PR gold/11985
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172         {
173           this->length_ = end;
174           p->end_ = end;
175         }
176       if (end <= p->end_)
177         {
178           if (p->start_ + 3 >= start && p->end_ <= end + 3)
179             this->list_.erase(p);
180           else if (p->start_ + 3 >= start)
181             p->start_ = end;
182           else if (p->end_ <= end + 3)
183             p->end_ = start;
184           else
185             {
186               Free_list_node newnode(p->start_, start);
187               p->start_ = end;
188               this->list_.insert(p, newnode);
189               ++Free_list::num_nodes;
190             }
191           return start;
192         }
193     }
194   if (this->extend_)
195     {
196       off_t start = align_address(this->length_, align);
197       this->length_ = start + len;
198       return start;
199     }
200   return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207   gold_info("Free list:\n     start      end   length\n");
208   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
210               static_cast<long>(p->end_),
211               static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218   fprintf(stderr, _("%s: total free lists: %u\n"),
219           program_name, Free_list::num_lists);
220   fprintf(stderr, _("%s: total free list nodes: %u\n"),
221           program_name, Free_list::num_nodes);
222   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223           program_name, Free_list::num_removes);
224   fprintf(stderr, _("%s: nodes visited: %u\n"),
225           program_name, Free_list::num_remove_visits);
226   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227           program_name, Free_list::num_allocates);
228   fprintf(stderr, _("%s: nodes visited: %u\n"),
229           program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240     const Layout::Section_list& sections,
241     const Layout::Data_list& special_outputs)
242 {
243   for(Layout::Section_list::const_iterator p = sections.begin();
244       p != sections.end();
245       ++p)
246     gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248   for(Layout::Data_list::const_iterator p = special_outputs.begin();
249       p != special_outputs.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253   
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258     const Layout::Section_list& sections)
259 {
260   for(Layout::Section_list::const_iterator p = sections.begin();
261       p != sections.end();
262       ++p)
263     {
264       Output_section* os = *p;
265       Section_info info;
266       info.output_section = os;
267       info.address = os->is_address_valid() ? os->address() : 0;
268       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269       info.offset = os->is_offset_valid()? os->offset() : -1 ;
270       this->section_infos_.push_back(info);
271     }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278     const Layout::Section_list& sections)
279 {
280   size_t i = 0;
281   for(Layout::Section_list::const_iterator p = sections.begin();
282       p != sections.end();
283       ++p, ++i)
284     {
285       Output_section* os = *p;
286       uint64_t address = os->is_address_valid() ? os->address() : 0;
287       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290       if (i >= this->section_infos_.size())
291         {
292           gold_fatal("Section_info of %s missing.\n", os->name());
293         }
294       const Section_info& info = this->section_infos_[i];
295       if (os != info.output_section)
296         gold_fatal("Section order changed.  Expecting %s but see %s\n",
297                    info.output_section->name(), os->name());
298       if (address != info.address
299           || data_size != info.data_size
300           || offset != info.offset)
301         gold_fatal("Section %s changed.\n", os->name());
302     }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections.  This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313   Layout* layout = this->layout_;
314   off_t file_size = layout->finalize(this->input_objects_,
315                                      this->symtab_,
316                                      this->target_,
317                                      task);
318
319   // Now we know the final size of the output file and we know where
320   // each piece of information goes.
321
322   if (this->mapfile_ != NULL)
323     {
324       this->mapfile_->print_discarded_sections(this->input_objects_);
325       layout->print_to_mapfile(this->mapfile_);
326     }
327
328   Output_file* of;
329   if (layout->incremental_base() == NULL)
330     {
331       of = new Output_file(parameters->options().output_file_name());
332       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333         of->set_is_temporary();
334       of->open(file_size);
335     }
336   else
337     {
338       of = layout->incremental_base()->output_file();
339
340       // Apply the incremental relocations for symbols whose values
341       // have changed.  We do this before we resize the file and start
342       // writing anything else to it, so that we can read the old
343       // incremental information from the file before (possibly)
344       // overwriting it.
345       if (parameters->incremental_update())
346         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347                                                              this->layout_,
348                                                              of);
349
350       of->resize(file_size);
351     }
352
353   // Queue up the final set of tasks.
354   gold::queue_final_tasks(this->options_, this->input_objects_,
355                           this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361   : number_of_input_files_(number_of_input_files),
362     script_options_(script_options),
363     namepool_(),
364     sympool_(),
365     dynpool_(),
366     signatures_(),
367     section_name_map_(),
368     segment_list_(),
369     section_list_(),
370     unattached_section_list_(),
371     special_output_list_(),
372     section_headers_(NULL),
373     tls_segment_(NULL),
374     relro_segment_(NULL),
375     interp_segment_(NULL),
376     increase_relro_(0),
377     symtab_section_(NULL),
378     symtab_xindex_(NULL),
379     dynsym_section_(NULL),
380     dynsym_xindex_(NULL),
381     dynamic_section_(NULL),
382     dynamic_symbol_(NULL),
383     dynamic_data_(NULL),
384     eh_frame_section_(NULL),
385     eh_frame_data_(NULL),
386     added_eh_frame_data_(false),
387     eh_frame_hdr_section_(NULL),
388     build_id_note_(NULL),
389     debug_abbrev_(NULL),
390     debug_info_(NULL),
391     group_signatures_(),
392     output_file_size_(-1),
393     have_added_input_section_(false),
394     sections_are_attached_(false),
395     input_requires_executable_stack_(false),
396     input_with_gnu_stack_note_(false),
397     input_without_gnu_stack_note_(false),
398     has_static_tls_(false),
399     any_postprocessing_sections_(false),
400     resized_signatures_(false),
401     have_stabstr_section_(false),
402     incremental_inputs_(NULL),
403     record_output_section_data_from_script_(false),
404     script_output_section_data_list_(),
405     segment_states_(NULL),
406     relaxation_debug_check_(NULL),
407     incremental_base_(NULL),
408     free_list_()
409 {
410   // Make space for more than enough segments for a typical file.
411   // This is just for efficiency--it's OK if we wind up needing more.
412   this->segment_list_.reserve(12);
413
414   // We expect two unattached Output_data objects: the file header and
415   // the segment headers.
416   this->special_output_list_.reserve(2);
417
418   // Initialize structure needed for an incremental build.
419   if (parameters->incremental())
420     this->incremental_inputs_ = new Incremental_inputs;
421
422   // The section name pool is worth optimizing in all cases, because
423   // it is small, but there are often overlaps due to .rel sections.
424   this->namepool_.set_optimize();
425 }
426
427 // For incremental links, record the base file to be modified.
428
429 void
430 Layout::set_incremental_base(Incremental_binary* base)
431 {
432   this->incremental_base_ = base;
433   this->free_list_.init(base->output_file()->filesize(), true);
434 }
435
436 // Hash a key we use to look up an output section mapping.
437
438 size_t
439 Layout::Hash_key::operator()(const Layout::Key& k) const
440 {
441  return k.first + k.second.first + k.second.second;
442 }
443
444 // Returns whether the given section is in the list of
445 // debug-sections-used-by-some-version-of-gdb.  Currently,
446 // we've checked versions of gdb up to and including 6.7.1.
447
448 static const char* gdb_sections[] =
449 { ".debug_abbrev",
450   // ".debug_aranges",   // not used by gdb as of 6.7.1
451   ".debug_frame",
452   ".debug_info",
453   ".debug_types",
454   ".debug_line",
455   ".debug_loc",
456   ".debug_macinfo",
457   // ".debug_pubnames",  // not used by gdb as of 6.7.1
458   ".debug_ranges",
459   ".debug_str",
460 };
461
462 static const char* lines_only_debug_sections[] =
463 { ".debug_abbrev",
464   // ".debug_aranges",   // not used by gdb as of 6.7.1
465   // ".debug_frame",
466   ".debug_info",
467   // ".debug_types",
468   ".debug_line",
469   // ".debug_loc",
470   // ".debug_macinfo",
471   // ".debug_pubnames",  // not used by gdb as of 6.7.1
472   // ".debug_ranges",
473   ".debug_str",
474 };
475
476 static inline bool
477 is_gdb_debug_section(const char* str)
478 {
479   // We can do this faster: binary search or a hashtable.  But why bother?
480   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
481     if (strcmp(str, gdb_sections[i]) == 0)
482       return true;
483   return false;
484 }
485
486 static inline bool
487 is_lines_only_debug_section(const char* str)
488 {
489   // We can do this faster: binary search or a hashtable.  But why bother?
490   for (size_t i = 0;
491        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
492        ++i)
493     if (strcmp(str, lines_only_debug_sections[i]) == 0)
494       return true;
495   return false;
496 }
497
498 // Sometimes we compress sections.  This is typically done for
499 // sections that are not part of normal program execution (such as
500 // .debug_* sections), and where the readers of these sections know
501 // how to deal with compressed sections.  This routine doesn't say for
502 // certain whether we'll compress -- it depends on commandline options
503 // as well -- just whether this section is a candidate for compression.
504 // (The Output_compressed_section class decides whether to compress
505 // a given section, and picks the name of the compressed section.)
506
507 static bool
508 is_compressible_debug_section(const char* secname)
509 {
510   return (is_prefix_of(".debug", secname));
511 }
512
513 // We may see compressed debug sections in input files.  Return TRUE
514 // if this is the name of a compressed debug section.
515
516 bool
517 is_compressed_debug_section(const char* secname)
518 {
519   return (is_prefix_of(".zdebug", secname));
520 }
521
522 // Whether to include this section in the link.
523
524 template<int size, bool big_endian>
525 bool
526 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
527                         const elfcpp::Shdr<size, big_endian>& shdr)
528 {
529   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
530     return false;
531
532   switch (shdr.get_sh_type())
533     {
534     case elfcpp::SHT_NULL:
535     case elfcpp::SHT_SYMTAB:
536     case elfcpp::SHT_DYNSYM:
537     case elfcpp::SHT_HASH:
538     case elfcpp::SHT_DYNAMIC:
539     case elfcpp::SHT_SYMTAB_SHNDX:
540       return false;
541
542     case elfcpp::SHT_STRTAB:
543       // Discard the sections which have special meanings in the ELF
544       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
545       // checking the sh_link fields of the appropriate sections.
546       return (strcmp(name, ".dynstr") != 0
547               && strcmp(name, ".strtab") != 0
548               && strcmp(name, ".shstrtab") != 0);
549
550     case elfcpp::SHT_RELA:
551     case elfcpp::SHT_REL:
552     case elfcpp::SHT_GROUP:
553       // If we are emitting relocations these should be handled
554       // elsewhere.
555       gold_assert(!parameters->options().relocatable()
556                   && !parameters->options().emit_relocs());
557       return false;
558
559     case elfcpp::SHT_PROGBITS:
560       if (parameters->options().strip_debug()
561           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
562         {
563           if (is_debug_info_section(name))
564             return false;
565         }
566       if (parameters->options().strip_debug_non_line()
567           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
568         {
569           // Debugging sections can only be recognized by name.
570           if (is_prefix_of(".debug", name)
571               && !is_lines_only_debug_section(name))
572             return false;
573         }
574       if (parameters->options().strip_debug_gdb()
575           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
576         {
577           // Debugging sections can only be recognized by name.
578           if (is_prefix_of(".debug", name)
579               && !is_gdb_debug_section(name))
580             return false;
581         }
582       if (parameters->options().strip_lto_sections()
583           && !parameters->options().relocatable()
584           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585         {
586           // Ignore LTO sections containing intermediate code.
587           if (is_prefix_of(".gnu.lto_", name))
588             return false;
589         }
590       // The GNU linker strips .gnu_debuglink sections, so we do too.
591       // This is a feature used to keep debugging information in
592       // separate files.
593       if (strcmp(name, ".gnu_debuglink") == 0)
594         return false;
595       return true;
596
597     default:
598       return true;
599     }
600 }
601
602 // Return an output section named NAME, or NULL if there is none.
603
604 Output_section*
605 Layout::find_output_section(const char* name) const
606 {
607   for (Section_list::const_iterator p = this->section_list_.begin();
608        p != this->section_list_.end();
609        ++p)
610     if (strcmp((*p)->name(), name) == 0)
611       return *p;
612   return NULL;
613 }
614
615 // Return an output segment of type TYPE, with segment flags SET set
616 // and segment flags CLEAR clear.  Return NULL if there is none.
617
618 Output_segment*
619 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
620                             elfcpp::Elf_Word clear) const
621 {
622   for (Segment_list::const_iterator p = this->segment_list_.begin();
623        p != this->segment_list_.end();
624        ++p)
625     if (static_cast<elfcpp::PT>((*p)->type()) == type
626         && ((*p)->flags() & set) == set
627         && ((*p)->flags() & clear) == 0)
628       return *p;
629   return NULL;
630 }
631
632 // When we put a .ctors or .dtors section with more than one word into
633 // a .init_array or .fini_array section, we need to reverse the words
634 // in the .ctors/.dtors section.  This is because .init_array executes
635 // constructors front to back, where .ctors executes them back to
636 // front, and vice-versa for .fini_array/.dtors.  Although we do want
637 // to remap .ctors/.dtors into .init_array/.fini_array because it can
638 // be more efficient, we don't want to change the order in which
639 // constructors/destructors are run.  This set just keeps track of
640 // these sections which need to be reversed.  It is only changed by
641 // Layout::layout.  It should be a private member of Layout, but that
642 // would require layout.h to #include object.h to get the definition
643 // of Section_id.
644 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
645
646 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
647 // .init_array/.fini_array section.
648
649 bool
650 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
651 {
652   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
653           != ctors_sections_in_init_array.end());
654 }
655
656 // Return the output section to use for section NAME with type TYPE
657 // and section flags FLAGS.  NAME must be canonicalized in the string
658 // pool, and NAME_KEY is the key.  ORDER is where this should appear
659 // in the output sections.  IS_RELRO is true for a relro section.
660
661 Output_section*
662 Layout::get_output_section(const char* name, Stringpool::Key name_key,
663                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
664                            Output_section_order order, bool is_relro)
665 {
666   elfcpp::Elf_Word lookup_type = type;
667
668   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
669   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
670   // .init_array, .fini_array, and .preinit_array sections by name
671   // whatever their type in the input file.  We do this because the
672   // types are not always right in the input files.
673   if (lookup_type == elfcpp::SHT_INIT_ARRAY
674       || lookup_type == elfcpp::SHT_FINI_ARRAY
675       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
676     lookup_type = elfcpp::SHT_PROGBITS;
677
678   elfcpp::Elf_Xword lookup_flags = flags;
679
680   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
681   // read-write with read-only sections.  Some other ELF linkers do
682   // not do this.  FIXME: Perhaps there should be an option
683   // controlling this.
684   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
685
686   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
687   const std::pair<Key, Output_section*> v(key, NULL);
688   std::pair<Section_name_map::iterator, bool> ins(
689     this->section_name_map_.insert(v));
690
691   if (!ins.second)
692     return ins.first->second;
693   else
694     {
695       // This is the first time we've seen this name/type/flags
696       // combination.  For compatibility with the GNU linker, we
697       // combine sections with contents and zero flags with sections
698       // with non-zero flags.  This is a workaround for cases where
699       // assembler code forgets to set section flags.  FIXME: Perhaps
700       // there should be an option to control this.
701       Output_section* os = NULL;
702
703       if (lookup_type == elfcpp::SHT_PROGBITS)
704         {
705           if (flags == 0)
706             {
707               Output_section* same_name = this->find_output_section(name);
708               if (same_name != NULL
709                   && (same_name->type() == elfcpp::SHT_PROGBITS
710                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
711                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
712                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
713                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
714                 os = same_name;
715             }
716           else if ((flags & elfcpp::SHF_TLS) == 0)
717             {
718               elfcpp::Elf_Xword zero_flags = 0;
719               const Key zero_key(name_key, std::make_pair(lookup_type,
720                                                           zero_flags));
721               Section_name_map::iterator p =
722                   this->section_name_map_.find(zero_key);
723               if (p != this->section_name_map_.end())
724                 os = p->second;
725             }
726         }
727
728       if (os == NULL)
729         os = this->make_output_section(name, type, flags, order, is_relro);
730
731       ins.first->second = os;
732       return os;
733     }
734 }
735
736 // Pick the output section to use for section NAME, in input file
737 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
738 // linker created section.  IS_INPUT_SECTION is true if we are
739 // choosing an output section for an input section found in a input
740 // file.  ORDER is where this section should appear in the output
741 // sections.  IS_RELRO is true for a relro section.  This will return
742 // NULL if the input section should be discarded.
743
744 Output_section*
745 Layout::choose_output_section(const Relobj* relobj, const char* name,
746                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
747                               bool is_input_section, Output_section_order order,
748                               bool is_relro)
749 {
750   // We should not see any input sections after we have attached
751   // sections to segments.
752   gold_assert(!is_input_section || !this->sections_are_attached_);
753
754   // Some flags in the input section should not be automatically
755   // copied to the output section.
756   flags &= ~ (elfcpp::SHF_INFO_LINK
757               | elfcpp::SHF_GROUP
758               | elfcpp::SHF_MERGE
759               | elfcpp::SHF_STRINGS);
760
761   // We only clear the SHF_LINK_ORDER flag in for
762   // a non-relocatable link.
763   if (!parameters->options().relocatable())
764     flags &= ~elfcpp::SHF_LINK_ORDER;
765
766   if (this->script_options_->saw_sections_clause())
767     {
768       // We are using a SECTIONS clause, so the output section is
769       // chosen based only on the name.
770
771       Script_sections* ss = this->script_options_->script_sections();
772       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
773       Output_section** output_section_slot;
774       Script_sections::Section_type script_section_type;
775       const char* orig_name = name;
776       name = ss->output_section_name(file_name, name, &output_section_slot,
777                                      &script_section_type);
778       if (name == NULL)
779         {
780           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
781                                      "because it is not allowed by the "
782                                      "SECTIONS clause of the linker script"),
783                      orig_name);
784           // The SECTIONS clause says to discard this input section.
785           return NULL;
786         }
787
788       // We can only handle script section types ST_NONE and ST_NOLOAD.
789       switch (script_section_type)
790         {
791         case Script_sections::ST_NONE:
792           break;
793         case Script_sections::ST_NOLOAD:
794           flags &= elfcpp::SHF_ALLOC;
795           break;
796         default:
797           gold_unreachable();
798         }
799
800       // If this is an orphan section--one not mentioned in the linker
801       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
802       // default processing below.
803
804       if (output_section_slot != NULL)
805         {
806           if (*output_section_slot != NULL)
807             {
808               (*output_section_slot)->update_flags_for_input_section(flags);
809               return *output_section_slot;
810             }
811
812           // We don't put sections found in the linker script into
813           // SECTION_NAME_MAP_.  That keeps us from getting confused
814           // if an orphan section is mapped to a section with the same
815           // name as one in the linker script.
816
817           name = this->namepool_.add(name, false, NULL);
818
819           Output_section* os = this->make_output_section(name, type, flags,
820                                                          order, is_relro);
821
822           os->set_found_in_sections_clause();
823
824           // Special handling for NOLOAD sections.
825           if (script_section_type == Script_sections::ST_NOLOAD)
826             {
827               os->set_is_noload();
828
829               // The constructor of Output_section sets addresses of non-ALLOC
830               // sections to 0 by default.  We don't want that for NOLOAD
831               // sections even if they have no SHF_ALLOC flag.
832               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
833                   && os->is_address_valid())
834                 {
835                   gold_assert(os->address() == 0
836                               && !os->is_offset_valid()
837                               && !os->is_data_size_valid());
838                   os->reset_address_and_file_offset();
839                 }
840             }
841
842           *output_section_slot = os;
843           return os;
844         }
845     }
846
847   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
848
849   size_t len = strlen(name);
850   char* uncompressed_name = NULL;
851
852   // Compressed debug sections should be mapped to the corresponding
853   // uncompressed section.
854   if (is_compressed_debug_section(name))
855     {
856       uncompressed_name = new char[len];
857       uncompressed_name[0] = '.';
858       gold_assert(name[0] == '.' && name[1] == 'z');
859       strncpy(&uncompressed_name[1], &name[2], len - 2);
860       uncompressed_name[len - 1] = '\0';
861       len -= 1;
862       name = uncompressed_name;
863     }
864
865   // Turn NAME from the name of the input section into the name of the
866   // output section.
