From Cary Coutant: More support for generating shared libraries.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "compressed_output.h"
36 #include "layout.h"
37
38 namespace gold
39 {
40
41 // Layout_task_runner methods.
42
43 // Lay out the sections.  This is called after all the input objects
44 // have been read.
45
46 void
47 Layout_task_runner::run(Workqueue* workqueue)
48 {
49   off_t file_size = this->layout_->finalize(this->input_objects_,
50                                             this->symtab_);
51
52   // Now we know the final size of the output file and we know where
53   // each piece of information goes.
54   Output_file* of = new Output_file(this->options_,
55                                     this->input_objects_->target());
56   of->open(file_size);
57
58   // Queue up the final set of tasks.
59   gold::queue_final_tasks(this->options_, this->input_objects_,
60                           this->symtab_, this->layout_, workqueue, of);
61 }
62
63 // Layout methods.
64
65 Layout::Layout(const General_options& options)
66   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
67     section_name_map_(), segment_list_(), section_list_(),
68     unattached_section_list_(), special_output_list_(),
69     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
70     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
71     eh_frame_section_(NULL), output_file_size_(-1),
72     input_requires_executable_stack_(false),
73     input_with_gnu_stack_note_(false),
74     input_without_gnu_stack_note_(false)
75 {
76   // Make space for more than enough segments for a typical file.
77   // This is just for efficiency--it's OK if we wind up needing more.
78   this->segment_list_.reserve(12);
79
80   // We expect two unattached Output_data objects: the file header and
81   // the segment headers.
82   this->special_output_list_.reserve(2);
83 }
84
85 // Hash a key we use to look up an output section mapping.
86
87 size_t
88 Layout::Hash_key::operator()(const Layout::Key& k) const
89 {
90  return k.first + k.second.first + k.second.second;
91 }
92
93 // Return whether PREFIX is a prefix of STR.
94
95 static inline bool
96 is_prefix_of(const char* prefix, const char* str)
97 {
98   return strncmp(prefix, str, strlen(prefix)) == 0;
99 }
100
101 // Returns whether the given section is in the list of
102 // debug-sections-used-by-some-version-of-gdb.  Currently,
103 // we've checked versions of gdb up to and including 6.7.1.
104
105 static const char* gdb_sections[] =
106 { ".debug_abbrev",
107   // ".debug_aranges",   // not used by gdb as of 6.7.1
108   ".debug_frame",
109   ".debug_info",
110   ".debug_line",
111   ".debug_loc",
112   ".debug_macinfo",
113   // ".debug_pubnames",  // not used by gdb as of 6.7.1
114   ".debug_ranges",
115   ".debug_str",
116 };
117
118 static inline bool
119 is_gdb_debug_section(const char* str)
120 {
121   // We can do this faster: binary search or a hashtable.  But why bother?
122   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
123     if (strcmp(str, gdb_sections[i]) == 0)
124       return true;
125   return false;
126 }
127
128 // Whether to include this section in the link.
129
130 template<int size, bool big_endian>
131 bool
132 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
133                         const elfcpp::Shdr<size, big_endian>& shdr)
134 {
135   // Some section types are never linked.  Some are only linked when
136   // doing a relocateable link.
137   switch (shdr.get_sh_type())
138     {
139     case elfcpp::SHT_NULL:
140     case elfcpp::SHT_SYMTAB:
141     case elfcpp::SHT_DYNSYM:
142     case elfcpp::SHT_STRTAB:
143     case elfcpp::SHT_HASH:
144     case elfcpp::SHT_DYNAMIC:
145     case elfcpp::SHT_SYMTAB_SHNDX:
146       return false;
147
148     case elfcpp::SHT_RELA:
149     case elfcpp::SHT_REL:
150     case elfcpp::SHT_GROUP:
151       return parameters->output_is_object();
152
153     case elfcpp::SHT_PROGBITS:
154       if (parameters->strip_debug()
155           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
156         {
157           // Debugging sections can only be recognized by name.
158           if (is_prefix_of(".debug", name)
159               || is_prefix_of(".gnu.linkonce.wi.", name)
160               || is_prefix_of(".line", name)
161               || is_prefix_of(".stab", name))
162             return false;
163         }
164       if (parameters->strip_debug_gdb()
165           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
166         {
167           // Debugging sections can only be recognized by name.
168           if (is_prefix_of(".debug", name)
169               && !is_gdb_debug_section(name))
170             return false;
171         }
172       return true;
173
174     default:
175       return true;
176     }
177 }
178
179 // Return an output section named NAME, or NULL if there is none.
180
181 Output_section*
182 Layout::find_output_section(const char* name) const
183 {
184   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
185        p != this->section_name_map_.end();
186        ++p)
187     if (strcmp(p->second->name(), name) == 0)
188       return p->second;
189   return NULL;
190 }
191
192 // Return an output segment of type TYPE, with segment flags SET set
193 // and segment flags CLEAR clear.  Return NULL if there is none.
194
195 Output_segment*
196 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
197                             elfcpp::Elf_Word clear) const
198 {
199   for (Segment_list::const_iterator p = this->segment_list_.begin();
200        p != this->segment_list_.end();
201        ++p)
202     if (static_cast<elfcpp::PT>((*p)->type()) == type
203         && ((*p)->flags() & set) == set
204         && ((*p)->flags() & clear) == 0)
205       return *p;
206   return NULL;
207 }
208
209 // Return the output section to use for section NAME with type TYPE
210 // and section flags FLAGS.
211
212 Output_section*
213 Layout::get_output_section(const char* name, Stringpool::Key name_key,
214                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
215 {
216   // We should ignore some flags.
217   flags &= ~ (elfcpp::SHF_INFO_LINK
218               | elfcpp::SHF_LINK_ORDER
219               | elfcpp::SHF_GROUP
220               | elfcpp::SHF_MERGE
221               | elfcpp::SHF_STRINGS);
222
223   const Key key(name_key, std::make_pair(type, flags));
224   const std::pair<Key, Output_section*> v(key, NULL);
225   std::pair<Section_name_map::iterator, bool> ins(
226     this->section_name_map_.insert(v));
227
228   if (!ins.second)
229     return ins.first->second;
230   else
231     {
232       // This is the first time we've seen this name/type/flags
233       // combination.
234       Output_section* os = this->make_output_section(name, type, flags);
235       ins.first->second = os;
236       return os;
237     }
238 }
239
240 // Return the output section to use for input section SHNDX, with name
241 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
242 // index of a relocation section which applies to this section, or 0
243 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
244 // relocation section if there is one.  Set *OFF to the offset of this
245 // input section without the output section.  Return NULL if the
246 // section should be discarded.  Set *OFF to -1 if the section
247 // contents should not be written directly to the output file, but
248 // will instead receive special handling.
249
250 template<int size, bool big_endian>
251 Output_section*
252 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
253                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
254                unsigned int reloc_shndx, unsigned int, off_t* off)
255 {
256   if (!this->include_section(object, name, shdr))
257     return NULL;
258
259   // If we are not doing a relocateable link, choose the name to use
260   // for the output section.
261   size_t len = strlen(name);
262   if (!parameters->output_is_object())
263     name = Layout::output_section_name(name, &len);
264
265   // FIXME: Handle SHF_OS_NONCONFORMING here.
266
267   // Canonicalize the section name.
268   Stringpool::Key name_key;
269   name = this->namepool_.add_prefix(name, len, &name_key);
270
271   // Find the output section.  The output section is selected based on
272   // the section name, type, and flags.
273   Output_section* os = this->get_output_section(name, name_key,
274                                                 shdr.get_sh_type(),
275                                                 shdr.get_sh_flags());
276
277   // FIXME: Handle SHF_LINK_ORDER somewhere.
278
279   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
280
281   return os;
282 }
283
284 // Special GNU handling of sections name .eh_frame.  They will
285 // normally hold exception frame data as defined by the C++ ABI
286 // (http://codesourcery.com/cxx-abi/).
