Generate a complete exception frame header. Discard duplicate
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1),
71     input_requires_executable_stack_(false),
72     input_with_gnu_stack_note_(false),
73     input_without_gnu_stack_note_(false)
74 {
75   // Make space for more than enough segments for a typical file.
76   // This is just for efficiency--it's OK if we wind up needing more.
77   this->segment_list_.reserve(12);
78
79   // We expect three unattached Output_data objects: the file header,
80   // the segment headers, and the section headers.
81   this->special_output_list_.reserve(3);
82 }
83
84 // Hash a key we use to look up an output section mapping.
85
86 size_t
87 Layout::Hash_key::operator()(const Layout::Key& k) const
88 {
89  return k.first + k.second.first + k.second.second;
90 }
91
92 // Return whether PREFIX is a prefix of STR.
93
94 static inline bool
95 is_prefix_of(const char* prefix, const char* str)
96 {
97   return strncmp(prefix, str, strlen(prefix)) == 0;
98 }
99
100 // Whether to include this section in the link.
101
102 template<int size, bool big_endian>
103 bool
104 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
105                         const elfcpp::Shdr<size, big_endian>& shdr)
106 {
107   // Some section types are never linked.  Some are only linked when
108   // doing a relocateable link.
109   switch (shdr.get_sh_type())
110     {
111     case elfcpp::SHT_NULL:
112     case elfcpp::SHT_SYMTAB:
113     case elfcpp::SHT_DYNSYM:
114     case elfcpp::SHT_STRTAB:
115     case elfcpp::SHT_HASH:
116     case elfcpp::SHT_DYNAMIC:
117     case elfcpp::SHT_SYMTAB_SHNDX:
118       return false;
119
120     case elfcpp::SHT_RELA:
121     case elfcpp::SHT_REL:
122     case elfcpp::SHT_GROUP:
123       return parameters->output_is_object();
124
125     case elfcpp::SHT_PROGBITS:
126       if (parameters->strip_debug()
127           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
128         {
129           // Debugging sections can only be recognized by name.
130           if (is_prefix_of(".debug", name)
131               || is_prefix_of(".gnu.linkonce.wi.", name)
132               || is_prefix_of(".line", name)
133               || is_prefix_of(".stab", name))
134             return false;
135         }
136       return true;
137
138     default:
139       return true;
140     }
141 }
142
143 // Return an output section named NAME, or NULL if there is none.
144
145 Output_section*
146 Layout::find_output_section(const char* name) const
147 {
148   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149        p != this->section_name_map_.end();
150        ++p)
151     if (strcmp(p->second->name(), name) == 0)
152       return p->second;
153   return NULL;
154 }
155
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear.  Return NULL if there is none.
158
159 Output_segment*
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161                             elfcpp::Elf_Word clear) const
162 {
163   for (Segment_list::const_iterator p = this->segment_list_.begin();
164        p != this->segment_list_.end();
165        ++p)
166     if (static_cast<elfcpp::PT>((*p)->type()) == type
167         && ((*p)->flags() & set) == set
168         && ((*p)->flags() & clear) == 0)
169       return *p;
170   return NULL;
171 }
172
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
175
176 Output_section*
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
179 {
180   // We should ignore some flags.
181   flags &= ~ (elfcpp::SHF_INFO_LINK
182               | elfcpp::SHF_LINK_ORDER
183               | elfcpp::SHF_GROUP
184               | elfcpp::SHF_MERGE
185               | elfcpp::SHF_STRINGS);
186
187   const Key key(name_key, std::make_pair(type, flags));
188   const std::pair<Key, Output_section*> v(key, NULL);
189   std::pair<Section_name_map::iterator, bool> ins(
190     this->section_name_map_.insert(v));
191
192   if (!ins.second)
193     return ins.first->second;
194   else
195     {
196       // This is the first time we've seen this name/type/flags
197       // combination.
198       Output_section* os = this->make_output_section(name, type, flags);
199       ins.first->second = os;
200       return os;
201     }
202 }
203
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
206 // index of a relocation section which applies to this section, or 0
207 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
208 // relocation section if there is one.  Set *OFF to the offset of this
209 // input section without the output section.  Return NULL if the
210 // section should be discarded.  Set *OFF to -1 if the section
211 // contents should not be written directly to the output file, but
212 // will instead receive special handling.
213
214 template<int size, bool big_endian>
215 Output_section*
216 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
217                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
218                unsigned int reloc_shndx, unsigned int, off_t* off)
219 {
220   if (!this->include_section(object, name, shdr))
221     return NULL;
222
223   // If we are not doing a relocateable link, choose the name to use
224   // for the output section.
225   size_t len = strlen(name);
226   if (!parameters->output_is_object())
227     name = Layout::output_section_name(name, &len);
228
229   // FIXME: Handle SHF_OS_NONCONFORMING here.
230
231   // Canonicalize the section name.
232   Stringpool::Key name_key;
233   name = this->namepool_.add_prefix(name, len, &name_key);
234
235   // Find the output section.  The output section is selected based on
236   // the section name, type, and flags.
237   Output_section* os = this->get_output_section(name, name_key,
238                                                 shdr.get_sh_type(),
239                                                 shdr.get_sh_flags());
240
241   // FIXME: Handle SHF_LINK_ORDER somewhere.
242
243   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
244
245   return os;
246 }
247
248 // Special GNU handling of sections name .eh_frame.  They will
249 // normally hold exception frame data as defined by the C++ ABI
250 // (http://codesourcery.com/cxx-abi/).
251
252 template<int size, bool big_endian>
253 Output_section*
254 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
255                         const unsigned char* symbols,
256                         off_t symbols_size,
257                         const unsigned char* symbol_names,
258                         off_t symbol_names_size,
259                         unsigned int shndx,
260                         const elfcpp::Shdr<size, big_endian>& shdr,
261                         unsigned int reloc_shndx, unsigned int reloc_type,
262                         off_t* off)
263 {
264   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
265   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
266
267   Stringpool::Key name_key;
268   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
269
270   Output_section* os = this->get_output_section(name, name_key,
271                                                 elfcpp::SHT_PROGBITS,
272                                                 elfcpp::SHF_ALLOC);
273
274   if (this->eh_frame_section_ == NULL)
275     {
276       this->eh_frame_section_ = os;
277       this->eh_frame_data_ = new Eh_frame();
278       os->add_output_section_data(this->eh_frame_data_);
279
280       if (this->options_.create_eh_frame_hdr())
281         {
282           Stringpool::Key hdr_name_key;
283           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
284                                                      false,
285                                                      &hdr_name_key);
286           Output_section* hdr_os =
287             this->get_output_section(hdr_name, hdr_name_key,
288                                      elfcpp::SHT_PROGBITS,
289                                      elfcpp::SHF_ALLOC);
290
291           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
292           hdr_os->add_output_section_data(hdr_posd);
293
294           hdr_os->set_after_input_sections();
295
296           Output_segment* hdr_oseg =
297             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
298           this->segment_list_.push_back(hdr_oseg);
299           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
300
301           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
302         }
303     }
304
305   gold_assert(this->eh_frame_section_ == os);
306
307   if (this->eh_frame_data_->add_ehframe_input_section(object,
308                                                       symbols,
309                                                       symbols_size,
310                                                       symbol_names,
311                                                       symbol_names_size,
312                                                       shndx,
313                                                       reloc_shndx,
314                                                       reloc_type))
315     *off = -1;
316   else
317     {
318       // We couldn't handle this .eh_frame section for some reason.
319       // Add it as a normal section.
320       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
321     }
322
323   return os;
324 }
325
326 // Add POSD to an output section using NAME, TYPE, and FLAGS.
