Implement -q/--emit-relocs.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             task);
56
57   // Now we know the final size of the output file and we know where
58   // each piece of information goes.
59   Output_file* of = new Output_file(parameters->output_file_name());
60   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
61     of->set_is_temporary();
62   of->open(file_size);
63
64   // Queue up the final set of tasks.
65   gold::queue_final_tasks(this->options_, this->input_objects_,
66                           this->symtab_, this->layout_, workqueue, of);
67 }
68
69 // Layout methods.
70
71 Layout::Layout(const General_options& options, Script_options* script_options)
72   : options_(options), script_options_(script_options), namepool_(),
73     sympool_(), dynpool_(), signatures_(),
74     section_name_map_(), segment_list_(), section_list_(),
75     unattached_section_list_(), special_output_list_(),
76     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
77     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
78     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
79     input_requires_executable_stack_(false),
80     input_with_gnu_stack_note_(false),
81     input_without_gnu_stack_note_(false),
82     has_static_tls_(false),
83     any_postprocessing_sections_(false)
84 {
85   // Make space for more than enough segments for a typical file.
86   // This is just for efficiency--it's OK if we wind up needing more.
87   this->segment_list_.reserve(12);
88
89   // We expect two unattached Output_data objects: the file header and
90   // the segment headers.
91   this->special_output_list_.reserve(2);
92 }
93
94 // Hash a key we use to look up an output section mapping.
95
96 size_t
97 Layout::Hash_key::operator()(const Layout::Key& k) const
98 {
99  return k.first + k.second.first + k.second.second;
100 }
101
102 // Return whether PREFIX is a prefix of STR.
103
104 static inline bool
105 is_prefix_of(const char* prefix, const char* str)
106 {
107   return strncmp(prefix, str, strlen(prefix)) == 0;
108 }
109
110 // Returns whether the given section is in the list of
111 // debug-sections-used-by-some-version-of-gdb.  Currently,
112 // we've checked versions of gdb up to and including 6.7.1.
113
114 static const char* gdb_sections[] =
115 { ".debug_abbrev",
116   // ".debug_aranges",   // not used by gdb as of 6.7.1
117   ".debug_frame",
118   ".debug_info",
119   ".debug_line",
120   ".debug_loc",
121   ".debug_macinfo",
122   // ".debug_pubnames",  // not used by gdb as of 6.7.1
123   ".debug_ranges",
124   ".debug_str",
125 };
126
127 static inline bool
128 is_gdb_debug_section(const char* str)
129 {
130   // We can do this faster: binary search or a hashtable.  But why bother?
131   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
132     if (strcmp(str, gdb_sections[i]) == 0)
133       return true;
134   return false;
135 }
136
137 // Whether to include this section in the link.
138
139 template<int size, bool big_endian>
140 bool
141 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
142                         const elfcpp::Shdr<size, big_endian>& shdr)
143 {
144   switch (shdr.get_sh_type())
145     {
146     case elfcpp::SHT_NULL:
147     case elfcpp::SHT_SYMTAB:
148     case elfcpp::SHT_DYNSYM:
149     case elfcpp::SHT_STRTAB:
150     case elfcpp::SHT_HASH:
151     case elfcpp::SHT_DYNAMIC:
152     case elfcpp::SHT_SYMTAB_SHNDX:
153       return false;
154
155     case elfcpp::SHT_RELA:
156     case elfcpp::SHT_REL:
157     case elfcpp::SHT_GROUP:
158       // If we are emitting relocations these should be handled
159       // elsewhere.
160       gold_assert(!parameters->output_is_object()
161                   && !parameters->emit_relocs());
162       return false;
163
164     case elfcpp::SHT_PROGBITS:
165       if (parameters->strip_debug()
166           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
167         {
168           // Debugging sections can only be recognized by name.
169           if (is_prefix_of(".debug", name)
170               || is_prefix_of(".gnu.linkonce.wi.", name)
171               || is_prefix_of(".line", name)
172               || is_prefix_of(".stab", name))
173             return false;
174         }
175       if (parameters->strip_debug_gdb()
176           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
177         {
178           // Debugging sections can only be recognized by name.
179           if (is_prefix_of(".debug", name)
180               && !is_gdb_debug_section(name))
181             return false;
182         }
183       return true;
184
185     default:
186       return true;
187     }
188 }
189
190 // Return an output section named NAME, or NULL if there is none.
191
192 Output_section*
193 Layout::find_output_section(const char* name) const
194 {
195   for (Section_list::const_iterator p = this->section_list_.begin();
196        p != this->section_list_.end();
197        ++p)
198     if (strcmp((*p)->name(), name) == 0)
199       return *p;
200   return NULL;
201 }
202
203 // Return an output segment of type TYPE, with segment flags SET set
204 // and segment flags CLEAR clear.  Return NULL if there is none.
205
206 Output_segment*
207 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
208                             elfcpp::Elf_Word clear) const
209 {
210   for (Segment_list::const_iterator p = this->segment_list_.begin();
211        p != this->segment_list_.end();
212        ++p)
213     if (static_cast<elfcpp::PT>((*p)->type()) == type
214         && ((*p)->flags() & set) == set
215         && ((*p)->flags() & clear) == 0)
216       return *p;
217   return NULL;
218 }
219
220 // Return the output section to use for section NAME with type TYPE
221 // and section flags FLAGS.  NAME must be canonicalized in the string
222 // pool, and NAME_KEY is the key.
223
224 Output_section*
225 Layout::get_output_section(const char* name, Stringpool::Key name_key,
226                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
227 {
228   const Key key(name_key, std::make_pair(type, flags));
229   const std::pair<Key, Output_section*> v(key, NULL);
230   std::pair<Section_name_map::iterator, bool> ins(
231     this->section_name_map_.insert(v));
232
233   if (!ins.second)
234     return ins.first->second;
235   else
236     {
237       // This is the first time we've seen this name/type/flags
238       // combination.
239       Output_section* os = this->make_output_section(name, type, flags);
240       ins.first->second = os;
241       return os;
242     }
243 }
244
245 // Pick the output section to use for section NAME, in input file
246 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
247 // linker created section.  ADJUST_NAME is true if we should apply the
248 // standard name mappings in Layout::output_section_name.  This will
249 // return NULL if the input section should be discarded.
250
251 Output_section*
252 Layout::choose_output_section(const Relobj* relobj, const char* name,
253                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
254                               bool adjust_name)
255 {
256   // We should ignore some flags.  FIXME: This will need some
257   // adjustment for ld -r.
258   flags &= ~ (elfcpp::SHF_INFO_LINK
259               | elfcpp::SHF_LINK_ORDER
260               | elfcpp::SHF_GROUP
261               | elfcpp::SHF_MERGE
262               | elfcpp::SHF_STRINGS);
263
264   if (this->script_options_->saw_sections_clause())
265     {
266       // We are using a SECTIONS clause, so the output section is
267       // chosen based only on the name.
268
269       Script_sections* ss = this->script_options_->script_sections();
270       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
271       Output_section** output_section_slot;
272       name = ss->output_section_name(file_name, name, &output_section_slot);
273       if (name == NULL)
274         {
275           // The SECTIONS clause says to discard this input section.
276           return NULL;
277         }
278
279       // If this is an orphan section--one not mentioned in the linker
280       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
281       // default processing below.
282
283       if (output_section_slot != NULL)
284         {
285           if (*output_section_slot != NULL)
286             return *output_section_slot;
287
288           // We don't put sections found in the linker script into
289           // SECTION_NAME_MAP_.  That keeps us from getting confused
290           // if an orphan section is mapped to a section with the same
291           // name as one in the linker script.
292
293           name = this->namepool_.add(name, false, NULL);
294
295           Output_section* os = this->make_output_section(name, type, flags);
296           os->set_found_in_sections_clause();
297           *output_section_slot = os;
298           return os;
299         }
300     }
301
302   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
303
304   // Turn NAME from the name of the input section into the name of the
305   // output section.
306
307   size_t len = strlen(name);
308   if (adjust_name && !parameters->output_is_object())
309     name = Layout::output_section_name(name, &len);
310
311   Stringpool::Key name_key;
312   name = this->namepool_.add_with_length(name, len, true, &name_key);
313
314   // Find or make the output section.  The output section is selected
315   // based on the section name, type, and flags.
316   return this->get_output_section(name, name_key, type, flags);
317 }
318
319 // Return the output section to use for input section SHNDX, with name
320 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
321 // index of a relocation section which applies to this section, or 0
322 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
323 // relocation section if there is one.  Set *OFF to the offset of this
324 // input section without the output section.  Return NULL if the
325 // section should be discarded.  Set *OFF to -1 if the section
326 // contents should not be written directly to the output file, but
327 // will instead receive special handling.
328
329 template<int size, bool big_endian>
330 Output_section*
331 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
332                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
333                unsigned int reloc_shndx, unsigned int, off_t* off)
334 {
335   if (!this->include_section(object, name, shdr))
336     return NULL;
337
338   Output_section* os;
339
340   // In a relocatable link a grouped section must not be combined with
341   // any other sections.
342   if (parameters->output_is_object()
343       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
344     {
345       name = this->namepool_.add(name, true, NULL);
346       os = this->make_output_section(name, shdr.get_sh_type(),
347                                      shdr.get_sh_flags());
348     }
349   else
350     {
351       os = this->choose_output_section(object, name, shdr.get_sh_type(),
352                                        shdr.get_sh_flags(), true);
353       if (os == NULL)
354         return NULL;
355     }
356
357   // FIXME: Handle SHF_LINK_ORDER somewhere.
358
359   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
360                                this->script_options_->saw_sections_clause());
361
362   return os;
363 }
364
365 // Handle a relocation section when doing a relocatable link.
366
367 template<int size, bool big_endian>
368 Output_section*
369 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
370                      unsigned int,
371                      const elfcpp::Shdr<size, big_endian>& shdr,
372                      Output_section* data_section,
373                      Relocatable_relocs* rr)
374 {
375   gold_assert(parameters->output_is_object() || parameters->emit_relocs());
376
377   int sh_type = shdr.get_sh_type();
378
379   std::string name;
380   if (sh_type == elfcpp::SHT_REL)
381     name = ".rel";
382   else if (sh_type == elfcpp::SHT_RELA)
383     name = ".rela";
384   else
385     gold_unreachable();
386   name += data_section->name();
387
388   Output_section* os = this->choose_output_section(object, name.c_str(),
389                                                    sh_type,
390                                                    shdr.get_sh_flags(),
391                                                    false);
392
393   os->set_should_link_to_symtab();
394   os->set_info_section(data_section);
395
396   Output_section_data* posd;
397   if (sh_type == elfcpp::SHT_REL)
398     {
399       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
400       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
401                                            size,
402                                            big_endian>(rr);
403     }
404   else if (sh_type == elfcpp::SHT_RELA)
405     {
406       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
407       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
408                                            size,
409                                            big_endian>(rr);
410     }
411   else
412     gold_unreachable();
413
414   os->add_output_section_data(posd);
415   rr->set_output_data(posd);
416
417   return os;
418 }
419
420 // Handle a group section when doing a relocatable link.