287
288 template<int size, bool big_endian>
289 Output_section*
290 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
291                         const unsigned char* symbols,
292                         off_t symbols_size,
293                         const unsigned char* symbol_names,
294                         off_t symbol_names_size,
295                         unsigned int shndx,
296                         const elfcpp::Shdr<size, big_endian>& shdr,
297                         unsigned int reloc_shndx, unsigned int reloc_type,
298                         off_t* off)
299 {
300   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
301   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
302
303   Stringpool::Key name_key;
304   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
305
306   Output_section* os = this->get_output_section(name, name_key,
307                                                 elfcpp::SHT_PROGBITS,
308                                                 elfcpp::SHF_ALLOC);
309
310   if (this->eh_frame_section_ == NULL)
311     {
312       this->eh_frame_section_ = os;
313       this->eh_frame_data_ = new Eh_frame();
314       os->add_output_section_data(this->eh_frame_data_);
315
316       if (this->options_.create_eh_frame_hdr())
317         {
318           Stringpool::Key hdr_name_key;
319           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
320                                                      false,
321                                                      &hdr_name_key);
322           Output_section* hdr_os =
323             this->get_output_section(hdr_name, hdr_name_key,
324                                      elfcpp::SHT_PROGBITS,
325                                      elfcpp::SHF_ALLOC);
326
327           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
328           hdr_os->add_output_section_data(hdr_posd);
329
330           hdr_os->set_after_input_sections();
331
332           Output_segment* hdr_oseg =
333             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
334           this->segment_list_.push_back(hdr_oseg);
335           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
336
337           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
338         }
339     }
340
341   gold_assert(this->eh_frame_section_ == os);
342
343   if (this->eh_frame_data_->add_ehframe_input_section(object,
344                                                       symbols,
345                                                       symbols_size,
346                                                       symbol_names,
347                                                       symbol_names_size,
348                                                       shndx,
349                                                       reloc_shndx,
350                                                       reloc_type))
351     *off = -1;
352   else
353     {
354       // We couldn't handle this .eh_frame section for some reason.
355       // Add it as a normal section.
356       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
357     }
358
359   return os;
360 }
361
362 // Add POSD to an output section using NAME, TYPE, and FLAGS.
363
364 void
365 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
366                                 elfcpp::Elf_Xword flags,
367                                 Output_section_data* posd)
368 {
369   // Canonicalize the name.
370   Stringpool::Key name_key;
371   name = this->namepool_.add(name, true, &name_key);
372
373   Output_section* os = this->get_output_section(name, name_key, type, flags);
374   os->add_output_section_data(posd);
375 }
376
377 // Map section flags to segment flags.
378
379 elfcpp::Elf_Word
380 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
381 {
382   elfcpp::Elf_Word ret = elfcpp::PF_R;
383   if ((flags & elfcpp::SHF_WRITE) != 0)
384     ret |= elfcpp::PF_W;
385   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
386     ret |= elfcpp::PF_X;
387   return ret;
388 }
389
390 // Sometimes we compress sections.  This is typically done for
391 // sections that are not part of normal program execution (such as
392 // .debug_* sections), and where the readers of these sections know
393 // how to deal with compressed sections.  (To make it easier for them,
394 // we will rename the ouput section in such cases from .foo to
395 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
396 // doesn't say for certain whether we'll compress -- it depends on
397 // commandline options as well -- just whether this section is a
398 // candidate for compression.
399
400 static bool
401 is_compressible_debug_section(const char* secname)
402 {
403   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
404 }
405
406 // Make a new Output_section, and attach it to segments as
407 // appropriate.
408
409 Output_section*
410 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
411                             elfcpp::Elf_Xword flags)
412 {
413   Output_section* os;
414   if ((flags & elfcpp::SHF_ALLOC) == 0
415       && this->options_.compress_debug_sections()
416       && is_compressible_debug_section(name))
417     os = new Output_compressed_section(&this->options_, name, type, flags);
418   else
419     os = new Output_section(name, type, flags);
420
421   this->section_list_.push_back(os);
422
423   if ((flags & elfcpp::SHF_ALLOC) == 0)
424     this->unattached_section_list_.push_back(os);
425   else
426     {
427       // This output section goes into a PT_LOAD segment.
428
429       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
430
431       // The only thing we really care about for PT_LOAD segments is
432       // whether or not they are writable, so that is how we search
433       // for them.  People who need segments sorted on some other
434       // basis will have to wait until we implement a mechanism for
435       // them to describe the segments they want.
436
437       Segment_list::const_iterator p;
438       for (p = this->segment_list_.begin();
439            p != this->segment_list_.end();
440            ++p)
441         {
442           if ((*p)->type() == elfcpp::PT_LOAD
443               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
444             {
445               (*p)->add_output_section(os, seg_flags);
446               break;
447             }
448         }
449
450       if (p == this->segment_list_.end())
451         {
452           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
453                                                     seg_flags);
454           this->segment_list_.push_back(oseg);
455           oseg->add_output_section(os, seg_flags);
456         }
457
458       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
459       // segment.
460       if (type == elfcpp::SHT_NOTE)
461         {
462           // See if we already have an equivalent PT_NOTE segment.
463           for (p = this->segment_list_.begin();
464                p != segment_list_.end();
465                ++p)
466             {
467               if ((*p)->type() == elfcpp::PT_NOTE
468                   && (((*p)->flags() & elfcpp::PF_W)
469                       == (seg_flags & elfcpp::PF_W)))
470                 {
471                   (*p)->add_output_section(os, seg_flags);
472                   break;
473                 }
474             }
475
476           if (p == this->segment_list_.end())
477             {
478               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
479                                                         seg_flags);
480               this->segment_list_.push_back(oseg);
481               oseg->add_output_section(os, seg_flags);
482             }
483         }
484
485       // If we see a loadable SHF_TLS section, we create a PT_TLS
486       // segment.  There can only be one such segment.
487       if ((flags & elfcpp::SHF_TLS) != 0)
488         {
489           if (this->tls_segment_ == NULL)
490             {
491               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
492                                                       seg_flags);
493               this->segment_list_.push_back(this->tls_segment_);
494             }
495           this->tls_segment_->add_output_section(os, seg_flags);
496         }
497     }
498
499   return os;
500 }
501
502 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
503 // is whether we saw a .note.GNU-stack section in the object file.
504 // GNU_STACK_FLAGS is the section flags.  The flags give the
505 // protection required for stack memory.  We record this in an
506 // executable as a PT_GNU_STACK segment.  If an object file does not
507 // have a .note.GNU-stack segment, we must assume that it is an old
508 // object.  On some targets that will force an executable stack.
509
510 void
511 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
512 {
513   if (!seen_gnu_stack)
514     this->input_without_gnu_stack_note_ = true;
515   else
516     {
517       this->input_with_gnu_stack_note_ = true;
518       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
519         this->input_requires_executable_stack_ = true;
520     }
521 }
522
523 // Create the dynamic sections which are needed before we read the
524 // relocs.
525
526 void
527 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
528                                         Symbol_table* symtab)
529 {
530   if (parameters->doing_static_link())
531     return;
532
533   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
534   this->dynamic_section_ = this->make_output_section(dynamic_name,
535                                                      elfcpp::SHT_DYNAMIC,
536                                                      (elfcpp::SHF_ALLOC
537                                                       | elfcpp::SHF_WRITE));
538
539   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
540                                 this->dynamic_section_, 0, 0,
541                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
542                                 elfcpp::STV_HIDDEN, 0, false, false);
543
544   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
545
546   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
547 }
548
549 // For each output section whose name can be represented as C symbol,
550 // define __start and __stop symbols for the section.  This is a GNU
551 // extension.
552
553 void
554 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
555 {
556   for (Section_list::const_iterator p = this->section_list_.begin();
557        p != this->section_list_.end();
558        ++p)
559     {
560       const char* const name = (*p)->name();
561       if (name[strspn(name,
562                       ("0123456789"
563                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
564                        "abcdefghijklmnopqrstuvwxyz"
565                        "_"))]
566           == '\0')
567         {
568           const std::string name_string(name);
569           const std::string start_name("__start_" + name_string);
570           const std::string stop_name("__stop_" + name_string);
571
572           symtab->define_in_output_data(target,
573                                         start_name.c_str(),
574                                         NULL, // version
575                                         *p,
576                                         0, // value
577                                         0, // symsize
578                                         elfcpp::STT_NOTYPE,
579                                         elfcpp::STB_GLOBAL,
580                                         elfcpp::STV_DEFAULT,
581                                         0, // nonvis
582                                         false, // offset_is_from_end
583                                         false); // only_if_ref
584
585           symtab->define_in_output_data(target,
586                                         stop_name.c_str(),
587                                         NULL, // version
588                                         *p,
589                                         0, // value
590                                         0, // symsize
591                                         elfcpp::STT_NOTYPE,
592                                         elfcpp::STB_GLOBAL,
593                                         elfcpp::STV_DEFAULT,
594                                         0, // nonvis
595                                         true, // offset_is_from_end
596                                         false); // only_if_ref
597         }
598     }
599 }
600
601 // Find the first read-only PT_LOAD segment, creating one if
602 // necessary.