327
328 void
329 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
330                                 elfcpp::Elf_Xword flags,
331                                 Output_section_data* posd)
332 {
333   // Canonicalize the name.
334   Stringpool::Key name_key;
335   name = this->namepool_.add(name, true, &name_key);
336
337   Output_section* os = this->get_output_section(name, name_key, type, flags);
338   os->add_output_section_data(posd);
339 }
340
341 // Map section flags to segment flags.
342
343 elfcpp::Elf_Word
344 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
345 {
346   elfcpp::Elf_Word ret = elfcpp::PF_R;
347   if ((flags & elfcpp::SHF_WRITE) != 0)
348     ret |= elfcpp::PF_W;
349   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
350     ret |= elfcpp::PF_X;
351   return ret;
352 }
353
354 // Make a new Output_section, and attach it to segments as
355 // appropriate.
356
357 Output_section*
358 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
359                             elfcpp::Elf_Xword flags)
360 {
361   Output_section* os = new Output_section(name, type, flags);
362   this->section_list_.push_back(os);
363
364   if ((flags & elfcpp::SHF_ALLOC) == 0)
365     this->unattached_section_list_.push_back(os);
366   else
367     {
368       // This output section goes into a PT_LOAD segment.
369
370       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
371
372       // The only thing we really care about for PT_LOAD segments is
373       // whether or not they are writable, so that is how we search
374       // for them.  People who need segments sorted on some other
375       // basis will have to wait until we implement a mechanism for
376       // them to describe the segments they want.
377
378       Segment_list::const_iterator p;
379       for (p = this->segment_list_.begin();
380            p != this->segment_list_.end();
381            ++p)
382         {
383           if ((*p)->type() == elfcpp::PT_LOAD
384               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
385             {
386               (*p)->add_output_section(os, seg_flags);
387               break;
388             }
389         }
390
391       if (p == this->segment_list_.end())
392         {
393           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
394                                                     seg_flags);
395           this->segment_list_.push_back(oseg);
396           oseg->add_output_section(os, seg_flags);
397         }
398
399       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
400       // segment.
401       if (type == elfcpp::SHT_NOTE)
402         {
403           // See if we already have an equivalent PT_NOTE segment.
404           for (p = this->segment_list_.begin();
405                p != segment_list_.end();
406                ++p)
407             {
408               if ((*p)->type() == elfcpp::PT_NOTE
409                   && (((*p)->flags() & elfcpp::PF_W)
410                       == (seg_flags & elfcpp::PF_W)))
411                 {
412                   (*p)->add_output_section(os, seg_flags);
413                   break;
414                 }
415             }
416
417           if (p == this->segment_list_.end())
418             {
419               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
420                                                         seg_flags);
421               this->segment_list_.push_back(oseg);
422               oseg->add_output_section(os, seg_flags);
423             }
424         }
425
426       // If we see a loadable SHF_TLS section, we create a PT_TLS
427       // segment.  There can only be one such segment.
428       if ((flags & elfcpp::SHF_TLS) != 0)
429         {
430           if (this->tls_segment_ == NULL)
431             {
432               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
433                                                       seg_flags);
434               this->segment_list_.push_back(this->tls_segment_);
435             }
436           this->tls_segment_->add_output_section(os, seg_flags);
437         }
438     }
439
440   return os;
441 }
442
443 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
444 // is whether we saw a .note.GNU-stack section in the object file.
445 // GNU_STACK_FLAGS is the section flags.  The flags give the
446 // protection required for stack memory.  We record this in an
447 // executable as a PT_GNU_STACK segment.  If an object file does not
448 // have a .note.GNU-stack segment, we must assume that it is an old
449 // object.  On some targets that will force an executable stack.
450
451 void
452 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
453 {
454   if (!seen_gnu_stack)
455     this->input_without_gnu_stack_note_ = true;
456   else
457     {
458       this->input_with_gnu_stack_note_ = true;
459       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
460         this->input_requires_executable_stack_ = true;
461     }
462 }
463
464 // Create the dynamic sections which are needed before we read the
465 // relocs.
466
467 void
468 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
469                                         Symbol_table* symtab)
470 {
471   if (parameters->doing_static_link())
472     return;
473
474   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
475   this->dynamic_section_ = this->make_output_section(dynamic_name,
476                                                      elfcpp::SHT_DYNAMIC,
477                                                      (elfcpp::SHF_ALLOC
478                                                       | elfcpp::SHF_WRITE));
479
480   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
481                                 this->dynamic_section_, 0, 0,
482                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
483                                 elfcpp::STV_HIDDEN, 0, false, false);
484
485   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
486
487   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
488 }
489
490 // For each output section whose name can be represented as C symbol,
491 // define __start and __stop symbols for the section.  This is a GNU
492 // extension.
493
494 void
495 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
496 {
497   for (Section_list::const_iterator p = this->section_list_.begin();
498        p != this->section_list_.end();
499        ++p)
500     {
501       const char* const name = (*p)->name();
502       if (name[strspn(name,
503                       ("0123456789"
504                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
505                        "abcdefghijklmnopqrstuvwxyz"
506                        "_"))]
507           == '\0')
508         {
509           const std::string name_string(name);
510           const std::string start_name("__start_" + name_string);
511           const std::string stop_name("__stop_" + name_string);
512
513           symtab->define_in_output_data(target,
514                                         start_name.c_str(),
515                                         NULL, // version
516                                         *p,
517                                         0, // value
518                                         0, // symsize
519                                         elfcpp::STT_NOTYPE,
520                                         elfcpp::STB_GLOBAL,
521                                         elfcpp::STV_DEFAULT,
522                                         0, // nonvis
523                                         false, // offset_is_from_end
524                                         false); // only_if_ref
525
526           symtab->define_in_output_data(target,
527                                         stop_name.c_str(),
528                                         NULL, // version
529                                         *p,
530                                         0, // value
531                                         0, // symsize
532                                         elfcpp::STT_NOTYPE,
533                                         elfcpp::STB_GLOBAL,
534                                         elfcpp::STV_DEFAULT,
535                                         0, // nonvis
536                                         true, // offset_is_from_end
537                                         false); // only_if_ref
538         }
539     }
540 }
541
542 // Find the first read-only PT_LOAD segment, creating one if
543 // necessary.
544
545 Output_segment*
546 Layout::find_first_load_seg()
547 {
548   for (Segment_list::const_iterator p = this->segment_list_.begin();
549        p != this->segment_list_.end();
550        ++p)
551     {
552       if ((*p)->type() == elfcpp::PT_LOAD
553           && ((*p)->flags() & elfcpp::PF_R) != 0
554           && ((*p)->flags() & elfcpp::PF_W) == 0)
555         return *p;
556     }
557
558   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
559   this->segment_list_.push_back(load_seg);
560   return load_seg;
561 }
562
563 // Finalize the layout.  When this is called, we have created all the
564 // output sections and all the output segments which are based on
565 // input sections.  We have several things to do, and we have to do
566 // them in the right order, so that we get the right results correctly
567 // and efficiently.
568
569 // 1) Finalize the list of output segments and create the segment
570 // table header.
571
572 // 2) Finalize the dynamic symbol table and associated sections.
573
574 // 3) Determine the final file offset of all the output segments.
575
576 // 4) Determine the final file offset of all the SHF_ALLOC output
577 // sections.
578
579 // 5) Create the symbol table sections and the section name table
580 // section.
581
582 // 6) Finalize the symbol table: set symbol values to their final
583 // value and make a final determination of which symbols are going
584 // into the output symbol table.
585
586 // 7) Create the section table header.
587
588 // 8) Determine the final file offset of all the output sections which
589 // are not SHF_ALLOC, including the section table header.
590
591 // 9) Finalize the ELF file header.
592
593 // This function returns the size of the output file.
