         {
2573           std::getline(in, line);
2574           continue;
2575         }
2576       this->input_section_position_[line] = position;
2577       // Store all glob patterns in a vector.
2578       if (is_wildcard_string(line.c_str()))
2579         this->input_section_glob_.push_back(line);
2580       position++;
2581       std::getline(in, line);
2582     }
2583 }
2584
2585 // Finalize the layout.  When this is called, we have created all the
2586 // output sections and all the output segments which are based on
2587 // input sections.  We have several things to do, and we have to do
2588 // them in the right order, so that we get the right results correctly
2589 // and efficiently.
2590
2591 // 1) Finalize the list of output segments and create the segment
2592 // table header.
2593
2594 // 2) Finalize the dynamic symbol table and associated sections.
2595
2596 // 3) Determine the final file offset of all the output segments.
2597
2598 // 4) Determine the final file offset of all the SHF_ALLOC output
2599 // sections.
2600
2601 // 5) Create the symbol table sections and the section name table
2602 // section.
2603
2604 // 6) Finalize the symbol table: set symbol values to their final
2605 // value and make a final determination of which symbols are going
2606 // into the output symbol table.
2607
2608 // 7) Create the section table header.
2609
2610 // 8) Determine the final file offset of all the output sections which
2611 // are not SHF_ALLOC, including the section table header.
2612
2613 // 9) Finalize the ELF file header.
2614
2615 // This function returns the size of the output file.
2616
2617 off_t
2618 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2619                  Target* target, const Task* task)
2620 {
2621   target->finalize_sections(this, input_objects, symtab);
2622
2623   this->count_local_symbols(task, input_objects);
2624
2625   this->link_stabs_sections();
2626
2627   Output_segment* phdr_seg = NULL;
2628   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2629     {
2630       // There was a dynamic object in the link.  We need to create
2631       // some information for the dynamic linker.
2632
2633       // Create the PT_PHDR segment which will hold the program
2634       // headers.
2635       if (!this->script_options_->saw_phdrs_clause())
2636         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2637
2638       // Create the dynamic symbol table, including the hash table.
2639       Output_section* dynstr;
2640       std::vector<Symbol*> dynamic_symbols;
2641       unsigned int local_dynamic_count;
2642       Versions versions(*this->script_options()->version_script_info(),
2643                         &this->dynpool_);
2644       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2645                                   &local_dynamic_count, &dynamic_symbols,
2646                                   &versions);
2647
2648       // Create the .interp section to hold the name of the
2649       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2650       // if we saw a .interp section in an input file.
2651       if ((!parameters->options().shared()
2652            || parameters->options().dynamic_linker() != NULL)
2653           && this->interp_segment_ == NULL)
2654         this->create_interp(target);
2655
2656       // Finish the .dynamic section to hold the dynamic data, and put
2657       // it in a PT_DYNAMIC segment.
2658       this->finish_dynamic_section(input_objects, symtab);
2659
2660       // We should have added everything we need to the dynamic string
2661       // table.
2662       this->dynpool_.set_string_offsets();
2663
2664       // Create the version sections.  We can't do this until the
2665       // dynamic string table is complete.
2666       this->create_version_sections(&versions, symtab, local_dynamic_count,
2667                                     dynamic_symbols, dynstr);
2668
2669       // Set the size of the _DYNAMIC symbol.  We can't do this until
2670       // after we call create_version_sections.
2671       this->set_dynamic_symbol_size(symtab);
2672     }
2673
2674   // Create segment headers.
2675   Output_segment_headers* segment_headers =
2676     (parameters->options().relocatable()
2677      ? NULL
2678      : new Output_segment_headers(this->segment_list_));
2679
2680   // Lay out the file header.
2681   Output_file_header* file_header = new Output_file_header(target, symtab,
2682                                                            segment_headers);
2683
2684   this->special_output_list_.push_back(file_header);
2685   if (segment_headers != NULL)
2686     this->special_output_list_.push_back(segment_headers);
2687
2688   // Find approriate places for orphan output sections if we are using
2689   // a linker script.
2690   if (this->script_options_->saw_sections_clause())
2691     this->place_orphan_sections_in_script();
2692
2693   Output_segment* load_seg;
2694   off_t off;
2695   unsigned int shndx;
2696   int pass = 0;
2697
2698   // Take a snapshot of the section layout as needed.
2699   if (target->may_relax())
2700     this->prepare_for_relaxation();
2701
2702   // Run the relaxation loop to lay out sections.
2703   do
2704     {
2705       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2706                                        phdr_seg, segment_headers, file_header,
2707                                        &shndx);
2708       pass++;
2709     }
2710   while (target->may_relax()
2711          && target->relax(pass, input_objects, symtab, this, task));
2712
2713   // If there is a load segment that contains the file and program headers,
2714   // provide a symbol __ehdr_start pointing there.
2715   // A program can use this to examine itself robustly.
2716   if (load_seg != NULL)
2717     symtab->define_in_output_segment("__ehdr_start", NULL,
2718                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2719                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2720                                      elfcpp::STV_HIDDEN, 0,
2721                                      Symbol::SEGMENT_START, true);
2722
2723   // Set the file offsets of all the non-data sections we've seen so
2724   // far which don't have to wait for the input sections.  We need
2725   // this in order to finalize local symbols in non-allocated
2726   // sections.
2727   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2728
2729   // Set the section indexes of all unallocated sections seen so far,
2730   // in case any of them are somehow referenced by a symbol.
2731   shndx = this->set_section_indexes(shndx);
2732
2733   // Create the symbol table sections.
2734   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2735   if (!parameters->doing_static_link())
2736     this->assign_local_dynsym_offsets(input_objects);
2737
2738   // Process any symbol assignments from a linker script.  This must
2739   // be called after the symbol table has been finalized.
2740   this->script_options_->finalize_symbols(symtab, this);
2741
2742   // Create the incremental inputs sections.
2743   if (this->incremental_inputs_)
2744     {
2745       this->incremental_inputs_->finalize();
2746       this->create_incremental_info_sections(symtab);
2747     }
2748
2749   // Create the .shstrtab section.
2750   Output_section* shstrtab_section = this->create_shstrtab();
2751
2752   // Set the file offsets of the rest of the non-data sections which
2753   // don't have to wait for the input sections.
2754   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2755
2756   // Now that all sections have been created, set the section indexes
2757   // for any sections which haven't been done yet.
2758   shndx = this->set_section_indexes(shndx);
2759
2760   // Create the section table header.
2761   this->create_shdrs(shstrtab_section, &off);
2762
2763   // If there are no sections which require postprocessing, we can
2764   // handle the section names now, and avoid a resize later.
2765   if (!this->any_postprocessing_sections_)
2766     {
2767       off = this->set_section_offsets(off,
2768                                       POSTPROCESSING_SECTIONS_PASS);
2769       off =
2770           this->set_section_offsets(off,
2771                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2772     }
2773
2774   file_header->set_section_info(this->section_headers_, shstrtab_section);
2775
2776   // Now we know exactly where everything goes in the output file
2777   // (except for non-allocated sections which require postprocessing).
2778   Output_data::layout_complete();
2779
2780   this->output_file_size_ = off;
2781
2782   return off;
2783 }
2784
2785 // Create a note header following the format defined in the ELF ABI.
2786 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2787 // of the section to create, DESCSZ is the size of the descriptor.
2788 // ALLOCATE is true if the section should be allocated in memory.
2789 // This returns the new note section.  It sets *TRAILING_PADDING to
2790 // the number of trailing zero bytes required.
2791
2792 Output_section*
2793 Layout::create_note(const char* name, int note_type,
2794                     const char* section_name, size_t descsz,
2795                     bool allocate, size_t* trailing_padding)
2796 {
2797   // Authorities all agree that the values in a .note field should
2798   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2799   // they differ on what the alignment is for 64-bit binaries.
2800   // The GABI says unambiguously they take 8-byte alignment:
2801   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2802   // Other documentation says alignment should always be 4 bytes:
2803   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2804   // GNU ld and GNU readelf both support the latter (at least as of
2805   // version 2.16.91), and glibc always generates the latter for
2806   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2807   // here.
2808 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2809   const int size = parameters->target().get_size();
2810 #else
2811   const int size = 32;
2812 #endif
2813
2814   // The contents of the .note section.
2815   size_t namesz = strlen(name) + 1;
2816   size_t aligned_namesz = align_address(namesz, size / 8);
2817   size_t aligned_descsz = align_address(descsz, size / 8);
2818
2819   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2820
2821   unsigned char* buffer = new unsigned char[notehdrsz];
2822   memset(buffer, 0, notehdrsz);
2823
2824   bool is_big_endian = parameters->target().is_big_endian();
2825
2826   if (size == 32)
2827     {
2828       if (!is_big_endian)
2829         {
2830           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2831           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2832           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2833         }
2834       else
2835         {
2836           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2837           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2838           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2839         }
2840     }
2841   else if (size == 64)
2842     {
2843       if (!is_big_endian)
2844         {
2845           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2846           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2847           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2848         }
2849       else
2850         {
2851           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2852           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2853           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2854         }
2855     }
2856   else
2857     gold_unreachable();
2858
2859   memcpy(buffer + 3 * (size / 8), name, namesz);
2860
2861   elfcpp::Elf_Xword flags = 0;
2862   Output_section_order order = ORDER_INVALID;
2863   if (allocate)
2864     {
2865       flags = elfcpp::SHF_ALLOC;
2866       order = ORDER_RO_NOTE;
2867     }
2868   Output_section* os = this->choose_output_section(NULL, section_name,
2869                                                    elfcpp::SHT_NOTE,
2870                                                    flags, false, order, false);
2871   if (os == NULL)
2872     return NULL;
2873
2874   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2875                                                            size / 8,
2876                                                            "** note header");
2877   os->add_output_section_data(posd);
2878
2879   *trailing_padding = aligned_descsz - descsz;
2880
2881   return os;
2882 }
2883
2884 // For an executable or shared library, create a note to record the
2885 // version of gold used to create the binary.
2886
2887 void
2888 Layout::create_gold_note()
2889 {
2890   if (parameters->options().relocatable()
2891       || parameters->incremental_update())
2892     return;
2893
2894   std::string desc = std::string("gold ") + gold::get_version_string();
2895
2896   size_t trailing_padding;
2897   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2898                                          ".note.gnu.gold-version", desc.size(),
2899                                          false, &trailing_padding);
2900   if (os == NULL)
2901     return;
2902
2903   Output_section_data* posd = new Output_data_const(desc, 4);
2904   os->add_output_section_data(posd);
2905
2906   if (trailing_padding > 0)
2907     {
2908       posd = new Output_data_zero_fill(trailing_padding, 0);
2909       os->add_output_section_data(posd);
2910     }
2911 }
2912
2913 // Record whether the stack should be executable.  This can be set
2914 // from the command line using the -z execstack or -z noexecstack
2915 // options.  Otherwise, if any input file has a .note.GNU-stack
2916 // section with the SHF_EXECINSTR flag set, the stack should be
2917 // executable.  Otherwise, if at least one input file a
2918 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2919 // section, we use the target default for whether the stack should be
2920 // executable.  Otherwise, we don't generate a stack note.  When
2921 // generating a object file, we create a .note.GNU-stack section with
2922 // the appropriate marking.  When generating an executable or shared
2923 // library, we create a PT_GNU_STACK segment.
2924
2925 void
2926 Layout::create_executable_stack_info()
2927 {
2928   bool is_stack_executable;
2929   if (parameters->options().is_execstack_set())
2930     is_stack_executable = parameters->options().is_stack_executable();
2931   else if (!this->input_with_gnu_stack_note_)
2932     return;
2933   else
2934     {
2935       if (this->input_requires_executable_stack_)
2936         is_stack_executable = true;
2937       else if (this->input_without_gnu_stack_note_)
2938         is_stack_executable =
2939           parameters->target().is_default_stack_executable();
2940       else
2941         is_stack_executable = false;
2942     }
2943
2944   if (parameters->options().relocatable())
2945     {
2946       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2947       elfcpp::Elf_Xword flags = 0;
2948       if (is_stack_executable)
2949         flags |= elfcpp::SHF_EXECINSTR;
2950       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2951                                 ORDER_INVALID, false);
2952     }
2953   else
2954     {
2955       if (this->script_options_->saw_phdrs_clause())
2956         return;
2957       int flags = elfcpp::PF_R | elfcpp::PF_W;
2958       if (is_stack_executable)
2959         flags |= elfcpp::PF_X;
2960       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2961     }
2962 }
2963
2964 // If --build-id was used, set up the build ID note.
2965
2966 void
2967 Layout::create_build_id()
2968 {
2969   if (!parameters->options().user_set_build_id())
2970     return;
2971
2972   const char* style = parameters->options().build_id();
2973   if (strcmp(style, "none") == 0)
2974     return;
2975
2976   // Set DESCSZ to the size of the note descriptor.  When possible,
2977   // set DESC to the note descriptor contents.