603
604 Output_segment*
605 Layout::find_first_load_seg()
606 {
607   for (Segment_list::const_iterator p = this->segment_list_.begin();
608        p != this->segment_list_.end();
609        ++p)
610     {
611       if ((*p)->type() == elfcpp::PT_LOAD
612           && ((*p)->flags() & elfcpp::PF_R) != 0
613           && ((*p)->flags() & elfcpp::PF_W) == 0)
614         return *p;
615     }
616
617   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
618   this->segment_list_.push_back(load_seg);
619   return load_seg;
620 }
621
622 // Finalize the layout.  When this is called, we have created all the
623 // output sections and all the output segments which are based on
624 // input sections.  We have several things to do, and we have to do
625 // them in the right order, so that we get the right results correctly
626 // and efficiently.
627
628 // 1) Finalize the list of output segments and create the segment
629 // table header.
630
631 // 2) Finalize the dynamic symbol table and associated sections.
632
633 // 3) Determine the final file offset of all the output segments.
634
635 // 4) Determine the final file offset of all the SHF_ALLOC output
636 // sections.
637
638 // 5) Create the symbol table sections and the section name table
639 // section.
640
641 // 6) Finalize the symbol table: set symbol values to their final
642 // value and make a final determination of which symbols are going
643 // into the output symbol table.
644
645 // 7) Create the section table header.
646
647 // 8) Determine the final file offset of all the output sections which
648 // are not SHF_ALLOC, including the section table header.
649
650 // 9) Finalize the ELF file header.
651
652 // This function returns the size of the output file.
653
654 off_t
655 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
656 {
657   Target* const target = input_objects->target();
658
659   target->finalize_sections(this);
660
661   this->count_local_symbols(input_objects);
662
663   this->create_gold_note();
664   this->create_executable_stack_info(target);
665
666   Output_segment* phdr_seg = NULL;
667   if (!parameters->doing_static_link())
668     {
669       // There was a dynamic object in the link.  We need to create
670       // some information for the dynamic linker.
671
672       // Create the PT_PHDR segment which will hold the program
673       // headers.
674       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
675       this->segment_list_.push_back(phdr_seg);
676
677       // Create the dynamic symbol table, including the hash table.
678       Output_section* dynstr;
679       std::vector<Symbol*> dynamic_symbols;
680       unsigned int local_dynamic_count;
681       Versions versions;
682       this->create_dynamic_symtab(input_objects, target, symtab, &dynstr,
683                                   &local_dynamic_count, &dynamic_symbols,
684                                   &versions);
685
686       // Create the .interp section to hold the name of the
687       // interpreter, and put it in a PT_INTERP segment.
688       if (!parameters->output_is_shared())
689         this->create_interp(target);
690
691       // Finish the .dynamic section to hold the dynamic data, and put
692       // it in a PT_DYNAMIC segment.
693       this->finish_dynamic_section(input_objects, symtab);
694
695       // We should have added everything we need to the dynamic string
696       // table.
697       this->dynpool_.set_string_offsets();
698
699       // Create the version sections.  We can't do this until the
700       // dynamic string table is complete.
701       this->create_version_sections(&versions, symtab, local_dynamic_count,
702                                     dynamic_symbols, dynstr);
703     }
704
705   // FIXME: Handle PT_GNU_STACK.
706
707   Output_segment* load_seg = this->find_first_load_seg();
708
709   // Lay out the segment headers.
710   Output_segment_headers* segment_headers;
711   segment_headers = new Output_segment_headers(this->segment_list_);
712   load_seg->add_initial_output_data(segment_headers);
713   this->special_output_list_.push_back(segment_headers);
714   if (phdr_seg != NULL)
715     phdr_seg->add_initial_output_data(segment_headers);
716
717   // Lay out the file header.
718   Output_file_header* file_header;
719   file_header = new Output_file_header(target, symtab, segment_headers);
720   load_seg->add_initial_output_data(file_header);
721   this->special_output_list_.push_back(file_header);
722
723   // We set the output section indexes in set_segment_offsets and
724   // set_section_indexes.
725   unsigned int shndx = 1;
726
727   // Set the file offsets of all the segments, and all the sections
728   // they contain.
729   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
730
731   // Create the symbol table sections.
732   this->create_symtab_sections(input_objects, symtab, &off);
733   if (!parameters->doing_static_link())
734     this->assign_local_dynsym_offsets(input_objects);
735
736   // Create the .shstrtab section.
737   Output_section* shstrtab_section = this->create_shstrtab();
738
739   // Set the file offsets of all the non-data sections which don't
740   // have to wait for the input sections.
741   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
742
743   // Now that all sections have been created, set the section indexes.
744   shndx = this->set_section_indexes(shndx);
745
746   // Create the section table header.
747   this->create_shdrs(&off);
748
749   file_header->set_section_info(this->section_headers_, shstrtab_section);
750
751   // Now we know exactly where everything goes in the output file
752   // (except for non-allocated sections which require postprocessing).
753   Output_data::layout_complete();
754
755   this->output_file_size_ = off;
756
757   return off;
758 }
759
760 // Create a .note section for an executable or shared library.  This
761 // records the version of gold used to create the binary.
762
763 void
764 Layout::create_gold_note()
765 {
766   if (parameters->output_is_object())
767     return;
768
769   // Authorities all agree that the values in a .note field should
770   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
771   // they differ on what the alignment is for 64-bit binaries.
772   // The GABI says unambiguously they take 8-byte alignment:
773   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
774   // Other documentation says alignment should always be 4 bytes:
775   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
776   // GNU ld and GNU readelf both support the latter (at least as of
777   // version 2.16.91), and glibc always generates the latter for
778   // .note.ABI-tag (as of version 1.6), so that's the one we go with
779   // here.
780 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
781   const int size = parameters->get_size();
782 #else
783   const int size = 32;
784 #endif
785
786   // The contents of the .note section.
787   const char* name = "GNU";
788   std::string desc(std::string("gold ") + gold::get_version_string());
789   size_t namesz = strlen(name) + 1;
790   size_t aligned_namesz = align_address(namesz, size / 8);
791   size_t descsz = desc.length() + 1;
792   size_t aligned_descsz = align_address(descsz, size / 8);
793   const int note_type = 4;
794
795   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
796
797   unsigned char buffer[128];
798   gold_assert(sizeof buffer >= notesz);
799   memset(buffer, 0, notesz);
800
801   bool is_big_endian = parameters->is_big_endian();
802
803   if (size == 32)
804     {
805       if (!is_big_endian)
806         {
807           elfcpp::Swap<32, false>::writeval(buffer, namesz);
808           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
809           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
810         }
811       else
812         {
813           elfcpp::Swap<32, true>::writeval(buffer, namesz);
814           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
815           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
816         }
817     }
818   else if (size == 64)
819     {
820       if (!is_big_endian)
821         {
822           elfcpp::Swap<64, false>::writeval(buffer, namesz);
823           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
824           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
825         }
826       else
827         {
828           elfcpp::Swap<64, true>::writeval(buffer, namesz);
829           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
830           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
831         }
832     }
833   else
834     gold_unreachable();
835
836   memcpy(buffer + 3 * (size / 8), name, namesz);
837   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
838
839   const char* note_name = this->namepool_.add(".note", false, NULL);
840   Output_section* os = this->make_output_section(note_name,
841                                                  elfcpp::SHT_NOTE,
842                                                  0);
843   Output_section_data* posd = new Output_data_const(buffer, notesz,
844                                                     size / 8);
845   os->add_output_section_data(posd);
846 }
847
848 // Record whether the stack should be executable.  This can be set
849 // from the command line using the -z execstack or -z noexecstack
850 // options.  Otherwise, if any input file has a .note.GNU-stack
851 // section with the SHF_EXECINSTR flag set, the stack should be
852 // executable.  Otherwise, if at least one input file a
853 // .note.GNU-stack section, and some input file has no .note.GNU-stack
854 // section, we use the target default for whether the stack should be
855 // executable.  Otherwise, we don't generate a stack note.  When
856 // generating a object file, we create a .note.GNU-stack section with
857 // the appropriate marking.  When generating an executable or shared
858 // library, we create a PT_GNU_STACK segment.