594
595 off_t
596 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
597 {
598   Target* const target = input_objects->target();
599
600   target->finalize_sections(this);
601
602   this->create_gold_note();
603   this->create_executable_stack_info(target);
604
605   Output_segment* phdr_seg = NULL;
606   if (!parameters->doing_static_link())
607     {
608       // There was a dynamic object in the link.  We need to create
609       // some information for the dynamic linker.
610
611       // Create the PT_PHDR segment which will hold the program
612       // headers.
613       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
614       this->segment_list_.push_back(phdr_seg);
615
616       // Create the dynamic symbol table, including the hash table.
617       Output_section* dynstr;
618       std::vector<Symbol*> dynamic_symbols;
619       unsigned int local_dynamic_count;
620       Versions versions;
621       this->create_dynamic_symtab(target, symtab, &dynstr,
622                                   &local_dynamic_count, &dynamic_symbols,
623                                   &versions);
624
625       // Create the .interp section to hold the name of the
626       // interpreter, and put it in a PT_INTERP segment.
627       if (!parameters->output_is_shared())
628         this->create_interp(target);
629
630       // Finish the .dynamic section to hold the dynamic data, and put
631       // it in a PT_DYNAMIC segment.
632       this->finish_dynamic_section(input_objects, symtab);
633
634       // We should have added everything we need to the dynamic string
635       // table.
636       this->dynpool_.set_string_offsets();
637
638       // Create the version sections.  We can't do this until the
639       // dynamic string table is complete.
640       this->create_version_sections(&versions, symtab, local_dynamic_count,
641                                     dynamic_symbols, dynstr);
642     }
643
644   // FIXME: Handle PT_GNU_STACK.
645
646   Output_segment* load_seg = this->find_first_load_seg();
647
648   // Lay out the segment headers.
649   Output_segment_headers* segment_headers;
650   segment_headers = new Output_segment_headers(this->segment_list_);
651   load_seg->add_initial_output_data(segment_headers);
652   this->special_output_list_.push_back(segment_headers);
653   if (phdr_seg != NULL)
654     phdr_seg->add_initial_output_data(segment_headers);
655
656   // Lay out the file header.
657   Output_file_header* file_header;
658   file_header = new Output_file_header(target, symtab, segment_headers);
659   load_seg->add_initial_output_data(file_header);
660   this->special_output_list_.push_back(file_header);
661
662   // We set the output section indexes in set_segment_offsets and
663   // set_section_offsets.
664   unsigned int shndx = 1;
665
666   // Set the file offsets of all the segments, and all the sections
667   // they contain.
668   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
669
670   // Set the file offsets of all the data sections not associated with
671   // segments. This makes sure that debug sections have their offsets
672   // before symbols are finalized.
673   off = this->set_section_offsets(off, true);
674
675   // Create the symbol table sections.
676   this->create_symtab_sections(input_objects, symtab, &off);
677
678   // Create the .shstrtab section.
679   Output_section* shstrtab_section = this->create_shstrtab();
680
681   // Set the file offsets of all the non-data sections not associated with
682   // segments.
683   off = this->set_section_offsets(off, false);
684
685   // Now that all sections have been created, set the section indexes.
686   shndx = this->set_section_indexes(shndx);
687
688   // Create the section table header.
689   Output_section_headers* oshdrs = this->create_shdrs(&off);
690
691   file_header->set_section_info(oshdrs, shstrtab_section);
692
693   // Now we know exactly where everything goes in the output file.
694   Output_data::layout_complete();
695
696   this->output_file_size_ = off;
697
698   return off;
699 }
700
701 // Create a .note section for an executable or shared library.  This
702 // records the version of gold used to create the binary.
703
704 void
705 Layout::create_gold_note()
706 {
707   if (parameters->output_is_object())
708     return;
709
710   // Authorities all agree that the values in a .note field should
711   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
712   // they differ on what the alignment is for 64-bit binaries.
713   // The GABI says unambiguously they take 8-byte alignment:
714   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
715   // Other documentation says alignment should always be 4 bytes:
716   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
717   // GNU ld and GNU readelf both support the latter (at least as of
718   // version 2.16.91), and glibc always generates the latter for
719   // .note.ABI-tag (as of version 1.6), so that's the one we go with
720   // here.
721 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
722   const int size = parameters->get_size();
723 #else
724   const int size = 32;
725 #endif
726
727   // The contents of the .note section.
728   const char* name = "GNU";
729   std::string desc(std::string("gold ") + gold::get_version_string());
730   size_t namesz = strlen(name) + 1;
731   size_t aligned_namesz = align_address(namesz, size / 8);
732   size_t descsz = desc.length() + 1;
733   size_t aligned_descsz = align_address(descsz, size / 8);
734   const int note_type = 4;
735
736   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
737
738   unsigned char buffer[128];
739   gold_assert(sizeof buffer >= notesz);
740   memset(buffer, 0, notesz);
741
742   bool is_big_endian = parameters->is_big_endian();
743
744   if (size == 32)
745     {
746       if (!is_big_endian)
747         {
748           elfcpp::Swap<32, false>::writeval(buffer, namesz);
749           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
750           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
751         }
752       else
753         {
754           elfcpp::Swap<32, true>::writeval(buffer, namesz);
755           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
756           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
757         }
758     }
759   else if (size == 64)
760     {
761       if (!is_big_endian)
762         {
763           elfcpp::Swap<64, false>::writeval(buffer, namesz);
764           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
765           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
766         }
767       else
768         {
769           elfcpp::Swap<64, true>::writeval(buffer, namesz);
770           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
771           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
772         }
773     }
774   else
775     gold_unreachable();
776
777   memcpy(buffer + 3 * (size / 8), name, namesz);
778   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
779
780   const char* note_name = this->namepool_.add(".note", false, NULL);
781   Output_section* os = this->make_output_section(note_name,
782                                                  elfcpp::SHT_NOTE,
783                                                  0);
784   Output_section_data* posd = new Output_data_const(buffer, notesz,
785                                                     size / 8);
786   os->add_output_section_data(posd);
787 }
788
789 // Record whether the stack should be executable.  This can be set
790 // from the command line using the -z execstack or -z noexecstack
791 // options.  Otherwise, if any input file has a .note.GNU-stack
792 // section with the SHF_EXECINSTR flag set, the stack should be
793 // executable.  Otherwise, if at least one input file a
794 // .note.GNU-stack section, and some input file has no .note.GNU-stack
795 // section, we use the target default for whether the stack should be
796 // executable.  Otherwise, we don't generate a stack note.  When
797 // generating a object file, we create a .note.GNU-stack section with
798 // the appropriate marking.  When generating an executable or shared
799 // library, we create a PT_GNU_STACK segment.
800
801 void
802 Layout::create_executable_stack_info(const Target* target)
803 {
804   bool is_stack_executable;
805   if (this->options_.is_execstack_set())
806     is_stack_executable = this->options_.is_stack_executable();
807   else if (!this->input_with_gnu_stack_note_)
808     return;
809   else
810     {
811       if (this->input_requires_executable_stack_)
812         is_stack_executable = true;
813       else if (this->input_without_gnu_stack_note_)
814         is_stack_executable = target->is_default_stack_executable();
815       else
816         is_stack_executable = false;
817     }
818
819   if (parameters->output_is_object())
820     {
821       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
822       elfcpp::Elf_Xword flags = 0;
823       if (is_stack_executable)
824         flags |= elfcpp::SHF_EXECINSTR;
825       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
826     }
827   else
828     {
829       int flags = elfcpp::PF_R | elfcpp::PF_W;
830       if (is_stack_executable)
831         flags |= elfcpp::PF_X;
832       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
833       this->segment_list_.push_back(oseg);
834     }
835 }
836
837 // Return whether SEG1 should be before SEG2 in the output file.  This
838 // is based entirely on the segment type and flags.  When this is
839 // called the segment addresses has normally not yet been set.