421
422 template<int size, bool big_endian>
423 void
424 Layout::layout_group(Symbol_table* symtab,
425                      Sized_relobj<size, big_endian>* object,
426                      unsigned int,
427                      const char* group_section_name,
428                      const char* signature,
429                      const elfcpp::Shdr<size, big_endian>& shdr,
430                      const elfcpp::Elf_Word* contents)
431 {
432   gold_assert(parameters->output_is_object());
433   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
434   group_section_name = this->namepool_.add(group_section_name, true, NULL);
435   Output_section* os = this->make_output_section(group_section_name,
436                                                  elfcpp::SHT_GROUP,
437                                                  shdr.get_sh_flags());
438
439   // We need to find a symbol with the signature in the symbol table.
440   // If we don't find one now, we need to look again later.
441   Symbol* sym = symtab->lookup(signature, NULL);
442   if (sym != NULL)
443     os->set_info_symndx(sym);
444   else
445     {
446       // We will wind up using a symbol whose name is the signature.
447       // So just put the signature in the symbol name pool to save it.
448       signature = symtab->canonicalize_name(signature);
449       this->group_signatures_.push_back(Group_signature(os, signature));
450     }
451
452   os->set_should_link_to_symtab();
453   os->set_entsize(4);
454
455   section_size_type entry_count =
456     convert_to_section_size_type(shdr.get_sh_size() / 4);
457   Output_section_data* posd =
458     new Output_data_group<size, big_endian>(object, entry_count, contents);
459   os->add_output_section_data(posd);
460 }
461
462 // Special GNU handling of sections name .eh_frame.  They will
463 // normally hold exception frame data as defined by the C++ ABI
464 // (http://codesourcery.com/cxx-abi/).
465
466 template<int size, bool big_endian>
467 Output_section*
468 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
469                         const unsigned char* symbols,
470                         off_t symbols_size,
471                         const unsigned char* symbol_names,
472                         off_t symbol_names_size,
473                         unsigned int shndx,
474                         const elfcpp::Shdr<size, big_endian>& shdr,
475                         unsigned int reloc_shndx, unsigned int reloc_type,
476                         off_t* off)
477 {
478   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
479   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
480
481   const char* const name = ".eh_frame";
482   Output_section* os = this->choose_output_section(object,
483                                                    name,
484                                                    elfcpp::SHT_PROGBITS,
485                                                    elfcpp::SHF_ALLOC,
486                                                    false);
487   if (os == NULL)
488     return NULL;
489
490   if (this->eh_frame_section_ == NULL)
491     {
492       this->eh_frame_section_ = os;
493       this->eh_frame_data_ = new Eh_frame();
494       os->add_output_section_data(this->eh_frame_data_);
495
496       if (this->options_.eh_frame_hdr())
497         {
498           Output_section* hdr_os =
499             this->choose_output_section(NULL,
500                                         ".eh_frame_hdr",
501                                         elfcpp::SHT_PROGBITS,
502                                         elfcpp::SHF_ALLOC,
503                                         false);
504
505           if (hdr_os != NULL)
506             {
507               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
508                                                         this->eh_frame_data_);
509               hdr_os->add_output_section_data(hdr_posd);
510
511               hdr_os->set_after_input_sections();
512
513               if (!this->script_options_->saw_phdrs_clause())
514                 {
515                   Output_segment* hdr_oseg;
516                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
517                                                        elfcpp::PF_R);
518                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
519                 }
520
521               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
522             }
523         }
524     }
525
526   gold_assert(this->eh_frame_section_ == os);
527
528   if (this->eh_frame_data_->add_ehframe_input_section(object,
529                                                       symbols,
530                                                       symbols_size,
531                                                       symbol_names,
532                                                       symbol_names_size,
533                                                       shndx,
534                                                       reloc_shndx,
535                                                       reloc_type))
536     *off = -1;
537   else
538     {
539       // We couldn't handle this .eh_frame section for some reason.
540       // Add it as a normal section.
541       bool saw_sections_clause = this->script_options_->saw_sections_clause();
542       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
543                                    saw_sections_clause);
544     }
545
546   return os;
547 }
548
549 // Add POSD to an output section using NAME, TYPE, and FLAGS.
550
551 void
552 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
553                                 elfcpp::Elf_Xword flags,
554                                 Output_section_data* posd)
555 {
556   Output_section* os = this->choose_output_section(NULL, name, type, flags,
557                                                    false);
558   if (os != NULL)
559     os->add_output_section_data(posd);
560 }
561
562 // Map section flags to segment flags.
563
564 elfcpp::Elf_Word
565 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
566 {
567   elfcpp::Elf_Word ret = elfcpp::PF_R;
568   if ((flags & elfcpp::SHF_WRITE) != 0)
569     ret |= elfcpp::PF_W;
570   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
571     ret |= elfcpp::PF_X;
572   return ret;
573 }
574
575 // Sometimes we compress sections.  This is typically done for
576 // sections that are not part of normal program execution (such as
577 // .debug_* sections), and where the readers of these sections know
578 // how to deal with compressed sections.  (To make it easier for them,
579 // we will rename the ouput section in such cases from .foo to
580 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
581 // doesn't say for certain whether we'll compress -- it depends on
582 // commandline options as well -- just whether this section is a
583 // candidate for compression.
584
585 static bool
586 is_compressible_debug_section(const char* secname)
587 {
588   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
589 }
590
591 // Make a new Output_section, and attach it to segments as
592 // appropriate.
593
594 Output_section*
595 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
596                             elfcpp::Elf_Xword flags)
597 {
598   Output_section* os;
599   if ((flags & elfcpp::SHF_ALLOC) == 0
600       && this->options_.compress_debug_sections()
601       && is_compressible_debug_section(name))
602     os = new Output_compressed_section(&this->options_, name, type, flags);
603   else
604     os = new Output_section(name, type, flags);
605
606   this->section_list_.push_back(os);
607
608   if ((flags & elfcpp::SHF_ALLOC) == 0)
609     this->unattached_section_list_.push_back(os);
610   else
611     {
612       if (parameters->output_is_object())
613         return os;
614
615       // If we have a SECTIONS clause, we can't handle the attachment
616       // to segments until after we've seen all the sections.
617       if (this->script_options_->saw_sections_clause())
618         return os;
619
620       gold_assert(!this->script_options_->saw_phdrs_clause());
621
622       // This output section goes into a PT_LOAD segment.
623
624       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
625
626       // In general the only thing we really care about for PT_LOAD
627       // segments is whether or not they are writable, so that is how
628       // we search for them.  People who need segments sorted on some
629       // other basis will have to use a linker script.
630
631       Segment_list::const_iterator p;
632       for (p = this->segment_list_.begin();
633            p != this->segment_list_.end();
634            ++p)
635         {
636           if ((*p)->type() == elfcpp::PT_LOAD
637               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
638             {
639               // If -Tbss was specified, we need to separate the data
640               // and BSS segments.
641               if (this->options_.user_set_Tbss())
642                 {
643                   if ((type == elfcpp::SHT_NOBITS)
644                       == (*p)->has_any_data_sections())
645                     continue;
646                 }
647
648               (*p)->add_output_section(os, seg_flags);
649               break;
650             }
651         }
652
653       if (p == this->segment_list_.end())
654         {
655           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
656                                                            seg_flags);
657           oseg->add_output_section(os, seg_flags);
658         }
659
660       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
661       // segment.
662       if (type == elfcpp::SHT_NOTE)
663         {
664           // See if we already have an equivalent PT_NOTE segment.
665           for (p = this->segment_list_.begin();
666                p != segment_list_.end();
667                ++p)
668             {
669               if ((*p)->type() == elfcpp::PT_NOTE
670                   && (((*p)->flags() & elfcpp::PF_W)
671                       == (seg_flags & elfcpp::PF_W)))
672                 {
673                   (*p)->add_output_section(os, seg_flags);
674                   break;
675                 }
676             }
677
678           if (p == this->segment_list_.end())
679             {
680               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
681                                                                seg_flags);
682               oseg->add_output_section(os, seg_flags);
683             }
684         }
685
686       // If we see a loadable SHF_TLS section, we create a PT_TLS
687       // segment.  There can only be one such segment.
688       if ((flags & elfcpp::SHF_TLS) != 0)
689         {
690           if (this->tls_segment_ == NULL)
691             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
692                                                            seg_flags);
693           this->tls_segment_->add_output_section(os, seg_flags);
694         }
695     }
696
697   return os;
698 }
699
700 // Return the number of segments we expect to see.
701
702 size_t
703 Layout::expected_segment_count() const
704 {
705   size_t ret = this->segment_list_.size();
706
707   // If we didn't see a SECTIONS clause in a linker script, we should
708   // already have the complete list of segments.  Otherwise we ask the
709   // SECTIONS clause how many segments it expects, and add in the ones
710   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
711
712   if (!this->script_options_->saw_sections_clause())
713     return ret;
714   else
715     {
716       const Script_sections* ss = this->script_options_->script_sections();
717       return ret + ss->expected_segment_count(this);
718     }
719 }
720
721 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
722 // is whether we saw a .note.GNU-stack section in the object file.
723 // GNU_STACK_FLAGS is the section flags.  The flags give the
724 // protection required for stack memory.  We record this in an
725 // executable as a PT_GNU_STACK segment.  If an object file does not
726 // have a .note.GNU-stack segment, we must assume that it is an old
727 // object.  On some targets that will force an executable stack.
728
729 void
730 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
731 {
732   if (!seen_gnu_stack)
733     this->input_without_gnu_stack_note_ = true;
734   else
735     {
736       this->input_with_gnu_stack_note_ = true;
737       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
738         this->input_requires_executable_stack_ = true;
739     }
740 }
741
742 // Create the dynamic sections which are needed before we read the
743 // relocs.
744
745 void
746 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
747 {
748   if (parameters->doing_static_link())
749     return;
750
751   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
752                                                        elfcpp::SHT_DYNAMIC,
753                                                        (elfcpp::SHF_ALLOC
754                                                         | elfcpp::SHF_WRITE),
755                                                        false);
756
757   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
758                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
759                                 elfcpp::STV_HIDDEN, 0, false, false);
760
761   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
762
763   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
764 }
765
766 // For each output section whose name can be represented as C symbol,
767 // define __start and __stop symbols for the section.  This is a GNU
768 // extension.
769
770 void
771 Layout::define_section_symbols(Symbol_table* symtab)
772 {
773   for (Section_list::const_iterator p = this->section_list_.begin();
774        p != this->section_list_.end();
775        ++p)
776     {
777       const char* const name = (*p)->name();
778       if (name[strspn(name,
779                       ("0123456789"
780                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
781                        "abcdefghijklmnopqrstuvwxyz"
782                        "_"))]
783           == '\0')
784         {
785           const std::string name_string(name);
786           const std::string start_name("__start_" + name_string);
787           const std::string stop_name("__stop_" + name_string);
788
789           symtab->define_in_output_data(start_name.c_str(),
790                                         NULL, // version
791                                         *p,
792                                         0, // value
793                                         0, // symsize
794                                         elfcpp::STT_NOTYPE,
795                                         elfcpp::STB_GLOBAL,
796                                         elfcpp::STV_DEFAULT,
797                                         0, // nonvis
798                                         false, // offset_is_from_end
799                                         true); // only_if_ref
800
801           symtab->define_in_output_data(stop_name.c_str(),
802                                         NULL, // version
803                                         *p,
804                                         0, // value
805                                         0, // symsize
806                                         elfcpp::STT_NOTYPE,
807                                         elfcpp::STB_GLOBAL,
808                                         elfcpp::STV_DEFAULT,
809                                         0, // nonvis
810                                         true, // offset_is_from_end
811                                         true); // only_if_ref
812         }
813     }
814 }
815
816 // Define symbols for group signatures.