859
860 void
861 Layout::create_executable_stack_info(const Target* target)
862 {
863   bool is_stack_executable;
864   if (this->options_.is_execstack_set())
865     is_stack_executable = this->options_.is_stack_executable();
866   else if (!this->input_with_gnu_stack_note_)
867     return;
868   else
869     {
870       if (this->input_requires_executable_stack_)
871         is_stack_executable = true;
872       else if (this->input_without_gnu_stack_note_)
873         is_stack_executable = target->is_default_stack_executable();
874       else
875         is_stack_executable = false;
876     }
877
878   if (parameters->output_is_object())
879     {
880       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
881       elfcpp::Elf_Xword flags = 0;
882       if (is_stack_executable)
883         flags |= elfcpp::SHF_EXECINSTR;
884       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
885     }
886   else
887     {
888       int flags = elfcpp::PF_R | elfcpp::PF_W;
889       if (is_stack_executable)
890         flags |= elfcpp::PF_X;
891       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
892       this->segment_list_.push_back(oseg);
893     }
894 }
895
896 // Return whether SEG1 should be before SEG2 in the output file.  This
897 // is based entirely on the segment type and flags.  When this is
898 // called the segment addresses has normally not yet been set.
899
900 bool
901 Layout::segment_precedes(const Output_segment* seg1,
902                          const Output_segment* seg2)
903 {
904   elfcpp::Elf_Word type1 = seg1->type();
905   elfcpp::Elf_Word type2 = seg2->type();
906
907   // The single PT_PHDR segment is required to precede any loadable
908   // segment.  We simply make it always first.
909   if (type1 == elfcpp::PT_PHDR)
910     {
911       gold_assert(type2 != elfcpp::PT_PHDR);
912       return true;
913     }
914   if (type2 == elfcpp::PT_PHDR)
915     return false;
916
917   // The single PT_INTERP segment is required to precede any loadable
918   // segment.  We simply make it always second.
919   if (type1 == elfcpp::PT_INTERP)
920     {
921       gold_assert(type2 != elfcpp::PT_INTERP);
922       return true;
923     }
924   if (type2 == elfcpp::PT_INTERP)
925     return false;
926
927   // We then put PT_LOAD segments before any other segments.
928   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
929     return true;
930   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
931     return false;
932
933   // We put the PT_TLS segment last, because that is where the dynamic
934   // linker expects to find it (this is just for efficiency; other
935   // positions would also work correctly).
936   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
937     return false;
938   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
939     return true;
940
941   const elfcpp::Elf_Word flags1 = seg1->flags();
942   const elfcpp::Elf_Word flags2 = seg2->flags();
943
944   // The order of non-PT_LOAD segments is unimportant.  We simply sort
945   // by the numeric segment type and flags values.  There should not
946   // be more than one segment with the same type and flags.
947   if (type1 != elfcpp::PT_LOAD)
948     {
949       if (type1 != type2)
950         return type1 < type2;
951       gold_assert(flags1 != flags2);
952       return flags1 < flags2;
953     }
954
955   // We sort PT_LOAD segments based on the flags.  Readonly segments
956   // come before writable segments.  Then executable segments come
957   // before non-executable segments.  Then the unlikely case of a
958   // non-readable segment comes before the normal case of a readable
959   // segment.  If there are multiple segments with the same type and
960   // flags, we require that the address be set, and we sort by
961   // virtual address and then physical address.
962   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
963     return (flags1 & elfcpp::PF_W) == 0;
964   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
965     return (flags1 & elfcpp::PF_X) != 0;
966   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
967     return (flags1 & elfcpp::PF_R) == 0;
968
969   uint64_t vaddr1 = seg1->vaddr();
970   uint64_t vaddr2 = seg2->vaddr();
971   if (vaddr1 != vaddr2)
972     return vaddr1 < vaddr2;
973
974   uint64_t paddr1 = seg1->paddr();
975   uint64_t paddr2 = seg2->paddr();
976   gold_assert(paddr1 != paddr2);
977   return paddr1 < paddr2;
978 }
979
980 // Set the file offsets of all the segments, and all the sections they
981 // contain.  They have all been created.  LOAD_SEG must be be laid out
982 // first.  Return the offset of the data to follow.
983
984 off_t
985 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
986                             unsigned int *pshndx)
987 {
988   // Sort them into the final order.
989   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
990             Layout::Compare_segments());
991
992   // Find the PT_LOAD segments, and set their addresses and offsets
993   // and their section's addresses and offsets.
994   uint64_t addr;
995   if (options_.user_set_text_segment_address())
996     addr = options_.text_segment_address();
997   else
998     addr = target->default_text_segment_address();
999   off_t off = 0;
1000   bool was_readonly = false;
1001   for (Segment_list::iterator p = this->segment_list_.begin();
1002        p != this->segment_list_.end();
1003        ++p)
1004     {
1005       if ((*p)->type() == elfcpp::PT_LOAD)
1006         {
1007           if (load_seg != NULL && load_seg != *p)
1008             gold_unreachable();
1009           load_seg = NULL;
1010
1011           // If the last segment was readonly, and this one is not,
1012           // then skip the address forward one page, maintaining the
1013           // same position within the page.  This lets us store both
1014           // segments overlapping on a single page in the file, but
1015           // the loader will put them on different pages in memory.
1016
1017           uint64_t orig_addr = addr;
1018           uint64_t orig_off = off;
1019
1020           uint64_t aligned_addr = addr;
1021           uint64_t abi_pagesize = target->abi_pagesize();
1022
1023           // FIXME: This should depend on the -n and -N options.
1024           (*p)->set_minimum_addralign(target->common_pagesize());
1025
1026           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1027             {
1028               uint64_t align = (*p)->addralign();
1029
1030               addr = align_address(addr, align);
1031               aligned_addr = addr;
1032               if ((addr & (abi_pagesize - 1)) != 0)
1033                 addr = addr + abi_pagesize;
1034             }
1035
1036           unsigned int shndx_hold = *pshndx;
1037           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1038           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1039
1040           // Now that we know the size of this segment, we may be able
1041           // to save a page in memory, at the cost of wasting some
1042           // file space, by instead aligning to the start of a new
1043           // page.  Here we use the real machine page size rather than
1044           // the ABI mandated page size.
1045
1046           if (aligned_addr != addr)
1047             {
1048               uint64_t common_pagesize = target->common_pagesize();
1049               uint64_t first_off = (common_pagesize
1050                                     - (aligned_addr
1051                                        & (common_pagesize - 1)));
1052               uint64_t last_off = new_addr & (common_pagesize - 1);
1053               if (first_off > 0
1054                   && last_off > 0
1055                   && ((aligned_addr & ~ (common_pagesize - 1))
1056                       != (new_addr & ~ (common_pagesize - 1)))
1057                   && first_off + last_off <= common_pagesize)
1058                 {
1059                   *pshndx = shndx_hold;
1060                   addr = align_address(aligned_addr, common_pagesize);
1061                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1062                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1063                 }
1064             }
1065
1066           addr = new_addr;
1067
1068           if (((*p)->flags() & elfcpp::PF_W) == 0)
1069             was_readonly = true;
1070         }
1071     }
1072
1073   // Handle the non-PT_LOAD segments, setting their offsets from their
1074   // section's offsets.
1075   for (Segment_list::iterator p = this->segment_list_.begin();
1076        p != this->segment_list_.end();
1077        ++p)
1078     {
1079       if ((*p)->type() != elfcpp::PT_LOAD)
1080         (*p)->set_offset();
1081     }
1082
1083   // Set the TLS offsets for each section in the PT_TLS segment.
1084   if (this->tls_segment_ != NULL)
1085     this->tls_segment_->set_tls_offsets();
1086
1087   return off;
1088 }
1089
1090 // Set the file offset of all the sections not associated with a
1091 // segment.
1092
1093 off_t
1094 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1095 {
1096   for (Section_list::iterator p = this->unattached_section_list_.begin();
1097        p != this->unattached_section_list_.end();
1098        ++p)
1099     {
1100       // The symtab section is handled in create_symtab_sections.
1101       if (*p == this->symtab_section_)
1102         continue;
1103
1104       if (pass == BEFORE_INPUT_SECTIONS_PASS
1105           && (*p)->requires_postprocessing())
1106         (*p)->create_postprocessing_buffer();
1107
1108       if (pass == BEFORE_INPUT_SECTIONS_PASS
1109           && (*p)->after_input_sections())
1110         continue;
1111       else if (pass == AFTER_INPUT_SECTIONS_PASS
1112                && (!(*p)->after_input_sections()
1113                    || (*p)->type() == elfcpp::SHT_STRTAB))
1114         continue;
1115       else if (pass == STRTAB_AFTER_INPUT_SECTIONS_PASS
1116                && (!(*p)->after_input_sections()
1117                    || (*p)->type() != elfcpp::SHT_STRTAB))
1118         continue;
1119
1120       off = align_address(off, (*p)->addralign());
1121       (*p)->set_file_offset(off);
1122       (*p)->finalize_data_size();
1123       off += (*p)->data_size();
1124
1125       // At this point the name must be set.