2978   size_t descsz;
2979   std::string desc;
2980   if (strcmp(style, "md5") == 0)
2981     descsz = 128 / 8;
2982   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
2983     descsz = 160 / 8;
2984   else if (strcmp(style, "uuid") == 0)
2985     {
2986       const size_t uuidsz = 128 / 8;
2987
2988       char buffer[uuidsz];
2989       memset(buffer, 0, uuidsz);
2990
2991       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2992       if (descriptor < 0)
2993         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2994                    strerror(errno));
2995       else
2996         {
2997           ssize_t got = ::read(descriptor, buffer, uuidsz);
2998           release_descriptor(descriptor, true);
2999           if (got < 0)
3000             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3001           else if (static_cast<size_t>(got) != uuidsz)
3002             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3003                        uuidsz, got);
3004         }
3005
3006       desc.assign(buffer, uuidsz);
3007       descsz = uuidsz;
3008     }
3009   else if (strncmp(style, "0x", 2) == 0)
3010     {
3011       hex_init();
3012       const char* p = style + 2;
3013       while (*p != '\0')
3014         {
3015           if (hex_p(p[0]) && hex_p(p[1]))
3016             {
3017               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3018               desc += c;
3019               p += 2;
3020             }
3021           else if (*p == '-' || *p == ':')
3022             ++p;
3023           else
3024             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3025                        style);
3026         }
3027       descsz = desc.size();
3028     }
3029   else
3030     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3031
3032   // Create the note.
3033   size_t trailing_padding;
3034   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3035                                          ".note.gnu.build-id", descsz, true,
3036                                          &trailing_padding);
3037   if (os == NULL)
3038     return;
3039
3040   if (!desc.empty())
3041     {
3042       // We know the value already, so we fill it in now.
3043       gold_assert(desc.size() == descsz);
3044
3045       Output_section_data* posd = new Output_data_const(desc, 4);
3046       os->add_output_section_data(posd);
3047
3048       if (trailing_padding != 0)
3049         {
3050           posd = new Output_data_zero_fill(trailing_padding, 0);
3051           os->add_output_section_data(posd);
3052         }
3053     }
3054   else
3055     {
3056       // We need to compute a checksum after we have completed the
3057       // link.
3058       gold_assert(trailing_padding == 0);
3059       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3060       os->add_output_section_data(this->build_id_note_);
3061     }
3062 }
3063
3064 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3065 // field of the former should point to the latter.  I'm not sure who
3066 // started this, but the GNU linker does it, and some tools depend
3067 // upon it.
3068
3069 void
3070 Layout::link_stabs_sections()
3071 {
3072   if (!this->have_stabstr_section_)
3073     return;
3074
3075   for (Section_list::iterator p = this->section_list_.begin();
3076        p != this->section_list_.end();
3077        ++p)
3078     {
3079       if ((*p)->type() != elfcpp::SHT_STRTAB)
3080         continue;
3081
3082       const char* name = (*p)->name();
3083       if (strncmp(name, ".stab", 5) != 0)
3084         continue;
3085
3086       size_t len = strlen(name);
3087       if (strcmp(name + len - 3, "str") != 0)
3088         continue;
3089
3090       std::string stab_name(name, len - 3);
3091       Output_section* stab_sec;
3092       stab_sec = this->find_output_section(stab_name.c_str());
3093       if (stab_sec != NULL)
3094         stab_sec->set_link_section(*p);
3095     }
3096 }
3097
3098 // Create .gnu_incremental_inputs and related sections needed
3099 // for the next run of incremental linking to check what has changed.
3100
3101 void
3102 Layout::create_incremental_info_sections(Symbol_table* symtab)
3103 {
3104   Incremental_inputs* incr = this->incremental_inputs_;
3105
3106   gold_assert(incr != NULL);
3107
3108   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3109   incr->create_data_sections(symtab);
3110
3111   // Add the .gnu_incremental_inputs section.
3112   const char* incremental_inputs_name =
3113     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3114   Output_section* incremental_inputs_os =
3115     this->make_output_section(incremental_inputs_name,
3116                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3117                               ORDER_INVALID, false);
3118   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3119
3120   // Add the .gnu_incremental_symtab section.
3121   const char* incremental_symtab_name =
3122     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3123   Output_section* incremental_symtab_os =
3124     this->make_output_section(incremental_symtab_name,
3125                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3126                               ORDER_INVALID, false);
3127   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3128   incremental_symtab_os->set_entsize(4);
3129
3130   // Add the .gnu_incremental_relocs section.
3131   const char* incremental_relocs_name =
3132     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3133   Output_section* incremental_relocs_os =
3134     this->make_output_section(incremental_relocs_name,
3135                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3136                               ORDER_INVALID, false);
3137   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3138   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3139
3140   // Add the .gnu_incremental_got_plt section.
3141   const char* incremental_got_plt_name =
3142     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3143   Output_section* incremental_got_plt_os =
3144     this->make_output_section(incremental_got_plt_name,
3145                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3146                               ORDER_INVALID, false);
3147   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3148
3149   // Add the .gnu_incremental_strtab section.
3150   const char* incremental_strtab_name =
3151     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3152   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3153                                                         elfcpp::SHT_STRTAB, 0,
3154                                                         ORDER_INVALID, false);
3155   Output_data_strtab* strtab_data =
3156       new Output_data_strtab(incr->get_stringpool());
3157   incremental_strtab_os->add_output_section_data(strtab_data);
3158
3159   incremental_inputs_os->set_after_input_sections();
3160   incremental_symtab_os->set_after_input_sections();
3161   incremental_relocs_os->set_after_input_sections();
3162   incremental_got_plt_os->set_after_input_sections();
3163
3164   incremental_inputs_os->set_link_section(incremental_strtab_os);
3165   incremental_symtab_os->set_link_section(incremental_inputs_os);
3166   incremental_relocs_os->set_link_section(incremental_inputs_os);
3167   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3168 }
3169
3170 // Return whether SEG1 should be before SEG2 in the output file.  This
3171 // is based entirely on the segment type and flags.  When this is
3172 // called the segment addresses have normally not yet been set.
3173
3174 bool
3175 Layout::segment_precedes(const Output_segment* seg1,
3176                          const Output_segment* seg2)
3177 {
3178   elfcpp::Elf_Word type1 = seg1->type();
3179   elfcpp::Elf_Word type2 = seg2->type();
3180
3181   // The single PT_PHDR segment is required to precede any loadable
3182   // segment.  We simply make it always first.
3183   if (type1 == elfcpp::PT_PHDR)
3184     {
3185       gold_assert(type2 != elfcpp::PT_PHDR);
3186       return true;
3187     }
3188   if (type2 == elfcpp::PT_PHDR)
3189     return false;
3190
3191   // The single PT_INTERP segment is required to precede any loadable
3192   // segment.  We simply make it always second.
3193   if (type1 == elfcpp::PT_INTERP)
3194     {
3195       gold_assert(type2 != elfcpp::PT_INTERP);
3196       return true;
3197     }
3198   if (type2 == elfcpp::PT_INTERP)
3199     return false;
3200
3201   // We then put PT_LOAD segments before any other segments.
3202   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3203     return true;
3204   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3205     return false;
3206
3207   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3208   // segment, because that is where the dynamic linker expects to find
3209   // it (this is just for efficiency; other positions would also work
3210   // correctly).
3211   if (type1 == elfcpp::PT_TLS
3212       && type2 != elfcpp::PT_TLS
3213       && type2 != elfcpp::PT_GNU_RELRO)
3214     return false;
3215   if (type2 == elfcpp::PT_TLS
3216       && type1 != elfcpp::PT_TLS
3217       && type1 != elfcpp::PT_GNU_RELRO)
3218     return true;
3219
3220   // We put the PT_GNU_RELRO segment last, because that is where the
3221   // dynamic linker expects to find it (as with PT_TLS, this is just
3222   // for efficiency).
3223   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3224     return false;
3225   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3226     return true;
3227
3228   const elfcpp::Elf_Word flags1 = seg1->flags();
3229   const elfcpp::Elf_Word flags2 = seg2->flags();
3230
3231   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3232   // by the numeric segment type and flags values.  There should not
3233   // be more than one segment with the same type and flags, except
3234   // when a linker script specifies such.
3235   if (type1 != elfcpp::PT_LOAD)
3236     {
3237       if (type1 != type2)
3238         return type1 < type2;
3239       gold_assert(flags1 != flags2
3240                   || this->script_options_->saw_phdrs_clause());
3241       return flags1 < flags2;
3242     }
3243
3244   // If the addresses are set already, sort by load address.
3245   if (seg1->are_addresses_set())
3246     {
3247       if (!seg2->are_addresses_set())
3248         return true;
3249
3250       unsigned int section_count1 = seg1->output_section_count();
3251       unsigned int section_count2 = seg2->output_section_count();
3252       if (section_count1 == 0 && section_count2 > 0)
3253         return true;
3254       if (section_count1 > 0 && section_count2 == 0)
3255         return false;
3256
3257       uint64_t paddr1 = (seg1->are_addresses_set()
3258                          ? seg1->paddr()
3259                          : seg1->first_section_load_address());
3260       uint64_t paddr2 = (seg2->are_addresses_set()
3261                          ? seg2->paddr()
3262                          : seg2->first_section_load_address());
3263
3264       if (paddr1 != paddr2)
3265         return paddr1 < paddr2;
3266     }
3267   else if (seg2->are_addresses_set())
3268     return false;
3269
3270   // A segment which holds large data comes after a segment which does
3271   // not hold large data.
3272   if (seg1->is_large_data_segment())
3273     {
3274       if (!seg2->is_large_data_segment())
3275         return false;
3276     }
3277   else if (seg2->is_large_data_segment())
3278     return true;
3279
3280   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3281   // segments come before writable segments.  Then writable segments
3282   // with data come before writable segments without data.  Then
3283   // executable segments come before non-executable segments.  Then
3284   // the unlikely case of a non-readable segment comes before the
3285   // normal case of a readable segment.  If there are multiple
3286   // segments with the same type and flags, we require that the
3287   // address be set, and we sort by virtual address and then physical
3288   // address.
3289   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3290     return (flags1 & elfcpp::PF_W) == 0;
3291   if ((flags1 & elfcpp::PF_W) != 0
3292       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3293     return seg1->has_any_data_sections();
3294   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3295     return (flags1 & elfcpp::PF_X) != 0;
3296   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3297     return (flags1 & elfcpp::PF_R) == 0;
3298
3299   // We shouldn't get here--we shouldn't create segments which we
3300   // can't distinguish.  Unless of course we are using a weird linker
3301   // script or overlapping --section-start options.  We could also get
3302   // here if plugins want unique segments for subsets of sections.
3303   gold_assert(this->script_options_->saw_phdrs_clause()
3304               || parameters->options().any_section_start()
3305               || this->is_unique_segment_for_sections_specified());
3306   return false;
3307 }
3308
3309 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3310
3311 static off_t
3312 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3313 {
3314   uint64_t unsigned_off = off;
3315   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3316                           | (addr & (abi_pagesize - 1)));
3317   if (aligned_off < unsigned_off)
3318     aligned_off += abi_pagesize;
3319   return aligned_off;
3320 }
3321
3322 // Set the file offsets of all the segments, and all the sections they
3323 // contain.  They have all been created.  LOAD_SEG must be be laid out
3324 // first.  Return the offset of the data to follow.
3325
3326 off_t
3327 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3328                             unsigned int* pshndx)
3329 {
3330   // Sort them into the final order.  We use a stable sort so that we
3331   // don't randomize the order of indistinguishable segments created
3332   // by linker scripts.
3333   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3334                    Layout::Compare_segments(this));
3335
3336   // Find the PT_LOAD segments, and set their addresses and offsets
3337   // and their section's addresses and offsets.
3338   uint64_t start_addr;
3339   if (parameters->options().user_set_Ttext())
3340     start_addr = parameters->options().Ttext();
3341   else if (parameters->options().output_is_position_independent())
3342     start_addr = 0;
3343   else
3344     start_addr = target->default_text_segment_address();
3345
3346   uint64_t addr = start_addr;
3347   off_t off = 0;
3348
3349   // If LOAD_SEG is NULL, then the file header and segment headers
3350   // will not be loadable.  But they still need to be at offset 0 in
3351   // the file.  Set their offsets now.
3352   if (load_seg == NULL)
3353     {
3354       for (Data_list::iterator p = this->special_output_list_.begin();
3355            p != this->special_output_list_.end();
3356            ++p)
3357         {
3358           off = align_address(off, (*p)->addralign());
3359           (*p)->set_address_and_file_offset(0, off);
3360           off += (*p)->data_size();
3361         }
3362     }
3363
3364   unsigned int increase_relro = this->increase_relro_;
3365   if (this->script_options_->saw_sections_clause())
3366     increase_relro = 0;
3367
3368   const bool check_sections = parameters->options().check_sections();
3369   Output_segment* last_load_segment = NULL;
3370
3371   unsigned int shndx_begin = *pshndx;
3372   unsigned int shndx_load_seg = *pshndx;
3373
3374   for (Segment_list::iterator p = this->segment_list_.begin();
3375        p != this->segment_list_.end();
3376        ++p)
3377     {
3378       if ((*p)->type() == elfcpp::PT_LOAD)
3379         {
3380           if (target->isolate_execinstr())
3381             {
3382               // When we hit the segment that should contain the
3383               // file headers, reset the file offset so we place
3384               // it and subsequent segments appropriately.