817
818 void
819 Layout::define_group_signatures(Symbol_table* symtab)
820 {
821   for (Group_signatures::iterator p = this->group_signatures_.begin();
822        p != this->group_signatures_.end();
823        ++p)
824     {
825       Symbol* sym = symtab->lookup(p->signature, NULL);
826       if (sym != NULL)
827         p->section->set_info_symndx(sym);
828       else
829         {
830           // Force the name of the group section to the group
831           // signature, and use the group's section symbol as the
832           // signature symbol.
833           if (strcmp(p->section->name(), p->signature) != 0)
834             {
835               const char* name = this->namepool_.add(p->signature,
836                                                      true, NULL);
837               p->section->set_name(name);
838             }
839           p->section->set_needs_symtab_index();
840           p->section->set_info_section_symndx(p->section);
841         }
842     }
843
844   this->group_signatures_.clear();
845 }
846
847 // Find the first read-only PT_LOAD segment, creating one if
848 // necessary.
849
850 Output_segment*
851 Layout::find_first_load_seg()
852 {
853   for (Segment_list::const_iterator p = this->segment_list_.begin();
854        p != this->segment_list_.end();
855        ++p)
856     {
857       if ((*p)->type() == elfcpp::PT_LOAD
858           && ((*p)->flags() & elfcpp::PF_R) != 0
859           && ((*p)->flags() & elfcpp::PF_W) == 0)
860         return *p;
861     }
862
863   gold_assert(!this->script_options_->saw_phdrs_clause());
864
865   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
866                                                        elfcpp::PF_R);
867   return load_seg;
868 }
869
870 // Finalize the layout.  When this is called, we have created all the
871 // output sections and all the output segments which are based on
872 // input sections.  We have several things to do, and we have to do
873 // them in the right order, so that we get the right results correctly
874 // and efficiently.
875
876 // 1) Finalize the list of output segments and create the segment
877 // table header.
878
879 // 2) Finalize the dynamic symbol table and associated sections.
880
881 // 3) Determine the final file offset of all the output segments.
882
883 // 4) Determine the final file offset of all the SHF_ALLOC output
884 // sections.
885
886 // 5) Create the symbol table sections and the section name table
887 // section.
888
889 // 6) Finalize the symbol table: set symbol values to their final
890 // value and make a final determination of which symbols are going
891 // into the output symbol table.
892
893 // 7) Create the section table header.
894
895 // 8) Determine the final file offset of all the output sections which
896 // are not SHF_ALLOC, including the section table header.
897
898 // 9) Finalize the ELF file header.
899
900 // This function returns the size of the output file.
901
902 off_t
903 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
904                  const Task* task)
905 {
906   Target* const target = parameters->target();
907
908   target->finalize_sections(this);
909
910   this->count_local_symbols(task, input_objects);
911
912   this->create_gold_note();
913   this->create_executable_stack_info(target);
914
915   Output_segment* phdr_seg = NULL;
916   if (!parameters->output_is_object() && !parameters->doing_static_link())
917     {
918       // There was a dynamic object in the link.  We need to create
919       // some information for the dynamic linker.
920
921       // Create the PT_PHDR segment which will hold the program
922       // headers.
923       if (!this->script_options_->saw_phdrs_clause())
924         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
925
926       // Create the dynamic symbol table, including the hash table.
927       Output_section* dynstr;
928       std::vector<Symbol*> dynamic_symbols;
929       unsigned int local_dynamic_count;
930       Versions versions(*this->script_options()->version_script_info(),
931                         &this->dynpool_);
932       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
933                                   &local_dynamic_count, &dynamic_symbols,
934                                   &versions);
935
936       // Create the .interp section to hold the name of the
937       // interpreter, and put it in a PT_INTERP segment.
938       if (!parameters->output_is_shared())
939         this->create_interp(target);
940
941       // Finish the .dynamic section to hold the dynamic data, and put
942       // it in a PT_DYNAMIC segment.
943       this->finish_dynamic_section(input_objects, symtab);
944
945       // We should have added everything we need to the dynamic string
946       // table.
947       this->dynpool_.set_string_offsets();
948
949       // Create the version sections.  We can't do this until the
950       // dynamic string table is complete.
951       this->create_version_sections(&versions, symtab, local_dynamic_count,
952                                     dynamic_symbols, dynstr);
953     }
954
955   // If there is a SECTIONS clause, put all the input sections into
956   // the required order.
957   Output_segment* load_seg;
958   if (this->script_options_->saw_sections_clause())
959     load_seg = this->set_section_addresses_from_script(symtab);
960   else if (parameters->output_is_object())
961     load_seg = NULL;
962   else
963     load_seg = this->find_first_load_seg();
964
965   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
966     load_seg = NULL;
967
968   gold_assert(phdr_seg == NULL || load_seg != NULL);
969
970   // Lay out the segment headers.
971   Output_segment_headers* segment_headers;
972   if (parameters->output_is_object())
973     segment_headers = NULL;
974   else
975     {
976       segment_headers = new Output_segment_headers(this->segment_list_);
977       if (load_seg != NULL)
978         load_seg->add_initial_output_data(segment_headers);
979       if (phdr_seg != NULL)
980         phdr_seg->add_initial_output_data(segment_headers);
981     }
982
983   // Lay out the file header.
984   Output_file_header* file_header;
985   file_header = new Output_file_header(target, symtab, segment_headers,
986                                        this->options_.entry());
987   if (load_seg != NULL)
988     load_seg->add_initial_output_data(file_header);
989
990   this->special_output_list_.push_back(file_header);
991   if (segment_headers != NULL)
992     this->special_output_list_.push_back(segment_headers);
993
994   if (this->script_options_->saw_phdrs_clause()
995       && !parameters->output_is_object())
996     {
997       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
998       // clause in a linker script.
999       Script_sections* ss = this->script_options_->script_sections();
1000       ss->put_headers_in_phdrs(file_header, segment_headers);
1001     }
1002
1003   // We set the output section indexes in set_segment_offsets and
1004   // set_section_indexes.
1005   unsigned int shndx = 1;
1006
1007   // Set the file offsets of all the segments, and all the sections
1008   // they contain.
1009   off_t off;
1010   if (!parameters->output_is_object())
1011     off = this->set_segment_offsets(target, load_seg, &shndx);
1012   else
1013     off = this->set_relocatable_section_offsets(file_header, &shndx);
1014
1015   // Set the file offsets of all the non-data sections we've seen so
1016   // far which don't have to wait for the input sections.  We need
1017   // this in order to finalize local symbols in non-allocated
1018   // sections.
1019   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1020
1021   // Create the symbol table sections.
1022   this->create_symtab_sections(input_objects, symtab, &off);
1023   if (!parameters->doing_static_link())
1024     this->assign_local_dynsym_offsets(input_objects);
1025
1026   // Process any symbol assignments from a linker script.  This must
1027   // be called after the symbol table has been finalized.
1028   this->script_options_->finalize_symbols(symtab, this);
1029
1030   // Create the .shstrtab section.
1031   Output_section* shstrtab_section = this->create_shstrtab();
1032
1033   // Set the file offsets of the rest of the non-data sections which
1034   // don't have to wait for the input sections.
1035   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1036
1037   // Now that all sections have been created, set the section indexes.
1038   shndx = this->set_section_indexes(shndx);
1039
1040   // Create the section table header.
1041   this->create_shdrs(&off);
1042
1043   // If there are no sections which require postprocessing, we can
1044   // handle the section names now, and avoid a resize later.
1045   if (!this->any_postprocessing_sections_)
1046     off = this->set_section_offsets(off,
1047                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1048
1049   file_header->set_section_info(this->section_headers_, shstrtab_section);
1050
1051   // Now we know exactly where everything goes in the output file
1052   // (except for non-allocated sections which require postprocessing).
1053   Output_data::layout_complete();
1054
1055   this->output_file_size_ = off;
1056
1057   return off;
1058 }
1059
1060 // Create a .note section for an executable or shared library.  This
1061 // records the version of gold used to create the binary.
1062
1063 void
1064 Layout::create_gold_note()
1065 {
1066   if (parameters->output_is_object())
1067     return;
1068
1069   // Authorities all agree that the values in a .note field should
1070   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1071   // they differ on what the alignment is for 64-bit binaries.
1072   // The GABI says unambiguously they take 8-byte alignment:
1073   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1074   // Other documentation says alignment should always be 4 bytes:
1075   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1076   // GNU ld and GNU readelf both support the latter (at least as of
1077   // version 2.16.91), and glibc always generates the latter for
1078   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1079   // here.
1080 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1081   const int size = parameters->get_size();
1082 #else
1083   const int size = 32;
1084 #endif
1085
1086   // The contents of the .note section.
1087   const char* name = "GNU";
1088   std::string desc(std::string("gold ") + gold::get_version_string());
1089   size_t namesz = strlen(name) + 1;
1090   size_t aligned_namesz = align_address(namesz, size / 8);
1091   size_t descsz = desc.length() + 1;
1092   size_t aligned_descsz = align_address(descsz, size / 8);
1093   const int note_type = 4;
1094
1095   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1096
1097   unsigned char buffer[128];
1098   gold_assert(sizeof buffer >= notesz);
1099   memset(buffer, 0, notesz);
1100
1101   bool is_big_endian = parameters->is_big_endian();
1102
1103   if (size == 32)
1104     {
1105       if (!is_big_endian)
1106         {
1107           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1108           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1109           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1110         }
1111       else
1112         {
1113           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1114           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1115           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1116         }
1117     }
1118   else if (size == 64)
1119     {
1120       if (!is_big_endian)
1121         {
1122           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1123           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1124           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1125         }
1126       else
1127         {
1128           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1129           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1130           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1131         }
1132     }
1133   else
1134     gold_unreachable();
1135
1136   memcpy(buffer + 3 * (size / 8), name, namesz);
1137   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1138
1139   const char* note_name = this->namepool_.add(".note", false, NULL);
1140   Output_section* os = this->make_output_section(note_name,
1141                                                  elfcpp::SHT_NOTE,
1142                                                  0);
1143   Output_section_data* posd = new Output_data_const(buffer, notesz,
1144                                                     size / 8);
1145   os->add_output_section_data(posd);
1146 }
1147
1148 // Record whether the stack should be executable.  This can be set
1149 // from the command line using the -z execstack or -z noexecstack
1150 // options.  Otherwise, if any input file has a .note.GNU-stack
1151 // section with the SHF_EXECINSTR flag set, the stack should be
1152 // executable.  Otherwise, if at least one input file a
1153 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1154 // section, we use the target default for whether the stack should be
1155 // executable.  Otherwise, we don't generate a stack note.  When
1156 // generating a object file, we create a .note.GNU-stack section with
1157 // the appropriate marking.  When generating an executable or shared
1158 // library, we create a PT_GNU_STACK segment.