1126       if (pass != STRTAB_AFTER_INPUT_SECTIONS_PASS)
1127         this->namepool_.add((*p)->name(), false, NULL);
1128     }
1129   return off;
1130 }
1131
1132 // Set the section indexes of all the sections not associated with a
1133 // segment.
1134
1135 unsigned int
1136 Layout::set_section_indexes(unsigned int shndx)
1137 {
1138   for (Section_list::iterator p = this->unattached_section_list_.begin();
1139        p != this->unattached_section_list_.end();
1140        ++p)
1141     {
1142       (*p)->set_out_shndx(shndx);
1143       ++shndx;
1144     }
1145   return shndx;
1146 }
1147
1148 // Count the local symbols in the regular symbol table and the dynamic
1149 // symbol table, and build the respective string pools.
1150
1151 void
1152 Layout::count_local_symbols(const Input_objects* input_objects)
1153 {
1154   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1155        p != input_objects->relobj_end();
1156        ++p)
1157     {
1158       Task_lock_obj<Object> tlo(**p);
1159       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1160     }
1161 }
1162
1163 // Create the symbol table sections.  Here we also set the final
1164 // values of the symbols.  At this point all the loadable sections are
1165 // fully laid out.
1166
1167 void
1168 Layout::create_symtab_sections(const Input_objects* input_objects,
1169                                Symbol_table* symtab,
1170                                off_t* poff)
1171 {
1172   int symsize;
1173   unsigned int align;
1174   if (parameters->get_size() == 32)
1175     {
1176       symsize = elfcpp::Elf_sizes<32>::sym_size;
1177       align = 4;
1178     }
1179   else if (parameters->get_size() == 64)
1180     {
1181       symsize = elfcpp::Elf_sizes<64>::sym_size;
1182       align = 8;
1183     }
1184   else
1185     gold_unreachable();
1186
1187   off_t off = *poff;
1188   off = align_address(off, align);
1189   off_t startoff = off;
1190
1191   // Save space for the dummy symbol at the start of the section.  We
1192   // never bother to write this out--it will just be left as zero.
1193   off += symsize;
1194   unsigned int local_symbol_index = 1;
1195
1196   // Add STT_SECTION symbols for each Output section which needs one.
1197   for (Section_list::iterator p = this->section_list_.begin();
1198        p != this->section_list_.end();
1199        ++p)
1200     {
1201       if (!(*p)->needs_symtab_index())
1202         (*p)->set_symtab_index(-1U);
1203       else
1204         {
1205           (*p)->set_symtab_index(local_symbol_index);
1206           ++local_symbol_index;
1207           off += symsize;
1208         }
1209     }
1210
1211   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1212        p != input_objects->relobj_end();
1213        ++p)
1214     {
1215       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1216                                                         off);
1217       off += (index - local_symbol_index) * symsize;
1218       local_symbol_index = index;
1219     }
1220
1221   unsigned int local_symcount = local_symbol_index;
1222   gold_assert(local_symcount * symsize == off - startoff);
1223
1224   off_t dynoff;
1225   size_t dyn_global_index;
1226   size_t dyncount;
1227   if (this->dynsym_section_ == NULL)
1228     {
1229       dynoff = 0;
1230       dyn_global_index = 0;
1231       dyncount = 0;
1232     }
1233   else
1234     {
1235       dyn_global_index = this->dynsym_section_->info();
1236       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1237       dynoff = this->dynsym_section_->offset() + locsize;
1238       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1239       gold_assert(static_cast<off_t>(dyncount * symsize)
1240                   == this->dynsym_section_->data_size() - locsize);
1241     }
1242
1243   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1244                          dyncount, &this->sympool_);
1245
1246   if (!parameters->strip_all())
1247     {
1248       this->sympool_.set_string_offsets();
1249
1250       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1251       Output_section* osymtab = this->make_output_section(symtab_name,
1252                                                           elfcpp::SHT_SYMTAB,
1253                                                           0);
1254       this->symtab_section_ = osymtab;
1255
1256       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1257                                                              align);
1258       osymtab->add_output_section_data(pos);
1259
1260       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1261       Output_section* ostrtab = this->make_output_section(strtab_name,
1262                                                           elfcpp::SHT_STRTAB,
1263                                                           0);
1264
1265       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1266       ostrtab->add_output_section_data(pstr);
1267
1268       osymtab->set_file_offset(startoff);
1269       osymtab->finalize_data_size();
1270       osymtab->set_link_section(ostrtab);
1271       osymtab->set_info(local_symcount);
1272       osymtab->set_entsize(symsize);
1273
1274       *poff = off;
1275     }
1276 }
1277
1278 // Create the .shstrtab section, which holds the names of the
1279 // sections.  At the time this is called, we have created all the
1280 // output sections except .shstrtab itself.
1281
1282 Output_section*
1283 Layout::create_shstrtab()
1284 {
1285   // FIXME: We don't need to create a .shstrtab section if we are
1286   // stripping everything.
1287
1288   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1289
1290   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1291
1292   // We can't write out this section until we've set all the section
1293   // names, and we don't set the names of compressed output sections
1294   // until relocations are complete.
1295   os->set_after_input_sections();
1296
1297   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1298   os->add_output_section_data(posd);
1299
1300   return os;
1301 }
1302
1303 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1304 // offset.
1305
1306 void
1307 Layout::create_shdrs(off_t* poff)
1308 {
1309   Output_section_headers* oshdrs;
1310   oshdrs = new Output_section_headers(this,
1311                                       &this->segment_list_,
1312                                       &this->unattached_section_list_,
1313                                       &this->namepool_);
1314   off_t off = align_address(*poff, oshdrs->addralign());
1315   oshdrs->set_address_and_file_offset(0, off);
1316   off += oshdrs->data_size();
1317   *poff = off;
1318   this->section_headers_ = oshdrs;
1319 }
1320
1321 // Create the dynamic symbol table.
1322
1323 void
1324 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1325                               const Target* target, Symbol_table* symtab,
1326                               Output_section **pdynstr,
1327                               unsigned int* plocal_dynamic_count,
1328                               std::vector<Symbol*>* pdynamic_symbols,
1329                               Versions* pversions)
1330 {
1331   // Count all the symbols in the dynamic symbol table, and set the
1332   // dynamic symbol indexes.
1333
1334   // Skip symbol 0, which is always all zeroes.
1335   unsigned int index = 1;
1336
1337   // Add STT_SECTION symbols for each Output section which needs one.
1338   for (Section_list::iterator p = this->section_list_.begin();
1339        p != this->section_list_.end();
1340        ++p)
1341     {
1342       if (!(*p)->needs_dynsym_index())
1343         (*p)->set_dynsym_index(-1U);
1344       else
1345         {
1346           (*p)->set_dynsym_index(index);
1347           ++index;
1348         }
1349     }
1350
1351   // Count the local symbols that need to go in the dynamic symbol table,
1352   // and set the dynamic symbol indexes.
1353   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1354        p != input_objects->relobj_end();
1355        ++p)
1356     {
1357       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1358       index = new_index;
1359     }
1360
1361   unsigned int local_symcount = index;
1362   *plocal_dynamic_count = local_symcount;
1363
1364   // FIXME: We have to tell set_dynsym_indexes whether the
1365   // -E/--export-dynamic option was used.
1366   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1367                                      &this->dynpool_, pversions);
1368
1369   int symsize;
1370   unsigned int align;
1371   const int size = parameters->get_size();
1372   if (size == 32)
1373     {
1374       symsize = elfcpp::Elf_sizes<32>::sym_size;
1375       align = 4;
1376     }
1377   else if (size == 64)
1378     {
1379       symsize = elfcpp::Elf_sizes<64>::sym_size;
1380       align = 8;
1381     }
1382   else
1383     gold_unreachable();
1384
1385   // Create the dynamic symbol table section.
1386
1387   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1388   Output_section* dynsym = this->make_output_section(dynsym_name,
1389                                                      elfcpp::SHT_DYNSYM,
1390                                                      elfcpp::SHF_ALLOC);
1391
1392   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1393                                                            align);
1394   dynsym->add_output_section_data(odata);
1395
1396   dynsym->set_info(local_symcount);
1397   dynsym->set_entsize(symsize);
1398   dynsym->set_addralign(align);
1399
1400   this->dynsym_section_ = dynsym;
1401
1402   Output_data_dynamic* const odyn = this->dynamic_data_;
1403   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1404   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1405
1406   // Create the dynamic string table section.