867   if (is_input_section
868       && !this->script_options_->saw_sections_clause()
869       && !parameters->options().relocatable())
870     name = Layout::output_section_name(relobj, name, &len);
871
872   Stringpool::Key name_key;
873   name = this->namepool_.add_with_length(name, len, true, &name_key);
874
875   if (uncompressed_name != NULL)
876     delete[] uncompressed_name;
877
878   // Find or make the output section.  The output section is selected
879   // based on the section name, type, and flags.
880   return this->get_output_section(name, name_key, type, flags, order, is_relro);
881 }
882
883 // For incremental links, record the initial fixed layout of a section
884 // from the base file, and return a pointer to the Output_section.
885
886 template<int size, bool big_endian>
887 Output_section*
888 Layout::init_fixed_output_section(const char* name,
889                                   elfcpp::Shdr<size, big_endian>& shdr)
890 {
891   unsigned int sh_type = shdr.get_sh_type();
892
893   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
894   // All others will be created from scratch and reallocated.
895   if (sh_type != elfcpp::SHT_PROGBITS
896       && sh_type != elfcpp::SHT_NOBITS
897       && sh_type != elfcpp::SHT_NOTE)
898     return NULL;
899
900   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
901   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
902   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
903   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
904   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
905       shdr.get_sh_addralign();
906
907   // Make the output section.
908   Stringpool::Key name_key;
909   name = this->namepool_.add(name, true, &name_key);
910   Output_section* os = this->get_output_section(name, name_key, sh_type,
911                                                 sh_flags, ORDER_INVALID, false);
912   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
913   if (sh_type != elfcpp::SHT_NOBITS)
914     this->free_list_.remove(sh_offset, sh_offset + sh_size);
915   return os;
916 }
917
918 // Return the output section to use for input section SHNDX, with name
919 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
920 // index of a relocation section which applies to this section, or 0
921 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
922 // relocation section if there is one.  Set *OFF to the offset of this
923 // input section without the output section.  Return NULL if the
924 // section should be discarded.  Set *OFF to -1 if the section
925 // contents should not be written directly to the output file, but
926 // will instead receive special handling.
927
928 template<int size, bool big_endian>
929 Output_section*
930 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
931                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
932                unsigned int reloc_shndx, unsigned int, off_t* off)
933 {
934   *off = 0;
935
936   if (!this->include_section(object, name, shdr))
937     return NULL;
938
939   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
940
941   // In a relocatable link a grouped section must not be combined with
942   // any other sections.
943   Output_section* os;
944   if (parameters->options().relocatable()
945       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
946     {
947       name = this->namepool_.add(name, true, NULL);
948       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
949                                      ORDER_INVALID, false);
950     }
951   else
952     {
953       os = this->choose_output_section(object, name, sh_type,
954                                        shdr.get_sh_flags(), true,
955                                        ORDER_INVALID, false);
956       if (os == NULL)
957         return NULL;
958     }
959
960   // By default the GNU linker sorts input sections whose names match
961   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
962   // sections are sorted by name.  This is used to implement
963   // constructor priority ordering.  We are compatible.  When we put
964   // .ctor sections in .init_array and .dtor sections in .fini_array,
965   // we must also sort plain .ctor and .dtor sections.
966   if (!this->script_options_->saw_sections_clause()
967       && !parameters->options().relocatable()
968       && (is_prefix_of(".ctors.", name)
969           || is_prefix_of(".dtors.", name)
970           || is_prefix_of(".init_array.", name)
971           || is_prefix_of(".fini_array.", name)
972           || (parameters->options().ctors_in_init_array()
973               && (strcmp(name, ".ctors") == 0
974                   || strcmp(name, ".dtors") == 0))))
975     os->set_must_sort_attached_input_sections();
976
977   // If this is a .ctors or .ctors.* section being mapped to a
978   // .init_array section, or a .dtors or .dtors.* section being mapped
979   // to a .fini_array section, we will need to reverse the words if
980   // there is more than one.  Record this section for later.  See
981   // ctors_sections_in_init_array above.
982   if (!this->script_options_->saw_sections_clause()
983       && !parameters->options().relocatable()
984       && shdr.get_sh_size() > size / 8
985       && (((strcmp(name, ".ctors") == 0
986             || is_prefix_of(".ctors.", name))
987            && strcmp(os->name(), ".init_array") == 0)
988           || ((strcmp(name, ".dtors") == 0
989                || is_prefix_of(".dtors.", name))
990               && strcmp(os->name(), ".fini_array") == 0)))
991     ctors_sections_in_init_array.insert(Section_id(object, shndx));
992
993   // FIXME: Handle SHF_LINK_ORDER somewhere.
994
995   elfcpp::Elf_Xword orig_flags = os->flags();
996
997   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
998                                this->script_options_->saw_sections_clause());
999
1000   // If the flags changed, we may have to change the order.
1001   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1002     {
1003       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1004       elfcpp::Elf_Xword new_flags =
1005         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1006       if (orig_flags != new_flags)
1007         os->set_order(this->default_section_order(os, false));
1008     }
1009
1010   this->have_added_input_section_ = true;
1011
1012   return os;
1013 }
1014
1015 // Handle a relocation section when doing a relocatable link.
1016
1017 template<int size, bool big_endian>
1018 Output_section*
1019 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1020                      unsigned int,
1021                      const elfcpp::Shdr<size, big_endian>& shdr,
1022                      Output_section* data_section,
1023                      Relocatable_relocs* rr)
1024 {
1025   gold_assert(parameters->options().relocatable()
1026               || parameters->options().emit_relocs());
1027
1028   int sh_type = shdr.get_sh_type();
1029
1030   std::string name;
1031   if (sh_type == elfcpp::SHT_REL)
1032     name = ".rel";
1033   else if (sh_type == elfcpp::SHT_RELA)
1034     name = ".rela";
1035   else
1036     gold_unreachable();
1037   name += data_section->name();
1038
1039   // In a relocatable link relocs for a grouped section must not be
1040   // combined with other reloc sections.
1041   Output_section* os;
1042   if (!parameters->options().relocatable()
1043       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1044     os = this->choose_output_section(object, name.c_str(), sh_type,
1045                                      shdr.get_sh_flags(), false,
1046                                      ORDER_INVALID, false);
1047   else
1048     {
1049       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1050       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1051                                      ORDER_INVALID, false);
1052     }
1053
1054   os->set_should_link_to_symtab();
1055   os->set_info_section(data_section);
1056
1057   Output_section_data* posd;
1058   if (sh_type == elfcpp::SHT_REL)
1059     {
1060       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1061       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1062                                            size,
1063                                            big_endian>(rr);
1064     }
1065   else if (sh_type == elfcpp::SHT_RELA)
1066     {
1067       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1068       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1069                                            size,
1070                                            big_endian>(rr);
1071     }
1072   else
1073     gold_unreachable();
1074
1075   os->add_output_section_data(posd);
1076   rr->set_output_data(posd);
1077
1078   return os;
1079 }
1080
1081 // Handle a group section when doing a relocatable link.
1082
1083 template<int size, bool big_endian>
1084 void
1085 Layout::layout_group(Symbol_table* symtab,
1086                      Sized_relobj_file<size, big_endian>* object,
1087                      unsigned int,
1088                      const char* group_section_name,
1089                      const char* signature,
1090                      const elfcpp::Shdr<size, big_endian>& shdr,
1091                      elfcpp::Elf_Word flags,
1092                      std::vector<unsigned int>* shndxes)
1093 {
1094   gold_assert(parameters->options().relocatable());
1095   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1096   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1097   Output_section* os = this->make_output_section(group_section_name,
1098                                                  elfcpp::SHT_GROUP,
1099                                                  shdr.get_sh_flags(),
1100                                                  ORDER_INVALID, false);
1101
1102   // We need to find a symbol with the signature in the symbol table.
1103   // If we don't find one now, we need to look again later.
1104   Symbol* sym = symtab->lookup(signature, NULL);
1105   if (sym != NULL)
1106     os->set_info_symndx(sym);
1107   else
1108     {
1109       // Reserve some space to minimize reallocations.
1110       if (this->group_signatures_.empty())
1111         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1112
1113       // We will wind up using a symbol whose name is the signature.
1114       // So just put the signature in the symbol name pool to save it.
1115       signature = symtab->canonicalize_name(signature);
1116       this->group_signatures_.push_back(Group_signature(os, signature));
1117     }
1118
1119   os->set_should_link_to_symtab();
1120   os->set_entsize(4);
1121
1122   section_size_type entry_count =
1123     convert_to_section_size_type(shdr.get_sh_size() / 4);
1124   Output_section_data* posd =
1125     new Output_data_group<size, big_endian>(object, entry_count, flags,
1126                                             shndxes);
1127   os->add_output_section_data(posd);
1128 }
1129
1130 // Special GNU handling of sections name .eh_frame.  They will
1131 // normally hold exception frame data as defined by the C++ ABI
1132 // (http://codesourcery.com/cxx-abi/).
1133
1134 template<int size, bool big_endian>
1135 Output_section*
1136 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1137                         const unsigned char* symbols,
1138                         off_t symbols_size,
1139                         const unsigned char* symbol_names,
1140                         off_t symbol_names_size,
1141                         unsigned int shndx,
1142                         const elfcpp::Shdr<size, big_endian>& shdr,
1143                         unsigned int reloc_shndx, unsigned int reloc_type,
1144                         off_t* off)
1145 {
1146   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1147               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1148   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1149
1150   Output_section* os = this->make_eh_frame_section(object);
1151   if (os == NULL)
1152     return NULL;
1153
1154   gold_assert(this->eh_frame_section_ == os);
1155
1156   elfcpp::Elf_Xword orig_flags = os->flags();
1157
1158   if (!parameters->incremental()
1159       && this->eh_frame_data_->add_ehframe_input_section(object,
1160                                                          symbols,
1161                                                          symbols_size,
1162                                                          symbol_names,
1163                                                          symbol_names_size,
1164                                                          shndx,
1165                                                          reloc_shndx,
1166                                                          reloc_type))
1167     {
1168       os->update_flags_for_input_section(shdr.get_sh_flags());
1169
1170       // A writable .eh_frame section is a RELRO section.
1171       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1172           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1173         {
1174           os->set_is_relro();
1175           os->set_order(ORDER_RELRO);
1176         }
1177
1178       // We found a .eh_frame section we are going to optimize, so now
1179       // we can add the set of optimized sections to the output
1180       // section.  We need to postpone adding this until we've found a
1181       // section we can optimize so that the .eh_frame section in
1182       // crtbegin.o winds up at the start of the output section.
1183       if (!this->added_eh_frame_data_)
1184         {
1185           os->add_output_section_data(this->eh_frame_data_);
1186           this->added_eh_frame_data_ = true;
1187         }
1188       *off = -1;
1189     }
1190   else
1191     {
1192       // We couldn't handle this .eh_frame section for some reason.
1193       // Add it as a normal section.
1194       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1195       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1196                                    reloc_shndx, saw_sections_clause);
1197       this->have_added_input_section_ = true;
1198
1199       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1200           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1201         os->set_order(this->default_section_order(os, false));
1202     }
1203
1204   return os;
1205 }
1206
1207 // Create and return the magic .eh_frame section.  Create
1208 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1209 // input .eh_frame section; it may be NULL.
1210
1211 Output_section*
1212 Layout::make_eh_frame_section(const Relobj* object)
1213 {
1214   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1215   // SHT_PROGBITS.
1216   Output_section* os = this->choose_output_section(object, ".eh_frame",
1217                                                    elfcpp::SHT_PROGBITS,
1218                                                    elfcpp::SHF_ALLOC, false,
1219                                                    ORDER_EHFRAME, false);
1220   if (os == NULL)
1221     return NULL;
1222
1223   if (this->eh_frame_section_ == NULL)
1224     {
1225       this->eh_frame_section_ = os;
1226       this->eh_frame_data_ = new Eh_frame();
1227
1228       // For incremental linking, we do not optimize .eh_frame sections
1229       // or create a .eh_frame_hdr section.
1230       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1231         {
1232           Output_section* hdr_os =
1233             this->choose_output_section(NULL, ".eh_frame_hdr",
1234                                         elfcpp::SHT_PROGBITS,
1235                                         elfcpp::SHF_ALLOC, false,
1236                                         ORDER_EHFRAME, false);
1237
1238           if (hdr_os != NULL)
1239             {
1240               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1241                                                         this->eh_frame_data_);
1242               hdr_os->add_output_section_data(hdr_posd);
1243
1244               hdr_os->set_after_input_sections();
1245
1246               if (!this->script_options_->saw_phdrs_clause())
1247                 {
1248                   Output_segment* hdr_oseg;
1249                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1250                                                        elfcpp::PF_R);
1251                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1252                                                           elfcpp::PF_R);
1253                 }
1254
1255               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1256             }
1257         }
1258     }
1259
1260   return os;
1261 }
1262
1263 // Add an exception frame for a PLT.  This is called from target code.
1264
1265 void
1266 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1267                              size_t cie_length, const unsigned char* fde_data,
1268                              size_t fde_length)
1269 {
1270   if (parameters->incremental())
1271     {
1272       // FIXME: Maybe this could work some day....
1273       return;
1274     }
1275   Output_section* os = this->make_eh_frame_section(NULL);
1276   if (os == NULL)
1277     return;
1278   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1279                                             fde_data, fde_length);
1280   if (!this->added_eh_frame_data_)
1281     {
1282       os->add_output_section_data(this->eh_frame_data_);
1283       this->added_eh_frame_data_ = true;
1284     }
1285 }
1286
1287 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1288 // the output section.
1289
1290 Output_section*
1291 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1292                                 elfcpp::Elf_Xword flags,
1293                                 Output_section_data* posd,
1294                                 Output_section_order order, bool is_relro)
1295 {
1296   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1297                                                    false, order, is_relro);
1298   if (os != NULL)
1299     os->add_output_section_data(posd);
1300   return os;
1301 }
1302
1303 // Map section flags to segment flags.
1304
1305 elfcpp::Elf_Word
1306 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1307 {
1308   elfcpp::Elf_Word ret = elfcpp::PF_R;
1309   if ((flags & elfcpp::SHF_WRITE) != 0)
1310     ret |= elfcpp::PF_W;
1311   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1312     ret |= elfcpp::PF_X;
1313   return ret;
1314 }
1315
1316 // Make a new Output_section, and attach it to segments as
1317 // appropriate.  ORDER is the order in which this section should
1318 // appear in the output segment.  IS_RELRO is true if this is a relro
1319 // (read-only after relocations) section.
1320
1321 Output_section*
1322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1323                             elfcpp::Elf_Xword flags,
1324                             Output_section_order order, bool is_relro)
1325 {
1326   Output_section* os;
1327   if ((flags & elfcpp::SHF_ALLOC) == 0
1328       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1329       && is_compressible_debug_section(name))
1330     os = new Output_compressed_section(&parameters->options(), name, type,
1331                                        flags);
1332   else if ((flags & elfcpp::SHF_ALLOC) == 0
1333            && parameters->options().strip_debug_non_line()
1334            && strcmp(".debug_abbrev", name) == 0)
1335     {
1336       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1337           name, type, flags);
1338       if (this->debug_info_)
1339         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1340     }
1341   else if ((flags & elfcpp::SHF_ALLOC) == 0
1342            && parameters->options().strip_debug_non_line()
1343            && strcmp(".debug_info", name) == 0)
1344     {
1345       os = this->debug_info_ = new Output_reduced_debug_info_section(
1346           name, type, flags);
1347       if (this->debug_abbrev_)
1348         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1349     }
1350   else
1351     {
1352       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1353       // not have correct section types.  Force them here.
1354       if (type == elfcpp::SHT_PROGBITS)
1355         {
1356           if (is_prefix_of(".init_array", name))
1357             type = elfcpp::SHT_INIT_ARRAY;
1358           else if (is_prefix_of(".preinit_array", name))
1359             type = elfcpp::SHT_PREINIT_ARRAY;
1360           else if (is_prefix_of(".fini_array", name))
1361             type = elfcpp::SHT_FINI_ARRAY;
1362         }
1363
1364       // FIXME: const_cast is ugly.
1365       Target* target = const_cast<Target*>(&parameters->target());
1366       os = target->make_output_section(name, type, flags);
1367     }
1368
1369   // With -z relro, we have to recognize the special sections by name.
1370   // There is no other way.
1371   bool is_relro_local = false;
1372   if (!this->script_options_->saw_sections_clause()
1373       && parameters->options().relro()
1374       && type == elfcpp::SHT_PROGBITS
1375       && (flags & elfcpp::SHF_ALLOC) != 0
1376       && (flags & elfcpp::SHF_WRITE) != 0)
1377     {
1378       if (strcmp(name, ".data.rel.ro") == 0)
1379         is_relro = true;
1380       else if (strcmp(name, ".data.rel.ro.local") == 0)
1381         {
1382           is_relro = true;
1383           is_relro_local = true;
1384         }
1385       else if (type == elfcpp::SHT_INIT_ARRAY
1386                || type == elfcpp::SHT_FINI_ARRAY
1387                || type == elfcpp::SHT_PREINIT_ARRAY)
1388         is_relro = true;
1389       else if (strcmp(name, ".ctors") == 0
1390                || strcmp(name, ".dtors") == 0
1391                || strcmp(name, ".jcr") == 0)
1392         is_relro = true;
1393     }
1394
1395   if (is_relro)
1396     os->set_is_relro();
1397
1398   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1399     order = this->default_section_order(os, is_relro_local);
1400
1401   os->set_order(order);
1402
1403   parameters->target().new_output_section(os);
1404
1405   this->section_list_.push_back(os);
1406
1407   // The GNU linker by default sorts some sections by priority, so we
1408   // do the same.  We need to know that this might happen before we
1409   // attach any input sections.
1410   if (!this->script_options_->saw_sections_clause()
1411       && !parameters->options().relocatable()
1412       && (strcmp(name, ".init_array") == 0
1413           || strcmp(name, ".fini_array") == 0
1414           || (!parameters->options().ctors_in_init_array()
1415               && (strcmp(name, ".ctors") == 0
1416                   || strcmp(name, ".dtors") == 0))))
1417     os->set_may_sort_attached_input_sections();
1418
1419   // Check for .stab*str sections, as .stab* sections need to link to
1420   // them.
1421   if (type == elfcpp::SHT_STRTAB
1422       && !this->have_stabstr_section_
1423       && strncmp(name, ".stab", 5) == 0
1424       && strcmp(name + strlen(name) - 3, "str") == 0)
1425     this->have_stabstr_section_ = true;
1426
1427   // During a full incremental link, we add patch space to most
1428   // PROGBITS and NOBITS sections.  Flag those that may be
1429   // arbitrarily padded.
1430   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1431       && order != ORDER_INTERP
1432       && order != ORDER_INIT
1433       && order != ORDER_PLT
1434       && order != ORDER_FINI
1435       && order != ORDER_RELRO_LAST
1436       && order != ORDER_NON_RELRO_FIRST
1437       && strcmp(name, ".ctors") != 0
1438       && strcmp(name, ".dtors") != 0
1439       && strcmp(name, ".jcr") != 0)
1440     os->set_is_patch_space_allowed();
1441
1442   // If we have already attached the sections to segments, then we
1443   // need to attach this one now.  This happens for sections created
1444   // directly by the linker.
1445   if (this->sections_are_attached_)
1446     this->attach_section_to_segment(os);
1447
1448   return os;
1449 }
1450
1451 // Return the default order in which a section should be placed in an
1452 // output segment.  This function captures a lot of the ideas in
1453 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1454 // linker created section is normally set when the section is created;
1455 // this function is used for input sections.