1159
1160 void
1161 Layout::create_executable_stack_info(const Target* target)
1162 {
1163   bool is_stack_executable;
1164   if (this->options_.is_execstack_set())
1165     is_stack_executable = this->options_.is_stack_executable();
1166   else if (!this->input_with_gnu_stack_note_)
1167     return;
1168   else
1169     {
1170       if (this->input_requires_executable_stack_)
1171         is_stack_executable = true;
1172       else if (this->input_without_gnu_stack_note_)
1173         is_stack_executable = target->is_default_stack_executable();
1174       else
1175         is_stack_executable = false;
1176     }
1177
1178   if (parameters->output_is_object())
1179     {
1180       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1181       elfcpp::Elf_Xword flags = 0;
1182       if (is_stack_executable)
1183         flags |= elfcpp::SHF_EXECINSTR;
1184       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1185     }
1186   else
1187     {
1188       if (this->script_options_->saw_phdrs_clause())
1189         return;
1190       int flags = elfcpp::PF_R | elfcpp::PF_W;
1191       if (is_stack_executable)
1192         flags |= elfcpp::PF_X;
1193       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1194     }
1195 }
1196
1197 // Return whether SEG1 should be before SEG2 in the output file.  This
1198 // is based entirely on the segment type and flags.  When this is
1199 // called the segment addresses has normally not yet been set.
1200
1201 bool
1202 Layout::segment_precedes(const Output_segment* seg1,
1203                          const Output_segment* seg2)
1204 {
1205   elfcpp::Elf_Word type1 = seg1->type();
1206   elfcpp::Elf_Word type2 = seg2->type();
1207
1208   // The single PT_PHDR segment is required to precede any loadable
1209   // segment.  We simply make it always first.
1210   if (type1 == elfcpp::PT_PHDR)
1211     {
1212       gold_assert(type2 != elfcpp::PT_PHDR);
1213       return true;
1214     }
1215   if (type2 == elfcpp::PT_PHDR)
1216     return false;
1217
1218   // The single PT_INTERP segment is required to precede any loadable
1219   // segment.  We simply make it always second.
1220   if (type1 == elfcpp::PT_INTERP)
1221     {
1222       gold_assert(type2 != elfcpp::PT_INTERP);
1223       return true;
1224     }
1225   if (type2 == elfcpp::PT_INTERP)
1226     return false;
1227
1228   // We then put PT_LOAD segments before any other segments.
1229   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1230     return true;
1231   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1232     return false;
1233
1234   // We put the PT_TLS segment last, because that is where the dynamic
1235   // linker expects to find it (this is just for efficiency; other
1236   // positions would also work correctly).
1237   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1238     return false;
1239   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1240     return true;
1241
1242   const elfcpp::Elf_Word flags1 = seg1->flags();
1243   const elfcpp::Elf_Word flags2 = seg2->flags();
1244
1245   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1246   // by the numeric segment type and flags values.  There should not
1247   // be more than one segment with the same type and flags.
1248   if (type1 != elfcpp::PT_LOAD)
1249     {
1250       if (type1 != type2)
1251         return type1 < type2;
1252       gold_assert(flags1 != flags2);
1253       return flags1 < flags2;
1254     }
1255
1256   // If the addresses are set already, sort by load address.
1257   if (seg1->are_addresses_set())
1258     {
1259       if (!seg2->are_addresses_set())
1260         return true;
1261
1262       unsigned int section_count1 = seg1->output_section_count();
1263       unsigned int section_count2 = seg2->output_section_count();
1264       if (section_count1 == 0 && section_count2 > 0)
1265         return true;
1266       if (section_count1 > 0 && section_count2 == 0)
1267         return false;
1268
1269       uint64_t paddr1 = seg1->first_section_load_address();
1270       uint64_t paddr2 = seg2->first_section_load_address();
1271       if (paddr1 != paddr2)
1272         return paddr1 < paddr2;
1273     }
1274   else if (seg2->are_addresses_set())
1275     return false;
1276
1277   // We sort PT_LOAD segments based on the flags.  Readonly segments
1278   // come before writable segments.  Then writable segments with data
1279   // come before writable segments without data.  Then executable
1280   // segments come before non-executable segments.  Then the unlikely
1281   // case of a non-readable segment comes before the normal case of a
1282   // readable segment.  If there are multiple segments with the same
1283   // type and flags, we require that the address be set, and we sort
1284   // by virtual address and then physical address.
1285   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1286     return (flags1 & elfcpp::PF_W) == 0;
1287   if ((flags1 & elfcpp::PF_W) != 0
1288       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1289     return seg1->has_any_data_sections();
1290   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1291     return (flags1 & elfcpp::PF_X) != 0;
1292   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1293     return (flags1 & elfcpp::PF_R) == 0;
1294
1295   // We shouldn't get here--we shouldn't create segments which we
1296   // can't distinguish.
1297   gold_unreachable();
1298 }
1299
1300 // Set the file offsets of all the segments, and all the sections they
1301 // contain.  They have all been created.  LOAD_SEG must be be laid out
1302 // first.  Return the offset of the data to follow.
1303
1304 off_t
1305 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1306                             unsigned int *pshndx)
1307 {
1308   // Sort them into the final order.
1309   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1310             Layout::Compare_segments());
1311
1312   // Find the PT_LOAD segments, and set their addresses and offsets
1313   // and their section's addresses and offsets.
1314   uint64_t addr;
1315   if (this->options_.user_set_Ttext())
1316     addr = this->options_.Ttext();
1317   else if (parameters->output_is_shared())
1318     addr = 0;
1319   else
1320     addr = target->default_text_segment_address();
1321   off_t off = 0;
1322
1323   // If LOAD_SEG is NULL, then the file header and segment headers
1324   // will not be loadable.  But they still need to be at offset 0 in
1325   // the file.  Set their offsets now.
1326   if (load_seg == NULL)
1327     {
1328       for (Data_list::iterator p = this->special_output_list_.begin();
1329            p != this->special_output_list_.end();
1330            ++p)
1331         {
1332           off = align_address(off, (*p)->addralign());
1333           (*p)->set_address_and_file_offset(0, off);
1334           off += (*p)->data_size();
1335         }
1336     }
1337
1338   bool was_readonly = false;
1339   for (Segment_list::iterator p = this->segment_list_.begin();
1340        p != this->segment_list_.end();
1341        ++p)
1342     {
1343       if ((*p)->type() == elfcpp::PT_LOAD)
1344         {
1345           if (load_seg != NULL && load_seg != *p)
1346             gold_unreachable();
1347           load_seg = NULL;
1348
1349           bool are_addresses_set = (*p)->are_addresses_set();
1350           if (are_addresses_set)
1351             {
1352               // When it comes to setting file offsets, we care about
1353               // the physical address.
1354               addr = (*p)->paddr();
1355             }
1356           else if (this->options_.user_set_Tdata()
1357                    && ((*p)->flags() & elfcpp::PF_W) != 0
1358                    && (!this->options_.user_set_Tbss()
1359                        || (*p)->has_any_data_sections()))
1360             {
1361               addr = this->options_.Tdata();
1362               are_addresses_set = true;
1363             }
1364           else if (this->options_.user_set_Tbss()
1365                    && ((*p)->flags() & elfcpp::PF_W) != 0
1366                    && !(*p)->has_any_data_sections())
1367             {
1368               addr = this->options_.Tbss();
1369               are_addresses_set = true;
1370             }
1371
1372           uint64_t orig_addr = addr;
1373           uint64_t orig_off = off;
1374
1375           uint64_t aligned_addr = 0;
1376           uint64_t abi_pagesize = target->abi_pagesize();
1377
1378           // FIXME: This should depend on the -n and -N options.
1379           (*p)->set_minimum_p_align(target->common_pagesize());
1380
1381           if (are_addresses_set)
1382             {
1383               // Adjust the file offset to the same address modulo the
1384               // page size.
1385               uint64_t unsigned_off = off;
1386               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1387                                       | (addr & (abi_pagesize - 1)));
1388               if (aligned_off < unsigned_off)
1389                 aligned_off += abi_pagesize;
1390               off = aligned_off;
1391             }
1392           else
1393             {
1394               // If the last segment was readonly, and this one is
1395               // not, then skip the address forward one page,
1396               // maintaining the same position within the page.  This
1397               // lets us store both segments overlapping on a single
1398               // page in the file, but the loader will put them on
1399               // different pages in memory.
1400
1401               addr = align_address(addr, (*p)->maximum_alignment());
1402               aligned_addr = addr;
1403
1404               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1405                 {
1406                   if ((addr & (abi_pagesize - 1)) != 0)
1407                     addr = addr + abi_pagesize;
1408                 }
1409
1410               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1411             }
1412
1413           unsigned int shndx_hold = *pshndx;
1414           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1415                                                           pshndx);
1416
1417           // Now that we know the size of this segment, we may be able
1418           // to save a page in memory, at the cost of wasting some
1419           // file space, by instead aligning to the start of a new
1420           // page.  Here we use the real machine page size rather than
1421           // the ABI mandated page size.
1422
1423           if (!are_addresses_set && aligned_addr != addr)
1424             {
1425               uint64_t common_pagesize = target->common_pagesize();
1426               uint64_t first_off = (common_pagesize
1427                                     - (aligned_addr
1428                                        & (common_pagesize - 1)));
1429               uint64_t last_off = new_addr & (common_pagesize - 1);
1430               if (first_off > 0
1431                   && last_off > 0
1432                   && ((aligned_addr & ~ (common_pagesize - 1))
1433                       != (new_addr & ~ (common_pagesize - 1)))
1434                   && first_off + last_off <= common_pagesize)
1435                 {
1436                   *pshndx = shndx_hold;
1437                   addr = align_address(aligned_addr, common_pagesize);
1438                   addr = align_address(addr, (*p)->maximum_alignment());
1439                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1440                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1441                                                          pshndx);
1442                 }
1443             }
1444
1445           addr = new_addr;
1446
1447           if (((*p)->flags() & elfcpp::PF_W) == 0)
1448             was_readonly = true;
1449         }
1450     }
1451
1452   // Handle the non-PT_LOAD segments, setting their offsets from their
1453   // section's offsets.
1454   for (Segment_list::iterator p = this->segment_list_.begin();
1455        p != this->segment_list_.end();
1456        ++p)
1457     {
1458       if ((*p)->type() != elfcpp::PT_LOAD)
1459         (*p)->set_offset();
1460     }
1461
1462   // Set the TLS offsets for each section in the PT_TLS segment.
1463   if (this->tls_segment_ != NULL)
1464     this->tls_segment_->set_tls_offsets();
1465
1466   return off;
1467 }
1468
1469 // Set the offsets of all the allocated sections when doing a
1470 // relocatable link.  This does the same jobs as set_segment_offsets,
1471 // only for a relocatable link.