840
841 bool
842 Layout::segment_precedes(const Output_segment* seg1,
843                          const Output_segment* seg2)
844 {
845   elfcpp::Elf_Word type1 = seg1->type();
846   elfcpp::Elf_Word type2 = seg2->type();
847
848   // The single PT_PHDR segment is required to precede any loadable
849   // segment.  We simply make it always first.
850   if (type1 == elfcpp::PT_PHDR)
851     {
852       gold_assert(type2 != elfcpp::PT_PHDR);
853       return true;
854     }
855   if (type2 == elfcpp::PT_PHDR)
856     return false;
857
858   // The single PT_INTERP segment is required to precede any loadable
859   // segment.  We simply make it always second.
860   if (type1 == elfcpp::PT_INTERP)
861     {
862       gold_assert(type2 != elfcpp::PT_INTERP);
863       return true;
864     }
865   if (type2 == elfcpp::PT_INTERP)
866     return false;
867
868   // We then put PT_LOAD segments before any other segments.
869   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
870     return true;
871   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
872     return false;
873
874   // We put the PT_TLS segment last, because that is where the dynamic
875   // linker expects to find it (this is just for efficiency; other
876   // positions would also work correctly).
877   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
878     return false;
879   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
880     return true;
881
882   const elfcpp::Elf_Word flags1 = seg1->flags();
883   const elfcpp::Elf_Word flags2 = seg2->flags();
884
885   // The order of non-PT_LOAD segments is unimportant.  We simply sort
886   // by the numeric segment type and flags values.  There should not
887   // be more than one segment with the same type and flags.
888   if (type1 != elfcpp::PT_LOAD)
889     {
890       if (type1 != type2)
891         return type1 < type2;
892       gold_assert(flags1 != flags2);
893       return flags1 < flags2;
894     }
895
896   // We sort PT_LOAD segments based on the flags.  Readonly segments
897   // come before writable segments.  Then executable segments come
898   // before non-executable segments.  Then the unlikely case of a
899   // non-readable segment comes before the normal case of a readable
900   // segment.  If there are multiple segments with the same type and
901   // flags, we require that the address be set, and we sort by
902   // virtual address and then physical address.
903   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
904     return (flags1 & elfcpp::PF_W) == 0;
905   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
906     return (flags1 & elfcpp::PF_X) != 0;
907   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
908     return (flags1 & elfcpp::PF_R) == 0;
909
910   uint64_t vaddr1 = seg1->vaddr();
911   uint64_t vaddr2 = seg2->vaddr();
912   if (vaddr1 != vaddr2)
913     return vaddr1 < vaddr2;
914
915   uint64_t paddr1 = seg1->paddr();
916   uint64_t paddr2 = seg2->paddr();
917   gold_assert(paddr1 != paddr2);
918   return paddr1 < paddr2;
919 }
920
921 // Set the file offsets of all the segments, and all the sections they
922 // contain.  They have all been created.  LOAD_SEG must be be laid out
923 // first.  Return the offset of the data to follow.
924
925 off_t
926 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
927                             unsigned int *pshndx)
928 {
929   // Sort them into the final order.
930   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
931             Layout::Compare_segments());
932
933   // Find the PT_LOAD segments, and set their addresses and offsets
934   // and their section's addresses and offsets.
935   uint64_t addr;
936   if (options_.user_set_text_segment_address())
937     addr = options_.text_segment_address();
938   else
939     addr = target->default_text_segment_address();
940   off_t off = 0;
941   bool was_readonly = false;
942   for (Segment_list::iterator p = this->segment_list_.begin();
943        p != this->segment_list_.end();
944        ++p)
945     {
946       if ((*p)->type() == elfcpp::PT_LOAD)
947         {
948           if (load_seg != NULL && load_seg != *p)
949             gold_unreachable();
950           load_seg = NULL;
951
952           // If the last segment was readonly, and this one is not,
953           // then skip the address forward one page, maintaining the
954           // same position within the page.  This lets us store both
955           // segments overlapping on a single page in the file, but
956           // the loader will put them on different pages in memory.
957
958           uint64_t orig_addr = addr;
959           uint64_t orig_off = off;
960
961           uint64_t aligned_addr = addr;
962           uint64_t abi_pagesize = target->abi_pagesize();
963
964           // FIXME: This should depend on the -n and -N options.
965           (*p)->set_minimum_addralign(target->common_pagesize());
966
967           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
968             {
969               uint64_t align = (*p)->addralign();
970
971               addr = align_address(addr, align);
972               aligned_addr = addr;
973               if ((addr & (abi_pagesize - 1)) != 0)
974                 addr = addr + abi_pagesize;
975             }
976
977           unsigned int shndx_hold = *pshndx;
978           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
979           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
980
981           // Now that we know the size of this segment, we may be able
982           // to save a page in memory, at the cost of wasting some
983           // file space, by instead aligning to the start of a new
984           // page.  Here we use the real machine page size rather than
985           // the ABI mandated page size.
986
987           if (aligned_addr != addr)
988             {
989               uint64_t common_pagesize = target->common_pagesize();
990               uint64_t first_off = (common_pagesize
991                                     - (aligned_addr
992                                        & (common_pagesize - 1)));
993               uint64_t last_off = new_addr & (common_pagesize - 1);
994               if (first_off > 0
995                   && last_off > 0
996                   && ((aligned_addr & ~ (common_pagesize - 1))
997                       != (new_addr & ~ (common_pagesize - 1)))
998                   && first_off + last_off <= common_pagesize)
999                 {
1000                   *pshndx = shndx_hold;
1001                   addr = align_address(aligned_addr, common_pagesize);
1002                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1003                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1004                 }
1005             }
1006
1007           addr = new_addr;
1008
1009           if (((*p)->flags() & elfcpp::PF_W) == 0)
1010             was_readonly = true;
1011         }
1012     }
1013
1014   // Handle the non-PT_LOAD segments, setting their offsets from their
1015   // section's offsets.
1016   for (Segment_list::iterator p = this->segment_list_.begin();
1017        p != this->segment_list_.end();
1018        ++p)
1019     {
1020       if ((*p)->type() != elfcpp::PT_LOAD)
1021         (*p)->set_offset();
1022     }
1023
1024   return off;
1025 }
1026
1027 // Set the file offset of all the sections not associated with a
1028 // segment.
1029
1030 off_t
1031 Layout::set_section_offsets(off_t off,
1032                             bool do_bits_sections)
1033 {
1034   for (Section_list::iterator p = this->unattached_section_list_.begin();
1035        p != this->unattached_section_list_.end();
1036        ++p)
1037     {
1038       bool is_bits_section = ((*p)->type() == elfcpp::SHT_PROGBITS
1039                               || (*p)->type() == elfcpp::SHT_NOBITS);
1040       if (is_bits_section != do_bits_sections)
1041         continue;
1042       if ((*p)->offset() != -1)
1043         continue;
1044       off = align_address(off, (*p)->addralign());
1045       (*p)->set_address(0, off);
1046       off += (*p)->data_size();
1047     }
1048   return off;
1049 }
1050
1051 // Set the section indexes of all the sections not associated with a
1052 // segment.
1053
1054 unsigned int
1055 Layout::set_section_indexes(unsigned int shndx)
1056 {
1057   for (Section_list::iterator p = this->unattached_section_list_.begin();
1058        p != this->unattached_section_list_.end();
1059        ++p)
1060     {
1061       (*p)->set_out_shndx(shndx);
1062       ++shndx;
1063     }
1064   return shndx;
1065 }
1066
1067 // Create the symbol table sections.  Here we also set the final
1068 // values of the symbols.  At this point all the loadable sections are
1069 // fully laid out.