1456
1457 Output_section_order
1458 Layout::default_section_order(Output_section* os, bool is_relro_local)
1459 {
1460   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1461   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1462   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1463   bool is_bss = false;
1464
1465   switch (os->type())
1466     {
1467     default:
1468     case elfcpp::SHT_PROGBITS:
1469       break;
1470     case elfcpp::SHT_NOBITS:
1471       is_bss = true;
1472       break;
1473     case elfcpp::SHT_RELA:
1474     case elfcpp::SHT_REL:
1475       if (!is_write)
1476         return ORDER_DYNAMIC_RELOCS;
1477       break;
1478     case elfcpp::SHT_HASH:
1479     case elfcpp::SHT_DYNAMIC:
1480     case elfcpp::SHT_SHLIB:
1481     case elfcpp::SHT_DYNSYM:
1482     case elfcpp::SHT_GNU_HASH:
1483     case elfcpp::SHT_GNU_verdef:
1484     case elfcpp::SHT_GNU_verneed:
1485     case elfcpp::SHT_GNU_versym:
1486       if (!is_write)
1487         return ORDER_DYNAMIC_LINKER;
1488       break;
1489     case elfcpp::SHT_NOTE:
1490       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1491     }
1492
1493   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1494     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1495
1496   if (!is_bss && !is_write)
1497     {
1498       if (is_execinstr)
1499         {
1500           if (strcmp(os->name(), ".init") == 0)
1501             return ORDER_INIT;
1502           else if (strcmp(os->name(), ".fini") == 0)
1503             return ORDER_FINI;
1504         }
1505       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1506     }
1507
1508   if (os->is_relro())
1509     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1510
1511   if (os->is_small_section())
1512     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1513   if (os->is_large_section())
1514     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1515
1516   return is_bss ? ORDER_BSS : ORDER_DATA;
1517 }
1518
1519 // Attach output sections to segments.  This is called after we have
1520 // seen all the input sections.
1521
1522 void
1523 Layout::attach_sections_to_segments()
1524 {
1525   for (Section_list::iterator p = this->section_list_.begin();
1526        p != this->section_list_.end();
1527        ++p)
1528     this->attach_section_to_segment(*p);
1529
1530   this->sections_are_attached_ = true;
1531 }
1532
1533 // Attach an output section to a segment.
1534
1535 void
1536 Layout::attach_section_to_segment(Output_section* os)
1537 {
1538   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1539     this->unattached_section_list_.push_back(os);
1540   else
1541     this->attach_allocated_section_to_segment(os);
1542 }
1543
1544 // Attach an allocated output section to a segment.
1545
1546 void
1547 Layout::attach_allocated_section_to_segment(Output_section* os)
1548 {
1549   elfcpp::Elf_Xword flags = os->flags();
1550   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1551
1552   if (parameters->options().relocatable())
1553     return;
1554
1555   // If we have a SECTIONS clause, we can't handle the attachment to
1556   // segments until after we've seen all the sections.
1557   if (this->script_options_->saw_sections_clause())
1558     return;
1559
1560   gold_assert(!this->script_options_->saw_phdrs_clause());
1561
1562   // This output section goes into a PT_LOAD segment.
1563
1564   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1565
1566   // Check for --section-start.
1567   uint64_t addr;
1568   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1569
1570   // In general the only thing we really care about for PT_LOAD
1571   // segments is whether or not they are writable or executable,
1572   // so that is how we search for them.
1573   // Large data sections also go into their own PT_LOAD segment.
1574   // People who need segments sorted on some other basis will
1575   // have to use a linker script.
1576
1577   Segment_list::const_iterator p;
1578   for (p = this->segment_list_.begin();
1579        p != this->segment_list_.end();
1580        ++p)
1581     {
1582       if ((*p)->type() != elfcpp::PT_LOAD)
1583         continue;
1584       if (!parameters->options().omagic()
1585           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1586         continue;
1587       if (parameters->options().rosegment()
1588           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1589         continue;
1590       // If -Tbss was specified, we need to separate the data and BSS
1591       // segments.
1592       if (parameters->options().user_set_Tbss())
1593         {
1594           if ((os->type() == elfcpp::SHT_NOBITS)
1595               == (*p)->has_any_data_sections())
1596             continue;
1597         }
1598       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1599         continue;
1600
1601       if (is_address_set)
1602         {
1603           if ((*p)->are_addresses_set())
1604             continue;
1605
1606           (*p)->add_initial_output_data(os);
1607           (*p)->update_flags_for_output_section(seg_flags);
1608           (*p)->set_addresses(addr, addr);
1609           break;
1610         }
1611
1612       (*p)->add_output_section_to_load(this, os, seg_flags);
1613       break;
1614     }
1615
1616   if (p == this->segment_list_.end())
1617     {
1618       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1619                                                        seg_flags);
1620       if (os->is_large_data_section())
1621         oseg->set_is_large_data_segment();
1622       oseg->add_output_section_to_load(this, os, seg_flags);
1623       if (is_address_set)
1624         oseg->set_addresses(addr, addr);
1625     }
1626
1627   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1628   // segment.
1629   if (os->type() == elfcpp::SHT_NOTE)
1630     {
1631       // See if we already have an equivalent PT_NOTE segment.
1632       for (p = this->segment_list_.begin();
1633            p != segment_list_.end();
1634            ++p)
1635         {
1636           if ((*p)->type() == elfcpp::PT_NOTE
1637               && (((*p)->flags() & elfcpp::PF_W)
1638                   == (seg_flags & elfcpp::PF_W)))
1639             {
1640               (*p)->add_output_section_to_nonload(os, seg_flags);
1641               break;
1642             }
1643         }
1644
1645       if (p == this->segment_list_.end())
1646         {
1647           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1648                                                            seg_flags);
1649           oseg->add_output_section_to_nonload(os, seg_flags);
1650         }
1651     }
1652
1653   // If we see a loadable SHF_TLS section, we create a PT_TLS
1654   // segment.  There can only be one such segment.
1655   if ((flags & elfcpp::SHF_TLS) != 0)
1656     {
1657       if (this->tls_segment_ == NULL)
1658         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1659       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1660     }
1661
1662   // If -z relro is in effect, and we see a relro section, we create a
1663   // PT_GNU_RELRO segment.  There can only be one such segment.
1664   if (os->is_relro() && parameters->options().relro())
1665     {
1666       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1667       if (this->relro_segment_ == NULL)
1668         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1669       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1670     }
1671
1672   // If we see a section named .interp, put it into a PT_INTERP
1673   // segment.  This seems broken to me, but this is what GNU ld does,
1674   // and glibc expects it.
1675   if (strcmp(os->name(), ".interp") == 0
1676       && !this->script_options_->saw_phdrs_clause())
1677     {
1678       if (this->interp_segment_ == NULL)
1679         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1680       else
1681         gold_warning(_("multiple '.interp' sections in input files "
1682                        "may cause confusing PT_INTERP segment"));
1683       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1684     }
1685 }
1686
1687 // Make an output section for a script.
1688
1689 Output_section*
1690 Layout::make_output_section_for_script(
1691     const char* name,
1692     Script_sections::Section_type section_type)
1693 {
1694   name = this->namepool_.add(name, false, NULL);
1695   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1696   if (section_type == Script_sections::ST_NOLOAD)
1697     sh_flags = 0;
1698   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1699                                                  sh_flags, ORDER_INVALID,
1700                                                  false);
1701   os->set_found_in_sections_clause();
1702   if (section_type == Script_sections::ST_NOLOAD)
1703     os->set_is_noload();
1704   return os;
1705 }
1706
1707 // Return the number of segments we expect to see.
1708
1709 size_t
1710 Layout::expected_segment_count() const
1711 {
1712   size_t ret = this->segment_list_.size();
1713
1714   // If we didn't see a SECTIONS clause in a linker script, we should
1715   // already have the complete list of segments.  Otherwise we ask the
1716   // SECTIONS clause how many segments it expects, and add in the ones
1717   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1718
1719   if (!this->script_options_->saw_sections_clause())
1720     return ret;
1721   else
1722     {
1723       const Script_sections* ss = this->script_options_->script_sections();
1724       return ret + ss->expected_segment_count(this);
1725     }
1726 }
1727
1728 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1729 // is whether we saw a .note.GNU-stack section in the object file.
1730 // GNU_STACK_FLAGS is the section flags.  The flags give the
1731 // protection required for stack memory.  We record this in an
1732 // executable as a PT_GNU_STACK segment.  If an object file does not
1733 // have a .note.GNU-stack segment, we must assume that it is an old
1734 // object.  On some targets that will force an executable stack.
1735
1736 void
1737 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1738                          const Object* obj)
1739 {
1740   if (!seen_gnu_stack)
1741     {
1742       this->input_without_gnu_stack_note_ = true;
1743       if (parameters->options().warn_execstack()
1744           && parameters->target().is_default_stack_executable())
1745         gold_warning(_("%s: missing .note.GNU-stack section"
1746                        " implies executable stack"),
1747                      obj->name().c_str());
1748     }
1749   else
1750     {
1751       this->input_with_gnu_stack_note_ = true;
1752       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1753         {
1754           this->input_requires_executable_stack_ = true;
1755           if (parameters->options().warn_execstack()
1756               || parameters->options().is_stack_executable())
1757             gold_warning(_("%s: requires executable stack"),
1758                          obj->name().c_str());
1759         }
1760     }
1761 }
1762
1763 // Create automatic note sections.
1764
1765 void
1766 Layout::create_notes()
1767 {
1768   this->create_gold_note();
1769   this->create_executable_stack_info();
1770   this->create_build_id();
1771 }
1772
1773 // Create the dynamic sections which are needed before we read the
1774 // relocs.
1775
1776 void
1777 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1778 {
1779   if (parameters->doing_static_link())
1780     return;
1781
1782   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1783                                                        elfcpp::SHT_DYNAMIC,
1784                                                        (elfcpp::SHF_ALLOC
1785                                                         | elfcpp::SHF_WRITE),
1786                                                        false, ORDER_RELRO,
1787                                                        true);
1788
1789   // A linker script may discard .dynamic, so check for NULL.
1790   if (this->dynamic_section_ != NULL)
1791     {
1792       this->dynamic_symbol_ =
1793         symtab->define_in_output_data("_DYNAMIC", NULL,
1794                                       Symbol_table::PREDEFINED,
1795                                       this->dynamic_section_, 0, 0,
1796                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1797                                       elfcpp::STV_HIDDEN, 0, false, false);
1798
1799       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1800
1801       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1802     }
1803 }
1804
1805 // For each output section whose name can be represented as C symbol,
1806 // define __start and __stop symbols for the section.  This is a GNU
1807 // extension.
1808
1809 void
1810 Layout::define_section_symbols(Symbol_table* symtab)
1811 {
1812   for (Section_list::const_iterator p = this->section_list_.begin();
1813        p != this->section_list_.end();
1814        ++p)
1815     {
1816       const char* const name = (*p)->name();
1817       if (is_cident(name))
1818         {
1819           const std::string name_string(name);
1820           const std::string start_name(cident_section_start_prefix
1821                                        + name_string);
1822           const std::string stop_name(cident_section_stop_prefix
1823                                       + name_string);
1824
1825           symtab->define_in_output_data(start_name.c_str(),
1826                                         NULL, // version
1827                                         Symbol_table::PREDEFINED,
1828                                         *p,
1829                                         0, // value
1830                                         0, // symsize
1831                                         elfcpp::STT_NOTYPE,
1832                                         elfcpp::STB_GLOBAL,
1833                                         elfcpp::STV_DEFAULT,
1834                                         0, // nonvis
1835                                         false, // offset_is_from_end
1836                                         true); // only_if_ref
1837
1838           symtab->define_in_output_data(stop_name.c_str(),
1839                                         NULL, // version
1840                                         Symbol_table::PREDEFINED,
1841                                         *p,
1842                                         0, // value
1843                                         0, // symsize
1844                                         elfcpp::STT_NOTYPE,
1845                                         elfcpp::STB_GLOBAL,
1846                                         elfcpp::STV_DEFAULT,
1847                                         0, // nonvis
1848                                         true, // offset_is_from_end
1849                                         true); // only_if_ref
1850         }
1851     }
1852 }
1853
1854 // Define symbols for group signatures.
1855
1856 void
1857 Layout::define_group_signatures(Symbol_table* symtab)
1858 {
1859   for (Group_signatures::iterator p = this->group_signatures_.begin();
1860        p != this->group_signatures_.end();
1861        ++p)
1862     {
1863       Symbol* sym = symtab->lookup(p->signature, NULL);
1864       if (sym != NULL)
1865         p->section->set_info_symndx(sym);
1866       else
1867         {
1868           // Force the name of the group section to the group
1869           // signature, and use the group's section symbol as the
1870           // signature symbol.
1871           if (strcmp(p->section->name(), p->signature) != 0)
1872             {
1873               const char* name = this->namepool_.add(p->signature,
1874                                                      true, NULL);
1875               p->section->set_name(name);
1876             }
1877           p->section->set_needs_symtab_index();
1878           p->section->set_info_section_symndx(p->section);
1879         }
1880     }
1881
1882   this->group_signatures_.clear();
1883 }
1884
1885 // Find the first read-only PT_LOAD segment, creating one if
1886 // necessary.
1887
1888 Output_segment*
1889 Layout::find_first_load_seg()
1890 {
1891   Output_segment* best = NULL;
1892   for (Segment_list::const_iterator p = this->segment_list_.begin();
1893        p != this->segment_list_.end();
1894        ++p)
1895     {
1896       if ((*p)->type() == elfcpp::PT_LOAD
1897           && ((*p)->flags() & elfcpp::PF_R) != 0
1898           && (parameters->options().omagic()
1899               || ((*p)->flags() & elfcpp::PF_W) == 0))
1900         {
1901           if (best == NULL || this->segment_precedes(*p, best))
1902             best = *p;
1903         }
1904     }
1905   if (best != NULL)
1906     return best;
1907
1908   gold_assert(!this->script_options_->saw_phdrs_clause());
1909
1910   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1911                                                        elfcpp::PF_R);
1912   return load_seg;
1913 }
1914
1915 // Save states of all current output segments.  Store saved states
1916 // in SEGMENT_STATES.
1917
1918 void
1919 Layout::save_segments(Segment_states* segment_states)
1920 {
1921   for (Segment_list::const_iterator p = this->segment_list_.begin();
1922        p != this->segment_list_.end();
1923        ++p)
1924     {
1925       Output_segment* segment = *p;
1926       // Shallow copy.
1927       Output_segment* copy = new Output_segment(*segment);
1928       (*segment_states)[segment] = copy;
1929     }
1930 }
1931
1932 // Restore states of output segments and delete any segment not found in
1933 // SEGMENT_STATES.
1934
1935 void
1936 Layout::restore_segments(const Segment_states* segment_states)
1937 {
1938   // Go through the segment list and remove any segment added in the
1939   // relaxation loop.
1940   this->tls_segment_ = NULL;
1941   this->relro_segment_ = NULL;
1942   Segment_list::iterator list_iter = this->segment_list_.begin();
1943   while (list_iter != this->segment_list_.end())
1944     {
1945       Output_segment* segment = *list_iter;
1946       Segment_states::const_iterator states_iter =
1947           segment_states->find(segment);
1948       if (states_iter != segment_states->end())
1949         {
1950           const Output_segment* copy = states_iter->second;
1951           // Shallow copy to restore states.
1952           *segment = *copy;
1953
1954           // Also fix up TLS and RELRO segment pointers as appropriate.
1955           if (segment->type() == elfcpp::PT_TLS)
1956             this->tls_segment_ = segment;
1957           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1958             this->relro_segment_ = segment;
1959
1960           ++list_iter;
1961         } 
1962       else
1963         {
1964           list_iter = this->segment_list_.erase(list_iter); 
1965           // This is a segment created during section layout.  It should be
1966           // safe to remove it since we should have removed all pointers to it.
1967           delete segment;
1968         }
1969     }
1970 }
1971
1972 // Clean up after relaxation so that sections can be laid out again.
1973
1974 void
1975 Layout::clean_up_after_relaxation()
1976 {
1977   // Restore the segments to point state just prior to the relaxation loop.
1978   Script_sections* script_section = this->script_options_->script_sections();
1979   script_section->release_segments();
1980   this->restore_segments(this->segment_states_);
1981
1982   // Reset section addresses and file offsets
1983   for (Section_list::iterator p = this->section_list_.begin();
1984        p != this->section_list_.end();
1985        ++p)
1986     {
1987       (*p)->restore_states();
1988
1989       // If an input section changes size because of relaxation,
1990       // we need to adjust the section offsets of all input sections.
1991       // after such a section.
1992       if ((*p)->section_offsets_need_adjustment())
1993         (*p)->adjust_section_offsets();
1994
1995       (*p)->reset_address_and_file_offset();
1996     }
1997   
1998   // Reset special output object address and file offsets.
1999   for (Data_list::iterator p = this->special_output_list_.begin();
2000        p != this->special_output_list_.end();
2001        ++p)
2002     (*p)->reset_address_and_file_offset();
2003
2004   // A linker script may have created some output section data objects.
2005   // They are useless now.
2006   for (Output_section_data_list::const_iterator p =
2007          this->script_output_section_data_list_.begin();
2008        p != this->script_output_section_data_list_.end();
2009        ++p)
2010     delete *p;
2011   this->script_output_section_data_list_.clear(); 
2012 }
2013
2014 // Prepare for relaxation.
2015
2016 void
2017 Layout::prepare_for_relaxation()
2018 {
2019   // Create an relaxation debug check if in debugging mode.
2020   if (is_debugging_enabled(DEBUG_RELAXATION))
2021     this->relaxation_debug_check_ = new Relaxation_debug_check();
2022
2023   // Save segment states.
2024   this->segment_states_ = new Segment_states();
2025   this->save_segments(this->segment_states_);
2026
2027   for(Section_list::const_iterator p = this->section_list_.begin();
2028       p != this->section_list_.end();
2029       ++p)
2030     (*p)->save_states();
2031
2032   if (is_debugging_enabled(DEBUG_RELAXATION))
2033     this->relaxation_debug_check_->check_output_data_for_reset_values(
2034         this->section_list_, this->special_output_list_);
2035
2036   // Also enable recording of output section data from scripts.
2037   this->record_output_section_data_from_script_ = true;
2038 }
2039
2040 // Relaxation loop body:  If target has no relaxation, this runs only once
2041 // Otherwise, the target relaxation hook is called at the end of
2042 // each iteration.  If the hook returns true, it means re-layout of
2043 // section is required.  
2044 //
2045 // The number of segments created by a linking script without a PHDRS
2046 // clause may be affected by section sizes and alignments.  There is
2047 // a remote chance that relaxation causes different number of PT_LOAD
2048 // segments are created and sections are attached to different segments.
2049 // Therefore, we always throw away all segments created during section
2050 // layout.  In order to be able to restart the section layout, we keep
2051 // a copy of the segment list right before the relaxation loop and use
2052 // that to restore the segments.
2053 // 
2054 // PASS is the current relaxation pass number. 
2055 // SYMTAB is a symbol table.
2056 // PLOAD_SEG is the address of a pointer for the load segment.
2057 // PHDR_SEG is a pointer to the PHDR segment.
2058 // SEGMENT_HEADERS points to the output segment header.
2059 // FILE_HEADER points to the output file header.
2060 // PSHNDX is the address to store the output section index.
2061
2062 off_t inline
2063 Layout::relaxation_loop_body(
2064     int pass,
2065     Target* target,
2066     Symbol_table* symtab,
2067     Output_segment** pload_seg,
2068     Output_segment* phdr_seg,
2069     Output_segment_headers* segment_headers,
2070     Output_file_header* file_header,
2071     unsigned int* pshndx)
2072 {
2073   // If this is not the first iteration, we need to clean up after
2074   // relaxation so that we can lay out the sections again.
2075   if (pass != 0)
2076     this->clean_up_after_relaxation();
2077
2078   // If there is a SECTIONS clause, put all the input sections into
2079   // the required order.
2080   Output_segment* load_seg;
2081   if (this->script_options_->saw_sections_clause())
2082     load_seg = this->set_section_addresses_from_script(symtab);
2083   else if (parameters->options().relocatable())
2084     load_seg = NULL;
2085   else
2086     load_seg = this->find_first_load_seg();
2087
2088   if (parameters->options().oformat_enum()
2089       != General_options::OBJECT_FORMAT_ELF)
2090     load_seg = NULL;
2091
2092   // If the user set the address of the text segment, that may not be
2093   // compatible with putting the segment headers and file headers into
2094   // that segment.