1472
1473 off_t
1474 Layout::set_relocatable_section_offsets(Output_data* file_header,
1475                                         unsigned int *pshndx)
1476 {
1477   off_t off = 0;
1478
1479   file_header->set_address_and_file_offset(0, 0);
1480   off += file_header->data_size();
1481
1482   for (Section_list::iterator p = this->section_list_.begin();
1483        p != this->section_list_.end();
1484        ++p)
1485     {
1486       // We skip unallocated sections here, except that group sections
1487       // have to come first.
1488       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1489           && (*p)->type() != elfcpp::SHT_GROUP)
1490         continue;
1491
1492       off = align_address(off, (*p)->addralign());
1493
1494       // The linker script might have set the address.
1495       if (!(*p)->is_address_valid())
1496         (*p)->set_address(0);
1497       (*p)->set_file_offset(off);
1498       (*p)->finalize_data_size();
1499       off += (*p)->data_size();
1500
1501       (*p)->set_out_shndx(*pshndx);
1502       ++*pshndx;
1503     }
1504
1505   return off;
1506 }
1507
1508 // Set the file offset of all the sections not associated with a
1509 // segment.
1510
1511 off_t
1512 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1513 {
1514   for (Section_list::iterator p = this->unattached_section_list_.begin();
1515        p != this->unattached_section_list_.end();
1516        ++p)
1517     {
1518       // The symtab section is handled in create_symtab_sections.
1519       if (*p == this->symtab_section_)
1520         continue;
1521
1522       // If we've already set the data size, don't set it again.
1523       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1524         continue;
1525
1526       if (pass == BEFORE_INPUT_SECTIONS_PASS
1527           && (*p)->requires_postprocessing())
1528         {
1529           (*p)->create_postprocessing_buffer();
1530           this->any_postprocessing_sections_ = true;
1531         }
1532
1533       if (pass == BEFORE_INPUT_SECTIONS_PASS
1534           && (*p)->after_input_sections())
1535         continue;
1536       else if (pass == POSTPROCESSING_SECTIONS_PASS
1537                && (!(*p)->after_input_sections()
1538                    || (*p)->type() == elfcpp::SHT_STRTAB))
1539         continue;
1540       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1541                && (!(*p)->after_input_sections()
1542                    || (*p)->type() != elfcpp::SHT_STRTAB))
1543         continue;
1544
1545       off = align_address(off, (*p)->addralign());
1546       (*p)->set_file_offset(off);
1547       (*p)->finalize_data_size();
1548       off += (*p)->data_size();
1549
1550       // At this point the name must be set.
1551       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1552         this->namepool_.add((*p)->name(), false, NULL);
1553     }
1554   return off;
1555 }
1556
1557 // Set the section indexes of all the sections not associated with a
1558 // segment.
1559
1560 unsigned int
1561 Layout::set_section_indexes(unsigned int shndx)
1562 {
1563   const bool output_is_object = parameters->output_is_object();
1564   for (Section_list::iterator p = this->unattached_section_list_.begin();
1565        p != this->unattached_section_list_.end();
1566        ++p)
1567     {
1568       // In a relocatable link, we already did group sections.
1569       if (output_is_object
1570           && (*p)->type() == elfcpp::SHT_GROUP)
1571         continue;
1572
1573       (*p)->set_out_shndx(shndx);
1574       ++shndx;
1575     }
1576   return shndx;
1577 }
1578
1579 // Set the section addresses according to the linker script.  This is
1580 // only called when we see a SECTIONS clause.  This returns the
1581 // program segment which should hold the file header and segment
1582 // headers, if any.  It will return NULL if they should not be in a
1583 // segment.
1584
1585 Output_segment*
1586 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1587 {
1588   Script_sections* ss = this->script_options_->script_sections();
1589   gold_assert(ss->saw_sections_clause());
1590
1591   // Place each orphaned output section in the script.
1592   for (Section_list::iterator p = this->section_list_.begin();
1593        p != this->section_list_.end();
1594        ++p)
1595     {
1596       if (!(*p)->found_in_sections_clause())
1597         ss->place_orphan(*p);
1598     }
1599
1600   return this->script_options_->set_section_addresses(symtab, this);
1601 }
1602
1603 // Count the local symbols in the regular symbol table and the dynamic
1604 // symbol table, and build the respective string pools.
1605
1606 void
1607 Layout::count_local_symbols(const Task* task,
1608                             const Input_objects* input_objects)
1609 {
1610   // First, figure out an upper bound on the number of symbols we'll
1611   // be inserting into each pool.  This helps us create the pools with
1612   // the right size, to avoid unnecessary hashtable resizing.
1613   unsigned int symbol_count = 0;
1614   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1615        p != input_objects->relobj_end();
1616        ++p)
1617     symbol_count += (*p)->local_symbol_count();
1618
1619   // Go from "upper bound" to "estimate."  We overcount for two
1620   // reasons: we double-count symbols that occur in more than one
1621   // object file, and we count symbols that are dropped from the
1622   // output.  Add it all together and assume we overcount by 100%.
1623   symbol_count /= 2;
1624
1625   // We assume all symbols will go into both the sympool and dynpool.
1626   this->sympool_.reserve(symbol_count);
1627   this->dynpool_.reserve(symbol_count);
1628
1629   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1630        p != input_objects->relobj_end();
1631        ++p)
1632     {
1633       Task_lock_obj<Object> tlo(task, *p);
1634       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1635     }
1636 }
1637
1638 // Create the symbol table sections.  Here we also set the final
1639 // values of the symbols.  At this point all the loadable sections are
1640 // fully laid out.
1641
1642 void
1643 Layout::create_symtab_sections(const Input_objects* input_objects,
1644                                Symbol_table* symtab,
1645                                off_t* poff)
1646 {
1647   int symsize;
1648   unsigned int align;
1649   if (parameters->get_size() == 32)
1650     {
1651       symsize = elfcpp::Elf_sizes<32>::sym_size;
1652       align = 4;
1653     }
1654   else if (parameters->get_size() == 64)
1655     {
1656       symsize = elfcpp::Elf_sizes<64>::sym_size;
1657       align = 8;
1658     }
1659   else
1660     gold_unreachable();
1661
1662   off_t off = *poff;
1663   off = align_address(off, align);
1664   off_t startoff = off;
1665
1666   // Save space for the dummy symbol at the start of the section.  We
1667   // never bother to write this out--it will just be left as zero.
1668   off += symsize;
1669   unsigned int local_symbol_index = 1;
1670
1671   // Add STT_SECTION symbols for each Output section which needs one.
1672   for (Section_list::iterator p = this->section_list_.begin();
1673        p != this->section_list_.end();
1674        ++p)
1675     {
1676       if (!(*p)->needs_symtab_index())
1677         (*p)->set_symtab_index(-1U);
1678       else
1679         {
1680           (*p)->set_symtab_index(local_symbol_index);
1681           ++local_symbol_index;
1682           off += symsize;
1683         }
1684     }
1685
1686   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1687        p != input_objects->relobj_end();
1688        ++p)
1689     {
1690       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1691                                                         off);
1692       off += (index - local_symbol_index) * symsize;
1693       local_symbol_index = index;
1694     }
1695
1696   unsigned int local_symcount = local_symbol_index;
1697   gold_assert(local_symcount * symsize == off - startoff);
1698
1699   off_t dynoff;
1700   size_t dyn_global_index;
1701   size_t dyncount;
1702   if (this->dynsym_section_ == NULL)
1703     {
1704       dynoff = 0;
1705       dyn_global_index = 0;
1706       dyncount = 0;
1707     }
1708   else
1709     {
1710       dyn_global_index = this->dynsym_section_->info();
1711       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1712       dynoff = this->dynsym_section_->offset() + locsize;
1713       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1714       gold_assert(static_cast<off_t>(dyncount * symsize)
1715                   == this->dynsym_section_->data_size() - locsize);
1716     }
1717
1718   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1719                          &this->sympool_, &local_symcount);
1720
1721   if (!parameters->strip_all())
1722     {
1723       this->sympool_.set_string_offsets();
1724
1725       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1726       Output_section* osymtab = this->make_output_section(symtab_name,
1727                                                           elfcpp::SHT_SYMTAB,
1728                                                           0);
1729       this->symtab_section_ = osymtab;
1730
1731       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1732                                                              align);
1733       osymtab->add_output_section_data(pos);
1734
1735       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1736       Output_section* ostrtab = this->make_output_section(strtab_name,
1737                                                           elfcpp::SHT_STRTAB,
1738                                                           0);
1739
1740       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1741       ostrtab->add_output_section_data(pstr);
1742
1743       osymtab->set_file_offset(startoff);
1744       osymtab->finalize_data_size();
1745       osymtab->set_link_section(ostrtab);
1746       osymtab->set_info(local_symcount);
1747       osymtab->set_entsize(symsize);
1748
1749       *poff = off;
1750     }
1751 }
1752
1753 // Create the .shstrtab section, which holds the names of the
1754 // sections.  At the time this is called, we have created all the
1755 // output sections except .shstrtab itself.
1756
1757 Output_section*
1758 Layout::create_shstrtab()
1759 {
1760   // FIXME: We don't need to create a .shstrtab section if we are
1761   // stripping everything.
1762
1763   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1764
1765   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1766
1767   // We can't write out this section until we've set all the section
1768   // names, and we don't set the names of compressed output sections
1769   // until relocations are complete.
1770   os->set_after_input_sections();
1771
1772   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1773   os->add_output_section_data(posd);
1774
1775   return os;
1776 }
1777
1778 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1779 // offset.
1780
1781 void
1782 Layout::create_shdrs(off_t* poff)
1783 {
1784   Output_section_headers* oshdrs;
1785   oshdrs = new Output_section_headers(this,
1786                                       &this->segment_list_,
1787                                       &this->section_list_,
1788                                       &this->unattached_section_list_,
1789                                       &this->namepool_);
1790   off_t off = align_address(*poff, oshdrs->addralign());
1791   oshdrs->set_address_and_file_offset(0, off);
1792   off += oshdrs->data_size();
1793   *poff = off;
1794   this->section_headers_ = oshdrs;
1795 }
1796
1797 // Create the dynamic symbol table.
1798
1799 void
1800 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1801                               Symbol_table* symtab,
1802                               Output_section **pdynstr,
1803                               unsigned int* plocal_dynamic_count,
1804                               std::vector<Symbol*>* pdynamic_symbols,
1805                               Versions* pversions)
1806 {
1807   // Count all the symbols in the dynamic symbol table, and set the
1808   // dynamic symbol indexes.
1809
1810   // Skip symbol 0, which is always all zeroes.
1811   unsigned int index = 1;
1812
1813   // Add STT_SECTION symbols for each Output section which needs one.
1814   for (Section_list::iterator p = this->section_list_.begin();
1815        p != this->section_list_.end();
1816        ++p)
1817     {
1818       if (!(*p)->needs_dynsym_index())
1819         (*p)->set_dynsym_index(-1U);
1820       else
1821         {
1822           (*p)->set_dynsym_index(index);
1823           ++index;
1824         }
1825     }
1826
1827   // Count the local symbols that need to go in the dynamic symbol table,
1828   // and set the dynamic symbol indexes.