3385               // We'll fix up the preceding segments below.
3386               if (load_seg == *p)
3387                 {
3388                   if (off == 0)
3389                     load_seg = NULL;
3390                   else
3391                     {
3392                       off = 0;
3393                       shndx_load_seg = *pshndx;
3394                     }
3395                 }
3396             }
3397           else
3398             {
3399               // Verify that the file headers fall into the first segment.
3400               if (load_seg != NULL && load_seg != *p)
3401                 gold_unreachable();
3402               load_seg = NULL;
3403             }
3404
3405           bool are_addresses_set = (*p)->are_addresses_set();
3406           if (are_addresses_set)
3407             {
3408               // When it comes to setting file offsets, we care about
3409               // the physical address.
3410               addr = (*p)->paddr();
3411             }
3412           else if (parameters->options().user_set_Ttext()
3413                    && (parameters->options().omagic()
3414                        || ((*p)->flags() & elfcpp::PF_W) == 0))
3415             {
3416               are_addresses_set = true;
3417             }
3418           else if (parameters->options().user_set_Tdata()
3419                    && ((*p)->flags() & elfcpp::PF_W) != 0
3420                    && (!parameters->options().user_set_Tbss()
3421                        || (*p)->has_any_data_sections()))
3422             {
3423               addr = parameters->options().Tdata();
3424               are_addresses_set = true;
3425             }
3426           else if (parameters->options().user_set_Tbss()
3427                    && ((*p)->flags() & elfcpp::PF_W) != 0
3428                    && !(*p)->has_any_data_sections())
3429             {
3430               addr = parameters->options().Tbss();
3431               are_addresses_set = true;
3432             }
3433
3434           uint64_t orig_addr = addr;
3435           uint64_t orig_off = off;
3436
3437           uint64_t aligned_addr = 0;
3438           uint64_t abi_pagesize = target->abi_pagesize();
3439           uint64_t common_pagesize = target->common_pagesize();
3440
3441           if (!parameters->options().nmagic()
3442               && !parameters->options().omagic())
3443             (*p)->set_minimum_p_align(abi_pagesize);
3444
3445           if (!are_addresses_set)
3446             {
3447               // Skip the address forward one page, maintaining the same
3448               // position within the page.  This lets us store both segments
3449               // overlapping on a single page in the file, but the loader will
3450               // put them on different pages in memory. We will revisit this
3451               // decision once we know the size of the segment.
3452
3453               addr = align_address(addr, (*p)->maximum_alignment());
3454               aligned_addr = addr;
3455
3456               if (load_seg == *p)
3457                 {
3458                   // This is the segment that will contain the file
3459                   // headers, so its offset will have to be exactly zero.
3460                   gold_assert(orig_off == 0);
3461
3462                   // If the target wants a fixed minimum distance from the
3463                   // text segment to the read-only segment, move up now.
3464                   uint64_t min_addr =
3465                     start_addr + (parameters->options().user_set_rosegment_gap()
3466                                   ? parameters->options().rosegment_gap()
3467                                   : target->rosegment_gap());
3468                   if (addr < min_addr)
3469                     addr = min_addr;
3470
3471                   // But this is not the first segment!  To make its
3472                   // address congruent with its offset, that address better
3473                   // be aligned to the ABI-mandated page size.
3474                   addr = align_address(addr, abi_pagesize);
3475                   aligned_addr = addr;
3476                 }
3477               else
3478                 {
3479                   if ((addr & (abi_pagesize - 1)) != 0)
3480                     addr = addr + abi_pagesize;
3481
3482                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3483                 }
3484             }
3485
3486           if (!parameters->options().nmagic()
3487               && !parameters->options().omagic())
3488             {
3489               // Here we are also taking care of the case when
3490               // the maximum segment alignment is larger than the page size.
3491               off = align_file_offset(off, addr,
3492                                       std::max(abi_pagesize,
3493                                                (*p)->maximum_alignment()));
3494             }
3495           else
3496             {
3497               // This is -N or -n with a section script which prevents
3498               // us from using a load segment.  We need to ensure that
3499               // the file offset is aligned to the alignment of the
3500               // segment.  This is because the linker script
3501               // implicitly assumed a zero offset.  If we don't align
3502               // here, then the alignment of the sections in the
3503               // linker script may not match the alignment of the
3504               // sections in the set_section_addresses call below,
3505               // causing an error about dot moving backward.
3506               off = align_address(off, (*p)->maximum_alignment());
3507             }
3508
3509           unsigned int shndx_hold = *pshndx;
3510           bool has_relro = false;
3511           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3512                                                           &increase_relro,
3513                                                           &has_relro,
3514                                                           &off, pshndx);
3515
3516           // Now that we know the size of this segment, we may be able
3517           // to save a page in memory, at the cost of wasting some
3518           // file space, by instead aligning to the start of a new
3519           // page.  Here we use the real machine page size rather than
3520           // the ABI mandated page size.  If the segment has been
3521           // aligned so that the relro data ends at a page boundary,
3522           // we do not try to realign it.
3523
3524           if (!are_addresses_set
3525               && !has_relro
3526               && aligned_addr != addr
3527               && !parameters->incremental())
3528             {
3529               uint64_t first_off = (common_pagesize
3530                                     - (aligned_addr
3531                                        & (common_pagesize - 1)));
3532               uint64_t last_off = new_addr & (common_pagesize - 1);
3533               if (first_off > 0
3534                   && last_off > 0
3535                   && ((aligned_addr & ~ (common_pagesize - 1))
3536                       != (new_addr & ~ (common_pagesize - 1)))
3537                   && first_off + last_off <= common_pagesize)
3538                 {
3539                   *pshndx = shndx_hold;
3540                   addr = align_address(aligned_addr, common_pagesize);
3541                   addr = align_address(addr, (*p)->maximum_alignment());
3542                   if ((addr & (abi_pagesize - 1)) != 0)
3543                     addr = addr + abi_pagesize;
3544                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3545                   off = align_file_offset(off, addr, abi_pagesize);
3546
3547                   increase_relro = this->increase_relro_;
3548                   if (this->script_options_->saw_sections_clause())
3549                     increase_relro = 0;
3550                   has_relro = false;
3551
3552                   new_addr = (*p)->set_section_addresses(this, true, addr,
3553                                                          &increase_relro,
3554                                                          &has_relro,
3555                                                          &off, pshndx);
3556                 }
3557             }
3558
3559           addr = new_addr;
3560
3561           // Implement --check-sections.  We know that the segments
3562           // are sorted by LMA.
3563           if (check_sections && last_load_segment != NULL)
3564             {
3565               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3566               if (last_load_segment->paddr() + last_load_segment->memsz()
3567                   > (*p)->paddr())
3568                 {
3569                   unsigned long long lb1 = last_load_segment->paddr();
3570                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3571                   unsigned long long lb2 = (*p)->paddr();
3572                   unsigned long long le2 = lb2 + (*p)->memsz();
3573                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3574                                "[0x%llx -> 0x%llx]"),
3575                              lb1, le1, lb2, le2);
3576                 }
3577             }
3578           last_load_segment = *p;
3579         }
3580     }
3581
3582   if (load_seg != NULL && target->isolate_execinstr())
3583     {
3584       // Process the early segments again, setting their file offsets
3585       // so they land after the segments starting at LOAD_SEG.
3586       off = align_file_offset(off, 0, target->abi_pagesize());
3587
3588       for (Segment_list::iterator p = this->segment_list_.begin();
3589            *p != load_seg;
3590            ++p)
3591         {
3592           if ((*p)->type() == elfcpp::PT_LOAD)
3593             {
3594               // We repeat the whole job of assigning addresses and
3595               // offsets, but we really only want to change the offsets and
3596               // must ensure that the addresses all come out the same as
3597               // they did the first time through.
3598               bool has_relro = false;
3599               const uint64_t old_addr = (*p)->vaddr();
3600               const uint64_t old_end = old_addr + (*p)->memsz();
3601               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3602                                                               old_addr,
3603                                                               &increase_relro,
3604                                                               &has_relro,
3605                                                               &off,
3606                                                               &shndx_begin);
3607               gold_assert(new_addr == old_end);
3608             }
3609         }
3610
3611       gold_assert(shndx_begin == shndx_load_seg);
3612     }
3613
3614   // Handle the non-PT_LOAD segments, setting their offsets from their
3615   // section's offsets.
3616   for (Segment_list::iterator p = this->segment_list_.begin();
3617        p != this->segment_list_.end();
3618        ++p)
3619     {
3620       if ((*p)->type() != elfcpp::PT_LOAD)
3621         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3622                          ? increase_relro
3623                          : 0);
3624     }
3625
3626   // Set the TLS offsets for each section in the PT_TLS segment.
3627   if (this->tls_segment_ != NULL)
3628     this->tls_segment_->set_tls_offsets();
3629
3630   return off;
3631 }
3632
3633 // Set the offsets of all the allocated sections when doing a
3634 // relocatable link.  This does the same jobs as set_segment_offsets,
3635 // only for a relocatable link.
3636
3637 off_t
3638 Layout::set_relocatable_section_offsets(Output_data* file_header,
3639                                         unsigned int* pshndx)
3640 {
3641   off_t off = 0;
3642
3643   file_header->set_address_and_file_offset(0, 0);
3644   off += file_header->data_size();
3645
3646   for (Section_list::iterator p = this->section_list_.begin();
3647        p != this->section_list_.end();
3648        ++p)
3649     {
3650       // We skip unallocated sections here, except that group sections
3651       // have to come first.
3652       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3653           && (*p)->type() != elfcpp::SHT_GROUP)
3654         continue;
3655
3656       off = align_address(off, (*p)->addralign());
3657
3658       // The linker script might have set the address.
3659       if (!(*p)->is_address_valid())
3660         (*p)->set_address(0);
3661       (*p)->set_file_offset(off);
3662       (*p)->finalize_data_size();
3663       if ((*p)->type() != elfcpp::SHT_NOBITS)
3664         off += (*p)->data_size();
3665
3666       (*p)->set_out_shndx(*pshndx);
3667       ++*pshndx;
3668     }
3669
3670   return off;
3671 }
3672
3673 // Set the file offset of all the sections not associated with a
3674 // segment.
3675
3676 off_t
3677 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3678 {
3679   off_t startoff = off;
3680   off_t maxoff = off;
3681
3682   for (Section_list::iterator p = this->unattached_section_list_.begin();
3683        p != this->unattached_section_list_.end();
3684        ++p)
3685     {
3686       // The symtab section is handled in create_symtab_sections.
3687       if (*p == this->symtab_section_)
3688         continue;
3689
3690       // If we've already set the data size, don't set it again.
3691       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3692         continue;
3693
3694       if (pass == BEFORE_INPUT_SECTIONS_PASS
3695           && (*p)->requires_postprocessing())
3696         {
3697           (*p)->create_postprocessing_buffer();
3698           this->any_postprocessing_sections_ = true;
3699         }
3700
3701       if (pass == BEFORE_INPUT_SECTIONS_PASS
3702           && (*p)->after_input_sections())
3703         continue;
3704       else if (pass == POSTPROCESSING_SECTIONS_PASS
3705                && (!(*p)->after_input_sections()
3706                    || (*p)->type() == elfcpp::SHT_STRTAB))
3707         continue;
3708       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3709                && (!(*p)->after_input_sections()
3710                    || (*p)->type() != elfcpp::SHT_STRTAB))
3711         continue;
3712
3713       if (!parameters->incremental_update())
3714         {
3715           off = align_address(off, (*p)->addralign());
3716           (*p)->set_file_offset(off);
3717           (*p)->finalize_data_size();
3718         }
3719       else
3720         {
3721           // Incremental update: allocate file space from free list.
3722           (*p)->pre_finalize_data_size();
3723           off_t current_size = (*p)->current_data_size();
3724           off = this->allocate(current_size, (*p)->addralign(), startoff);
3725           if (off == -1)
3726             {
3727               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3728                 this->free_list_.dump();
3729               gold_assert((*p)->output_section() != NULL);
3730               gold_fallback(_("out of patch space for section %s; "
3731                               "relink with --incremental-full"),
3732                             (*p)->output_section()->name());
3733             }
3734           (*p)->set_file_offset(off);
3735           (*p)->finalize_data_size();
3736           if ((*p)->data_size() > current_size)
3737             {
3738               gold_assert((*p)->output_section() != NULL);
3739               gold_fallback(_("%s: section changed size; "
3740                               "relink with --incremental-full"),
3741                             (*p)->output_section()->name());
3742             }
3743           gold_debug(DEBUG_INCREMENTAL,
3744                      "set_section_offsets: %08lx %08lx %s",
3745                      static_cast<long>(off),
3746                      static_cast<long>((*p)->data_size()),
3747                      ((*p)->output_section() != NULL
3748                       ? (*p)->output_section()->name() : "(special)"));
3749         }
3750
3751       off += (*p)->data_size();
3752       if (off > maxoff)
3753         maxoff = off;
3754
3755       // At this point the name must be set.