2095   if (parameters->options().user_set_Ttext())
2096     load_seg = NULL;
2097
2098   gold_assert(phdr_seg == NULL
2099               || load_seg != NULL
2100               || this->script_options_->saw_sections_clause());
2101
2102   // If the address of the load segment we found has been set by
2103   // --section-start rather than by a script, then adjust the VMA and
2104   // LMA downward if possible to include the file and section headers.
2105   uint64_t header_gap = 0;
2106   if (load_seg != NULL
2107       && load_seg->are_addresses_set()
2108       && !this->script_options_->saw_sections_clause()
2109       && !parameters->options().relocatable())
2110     {
2111       file_header->finalize_data_size();
2112       segment_headers->finalize_data_size();
2113       size_t sizeof_headers = (file_header->data_size()
2114                                + segment_headers->data_size());
2115       const uint64_t abi_pagesize = target->abi_pagesize();
2116       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2117       hdr_paddr &= ~(abi_pagesize - 1);
2118       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2119       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2120         load_seg = NULL;
2121       else
2122         {
2123           load_seg->set_addresses(load_seg->vaddr() - subtract,
2124                                   load_seg->paddr() - subtract);
2125           header_gap = subtract - sizeof_headers;
2126         }
2127     }
2128
2129   // Lay out the segment headers.
2130   if (!parameters->options().relocatable())
2131     {
2132       gold_assert(segment_headers != NULL);
2133       if (header_gap != 0 && load_seg != NULL)
2134         {
2135           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2136           load_seg->add_initial_output_data(z);
2137         }
2138       if (load_seg != NULL)
2139         load_seg->add_initial_output_data(segment_headers);
2140       if (phdr_seg != NULL)
2141         phdr_seg->add_initial_output_data(segment_headers);
2142     }
2143
2144   // Lay out the file header.
2145   if (load_seg != NULL)
2146     load_seg->add_initial_output_data(file_header);
2147
2148   if (this->script_options_->saw_phdrs_clause()
2149       && !parameters->options().relocatable())
2150     {
2151       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2152       // clause in a linker script.
2153       Script_sections* ss = this->script_options_->script_sections();
2154       ss->put_headers_in_phdrs(file_header, segment_headers);
2155     }
2156
2157   // We set the output section indexes in set_segment_offsets and
2158   // set_section_indexes.
2159   *pshndx = 1;
2160
2161   // Set the file offsets of all the segments, and all the sections
2162   // they contain.
2163   off_t off;
2164   if (!parameters->options().relocatable())
2165     off = this->set_segment_offsets(target, load_seg, pshndx);
2166   else
2167     off = this->set_relocatable_section_offsets(file_header, pshndx);
2168
2169    // Verify that the dummy relaxation does not change anything.
2170   if (is_debugging_enabled(DEBUG_RELAXATION))
2171     {
2172       if (pass == 0)
2173         this->relaxation_debug_check_->read_sections(this->section_list_);
2174       else
2175         this->relaxation_debug_check_->verify_sections(this->section_list_);
2176     }
2177
2178   *pload_seg = load_seg;
2179   return off;
2180 }
2181
2182 // Search the list of patterns and find the postion of the given section
2183 // name in the output section.  If the section name matches a glob
2184 // pattern and a non-glob name, then the non-glob position takes
2185 // precedence.  Return 0 if no match is found.
2186
2187 unsigned int
2188 Layout::find_section_order_index(const std::string& section_name)
2189 {
2190   Unordered_map<std::string, unsigned int>::iterator map_it;
2191   map_it = this->input_section_position_.find(section_name);
2192   if (map_it != this->input_section_position_.end())
2193     return map_it->second;
2194
2195   // Absolute match failed.  Linear search the glob patterns.
2196   std::vector<std::string>::iterator it;
2197   for (it = this->input_section_glob_.begin();
2198        it != this->input_section_glob_.end();
2199        ++it)
2200     {
2201        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2202          {
2203            map_it = this->input_section_position_.find(*it);
2204            gold_assert(map_it != this->input_section_position_.end());
2205            return map_it->second;
2206          }
2207     }
2208   return 0;
2209 }
2210
2211 // Read the sequence of input sections from the file specified with
2212 // --section-ordering-file.
2213
2214 void
2215 Layout::read_layout_from_file()
2216 {
2217   const char* filename = parameters->options().section_ordering_file();
2218   std::ifstream in;
2219   std::string line;
2220
2221   in.open(filename);
2222   if (!in)
2223     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2224                filename, strerror(errno));
2225
2226   std::getline(in, line);   // this chops off the trailing \n, if any
2227   unsigned int position = 1;
2228
2229   while (in)
2230     {
2231       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2232         line.resize(line.length() - 1);
2233       // Ignore comments, beginning with '#'
2234       if (line[0] == '#')
2235         {
2236           std::getline(in, line);
2237           continue;
2238         }
2239       this->input_section_position_[line] = position;
2240       // Store all glob patterns in a vector.
2241       if (is_wildcard_string(line.c_str()))
2242         this->input_section_glob_.push_back(line);
2243       position++;
2244       std::getline(in, line);
2245     }
2246 }
2247
2248 // Finalize the layout.  When this is called, we have created all the
2249 // output sections and all the output segments which are based on
2250 // input sections.  We have several things to do, and we have to do
2251 // them in the right order, so that we get the right results correctly
2252 // and efficiently.
2253
2254 // 1) Finalize the list of output segments and create the segment
2255 // table header.
2256
2257 // 2) Finalize the dynamic symbol table and associated sections.
2258
2259 // 3) Determine the final file offset of all the output segments.
2260
2261 // 4) Determine the final file offset of all the SHF_ALLOC output
2262 // sections.
2263
2264 // 5) Create the symbol table sections and the section name table
2265 // section.
2266
2267 // 6) Finalize the symbol table: set symbol values to their final
2268 // value and make a final determination of which symbols are going
2269 // into the output symbol table.
2270
2271 // 7) Create the section table header.
2272
2273 // 8) Determine the final file offset of all the output sections which
2274 // are not SHF_ALLOC, including the section table header.
2275
2276 // 9) Finalize the ELF file header.
2277
2278 // This function returns the size of the output file.
2279
2280 off_t
2281 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2282                  Target* target, const Task* task)
2283 {
2284   target->finalize_sections(this, input_objects, symtab);
2285
2286   this->count_local_symbols(task, input_objects);
2287
2288   this->link_stabs_sections();
2289
2290   Output_segment* phdr_seg = NULL;
2291   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2292     {
2293       // There was a dynamic object in the link.  We need to create
2294       // some information for the dynamic linker.
2295
2296       // Create the PT_PHDR segment which will hold the program
2297       // headers.
2298       if (!this->script_options_->saw_phdrs_clause())
2299         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2300
2301       // Create the dynamic symbol table, including the hash table.
2302       Output_section* dynstr;
2303       std::vector<Symbol*> dynamic_symbols;
2304       unsigned int local_dynamic_count;
2305       Versions versions(*this->script_options()->version_script_info(),
2306                         &this->dynpool_);
2307       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2308                                   &local_dynamic_count, &dynamic_symbols,
2309                                   &versions);
2310
2311       // Create the .interp section to hold the name of the
2312       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2313       // if we saw a .interp section in an input file.
2314       if ((!parameters->options().shared()
2315            || parameters->options().dynamic_linker() != NULL)
2316           && this->interp_segment_ == NULL)
2317         this->create_interp(target);
2318
2319       // Finish the .dynamic section to hold the dynamic data, and put
2320       // it in a PT_DYNAMIC segment.
2321       this->finish_dynamic_section(input_objects, symtab);
2322
2323       // We should have added everything we need to the dynamic string
2324       // table.
2325       this->dynpool_.set_string_offsets();
2326
2327       // Create the version sections.  We can't do this until the
2328       // dynamic string table is complete.
2329       this->create_version_sections(&versions, symtab, local_dynamic_count,
2330                                     dynamic_symbols, dynstr);
2331
2332       // Set the size of the _DYNAMIC symbol.  We can't do this until
2333       // after we call create_version_sections.
2334       this->set_dynamic_symbol_size(symtab);
2335     }
2336   
2337   // Create segment headers.
2338   Output_segment_headers* segment_headers =
2339     (parameters->options().relocatable()
2340      ? NULL
2341      : new Output_segment_headers(this->segment_list_));
2342
2343   // Lay out the file header.
2344   Output_file_header* file_header = new Output_file_header(target, symtab,
2345                                                            segment_headers);
2346
2347   this->special_output_list_.push_back(file_header);
2348   if (segment_headers != NULL)
2349     this->special_output_list_.push_back(segment_headers);
2350
2351   // Find approriate places for orphan output sections if we are using
2352   // a linker script.
2353   if (this->script_options_->saw_sections_clause())
2354     this->place_orphan_sections_in_script();
2355   
2356   Output_segment* load_seg;
2357   off_t off;
2358   unsigned int shndx;
2359   int pass = 0;
2360
2361   // Take a snapshot of the section layout as needed.
2362   if (target->may_relax())
2363     this->prepare_for_relaxation();
2364   
2365   // Run the relaxation loop to lay out sections.
2366   do
2367     {
2368       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2369                                        phdr_seg, segment_headers, file_header,
2370                                        &shndx);
2371       pass++;
2372     }
2373   while (target->may_relax()
2374          && target->relax(pass, input_objects, symtab, this, task));
2375
2376   // Set the file offsets of all the non-data sections we've seen so
2377   // far which don't have to wait for the input sections.  We need
2378   // this in order to finalize local symbols in non-allocated
2379   // sections.
2380   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2381
2382   // Set the section indexes of all unallocated sections seen so far,
2383   // in case any of them are somehow referenced by a symbol.
2384   shndx = this->set_section_indexes(shndx);
2385
2386   // Create the symbol table sections.
2387   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2388   if (!parameters->doing_static_link())
2389     this->assign_local_dynsym_offsets(input_objects);
2390
2391   // Process any symbol assignments from a linker script.  This must
2392   // be called after the symbol table has been finalized.
2393   this->script_options_->finalize_symbols(symtab, this);
2394
2395   // Create the incremental inputs sections.
2396   if (this->incremental_inputs_)
2397     {
2398       this->incremental_inputs_->finalize();
2399       this->create_incremental_info_sections(symtab);
2400     }
2401
2402   // Create the .shstrtab section.
2403   Output_section* shstrtab_section = this->create_shstrtab();
2404
2405   // Set the file offsets of the rest of the non-data sections which
2406   // don't have to wait for the input sections.
2407   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2408
2409   // Now that all sections have been created, set the section indexes
2410   // for any sections which haven't been done yet.
2411   shndx = this->set_section_indexes(shndx);
2412
2413   // Create the section table header.
2414   this->create_shdrs(shstrtab_section, &off);
2415
2416   // If there are no sections which require postprocessing, we can
2417   // handle the section names now, and avoid a resize later.
2418   if (!this->any_postprocessing_sections_)
2419     {
2420       off = this->set_section_offsets(off,
2421                                       POSTPROCESSING_SECTIONS_PASS);
2422       off =
2423           this->set_section_offsets(off,
2424                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2425     }
2426
2427   file_header->set_section_info(this->section_headers_, shstrtab_section);
2428
2429   // Now we know exactly where everything goes in the output file
2430   // (except for non-allocated sections which require postprocessing).
2431   Output_data::layout_complete();
2432
2433   this->output_file_size_ = off;
2434
2435   return off;
2436 }
2437
2438 // Create a note header following the format defined in the ELF ABI.
2439 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2440 // of the section to create, DESCSZ is the size of the descriptor.
2441 // ALLOCATE is true if the section should be allocated in memory.
2442 // This returns the new note section.  It sets *TRAILING_PADDING to
2443 // the number of trailing zero bytes required.
2444
2445 Output_section*
2446 Layout::create_note(const char* name, int note_type,
2447                     const char* section_name, size_t descsz,
2448                     bool allocate, size_t* trailing_padding)
2449 {
2450   // Authorities all agree that the values in a .note field should
2451   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2452   // they differ on what the alignment is for 64-bit binaries.
2453   // The GABI says unambiguously they take 8-byte alignment:
2454   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2455   // Other documentation says alignment should always be 4 bytes:
2456   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2457   // GNU ld and GNU readelf both support the latter (at least as of
2458   // version 2.16.91), and glibc always generates the latter for
2459   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2460   // here.
2461 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2462   const int size = parameters->target().get_size();
2463 #else
2464   const int size = 32;
2465 #endif
2466
2467   // The contents of the .note section.
2468   size_t namesz = strlen(name) + 1;
2469   size_t aligned_namesz = align_address(namesz, size / 8);
2470   size_t aligned_descsz = align_address(descsz, size / 8);
2471
2472   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2473
2474   unsigned char* buffer = new unsigned char[notehdrsz];
2475   memset(buffer, 0, notehdrsz);
2476
2477   bool is_big_endian = parameters->target().is_big_endian();
2478
2479   if (size == 32)
2480     {
2481       if (!is_big_endian)
2482         {
2483           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2484           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2485           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2486         }
2487       else
2488         {
2489           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2490           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2491           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2492         }
2493     }
2494   else if (size == 64)
2495     {
2496       if (!is_big_endian)
2497         {
2498           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2499           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2500           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2501         }
2502       else
2503         {
2504           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2505           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2506           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2507         }
2508     }
2509   else
2510     gold_unreachable();
2511
2512   memcpy(buffer + 3 * (size / 8), name, namesz);
2513
2514   elfcpp::Elf_Xword flags = 0;
2515   Output_section_order order = ORDER_INVALID;
2516   if (allocate)
2517     {
2518       flags = elfcpp::SHF_ALLOC;
2519       order = ORDER_RO_NOTE;
2520     }
2521   Output_section* os = this->choose_output_section(NULL, section_name,
2522                                                    elfcpp::SHT_NOTE,
2523                                                    flags, false, order, false);
2524   if (os == NULL)
2525     return NULL;
2526
2527   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2528                                                            size / 8,
2529                                                            "** note header");
2530   os->add_output_section_data(posd);
2531
2532   *trailing_padding = aligned_descsz - descsz;
2533
2534   return os;
2535 }
2536
2537 // For an executable or shared library, create a note to record the
2538 // version of gold used to create the binary.
2539
2540 void
2541 Layout::create_gold_note()
2542 {
2543   if (parameters->options().relocatable()
2544       || parameters->incremental_update())
2545     return;
2546
2547   std::string desc = std::string("gold ") + gold::get_version_string();
2548
2549   size_t trailing_padding;
2550   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2551                                          ".note.gnu.gold-version", desc.size(),
2552                                          false, &trailing_padding);
2553   if (os == NULL)
2554     return;
2555
2556   Output_section_data* posd = new Output_data_const(desc, 4);
2557   os->add_output_section_data(posd);
2558
2559   if (trailing_padding > 0)
2560     {
2561       posd = new Output_data_zero_fill(trailing_padding, 0);
2562       os->add_output_section_data(posd);
2563     }
2564 }
2565
2566 // Record whether the stack should be executable.  This can be set
2567 // from the command line using the -z execstack or -z noexecstack
2568 // options.  Otherwise, if any input file has a .note.GNU-stack
2569 // section with the SHF_EXECINSTR flag set, the stack should be
2570 // executable.  Otherwise, if at least one input file a
2571 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2572 // section, we use the target default for whether the stack should be
2573 // executable.  Otherwise, we don't generate a stack note.  When
2574 // generating a object file, we create a .note.GNU-stack section with
2575 // the appropriate marking.  When generating an executable or shared
2576 // library, we create a PT_GNU_STACK segment.
2577
2578 void
2579 Layout::create_executable_stack_info()
2580 {
2581   bool is_stack_executable;
2582   if (parameters->options().is_execstack_set())
2583     is_stack_executable = parameters->options().is_stack_executable();
2584   else if (!this->input_with_gnu_stack_note_)
2585     return;
2586   else
2587     {
2588       if (this->input_requires_executable_stack_)
2589         is_stack_executable = true;
2590       else if (this->input_without_gnu_stack_note_)
2591         is_stack_executable =
2592           parameters->target().is_default_stack_executable();
2593       else
2594         is_stack_executable = false;
2595     }
2596
2597   if (parameters->options().relocatable())
2598     {
2599       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2600       elfcpp::Elf_Xword flags = 0;
2601       if (is_stack_executable)
2602         flags |= elfcpp::SHF_EXECINSTR;
2603       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2604                                 ORDER_INVALID, false);
2605     }
2606   else
2607     {
2608       if (this->script_options_->saw_phdrs_clause())
2609         return;
2610       int flags = elfcpp::PF_R | elfcpp::PF_W;
2611       if (is_stack_executable)
2612         flags |= elfcpp::PF_X;
2613       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2614     }
2615 }
2616
2617 // If --build-id was used, set up the build ID note.
2618
2619 void
2620 Layout::create_build_id()
2621 {
2622   if (!parameters->options().user_set_build_id())
2623     return;
2624
2625   const char* style = parameters->options().build_id();
2626   if (strcmp(style, "none") == 0)
2627     return;
2628
2629   // Set DESCSZ to the size of the note descriptor.  When possible,
2630   // set DESC to the note descriptor contents.
2631   size_t descsz;
2632   std::string desc;
2633   if (strcmp(style, "md5") == 0)
2634     descsz = 128 / 8;
2635   else if (strcmp(style, "sha1") == 0)
2636     descsz = 160 / 8;
2637   else if (strcmp(style, "uuid") == 0)
2638     {
2639       const size_t uuidsz = 128 / 8;
2640
2641       char buffer[uuidsz];
2642       memset(buffer, 0, uuidsz);
2643
2644       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2645       if (descriptor < 0)
2646         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2647                    strerror(errno));
2648       else
2649         {
2650           ssize_t got = ::read(descriptor, buffer, uuidsz);
2651           release_descriptor(descriptor, true);
2652           if (got < 0)
2653             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2654           else if (static_cast<size_t>(got) != uuidsz)
2655             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2656                        uuidsz, got);
2657         }
2658
2659       desc.assign(buffer, uuidsz);
2660       descsz = uuidsz;
2661     }
2662   else if (strncmp(style, "0x", 2) == 0)
2663     {
2664       hex_init();
2665       const char* p = style + 2;
2666       while (*p != '\0')
2667         {
2668           if (hex_p(p[0]) && hex_p(p[1]))
2669             {
2670               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2671               desc += c;
2672               p += 2;
2673             }
2674           else if (*p == '-' || *p == ':')
2675             ++p;
2676           else
2677             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2678                        style);
2679         }
2680       descsz = desc.size();
2681     }
2682   else
2683     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2684
2685   // Create the note.
2686   size_t trailing_padding;
2687   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2688                                          ".note.gnu.build-id", descsz, true,
2689                                          &trailing_padding);
2690   if (os == NULL)
2691     return;
2692
2693   if (!desc.empty())
2694     {
2695       // We know the value already, so we fill it in now.
2696       gold_assert(desc.size() == descsz);
2697
2698       Output_section_data* posd = new Output_data_const(desc, 4);
2699       os->add_output_section_data(posd);
2700
2701       if (trailing_padding != 0)
2702         {
2703           posd = new Output_data_zero_fill(trailing_padding, 0);
2704           os->add_output_section_data(posd);
2705         }
2706     }
2707   else
2708     {
2709       // We need to compute a checksum after we have completed the
2710       // link.
2711       gold_assert(trailing_padding == 0);
2712       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2713       os->add_output_section_data(this->build_id_note_);
2714     }
2715 }
2716
2717 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2718 // field of the former should point to the latter.  I'm not sure who
2719 // started this, but the GNU linker does it, and some tools depend
2720 // upon it.
