Initial -r support.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             task);
56
57   // Now we know the final size of the output file and we know where
58   // each piece of information goes.
59   Output_file* of = new Output_file(parameters->output_file_name());
60   of->open(file_size);
61
62   // Queue up the final set of tasks.
63   gold::queue_final_tasks(this->options_, this->input_objects_,
64                           this->symtab_, this->layout_, workqueue, of);
65 }
66
67 // Layout methods.
68
69 Layout::Layout(const General_options& options, Script_options* script_options)
70   : options_(options), script_options_(script_options), namepool_(),
71     sympool_(), dynpool_(), signatures_(),
72     section_name_map_(), segment_list_(), section_list_(),
73     unattached_section_list_(), special_output_list_(),
74     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
75     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
76     eh_frame_section_(NULL), output_file_size_(-1),
77     input_requires_executable_stack_(false),
78     input_with_gnu_stack_note_(false),
79     input_without_gnu_stack_note_(false),
80     has_static_tls_(false),
81     any_postprocessing_sections_(false)
82 {
83   // Make space for more than enough segments for a typical file.
84   // This is just for efficiency--it's OK if we wind up needing more.
85   this->segment_list_.reserve(12);
86
87   // We expect two unattached Output_data objects: the file header and
88   // the segment headers.
89   this->special_output_list_.reserve(2);
90 }
91
92 // Hash a key we use to look up an output section mapping.
93
94 size_t
95 Layout::Hash_key::operator()(const Layout::Key& k) const
96 {
97  return k.first + k.second.first + k.second.second;
98 }
99
100 // Return whether PREFIX is a prefix of STR.
101
102 static inline bool
103 is_prefix_of(const char* prefix, const char* str)
104 {
105   return strncmp(prefix, str, strlen(prefix)) == 0;
106 }
107
108 // Returns whether the given section is in the list of
109 // debug-sections-used-by-some-version-of-gdb.  Currently,
110 // we've checked versions of gdb up to and including 6.7.1.
111
112 static const char* gdb_sections[] =
113 { ".debug_abbrev",
114   // ".debug_aranges",   // not used by gdb as of 6.7.1
115   ".debug_frame",
116   ".debug_info",
117   ".debug_line",
118   ".debug_loc",
119   ".debug_macinfo",
120   // ".debug_pubnames",  // not used by gdb as of 6.7.1
121   ".debug_ranges",
122   ".debug_str",
123 };
124
125 static inline bool
126 is_gdb_debug_section(const char* str)
127 {
128   // We can do this faster: binary search or a hashtable.  But why bother?
129   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
130     if (strcmp(str, gdb_sections[i]) == 0)
131       return true;
132   return false;
133 }
134
135 // Whether to include this section in the link.
136
137 template<int size, bool big_endian>
138 bool
139 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
140                         const elfcpp::Shdr<size, big_endian>& shdr)
141 {
142   switch (shdr.get_sh_type())
143     {
144     case elfcpp::SHT_NULL:
145     case elfcpp::SHT_SYMTAB:
146     case elfcpp::SHT_DYNSYM:
147     case elfcpp::SHT_STRTAB:
148     case elfcpp::SHT_HASH:
149     case elfcpp::SHT_DYNAMIC:
150     case elfcpp::SHT_SYMTAB_SHNDX:
151       return false;
152
153     case elfcpp::SHT_RELA:
154     case elfcpp::SHT_REL:
155     case elfcpp::SHT_GROUP:
156       // For a relocatable link these should be handled elsewhere.
157       gold_assert(!parameters->output_is_object());
158       return false;
159
160     case elfcpp::SHT_PROGBITS:
161       if (parameters->strip_debug()
162           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
163         {
164           // Debugging sections can only be recognized by name.
165           if (is_prefix_of(".debug", name)
166               || is_prefix_of(".gnu.linkonce.wi.", name)
167               || is_prefix_of(".line", name)
168               || is_prefix_of(".stab", name))
169             return false;
170         }
171       if (parameters->strip_debug_gdb()
172           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
173         {
174           // Debugging sections can only be recognized by name.