1407
1408   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1409   Output_section* dynstr = this->make_output_section(dynstr_name,
1410                                                      elfcpp::SHT_STRTAB,
1411                                                      elfcpp::SHF_ALLOC);
1412
1413   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1414   dynstr->add_output_section_data(strdata);
1415
1416   dynsym->set_link_section(dynstr);
1417   this->dynamic_section_->set_link_section(dynstr);
1418
1419   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1420   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1421
1422   *pdynstr = dynstr;
1423
1424   // Create the hash tables.
1425
1426   // FIXME: We need an option to create a GNU hash table.
1427
1428   unsigned char* phash;
1429   unsigned int hashlen;
1430   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1431                                 &phash, &hashlen);
1432
1433   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1434   Output_section* hashsec = this->make_output_section(hash_name,
1435                                                       elfcpp::SHT_HASH,
1436                                                       elfcpp::SHF_ALLOC);
1437
1438   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1439                                                                hashlen,
1440                                                                align);
1441   hashsec->add_output_section_data(hashdata);
1442
1443   hashsec->set_link_section(dynsym);
1444   hashsec->set_entsize(4);
1445
1446   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1447 }
1448
1449 // Assign offsets to each local portion of the dynamic symbol table.
1450
1451 void
1452 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1453 {
1454   Output_section* dynsym = this->dynsym_section_;
1455   gold_assert(dynsym != NULL);
1456
1457   off_t off = dynsym->offset();
1458
1459   // Skip the dummy symbol at the start of the section.
1460   off += dynsym->entsize();
1461
1462   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1463        p != input_objects->relobj_end();
1464        ++p)
1465     {
1466       unsigned int count = (*p)->set_local_dynsym_offset(off);
1467       off += count * dynsym->entsize();
1468     }
1469 }
1470
1471 // Create the version sections.
1472
1473 void
1474 Layout::create_version_sections(const Versions* versions,
1475                                 const Symbol_table* symtab,
1476                                 unsigned int local_symcount,
1477                                 const std::vector<Symbol*>& dynamic_symbols,
1478                                 const Output_section* dynstr)
1479 {
1480   if (!versions->any_defs() && !versions->any_needs())
1481     return;
1482
1483   if (parameters->get_size() == 32)
1484     {
1485       if (parameters->is_big_endian())
1486         {
1487 #ifdef HAVE_TARGET_32_BIG
1488           this->sized_create_version_sections
1489               SELECT_SIZE_ENDIAN_NAME(32, true)(
1490                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1491                   SELECT_SIZE_ENDIAN(32, true));
1492 #else
1493           gold_unreachable();
1494 #endif
1495         }
1496       else
1497         {
1498 #ifdef HAVE_TARGET_32_LITTLE
1499           this->sized_create_version_sections
1500               SELECT_SIZE_ENDIAN_NAME(32, false)(
1501                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1502                   SELECT_SIZE_ENDIAN(32, false));
1503 #else
1504           gold_unreachable();
1505 #endif
1506         }
1507     }
1508   else if (parameters->get_size() == 64)
1509     {
1510       if (parameters->is_big_endian())
1511         {
1512 #ifdef HAVE_TARGET_64_BIG
1513           this->sized_create_version_sections
1514               SELECT_SIZE_ENDIAN_NAME(64, true)(
1515                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1516                   SELECT_SIZE_ENDIAN(64, true));
1517 #else
1518           gold_unreachable();
1519 #endif
1520         }
1521       else
1522         {
1523 #ifdef HAVE_TARGET_64_LITTLE
1524           this->sized_create_version_sections
1525               SELECT_SIZE_ENDIAN_NAME(64, false)(
1526                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1527                   SELECT_SIZE_ENDIAN(64, false));
1528 #else
1529           gold_unreachable();
1530 #endif
1531         }
1532     }
1533   else
1534     gold_unreachable();
1535 }
1536
1537 // Create the version sections, sized version.
1538
1539 template<int size, bool big_endian>
1540 void
1541 Layout::sized_create_version_sections(
1542     const Versions* versions,
1543     const Symbol_table* symtab,
1544     unsigned int local_symcount,
1545     const std::vector<Symbol*>& dynamic_symbols,
1546     const Output_section* dynstr
1547     ACCEPT_SIZE_ENDIAN)
1548 {
1549   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1550   Output_section* vsec = this->make_output_section(vname,
1551                                                    elfcpp::SHT_GNU_versym,
1552                                                    elfcpp::SHF_ALLOC);
1553
1554   unsigned char* vbuf;
1555   unsigned int vsize;
1556   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1557       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1558       SELECT_SIZE_ENDIAN(size, big_endian));
1559
1560   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1561
1562   vsec->add_output_section_data(vdata);
1563   vsec->set_entsize(2);
1564   vsec->set_link_section(this->dynsym_section_);
1565
1566   Output_data_dynamic* const odyn = this->dynamic_data_;
1567   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1568
1569   if (versions->any_defs())
1570     {
1571       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1572       Output_section *vdsec;
1573       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1574                                         elfcpp::SHF_ALLOC);
1575
1576       unsigned char* vdbuf;
1577       unsigned int vdsize;
1578       unsigned int vdentries;
1579       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1580           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1581           SELECT_SIZE_ENDIAN(size, big_endian));
1582
1583       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1584                                                                  vdsize,
1585                                                                  4);
1586
1587       vdsec->add_output_section_data(vddata);
1588       vdsec->set_link_section(dynstr);
1589       vdsec->set_info(vdentries);
1590
1591       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1592       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1593     }
1594
1595   if (versions->any_needs())
1596     {
1597       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1598       Output_section* vnsec;
1599       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1600                                         elfcpp::SHF_ALLOC);
1601
1602       unsigned char* vnbuf;
1603       unsigned int vnsize;
1604       unsigned int vnentries;
1605       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1606         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1607          SELECT_SIZE_ENDIAN(size, big_endian));
1608
1609       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1610                                                                  vnsize,
1611                                                                  4);
1612
1613       vnsec->add_output_section_data(vndata);
1614       vnsec->set_link_section(dynstr);
1615       vnsec->set_info(vnentries);
1616
1617       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1618       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1619     }
1620 }
1621
1622 // Create the .interp section and PT_INTERP segment.
1623
1624 void
1625 Layout::create_interp(const Target* target)
1626 {
1627   const char* interp = this->options_.dynamic_linker();
1628   if (interp == NULL)
1629     {
1630       interp = target->dynamic_linker();
1631       gold_assert(interp != NULL);
1632     }
1633
1634   size_t len = strlen(interp) + 1;
1635
1636   Output_section_data* odata = new Output_data_const(interp, len, 1);
1637
1638   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1639   Output_section* osec = this->make_output_section(interp_name,
1640                                                    elfcpp::SHT_PROGBITS,
1641                                                    elfcpp::SHF_ALLOC);
1642   osec->add_output_section_data(odata);
1643
1644   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1645   this->segment_list_.push_back(oseg);
1646   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1647 }
1648
1649 // Finish the .dynamic section and PT_DYNAMIC segment.
1650
1651 void
1652 Layout::finish_dynamic_section(const Input_objects* input_objects,
1653                                const Symbol_table* symtab)
1654 {
1655   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1656                                             elfcpp::PF_R | elfcpp::PF_W);
1657   this->segment_list_.push_back(oseg);
1658   oseg->add_initial_output_section(this->dynamic_section_,
1659                                    elfcpp::PF_R | elfcpp::PF_W);
1660
1661   Output_data_dynamic* const odyn = this->dynamic_data_;
1662
1663   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1664        p != input_objects->dynobj_end();
1665        ++p)
1666     {
1667       // FIXME: Handle --as-needed.
1668       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1669     }
1670
1671   // FIXME: Support --init and --fini.
1672   Symbol* sym = symtab->lookup("_init");
1673   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1674     odyn->add_symbol(elfcpp::DT_INIT, sym);
1675
1676   sym = symtab->lookup("_fini");
1677   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1678     odyn->add_symbol(elfcpp::DT_FINI, sym);
1679
1680   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1681
1682   // Add a DT_RPATH entry if needed.
1683   const General_options::Dir_list& rpath(this->options_.rpath());
1684   if (!rpath.empty())
1685     {
1686       std::string rpath_val;
1687       for (General_options::Dir_list::const_iterator p = rpath.begin();
1688            p != rpath.end();
1689            ++p)
1690         {
1691           if (rpath_val.empty())
1692             rpath_val = p->name();
1693           else
1694             {
1695               // Eliminate duplicates.
1696               General_options::Dir_list::const_iterator q;
1697               for (q = rpath.begin(); q != p; ++q)
1698                 if (q->name() == p->name())
1699                   break;
1700               if (q == p)
1701                 {
1702                   rpath_val += ':';
1703                   rpath_val += p->name();
1704                 }
1705             }
1706         }
1707
1708       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1709     }
1710
1711   // Look for text segments that have dynamic relocations.