3756       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3757         this->namepool_.add((*p)->name(), false, NULL);
3758     }
3759   return maxoff;
3760 }
3761
3762 // Set the section indexes of all the sections not associated with a
3763 // segment.
3764
3765 unsigned int
3766 Layout::set_section_indexes(unsigned int shndx)
3767 {
3768   for (Section_list::iterator p = this->unattached_section_list_.begin();
3769        p != this->unattached_section_list_.end();
3770        ++p)
3771     {
3772       if (!(*p)->has_out_shndx())
3773         {
3774           (*p)->set_out_shndx(shndx);
3775           ++shndx;
3776         }
3777     }
3778   return shndx;
3779 }
3780
3781 // Set the section addresses according to the linker script.  This is
3782 // only called when we see a SECTIONS clause.  This returns the
3783 // program segment which should hold the file header and segment
3784 // headers, if any.  It will return NULL if they should not be in a
3785 // segment.
3786
3787 Output_segment*
3788 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3789 {
3790   Script_sections* ss = this->script_options_->script_sections();
3791   gold_assert(ss->saw_sections_clause());
3792   return this->script_options_->set_section_addresses(symtab, this);
3793 }
3794
3795 // Place the orphan sections in the linker script.
3796
3797 void
3798 Layout::place_orphan_sections_in_script()
3799 {
3800   Script_sections* ss = this->script_options_->script_sections();
3801   gold_assert(ss->saw_sections_clause());
3802
3803   // Place each orphaned output section in the script.
3804   for (Section_list::iterator p = this->section_list_.begin();
3805        p != this->section_list_.end();
3806        ++p)
3807     {
3808       if (!(*p)->found_in_sections_clause())
3809         ss->place_orphan(*p);
3810     }
3811 }
3812
3813 // Count the local symbols in the regular symbol table and the dynamic
3814 // symbol table, and build the respective string pools.
3815
3816 void
3817 Layout::count_local_symbols(const Task* task,
3818                             const Input_objects* input_objects)
3819 {
3820   // First, figure out an upper bound on the number of symbols we'll
3821   // be inserting into each pool.  This helps us create the pools with
3822   // the right size, to avoid unnecessary hashtable resizing.
3823   unsigned int symbol_count = 0;
3824   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3825        p != input_objects->relobj_end();
3826        ++p)
3827     symbol_count += (*p)->local_symbol_count();
3828
3829   // Go from "upper bound" to "estimate."  We overcount for two
3830   // reasons: we double-count symbols that occur in more than one
3831   // object file, and we count symbols that are dropped from the
3832   // output.  Add it all together and assume we overcount by 100%.
3833   symbol_count /= 2;
3834
3835   // We assume all symbols will go into both the sympool and dynpool.
3836   this->sympool_.reserve(symbol_count);
3837   this->dynpool_.reserve(symbol_count);
3838
3839   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3840        p != input_objects->relobj_end();
3841        ++p)
3842     {
3843       Task_lock_obj<Object> tlo(task, *p);
3844       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3845     }
3846 }
3847
3848 // Create the symbol table sections.  Here we also set the final
3849 // values of the symbols.  At this point all the loadable sections are
3850 // fully laid out.  SHNUM is the number of sections so far.
3851
3852 void
3853 Layout::create_symtab_sections(const Input_objects* input_objects,
3854                                Symbol_table* symtab,
3855                                unsigned int shnum,
3856                                off_t* poff)
3857 {
3858   int symsize;
3859   unsigned int align;
3860   if (parameters->target().get_size() == 32)
3861     {
3862       symsize = elfcpp::Elf_sizes<32>::sym_size;
3863       align = 4;
3864     }
3865   else if (parameters->target().get_size() == 64)
3866     {
3867       symsize = elfcpp::Elf_sizes<64>::sym_size;
3868       align = 8;
3869     }
3870   else
3871     gold_unreachable();
3872
3873   // Compute file offsets relative to the start of the symtab section.
3874   off_t off = 0;
3875
3876   // Save space for the dummy symbol at the start of the section.  We
3877   // never bother to write this out--it will just be left as zero.
3878   off += symsize;
3879   unsigned int local_symbol_index = 1;
3880
3881   // Add STT_SECTION symbols for each Output section which needs one.
3882   for (Section_list::iterator p = this->section_list_.begin();
3883        p != this->section_list_.end();
3884        ++p)
3885     {
3886       if (!(*p)->needs_symtab_index())
3887         (*p)->set_symtab_index(-1U);
3888       else
3889         {
3890           (*p)->set_symtab_index(local_symbol_index);
3891           ++local_symbol_index;
3892           off += symsize;
3893         }
3894     }
3895
3896   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3897        p != input_objects->relobj_end();
3898        ++p)
3899     {
3900       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3901                                                         off, symtab);
3902       off += (index - local_symbol_index) * symsize;
3903       local_symbol_index = index;
3904     }
3905
3906   unsigned int local_symcount = local_symbol_index;
3907   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3908
3909   off_t dynoff;
3910   size_t dyn_global_index;
3911   size_t dyncount;
3912   if (this->dynsym_section_ == NULL)
3913     {
3914       dynoff = 0;
3915       dyn_global_index = 0;
3916       dyncount = 0;
3917     }
3918   else
3919     {
3920       dyn_global_index = this->dynsym_section_->info();
3921       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3922       dynoff = this->dynsym_section_->offset() + locsize;
3923       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3924       gold_assert(static_cast<off_t>(dyncount * symsize)
3925                   == this->dynsym_section_->data_size() - locsize);
3926     }
3927
3928   off_t global_off = off;
3929   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3930                          &this->sympool_, &local_symcount);
3931
3932   if (!parameters->options().strip_all())
3933     {
3934       this->sympool_.set_string_offsets();
3935
3936       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3937       Output_section* osymtab = this->make_output_section(symtab_name,
3938                                                           elfcpp::SHT_SYMTAB,
3939                                                           0, ORDER_INVALID,
3940                                                           false);
3941       this->symtab_section_ = osymtab;
3942
3943       Output_section_data* pos = new Output_data_fixed_space(off, align,
3944                                                              "** symtab");
3945       osymtab->add_output_section_data(pos);
3946
3947       // We generate a .symtab_shndx section if we have more than
3948       // SHN_LORESERVE sections.  Technically it is possible that we
3949       // don't need one, because it is possible that there are no
3950       // symbols in any of sections with indexes larger than
3951       // SHN_LORESERVE.  That is probably unusual, though, and it is
3952       // easier to always create one than to compute section indexes
3953       // twice (once here, once when writing out the symbols).
3954       if (shnum >= elfcpp::SHN_LORESERVE)
3955         {
3956           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3957                                                                false, NULL);
3958           Output_section* osymtab_xindex =
3959             this->make_output_section(symtab_xindex_name,
3960                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3961                                       ORDER_INVALID, false);
3962
3963           size_t symcount = off / symsize;
3964           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3965
3966           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3967
3968           osymtab_xindex->set_link_section(osymtab);
3969           osymtab_xindex->set_addralign(4);
3970           osymtab_xindex->set_entsize(4);
3971
3972           osymtab_xindex->set_after_input_sections();
3973
3974           // This tells the driver code to wait until the symbol table
3975           // has written out before writing out the postprocessing
3976           // sections, including the .symtab_shndx section.
3977           this->any_postprocessing_sections_ = true;
3978         }
3979
3980       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3981       Output_section* ostrtab = this->make_output_section(strtab_name,
3982                                                           elfcpp::SHT_STRTAB,
3983                                                           0, ORDER_INVALID,
3984                                                           false);
3985
3986       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3987       ostrtab->add_output_section_data(pstr);
3988
3989       off_t symtab_off;
3990       if (!parameters->incremental_update())
3991         symtab_off = align_address(*poff, align);
3992       else
3993         {
3994           symtab_off = this->allocate(off, align, *poff);
3995           if (off == -1)
3996             gold_fallback(_("out of patch space for symbol table; "
3997                             "relink with --incremental-full"));
3998           gold_debug(DEBUG_INCREMENTAL,
3999                      "create_symtab_sections: %08lx %08lx .symtab",
4000                      static_cast<long>(symtab_off),
4001                      static_cast<long>(off));
4002         }
4003
4004       symtab->set_file_offset(symtab_off + global_off);
4005       osymtab->set_file_offset(symtab_off);
4006       osymtab->finalize_data_size();
4007       osymtab->set_link_section(ostrtab);
4008       osymtab->set_info(local_symcount);
4009       osymtab->set_entsize(symsize);
4010
4011       if (symtab_off + off > *poff)
4012         *poff = symtab_off + off;
4013     }
4014 }
4015
4016 // Create the .shstrtab section, which holds the names of the
4017 // sections.  At the time this is called, we have created all the
4018 // output sections except .shstrtab itself.
4019
4020 Output_section*
4021 Layout::create_shstrtab()
4022 {
4023   // FIXME: We don't need to create a .shstrtab section if we are
4024   // stripping everything.
4025
4026   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4027
4028   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4029                                                  ORDER_INVALID, false);
4030
4031   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4032     {
4033       // We can't write out this section until we've set all the
4034       // section names, and we don't set the names of compressed
4035       // output sections until relocations are complete.  FIXME: With
4036       // the current names we use, this is unnecessary.
4037       os->set_after_input_sections();
4038     }
4039
4040   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4041   os->add_output_section_data(posd);
4042
4043   return os;
4044 }
4045
4046 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4047 // offset.
4048
4049 void
4050 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4051 {
4052   Output_section_headers* oshdrs;
4053   oshdrs = new Output_section_headers(this,
4054                                       &this->segment_list_,
4055                                       &this->section_list_,
4056                                       &this->unattached_section_list_,
4057                                       &this->namepool_,
4058                                       shstrtab_section);
4059   off_t off;
4060   if (!parameters->incremental_update())
4061     off = align_address(*poff, oshdrs->addralign());
4062   else
4063     {
4064       oshdrs->pre_finalize_data_size();
4065       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4066       if (off == -1)
4067           gold_fallback(_("out of patch space for section header table; "
4068                           "relink with --incremental-full"));
4069       gold_debug(DEBUG_INCREMENTAL,
4070                  "create_shdrs: %08lx %08lx (section header table)",
4071                  static_cast<long>(off),
4072                  static_cast<long>(off + oshdrs->data_size()));
4073     }
4074   oshdrs->set_address_and_file_offset(0, off);
4075   off += oshdrs->data_size();
4076   if (off > *poff)
4077     *poff = off;
4078   this->section_headers_ = oshdrs;
4079 }
4080
4081 // Count the allocated sections.
4082
4083 size_t
4084 Layout::allocated_output_section_count() const
4085 {
4086   size_t section_count = 0;
4087   for (Segment_list::const_iterator p = this->segment_list_.begin();
4088        p != this->segment_list_.end();
4089        ++p)
4090     section_count += (*p)->output_section_count();
4091   return section_count;
4092 }
4093
4094 // Create the dynamic symbol table.
4095
4096 void
4097 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4098                               Symbol_table* symtab,
4099                               Output_section** pdynstr,
4100                               unsigned int* plocal_dynamic_count,
4101                               std::vector<Symbol*>* pdynamic_symbols,
4102                               Versions* pversions)
4103 {
4104   // Count all the symbols in the dynamic symbol table, and set the
4105   // dynamic symbol indexes.
4106
4107   // Skip symbol 0, which is always all zeroes.
4108   unsigned int index = 1;
4109
4110   // Add STT_SECTION symbols for each Output section which needs one.
4111   for (Section_list::iterator p = this->section_list_.begin();
4112        p != this->section_list_.end();
4113        ++p)
4114     {
4115       if (!(*p)->needs_dynsym_index())
4116         (*p)->set_dynsym_index(-1U);
4117       else
4118         {
4119           (*p)->set_dynsym_index(index);
4120           ++index;
4121         }
4122     }
4123
4124   // Count the local symbols that need to go in the dynamic symbol table,
4125   // and set the dynamic symbol indexes.
4126   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4127        p != input_objects->relobj_end();
4128        ++p)
4129     {
4130       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4131       index = new_index;
4132     }
4133
4134   unsigned int local_symcount = index;
4135   *plocal_dynamic_count = local_symcount;
4136
4137   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4138                                      &this->dynpool_, pversions);
4139
4140   int symsize;
4141   unsigned int align;
4142   const int size = parameters->target().get_size();
4143   if (size == 32)
4144     {
4145       symsize = elfcpp::Elf_sizes<32>::sym_size;
4146       align = 4;
4147     }
4148   else if (size == 64)
4149     {
4150       symsize = elfcpp::Elf_sizes<64>::sym_size;
4151       align = 8;
4152     }
4153   else
4154     gold_unreachable();
4155
4156   // Create the dynamic symbol table section.
4157
4158   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4159                                                        elfcpp::SHT_DYNSYM,
4160                                                        elfcpp::SHF_ALLOC,
4161                                                        false,
4162                                                        ORDER_DYNAMIC_LINKER,
4163                                                        false);
4164
4165   // Check for NULL as a linker script may discard .dynsym.