1070
1071 void
1072 Layout::create_symtab_sections(const Input_objects* input_objects,
1073                                Symbol_table* symtab,
1074                                off_t* poff)
1075 {
1076   int symsize;
1077   unsigned int align;
1078   if (parameters->get_size() == 32)
1079     {
1080       symsize = elfcpp::Elf_sizes<32>::sym_size;
1081       align = 4;
1082     }
1083   else if (parameters->get_size() == 64)
1084     {
1085       symsize = elfcpp::Elf_sizes<64>::sym_size;
1086       align = 8;
1087     }
1088   else
1089     gold_unreachable();
1090
1091   off_t off = *poff;
1092   off = align_address(off, align);
1093   off_t startoff = off;
1094
1095   // Save space for the dummy symbol at the start of the section.  We
1096   // never bother to write this out--it will just be left as zero.
1097   off += symsize;
1098   unsigned int local_symbol_index = 1;
1099
1100   // Add STT_SECTION symbols for each Output section which needs one.
1101   for (Section_list::iterator p = this->section_list_.begin();
1102        p != this->section_list_.end();
1103        ++p)
1104     {
1105       if (!(*p)->needs_symtab_index())
1106         (*p)->set_symtab_index(-1U);
1107       else
1108         {
1109           (*p)->set_symtab_index(local_symbol_index);
1110           ++local_symbol_index;
1111           off += symsize;
1112         }
1113     }
1114
1115   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1116        p != input_objects->relobj_end();
1117        ++p)
1118     {
1119       Task_lock_obj<Object> tlo(**p);
1120       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1121                                                         off,
1122                                                         &this->sympool_);
1123       off += (index - local_symbol_index) * symsize;
1124       local_symbol_index = index;
1125     }
1126
1127   unsigned int local_symcount = local_symbol_index;
1128   gold_assert(local_symcount * symsize == off - startoff);
1129
1130   off_t dynoff;
1131   size_t dyn_global_index;
1132   size_t dyncount;
1133   if (this->dynsym_section_ == NULL)
1134     {
1135       dynoff = 0;
1136       dyn_global_index = 0;
1137       dyncount = 0;
1138     }
1139   else
1140     {
1141       dyn_global_index = this->dynsym_section_->info();
1142       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1143       dynoff = this->dynsym_section_->offset() + locsize;
1144       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1145       gold_assert(static_cast<off_t>(dyncount * symsize)
1146                   == this->dynsym_section_->data_size() - locsize);
1147     }
1148
1149   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1150                          dyncount, &this->sympool_);
1151
1152   if (!parameters->strip_all())
1153     {
1154       this->sympool_.set_string_offsets();
1155
1156       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1157       Output_section* osymtab = this->make_output_section(symtab_name,
1158                                                           elfcpp::SHT_SYMTAB,
1159                                                           0);
1160       this->symtab_section_ = osymtab;
1161
1162       Output_section_data* pos = new Output_data_space(off - startoff,
1163                                                        align);
1164       osymtab->add_output_section_data(pos);
1165
1166       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1167       Output_section* ostrtab = this->make_output_section(strtab_name,
1168                                                           elfcpp::SHT_STRTAB,
1169                                                           0);
1170
1171       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1172       ostrtab->add_output_section_data(pstr);
1173
1174       osymtab->set_address(0, startoff);
1175       osymtab->set_link_section(ostrtab);
1176       osymtab->set_info(local_symcount);
1177       osymtab->set_entsize(symsize);
1178
1179       *poff = off;
1180     }
1181 }
1182
1183 // Create the .shstrtab section, which holds the names of the
1184 // sections.  At the time this is called, we have created all the
1185 // output sections except .shstrtab itself.
1186
1187 Output_section*
1188 Layout::create_shstrtab()
1189 {
1190   // FIXME: We don't need to create a .shstrtab section if we are
1191   // stripping everything.
1192
1193   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1194
1195   this->namepool_.set_string_offsets();
1196
1197   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1198
1199   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1200   os->add_output_section_data(posd);
1201
1202   return os;
1203 }
1204
1205 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1206 // offset.
1207
1208 Output_section_headers*
1209 Layout::create_shdrs(off_t* poff)
1210 {
1211   Output_section_headers* oshdrs;
1212   oshdrs = new Output_section_headers(this,
1213                                       &this->segment_list_,
1214                                       &this->unattached_section_list_,
1215                                       &this->namepool_);
1216   off_t off = align_address(*poff, oshdrs->addralign());
1217   oshdrs->set_address(0, off);
1218   off += oshdrs->data_size();
1219   *poff = off;
1220   this->special_output_list_.push_back(oshdrs);
1221   return oshdrs;
1222 }
1223
1224 // Create the dynamic symbol table.
1225
1226 void
1227 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1228                               Output_section **pdynstr,
1229                               unsigned int* plocal_dynamic_count,
1230                               std::vector<Symbol*>* pdynamic_symbols,
1231                               Versions* pversions)
1232 {
1233   // Count all the symbols in the dynamic symbol table, and set the
1234   // dynamic symbol indexes.
1235
1236   // Skip symbol 0, which is always all zeroes.
1237   unsigned int index = 1;
1238
1239   // Add STT_SECTION symbols for each Output section which needs one.
1240   for (Section_list::iterator p = this->section_list_.begin();
1241        p != this->section_list_.end();
1242        ++p)
1243     {
1244       if (!(*p)->needs_dynsym_index())
1245         (*p)->set_dynsym_index(-1U);
1246       else
1247         {
1248           (*p)->set_dynsym_index(index);
1249           ++index;
1250         }
1251     }
1252
1253   // FIXME: Some targets apparently require local symbols in the
1254   // dynamic symbol table.  Here is where we will have to count them,
1255   // and set the dynamic symbol indexes, and add the names to
1256   // this->dynpool_.
1257
1258   unsigned int local_symcount = index;
1259   *plocal_dynamic_count = local_symcount;
1260
1261   // FIXME: We have to tell set_dynsym_indexes whether the
1262   // -E/--export-dynamic option was used.
1263   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1264                                      &this->dynpool_, pversions);
1265
1266   int symsize;
1267   unsigned int align;
1268   const int size = parameters->get_size();
1269   if (size == 32)
1270     {
1271       symsize = elfcpp::Elf_sizes<32>::sym_size;
1272       align = 4;
1273     }
1274   else if (size == 64)
1275     {
1276       symsize = elfcpp::Elf_sizes<64>::sym_size;
1277       align = 8;
1278     }
1279   else
1280     gold_unreachable();
1281
1282   // Create the dynamic symbol table section.
1283
1284   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1285   Output_section* dynsym = this->make_output_section(dynsym_name,
1286                                                      elfcpp::SHT_DYNSYM,
1287                                                      elfcpp::SHF_ALLOC);
1288
1289   Output_section_data* odata = new Output_data_space(index * symsize,
1290                                                      align);
1291   dynsym->add_output_section_data(odata);
1292
1293   dynsym->set_info(local_symcount);
1294   dynsym->set_entsize(symsize);
1295   dynsym->set_addralign(align);
1296
1297   this->dynsym_section_ = dynsym;
1298
1299   Output_data_dynamic* const odyn = this->dynamic_data_;
1300   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1301   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1302
1303   // Create the dynamic string table section.
1304
1305   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1306   Output_section* dynstr = this->make_output_section(dynstr_name,
1307                                                      elfcpp::SHT_STRTAB,
1308                                                      elfcpp::SHF_ALLOC);
1309
1310   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1311   dynstr->add_output_section_data(strdata);
1312
1313   dynsym->set_link_section(dynstr);
1314   this->dynamic_section_->set_link_section(dynstr);
1315
1316   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1317   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1318
1319   *pdynstr = dynstr;
1320
1321   // Create the hash tables.