2721
2722 void
2723 Layout::link_stabs_sections()
2724 {
2725   if (!this->have_stabstr_section_)
2726     return;
2727
2728   for (Section_list::iterator p = this->section_list_.begin();
2729        p != this->section_list_.end();
2730        ++p)
2731     {
2732       if ((*p)->type() != elfcpp::SHT_STRTAB)
2733         continue;
2734
2735       const char* name = (*p)->name();
2736       if (strncmp(name, ".stab", 5) != 0)
2737         continue;
2738
2739       size_t len = strlen(name);
2740       if (strcmp(name + len - 3, "str") != 0)
2741         continue;
2742
2743       std::string stab_name(name, len - 3);
2744       Output_section* stab_sec;
2745       stab_sec = this->find_output_section(stab_name.c_str());
2746       if (stab_sec != NULL)
2747         stab_sec->set_link_section(*p);
2748     }
2749 }
2750
2751 // Create .gnu_incremental_inputs and related sections needed
2752 // for the next run of incremental linking to check what has changed.
2753
2754 void
2755 Layout::create_incremental_info_sections(Symbol_table* symtab)
2756 {
2757   Incremental_inputs* incr = this->incremental_inputs_;
2758
2759   gold_assert(incr != NULL);
2760
2761   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2762   incr->create_data_sections(symtab);
2763
2764   // Add the .gnu_incremental_inputs section.
2765   const char* incremental_inputs_name =
2766     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2767   Output_section* incremental_inputs_os =
2768     this->make_output_section(incremental_inputs_name,
2769                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2770                               ORDER_INVALID, false);
2771   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2772
2773   // Add the .gnu_incremental_symtab section.
2774   const char* incremental_symtab_name =
2775     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2776   Output_section* incremental_symtab_os =
2777     this->make_output_section(incremental_symtab_name,
2778                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2779                               ORDER_INVALID, false);
2780   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2781   incremental_symtab_os->set_entsize(4);
2782
2783   // Add the .gnu_incremental_relocs section.
2784   const char* incremental_relocs_name =
2785     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2786   Output_section* incremental_relocs_os =
2787     this->make_output_section(incremental_relocs_name,
2788                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2789                               ORDER_INVALID, false);
2790   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2791   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2792
2793   // Add the .gnu_incremental_got_plt section.
2794   const char* incremental_got_plt_name =
2795     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2796   Output_section* incremental_got_plt_os =
2797     this->make_output_section(incremental_got_plt_name,
2798                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2799                               ORDER_INVALID, false);
2800   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2801
2802   // Add the .gnu_incremental_strtab section.
2803   const char* incremental_strtab_name =
2804     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2805   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2806                                                         elfcpp::SHT_STRTAB, 0,
2807                                                         ORDER_INVALID, false);
2808   Output_data_strtab* strtab_data =
2809       new Output_data_strtab(incr->get_stringpool());
2810   incremental_strtab_os->add_output_section_data(strtab_data);
2811
2812   incremental_inputs_os->set_after_input_sections();
2813   incremental_symtab_os->set_after_input_sections();
2814   incremental_relocs_os->set_after_input_sections();
2815   incremental_got_plt_os->set_after_input_sections();
2816
2817   incremental_inputs_os->set_link_section(incremental_strtab_os);
2818   incremental_symtab_os->set_link_section(incremental_inputs_os);
2819   incremental_relocs_os->set_link_section(incremental_inputs_os);
2820   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2821 }
2822
2823 // Return whether SEG1 should be before SEG2 in the output file.  This
2824 // is based entirely on the segment type and flags.  When this is
2825 // called the segment addresses have normally not yet been set.
2826
2827 bool
2828 Layout::segment_precedes(const Output_segment* seg1,
2829                          const Output_segment* seg2)
2830 {
2831   elfcpp::Elf_Word type1 = seg1->type();
2832   elfcpp::Elf_Word type2 = seg2->type();
2833
2834   // The single PT_PHDR segment is required to precede any loadable
2835   // segment.  We simply make it always first.
2836   if (type1 == elfcpp::PT_PHDR)
2837     {
2838       gold_assert(type2 != elfcpp::PT_PHDR);
2839       return true;
2840     }
2841   if (type2 == elfcpp::PT_PHDR)
2842     return false;
2843
2844   // The single PT_INTERP segment is required to precede any loadable
2845   // segment.  We simply make it always second.
2846   if (type1 == elfcpp::PT_INTERP)
2847     {
2848       gold_assert(type2 != elfcpp::PT_INTERP);
2849       return true;
2850     }
2851   if (type2 == elfcpp::PT_INTERP)
2852     return false;
2853
2854   // We then put PT_LOAD segments before any other segments.
2855   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2856     return true;
2857   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2858     return false;
2859
2860   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2861   // segment, because that is where the dynamic linker expects to find
2862   // it (this is just for efficiency; other positions would also work
2863   // correctly).
2864   if (type1 == elfcpp::PT_TLS
2865       && type2 != elfcpp::PT_TLS
2866       && type2 != elfcpp::PT_GNU_RELRO)
2867     return false;
2868   if (type2 == elfcpp::PT_TLS
2869       && type1 != elfcpp::PT_TLS
2870       && type1 != elfcpp::PT_GNU_RELRO)
2871     return true;
2872
2873   // We put the PT_GNU_RELRO segment last, because that is where the
2874   // dynamic linker expects to find it (as with PT_TLS, this is just
2875   // for efficiency).
2876   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2877     return false;
2878   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2879     return true;
2880
2881   const elfcpp::Elf_Word flags1 = seg1->flags();
2882   const elfcpp::Elf_Word flags2 = seg2->flags();
2883
2884   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2885   // by the numeric segment type and flags values.  There should not
2886   // be more than one segment with the same type and flags.
2887   if (type1 != elfcpp::PT_LOAD)
2888     {
2889       if (type1 != type2)
2890         return type1 < type2;
2891       gold_assert(flags1 != flags2);
2892       return flags1 < flags2;
2893     }
2894
2895   // If the addresses are set already, sort by load address.
2896   if (seg1->are_addresses_set())
2897     {
2898       if (!seg2->are_addresses_set())
2899         return true;
2900
2901       unsigned int section_count1 = seg1->output_section_count();
2902       unsigned int section_count2 = seg2->output_section_count();
2903       if (section_count1 == 0 && section_count2 > 0)
2904         return true;
2905       if (section_count1 > 0 && section_count2 == 0)
2906         return false;
2907
2908       uint64_t paddr1 = (seg1->are_addresses_set()
2909                          ? seg1->paddr()
2910                          : seg1->first_section_load_address());
2911       uint64_t paddr2 = (seg2->are_addresses_set()
2912                          ? seg2->paddr()
2913                          : seg2->first_section_load_address());
2914
2915       if (paddr1 != paddr2)
2916         return paddr1 < paddr2;
2917     }
2918   else if (seg2->are_addresses_set())
2919     return false;
2920
2921   // A segment which holds large data comes after a segment which does
2922   // not hold large data.
2923   if (seg1->is_large_data_segment())
2924     {
2925       if (!seg2->is_large_data_segment())
2926         return false;
2927     }
2928   else if (seg2->is_large_data_segment())
2929     return true;
2930
2931   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2932   // segments come before writable segments.  Then writable segments
2933   // with data come before writable segments without data.  Then
2934   // executable segments come before non-executable segments.  Then
2935   // the unlikely case of a non-readable segment comes before the
2936   // normal case of a readable segment.  If there are multiple
2937   // segments with the same type and flags, we require that the
2938   // address be set, and we sort by virtual address and then physical
2939   // address.
2940   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2941     return (flags1 & elfcpp::PF_W) == 0;
2942   if ((flags1 & elfcpp::PF_W) != 0
2943       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2944     return seg1->has_any_data_sections();
2945   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2946     return (flags1 & elfcpp::PF_X) != 0;
2947   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2948     return (flags1 & elfcpp::PF_R) == 0;
2949
2950   // We shouldn't get here--we shouldn't create segments which we
2951   // can't distinguish.  Unless of course we are using a weird linker
2952   // script.
2953   gold_assert(this->script_options_->saw_phdrs_clause());
2954   return false;
2955 }
2956
2957 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2958
2959 static off_t
2960 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2961 {
2962   uint64_t unsigned_off = off;
2963   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2964                           | (addr & (abi_pagesize - 1)));
2965   if (aligned_off < unsigned_off)
2966     aligned_off += abi_pagesize;
2967   return aligned_off;
2968 }
2969
2970 // Set the file offsets of all the segments, and all the sections they
2971 // contain.  They have all been created.  LOAD_SEG must be be laid out
2972 // first.  Return the offset of the data to follow.
2973
2974 off_t
2975 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2976                             unsigned int* pshndx)
2977 {
2978   // Sort them into the final order.  We use a stable sort so that we
2979   // don't randomize the order of indistinguishable segments created
2980   // by linker scripts.
2981   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2982                    Layout::Compare_segments(this));
2983
2984   // Find the PT_LOAD segments, and set their addresses and offsets
2985   // and their section's addresses and offsets.
2986   uint64_t addr;
2987   if (parameters->options().user_set_Ttext())
2988     addr = parameters->options().Ttext();
2989   else if (parameters->options().output_is_position_independent())
2990     addr = 0;
2991   else
2992     addr = target->default_text_segment_address();
2993   off_t off = 0;
2994
2995   // If LOAD_SEG is NULL, then the file header and segment headers
2996   // will not be loadable.  But they still need to be at offset 0 in
2997   // the file.  Set their offsets now.
2998   if (load_seg == NULL)
2999     {
3000       for (Data_list::iterator p = this->special_output_list_.begin();
3001            p != this->special_output_list_.end();
3002            ++p)
3003         {
3004           off = align_address(off, (*p)->addralign());
3005           (*p)->set_address_and_file_offset(0, off);
3006           off += (*p)->data_size();
3007         }
3008     }
3009
3010   unsigned int increase_relro = this->increase_relro_;
3011   if (this->script_options_->saw_sections_clause())
3012     increase_relro = 0;
3013
3014   const bool check_sections = parameters->options().check_sections();
3015   Output_segment* last_load_segment = NULL;
3016
3017   for (Segment_list::iterator p = this->segment_list_.begin();
3018        p != this->segment_list_.end();
3019        ++p)
3020     {
3021       if ((*p)->type() == elfcpp::PT_LOAD)
3022         {
3023           if (load_seg != NULL && load_seg != *p)
3024             gold_unreachable();
3025           load_seg = NULL;
3026
3027           bool are_addresses_set = (*p)->are_addresses_set();
3028           if (are_addresses_set)
3029             {
3030               // When it comes to setting file offsets, we care about
3031               // the physical address.
3032               addr = (*p)->paddr();
3033             }
3034           else if (parameters->options().user_set_Tdata()
3035                    && ((*p)->flags() & elfcpp::PF_W) != 0
3036                    && (!parameters->options().user_set_Tbss()
3037                        || (*p)->has_any_data_sections()))
3038             {
3039               addr = parameters->options().Tdata();
3040               are_addresses_set = true;
3041             }
3042           else if (parameters->options().user_set_Tbss()
3043                    && ((*p)->flags() & elfcpp::PF_W) != 0
3044                    && !(*p)->has_any_data_sections())
3045             {
3046               addr = parameters->options().Tbss();
3047               are_addresses_set = true;
3048             }
3049
3050           uint64_t orig_addr = addr;
3051           uint64_t orig_off = off;
3052
3053           uint64_t aligned_addr = 0;
3054           uint64_t abi_pagesize = target->abi_pagesize();
3055           uint64_t common_pagesize = target->common_pagesize();
3056
3057           if (!parameters->options().nmagic()
3058               && !parameters->options().omagic())
3059             (*p)->set_minimum_p_align(common_pagesize);
3060
3061           if (!are_addresses_set)
3062             {
3063               // Skip the address forward one page, maintaining the same
3064               // position within the page.  This lets us store both segments
3065               // overlapping on a single page in the file, but the loader will
3066               // put them on different pages in memory. We will revisit this
3067               // decision once we know the size of the segment.
3068
3069               addr = align_address(addr, (*p)->maximum_alignment());
3070               aligned_addr = addr;
3071
3072               if ((addr & (abi_pagesize - 1)) != 0)
3073                 addr = addr + abi_pagesize;
3074
3075               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3076             }
3077
3078           if (!parameters->options().nmagic()
3079               && !parameters->options().omagic())
3080             off = align_file_offset(off, addr, abi_pagesize);
3081           else if (load_seg == NULL)
3082             {
3083               // This is -N or -n with a section script which prevents
3084               // us from using a load segment.  We need to ensure that
3085               // the file offset is aligned to the alignment of the
3086               // segment.  This is because the linker script
3087               // implicitly assumed a zero offset.  If we don't align
3088               // here, then the alignment of the sections in the
3089               // linker script may not match the alignment of the
3090               // sections in the set_section_addresses call below,
3091               // causing an error about dot moving backward.
3092               off = align_address(off, (*p)->maximum_alignment());
3093             }
3094
3095           unsigned int shndx_hold = *pshndx;
3096           bool has_relro = false;
3097           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3098                                                           &increase_relro,
3099                                                           &has_relro,
3100                                                           &off, pshndx);
3101
3102           // Now that we know the size of this segment, we may be able
3103           // to save a page in memory, at the cost of wasting some
3104           // file space, by instead aligning to the start of a new
3105           // page.  Here we use the real machine page size rather than
3106           // the ABI mandated page size.  If the segment has been
3107           // aligned so that the relro data ends at a page boundary,
3108           // we do not try to realign it.
3109
3110           if (!are_addresses_set
3111               && !has_relro
3112               && aligned_addr != addr
3113               && !parameters->incremental())
3114             {
3115               uint64_t first_off = (common_pagesize
3116                                     - (aligned_addr
3117                                        & (common_pagesize - 1)));
3118               uint64_t last_off = new_addr & (common_pagesize - 1);
3119               if (first_off > 0
3120                   && last_off > 0
3121                   && ((aligned_addr & ~ (common_pagesize - 1))
3122                       != (new_addr & ~ (common_pagesize - 1)))
3123                   && first_off + last_off <= common_pagesize)
3124                 {
3125                   *pshndx = shndx_hold;
3126                   addr = align_address(aligned_addr, common_pagesize);
3127                   addr = align_address(addr, (*p)->maximum_alignment());
3128                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3129                   off = align_file_offset(off, addr, abi_pagesize);
3130
3131                   increase_relro = this->increase_relro_;
3132                   if (this->script_options_->saw_sections_clause())
3133                     increase_relro = 0;
3134                   has_relro = false;
3135
3136                   new_addr = (*p)->set_section_addresses(this, true, addr,
3137                                                          &increase_relro,
3138                                                          &has_relro,
3139                                                          &off, pshndx);
3140                 }
3141             }
3142
3143           addr = new_addr;
3144
3145           // Implement --check-sections.  We know that the segments
3146           // are sorted by LMA.
3147           if (check_sections && last_load_segment != NULL)
3148             {
3149               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3150               if (last_load_segment->paddr() + last_load_segment->memsz()
3151                   > (*p)->paddr())
3152                 {
3153                   unsigned long long lb1 = last_load_segment->paddr();
3154                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3155                   unsigned long long lb2 = (*p)->paddr();
3156                   unsigned long long le2 = lb2 + (*p)->memsz();
3157                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3158                                "[0x%llx -> 0x%llx]"),
3159                              lb1, le1, lb2, le2);
3160                 }
3161             }
3162           last_load_segment = *p;
3163         }
3164     }
3165
3166   // Handle the non-PT_LOAD segments, setting their offsets from their
3167   // section's offsets.
3168   for (Segment_list::iterator p = this->segment_list_.begin();
3169        p != this->segment_list_.end();
3170        ++p)
3171     {
3172       if ((*p)->type() != elfcpp::PT_LOAD)
3173         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3174                          ? increase_relro
3175                          : 0);
3176     }
3177
3178   // Set the TLS offsets for each section in the PT_TLS segment.
3179   if (this->tls_segment_ != NULL)
3180     this->tls_segment_->set_tls_offsets();
3181
3182   return off;
3183 }
3184
3185 // Set the offsets of all the allocated sections when doing a
3186 // relocatable link.  This does the same jobs as set_segment_offsets,
3187 // only for a relocatable link.
3188
3189 off_t
3190 Layout::set_relocatable_section_offsets(Output_data* file_header,
3191                                         unsigned int* pshndx)
3192 {
3193   off_t off = 0;
3194
3195   file_header->set_address_and_file_offset(0, 0);
3196   off += file_header->data_size();
3197
3198   for (Section_list::iterator p = this->section_list_.begin();
3199        p != this->section_list_.end();
3200        ++p)
3201     {
3202       // We skip unallocated sections here, except that group sections
3203       // have to come first.
3204       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3205           && (*p)->type() != elfcpp::SHT_GROUP)
3206         continue;
3207
3208       off = align_address(off, (*p)->addralign());
3209
3210       // The linker script might have set the address.
3211       if (!(*p)->is_address_valid())
3212         (*p)->set_address(0);
3213       (*p)->set_file_offset(off);
3214       (*p)->finalize_data_size();
3215       off += (*p)->data_size();
3216
3217       (*p)->set_out_shndx(*pshndx);
3218       ++*pshndx;
3219     }
3220
3221   return off;
3222 }
3223
3224 // Set the file offset of all the sections not associated with a
3225 // segment.
3226
3227 off_t
3228 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3229 {
3230   off_t startoff = off;
3231   off_t maxoff = off;
3232
3233   for (Section_list::iterator p = this->unattached_section_list_.begin();
3234        p != this->unattached_section_list_.end();
3235        ++p)
3236     {
3237       // The symtab section is handled in create_symtab_sections.
3238       if (*p == this->symtab_section_)
3239         continue;
3240
3241       // If we've already set the data size, don't set it again.
3242       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3243         continue;
3244
3245       if (pass == BEFORE_INPUT_SECTIONS_PASS
3246           && (*p)->requires_postprocessing())
3247         {
3248           (*p)->create_postprocessing_buffer();
3249           this->any_postprocessing_sections_ = true;
3250         }
3251
3252       if (pass == BEFORE_INPUT_SECTIONS_PASS
3253           && (*p)->after_input_sections())
3254         continue;
3255       else if (pass == POSTPROCESSING_SECTIONS_PASS
3256                && (!(*p)->after_input_sections()
3257                    || (*p)->type() == elfcpp::SHT_STRTAB))
3258         continue;
3259       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3260                && (!(*p)->after_input_sections()
3261                    || (*p)->type() != elfcpp::SHT_STRTAB))
3262         continue;
3263
3264       if (!parameters->incremental_update())
3265         {
3266           off = align_address(off, (*p)->addralign());
3267           (*p)->set_file_offset(off);
3268           (*p)->finalize_data_size();
3269         }
3270       else
3271         {
3272           // Incremental update: allocate file space from free list.
3273           (*p)->pre_finalize_data_size();
3274           off_t current_size = (*p)->current_data_size();
3275           off = this->allocate(current_size, (*p)->addralign(), startoff);
3276           if (off == -1)
3277             {
3278               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3279                 this->free_list_.dump();
3280               gold_assert((*p)->output_section() != NULL);
3281               gold_fallback(_("out of patch space for section %s; "
3282                               "relink with --incremental-full"),
3283                             (*p)->output_section()->name());
3284             }
3285           (*p)->set_file_offset(off);
3286           (*p)->finalize_data_size();
3287           if ((*p)->data_size() > current_size)
3288             {
3289               gold_assert((*p)->output_section() != NULL);
3290               gold_fallback(_("%s: section changed size; "
3291                               "relink with --incremental-full"),
3292                             (*p)->output_section()->name());
3293             }
3294           gold_debug(DEBUG_INCREMENTAL,
3295                      "set_section_offsets: %08lx %08lx %s",
3296                      static_cast<long>(off),
3297                      static_cast<long>((*p)->data_size()),
3298                      ((*p)->output_section() != NULL
3299                       ? (*p)->output_section()->name() : "(special)"));
3300         }
3301
3302       off += (*p)->data_size();
3303       if (off > maxoff)
3304         maxoff = off;
3305
3306       // At this point the name must be set.
3307       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3308         this->namepool_.add((*p)->name(), false, NULL);
3309     }
3310   return maxoff;
3311 }
3312
3313 // Set the section indexes of all the sections not associated with a
3314 // segment.