4166   if (dynsym != NULL)
4167     {
4168       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4169                                                                align,
4170                                                                "** dynsym");
4171       dynsym->add_output_section_data(odata);
4172
4173       dynsym->set_info(local_symcount);
4174       dynsym->set_entsize(symsize);
4175       dynsym->set_addralign(align);
4176
4177       this->dynsym_section_ = dynsym;
4178     }
4179
4180   Output_data_dynamic* const odyn = this->dynamic_data_;
4181   if (odyn != NULL)
4182     {
4183       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4184       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4185     }
4186
4187   // If there are more than SHN_LORESERVE allocated sections, we
4188   // create a .dynsym_shndx section.  It is possible that we don't
4189   // need one, because it is possible that there are no dynamic
4190   // symbols in any of the sections with indexes larger than
4191   // SHN_LORESERVE.  This is probably unusual, though, and at this
4192   // time we don't know the actual section indexes so it is
4193   // inconvenient to check.
4194   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4195     {
4196       Output_section* dynsym_xindex =
4197         this->choose_output_section(NULL, ".dynsym_shndx",
4198                                     elfcpp::SHT_SYMTAB_SHNDX,
4199                                     elfcpp::SHF_ALLOC,
4200                                     false, ORDER_DYNAMIC_LINKER, false);
4201
4202       if (dynsym_xindex != NULL)
4203         {
4204           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4205
4206           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4207
4208           dynsym_xindex->set_link_section(dynsym);
4209           dynsym_xindex->set_addralign(4);
4210           dynsym_xindex->set_entsize(4);
4211
4212           dynsym_xindex->set_after_input_sections();
4213
4214           // This tells the driver code to wait until the symbol table
4215           // has written out before writing out the postprocessing
4216           // sections, including the .dynsym_shndx section.
4217           this->any_postprocessing_sections_ = true;
4218         }
4219     }
4220
4221   // Create the dynamic string table section.
4222
4223   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4224                                                        elfcpp::SHT_STRTAB,
4225                                                        elfcpp::SHF_ALLOC,
4226                                                        false,
4227                                                        ORDER_DYNAMIC_LINKER,
4228                                                        false);
4229   *pdynstr = dynstr;
4230   if (dynstr != NULL)
4231     {
4232       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4233       dynstr->add_output_section_data(strdata);
4234
4235       if (dynsym != NULL)
4236         dynsym->set_link_section(dynstr);
4237       if (this->dynamic_section_ != NULL)
4238         this->dynamic_section_->set_link_section(dynstr);
4239
4240       if (odyn != NULL)
4241         {
4242           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4243           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4244         }
4245     }
4246
4247   // Create the hash tables.
4248
4249   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4250       || strcmp(parameters->options().hash_style(), "both") == 0)
4251     {
4252       unsigned char* phash;
4253       unsigned int hashlen;
4254       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4255                                     &phash, &hashlen);
4256
4257       Output_section* hashsec =
4258         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4259                                     elfcpp::SHF_ALLOC, false,
4260                                     ORDER_DYNAMIC_LINKER, false);
4261
4262       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4263                                                                    hashlen,
4264                                                                    align,
4265                                                                    "** hash");
4266       if (hashsec != NULL && hashdata != NULL)
4267         hashsec->add_output_section_data(hashdata);
4268
4269       if (hashsec != NULL)
4270         {
4271           if (dynsym != NULL)
4272             hashsec->set_link_section(dynsym);
4273           hashsec->set_entsize(4);
4274         }
4275
4276       if (odyn != NULL)
4277         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4278     }
4279
4280   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4281       || strcmp(parameters->options().hash_style(), "both") == 0)
4282     {
4283       unsigned char* phash;
4284       unsigned int hashlen;
4285       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4286                                     &phash, &hashlen);
4287
4288       Output_section* hashsec =
4289         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4290                                     elfcpp::SHF_ALLOC, false,
4291                                     ORDER_DYNAMIC_LINKER, false);
4292
4293       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4294                                                                    hashlen,
4295                                                                    align,
4296                                                                    "** hash");
4297       if (hashsec != NULL && hashdata != NULL)
4298         hashsec->add_output_section_data(hashdata);
4299
4300       if (hashsec != NULL)
4301         {
4302           if (dynsym != NULL)
4303             hashsec->set_link_section(dynsym);
4304
4305           // For a 64-bit target, the entries in .gnu.hash do not have
4306           // a uniform size, so we only set the entry size for a
4307           // 32-bit target.
4308           if (parameters->target().get_size() == 32)
4309             hashsec->set_entsize(4);
4310
4311           if (odyn != NULL)
4312             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4313         }
4314     }
4315 }
4316
4317 // Assign offsets to each local portion of the dynamic symbol table.
4318
4319 void
4320 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4321 {
4322   Output_section* dynsym = this->dynsym_section_;
4323   if (dynsym == NULL)
4324     return;
4325
4326   off_t off = dynsym->offset();
4327
4328   // Skip the dummy symbol at the start of the section.
4329   off += dynsym->entsize();
4330
4331   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4332        p != input_objects->relobj_end();
4333        ++p)
4334     {
4335       unsigned int count = (*p)->set_local_dynsym_offset(off);
4336       off += count * dynsym->entsize();
4337     }
4338 }
4339
4340 // Create the version sections.
4341
4342 void
4343 Layout::create_version_sections(const Versions* versions,
4344                                 const Symbol_table* symtab,
4345                                 unsigned int local_symcount,
4346                                 const std::vector<Symbol*>& dynamic_symbols,
4347                                 const Output_section* dynstr)
4348 {
4349   if (!versions->any_defs() && !versions->any_needs())
4350     return;
4351
4352   switch (parameters->size_and_endianness())
4353     {
4354 #ifdef HAVE_TARGET_32_LITTLE
4355     case Parameters::TARGET_32_LITTLE:
4356       this->sized_create_version_sections<32, false>(versions, symtab,
4357                                                      local_symcount,
4358                                                      dynamic_symbols, dynstr);
4359       break;
4360 #endif
4361 #ifdef HAVE_TARGET_32_BIG
4362     case Parameters::TARGET_32_BIG:
4363       this->sized_create_version_sections<32, true>(versions, symtab,
4364                                                     local_symcount,
4365                                                     dynamic_symbols, dynstr);
4366       break;
4367 #endif
4368 #ifdef HAVE_TARGET_64_LITTLE
4369     case Parameters::TARGET_64_LITTLE:
4370       this->sized_create_version_sections<64, false>(versions, symtab,
4371                                                      local_symcount,
4372                                                      dynamic_symbols, dynstr);
4373       break;
4374 #endif
4375 #ifdef HAVE_TARGET_64_BIG
4376     case Parameters::TARGET_64_BIG:
4377       this->sized_create_version_sections<64, true>(versions, symtab,
4378                                                     local_symcount,
4379                                                     dynamic_symbols, dynstr);
4380       break;
4381 #endif
4382     default:
4383       gold_unreachable();
4384     }
4385 }
4386
4387 // Create the version sections, sized version.
4388
4389 template<int size, bool big_endian>
4390 void
4391 Layout::sized_create_version_sections(
4392     const Versions* versions,
4393     const Symbol_table* symtab,
4394     unsigned int local_symcount,
4395     const std::vector<Symbol*>& dynamic_symbols,
4396     const Output_section* dynstr)
4397 {
4398   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4399                                                      elfcpp::SHT_GNU_versym,
4400                                                      elfcpp::SHF_ALLOC,
4401                                                      false,
4402                                                      ORDER_DYNAMIC_LINKER,
4403                                                      false);
4404
4405   // Check for NULL since a linker script may discard this section.
4406   if (vsec != NULL)
4407     {
4408       unsigned char* vbuf;
4409       unsigned int vsize;
4410       versions->symbol_section_contents<size, big_endian>(symtab,
4411                                                           &this->dynpool_,
4412                                                           local_symcount,
4413                                                           dynamic_symbols,
4414                                                           &vbuf, &vsize);
4415
4416       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4417                                                                 "** versions");
4418
4419       vsec->add_output_section_data(vdata);
4420       vsec->set_entsize(2);
4421       vsec->set_link_section(this->dynsym_section_);
4422     }
4423
4424   Output_data_dynamic* const odyn = this->dynamic_data_;
4425   if (odyn != NULL && vsec != NULL)
4426     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4427
4428   if (versions->any_defs())
4429     {
4430       Output_section* vdsec;
4431       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4432                                           elfcpp::SHT_GNU_verdef,
4433                                           elfcpp::SHF_ALLOC,
4434                                           false, ORDER_DYNAMIC_LINKER, false);
4435
4436       if (vdsec != NULL)
4437         {
4438           unsigned char* vdbuf;
4439           unsigned int vdsize;
4440           unsigned int vdentries;
4441           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4442                                                            &vdbuf, &vdsize,
4443                                                            &vdentries);
4444
4445           Output_section_data* vddata =
4446             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4447
4448           vdsec->add_output_section_data(vddata);
4449           vdsec->set_link_section(dynstr);
4450           vdsec->set_info(vdentries);
4451
4452           if (odyn != NULL)
4453             {
4454               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4455               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4456             }
4457         }
4458     }
4459
4460   if (versions->any_needs())
4461     {
4462       Output_section* vnsec;
4463       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4464                                           elfcpp::SHT_GNU_verneed,
4465                                           elfcpp::SHF_ALLOC,
4466                                           false, ORDER_DYNAMIC_LINKER, false);
4467
4468       if (vnsec != NULL)
4469         {
4470           unsigned char* vnbuf;
4471           unsigned int vnsize;
4472           unsigned int vnentries;
4473           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4474                                                             &vnbuf, &vnsize,
4475                                                             &vnentries);
4476
4477           Output_section_data* vndata =
4478             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4479
4480           vnsec->add_output_section_data(vndata);
4481           vnsec->set_link_section(dynstr);
4482           vnsec->set_info(vnentries);
4483
4484           if (odyn != NULL)
4485             {
4486               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4487               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4488             }
4489         }
4490     }
4491 }
4492
4493 // Create the .interp section and PT_INTERP segment.
4494
4495 void
4496 Layout::create_interp(const Target* target)
4497 {
4498   gold_assert(this->interp_segment_ == NULL);
4499
4500   const char* interp = parameters->options().dynamic_linker();
4501   if (interp == NULL)
4502     {
4503       interp = target->dynamic_linker();
4504       gold_assert(interp != NULL);
4505     }
4506
4507   size_t len = strlen(interp) + 1;
4508
4509   Output_section_data* odata = new Output_data_const(interp, len, 1);
4510
4511   Output_section* osec = this->choose_output_section(NULL, ".interp",
4512                                                      elfcpp::SHT_PROGBITS,
4513                                                      elfcpp::SHF_ALLOC,
4514                                                      false, ORDER_INTERP,
4515                                                      false);
4516   if (osec != NULL)
4517     osec->add_output_section_data(odata);
4518 }
4519
4520 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4521 // called by the target-specific code.  This does nothing if not doing
4522 // a dynamic link.
4523
4524 // USE_REL is true for REL relocs rather than RELA relocs.
4525
4526 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4527
4528 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4529 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4530 // some targets have multiple reloc sections in PLT_REL.
4531
4532 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4533 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4534 // section.
4535
4536 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4537 // executable.
4538
4539 void
4540 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4541                                 const Output_data* plt_rel,
4542                                 const Output_data_reloc_generic* dyn_rel,
4543                                 bool add_debug, bool dynrel_includes_plt)
4544 {
4545   Output_data_dynamic* odyn = this->dynamic_data_;
4546   if (odyn == NULL)
4547     return;
4548
4549   if (plt_got != NULL && plt_got->output_section() != NULL)
4550     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4551
4552   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4553     {
4554       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4555       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4556       odyn->add_constant(elfcpp::DT_PLTREL,
4557                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4558     }
4559
4560   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4561       || (dynrel_includes_plt
4562           && plt_rel != NULL
4563           && plt_rel->output_section() != NULL))
4564     {
4565       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4566       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4567       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4568                                 (have_dyn_rel
4569                                  ? dyn_rel->output_section()
4570                                  : plt_rel->output_section()));
4571       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4572       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4573         odyn->add_section_size(size_tag,
4574                                dyn_rel->output_section(),
4575                                plt_rel->output_section());
4576       else if (have_dyn_rel)
4577         odyn->add_section_size(size_tag, dyn_rel->output_section());
4578       else
4579         odyn->add_section_size(size_tag, plt_rel->output_section());
4580       const int size = parameters->target().get_size();
4581       elfcpp::DT rel_tag;
4582       int rel_size;
4583       if (use_rel)
4584         {
4585           rel_tag = elfcpp::DT_RELENT;
4586           if (size == 32)
4587             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4588           else if (size == 64)
4589             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4590           else
4591             gold_unreachable();
4592         }
4593       else
4594         {
4595           rel_tag = elfcpp::DT_RELAENT;
4596           if (size == 32)
4597             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4598           else if (size == 64)
4599             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4600           else
4601             gold_unreachable();
4602         }
4603       odyn->add_constant(rel_tag, rel_size);
4604
4605       if (parameters->options().combreloc() && have_dyn_rel)
4606         {
4607           size_t c = dyn_rel->relative_reloc_count();
4608           if (c > 0)
4609             odyn->add_constant((use_rel
4610                                 ? elfcpp::DT_RELCOUNT
4611                                 : elfcpp::DT_RELACOUNT),
4612                                c);
4613         }
4614     }
4615
4616   if (add_debug && !parameters->options().shared())
4617     {
4618       // The value of the DT_DEBUG tag is filled in by the dynamic
4619       // linker at run time, and used by the debugger.