1322
1323   // FIXME: We need an option to create a GNU hash table.
1324
1325   unsigned char* phash;
1326   unsigned int hashlen;
1327   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1328                                 &phash, &hashlen);
1329
1330   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1331   Output_section* hashsec = this->make_output_section(hash_name,
1332                                                       elfcpp::SHT_HASH,
1333                                                       elfcpp::SHF_ALLOC);
1334
1335   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1336                                                                hashlen,
1337                                                                align);
1338   hashsec->add_output_section_data(hashdata);
1339
1340   hashsec->set_link_section(dynsym);
1341   hashsec->set_entsize(4);
1342
1343   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1344 }
1345
1346 // Create the version sections.
1347
1348 void
1349 Layout::create_version_sections(const Versions* versions,
1350                                 const Symbol_table* symtab,
1351                                 unsigned int local_symcount,
1352                                 const std::vector<Symbol*>& dynamic_symbols,
1353                                 const Output_section* dynstr)
1354 {
1355   if (!versions->any_defs() && !versions->any_needs())
1356     return;
1357
1358   if (parameters->get_size() == 32)
1359     {
1360       if (parameters->is_big_endian())
1361         {
1362 #ifdef HAVE_TARGET_32_BIG
1363           this->sized_create_version_sections
1364               SELECT_SIZE_ENDIAN_NAME(32, true)(
1365                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1366                   SELECT_SIZE_ENDIAN(32, true));
1367 #else
1368           gold_unreachable();
1369 #endif
1370         }
1371       else
1372         {
1373 #ifdef HAVE_TARGET_32_LITTLE
1374           this->sized_create_version_sections
1375               SELECT_SIZE_ENDIAN_NAME(32, false)(
1376                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1377                   SELECT_SIZE_ENDIAN(32, false));
1378 #else
1379           gold_unreachable();
1380 #endif
1381         }
1382     }
1383   else if (parameters->get_size() == 64)
1384     {
1385       if (parameters->is_big_endian())
1386         {
1387 #ifdef HAVE_TARGET_64_BIG
1388           this->sized_create_version_sections
1389               SELECT_SIZE_ENDIAN_NAME(64, true)(
1390                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1391                   SELECT_SIZE_ENDIAN(64, true));
1392 #else
1393           gold_unreachable();
1394 #endif
1395         }
1396       else
1397         {
1398 #ifdef HAVE_TARGET_64_LITTLE
1399           this->sized_create_version_sections
1400               SELECT_SIZE_ENDIAN_NAME(64, false)(
1401                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1402                   SELECT_SIZE_ENDIAN(64, false));
1403 #else
1404           gold_unreachable();
1405 #endif
1406         }
1407     }
1408   else
1409     gold_unreachable();
1410 }
1411
1412 // Create the version sections, sized version.
1413
1414 template<int size, bool big_endian>
1415 void
1416 Layout::sized_create_version_sections(
1417     const Versions* versions,
1418     const Symbol_table* symtab,
1419     unsigned int local_symcount,
1420     const std::vector<Symbol*>& dynamic_symbols,
1421     const Output_section* dynstr
1422     ACCEPT_SIZE_ENDIAN)
1423 {
1424   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1425   Output_section* vsec = this->make_output_section(vname,
1426                                                    elfcpp::SHT_GNU_versym,
1427                                                    elfcpp::SHF_ALLOC);
1428
1429   unsigned char* vbuf;
1430   unsigned int vsize;
1431   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1432       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1433       SELECT_SIZE_ENDIAN(size, big_endian));
1434
1435   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1436
1437   vsec->add_output_section_data(vdata);
1438   vsec->set_entsize(2);
1439   vsec->set_link_section(this->dynsym_section_);
1440
1441   Output_data_dynamic* const odyn = this->dynamic_data_;
1442   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1443
1444   if (versions->any_defs())
1445     {
1446       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1447       Output_section *vdsec;
1448       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1449                                         elfcpp::SHF_ALLOC);
1450
1451       unsigned char* vdbuf;
1452       unsigned int vdsize;
1453       unsigned int vdentries;
1454       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1455           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1456           SELECT_SIZE_ENDIAN(size, big_endian));
1457
1458       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1459                                                                  vdsize,
1460                                                                  4);
1461
1462       vdsec->add_output_section_data(vddata);
1463       vdsec->set_link_section(dynstr);
1464       vdsec->set_info(vdentries);
1465
1466       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1467       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1468     }
1469
1470   if (versions->any_needs())
1471     {
1472       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1473       Output_section* vnsec;
1474       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1475                                         elfcpp::SHF_ALLOC);
1476
1477       unsigned char* vnbuf;
1478       unsigned int vnsize;
1479       unsigned int vnentries;
1480       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1481         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1482          SELECT_SIZE_ENDIAN(size, big_endian));
1483
1484       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1485                                                                  vnsize,
1486                                                                  4);
1487
1488       vnsec->add_output_section_data(vndata);
1489       vnsec->set_link_section(dynstr);
1490       vnsec->set_info(vnentries);
1491
1492       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1493       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1494     }
1495 }
1496
1497 // Create the .interp section and PT_INTERP segment.
1498
1499 void
1500 Layout::create_interp(const Target* target)
1501 {
1502   const char* interp = this->options_.dynamic_linker();
1503   if (interp == NULL)
1504     {
1505       interp = target->dynamic_linker();
1506       gold_assert(interp != NULL);
1507     }
1508
1509   size_t len = strlen(interp) + 1;
1510
1511   Output_section_data* odata = new Output_data_const(interp, len, 1);
1512
1513   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1514   Output_section* osec = this->make_output_section(interp_name,
1515                                                    elfcpp::SHT_PROGBITS,
1516                                                    elfcpp::SHF_ALLOC);
1517   osec->add_output_section_data(odata);
1518
1519   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1520   this->segment_list_.push_back(oseg);
1521   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1522 }
1523
1524 // Finish the .dynamic section and PT_DYNAMIC segment.
1525
1526 void
1527 Layout::finish_dynamic_section(const Input_objects* input_objects,
1528                                const Symbol_table* symtab)
1529 {
1530   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1531                                             elfcpp::PF_R | elfcpp::PF_W);
1532   this->segment_list_.push_back(oseg);
1533   oseg->add_initial_output_section(this->dynamic_section_,
1534                                    elfcpp::PF_R | elfcpp::PF_W);
1535
1536   Output_data_dynamic* const odyn = this->dynamic_data_;
1537
1538   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1539        p != input_objects->dynobj_end();
1540        ++p)
1541     {
1542       // FIXME: Handle --as-needed.
1543       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1544     }
1545
1546   // FIXME: Support --init and --fini.
1547   Symbol* sym = symtab->lookup("_init");
1548   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1549     odyn->add_symbol(elfcpp::DT_INIT, sym);
1550
1551   sym = symtab->lookup("_fini");
1552   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1553     odyn->add_symbol(elfcpp::DT_FINI, sym);
1554
1555   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1556
1557   // Add a DT_RPATH entry if needed.
1558   const General_options::Dir_list& rpath(this->options_.rpath());
1559   if (!rpath.empty())
1560     {
1561       std::string rpath_val;
1562       for (General_options::Dir_list::const_iterator p = rpath.begin();
1563            p != rpath.end();
1564            ++p)
1565         {
1566           if (rpath_val.empty())
1567             rpath_val = p->name();
1568           else
1569             {
1570               // Eliminate duplicates.
1571               General_options::Dir_list::const_iterator q;
1572               for (q = rpath.begin(); q != p; ++q)
1573                 if (q->name() == p->name())
1574                   break;
1575               if (q == p)
1576                 {
1577                   rpath_val += ':';
1578                   rpath_val += p->name();
1579                 }
1580             }
1581         }
1582
1583       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1584     }
1585 }
1586
1587 // The mapping of .gnu.linkonce section names to real section names.