3315
3316 unsigned int
3317 Layout::set_section_indexes(unsigned int shndx)
3318 {
3319   for (Section_list::iterator p = this->unattached_section_list_.begin();
3320        p != this->unattached_section_list_.end();
3321        ++p)
3322     {
3323       if (!(*p)->has_out_shndx())
3324         {
3325           (*p)->set_out_shndx(shndx);
3326           ++shndx;
3327         }
3328     }
3329   return shndx;
3330 }
3331
3332 // Set the section addresses according to the linker script.  This is
3333 // only called when we see a SECTIONS clause.  This returns the
3334 // program segment which should hold the file header and segment
3335 // headers, if any.  It will return NULL if they should not be in a
3336 // segment.
3337
3338 Output_segment*
3339 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3340 {
3341   Script_sections* ss = this->script_options_->script_sections();
3342   gold_assert(ss->saw_sections_clause());
3343   return this->script_options_->set_section_addresses(symtab, this);
3344 }
3345
3346 // Place the orphan sections in the linker script.
3347
3348 void
3349 Layout::place_orphan_sections_in_script()
3350 {
3351   Script_sections* ss = this->script_options_->script_sections();
3352   gold_assert(ss->saw_sections_clause());
3353
3354   // Place each orphaned output section in the script.
3355   for (Section_list::iterator p = this->section_list_.begin();
3356        p != this->section_list_.end();
3357        ++p)
3358     {
3359       if (!(*p)->found_in_sections_clause())
3360         ss->place_orphan(*p);
3361     }
3362 }
3363
3364 // Count the local symbols in the regular symbol table and the dynamic
3365 // symbol table, and build the respective string pools.
3366
3367 void
3368 Layout::count_local_symbols(const Task* task,
3369                             const Input_objects* input_objects)
3370 {
3371   // First, figure out an upper bound on the number of symbols we'll
3372   // be inserting into each pool.  This helps us create the pools with
3373   // the right size, to avoid unnecessary hashtable resizing.
3374   unsigned int symbol_count = 0;
3375   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3376        p != input_objects->relobj_end();
3377        ++p)
3378     symbol_count += (*p)->local_symbol_count();
3379
3380   // Go from "upper bound" to "estimate."  We overcount for two
3381   // reasons: we double-count symbols that occur in more than one
3382   // object file, and we count symbols that are dropped from the
3383   // output.  Add it all together and assume we overcount by 100%.
3384   symbol_count /= 2;
3385
3386   // We assume all symbols will go into both the sympool and dynpool.
3387   this->sympool_.reserve(symbol_count);
3388   this->dynpool_.reserve(symbol_count);
3389
3390   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3391        p != input_objects->relobj_end();
3392        ++p)
3393     {
3394       Task_lock_obj<Object> tlo(task, *p);
3395       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3396     }
3397 }
3398
3399 // Create the symbol table sections.  Here we also set the final
3400 // values of the symbols.  At this point all the loadable sections are
3401 // fully laid out.  SHNUM is the number of sections so far.
3402
3403 void
3404 Layout::create_symtab_sections(const Input_objects* input_objects,
3405                                Symbol_table* symtab,
3406                                unsigned int shnum,
3407                                off_t* poff)
3408 {
3409   int symsize;
3410   unsigned int align;
3411   if (parameters->target().get_size() == 32)
3412     {
3413       symsize = elfcpp::Elf_sizes<32>::sym_size;
3414       align = 4;
3415     }
3416   else if (parameters->target().get_size() == 64)
3417     {
3418       symsize = elfcpp::Elf_sizes<64>::sym_size;
3419       align = 8;
3420     }
3421   else
3422     gold_unreachable();
3423
3424   // Compute file offsets relative to the start of the symtab section.
3425   off_t off = 0;
3426
3427   // Save space for the dummy symbol at the start of the section.  We
3428   // never bother to write this out--it will just be left as zero.
3429   off += symsize;
3430   unsigned int local_symbol_index = 1;
3431
3432   // Add STT_SECTION symbols for each Output section which needs one.
3433   for (Section_list::iterator p = this->section_list_.begin();
3434        p != this->section_list_.end();
3435        ++p)
3436     {
3437       if (!(*p)->needs_symtab_index())
3438         (*p)->set_symtab_index(-1U);
3439       else
3440         {
3441           (*p)->set_symtab_index(local_symbol_index);
3442           ++local_symbol_index;
3443           off += symsize;
3444         }
3445     }
3446
3447   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3448        p != input_objects->relobj_end();
3449        ++p)
3450     {
3451       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3452                                                         off, symtab);
3453       off += (index - local_symbol_index) * symsize;
3454       local_symbol_index = index;
3455     }
3456
3457   unsigned int local_symcount = local_symbol_index;
3458   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3459
3460   off_t dynoff;
3461   size_t dyn_global_index;
3462   size_t dyncount;
3463   if (this->dynsym_section_ == NULL)
3464     {
3465       dynoff = 0;
3466       dyn_global_index = 0;
3467       dyncount = 0;
3468     }
3469   else
3470     {
3471       dyn_global_index = this->dynsym_section_->info();
3472       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3473       dynoff = this->dynsym_section_->offset() + locsize;
3474       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3475       gold_assert(static_cast<off_t>(dyncount * symsize)
3476                   == this->dynsym_section_->data_size() - locsize);
3477     }
3478
3479   off_t global_off = off;
3480   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3481                          &this->sympool_, &local_symcount);
3482
3483   if (!parameters->options().strip_all())
3484     {
3485       this->sympool_.set_string_offsets();
3486
3487       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3488       Output_section* osymtab = this->make_output_section(symtab_name,
3489                                                           elfcpp::SHT_SYMTAB,
3490                                                           0, ORDER_INVALID,
3491                                                           false);
3492       this->symtab_section_ = osymtab;
3493
3494       Output_section_data* pos = new Output_data_fixed_space(off, align,
3495                                                              "** symtab");
3496       osymtab->add_output_section_data(pos);
3497
3498       // We generate a .symtab_shndx section if we have more than
3499       // SHN_LORESERVE sections.  Technically it is possible that we
3500       // don't need one, because it is possible that there are no
3501       // symbols in any of sections with indexes larger than
3502       // SHN_LORESERVE.  That is probably unusual, though, and it is
3503       // easier to always create one than to compute section indexes
3504       // twice (once here, once when writing out the symbols).
3505       if (shnum >= elfcpp::SHN_LORESERVE)
3506         {
3507           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3508                                                                false, NULL);
3509           Output_section* osymtab_xindex =
3510             this->make_output_section(symtab_xindex_name,
3511                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3512                                       ORDER_INVALID, false);
3513
3514           size_t symcount = off / symsize;
3515           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3516
3517           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3518
3519           osymtab_xindex->set_link_section(osymtab);
3520           osymtab_xindex->set_addralign(4);
3521           osymtab_xindex->set_entsize(4);
3522
3523           osymtab_xindex->set_after_input_sections();
3524
3525           // This tells the driver code to wait until the symbol table
3526           // has written out before writing out the postprocessing
3527           // sections, including the .symtab_shndx section.
3528           this->any_postprocessing_sections_ = true;
3529         }
3530
3531       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3532       Output_section* ostrtab = this->make_output_section(strtab_name,
3533                                                           elfcpp::SHT_STRTAB,
3534                                                           0, ORDER_INVALID,
3535                                                           false);
3536
3537       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3538       ostrtab->add_output_section_data(pstr);
3539
3540       off_t symtab_off;
3541       if (!parameters->incremental_update())
3542         symtab_off = align_address(*poff, align);
3543       else
3544         {
3545           symtab_off = this->allocate(off, align, *poff);
3546           if (off == -1)
3547             gold_fallback(_("out of patch space for symbol table; "
3548                             "relink with --incremental-full"));
3549           gold_debug(DEBUG_INCREMENTAL,
3550                      "create_symtab_sections: %08lx %08lx .symtab",
3551                      static_cast<long>(symtab_off),
3552                      static_cast<long>(off));
3553         }
3554
3555       symtab->set_file_offset(symtab_off + global_off);
3556       osymtab->set_file_offset(symtab_off);
3557       osymtab->finalize_data_size();
3558       osymtab->set_link_section(ostrtab);
3559       osymtab->set_info(local_symcount);
3560       osymtab->set_entsize(symsize);
3561
3562       if (symtab_off + off > *poff)
3563         *poff = symtab_off + off;
3564     }
3565 }
3566
3567 // Create the .shstrtab section, which holds the names of the
3568 // sections.  At the time this is called, we have created all the
3569 // output sections except .shstrtab itself.
3570
3571 Output_section*
3572 Layout::create_shstrtab()
3573 {
3574   // FIXME: We don't need to create a .shstrtab section if we are
3575   // stripping everything.
3576
3577   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3578
3579   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3580                                                  ORDER_INVALID, false);
3581
3582   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3583     {
3584       // We can't write out this section until we've set all the
3585       // section names, and we don't set the names of compressed
3586       // output sections until relocations are complete.  FIXME: With
3587       // the current names we use, this is unnecessary.
3588       os->set_after_input_sections();
3589     }
3590
3591   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3592   os->add_output_section_data(posd);
3593
3594   return os;
3595 }
3596
3597 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3598 // offset.
3599
3600 void
3601 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3602 {
3603   Output_section_headers* oshdrs;
3604   oshdrs = new Output_section_headers(this,
3605                                       &this->segment_list_,
3606                                       &this->section_list_,
3607                                       &this->unattached_section_list_,
3608                                       &this->namepool_,
3609                                       shstrtab_section);
3610   off_t off;
3611   if (!parameters->incremental_update())
3612     off = align_address(*poff, oshdrs->addralign());
3613   else
3614     {
3615       oshdrs->pre_finalize_data_size();
3616       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3617       if (off == -1)
3618           gold_fallback(_("out of patch space for section header table; "
3619                           "relink with --incremental-full"));
3620       gold_debug(DEBUG_INCREMENTAL,
3621                  "create_shdrs: %08lx %08lx (section header table)",
3622                  static_cast<long>(off),
3623                  static_cast<long>(off + oshdrs->data_size()));
3624     }
3625   oshdrs->set_address_and_file_offset(0, off);
3626   off += oshdrs->data_size();
3627   if (off > *poff)
3628     *poff = off;
3629   this->section_headers_ = oshdrs;
3630 }
3631
3632 // Count the allocated sections.
3633
3634 size_t
3635 Layout::allocated_output_section_count() const
3636 {
3637   size_t section_count = 0;
3638   for (Segment_list::const_iterator p = this->segment_list_.begin();
3639        p != this->segment_list_.end();
3640        ++p)
3641     section_count += (*p)->output_section_count();
3642   return section_count;
3643 }
3644
3645 // Create the dynamic symbol table.
3646
3647 void
3648 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3649                               Symbol_table* symtab,
3650                               Output_section** pdynstr,
3651                               unsigned int* plocal_dynamic_count,
3652                               std::vector<Symbol*>* pdynamic_symbols,
3653                               Versions* pversions)
3654 {
3655   // Count all the symbols in the dynamic symbol table, and set the
3656   // dynamic symbol indexes.
3657
3658   // Skip symbol 0, which is always all zeroes.
3659   unsigned int index = 1;
3660
3661   // Add STT_SECTION symbols for each Output section which needs one.
3662   for (Section_list::iterator p = this->section_list_.begin();
3663        p != this->section_list_.end();
3664        ++p)
3665     {
3666       if (!(*p)->needs_dynsym_index())
3667         (*p)->set_dynsym_index(-1U);
3668       else
3669         {
3670           (*p)->set_dynsym_index(index);
3671           ++index;
3672         }
3673     }
3674
3675   // Count the local symbols that need to go in the dynamic symbol table,
3676   // and set the dynamic symbol indexes.
3677   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3678        p != input_objects->relobj_end();
3679        ++p)
3680     {
3681       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3682       index = new_index;
3683     }
3684
3685   unsigned int local_symcount = index;
3686   *plocal_dynamic_count = local_symcount;
3687
3688   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3689                                      &this->dynpool_, pversions);
3690
3691   int symsize;
3692   unsigned int align;
3693   const int size = parameters->target().get_size();
3694   if (size == 32)
3695     {
3696       symsize = elfcpp::Elf_sizes<32>::sym_size;
3697       align = 4;
3698     }
3699   else if (size == 64)
3700     {
3701       symsize = elfcpp::Elf_sizes<64>::sym_size;
3702       align = 8;
3703     }
3704   else
3705     gold_unreachable();
3706
3707   // Create the dynamic symbol table section.
3708
3709   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3710                                                        elfcpp::SHT_DYNSYM,
3711                                                        elfcpp::SHF_ALLOC,
3712                                                        false,
3713                                                        ORDER_DYNAMIC_LINKER,
3714                                                        false);
3715
3716   // Check for NULL as a linker script may discard .dynsym.
3717   if (dynsym != NULL)
3718     {
3719       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3720                                                                align,
3721                                                                "** dynsym");
3722       dynsym->add_output_section_data(odata);
3723
3724       dynsym->set_info(local_symcount);
3725       dynsym->set_entsize(symsize);
3726       dynsym->set_addralign(align);
3727
3728       this->dynsym_section_ = dynsym;
3729     }
3730
3731   Output_data_dynamic* const odyn = this->dynamic_data_;
3732   if (odyn != NULL)
3733     {
3734       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3735       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3736     }
3737
3738   // If there are more than SHN_LORESERVE allocated sections, we
3739   // create a .dynsym_shndx section.  It is possible that we don't
3740   // need one, because it is possible that there are no dynamic
3741   // symbols in any of the sections with indexes larger than
3742   // SHN_LORESERVE.  This is probably unusual, though, and at this
3743   // time we don't know the actual section indexes so it is
3744   // inconvenient to check.
3745   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3746     {
3747       Output_section* dynsym_xindex =
3748         this->choose_output_section(NULL, ".dynsym_shndx",
3749                                     elfcpp::SHT_SYMTAB_SHNDX,
3750                                     elfcpp::SHF_ALLOC,
3751                                     false, ORDER_DYNAMIC_LINKER, false);
3752
3753       if (dynsym_xindex != NULL)
3754         {
3755           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3756
3757           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3758
3759           dynsym_xindex->set_link_section(dynsym);
3760           dynsym_xindex->set_addralign(4);
3761           dynsym_xindex->set_entsize(4);
3762
3763           dynsym_xindex->set_after_input_sections();
3764
3765           // This tells the driver code to wait until the symbol table
3766           // has written out before writing out the postprocessing
3767           // sections, including the .dynsym_shndx section.
3768           this->any_postprocessing_sections_ = true;
3769         }
3770     }
3771
3772   // Create the dynamic string table section.
3773
3774   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3775                                                        elfcpp::SHT_STRTAB,
3776                                                        elfcpp::SHF_ALLOC,
3777                                                        false,
3778                                                        ORDER_DYNAMIC_LINKER,
3779                                                        false);
3780
3781   if (dynstr != NULL)
3782     {
3783       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3784       dynstr->add_output_section_data(strdata);
3785
3786       if (dynsym != NULL)
3787         dynsym->set_link_section(dynstr);
3788       if (this->dynamic_section_ != NULL)
3789         this->dynamic_section_->set_link_section(dynstr);
3790
3791       if (odyn != NULL)
3792         {
3793           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3794           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3795         }
3796
3797       *pdynstr = dynstr;
3798     }
3799
3800   // Create the hash tables.
3801
3802   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3803       || strcmp(parameters->options().hash_style(), "both") == 0)
3804     {
3805       unsigned char* phash;
3806       unsigned int hashlen;
3807       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3808                                     &phash, &hashlen);
3809
3810       Output_section* hashsec =
3811         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3812                                     elfcpp::SHF_ALLOC, false,
3813                                     ORDER_DYNAMIC_LINKER, false);
3814
3815       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3816                                                                    hashlen,
3817                                                                    align,
3818                                                                    "** hash");
3819       if (hashsec != NULL && hashdata != NULL)
3820         hashsec->add_output_section_data(hashdata);
3821
3822       if (hashsec != NULL)
3823         {
3824           if (dynsym != NULL)
3825             hashsec->set_link_section(dynsym);
3826           hashsec->set_entsize(4);
3827         }
3828
3829       if (odyn != NULL)
3830         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3831     }
3832
3833   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3834       || strcmp(parameters->options().hash_style(), "both") == 0)
3835     {
3836       unsigned char* phash;
3837       unsigned int hashlen;
3838       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3839                                     &phash, &hashlen);
3840
3841       Output_section* hashsec =
3842         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3843                                     elfcpp::SHF_ALLOC, false,
3844                                     ORDER_DYNAMIC_LINKER, false);
3845
3846       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3847                                                                    hashlen,
3848                                                                    align,
3849                                                                    "** hash");
3850       if (hashsec != NULL && hashdata != NULL)
3851         hashsec->add_output_section_data(hashdata);
3852
3853       if (hashsec != NULL)
3854         {
3855           if (dynsym != NULL)
3856             hashsec->set_link_section(dynsym);
3857
3858           // For a 64-bit target, the entries in .gnu.hash do not have
3859           // a uniform size, so we only set the entry size for a
3860           // 32-bit target.
3861           if (parameters->target().get_size() == 32)
3862             hashsec->set_entsize(4);
3863
3864           if (odyn != NULL)
3865             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3866         }
3867     }
3868 }
3869
3870 // Assign offsets to each local portion of the dynamic symbol table.
3871
3872 void
3873 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3874 {
3875   Output_section* dynsym = this->dynsym_section_;
3876   if (dynsym == NULL)
3877     return;
3878
3879   off_t off = dynsym->offset();
3880
3881   // Skip the dummy symbol at the start of the section.
3882   off += dynsym->entsize();
3883
3884   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3885        p != input_objects->relobj_end();
3886        ++p)
3887     {
3888       unsigned int count = (*p)->set_local_dynsym_offset(off);
3889       off += count * dynsym->entsize();
3890     }
3891 }
3892
3893 // Create the version sections.
3894
3895 void
3896 Layout::create_version_sections(const Versions* versions,
3897                                 const Symbol_table* symtab,
3898                                 unsigned int local_symcount,
3899                                 const std::vector<Symbol*>& dynamic_symbols,
3900                                 const Output_section* dynstr)
3901 {
3902   if (!versions->any_defs() && !versions->any_needs())
3903     return;
3904
3905   switch (parameters->size_and_endianness())
3906     {
3907 #ifdef HAVE_TARGET_32_LITTLE
3908     case Parameters::TARGET_32_LITTLE:
3909       this->sized_create_version_sections<32, false>(versions, symtab,
3910                                                      local_symcount,
3911                                                      dynamic_symbols, dynstr);
3912       break;
3913 #endif
3914 #ifdef HAVE_TARGET_32_BIG
3915     case Parameters::TARGET_32_BIG:
3916       this->sized_create_version_sections<32, true>(versions, symtab,
3917                                                     local_symcount,
3918                                                     dynamic_symbols, dynstr);
3919       break;
3920 #endif
3921 #ifdef HAVE_TARGET_64_LITTLE
3922     case Parameters::TARGET_64_LITTLE:
3923       this->sized_create_version_sections<64, false>(versions, symtab,
3924                                                      local_symcount,
3925                                                      dynamic_symbols, dynstr);
3926       break;
3927 #endif
3928 #ifdef HAVE_TARGET_64_BIG
3929     case Parameters::TARGET_64_BIG:
3930       this->sized_create_version_sections<64, true>(versions, symtab,
3931                                                     local_symcount,
3932                                                     dynamic_symbols, dynstr);
3933       break;
3934 #endif
3935     default:
3936       gold_unreachable();
3937     }
3938 }
3939
3940 // Create the version sections, sized version.
3941
3942 template<int size, bool big_endian>
3943 void
3944 Layout::sized_create_version_sections(
3945     const Versions* versions,
3946     const Symbol_table* symtab,
3947     unsigned int local_symcount,
3948     const std::vector<Symbol*>& dynamic_symbols,
3949     const Output_section* dynstr)
3950 {
3951   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3952                                                      elfcpp::SHT_GNU_versym,
3953                                                      elfcpp::SHF_ALLOC,
3954                                                      false,
3955                                                      ORDER_DYNAMIC_LINKER,
3956                                                      false);
3957
3958   // Check for NULL since a linker script may discard this section.