4620       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4621     }
4622 }
4623
4624 // Finish the .dynamic section and PT_DYNAMIC segment.
4625
4626 void
4627 Layout::finish_dynamic_section(const Input_objects* input_objects,
4628                                const Symbol_table* symtab)
4629 {
4630   if (!this->script_options_->saw_phdrs_clause()
4631       && this->dynamic_section_ != NULL)
4632     {
4633       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4634                                                        (elfcpp::PF_R
4635                                                         | elfcpp::PF_W));
4636       oseg->add_output_section_to_nonload(this->dynamic_section_,
4637                                           elfcpp::PF_R | elfcpp::PF_W);
4638     }
4639
4640   Output_data_dynamic* const odyn = this->dynamic_data_;
4641   if (odyn == NULL)
4642     return;
4643
4644   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4645        p != input_objects->dynobj_end();
4646        ++p)
4647     {
4648       if (!(*p)->is_needed() && (*p)->as_needed())
4649         {
4650           // This dynamic object was linked with --as-needed, but it
4651           // is not needed.
4652           continue;
4653         }
4654
4655       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4656     }
4657
4658   if (parameters->options().shared())
4659     {
4660       const char* soname = parameters->options().soname();
4661       if (soname != NULL)
4662         odyn->add_string(elfcpp::DT_SONAME, soname);
4663     }
4664
4665   Symbol* sym = symtab->lookup(parameters->options().init());
4666   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4667     odyn->add_symbol(elfcpp::DT_INIT, sym);
4668
4669   sym = symtab->lookup(parameters->options().fini());
4670   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4671     odyn->add_symbol(elfcpp::DT_FINI, sym);
4672
4673   // Look for .init_array, .preinit_array and .fini_array by checking
4674   // section types.
4675   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4676       p != this->section_list_.end();
4677       ++p)
4678     switch((*p)->type())
4679       {
4680       case elfcpp::SHT_FINI_ARRAY:
4681         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4682         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4683         break;
4684       case elfcpp::SHT_INIT_ARRAY:
4685         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4686         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4687         break;
4688       case elfcpp::SHT_PREINIT_ARRAY:
4689         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4690         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4691         break;
4692       default:
4693         break;
4694       }
4695
4696   // Add a DT_RPATH entry if needed.
4697   const General_options::Dir_list& rpath(parameters->options().rpath());
4698   if (!rpath.empty())
4699     {
4700       std::string rpath_val;
4701       for (General_options::Dir_list::const_iterator p = rpath.begin();
4702            p != rpath.end();
4703            ++p)
4704         {
4705           if (rpath_val.empty())
4706             rpath_val = p->name();
4707           else
4708             {
4709               // Eliminate duplicates.
4710               General_options::Dir_list::const_iterator q;
4711               for (q = rpath.begin(); q != p; ++q)
4712                 if (q->name() == p->name())
4713                   break;
4714               if (q == p)
4715                 {
4716                   rpath_val += ':';
4717                   rpath_val += p->name();
4718                 }
4719             }
4720         }
4721
4722       if (!parameters->options().enable_new_dtags())
4723         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4724       else
4725         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4726     }
4727
4728   // Look for text segments that have dynamic relocations.
4729   bool have_textrel = false;
4730   if (!this->script_options_->saw_sections_clause())
4731     {
4732       for (Segment_list::const_iterator p = this->segment_list_.begin();
4733            p != this->segment_list_.end();
4734            ++p)
4735         {
4736           if ((*p)->type() == elfcpp::PT_LOAD
4737               && ((*p)->flags() & elfcpp::PF_W) == 0
4738               && (*p)->has_dynamic_reloc())
4739             {
4740               have_textrel = true;
4741               break;
4742             }
4743         }
4744     }
4745   else
4746     {
4747       // We don't know the section -> segment mapping, so we are
4748       // conservative and just look for readonly sections with
4749       // relocations.  If those sections wind up in writable segments,
4750       // then we have created an unnecessary DT_TEXTREL entry.
4751       for (Section_list::const_iterator p = this->section_list_.begin();
4752            p != this->section_list_.end();
4753            ++p)
4754         {
4755           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4756               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4757               && (*p)->has_dynamic_reloc())
4758             {
4759               have_textrel = true;
4760               break;
4761             }
4762         }
4763     }
4764
4765   if (parameters->options().filter() != NULL)
4766     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4767   if (parameters->options().any_auxiliary())
4768     {
4769       for (options::String_set::const_iterator p =
4770              parameters->options().auxiliary_begin();
4771            p != parameters->options().auxiliary_end();
4772            ++p)
4773         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4774     }
4775
4776   // Add a DT_FLAGS entry if necessary.
4777   unsigned int flags = 0;
4778   if (have_textrel)
4779     {
4780       // Add a DT_TEXTREL for compatibility with older loaders.
4781       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4782       flags |= elfcpp::DF_TEXTREL;
4783
4784       if (parameters->options().text())
4785         gold_error(_("read-only segment has dynamic relocations"));
4786       else if (parameters->options().warn_shared_textrel()
4787                && parameters->options().shared())
4788         gold_warning(_("shared library text segment is not shareable"));
4789     }
4790   if (parameters->options().shared() && this->has_static_tls())
4791     flags |= elfcpp::DF_STATIC_TLS;
4792   if (parameters->options().origin())
4793     flags |= elfcpp::DF_ORIGIN;
4794   if (parameters->options().Bsymbolic())
4795     {
4796       flags |= elfcpp::DF_SYMBOLIC;
4797       // Add DT_SYMBOLIC for compatibility with older loaders.
4798       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4799     }
4800   if (parameters->options().now())
4801     flags |= elfcpp::DF_BIND_NOW;
4802   if (flags != 0)
4803     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4804
4805   flags = 0;
4806   if (parameters->options().initfirst())
4807     flags |= elfcpp::DF_1_INITFIRST;
4808   if (parameters->options().interpose())
4809     flags |= elfcpp::DF_1_INTERPOSE;
4810   if (parameters->options().loadfltr())
4811     flags |= elfcpp::DF_1_LOADFLTR;
4812   if (parameters->options().nodefaultlib())
4813     flags |= elfcpp::DF_1_NODEFLIB;
4814   if (parameters->options().nodelete())
4815     flags |= elfcpp::DF_1_NODELETE;
4816   if (parameters->options().nodlopen())
4817     flags |= elfcpp::DF_1_NOOPEN;
4818   if (parameters->options().nodump())
4819     flags |= elfcpp::DF_1_NODUMP;
4820   if (!parameters->options().shared())
4821     flags &= ~(elfcpp::DF_1_INITFIRST
4822                | elfcpp::DF_1_NODELETE
4823                | elfcpp::DF_1_NOOPEN);
4824   if (parameters->options().origin())
4825     flags |= elfcpp::DF_1_ORIGIN;
4826   if (parameters->options().now())
4827     flags |= elfcpp::DF_1_NOW;
4828   if (parameters->options().Bgroup())
4829     flags |= elfcpp::DF_1_GROUP;
4830   if (flags != 0)
4831     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4832 }
4833
4834 // Set the size of the _DYNAMIC symbol table to be the size of the
4835 // dynamic data.
4836
4837 void
4838 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4839 {
4840   Output_data_dynamic* const odyn = this->dynamic_data_;
4841   if (odyn == NULL)
4842     return;
4843   odyn->finalize_data_size();
4844   if (this->dynamic_symbol_ == NULL)
4845     return;
4846   off_t data_size = odyn->data_size();
4847   const int size = parameters->target().get_size();
4848   if (size == 32)
4849     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4850   else if (size == 64)
4851     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4852   else
4853     gold_unreachable();
4854 }
4855
4856 // The mapping of input section name prefixes to output section names.
4857 // In some cases one prefix is itself a prefix of another prefix; in
4858 // such a case the longer prefix must come first.  These prefixes are
4859 // based on the GNU linker default ELF linker script.
4860
4861 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4862 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4863 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4864 {
4865   MAPPING_INIT(".text.", ".text"),
4866   MAPPING_INIT(".rodata.", ".rodata"),
4867   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4868   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4869   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4870   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4871   MAPPING_INIT(".data.", ".data"),
4872   MAPPING_INIT(".bss.", ".bss"),
4873   MAPPING_INIT(".tdata.", ".tdata"),
4874   MAPPING_INIT(".tbss.", ".tbss"),
4875   MAPPING_INIT(".init_array.", ".init_array"),
4876   MAPPING_INIT(".fini_array.", ".fini_array"),
4877   MAPPING_INIT(".sdata.", ".sdata"),
4878   MAPPING_INIT(".sbss.", ".sbss"),
4879   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4880   // differently depending on whether it is creating a shared library.
4881   MAPPING_INIT(".sdata2.", ".sdata"),
4882   MAPPING_INIT(".sbss2.", ".sbss"),
4883   MAPPING_INIT(".lrodata.", ".lrodata"),
4884   MAPPING_INIT(".ldata.", ".ldata"),
4885   MAPPING_INIT(".lbss.", ".lbss"),
4886   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4887   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4888   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4889   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4890   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4891   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4892   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4893   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4894   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4895   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4896   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4897   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4898   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4899   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4900   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4901   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4902   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4903   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4904   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4905   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4906   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4907 };
4908 #undef MAPPING_INIT
4909 #undef MAPPING_INIT_EXACT
4910
4911 const int Layout::section_name_mapping_count =
4912   (sizeof(Layout::section_name_mapping)
4913    / sizeof(Layout::section_name_mapping[0]));
4914
4915 // Choose the output section name to use given an input section name.
4916 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4917 // length of NAME.
4918
4919 const char*
4920 Layout::output_section_name(const Relobj* relobj, const char* name,
4921                             size_t* plen)
4922 {
4923   // gcc 4.3 generates the following sorts of section names when it
4924   // needs a section name specific to a function:
4925   //   .text.FN
4926   //   .rodata.FN
4927   //   .sdata2.FN
4928   //   .data.FN
4929   //   .data.rel.FN
4930   //   .data.rel.local.FN
4931   //   .data.rel.ro.FN
4932   //   .data.rel.ro.local.FN
4933   //   .sdata.FN
4934   //   .bss.FN
4935   //   .sbss.FN
4936   //   .tdata.FN
4937   //   .tbss.FN
4938
4939   // The GNU linker maps all of those to the part before the .FN,
4940   // except that .data.rel.local.FN is mapped to .data, and
4941   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4942   // beginning with .data.rel.ro.local are grouped together.
4943
4944   // For an anonymous namespace, the string FN can contain a '.'.
4945
4946   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4947   // GNU linker maps to .rodata.
4948
4949   // The .data.rel.ro sections are used with -z relro.  The sections
4950   // are recognized by name.  We use the same names that the GNU
4951   // linker does for these sections.
4952
4953   // It is hard to handle this in a principled way, so we don't even
4954   // try.  We use a table of mappings.  If the input section name is
4955   // not found in the table, we simply use it as the output section
4956   // name.
4957
4958   const Section_name_mapping* psnm = section_name_mapping;
4959   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4960     {
4961       if (psnm->fromlen > 0)
4962         {
4963           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4964             {
4965               *plen = psnm->tolen;
4966               return psnm->to;
4967             }
4968         }
4969       else
4970         {
4971           if (strcmp(name, psnm->from) == 0)
4972             {
4973               *plen = psnm->tolen;
4974               return psnm->to;
4975             }
4976         }
4977     }
4978
4979   // As an additional complication, .ctors sections are output in
4980   // either .ctors or .init_array sections, and .dtors sections are
4981   // output in either .dtors or .fini_array sections.
4982   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4983     {
4984       if (parameters->options().ctors_in_init_array())
4985         {
4986           *plen = 11;
4987           return name[1] == 'c' ? ".init_array" : ".fini_array";
4988         }
4989       else
4990         {
4991           *plen = 6;
4992           return name[1] == 'c' ? ".ctors" : ".dtors";
4993         }
4994     }
4995   if (parameters->options().ctors_in_init_array()
4996       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4997     {
4998       // To make .init_array/.fini_array work with gcc we must exclude
4999       // .ctors and .dtors sections from the crtbegin and crtend
5000       // files.
5001       if (relobj == NULL
5002           || (!Layout::match_file_name(relobj, "crtbegin")
5003               && !Layout::match_file_name(relobj, "crtend")))
5004         {
5005           *plen = 11;
5006           return name[1] == 'c' ? ".init_array" : ".fini_array";
5007         }
5008     }
5009
5010   return name;
5011 }
5012
5013 // Return true if RELOBJ is an input file whose base name matches
5014 // FILE_NAME.  The base name must have an extension of ".o", and must
5015 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5016 // to match crtbegin.o as well as crtbeginS.o without getting confused
5017 // by other possibilities.  Overall matching the file name this way is
5018 // a dreadful hack, but the GNU linker does it in order to better
5019 // support gcc, and we need to be compatible.