1588
1589 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1590 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1591 {
1592   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1593   MAPPING_INIT("t", ".text"),
1594   MAPPING_INIT("r", ".rodata"),
1595   MAPPING_INIT("d", ".data"),
1596   MAPPING_INIT("b", ".bss"),
1597   MAPPING_INIT("s", ".sdata"),
1598   MAPPING_INIT("sb", ".sbss"),
1599   MAPPING_INIT("s2", ".sdata2"),
1600   MAPPING_INIT("sb2", ".sbss2"),
1601   MAPPING_INIT("wi", ".debug_info"),
1602   MAPPING_INIT("td", ".tdata"),
1603   MAPPING_INIT("tb", ".tbss"),
1604   MAPPING_INIT("lr", ".lrodata"),
1605   MAPPING_INIT("l", ".ldata"),
1606   MAPPING_INIT("lb", ".lbss"),
1607 };
1608 #undef MAPPING_INIT
1609
1610 const int Layout::linkonce_mapping_count =
1611   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1612
1613 // Return the name of the output section to use for a .gnu.linkonce
1614 // section.  This is based on the default ELF linker script of the old
1615 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1616 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1617 // initialized to the length of NAME.
1618
1619 const char*
1620 Layout::linkonce_output_name(const char* name, size_t *plen)
1621 {
1622   const char* s = name + sizeof(".gnu.linkonce") - 1;
1623   if (*s != '.')
1624     return name;
1625   ++s;
1626   const Linkonce_mapping* plm = linkonce_mapping;
1627   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1628     {
1629       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1630         {
1631           *plen = plm->tolen;
1632           return plm->to;
1633         }
1634     }
1635   return name;
1636 }
1637
1638 // Choose the output section name to use given an input section name.
1639 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1640 // length of NAME.
1641
1642 const char*
1643 Layout::output_section_name(const char* name, size_t* plen)
1644 {
1645   if (Layout::is_linkonce(name))
1646     {
1647       // .gnu.linkonce sections are laid out as though they were named
1648       // for the sections are placed into.
1649       return Layout::linkonce_output_name(name, plen);
1650     }
1651
1652   // gcc 4.3 generates the following sorts of section names when it
1653   // needs a section name specific to a function:
1654   //   .text.FN
1655   //   .rodata.FN
1656   //   .sdata2.FN
1657   //   .data.FN
1658   //   .data.rel.FN
1659   //   .data.rel.local.FN
1660   //   .data.rel.ro.FN
1661   //   .data.rel.ro.local.FN
1662   //   .sdata.FN
1663   //   .bss.FN
1664   //   .sbss.FN
1665   //   .tdata.FN
1666   //   .tbss.FN
1667
1668   // The GNU linker maps all of those to the part before the .FN,
1669   // except that .data.rel.local.FN is mapped to .data, and
1670   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1671   // beginning with .data.rel.ro.local are grouped together.
1672
1673   // For an anonymous namespace, the string FN can contain a '.'.
1674
1675   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1676   // GNU linker maps to .rodata.
1677
1678   // The .data.rel.ro sections enable a security feature triggered by
1679   // the -z relro option.  Section which need to be relocated at
1680   // program startup time but which may be readonly after startup are
1681   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1682   // segment.  The dynamic linker will make that segment writable,
1683   // perform relocations, and then make it read-only.  FIXME: We do
1684   // not yet implement this optimization.
1685
1686   // It is hard to handle this in a principled way.
1687
1688   // These are the rules we follow:
1689
1690   // If the section name has no initial '.', or no dot other than an
1691   // initial '.', we use the name unchanged (i.e., "mysection" and
1692   // ".text" are unchanged).
1693
1694   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1695
1696   // Otherwise, we drop the second '.' and everything that comes after
1697   // it (i.e., ".text.XXX" becomes ".text").
1698
1699   const char* s = name;
1700   if (*s != '.')
1701     return name;
1702   ++s;
1703   const char* sdot = strchr(s, '.');
1704   if (sdot == NULL)
1705     return name;
1706
1707   const char* const data_rel_ro = ".data.rel.ro";
1708   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1709     {
1710       *plen = strlen(data_rel_ro);
1711       return data_rel_ro;
1712     }
1713
1714   *plen = sdot - name;
1715   return name;
1716 }
1717
1718 // Record the signature of a comdat section, and return whether to
1719 // include it in the link.  If GROUP is true, this is a regular
1720 // section group.  If GROUP is false, this is a group signature
1721 // derived from the name of a linkonce section.  We want linkonce
1722 // signatures and group signatures to block each other, but we don't
1723 // want a linkonce signature to block another linkonce signature.
1724
1725 bool
1726 Layout::add_comdat(const char* signature, bool group)
1727 {
1728   std::string sig(signature);
1729   std::pair<Signatures::iterator, bool> ins(
1730     this->signatures_.insert(std::make_pair(sig, group)));
1731
1732   if (ins.second)
1733     {
1734       // This is the first time we've seen this signature.
1735       return true;
1736     }
1737
1738   if (ins.first->second)
1739     {
1740       // We've already seen a real section group with this signature.
1741       return false;
1742     }
1743   else if (group)
1744     {
1745       // This is a real section group, and we've already seen a
1746       // linkonce section with this signature.  Record that we've seen
1747       // a section group, and don't include this section group.
1748       ins.first->second = true;
1749       return false;
1750     }
1751   else
1752     {
1753       // We've already seen a linkonce section and this is a linkonce
1754       // section.  These don't block each other--this may be the same
1755       // symbol name with different section types.
1756       return true;
1757     }
1758 }
1759
1760 // Write out the Output_sections.  Most won't have anything to write,
1761 // since most of the data will come from input sections which are
1762 // handled elsewhere.  But some Output_sections do have Output_data.
1763
1764 void
1765 Layout::write_output_sections(Output_file* of) const
1766 {
1767   for (Section_list::const_iterator p = this->section_list_.begin();
1768        p != this->section_list_.end();
1769        ++p)
1770     {
1771       if (!(*p)->after_input_sections())
1772         (*p)->write(of);
1773     }
1774 }
1775
1776 // Write out data not associated with a section or the symbol table.
1777
1778 void
1779 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1780 {
1781   if (!parameters->strip_all())
1782     {
1783       const Output_section* symtab_section = this->symtab_section_;
1784       for (Section_list::const_iterator p = this->section_list_.begin();
1785            p != this->section_list_.end();
1786            ++p)
1787         {
1788           if ((*p)->needs_symtab_index())
1789             {
1790               gold_assert(symtab_section != NULL);
1791               unsigned int index = (*p)->symtab_index();
1792               gold_assert(index > 0 && index != -1U);
1793               off_t off = (symtab_section->offset()
1794                            + index * symtab_section->entsize());
1795               symtab->write_section_symbol(*p, of, off);
1796             }
1797         }
1798     }
1799
1800   const Output_section* dynsym_section = this->dynsym_section_;
1801   for (Section_list::const_iterator p = this->section_list_.begin();
1802        p != this->section_list_.end();
1803        ++p)
1804     {
1805       if ((*p)->needs_dynsym_index())
1806         {
1807           gold_assert(dynsym_section != NULL);
1808           unsigned int index = (*p)->dynsym_index();
1809           gold_assert(index > 0 && index != -1U);
1810           off_t off = (dynsym_section->offset()
1811                        + index * dynsym_section->entsize());
1812           symtab->write_section_symbol(*p, of, off);
1813         }
1814     }
1815
1816   // Write out the Output_data which are not in an Output_section.