3959   if (vsec != NULL)
3960     {
3961       unsigned char* vbuf;
3962       unsigned int vsize;
3963       versions->symbol_section_contents<size, big_endian>(symtab,
3964                                                           &this->dynpool_,
3965                                                           local_symcount,
3966                                                           dynamic_symbols,
3967                                                           &vbuf, &vsize);
3968
3969       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3970                                                                 "** versions");
3971
3972       vsec->add_output_section_data(vdata);
3973       vsec->set_entsize(2);
3974       vsec->set_link_section(this->dynsym_section_);
3975     }
3976
3977   Output_data_dynamic* const odyn = this->dynamic_data_;
3978   if (odyn != NULL && vsec != NULL)
3979     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3980
3981   if (versions->any_defs())
3982     {
3983       Output_section* vdsec;
3984       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
3985                                           elfcpp::SHT_GNU_verdef,
3986                                           elfcpp::SHF_ALLOC,
3987                                           false, ORDER_DYNAMIC_LINKER, false);
3988
3989       if (vdsec != NULL)
3990         {
3991           unsigned char* vdbuf;
3992           unsigned int vdsize;
3993           unsigned int vdentries;
3994           versions->def_section_contents<size, big_endian>(&this->dynpool_,
3995                                                            &vdbuf, &vdsize,
3996                                                            &vdentries);
3997
3998           Output_section_data* vddata =
3999             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4000
4001           vdsec->add_output_section_data(vddata);
4002           vdsec->set_link_section(dynstr);
4003           vdsec->set_info(vdentries);
4004
4005           if (odyn != NULL)
4006             {
4007               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4008               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4009             }
4010         }
4011     }
4012
4013   if (versions->any_needs())
4014     {
4015       Output_section* vnsec;
4016       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4017                                           elfcpp::SHT_GNU_verneed,
4018                                           elfcpp::SHF_ALLOC,
4019                                           false, ORDER_DYNAMIC_LINKER, false);
4020
4021       if (vnsec != NULL)
4022         {
4023           unsigned char* vnbuf;
4024           unsigned int vnsize;
4025           unsigned int vnentries;
4026           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4027                                                             &vnbuf, &vnsize,
4028                                                             &vnentries);
4029
4030           Output_section_data* vndata =
4031             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4032
4033           vnsec->add_output_section_data(vndata);
4034           vnsec->set_link_section(dynstr);
4035           vnsec->set_info(vnentries);
4036
4037           if (odyn != NULL)
4038             {
4039               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4040               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4041             }
4042         }
4043     }
4044 }
4045
4046 // Create the .interp section and PT_INTERP segment.
4047
4048 void
4049 Layout::create_interp(const Target* target)
4050 {
4051   gold_assert(this->interp_segment_ == NULL);
4052
4053   const char* interp = parameters->options().dynamic_linker();
4054   if (interp == NULL)
4055     {
4056       interp = target->dynamic_linker();
4057       gold_assert(interp != NULL);
4058     }
4059
4060   size_t len = strlen(interp) + 1;
4061
4062   Output_section_data* odata = new Output_data_const(interp, len, 1);
4063
4064   Output_section* osec = this->choose_output_section(NULL, ".interp",
4065                                                      elfcpp::SHT_PROGBITS,
4066                                                      elfcpp::SHF_ALLOC,
4067                                                      false, ORDER_INTERP,
4068                                                      false);
4069   if (osec != NULL)
4070     osec->add_output_section_data(odata);
4071 }
4072
4073 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4074 // called by the target-specific code.  This does nothing if not doing
4075 // a dynamic link.
4076
4077 // USE_REL is true for REL relocs rather than RELA relocs.
4078
4079 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4080
4081 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4082 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4083 // some targets have multiple reloc sections in PLT_REL.
4084
4085 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4086 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4087 // section.
4088
4089 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4090 // executable.
4091
4092 void
4093 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4094                                 const Output_data* plt_rel,
4095                                 const Output_data_reloc_generic* dyn_rel,
4096                                 bool add_debug, bool dynrel_includes_plt)
4097 {
4098   Output_data_dynamic* odyn = this->dynamic_data_;
4099   if (odyn == NULL)
4100     return;
4101
4102   if (plt_got != NULL && plt_got->output_section() != NULL)
4103     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4104
4105   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4106     {
4107       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4108       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4109       odyn->add_constant(elfcpp::DT_PLTREL,
4110                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4111     }
4112
4113   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4114     {
4115       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4116                                 dyn_rel->output_section());
4117       if (plt_rel != NULL
4118           && plt_rel->output_section() != NULL
4119           && dynrel_includes_plt)
4120         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4121                                dyn_rel->output_section(),
4122                                plt_rel->output_section());
4123       else
4124         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4125                                dyn_rel->output_section());
4126       const int size = parameters->target().get_size();
4127       elfcpp::DT rel_tag;
4128       int rel_size;
4129       if (use_rel)
4130         {
4131           rel_tag = elfcpp::DT_RELENT;
4132           if (size == 32)
4133             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4134           else if (size == 64)
4135             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4136           else
4137             gold_unreachable();
4138         }
4139       else
4140         {
4141           rel_tag = elfcpp::DT_RELAENT;
4142           if (size == 32)
4143             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4144           else if (size == 64)
4145             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4146           else
4147             gold_unreachable();
4148         }
4149       odyn->add_constant(rel_tag, rel_size);
4150
4151       if (parameters->options().combreloc())
4152         {
4153           size_t c = dyn_rel->relative_reloc_count();
4154           if (c > 0)
4155             odyn->add_constant((use_rel
4156                                 ? elfcpp::DT_RELCOUNT
4157                                 : elfcpp::DT_RELACOUNT),
4158                                c);
4159         }
4160     }
4161
4162   if (add_debug && !parameters->options().shared())
4163     {
4164       // The value of the DT_DEBUG tag is filled in by the dynamic
4165       // linker at run time, and used by the debugger.
4166       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4167     }
4168 }
4169
4170 // Finish the .dynamic section and PT_DYNAMIC segment.
4171
4172 void
4173 Layout::finish_dynamic_section(const Input_objects* input_objects,
4174                                const Symbol_table* symtab)
4175 {
4176   if (!this->script_options_->saw_phdrs_clause()
4177       && this->dynamic_section_ != NULL)
4178     {
4179       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4180                                                        (elfcpp::PF_R
4181                                                         | elfcpp::PF_W));
4182       oseg->add_output_section_to_nonload(this->dynamic_section_,
4183                                           elfcpp::PF_R | elfcpp::PF_W);
4184     }
4185
4186   Output_data_dynamic* const odyn = this->dynamic_data_;
4187   if (odyn == NULL)
4188     return;
4189
4190   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4191        p != input_objects->dynobj_end();
4192        ++p)
4193     {
4194       if (!(*p)->is_needed() && (*p)->as_needed())
4195         {
4196           // This dynamic object was linked with --as-needed, but it
4197           // is not needed.
4198           continue;
4199         }
4200
4201       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4202     }
4203
4204   if (parameters->options().shared())
4205     {
4206       const char* soname = parameters->options().soname();
4207       if (soname != NULL)
4208         odyn->add_string(elfcpp::DT_SONAME, soname);
4209     }
4210
4211   Symbol* sym = symtab->lookup(parameters->options().init());
4212   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4213     odyn->add_symbol(elfcpp::DT_INIT, sym);
4214
4215   sym = symtab->lookup(parameters->options().fini());
4216   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4217     odyn->add_symbol(elfcpp::DT_FINI, sym);
4218
4219   // Look for .init_array, .preinit_array and .fini_array by checking
4220   // section types.
4221   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4222       p != this->section_list_.end();
4223       ++p)
4224     switch((*p)->type())
4225       {
4226       case elfcpp::SHT_FINI_ARRAY:
4227         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4228         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4229         break;
4230       case elfcpp::SHT_INIT_ARRAY:
4231         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4232         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4233         break;
4234       case elfcpp::SHT_PREINIT_ARRAY:
4235         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4236         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4237         break;
4238       default:
4239         break;
4240       }
4241   
4242   // Add a DT_RPATH entry if needed.
4243   const General_options::Dir_list& rpath(parameters->options().rpath());
4244   if (!rpath.empty())
4245     {
4246       std::string rpath_val;
4247       for (General_options::Dir_list::const_iterator p = rpath.begin();
4248            p != rpath.end();
4249            ++p)
4250         {
4251           if (rpath_val.empty())
4252             rpath_val = p->name();
4253           else
4254             {
4255               // Eliminate duplicates.
4256               General_options::Dir_list::const_iterator q;
4257               for (q = rpath.begin(); q != p; ++q)
4258                 if (q->name() == p->name())
4259                   break;
4260               if (q == p)
4261                 {
4262                   rpath_val += ':';
4263                   rpath_val += p->name();
4264                 }
4265             }
4266         }
4267
4268       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4269       if (parameters->options().enable_new_dtags())
4270         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4271     }
4272
4273   // Look for text segments that have dynamic relocations.
4274   bool have_textrel = false;
4275   if (!this->script_options_->saw_sections_clause())
4276     {
4277       for (Segment_list::const_iterator p = this->segment_list_.begin();
4278            p != this->segment_list_.end();
4279            ++p)
4280         {
4281           if ((*p)->type() == elfcpp::PT_LOAD
4282               && ((*p)->flags() & elfcpp::PF_W) == 0
4283               && (*p)->has_dynamic_reloc())
4284             {
4285               have_textrel = true;
4286               break;
4287             }
4288         }
4289     }
4290   else
4291     {
4292       // We don't know the section -> segment mapping, so we are
4293       // conservative and just look for readonly sections with
4294       // relocations.  If those sections wind up in writable segments,
4295       // then we have created an unnecessary DT_TEXTREL entry.
4296       for (Section_list::const_iterator p = this->section_list_.begin();
4297            p != this->section_list_.end();
4298            ++p)
4299         {
4300           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4301               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4302               && (*p)->has_dynamic_reloc())
4303             {
4304               have_textrel = true;
4305               break;
4306             }
4307         }
4308     }
4309
4310   if (parameters->options().filter() != NULL)
4311     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4312   if (parameters->options().any_auxiliary())
4313     {
4314       for (options::String_set::const_iterator p =
4315              parameters->options().auxiliary_begin();
4316            p != parameters->options().auxiliary_end();
4317            ++p)
4318         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4319     }
4320
4321   // Add a DT_FLAGS entry if necessary.
4322   unsigned int flags = 0;
4323   if (have_textrel)
4324     {
4325       // Add a DT_TEXTREL for compatibility with older loaders.
4326       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4327       flags |= elfcpp::DF_TEXTREL;
4328
4329       if (parameters->options().text())
4330         gold_error(_("read-only segment has dynamic relocations"));
4331       else if (parameters->options().warn_shared_textrel()
4332                && parameters->options().shared())
4333         gold_warning(_("shared library text segment is not shareable"));
4334     }
4335   if (parameters->options().shared() && this->has_static_tls())
4336     flags |= elfcpp::DF_STATIC_TLS;
4337   if (parameters->options().origin())
4338     flags |= elfcpp::DF_ORIGIN;
4339   if (parameters->options().Bsymbolic())
4340     {
4341       flags |= elfcpp::DF_SYMBOLIC;
4342       // Add DT_SYMBOLIC for compatibility with older loaders.
4343       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4344     }
4345   if (parameters->options().now())
4346     flags |= elfcpp::DF_BIND_NOW;
4347   if (flags != 0)
4348     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4349
4350   flags = 0;
4351   if (parameters->options().initfirst())
4352     flags |= elfcpp::DF_1_INITFIRST;
4353   if (parameters->options().interpose())
4354     flags |= elfcpp::DF_1_INTERPOSE;
4355   if (parameters->options().loadfltr())
4356     flags |= elfcpp::DF_1_LOADFLTR;
4357   if (parameters->options().nodefaultlib())
4358     flags |= elfcpp::DF_1_NODEFLIB;
4359   if (parameters->options().nodelete())
4360     flags |= elfcpp::DF_1_NODELETE;
4361   if (parameters->options().nodlopen())
4362     flags |= elfcpp::DF_1_NOOPEN;
4363   if (parameters->options().nodump())
4364     flags |= elfcpp::DF_1_NODUMP;
4365   if (!parameters->options().shared())
4366     flags &= ~(elfcpp::DF_1_INITFIRST
4367                | elfcpp::DF_1_NODELETE
4368                | elfcpp::DF_1_NOOPEN);
4369   if (parameters->options().origin())
4370     flags |= elfcpp::DF_1_ORIGIN;
4371   if (parameters->options().now())
4372     flags |= elfcpp::DF_1_NOW;
4373   if (flags != 0)
4374     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4375 }
4376
4377 // Set the size of the _DYNAMIC symbol table to be the size of the
4378 // dynamic data.
4379
4380 void
4381 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4382 {
4383   Output_data_dynamic* const odyn = this->dynamic_data_;
4384   if (odyn == NULL)
4385     return;
4386   odyn->finalize_data_size();
4387   if (this->dynamic_symbol_ == NULL)
4388     return;
4389   off_t data_size = odyn->data_size();
4390   const int size = parameters->target().get_size();
4391   if (size == 32)
4392     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4393   else if (size == 64)
4394     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4395   else
4396     gold_unreachable();
4397 }
4398
4399 // The mapping of input section name prefixes to output section names.
4400 // In some cases one prefix is itself a prefix of another prefix; in
4401 // such a case the longer prefix must come first.  These prefixes are
4402 // based on the GNU linker default ELF linker script.
4403
4404 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4405 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4406 {
4407   MAPPING_INIT(".text.", ".text"),
4408   MAPPING_INIT(".rodata.", ".rodata"),
4409   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4410   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4411   MAPPING_INIT(".data.", ".data"),
4412   MAPPING_INIT(".bss.", ".bss"),
4413   MAPPING_INIT(".tdata.", ".tdata"),
4414   MAPPING_INIT(".tbss.", ".tbss"),
4415   MAPPING_INIT(".init_array.", ".init_array"),
4416   MAPPING_INIT(".fini_array.", ".fini_array"),
4417   MAPPING_INIT(".sdata.", ".sdata"),
4418   MAPPING_INIT(".sbss.", ".sbss"),
4419   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4420   // differently depending on whether it is creating a shared library.
4421   MAPPING_INIT(".sdata2.", ".sdata"),
4422   MAPPING_INIT(".sbss2.", ".sbss"),
4423   MAPPING_INIT(".lrodata.", ".lrodata"),
4424   MAPPING_INIT(".ldata.", ".ldata"),
4425   MAPPING_INIT(".lbss.", ".lbss"),
4426   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4427   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4428   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4429   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4430   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4431   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4432   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4433   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4434   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4435   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4436   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4437   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4438   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4439   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4440   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4441   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4442   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4443   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4444   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4445   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4446   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4447 };
4448 #undef MAPPING_INIT
4449
4450 const int Layout::section_name_mapping_count =
4451   (sizeof(Layout::section_name_mapping)
4452    / sizeof(Layout::section_name_mapping[0]));
4453
4454 // Choose the output section name to use given an input section name.
4455 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4456 // length of NAME.
4457
4458 const char*
4459 Layout::output_section_name(const Relobj* relobj, const char* name,
4460                             size_t* plen)
4461 {
4462   // gcc 4.3 generates the following sorts of section names when it
4463   // needs a section name specific to a function:
4464   //   .text.FN
4465   //   .rodata.FN
4466   //   .sdata2.FN
4467   //   .data.FN
4468   //   .data.rel.FN
4469   //   .data.rel.local.FN
4470   //   .data.rel.ro.FN
4471   //   .data.rel.ro.local.FN
4472   //   .sdata.FN
4473   //   .bss.FN
4474   //   .sbss.FN
4475   //   .tdata.FN
4476   //   .tbss.FN
4477
4478   // The GNU linker maps all of those to the part before the .FN,
4479   // except that .data.rel.local.FN is mapped to .data, and
4480   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4481   // beginning with .data.rel.ro.local are grouped together.
4482
4483   // For an anonymous namespace, the string FN can contain a '.'.
4484
4485   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4486   // GNU linker maps to .rodata.
4487
4488   // The .data.rel.ro sections are used with -z relro.  The sections
4489   // are recognized by name.  We use the same names that the GNU
4490   // linker does for these sections.
4491
4492   // It is hard to handle this in a principled way, so we don't even
4493   // try.  We use a table of mappings.  If the input section name is
4494   // not found in the table, we simply use it as the output section
4495   // name.
4496
4497   const Section_name_mapping* psnm = section_name_mapping;
4498   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4499     {
4500       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4501         {
4502           *plen = psnm->tolen;
4503           return psnm->to;
4504         }
4505     }
4506
4507   // As an additional complication, .ctors sections are output in
4508   // either .ctors or .init_array sections, and .dtors sections are
4509   // output in either .dtors or .fini_array sections.
4510   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4511     {
4512       if (parameters->options().ctors_in_init_array())
4513         {
4514           *plen = 11;
4515           return name[1] == 'c' ? ".init_array" : ".fini_array";
4516         }
4517       else
4518         {
4519           *plen = 6;
4520           return name[1] == 'c' ? ".ctors" : ".dtors";
4521         }
4522     }
4523   if (parameters->options().ctors_in_init_array()
4524       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4525     {
4526       // To make .init_array/.fini_array work with gcc we must exclude
4527       // .ctors and .dtors sections from the crtbegin and crtend
4528       // files.
4529       if (relobj == NULL
4530           || (!Layout::match_file_name(relobj, "crtbegin")
4531               && !Layout::match_file_name(relobj, "crtend")))
4532         {
4533           *plen = 11;
4534           return name[1] == 'c' ? ".init_array" : ".fini_array";
4535         }
4536     }
4537
4538   return name;
4539 }
4540
4541 // Return true if RELOBJ is an input file whose base name matches
4542 // FILE_NAME.  The base name must have an extension of ".o", and must
4543 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4544 // to match crtbegin.o as well as crtbeginS.o without getting confused
4545 // by other possibilities.  Overall matching the file name this way is
4546 // a dreadful hack, but the GNU linker does it in order to better
4547 // support gcc, and we need to be compatible.
4548
4549 bool
4550 Layout::match_file_name(const Relobj* relobj, const char* match)
4551 {
4552   const std::string& file_name(relobj->name());
4553   const char* base_name = lbasename(file_name.c_str());
4554   size_t match_len = strlen(match);
4555   if (strncmp(base_name, match, match_len) != 0)
4556     return false;
4557   size_t base_len = strlen(base_name);
4558   if (base_len != match_len + 2 && base_len != match_len + 3)
4559     return false;
4560   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4561 }
4562
4563 // Check if a comdat group or .gnu.linkonce section with the given
4564 // NAME is selected for the link.  If there is already a section,
4565 // *KEPT_SECTION is set to point to the existing section and the
4566 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4567 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4568 // *KEPT_SECTION is set to the internal copy and the function returns
4569 // true.
4570
4571 bool
4572 Layout::find_or_add_kept_section(const std::string& name,
4573                                  Relobj* object,
4574                                  unsigned int shndx,
4575                                  bool is_comdat,
4576                                  bool is_group_name,
4577                                  Kept_section** kept_section)
4578 {
4579   // It's normal to see a couple of entries here, for the x86 thunk
4580   // sections.  If we see more than a few, we're linking a C++
4581   // program, and we resize to get more space to minimize rehashing.
4582   if (this->signatures_.size() > 4
4583       && !this->resized_signatures_)
4584     {
4585       reserve_unordered_map(&this->signatures_,
4586                             this->number_of_input_files_ * 64);
4587       this->resized_signatures_ = true;
4588     }
4589
4590   Kept_section candidate;
4591   std::pair<Signatures::iterator, bool> ins =
4592     this->signatures_.insert(std::make_pair(name, candidate));
4593
4594   if (kept_section != NULL)
4595     *kept_section = &ins.first->second;
4596   if (ins.second)
4597     {
4598       // This is the first time we've seen this signature.