5020
5021 bool
5022 Layout::match_file_name(const Relobj* relobj, const char* match)
5023 {
5024   const std::string& file_name(relobj->name());
5025   const char* base_name = lbasename(file_name.c_str());
5026   size_t match_len = strlen(match);
5027   if (strncmp(base_name, match, match_len) != 0)
5028     return false;
5029   size_t base_len = strlen(base_name);
5030   if (base_len != match_len + 2 && base_len != match_len + 3)
5031     return false;
5032   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5033 }
5034
5035 // Check if a comdat group or .gnu.linkonce section with the given
5036 // NAME is selected for the link.  If there is already a section,
5037 // *KEPT_SECTION is set to point to the existing section and the
5038 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5039 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5040 // *KEPT_SECTION is set to the internal copy and the function returns
5041 // true.
5042
5043 bool
5044 Layout::find_or_add_kept_section(const std::string& name,
5045                                  Relobj* object,
5046                                  unsigned int shndx,
5047                                  bool is_comdat,
5048                                  bool is_group_name,
5049                                  Kept_section** kept_section)
5050 {
5051   // It's normal to see a couple of entries here, for the x86 thunk
5052   // sections.  If we see more than a few, we're linking a C++
5053   // program, and we resize to get more space to minimize rehashing.
5054   if (this->signatures_.size() > 4
5055       && !this->resized_signatures_)
5056     {
5057       reserve_unordered_map(&this->signatures_,
5058                             this->number_of_input_files_ * 64);
5059       this->resized_signatures_ = true;
5060     }
5061
5062   Kept_section candidate;
5063   std::pair<Signatures::iterator, bool> ins =
5064     this->signatures_.insert(std::make_pair(name, candidate));
5065
5066   if (kept_section != NULL)
5067     *kept_section = &ins.first->second;
5068   if (ins.second)
5069     {
5070       // This is the first time we've seen this signature.
5071       ins.first->second.set_object(object);
5072       ins.first->second.set_shndx(shndx);
5073       if (is_comdat)
5074         ins.first->second.set_is_comdat();
5075       if (is_group_name)
5076         ins.first->second.set_is_group_name();
5077       return true;
5078     }
5079
5080   // We have already seen this signature.
5081
5082   if (ins.first->second.is_group_name())
5083     {
5084       // We've already seen a real section group with this signature.
5085       // If the kept group is from a plugin object, and we're in the
5086       // replacement phase, accept the new one as a replacement.
5087       if (ins.first->second.object() == NULL
5088           && parameters->options().plugins()->in_replacement_phase())
5089         {
5090           ins.first->second.set_object(object);
5091           ins.first->second.set_shndx(shndx);
5092           return true;
5093         }
5094       return false;
5095     }
5096   else if (is_group_name)
5097     {
5098       // This is a real section group, and we've already seen a
5099       // linkonce section with this signature.  Record that we've seen
5100       // a section group, and don't include this section group.
5101       ins.first->second.set_is_group_name();
5102       return false;
5103     }
5104   else
5105     {
5106       // We've already seen a linkonce section and this is a linkonce
5107       // section.  These don't block each other--this may be the same
5108       // symbol name with different section types.
5109       return true;
5110     }
5111 }
5112
5113 // Store the allocated sections into the section list.
5114
5115 void
5116 Layout::get_allocated_sections(Section_list* section_list) const
5117 {
5118   for (Section_list::const_iterator p = this->section_list_.begin();
5119        p != this->section_list_.end();
5120        ++p)
5121     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5122       section_list->push_back(*p);
5123 }
5124
5125 // Store the executable sections into the section list.
5126
5127 void
5128 Layout::get_executable_sections(Section_list* section_list) const
5129 {
5130   for (Section_list::const_iterator p = this->section_list_.begin();
5131        p != this->section_list_.end();
5132        ++p)
5133     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5134         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5135       section_list->push_back(*p);
5136 }
5137
5138 // Create an output segment.
5139
5140 Output_segment*
5141 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5142 {
5143   gold_assert(!parameters->options().relocatable());
5144   Output_segment* oseg = new Output_segment(type, flags);
5145   this->segment_list_.push_back(oseg);
5146
5147   if (type == elfcpp::PT_TLS)
5148     this->tls_segment_ = oseg;
5149   else if (type == elfcpp::PT_GNU_RELRO)
5150     this->relro_segment_ = oseg;
5151   else if (type == elfcpp::PT_INTERP)
5152     this->interp_segment_ = oseg;
5153
5154   return oseg;
5155 }
5156
5157 // Return the file offset of the normal symbol table.
5158
5159 off_t
5160 Layout::symtab_section_offset() const
5161 {
5162   if (this->symtab_section_ != NULL)
5163     return this->symtab_section_->offset();
5164   return 0;
5165 }
5166
5167 // Return the section index of the normal symbol table.  It may have
5168 // been stripped by the -s/--strip-all option.
5169
5170 unsigned int
5171 Layout::symtab_section_shndx() const
5172 {
5173   if (this->symtab_section_ != NULL)
5174     return this->symtab_section_->out_shndx();
5175   return 0;
5176 }
5177
5178 // Write out the Output_sections.  Most won't have anything to write,
5179 // since most of the data will come from input sections which are
5180 // handled elsewhere.  But some Output_sections do have Output_data.
5181
5182 void
5183 Layout::write_output_sections(Output_file* of) const
5184 {
5185   for (Section_list::const_iterator p = this->section_list_.begin();
5186        p != this->section_list_.end();
5187        ++p)
5188     {
5189       if (!(*p)->after_input_sections())
5190         (*p)->write(of);
5191     }
5192 }
5193
5194 // Write out data not associated with a section or the symbol table.
5195
5196 void
5197 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5198 {
5199   if (!parameters->options().strip_all())
5200     {
5201       const Output_section* symtab_section = this->symtab_section_;
5202       for (Section_list::const_iterator p = this->section_list_.begin();
5203            p != this->section_list_.end();
5204            ++p)
5205         {
5206           if ((*p)->needs_symtab_index())
5207             {
5208               gold_assert(symtab_section != NULL);
5209               unsigned int index = (*p)->symtab_index();
5210               gold_assert(index > 0 && index != -1U);
5211               off_t off = (symtab_section->offset()
5212                            + index * symtab_section->entsize());
5213               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5214             }
5215         }
5216     }
5217
5218   const Output_section* dynsym_section = this->dynsym_section_;
5219   for (Section_list::const_iterator p = this->section_list_.begin();
5220        p != this->section_list_.end();
5221        ++p)
5222     {
5223       if ((*p)->needs_dynsym_index())
5224         {
5225           gold_assert(dynsym_section != NULL);
5226           unsigned int index = (*p)->dynsym_index();
5227           gold_assert(index > 0 && index != -1U);
5228           off_t off = (dynsym_section->offset()
5229                        + index * dynsym_section->entsize());
5230           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5231         }
5232     }
5233
5234   // Write out the Output_data which are not in an Output_section.
5235   for (Data_list::const_iterator p = this->special_output_list_.begin();
5236        p != this->special_output_list_.end();
5237        ++p)
5238     (*p)->write(of);
5239 }
5240
5241 // Write out the Output_sections which can only be written after the
5242 // input sections are complete.
5243
5244 void
5245 Layout::write_sections_after_input_sections(Output_file* of)
5246 {
5247   // Determine the final section offsets, and thus the final output
5248   // file size.  Note we finalize the .shstrab last, to allow the
5249   // after_input_section sections to modify their section-names before
5250   // writing.
5251   if (this->any_postprocessing_sections_)
5252     {
5253       off_t off = this->output_file_size_;
5254       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5255
5256       // Now that we've finalized the names, we can finalize the shstrab.
5257       off =
5258         this->set_section_offsets(off,
5259                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5260
5261       if (off > this->output_file_size_)
5262         {
5263           of->resize(off);
5264           this->output_file_size_ = off;
5265         }
5266     }
5267
5268   for (Section_list::const_iterator p = this->section_list_.begin();
5269        p != this->section_list_.end();
5270        ++p)
5271     {
5272       if ((*p)->after_input_sections())
5273         (*p)->write(of);
5274     }
5275
5276   this->section_headers_->write(of);
5277 }
5278
5279 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5280 // or as a "tree" where each chunk of the string is hashed and then those
5281 // hashes are put into a (much smaller) string which is hashed with sha1.
5282 // We compute a checksum over the entire file because that is simplest.
5283
5284 Task_token*
5285 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5286                              Output_file* of)
5287 {
5288   const size_t filesize = (this->output_file_size() <= 0 ? 0
5289                            : static_cast<size_t>(this->output_file_size()));
5290   if (this->build_id_note_ != NULL
5291       && strcmp(parameters->options().build_id(), "tree") == 0
5292       && parameters->options().build_id_chunk_size_for_treehash() > 0
5293       && filesize > 0
5294       && (filesize >=
5295           parameters->options().build_id_min_file_size_for_treehash()))
5296     {
5297       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5298       const size_t chunk_size =
5299           parameters->options().build_id_chunk_size_for_treehash();
5300       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5301       Task_token* post_hash_tasks_blocker = new Task_token(true);
5302       post_hash_tasks_blocker->add_blockers(num_hashes);
5303       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5304       const unsigned char* src = of->get_input_view(0, filesize);
5305       this->input_view_ = src;
5306       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5307       this->array_of_hashes_ = dst;
5308       for (size_t i = 0, src_offset = 0; i < num_hashes;
5309            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5310         {
5311           size_t size = std::min(chunk_size, filesize - src_offset);
5312           workqueue->queue(new Hash_task(src + src_offset,
5313                                          size,
5314                                          dst,
5315                                          build_id_blocker,
5316                                          post_hash_tasks_blocker));
5317         }
5318       return post_hash_tasks_blocker;
5319     }
5320   return build_id_blocker;
5321 }
5322
5323 // If a tree-style build ID was requested, the parallel part of that computation
5324 // is already done, and the final hash-of-hashes is computed here.  For other
5325 // types of build IDs, all the work is done here.
5326
5327 void
5328 Layout::write_build_id(Output_file* of) const
5329 {
5330   if (this->build_id_note_ == NULL)
5331     return;
5332
5333   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5334                                           this->build_id_note_->data_size());
5335
5336   if (this->array_of_hashes_ == NULL)
5337     {
5338       const size_t output_file_size = this->output_file_size();
5339       const unsigned char* iv = of->get_input_view(0, output_file_size);
5340       const char* style = parameters->options().build_id();
5341
5342       // If we get here with style == "tree" then the output must be
5343       // too small for chunking, and we use SHA-1 in that case.
5344       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5345         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5346       else if (strcmp(style, "md5") == 0)
5347         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5348       else
5349         gold_unreachable();
5350
5351       of->free_input_view(0, output_file_size, iv);
5352     }
5353   else
5354     {
5355       // Non-overlapping substrings of the output file have been hashed.
5356       // Compute SHA-1 hash of the hashes.
5357       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5358                   this->size_of_array_of_hashes_, ov);
5359       delete[] this->array_of_hashes_;
5360       of->free_input_view(0, this->output_file_size(), this->input_view_);
5361     }
5362
5363   of->write_output_view(this->build_id_note_->offset(),
5364                         this->build_id_note_->data_size(),
5365                         ov);
5366 }
5367
5368 // Write out a binary file.  This is called after the link is
5369 // complete.  IN is the temporary output file we used to generate the
5370 // ELF code.  We simply walk through the segments, read them from
5371 // their file offset in IN, and write them to their load address in
5372 // the output file.  FIXME: with a bit more work, we could support
5373 // S-records and/or Intel hex format here.
5374
5375 void
5376 Layout::write_binary(Output_file* in) const
5377 {
5378   gold_assert(parameters->options().oformat_enum()
5379               == General_options::OBJECT_FORMAT_BINARY);
5380
5381   // Get the size of the binary file.
5382   uint64_t max_load_address = 0;
5383   for (Segment_list::const_iterator p = this->segment_list_.begin();
5384        p != this->segment_list_.end();
5385        ++p)
5386     {
5387       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5388         {
5389           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5390           if (max_paddr > max_load_address)
5391             max_load_address = max_paddr;
5392         }
5393     }
5394
5395   Output_file out(parameters->options().output_file_name());
5396   out.open(max_load_address);
5397
5398   for (Segment_list::const_iterator p = this->segment_list_.begin();
5399        p != this->segment_list_.end();
5400        ++p)
5401     {
5402       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5403         {
5404           const unsigned char* vin = in->get_input_view((*p)->offset(),
5405                                                         (*p)->filesz());
5406           unsigned char* vout = out.get_output_view((*p)->paddr(),
5407                                                     (*p)->filesz());
5408           memcpy(vout, vin, (*p)->filesz());
5409           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5410           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5411         }
5412     }
5413
5414   out.close();
5415 }
5416
5417 // Print the output sections to the map file.
5418
5419 void
5420 Layout::print_to_mapfile(Mapfile* mapfile) const
5421 {
5422   for (Segment_list::const_iterator p = this->segment_list_.begin();
5423        p != this->segment_list_.end();
5424        ++p)
5425     (*p)->print_sections_to_mapfile(mapfile);
5426 }
5427
5428 // Print statistical information to stderr.  This is used for --stats.