1712   bool have_textrel = false;
1713   for (Segment_list::const_iterator p = this->segment_list_.begin();
1714        p != this->segment_list_.end();
1715        ++p)
1716     {
1717       if (((*p)->flags() & elfcpp::PF_W) == 0
1718           && (*p)->dynamic_reloc_count() > 0)
1719         {
1720           have_textrel = true;
1721           break;
1722         }
1723     }
1724
1725   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1726   // post-link tools can easily modify these flags if desired.
1727   unsigned int flags = 0;
1728   if (have_textrel)
1729     flags |= elfcpp::DF_TEXTREL;
1730   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1731 }
1732
1733 // The mapping of .gnu.linkonce section names to real section names.
1734
1735 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1736 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1737 {
1738   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1739   MAPPING_INIT("t", ".text"),
1740   MAPPING_INIT("r", ".rodata"),
1741   MAPPING_INIT("d", ".data"),
1742   MAPPING_INIT("b", ".bss"),
1743   MAPPING_INIT("s", ".sdata"),
1744   MAPPING_INIT("sb", ".sbss"),
1745   MAPPING_INIT("s2", ".sdata2"),
1746   MAPPING_INIT("sb2", ".sbss2"),
1747   MAPPING_INIT("wi", ".debug_info"),
1748   MAPPING_INIT("td", ".tdata"),
1749   MAPPING_INIT("tb", ".tbss"),
1750   MAPPING_INIT("lr", ".lrodata"),
1751   MAPPING_INIT("l", ".ldata"),
1752   MAPPING_INIT("lb", ".lbss"),
1753 };
1754 #undef MAPPING_INIT
1755
1756 const int Layout::linkonce_mapping_count =
1757   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1758
1759 // Return the name of the output section to use for a .gnu.linkonce
1760 // section.  This is based on the default ELF linker script of the old
1761 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1762 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1763 // initialized to the length of NAME.
1764
1765 const char*
1766 Layout::linkonce_output_name(const char* name, size_t *plen)
1767 {
1768   const char* s = name + sizeof(".gnu.linkonce") - 1;
1769   if (*s != '.')
1770     return name;
1771   ++s;
1772   const Linkonce_mapping* plm = linkonce_mapping;
1773   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1774     {
1775       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1776         {
1777           *plen = plm->tolen;
1778           return plm->to;
1779         }
1780     }
1781   return name;
1782 }
1783
1784 // Choose the output section name to use given an input section name.
1785 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1786 // length of NAME.
1787
1788 const char*
1789 Layout::output_section_name(const char* name, size_t* plen)
1790 {
1791   if (Layout::is_linkonce(name))
1792     {
1793       // .gnu.linkonce sections are laid out as though they were named
1794       // for the sections are placed into.
1795       return Layout::linkonce_output_name(name, plen);
1796     }
1797
1798   // gcc 4.3 generates the following sorts of section names when it
1799   // needs a section name specific to a function:
1800   //   .text.FN
1801   //   .rodata.FN
1802   //   .sdata2.FN
1803   //   .data.FN
1804   //   .data.rel.FN
1805   //   .data.rel.local.FN
1806   //   .data.rel.ro.FN
1807   //   .data.rel.ro.local.FN
1808   //   .sdata.FN
1809   //   .bss.FN
1810   //   .sbss.FN
1811   //   .tdata.FN
1812   //   .tbss.FN
1813
1814   // The GNU linker maps all of those to the part before the .FN,
1815   // except that .data.rel.local.FN is mapped to .data, and
1816   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1817   // beginning with .data.rel.ro.local are grouped together.
1818
1819   // For an anonymous namespace, the string FN can contain a '.'.
1820
1821   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1822   // GNU linker maps to .rodata.
1823
1824   // The .data.rel.ro sections enable a security feature triggered by
1825   // the -z relro option.  Section which need to be relocated at
1826   // program startup time but which may be readonly after startup are
1827   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1828   // segment.  The dynamic linker will make that segment writable,
1829   // perform relocations, and then make it read-only.  FIXME: We do
1830   // not yet implement this optimization.
1831
1832   // It is hard to handle this in a principled way.
1833
1834   // These are the rules we follow:
1835
1836   // If the section name has no initial '.', or no dot other than an
1837   // initial '.', we use the name unchanged (i.e., "mysection" and
1838   // ".text" are unchanged).
1839
1840   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1841
1842   // Otherwise, we drop the second '.' and everything that comes after
1843   // it (i.e., ".text.XXX" becomes ".text").
1844
1845   const char* s = name;
1846   if (*s != '.')
1847     return name;
1848   ++s;
1849   const char* sdot = strchr(s, '.');
1850   if (sdot == NULL)
1851     return name;
1852
1853   const char* const data_rel_ro = ".data.rel.ro";
1854   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1855     {
1856       *plen = strlen(data_rel_ro);
1857       return data_rel_ro;
1858     }
1859
1860   *plen = sdot - name;
1861   return name;
1862 }
1863
1864 // Record the signature of a comdat section, and return whether to
1865 // include it in the link.  If GROUP is true, this is a regular
1866 // section group.  If GROUP is false, this is a group signature
1867 // derived from the name of a linkonce section.  We want linkonce
1868 // signatures and group signatures to block each other, but we don't
1869 // want a linkonce signature to block another linkonce signature.
1870
1871 bool
1872 Layout::add_comdat(const char* signature, bool group)
1873 {
1874   std::string sig(signature);
1875   std::pair<Signatures::iterator, bool> ins(
1876     this->signatures_.insert(std::make_pair(sig, group)));
1877
1878   if (ins.second)
1879     {
1880       // This is the first time we've seen this signature.
1881       return true;
1882     }
1883
1884   if (ins.first->second)
1885     {
1886       // We've already seen a real section group with this signature.
1887       return false;
1888     }
1889   else if (group)
1890     {
1891       // This is a real section group, and we've already seen a
1892       // linkonce section with this signature.  Record that we've seen
1893       // a section group, and don't include this section group.
1894       ins.first->second = true;
1895       return false;
1896     }
1897   else
1898     {
1899       // We've already seen a linkonce section and this is a linkonce
1900       // section.  These don't block each other--this may be the same
1901       // symbol name with different section types.
1902       return true;
1903     }
1904 }
1905
1906 // Write out the Output_sections.  Most won't have anything to write,
1907 // since most of the data will come from input sections which are
1908 // handled elsewhere.  But some Output_sections do have Output_data.
1909
1910 void
1911 Layout::write_output_sections(Output_file* of) const
1912 {
1913   for (Section_list::const_iterator p = this->section_list_.begin();
1914        p != this->section_list_.end();
1915        ++p)
1916     {
1917       if (!(*p)->after_input_sections())
1918         (*p)->write(of);
1919     }
1920 }
1921
1922 // Write out data not associated with a section or the symbol table.
1923
1924 void
1925 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1926 {
1927   if (!parameters->strip_all())
1928     {
1929       const Output_section* symtab_section = this->symtab_section_;
1930       for (Section_list::const_iterator p = this->section_list_.begin();
1931            p != this->section_list_.end();
1932            ++p)
1933         {
1934           if ((*p)->needs_symtab_index())
1935             {
1936               gold_assert(symtab_section != NULL);
1937               unsigned int index = (*p)->symtab_index();
1938               gold_assert(index > 0 && index != -1U);
1939               off_t off = (symtab_section->offset()
1940                            + index * symtab_section->entsize());
1941               symtab->write_section_symbol(*p, of, off);
1942             }
1943         }
1944     }
1945
1946   const Output_section* dynsym_section = this->dynsym_section_;
1947   for (Section_list::const_iterator p = this->section_list_.begin();
1948        p != this->section_list_.end();
1949        ++p)
1950     {
1951       if ((*p)->needs_dynsym_index())
1952         {
1953           gold_assert(dynsym_section != NULL);
1954           unsigned int index = (*p)->dynsym_index();
1955           gold_assert(index > 0 && index != -1U);
1956           off_t off = (dynsym_section->offset()
1957                        + index * dynsym_section->entsize());
1958           symtab->write_section_symbol(*p, of, off);
1959         }
1960     }
1961
1962   // Write out the Output_data which are not in an Output_section.
1963   for (Data_list::const_iterator p = this->special_output_list_.begin();
1964        p != this->special_output_list_.end();
1965        ++p)
1966     (*p)->write(of);
1967 }
1968
1969 // Write out the Output_sections which can only be written after the
1970 // input sections are complete.