1829   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1830        p != input_objects->relobj_end();
1831        ++p)
1832     {
1833       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1834       index = new_index;
1835     }
1836
1837   unsigned int local_symcount = index;
1838   *plocal_dynamic_count = local_symcount;
1839
1840   // FIXME: We have to tell set_dynsym_indexes whether the
1841   // -E/--export-dynamic option was used.
1842   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1843                                      &this->dynpool_, pversions);
1844
1845   int symsize;
1846   unsigned int align;
1847   const int size = parameters->get_size();
1848   if (size == 32)
1849     {
1850       symsize = elfcpp::Elf_sizes<32>::sym_size;
1851       align = 4;
1852     }
1853   else if (size == 64)
1854     {
1855       symsize = elfcpp::Elf_sizes<64>::sym_size;
1856       align = 8;
1857     }
1858   else
1859     gold_unreachable();
1860
1861   // Create the dynamic symbol table section.
1862
1863   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1864                                                        elfcpp::SHT_DYNSYM,
1865                                                        elfcpp::SHF_ALLOC,
1866                                                        false);
1867
1868   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1869                                                            align);
1870   dynsym->add_output_section_data(odata);
1871
1872   dynsym->set_info(local_symcount);
1873   dynsym->set_entsize(symsize);
1874   dynsym->set_addralign(align);
1875
1876   this->dynsym_section_ = dynsym;
1877
1878   Output_data_dynamic* const odyn = this->dynamic_data_;
1879   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1880   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1881
1882   // Create the dynamic string table section.
1883
1884   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1885                                                        elfcpp::SHT_STRTAB,
1886                                                        elfcpp::SHF_ALLOC,
1887                                                        false);
1888
1889   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1890   dynstr->add_output_section_data(strdata);
1891
1892   dynsym->set_link_section(dynstr);
1893   this->dynamic_section_->set_link_section(dynstr);
1894
1895   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1896   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1897
1898   *pdynstr = dynstr;
1899
1900   // Create the hash tables.
1901
1902   // FIXME: We need an option to create a GNU hash table.
1903
1904   unsigned char* phash;
1905   unsigned int hashlen;
1906   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1907                                 &phash, &hashlen);
1908
1909   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1910                                                         elfcpp::SHT_HASH,
1911                                                         elfcpp::SHF_ALLOC,
1912                                                         false);
1913
1914   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1915                                                                hashlen,
1916                                                                align);
1917   hashsec->add_output_section_data(hashdata);
1918
1919   hashsec->set_link_section(dynsym);
1920   hashsec->set_entsize(4);
1921
1922   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1923 }
1924
1925 // Assign offsets to each local portion of the dynamic symbol table.
1926
1927 void
1928 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1929 {
1930   Output_section* dynsym = this->dynsym_section_;
1931   gold_assert(dynsym != NULL);
1932
1933   off_t off = dynsym->offset();
1934
1935   // Skip the dummy symbol at the start of the section.
1936   off += dynsym->entsize();
1937
1938   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1939        p != input_objects->relobj_end();
1940        ++p)
1941     {
1942       unsigned int count = (*p)->set_local_dynsym_offset(off);
1943       off += count * dynsym->entsize();
1944     }
1945 }
1946
1947 // Create the version sections.
1948
1949 void
1950 Layout::create_version_sections(const Versions* versions,
1951                                 const Symbol_table* symtab,
1952                                 unsigned int local_symcount,
1953                                 const std::vector<Symbol*>& dynamic_symbols,
1954                                 const Output_section* dynstr)
1955 {
1956   if (!versions->any_defs() && !versions->any_needs())
1957     return;
1958
1959   if (parameters->get_size() == 32)
1960     {
1961       if (parameters->is_big_endian())
1962         {
1963 #ifdef HAVE_TARGET_32_BIG
1964           this->sized_create_version_sections
1965               SELECT_SIZE_ENDIAN_NAME(32, true)(
1966                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1967                   SELECT_SIZE_ENDIAN(32, true));
1968 #else
1969           gold_unreachable();
1970 #endif
1971         }
1972       else
1973         {
1974 #ifdef HAVE_TARGET_32_LITTLE
1975           this->sized_create_version_sections
1976               SELECT_SIZE_ENDIAN_NAME(32, false)(
1977                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1978                   SELECT_SIZE_ENDIAN(32, false));
1979 #else
1980           gold_unreachable();
1981 #endif
1982         }
1983     }
1984   else if (parameters->get_size() == 64)
1985     {
1986       if (parameters->is_big_endian())
1987         {
1988 #ifdef HAVE_TARGET_64_BIG
1989           this->sized_create_version_sections
1990               SELECT_SIZE_ENDIAN_NAME(64, true)(
1991                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1992                   SELECT_SIZE_ENDIAN(64, true));
1993 #else
1994           gold_unreachable();
1995 #endif
1996         }
1997       else
1998         {
1999 #ifdef HAVE_TARGET_64_LITTLE
2000           this->sized_create_version_sections
2001               SELECT_SIZE_ENDIAN_NAME(64, false)(
2002                   versions, symtab, local_symcount, dynamic_symbols, dynstr
2003                   SELECT_SIZE_ENDIAN(64, false));
2004 #else
2005           gold_unreachable();
2006 #endif
2007         }
2008     }
2009   else
2010     gold_unreachable();
2011 }
2012
2013 // Create the version sections, sized version.
2014
2015 template<int size, bool big_endian>
2016 void
2017 Layout::sized_create_version_sections(
2018     const Versions* versions,
2019     const Symbol_table* symtab,
2020     unsigned int local_symcount,
2021     const std::vector<Symbol*>& dynamic_symbols,
2022     const Output_section* dynstr
2023     ACCEPT_SIZE_ENDIAN)
2024 {
2025   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2026                                                      elfcpp::SHT_GNU_versym,
2027                                                      elfcpp::SHF_ALLOC,
2028                                                      false);
2029
2030   unsigned char* vbuf;
2031   unsigned int vsize;
2032   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2033       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2034       SELECT_SIZE_ENDIAN(size, big_endian));
2035
2036   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2037
2038   vsec->add_output_section_data(vdata);
2039   vsec->set_entsize(2);
2040   vsec->set_link_section(this->dynsym_section_);
2041
2042   Output_data_dynamic* const odyn = this->dynamic_data_;
2043   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2044
2045   if (versions->any_defs())
2046     {
2047       Output_section* vdsec;
2048       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2049                                          elfcpp::SHT_GNU_verdef,
2050                                          elfcpp::SHF_ALLOC,
2051                                          false);
2052
2053       unsigned char* vdbuf;
2054       unsigned int vdsize;
2055       unsigned int vdentries;
2056       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2057           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2058           SELECT_SIZE_ENDIAN(size, big_endian));
2059
2060       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2061                                                                  vdsize,
2062                                                                  4);
2063
2064       vdsec->add_output_section_data(vddata);
2065       vdsec->set_link_section(dynstr);
2066       vdsec->set_info(vdentries);
2067
2068       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2069       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2070     }
2071
2072   if (versions->any_needs())
2073     {
2074       Output_section* vnsec;
2075       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2076                                           elfcpp::SHT_GNU_verneed,
2077                                           elfcpp::SHF_ALLOC,
2078                                           false);
2079
2080       unsigned char* vnbuf;
2081       unsigned int vnsize;
2082       unsigned int vnentries;
2083       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2084         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2085          SELECT_SIZE_ENDIAN(size, big_endian));
2086
2087       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2088                                                                  vnsize,
2089                                                                  4);
2090
2091       vnsec->add_output_section_data(vndata);
2092       vnsec->set_link_section(dynstr);
2093       vnsec->set_info(vnentries);
2094
2095       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2096       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2097     }
2098 }
2099
2100 // Create the .interp section and PT_INTERP segment.
2101
2102 void
2103 Layout::create_interp(const Target* target)
2104 {
2105   const char* interp = this->options_.dynamic_linker();
2106   if (interp == NULL)
2107     {
2108       interp = target->dynamic_linker();
2109       gold_assert(interp != NULL);
2110     }
2111
2112   size_t len = strlen(interp) + 1;
2113
2114   Output_section_data* odata = new Output_data_const(interp, len, 1);
2115
2116   Output_section* osec = this->choose_output_section(NULL, ".interp",
2117                                                      elfcpp::SHT_PROGBITS,
2118                                                      elfcpp::SHF_ALLOC,
2119                                                      false);
2120   osec->add_output_section_data(odata);
2121
2122   if (!this->script_options_->saw_phdrs_clause())
2123     {
2124       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2125                                                        elfcpp::PF_R);
2126       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2127     }
2128 }
2129
2130 // Finish the .dynamic section and PT_DYNAMIC segment.
2131
2132 void
2133 Layout::finish_dynamic_section(const Input_objects* input_objects,
2134                                const Symbol_table* symtab)
2135 {
2136   if (!this->script_options_->saw_phdrs_clause())
2137     {
2138       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2139                                                        (elfcpp::PF_R
2140                                                         | elfcpp::PF_W));
2141       oseg->add_initial_output_section(this->dynamic_section_,
2142                                        elfcpp::PF_R | elfcpp::PF_W);
2143     }
2144
2145   Output_data_dynamic* const odyn = this->dynamic_data_;
2146
2147   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2148        p != input_objects->dynobj_end();
2149        ++p)
2150     {
2151       // FIXME: Handle --as-needed.
2152       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2153     }
2154
2155   if (parameters->output_is_shared())
2156     {
2157       const char* soname = this->options_.soname();
2158       if (soname != NULL)
2159         odyn->add_string(elfcpp::DT_SONAME, soname);
2160     }
2161
2162   // FIXME: Support --init and --fini.
2163   Symbol* sym = symtab->lookup("_init");
2164   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2165     odyn->add_symbol(elfcpp::DT_INIT, sym);
2166
2167   sym = symtab->lookup("_fini");
2168   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2169     odyn->add_symbol(elfcpp::DT_FINI, sym);
2170
2171   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2172
2173   // Add a DT_RPATH entry if needed.
2174   const General_options::Dir_list& rpath(this->options_.rpath());
2175   if (!rpath.empty())
2176     {
2177       std::string rpath_val;
2178       for (General_options::Dir_list::const_iterator p = rpath.begin();
2179            p != rpath.end();
2180            ++p)
2181         {
2182           if (rpath_val.empty())
2183             rpath_val = p->name();
2184           else
2185             {
2186               // Eliminate duplicates.
2187               General_options::Dir_list::const_iterator q;
2188               for (q = rpath.begin(); q != p; ++q)
2189                 if (q->name() == p->name())
2190                   break;
2191               if (q == p)
2192                 {
2193                   rpath_val += ':';
2194                   rpath_val += p->name();
2195                 }
2196             }
2197         }
2198
2199       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2200     }
2201
2202   // Look for text segments that have dynamic relocations.