1817   for (Data_list::const_iterator p = this->special_output_list_.begin();
1818        p != this->special_output_list_.end();
1819        ++p)
1820     (*p)->write(of);
1821 }
1822
1823 // Write out the Output_sections which can only be written after the
1824 // input sections are complete.
1825
1826 void
1827 Layout::write_sections_after_input_sections(Output_file* of) const
1828 {
1829   for (Section_list::const_iterator p = this->section_list_.begin();
1830        p != this->section_list_.end();
1831        ++p)
1832     {
1833       if ((*p)->after_input_sections())
1834         (*p)->write(of);
1835     }
1836 }
1837
1838 // Write_sections_task methods.
1839
1840 // We can always run this task.
1841
1842 Task::Is_runnable_type
1843 Write_sections_task::is_runnable(Workqueue*)
1844 {
1845   return IS_RUNNABLE;
1846 }
1847
1848 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
1849 // when finished.
1850
1851 class Write_sections_task::Write_sections_locker : public Task_locker
1852 {
1853  public:
1854   Write_sections_locker(Task_token& output_sections_blocker,
1855                         Task_token& final_blocker,
1856                         Workqueue* workqueue)
1857     : output_sections_block_(output_sections_blocker, workqueue),
1858       final_block_(final_blocker, workqueue)
1859   { }
1860
1861  private:
1862   Task_block_token output_sections_block_;
1863   Task_block_token final_block_;
1864 };
1865
1866 Task_locker*
1867 Write_sections_task::locks(Workqueue* workqueue)
1868 {
1869   return new Write_sections_locker(*this->output_sections_blocker_,
1870                                    *this->final_blocker_,
1871                                    workqueue);
1872 }
1873
1874 // Run the task--write out the data.
1875
1876 void
1877 Write_sections_task::run(Workqueue*)
1878 {
1879   this->layout_->write_output_sections(this->of_);
1880 }
1881
1882 // Write_data_task methods.
1883
1884 // We can always run this task.
1885
1886 Task::Is_runnable_type
1887 Write_data_task::is_runnable(Workqueue*)
1888 {
1889   return IS_RUNNABLE;
1890 }
1891
1892 // We need to unlock FINAL_BLOCKER when finished.
1893
1894 Task_locker*
1895 Write_data_task::locks(Workqueue* workqueue)
1896 {
1897   return new Task_locker_block(*this->final_blocker_, workqueue);
1898 }
1899
1900 // Run the task--write out the data.
1901
1902 void
1903 Write_data_task::run(Workqueue*)
1904 {
1905   this->layout_->write_data(this->symtab_, this->of_);
1906 }
1907
1908 // Write_symbols_task methods.
1909
1910 // We can always run this task.
1911
1912 Task::Is_runnable_type
1913 Write_symbols_task::is_runnable(Workqueue*)
1914 {
1915   return IS_RUNNABLE;
1916 }
1917
1918 // We need to unlock FINAL_BLOCKER when finished.
1919
1920 Task_locker*
1921 Write_symbols_task::locks(Workqueue* workqueue)
1922 {
1923   return new Task_locker_block(*this->final_blocker_, workqueue);
1924 }
1925
1926 // Run the task--write out the symbols.
1927
1928 void
1929 Write_symbols_task::run(Workqueue*)
1930 {
1931   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1932                                this->of_);
1933 }
1934
1935 // Write_after_input_sections_task methods.
1936
1937 // We can only run this task after the input sections have completed.
1938
1939 Task::Is_runnable_type
1940 Write_after_input_sections_task::is_runnable(Workqueue*)
1941 {
1942   if (this->input_sections_blocker_->is_blocked())
1943     return IS_BLOCKED;
1944   return IS_RUNNABLE;
1945 }
1946
1947 // We need to unlock FINAL_BLOCKER when finished.
1948
1949 Task_locker*
1950 Write_after_input_sections_task::locks(Workqueue* workqueue)
1951 {
1952   return new Task_locker_block(*this->final_blocker_, workqueue);
1953 }
1954
1955 // Run the task.
1956
1957 void
1958 Write_after_input_sections_task::run(Workqueue*)
1959 {
1960   this->layout_->write_sections_after_input_sections(this->of_);
1961 }
1962
1963 // Close_task_runner methods.
1964
1965 // Run the task--close the file.
1966
1967 void
1968 Close_task_runner::run(Workqueue*)
1969 {
1970   this->of_->close();
1971 }
1972
1973 // Instantiate the templates we need.  We could use the configure
1974 // script to restrict this to only the ones for implemented targets.
1975
1976 #ifdef HAVE_TARGET_32_LITTLE
1977 template
1978 Output_section*
1979 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
1980                           const char* name,
1981                           const elfcpp::Shdr<32, false>& shdr,
1982                           unsigned int, unsigned int, off_t*);
1983 #endif
1984
1985 #ifdef HAVE_TARGET_32_BIG
1986 template
1987 Output_section*
1988 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
1989                          const char* name,
1990                          const elfcpp::Shdr<32, true>& shdr,
1991                          unsigned int, unsigned int, off_t*);
1992 #endif
1993
1994 #ifdef HAVE_TARGET_64_LITTLE
1995 template
1996 Output_section*
1997 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
1998                           const char* name,
1999                           const elfcpp::Shdr<64, false>& shdr,
2000                           unsigned int, unsigned int, off_t*);
2001 #endif
2002
2003 #ifdef HAVE_TARGET_64_BIG
2004 template
2005 Output_section*
2006 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2007                          const char* name,
2008                          const elfcpp::Shdr<64, true>& shdr,
2009                          unsigned int, unsigned int, off_t*);
2010 #endif
2011
2012 #ifdef HAVE_TARGET_32_LITTLE
2013 template
2014 Output_section*
2015 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2016                                    const unsigned char* symbols,
2017                                    off_t symbols_size,
2018                                    const unsigned char* symbol_names,
2019                                    off_t symbol_names_size,
2020                                    unsigned int shndx,
2021                                    const elfcpp::Shdr<32, false>& shdr,
2022                                    unsigned int reloc_shndx,
2023                                    unsigned int reloc_type,
2024                                    off_t* off);
2025 #endif
2026
2027 #ifdef HAVE_TARGET_32_BIG
2028 template
2029 Output_section*
2030 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2031                                    const unsigned char* symbols,
2032                                    off_t symbols_size,
2033                                   const unsigned char* symbol_names,
2034                                   off_t symbol_names_size,
2035                                   unsigned int shndx,
2036                                   const elfcpp::Shdr<32, true>& shdr,
2037                                   unsigned int reloc_shndx,
2038                                   unsigned int reloc_type,
2039                                   off_t* off);
2040 #endif
2041
2042 #ifdef HAVE_TARGET_64_LITTLE
2043 template
2044 Output_section*
2045 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2046                                    const unsigned char* symbols,
2047                                    off_t symbols_size,
2048                                    const unsigned char* symbol_names,
2049                                    off_t symbol_names_size,
2050                                    unsigned int shndx,
2051                                    const elfcpp::Shdr<64, false>& shdr,
2052                                    unsigned int reloc_shndx,
2053                                    unsigned int reloc_type,
2054                                    off_t* off);
2055 #endif
2056
2057 #ifdef HAVE_TARGET_64_BIG
2058 template
2059 Output_section*
2060 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2061                                    const unsigned char* symbols,
2062                                    off_t symbols_size,
2063                                   const unsigned char* symbol_names,
2064                                   off_t symbol_names_size,
2065                                   unsigned int shndx,
2066                                   const elfcpp::Shdr<64, true>& shdr,
2067                                   unsigned int reloc_shndx,
2068                                   unsigned int reloc_type,
2069                                   off_t* off);
2070 #endif
2071
2072 } // End namespace gold.