1971
1972 void
1973 Layout::write_sections_after_input_sections(Output_file* of)
1974 {
1975   // Determine the final section offsets, and thus the final output
1976   // file size.  Note we finalize the .shstrab last, to allow the
1977   // after_input_section sections to modify their section-names before
1978   // writing.
1979   off_t off = this->output_file_size_;
1980   off = this->set_section_offsets(off, AFTER_INPUT_SECTIONS_PASS);
1981
1982   // Now that we've finalized the names, we can finalize the shstrab.
1983   off = this->set_section_offsets(off, STRTAB_AFTER_INPUT_SECTIONS_PASS);
1984
1985   if (off > this->output_file_size_)
1986     {
1987       of->resize(off);
1988       this->output_file_size_ = off;
1989     }
1990
1991   for (Section_list::const_iterator p = this->section_list_.begin();
1992        p != this->section_list_.end();
1993        ++p)
1994     {
1995       if ((*p)->after_input_sections())
1996         (*p)->write(of);
1997     }
1998
1999   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
2000        p != this->unattached_section_list_.end();
2001        ++p)
2002     {
2003       if ((*p)->after_input_sections())
2004         (*p)->write(of);
2005     }
2006
2007   this->section_headers_->write(of);
2008 }
2009
2010 // Print statistical information to stderr.  This is used for --stats.
2011
2012 void
2013 Layout::print_stats() const
2014 {
2015   this->namepool_.print_stats("section name pool");
2016   this->sympool_.print_stats("output symbol name pool");
2017   this->dynpool_.print_stats("dynamic name pool");
2018 }
2019
2020 // Write_sections_task methods.
2021
2022 // We can always run this task.
2023
2024 Task::Is_runnable_type
2025 Write_sections_task::is_runnable(Workqueue*)
2026 {
2027   return IS_RUNNABLE;
2028 }
2029
2030 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2031 // when finished.
2032
2033 class Write_sections_task::Write_sections_locker : public Task_locker
2034 {
2035  public:
2036   Write_sections_locker(Task_token& output_sections_blocker,
2037                         Task_token& final_blocker,
2038                         Workqueue* workqueue)
2039     : output_sections_block_(output_sections_blocker, workqueue),
2040       final_block_(final_blocker, workqueue)
2041   { }
2042
2043  private:
2044   Task_block_token output_sections_block_;
2045   Task_block_token final_block_;
2046 };
2047
2048 Task_locker*
2049 Write_sections_task::locks(Workqueue* workqueue)
2050 {
2051   return new Write_sections_locker(*this->output_sections_blocker_,
2052                                    *this->final_blocker_,
2053                                    workqueue);
2054 }
2055
2056 // Run the task--write out the data.
2057
2058 void
2059 Write_sections_task::run(Workqueue*)
2060 {
2061   this->layout_->write_output_sections(this->of_);
2062 }
2063
2064 // Write_data_task methods.
2065
2066 // We can always run this task.
2067
2068 Task::Is_runnable_type
2069 Write_data_task::is_runnable(Workqueue*)
2070 {
2071   return IS_RUNNABLE;
2072 }
2073
2074 // We need to unlock FINAL_BLOCKER when finished.
2075
2076 Task_locker*
2077 Write_data_task::locks(Workqueue* workqueue)
2078 {
2079   return new Task_locker_block(*this->final_blocker_, workqueue);
2080 }
2081
2082 // Run the task--write out the data.
2083
2084 void
2085 Write_data_task::run(Workqueue*)
2086 {
2087   this->layout_->write_data(this->symtab_, this->of_);
2088 }
2089
2090 // Write_symbols_task methods.
2091
2092 // We can always run this task.
2093
2094 Task::Is_runnable_type
2095 Write_symbols_task::is_runnable(Workqueue*)
2096 {
2097   return IS_RUNNABLE;
2098 }
2099
2100 // We need to unlock FINAL_BLOCKER when finished.
2101
2102 Task_locker*
2103 Write_symbols_task::locks(Workqueue* workqueue)
2104 {
2105   return new Task_locker_block(*this->final_blocker_, workqueue);
2106 }
2107
2108 // Run the task--write out the symbols.
2109
2110 void
2111 Write_symbols_task::run(Workqueue*)
2112 {
2113   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2114                                this->dynpool_, this->of_);
2115 }
2116
2117 // Write_after_input_sections_task methods.
2118
2119 // We can only run this task after the input sections have completed.
2120
2121 Task::Is_runnable_type
2122 Write_after_input_sections_task::is_runnable(Workqueue*)
2123 {
2124   if (this->input_sections_blocker_->is_blocked())
2125     return IS_BLOCKED;
2126   return IS_RUNNABLE;
2127 }
2128
2129 // We need to unlock FINAL_BLOCKER when finished.
2130
2131 Task_locker*
2132 Write_after_input_sections_task::locks(Workqueue* workqueue)
2133 {
2134   return new Task_locker_block(*this->final_blocker_, workqueue);
2135 }
2136
2137 // Run the task.
2138
2139 void
2140 Write_after_input_sections_task::run(Workqueue*)
2141 {
2142   this->layout_->write_sections_after_input_sections(this->of_);
2143 }
2144
2145 // Close_task_runner methods.
2146
2147 // Run the task--close the file.
2148
2149 void
2150 Close_task_runner::run(Workqueue*)
2151 {
2152   this->of_->close();
2153 }
2154
2155 // Instantiate the templates we need.  We could use the configure
2156 // script to restrict this to only the ones for implemented targets.
2157
2158 #ifdef HAVE_TARGET_32_LITTLE
2159 template
2160 Output_section*
2161 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2162                           const char* name,
2163                           const elfcpp::Shdr<32, false>& shdr,
2164                           unsigned int, unsigned int, off_t*);
2165 #endif
2166
2167 #ifdef HAVE_TARGET_32_BIG
2168 template
2169 Output_section*
2170 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2171                          const char* name,
2172                          const elfcpp::Shdr<32, true>& shdr,
2173                          unsigned int, unsigned int, off_t*);
2174 #endif
2175
2176 #ifdef HAVE_TARGET_64_LITTLE
2177 template
2178 Output_section*
2179 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2180                           const char* name,
2181                           const elfcpp::Shdr<64, false>& shdr,
2182                           unsigned int, unsigned int, off_t*);
2183 #endif
2184
2185 #ifdef HAVE_TARGET_64_BIG
2186 template
2187 Output_section*
2188 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2189                          const char* name,
2190                          const elfcpp::Shdr<64, true>& shdr,
2191                          unsigned int, unsigned int, off_t*);
2192 #endif
2193
2194 #ifdef HAVE_TARGET_32_LITTLE
2195 template
2196 Output_section*
2197 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2198                                    const unsigned char* symbols,
2199                                    off_t symbols_size,
2200                                    const unsigned char* symbol_names,
2201                                    off_t symbol_names_size,
2202                                    unsigned int shndx,
2203                                    const elfcpp::Shdr<32, false>& shdr,
2204                                    unsigned int reloc_shndx,
2205                                    unsigned int reloc_type,
2206                                    off_t* off);
2207 #endif
2208
2209 #ifdef HAVE_TARGET_32_BIG
2210 template
2211 Output_section*
2212 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2213                                    const unsigned char* symbols,
2214                                    off_t symbols_size,
2215                                   const unsigned char* symbol_names,
2216                                   off_t symbol_names_size,
2217                                   unsigned int shndx,
2218                                   const elfcpp::Shdr<32, true>& shdr,
2219                                   unsigned int reloc_shndx,
2220                                   unsigned int reloc_type,
2221                                   off_t* off);
2222 #endif
2223
2224 #ifdef HAVE_TARGET_64_LITTLE
2225 template
2226 Output_section*
2227 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2228                                    const unsigned char* symbols,
2229                                    off_t symbols_size,
2230                                    const unsigned char* symbol_names,
2231                                    off_t symbol_names_size,
2232                                    unsigned int shndx,
2233                                    const elfcpp::Shdr<64, false>& shdr,
2234                                    unsigned int reloc_shndx,
2235                                    unsigned int reloc_type,
2236                                    off_t* off);
2237 #endif
2238
2239 #ifdef HAVE_TARGET_64_BIG
2240 template
2241 Output_section*
2242 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2243                                    const unsigned char* symbols,
2244                                    off_t symbols_size,
2245                                   const unsigned char* symbol_names,
2246                                   off_t symbol_names_size,
2247                                   unsigned int shndx,
2248                                   const elfcpp::Shdr<64, true>& shdr,
2249                                   unsigned int reloc_shndx,
2250                                   unsigned int reloc_type,
2251                                   off_t* off);
2252 #endif
2253
2254 } // End namespace gold.