2203   bool have_textrel = false;
2204   if (!this->script_options_->saw_sections_clause())
2205     {
2206       for (Segment_list::const_iterator p = this->segment_list_.begin();
2207            p != this->segment_list_.end();
2208            ++p)
2209         {
2210           if (((*p)->flags() & elfcpp::PF_W) == 0
2211               && (*p)->dynamic_reloc_count() > 0)
2212             {
2213               have_textrel = true;
2214               break;
2215             }
2216         }
2217     }
2218   else
2219     {
2220       // We don't know the section -> segment mapping, so we are
2221       // conservative and just look for readonly sections with
2222       // relocations.  If those sections wind up in writable segments,
2223       // then we have created an unnecessary DT_TEXTREL entry.
2224       for (Section_list::const_iterator p = this->section_list_.begin();
2225            p != this->section_list_.end();
2226            ++p)
2227         {
2228           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2229               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2230               && ((*p)->dynamic_reloc_count() > 0))
2231             {
2232               have_textrel = true;
2233               break;
2234             }
2235         }
2236     }
2237
2238   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2239   // post-link tools can easily modify these flags if desired.
2240   unsigned int flags = 0;
2241   if (have_textrel)
2242     {
2243       // Add a DT_TEXTREL for compatibility with older loaders.
2244       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2245       flags |= elfcpp::DF_TEXTREL;
2246     }
2247   if (parameters->output_is_shared() && this->has_static_tls())
2248     flags |= elfcpp::DF_STATIC_TLS;
2249   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2250 }
2251
2252 // The mapping of .gnu.linkonce section names to real section names.
2253
2254 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2255 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2256 {
2257   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2258   MAPPING_INIT("t", ".text"),
2259   MAPPING_INIT("r", ".rodata"),
2260   MAPPING_INIT("d", ".data"),
2261   MAPPING_INIT("b", ".bss"),
2262   MAPPING_INIT("s", ".sdata"),
2263   MAPPING_INIT("sb", ".sbss"),
2264   MAPPING_INIT("s2", ".sdata2"),
2265   MAPPING_INIT("sb2", ".sbss2"),
2266   MAPPING_INIT("wi", ".debug_info"),
2267   MAPPING_INIT("td", ".tdata"),
2268   MAPPING_INIT("tb", ".tbss"),
2269   MAPPING_INIT("lr", ".lrodata"),
2270   MAPPING_INIT("l", ".ldata"),
2271   MAPPING_INIT("lb", ".lbss"),
2272 };
2273 #undef MAPPING_INIT
2274
2275 const int Layout::linkonce_mapping_count =
2276   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2277
2278 // Return the name of the output section to use for a .gnu.linkonce
2279 // section.  This is based on the default ELF linker script of the old
2280 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2281 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2282 // initialized to the length of NAME.
2283
2284 const char*
2285 Layout::linkonce_output_name(const char* name, size_t *plen)
2286 {
2287   const char* s = name + sizeof(".gnu.linkonce") - 1;
2288   if (*s != '.')
2289     return name;
2290   ++s;
2291   const Linkonce_mapping* plm = linkonce_mapping;
2292   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2293     {
2294       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2295         {
2296           *plen = plm->tolen;
2297           return plm->to;
2298         }
2299     }
2300   return name;
2301 }
2302
2303 // Choose the output section name to use given an input section name.
2304 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2305 // length of NAME.
2306
2307 const char*
2308 Layout::output_section_name(const char* name, size_t* plen)
2309 {
2310   if (Layout::is_linkonce(name))
2311     {
2312       // .gnu.linkonce sections are laid out as though they were named
2313       // for the sections are placed into.
2314       return Layout::linkonce_output_name(name, plen);
2315     }
2316
2317   // gcc 4.3 generates the following sorts of section names when it
2318   // needs a section name specific to a function:
2319   //   .text.FN
2320   //   .rodata.FN
2321   //   .sdata2.FN
2322   //   .data.FN
2323   //   .data.rel.FN
2324   //   .data.rel.local.FN
2325   //   .data.rel.ro.FN
2326   //   .data.rel.ro.local.FN
2327   //   .sdata.FN
2328   //   .bss.FN
2329   //   .sbss.FN
2330   //   .tdata.FN
2331   //   .tbss.FN
2332
2333   // The GNU linker maps all of those to the part before the .FN,
2334   // except that .data.rel.local.FN is mapped to .data, and
2335   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2336   // beginning with .data.rel.ro.local are grouped together.
2337
2338   // For an anonymous namespace, the string FN can contain a '.'.
2339
2340   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2341   // GNU linker maps to .rodata.
2342
2343   // The .data.rel.ro sections enable a security feature triggered by
2344   // the -z relro option.  Section which need to be relocated at
2345   // program startup time but which may be readonly after startup are
2346   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2347   // segment.  The dynamic linker will make that segment writable,
2348   // perform relocations, and then make it read-only.  FIXME: We do
2349   // not yet implement this optimization.
2350
2351   // It is hard to handle this in a principled way.
2352
2353   // These are the rules we follow:
2354
2355   // If the section name has no initial '.', or no dot other than an
2356   // initial '.', we use the name unchanged (i.e., "mysection" and
2357   // ".text" are unchanged).
2358
2359   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2360
2361   // Otherwise, we drop the second '.' and everything that comes after
2362   // it (i.e., ".text.XXX" becomes ".text").
2363
2364   const char* s = name;
2365   if (*s != '.')
2366     return name;
2367   ++s;
2368   const char* sdot = strchr(s, '.');
2369   if (sdot == NULL)
2370     return name;
2371
2372   const char* const data_rel_ro = ".data.rel.ro";
2373   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2374     {
2375       *plen = strlen(data_rel_ro);
2376       return data_rel_ro;
2377     }
2378
2379   *plen = sdot - name;
2380   return name;
2381 }
2382
2383 // Record the signature of a comdat section, and return whether to
2384 // include it in the link.  If GROUP is true, this is a regular
2385 // section group.  If GROUP is false, this is a group signature
2386 // derived from the name of a linkonce section.  We want linkonce
2387 // signatures and group signatures to block each other, but we don't
2388 // want a linkonce signature to block another linkonce signature.
2389
2390 bool
2391 Layout::add_comdat(const char* signature, bool group)
2392 {
2393   std::string sig(signature);
2394   std::pair<Signatures::iterator, bool> ins(
2395     this->signatures_.insert(std::make_pair(sig, group)));
2396
2397   if (ins.second)
2398     {
2399       // This is the first time we've seen this signature.
2400       return true;
2401     }
2402
2403   if (ins.first->second)
2404     {
2405       // We've already seen a real section group with this signature.
2406       return false;
2407     }
2408   else if (group)
2409     {
2410       // This is a real section group, and we've already seen a
2411       // linkonce section with this signature.  Record that we've seen
2412       // a section group, and don't include this section group.
2413       ins.first->second = true;
2414       return false;
2415     }
2416   else
2417     {
2418       // We've already seen a linkonce section and this is a linkonce
2419       // section.  These don't block each other--this may be the same
2420       // symbol name with different section types.
2421       return true;
2422     }
2423 }
2424
2425 // Store the allocated sections into the section list.
2426
2427 void
2428 Layout::get_allocated_sections(Section_list* section_list) const
2429 {
2430   for (Section_list::const_iterator p = this->section_list_.begin();
2431        p != this->section_list_.end();
2432        ++p)
2433     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2434       section_list->push_back(*p);
2435 }
2436
2437 // Create an output segment.
2438
2439 Output_segment*
2440 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2441 {
2442   gold_assert(!parameters->output_is_object());
2443   Output_segment* oseg = new Output_segment(type, flags);
2444   this->segment_list_.push_back(oseg);
2445   return oseg;
2446 }
2447
2448 // Write out the Output_sections.  Most won't have anything to write,
2449 // since most of the data will come from input sections which are
2450 // handled elsewhere.  But some Output_sections do have Output_data.
2451
2452 void
2453 Layout::write_output_sections(Output_file* of) const
2454 {
2455   for (Section_list::const_iterator p = this->section_list_.begin();
2456        p != this->section_list_.end();
2457        ++p)
2458     {
2459       if (!(*p)->after_input_sections())
2460         (*p)->write(of);
2461     }
2462 }
2463
2464 // Write out data not associated with a section or the symbol table.
2465
2466 void
2467 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2468 {
2469   if (!parameters->strip_all())
2470     {
2471       const Output_section* symtab_section = this->symtab_section_;
2472       for (Section_list::const_iterator p = this->section_list_.begin();
2473            p != this->section_list_.end();
2474            ++p)
2475         {
2476           if ((*p)->needs_symtab_index())
2477             {
2478               gold_assert(symtab_section != NULL);
2479               unsigned int index = (*p)->symtab_index();
2480               gold_assert(index > 0 && index != -1U);
2481               off_t off = (symtab_section->offset()
2482                            + index * symtab_section->entsize());
2483               symtab->write_section_symbol(*p, of, off);
2484             }
2485         }
2486     }
2487
2488   const Output_section* dynsym_section = this->dynsym_section_;
2489   for (Section_list::const_iterator p = this->section_list_.begin();
2490        p != this->section_list_.end();
2491        ++p)
2492     {
2493       if ((*p)->needs_dynsym_index())
2494         {
2495           gold_assert(dynsym_section != NULL);
2496           unsigned int index = (*p)->dynsym_index();
2497           gold_assert(index > 0 && index != -1U);
2498           off_t off = (dynsym_section->offset()
2499                        + index * dynsym_section->entsize());
2500           symtab->write_section_symbol(*p, of, off);
2501         }
2502     }
2503
2504   // Write out the Output_data which are not in an Output_section.
2505   for (Data_list::const_iterator p = this->special_output_list_.begin();
2506        p != this->special_output_list_.end();
2507        ++p)
2508     (*p)->write(of);
2509 }
2510
2511 // Write out the Output_sections which can only be written after the
2512 // input sections are complete.
2513
2514 void
2515 Layout::write_sections_after_input_sections(Output_file* of)
2516 {
2517   // Determine the final section offsets, and thus the final output
2518   // file size.  Note we finalize the .shstrab last, to allow the
2519   // after_input_section sections to modify their section-names before
2520   // writing.
2521   if (this->any_postprocessing_sections_)
2522     {
2523       off_t off = this->output_file_size_;
2524       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2525       
2526       // Now that we've finalized the names, we can finalize the shstrab.
2527       off =
2528         this->set_section_offsets(off,
2529                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2530
2531       if (off > this->output_file_size_)
2532         {
2533           of->resize(off);
2534           this->output_file_size_ = off;
2535         }
2536     }
2537
2538   for (Section_list::const_iterator p = this->section_list_.begin();
2539        p != this->section_list_.end();
2540        ++p)
2541     {
2542       if ((*p)->after_input_sections())
2543         (*p)->write(of);
2544     }
2545
2546   this->section_headers_->write(of);
2547 }
2548
2549 // Write out a binary file.  This is called after the link is
2550 // complete.  IN is the temporary output file we used to generate the
2551 // ELF code.  We simply walk through the segments, read them from
2552 // their file offset in IN, and write them to their load address in
2553 // the output file.  FIXME: with a bit more work, we could support
2554 // S-records and/or Intel hex format here.