5429
5430 void
5431 Layout::print_stats() const
5432 {
5433   this->namepool_.print_stats("section name pool");
5434   this->sympool_.print_stats("output symbol name pool");
5435   this->dynpool_.print_stats("dynamic name pool");
5436
5437   for (Section_list::const_iterator p = this->section_list_.begin();
5438        p != this->section_list_.end();
5439        ++p)
5440     (*p)->print_merge_stats();
5441 }
5442
5443 // Write_sections_task methods.
5444
5445 // We can always run this task.
5446
5447 Task_token*
5448 Write_sections_task::is_runnable()
5449 {
5450   return NULL;
5451 }
5452
5453 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5454 // when finished.
5455
5456 void
5457 Write_sections_task::locks(Task_locker* tl)
5458 {
5459   tl->add(this, this->output_sections_blocker_);
5460   tl->add(this, this->final_blocker_);
5461 }
5462
5463 // Run the task--write out the data.
5464
5465 void
5466 Write_sections_task::run(Workqueue*)
5467 {
5468   this->layout_->write_output_sections(this->of_);
5469 }
5470
5471 // Write_data_task methods.
5472
5473 // We can always run this task.
5474
5475 Task_token*
5476 Write_data_task::is_runnable()
5477 {
5478   return NULL;
5479 }
5480
5481 // We need to unlock FINAL_BLOCKER when finished.
5482
5483 void
5484 Write_data_task::locks(Task_locker* tl)
5485 {
5486   tl->add(this, this->final_blocker_);
5487 }
5488
5489 // Run the task--write out the data.
5490
5491 void
5492 Write_data_task::run(Workqueue*)
5493 {
5494   this->layout_->write_data(this->symtab_, this->of_);
5495 }
5496
5497 // Write_symbols_task methods.
5498
5499 // We can always run this task.
5500
5501 Task_token*
5502 Write_symbols_task::is_runnable()
5503 {
5504   return NULL;
5505 }
5506
5507 // We need to unlock FINAL_BLOCKER when finished.
5508
5509 void
5510 Write_symbols_task::locks(Task_locker* tl)
5511 {
5512   tl->add(this, this->final_blocker_);
5513 }
5514
5515 // Run the task--write out the symbols.
5516
5517 void
5518 Write_symbols_task::run(Workqueue*)
5519 {
5520   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5521                                this->layout_->symtab_xindex(),
5522                                this->layout_->dynsym_xindex(), this->of_);
5523 }
5524
5525 // Write_after_input_sections_task methods.
5526
5527 // We can only run this task after the input sections have completed.
5528
5529 Task_token*
5530 Write_after_input_sections_task::is_runnable()
5531 {
5532   if (this->input_sections_blocker_->is_blocked())
5533     return this->input_sections_blocker_;
5534   return NULL;
5535 }
5536
5537 // We need to unlock FINAL_BLOCKER when finished.
5538
5539 void
5540 Write_after_input_sections_task::locks(Task_locker* tl)
5541 {
5542   tl->add(this, this->final_blocker_);
5543 }
5544
5545 // Run the task.
5546
5547 void
5548 Write_after_input_sections_task::run(Workqueue*)
5549 {
5550   this->layout_->write_sections_after_input_sections(this->of_);
5551 }
5552
5553 // Close_task_runner methods.
5554
5555 // Finish up the build ID computation, if necessary, and write a binary file,
5556 // if necessary.  Then close the output file.
5557
5558 void
5559 Close_task_runner::run(Workqueue*, const Task*)
5560 {
5561   // At this point the multi-threaded part of the build ID computation,
5562   // if any, is done.  See queue_build_id_tasks().
5563   this->layout_->write_build_id(this->of_);
5564
5565   // If we've been asked to create a binary file, we do so here.
5566   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5567     this->layout_->write_binary(this->of_);
5568
5569   this->of_->close();
5570 }
5571
5572 // Instantiate the templates we need.  We could use the configure
5573 // script to restrict this to only the ones for implemented targets.
5574
5575 #ifdef HAVE_TARGET_32_LITTLE
5576 template
5577 Output_section*
5578 Layout::init_fixed_output_section<32, false>(
5579     const char* name,
5580     elfcpp::Shdr<32, false>& shdr);
5581 #endif
5582
5583 #ifdef HAVE_TARGET_32_BIG
5584 template
5585 Output_section*
5586 Layout::init_fixed_output_section<32, true>(
5587     const char* name,
5588     elfcpp::Shdr<32, true>& shdr);
5589 #endif
5590
5591 #ifdef HAVE_TARGET_64_LITTLE
5592 template
5593 Output_section*
5594 Layout::init_fixed_output_section<64, false>(
5595     const char* name,
5596     elfcpp::Shdr<64, false>& shdr);
5597 #endif
5598
5599 #ifdef HAVE_TARGET_64_BIG
5600 template
5601 Output_section*
5602 Layout::init_fixed_output_section<64, true>(
5603     const char* name,
5604     elfcpp::Shdr<64, true>& shdr);
5605 #endif
5606
5607 #ifdef HAVE_TARGET_32_LITTLE
5608 template
5609 Output_section*
5610 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5611                           unsigned int shndx,
5612                           const char* name,
5613                           const elfcpp::Shdr<32, false>& shdr,
5614                           unsigned int, unsigned int, off_t*);
5615 #endif
5616
5617 #ifdef HAVE_TARGET_32_BIG
5618 template
5619 Output_section*
5620 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5621                          unsigned int shndx,
5622                          const char* name,
5623                          const elfcpp::Shdr<32, true>& shdr,
5624                          unsigned int, unsigned int, off_t*);
5625 #endif
5626
5627 #ifdef HAVE_TARGET_64_LITTLE
5628 template
5629 Output_section*
5630 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5631                           unsigned int shndx,
5632                           const char* name,
5633                           const elfcpp::Shdr<64, false>& shdr,
5634                           unsigned int, unsigned int, off_t*);
5635 #endif
5636
5637 #ifdef HAVE_TARGET_64_BIG
5638 template
5639 Output_section*
5640 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5641                          unsigned int shndx,
5642                          const char* name,
5643                          const elfcpp::Shdr<64, true>& shdr,
5644                          unsigned int, unsigned int, off_t*);
5645 #endif
5646
5647 #ifdef HAVE_TARGET_32_LITTLE
5648 template
5649 Output_section*
5650 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5651                                 unsigned int reloc_shndx,
5652                                 const elfcpp::Shdr<32, false>& shdr,
5653                                 Output_section* data_section,
5654                                 Relocatable_relocs* rr);
5655 #endif
5656
5657 #ifdef HAVE_TARGET_32_BIG
5658 template
5659 Output_section*
5660 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5661                                unsigned int reloc_shndx,
5662                                const elfcpp::Shdr<32, true>& shdr,
5663                                Output_section* data_section,
5664                                Relocatable_relocs* rr);
5665 #endif
5666
5667 #ifdef HAVE_TARGET_64_LITTLE
5668 template
5669 Output_section*
5670 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5671                                 unsigned int reloc_shndx,
5672                                 const elfcpp::Shdr<64, false>& shdr,
5673                                 Output_section* data_section,
5674                                 Relocatable_relocs* rr);
5675 #endif
5676
5677 #ifdef HAVE_TARGET_64_BIG
5678 template
5679 Output_section*
5680 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5681                                unsigned int reloc_shndx,
5682                                const elfcpp::Shdr<64, true>& shdr,
5683                                Output_section* data_section,
5684                                Relocatable_relocs* rr);
5685 #endif
5686
5687 #ifdef HAVE_TARGET_32_LITTLE
5688 template
5689 void
5690 Layout::layout_group<32, false>(Symbol_table* symtab,
5691                                 Sized_relobj_file<32, false>* object,
5692                                 unsigned int,
5693                                 const char* group_section_name,
5694                                 const char* signature,
5695                                 const elfcpp::Shdr<32, false>& shdr,
5696                                 elfcpp::Elf_Word flags,
5697                                 std::vector<unsigned int>* shndxes);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_32_BIG
5701 template
5702 void
5703 Layout::layout_group<32, true>(Symbol_table* symtab,
5704                                Sized_relobj_file<32, true>* object,
5705                                unsigned int,
5706                                const char* group_section_name,
5707                                const char* signature,
5708                                const elfcpp::Shdr<32, true>& shdr,
5709                                elfcpp::Elf_Word flags,
5710                                std::vector<unsigned int>* shndxes);
5711 #endif
5712
5713 #ifdef HAVE_TARGET_64_LITTLE
5714 template
5715 void
5716 Layout::layout_group<64, false>(Symbol_table* symtab,
5717                                 Sized_relobj_file<64, false>* object,
5718                                 unsigned int,
5719                                 const char* group_section_name,
5720                                 const char* signature,
5721                                 const elfcpp::Shdr<64, false>& shdr,
5722                                 elfcpp::Elf_Word flags,
5723                                 std::vector<unsigned int>* shndxes);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_64_BIG
5727 template
5728 void
5729 Layout::layout_group<64, true>(Symbol_table* symtab,
5730                                Sized_relobj_file<64, true>* object,
5731                                unsigned int,
5732                                const char* group_section_name,
5733                                const char* signature,
5734                                const elfcpp::Shdr<64, true>& shdr,
5735                                elfcpp::Elf_Word flags,
5736                                std::vector<unsigned int>* shndxes);
5737 #endif
5738
5739 #ifdef HAVE_TARGET_32_LITTLE
5740 template
5741 Output_section*
5742 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5743                                    const unsigned char* symbols,
5744                                    off_t symbols_size,
5745                                    const unsigned char* symbol_names,
5746                                    off_t symbol_names_size,
5747                                    unsigned int shndx,
5748                                    const elfcpp::Shdr<32, false>& shdr,
5749                                    unsigned int reloc_shndx,
5750                                    unsigned int reloc_type,
5751                                    off_t* off);
5752 #endif
5753
5754 #ifdef HAVE_TARGET_32_BIG
5755 template
5756 Output_section*
5757 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5758                                   const unsigned char* symbols,
5759                                   off_t symbols_size,
5760                                   const unsigned char* symbol_names,
5761                                   off_t symbol_names_size,
5762                                   unsigned int shndx,
5763                                   const elfcpp::Shdr<32, true>& shdr,
5764                                   unsigned int reloc_shndx,
5765                                   unsigned int reloc_type,
5766                                   off_t* off);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_64_LITTLE
5770 template
5771 Output_section*
5772 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5773                                    const unsigned char* symbols,
5774                                    off_t symbols_size,
5775                                    const unsigned char* symbol_names,
5776                                    off_t symbol_names_size,
5777                                    unsigned int shndx,
5778                                    const elfcpp::Shdr<64, false>& shdr,
5779                                    unsigned int reloc_shndx,
5780                                    unsigned int reloc_type,
5781                                    off_t* off);
5782 #endif
5783
5784 #ifdef HAVE_TARGET_64_BIG
5785 template
5786 Output_section*
5787 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5788                                   const unsigned char* symbols,
5789                                   off_t symbols_size,
5790                                   const unsigned char* symbol_names,
5791                                   off_t symbol_names_size,
5792                                   unsigned int shndx,
5793                                   const elfcpp::Shdr<64, true>& shdr,
5794                                   unsigned int reloc_shndx,
5795                                   unsigned int reloc_type,
5796                                   off_t* off);
5797 #endif
5798
5799 #ifdef HAVE_TARGET_32_LITTLE
5800 template
5801 void
5802 Layout::add_to_gdb_index(bool is_type_unit,
5803                          Sized_relobj<32, false>* object,
5804                          const unsigned char* symbols,
5805                          off_t symbols_size,
5806                          unsigned int shndx,
5807                          unsigned int reloc_shndx,
5808                          unsigned int reloc_type);
5809 #endif
5810
5811 #ifdef HAVE_TARGET_32_BIG
5812 template
5813 void
5814 Layout::add_to_gdb_index(bool is_type_unit,
5815                          Sized_relobj<32, true>* object,
5816                          const unsigned char* symbols,
5817                          off_t symbols_size,
5818                          unsigned int shndx,
5819                          unsigned int reloc_shndx,
5820                          unsigned int reloc_type);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_64_LITTLE
5824 template
5825 void
5826 Layout::add_to_gdb_index(bool is_type_unit,
5827                          Sized_relobj<64, false>* object,
5828                          const unsigned char* symbols,
5829                          off_t symbols_size,
5830                          unsigned int shndx,
5831                          unsigned int reloc_shndx,
5832                          unsigned int reloc_type);
5833 #endif
5834
5835 #ifdef HAVE_TARGET_64_BIG
5836 template
5837 void
5838 Layout::add_to_gdb_index(bool is_type_unit,
5839                          Sized_relobj<64, true>* object,
5840                          const unsigned char* symbols,
5841                          off_t symbols_size,
5842                          unsigned int shndx,
5843                          unsigned int reloc_shndx,
5844                          unsigned int reloc_type);
5845 #endif
5846
5847 } // End namespace gold.