4599       ins.first->second.set_object(object);
4600       ins.first->second.set_shndx(shndx);
4601       if (is_comdat)
4602         ins.first->second.set_is_comdat();
4603       if (is_group_name)
4604         ins.first->second.set_is_group_name();
4605       return true;
4606     }
4607
4608   // We have already seen this signature.
4609
4610   if (ins.first->second.is_group_name())
4611     {
4612       // We've already seen a real section group with this signature.
4613       // If the kept group is from a plugin object, and we're in the
4614       // replacement phase, accept the new one as a replacement.
4615       if (ins.first->second.object() == NULL
4616           && parameters->options().plugins()->in_replacement_phase())
4617         {
4618           ins.first->second.set_object(object);
4619           ins.first->second.set_shndx(shndx);
4620           return true;
4621         }
4622       return false;
4623     }
4624   else if (is_group_name)
4625     {
4626       // This is a real section group, and we've already seen a
4627       // linkonce section with this signature.  Record that we've seen
4628       // a section group, and don't include this section group.
4629       ins.first->second.set_is_group_name();
4630       return false;
4631     }
4632   else
4633     {
4634       // We've already seen a linkonce section and this is a linkonce
4635       // section.  These don't block each other--this may be the same
4636       // symbol name with different section types.
4637       return true;
4638     }
4639 }
4640
4641 // Store the allocated sections into the section list.
4642
4643 void
4644 Layout::get_allocated_sections(Section_list* section_list) const
4645 {
4646   for (Section_list::const_iterator p = this->section_list_.begin();
4647        p != this->section_list_.end();
4648        ++p)
4649     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4650       section_list->push_back(*p);
4651 }
4652
4653 // Create an output segment.
4654
4655 Output_segment*
4656 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4657 {
4658   gold_assert(!parameters->options().relocatable());
4659   Output_segment* oseg = new Output_segment(type, flags);
4660   this->segment_list_.push_back(oseg);
4661
4662   if (type == elfcpp::PT_TLS)
4663     this->tls_segment_ = oseg;
4664   else if (type == elfcpp::PT_GNU_RELRO)
4665     this->relro_segment_ = oseg;
4666   else if (type == elfcpp::PT_INTERP)
4667     this->interp_segment_ = oseg;
4668
4669   return oseg;
4670 }
4671
4672 // Return the file offset of the normal symbol table.
4673
4674 off_t
4675 Layout::symtab_section_offset() const
4676 {
4677   if (this->symtab_section_ != NULL)
4678     return this->symtab_section_->offset();
4679   return 0;
4680 }
4681
4682 // Return the section index of the normal symbol table.  It may have
4683 // been stripped by the -s/--strip-all option.
4684
4685 unsigned int
4686 Layout::symtab_section_shndx() const
4687 {
4688   if (this->symtab_section_ != NULL)
4689     return this->symtab_section_->out_shndx();
4690   return 0;
4691 }
4692
4693 // Write out the Output_sections.  Most won't have anything to write,
4694 // since most of the data will come from input sections which are
4695 // handled elsewhere.  But some Output_sections do have Output_data.
4696
4697 void
4698 Layout::write_output_sections(Output_file* of) const
4699 {
4700   for (Section_list::const_iterator p = this->section_list_.begin();
4701        p != this->section_list_.end();
4702        ++p)
4703     {
4704       if (!(*p)->after_input_sections())
4705         (*p)->write(of);
4706     }
4707 }
4708
4709 // Write out data not associated with a section or the symbol table.
4710
4711 void
4712 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4713 {
4714   if (!parameters->options().strip_all())
4715     {
4716       const Output_section* symtab_section = this->symtab_section_;
4717       for (Section_list::const_iterator p = this->section_list_.begin();
4718            p != this->section_list_.end();
4719            ++p)
4720         {
4721           if ((*p)->needs_symtab_index())
4722             {
4723               gold_assert(symtab_section != NULL);
4724               unsigned int index = (*p)->symtab_index();
4725               gold_assert(index > 0 && index != -1U);
4726               off_t off = (symtab_section->offset()
4727                            + index * symtab_section->entsize());
4728               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4729             }
4730         }
4731     }
4732
4733   const Output_section* dynsym_section = this->dynsym_section_;
4734   for (Section_list::const_iterator p = this->section_list_.begin();
4735        p != this->section_list_.end();
4736        ++p)
4737     {
4738       if ((*p)->needs_dynsym_index())
4739         {
4740           gold_assert(dynsym_section != NULL);
4741           unsigned int index = (*p)->dynsym_index();
4742           gold_assert(index > 0 && index != -1U);
4743           off_t off = (dynsym_section->offset()
4744                        + index * dynsym_section->entsize());
4745           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4746         }
4747     }
4748
4749   // Write out the Output_data which are not in an Output_section.
4750   for (Data_list::const_iterator p = this->special_output_list_.begin();
4751        p != this->special_output_list_.end();
4752        ++p)
4753     (*p)->write(of);
4754 }
4755
4756 // Write out the Output_sections which can only be written after the
4757 // input sections are complete.
4758
4759 void
4760 Layout::write_sections_after_input_sections(Output_file* of)
4761 {
4762   // Determine the final section offsets, and thus the final output
4763   // file size.  Note we finalize the .shstrab last, to allow the
4764   // after_input_section sections to modify their section-names before
4765   // writing.
4766   if (this->any_postprocessing_sections_)
4767     {
4768       off_t off = this->output_file_size_;
4769       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4770
4771       // Now that we've finalized the names, we can finalize the shstrab.
4772       off =
4773         this->set_section_offsets(off,
4774                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4775
4776       if (off > this->output_file_size_)
4777         {
4778           of->resize(off);
4779           this->output_file_size_ = off;
4780         }
4781     }
4782
4783   for (Section_list::const_iterator p = this->section_list_.begin();
4784        p != this->section_list_.end();
4785        ++p)
4786     {
4787       if ((*p)->after_input_sections())
4788         (*p)->write(of);
4789     }
4790
4791   this->section_headers_->write(of);
4792 }
4793
4794 // If the build ID requires computing a checksum, do so here, and
4795 // write it out.  We compute a checksum over the entire file because
4796 // that is simplest.
4797
4798 void
4799 Layout::write_build_id(Output_file* of) const
4800 {
4801   if (this->build_id_note_ == NULL)
4802     return;
4803
4804   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4805
4806   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4807                                           this->build_id_note_->data_size());
4808
4809   const char* style = parameters->options().build_id();
4810   if (strcmp(style, "sha1") == 0)
4811     {
4812       sha1_ctx ctx;
4813       sha1_init_ctx(&ctx);
4814       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4815       sha1_finish_ctx(&ctx, ov);
4816     }
4817   else if (strcmp(style, "md5") == 0)
4818     {
4819       md5_ctx ctx;
4820       md5_init_ctx(&ctx);
4821       md5_process_bytes(iv, this->output_file_size_, &ctx);
4822       md5_finish_ctx(&ctx, ov);
4823     }
4824   else
4825     gold_unreachable();
4826
4827   of->write_output_view(this->build_id_note_->offset(),
4828                         this->build_id_note_->data_size(),
4829                         ov);
4830
4831   of->free_input_view(0, this->output_file_size_, iv);
4832 }
4833
4834 // Write out a binary file.  This is called after the link is
4835 // complete.  IN is the temporary output file we used to generate the
4836 // ELF code.  We simply walk through the segments, read them from
4837 // their file offset in IN, and write them to their load address in
4838 // the output file.  FIXME: with a bit more work, we could support
4839 // S-records and/or Intel hex format here.
4840
4841 void
4842 Layout::write_binary(Output_file* in) const
4843 {
4844   gold_assert(parameters->options().oformat_enum()
4845               == General_options::OBJECT_FORMAT_BINARY);
4846
4847   // Get the size of the binary file.
4848   uint64_t max_load_address = 0;
4849   for (Segment_list::const_iterator p = this->segment_list_.begin();
4850        p != this->segment_list_.end();
4851        ++p)
4852     {
4853       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4854         {
4855           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4856           if (max_paddr > max_load_address)
4857             max_load_address = max_paddr;
4858         }
4859     }
4860
4861   Output_file out(parameters->options().output_file_name());
4862   out.open(max_load_address);
4863
4864   for (Segment_list::const_iterator p = this->segment_list_.begin();
4865        p != this->segment_list_.end();
4866        ++p)
4867     {
4868       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4869         {
4870           const unsigned char* vin = in->get_input_view((*p)->offset(),
4871                                                         (*p)->filesz());
4872           unsigned char* vout = out.get_output_view((*p)->paddr(),
4873                                                     (*p)->filesz());
4874           memcpy(vout, vin, (*p)->filesz());
4875           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4876           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4877         }
4878     }
4879
4880   out.close();
4881 }
4882
4883 // Print the output sections to the map file.
4884
4885 void
4886 Layout::print_to_mapfile(Mapfile* mapfile) const
4887 {
4888   for (Segment_list::const_iterator p = this->segment_list_.begin();
4889        p != this->segment_list_.end();
4890        ++p)
4891     (*p)->print_sections_to_mapfile(mapfile);
4892 }
4893
4894 // Print statistical information to stderr.  This is used for --stats.
4895
4896 void
4897 Layout::print_stats() const
4898 {
4899   this->namepool_.print_stats("section name pool");
4900   this->sympool_.print_stats("output symbol name pool");
4901   this->dynpool_.print_stats("dynamic name pool");
4902
4903   for (Section_list::const_iterator p = this->section_list_.begin();
4904        p != this->section_list_.end();
4905        ++p)
4906     (*p)->print_merge_stats();
4907 }
4908
4909 // Write_sections_task methods.
4910
4911 // We can always run this task.
4912
4913 Task_token*
4914 Write_sections_task::is_runnable()
4915 {
4916   return NULL;
4917 }
4918
4919 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4920 // when finished.
4921
4922 void
4923 Write_sections_task::locks(Task_locker* tl)
4924 {
4925   tl->add(this, this->output_sections_blocker_);
4926   tl->add(this, this->final_blocker_);
4927 }
4928
4929 // Run the task--write out the data.
4930
4931 void
4932 Write_sections_task::run(Workqueue*)
4933 {
4934   this->layout_->write_output_sections(this->of_);
4935 }
4936
4937 // Write_data_task methods.
4938
4939 // We can always run this task.
4940
4941 Task_token*
4942 Write_data_task::is_runnable()
4943 {
4944   return NULL;
4945 }
4946
4947 // We need to unlock FINAL_BLOCKER when finished.
4948
4949 void
4950 Write_data_task::locks(Task_locker* tl)
4951 {
4952   tl->add(this, this->final_blocker_);
4953 }
4954
4955 // Run the task--write out the data.
4956
4957 void
4958 Write_data_task::run(Workqueue*)
4959 {
4960   this->layout_->write_data(this->symtab_, this->of_);
4961 }
4962
4963 // Write_symbols_task methods.
4964
4965 // We can always run this task.
4966
4967 Task_token*
4968 Write_symbols_task::is_runnable()
4969 {
4970   return NULL;
4971 }
4972
4973 // We need to unlock FINAL_BLOCKER when finished.
4974
4975 void
4976 Write_symbols_task::locks(Task_locker* tl)
4977 {
4978   tl->add(this, this->final_blocker_);
4979 }
4980
4981 // Run the task--write out the symbols.
4982
4983 void
4984 Write_symbols_task::run(Workqueue*)
4985 {
4986   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4987                                this->layout_->symtab_xindex(),
4988                                this->layout_->dynsym_xindex(), this->of_);
4989 }
4990
4991 // Write_after_input_sections_task methods.
4992
4993 // We can only run this task after the input sections have completed.
4994
4995 Task_token*
4996 Write_after_input_sections_task::is_runnable()
4997 {
4998   if (this->input_sections_blocker_->is_blocked())
4999     return this->input_sections_blocker_;
5000   return NULL;
5001 }
5002
5003 // We need to unlock FINAL_BLOCKER when finished.
5004
5005 void
5006 Write_after_input_sections_task::locks(Task_locker* tl)
5007 {
5008   tl->add(this, this->final_blocker_);
5009 }
5010
5011 // Run the task.
5012
5013 void
5014 Write_after_input_sections_task::run(Workqueue*)
5015 {
5016   this->layout_->write_sections_after_input_sections(this->of_);
5017 }
5018
5019 // Close_task_runner methods.
5020
5021 // Run the task--close the file.
5022
5023 void
5024 Close_task_runner::run(Workqueue*, const Task*)
5025 {
5026   // If we need to compute a checksum for the BUILD if, we do so here.
5027   this->layout_->write_build_id(this->of_);
5028
5029   // If we've been asked to create a binary file, we do so here.
5030   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5031     this->layout_->write_binary(this->of_);
5032
5033   this->of_->close();
5034 }
5035
5036 // Instantiate the templates we need.  We could use the configure
5037 // script to restrict this to only the ones for implemented targets.
5038
5039 #ifdef HAVE_TARGET_32_LITTLE
5040 template
5041 Output_section*
5042 Layout::init_fixed_output_section<32, false>(
5043     const char* name,
5044     elfcpp::Shdr<32, false>& shdr);
5045 #endif
5046
5047 #ifdef HAVE_TARGET_32_BIG
5048 template
5049 Output_section*
5050 Layout::init_fixed_output_section<32, true>(
5051     const char* name,
5052     elfcpp::Shdr<32, true>& shdr);
5053 #endif
5054
5055 #ifdef HAVE_TARGET_64_LITTLE
5056 template
5057 Output_section*
5058 Layout::init_fixed_output_section<64, false>(
5059     const char* name,
5060     elfcpp::Shdr<64, false>& shdr);
5061 #endif
5062
5063 #ifdef HAVE_TARGET_64_BIG
5064 template
5065 Output_section*
5066 Layout::init_fixed_output_section<64, true>(
5067     const char* name,
5068     elfcpp::Shdr<64, true>& shdr);
5069 #endif
5070
5071 #ifdef HAVE_TARGET_32_LITTLE
5072 template
5073 Output_section*
5074 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5075                           unsigned int shndx,
5076                           const char* name,
5077                           const elfcpp::Shdr<32, false>& shdr,
5078                           unsigned int, unsigned int, off_t*);
5079 #endif
5080
5081 #ifdef HAVE_TARGET_32_BIG
5082 template
5083 Output_section*
5084 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5085                          unsigned int shndx,
5086                          const char* name,
5087                          const elfcpp::Shdr<32, true>& shdr,
5088                          unsigned int, unsigned int, off_t*);
5089 #endif
5090
5091 #ifdef HAVE_TARGET_64_LITTLE
5092 template
5093 Output_section*
5094 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5095                           unsigned int shndx,
5096                           const char* name,
5097                           const elfcpp::Shdr<64, false>& shdr,
5098                           unsigned int, unsigned int, off_t*);
5099 #endif
5100
5101 #ifdef HAVE_TARGET_64_BIG
5102 template
5103 Output_section*
5104 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5105                          unsigned int shndx,
5106                          const char* name,
5107                          const elfcpp::Shdr<64, true>& shdr,
5108                          unsigned int, unsigned int, off_t*);
5109 #endif
5110
5111 #ifdef HAVE_TARGET_32_LITTLE
5112 template
5113 Output_section*
5114 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5115                                 unsigned int reloc_shndx,
5116                                 const elfcpp::Shdr<32, false>& shdr,
5117                                 Output_section* data_section,
5118                                 Relocatable_relocs* rr);
5119 #endif
5120
5121 #ifdef HAVE_TARGET_32_BIG
5122 template
5123 Output_section*
5124 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5125                                unsigned int reloc_shndx,
5126                                const elfcpp::Shdr<32, true>& shdr,
5127                                Output_section* data_section,
5128                                Relocatable_relocs* rr);
5129 #endif
5130
5131 #ifdef HAVE_TARGET_64_LITTLE
5132 template
5133 Output_section*
5134 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5135                                 unsigned int reloc_shndx,
5136                                 const elfcpp::Shdr<64, false>& shdr,
5137                                 Output_section* data_section,
5138                                 Relocatable_relocs* rr);
5139 #endif
5140
5141 #ifdef HAVE_TARGET_64_BIG
5142 template
5143 Output_section*
5144 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5145                                unsigned int reloc_shndx,
5146                                const elfcpp::Shdr<64, true>& shdr,
5147                                Output_section* data_section,
5148                                Relocatable_relocs* rr);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_32_LITTLE
5152 template
5153 void
5154 Layout::layout_group<32, false>(Symbol_table* symtab,
5155                                 Sized_relobj_file<32, false>* object,
5156                                 unsigned int,
5157                                 const char* group_section_name,
5158                                 const char* signature,
5159                                 const elfcpp::Shdr<32, false>& shdr,
5160                                 elfcpp::Elf_Word flags,
5161                                 std::vector<unsigned int>* shndxes);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_32_BIG
5165 template
5166 void
5167 Layout::layout_group<32, true>(Symbol_table* symtab,
5168                                Sized_relobj_file<32, true>* object,
5169                                unsigned int,
5170                                const char* group_section_name,
5171                                const char* signature,
5172                                const elfcpp::Shdr<32, true>& shdr,
5173                                elfcpp::Elf_Word flags,
5174                                std::vector<unsigned int>* shndxes);
5175 #endif
5176
5177 #ifdef HAVE_TARGET_64_LITTLE
5178 template
5179 void
5180 Layout::layout_group<64, false>(Symbol_table* symtab,
5181                                 Sized_relobj_file<64, false>* object,
5182                                 unsigned int,
5183                                 const char* group_section_name,
5184                                 const char* signature,
5185                                 const elfcpp::Shdr<64, false>& shdr,
5186                                 elfcpp::Elf_Word flags,
5187                                 std::vector<unsigned int>* shndxes);
5188 #endif
5189
5190 #ifdef HAVE_TARGET_64_BIG
5191 template
5192 void
5193 Layout::layout_group<64, true>(Symbol_table* symtab,
5194                                Sized_relobj_file<64, true>* object,
5195                                unsigned int,
5196                                const char* group_section_name,
5197                                const char* signature,
5198                                const elfcpp::Shdr<64, true>& shdr,
5199                                elfcpp::Elf_Word flags,
5200                                std::vector<unsigned int>* shndxes);
5201 #endif
5202
5203 #ifdef HAVE_TARGET_32_LITTLE
5204 template
5205 Output_section*
5206 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5207                                    const unsigned char* symbols,
5208                                    off_t symbols_size,
5209                                    const unsigned char* symbol_names,
5210                                    off_t symbol_names_size,
5211                                    unsigned int shndx,
5212                                    const elfcpp::Shdr<32, false>& shdr,
5213                                    unsigned int reloc_shndx,
5214                                    unsigned int reloc_type,
5215                                    off_t* off);
5216 #endif
5217
5218 #ifdef HAVE_TARGET_32_BIG
5219 template
5220 Output_section*
5221 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5222                                   const unsigned char* symbols,
5223                                   off_t symbols_size,
5224                                   const unsigned char* symbol_names,
5225                                   off_t symbol_names_size,
5226                                   unsigned int shndx,
5227                                   const elfcpp::Shdr<32, true>& shdr,
5228                                   unsigned int reloc_shndx,
5229                                   unsigned int reloc_type,
5230                                   off_t* off);
5231 #endif
5232
5233 #ifdef HAVE_TARGET_64_LITTLE
5234 template
5235 Output_section*
5236 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5237                                    const unsigned char* symbols,
5238                                    off_t symbols_size,
5239                                    const unsigned char* symbol_names,
5240                                    off_t symbol_names_size,
5241                                    unsigned int shndx,
5242                                    const elfcpp::Shdr<64, false>& shdr,
5243                                    unsigned int reloc_shndx,
5244                                    unsigned int reloc_type,
5245                                    off_t* off);
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_BIG
5249 template
5250 Output_section*
5251 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5252                                   const unsigned char* symbols,
5253                                   off_t symbols_size,
5254                                   const unsigned char* symbol_names,
5255                                   off_t symbol_names_size,
5256                                   unsigned int shndx,
5257                                   const elfcpp::Shdr<64, true>& shdr,
5258                                   unsigned int reloc_shndx,
5259                                   unsigned int reloc_type,
5260                                   off_t* off);
5261 #endif
5262
5263 } // End namespace gold.