2555
2556 void
2557 Layout::write_binary(Output_file* in) const
2558 {
2559   gold_assert(this->options_.oformat()
2560               == General_options::OBJECT_FORMAT_BINARY);
2561
2562   // Get the size of the binary file.
2563   uint64_t max_load_address = 0;
2564   for (Segment_list::const_iterator p = this->segment_list_.begin();
2565        p != this->segment_list_.end();
2566        ++p)
2567     {
2568       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2569         {
2570           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2571           if (max_paddr > max_load_address)
2572             max_load_address = max_paddr;
2573         }
2574     }
2575
2576   Output_file out(parameters->output_file_name());
2577   out.open(max_load_address);
2578
2579   for (Segment_list::const_iterator p = this->segment_list_.begin();
2580        p != this->segment_list_.end();
2581        ++p)
2582     {
2583       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2584         {
2585           const unsigned char* vin = in->get_input_view((*p)->offset(),
2586                                                         (*p)->filesz());
2587           unsigned char* vout = out.get_output_view((*p)->paddr(),
2588                                                     (*p)->filesz());
2589           memcpy(vout, vin, (*p)->filesz());
2590           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2591           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2592         }
2593     }
2594
2595   out.close();
2596 }
2597
2598 // Print statistical information to stderr.  This is used for --stats.
2599
2600 void
2601 Layout::print_stats() const
2602 {
2603   this->namepool_.print_stats("section name pool");
2604   this->sympool_.print_stats("output symbol name pool");
2605   this->dynpool_.print_stats("dynamic name pool");
2606
2607   for (Section_list::const_iterator p = this->section_list_.begin();
2608        p != this->section_list_.end();
2609        ++p)
2610     (*p)->print_merge_stats();
2611 }
2612
2613 // Write_sections_task methods.
2614
2615 // We can always run this task.
2616
2617 Task_token*
2618 Write_sections_task::is_runnable()
2619 {
2620   return NULL;
2621 }
2622
2623 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2624 // when finished.
2625
2626 void
2627 Write_sections_task::locks(Task_locker* tl)
2628 {
2629   tl->add(this, this->output_sections_blocker_);
2630   tl->add(this, this->final_blocker_);
2631 }
2632
2633 // Run the task--write out the data.
2634
2635 void
2636 Write_sections_task::run(Workqueue*)
2637 {
2638   this->layout_->write_output_sections(this->of_);
2639 }
2640
2641 // Write_data_task methods.
2642
2643 // We can always run this task.
2644
2645 Task_token*
2646 Write_data_task::is_runnable()
2647 {
2648   return NULL;
2649 }
2650
2651 // We need to unlock FINAL_BLOCKER when finished.
2652
2653 void
2654 Write_data_task::locks(Task_locker* tl)
2655 {
2656   tl->add(this, this->final_blocker_);
2657 }
2658
2659 // Run the task--write out the data.
2660
2661 void
2662 Write_data_task::run(Workqueue*)
2663 {
2664   this->layout_->write_data(this->symtab_, this->of_);
2665 }
2666
2667 // Write_symbols_task methods.
2668
2669 // We can always run this task.
2670
2671 Task_token*
2672 Write_symbols_task::is_runnable()
2673 {
2674   return NULL;
2675 }
2676
2677 // We need to unlock FINAL_BLOCKER when finished.
2678
2679 void
2680 Write_symbols_task::locks(Task_locker* tl)
2681 {
2682   tl->add(this, this->final_blocker_);
2683 }
2684
2685 // Run the task--write out the symbols.
2686
2687 void
2688 Write_symbols_task::run(Workqueue*)
2689 {
2690   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2691                                this->dynpool_, this->of_);
2692 }
2693
2694 // Write_after_input_sections_task methods.
2695
2696 // We can only run this task after the input sections have completed.
2697
2698 Task_token*
2699 Write_after_input_sections_task::is_runnable()
2700 {
2701   if (this->input_sections_blocker_->is_blocked())
2702     return this->input_sections_blocker_;
2703   return NULL;
2704 }
2705
2706 // We need to unlock FINAL_BLOCKER when finished.
2707
2708 void
2709 Write_after_input_sections_task::locks(Task_locker* tl)
2710 {
2711   tl->add(this, this->final_blocker_);
2712 }
2713
2714 // Run the task.
2715
2716 void
2717 Write_after_input_sections_task::run(Workqueue*)
2718 {
2719   this->layout_->write_sections_after_input_sections(this->of_);
2720 }
2721
2722 // Close_task_runner methods.
2723
2724 // Run the task--close the file.
2725
2726 void
2727 Close_task_runner::run(Workqueue*, const Task*)
2728 {
2729   // If we've been asked to create a binary file, we do so here.
2730   if (this->options_->oformat() != General_options::OBJECT_FORMAT_ELF)
2731     this->layout_->write_binary(this->of_);
2732
2733   this->of_->close();
2734 }
2735
2736 // Instantiate the templates we need.  We could use the configure
2737 // script to restrict this to only the ones for implemented targets.
2738
2739 #ifdef HAVE_TARGET_32_LITTLE
2740 template
2741 Output_section*
2742 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2743                           const char* name,
2744                           const elfcpp::Shdr<32, false>& shdr,
2745                           unsigned int, unsigned int, off_t*);
2746 #endif
2747
2748 #ifdef HAVE_TARGET_32_BIG
2749 template
2750 Output_section*
2751 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2752                          const char* name,
2753                          const elfcpp::Shdr<32, true>& shdr,
2754                          unsigned int, unsigned int, off_t*);
2755 #endif
2756
2757 #ifdef HAVE_TARGET_64_LITTLE
2758 template
2759 Output_section*
2760 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2761                           const char* name,
2762                           const elfcpp::Shdr<64, false>& shdr,
2763                           unsigned int, unsigned int, off_t*);
2764 #endif
2765
2766 #ifdef HAVE_TARGET_64_BIG
2767 template
2768 Output_section*
2769 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2770                          const char* name,
2771                          const elfcpp::Shdr<64, true>& shdr,
2772                          unsigned int, unsigned int, off_t*);
2773 #endif
2774
2775 #ifdef HAVE_TARGET_32_LITTLE
2776 template
2777 Output_section*
2778 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2779                                 unsigned int reloc_shndx,
2780                                 const elfcpp::Shdr<32, false>& shdr,
2781                                 Output_section* data_section,
2782                                 Relocatable_relocs* rr);
2783 #endif
2784
2785 #ifdef HAVE_TARGET_32_BIG
2786 template
2787 Output_section*
2788 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2789                                unsigned int reloc_shndx,
2790                                const elfcpp::Shdr<32, true>& shdr,
2791                                Output_section* data_section,
2792                                Relocatable_relocs* rr);
2793 #endif
2794
2795 #ifdef HAVE_TARGET_64_LITTLE
2796 template
2797 Output_section*
2798 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2799                                 unsigned int reloc_shndx,
2800                                 const elfcpp::Shdr<64, false>& shdr,
2801                                 Output_section* data_section,
2802                                 Relocatable_relocs* rr);
2803 #endif
2804
2805 #ifdef HAVE_TARGET_64_BIG
2806 template
2807 Output_section*
2808 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2809                                unsigned int reloc_shndx,
2810                                const elfcpp::Shdr<64, true>& shdr,
2811                                Output_section* data_section,
2812                                Relocatable_relocs* rr);
2813 #endif
2814
2815 #ifdef HAVE_TARGET_32_LITTLE
2816 template
2817 void
2818 Layout::layout_group<32, false>(Symbol_table* symtab,
2819                                 Sized_relobj<32, false>* object,
2820                                 unsigned int,
2821                                 const char* group_section_name,
2822                                 const char* signature,
2823                                 const elfcpp::Shdr<32, false>& shdr,
2824                                 const elfcpp::Elf_Word* contents);
2825 #endif
2826
2827 #ifdef HAVE_TARGET_32_BIG
2828 template
2829 void
2830 Layout::layout_group<32, true>(Symbol_table* symtab,
2831                                Sized_relobj<32, true>* object,
2832                                unsigned int,
2833                                const char* group_section_name,
2834                                const char* signature,
2835                                const elfcpp::Shdr<32, true>& shdr,
2836                                const elfcpp::Elf_Word* contents);
2837 #endif
2838
2839 #ifdef HAVE_TARGET_64_LITTLE
2840 template
2841 void
2842 Layout::layout_group<64, false>(Symbol_table* symtab,
2843                                 Sized_relobj<64, false>* object,
2844                                 unsigned int,
2845                                 const char* group_section_name,
2846                                 const char* signature,
2847                                 const elfcpp::Shdr<64, false>& shdr,
2848                                 const elfcpp::Elf_Word* contents);
2849 #endif
2850
2851 #ifdef HAVE_TARGET_64_BIG
2852 template
2853 void
2854 Layout::layout_group<64, true>(Symbol_table* symtab,
2855                                Sized_relobj<64, true>* object,
2856                                unsigned int,
2857                                const char* group_section_name,
2858                                const char* signature,
2859                                const elfcpp::Shdr<64, true>& shdr,
2860                                const elfcpp::Elf_Word* contents);
2861 #endif
2862
2863 #ifdef HAVE_TARGET_32_LITTLE
2864 template
2865 Output_section*
2866 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2867                                    const unsigned char* symbols,
2868                                    off_t symbols_size,
2869                                    const unsigned char* symbol_names,
2870                                    off_t symbol_names_size,
2871                                    unsigned int shndx,
2872                                    const elfcpp::Shdr<32, false>& shdr,
2873                                    unsigned int reloc_shndx,
2874                                    unsigned int reloc_type,
2875                                    off_t* off);
2876 #endif
2877
2878 #ifdef HAVE_TARGET_32_BIG
2879 template
2880 Output_section*
2881 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2882                                    const unsigned char* symbols,
2883                                    off_t symbols_size,
2884                                   const unsigned char* symbol_names,
2885                                   off_t symbol_names_size,
2886                                   unsigned int shndx,
2887                                   const elfcpp::Shdr<32, true>& shdr,
2888                                   unsigned int reloc_shndx,
2889                                   unsigned int reloc_type,
2890                                   off_t* off);
2891 #endif
2892
2893 #ifdef HAVE_TARGET_64_LITTLE
2894 template
2895 Output_section*
2896 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2897                                    const unsigned char* symbols,
2898                                    off_t symbols_size,
2899                                    const unsigned char* symbol_names,
2900                                    off_t symbol_names_size,
2901                                    unsigned int shndx,
2902                                    const elfcpp::Shdr<64, false>& shdr,
2903                                    unsigned int reloc_shndx,
2904                                    unsigned int reloc_type,
2905                                    off_t* off);
2906 #endif
2907
2908 #ifdef HAVE_TARGET_64_BIG
2909 template
2910 Output_section*
2911 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2912                                    const unsigned char* symbols,
2913                                    off_t symbols_size,
2914                                   const unsigned char* symbol_names,
2915                                   off_t symbol_names_size,
2916                                   unsigned int shndx,
2917                                   const elfcpp::Shdr<64, true>& shdr,
2918                                   unsigned int reloc_shndx,
2919                                   unsigned int reloc_type,
2920                                   off_t* off);
2921 #endif
2922
2923 } // End namespace gold.