175           if (is_prefix_of(".debug", name)
176               && !is_gdb_debug_section(name))
177             return false;
178         }
179       return true;
180
181     default:
182       return true;
183     }
184 }
185
186 // Return an output section named NAME, or NULL if there is none.
187
188 Output_section*
189 Layout::find_output_section(const char* name) const
190 {
191   for (Section_list::const_iterator p = this->section_list_.begin();
192        p != this->section_list_.end();
193        ++p)
194     if (strcmp((*p)->name(), name) == 0)
195       return *p;
196   return NULL;
197 }
198
199 // Return an output segment of type TYPE, with segment flags SET set
200 // and segment flags CLEAR clear.  Return NULL if there is none.
201
202 Output_segment*
203 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
204                             elfcpp::Elf_Word clear) const
205 {
206   for (Segment_list::const_iterator p = this->segment_list_.begin();
207        p != this->segment_list_.end();
208        ++p)
209     if (static_cast<elfcpp::PT>((*p)->type()) == type
210         && ((*p)->flags() & set) == set
211         && ((*p)->flags() & clear) == 0)
212       return *p;
213   return NULL;
214 }
215
216 // Return the output section to use for section NAME with type TYPE
217 // and section flags FLAGS.  NAME must be canonicalized in the string
218 // pool, and NAME_KEY is the key.
219
220 Output_section*
221 Layout::get_output_section(const char* name, Stringpool::Key name_key,
222                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
223 {
224   const Key key(name_key, std::make_pair(type, flags));
225   const std::pair<Key, Output_section*> v(key, NULL);
226   std::pair<Section_name_map::iterator, bool> ins(
227     this->section_name_map_.insert(v));
228
229   if (!ins.second)
230     return ins.first->second;
231   else
232     {
233       // This is the first time we've seen this name/type/flags
234       // combination.
235       Output_section* os = this->make_output_section(name, type, flags);
236       ins.first->second = os;
237       return os;
238     }
239 }
240
241 // Pick the output section to use for section NAME, in input file
242 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
243 // linker created section.  ADJUST_NAME is true if we should apply the
244 // standard name mappings in Layout::output_section_name.  This will
245 // return NULL if the input section should be discarded.
246
247 Output_section*
248 Layout::choose_output_section(const Relobj* relobj, const char* name,
249                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
250                               bool adjust_name)
251 {
252   // We should ignore some flags.  FIXME: This will need some
253   // adjustment for ld -r.
254   flags &= ~ (elfcpp::SHF_INFO_LINK
255               | elfcpp::SHF_LINK_ORDER
256               | elfcpp::SHF_GROUP
257               | elfcpp::SHF_MERGE
258               | elfcpp::SHF_STRINGS);
259
260   if (this->script_options_->saw_sections_clause())
261     {
262       // We are using a SECTIONS clause, so the output section is
263       // chosen based only on the name.
264
265       Script_sections* ss = this->script_options_->script_sections();
266       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
267       Output_section** output_section_slot;
268       name = ss->output_section_name(file_name, name, &output_section_slot);
269       if (name == NULL)
270         {
271           // The SECTIONS clause says to discard this input section.
272           return NULL;
273         }
274
275       // If this is an orphan section--one not mentioned in the linker
276       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
277       // default processing below.
278
279       if (output_section_slot != NULL)
280         {
281           if (*output_section_slot != NULL)
282             return *output_section_slot;
283
284           // We don't put sections found in the linker script into
285           // SECTION_NAME_MAP_.  That keeps us from getting confused
286           // if an orphan section is mapped to a section with the same
287           // name as one in the linker script.
288
289           name = this->namepool_.add(name, false, NULL);
290
291           Output_section* os = this->make_output_section(name, type, flags);
292           os->set_found_in_sections_clause();
293           *output_section_slot = os;
294           return os;
295         }
296     }
297
298   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
299
300   // Turn NAME from the name of the input section into the name of the
301   // output section.
302
303   size_t len = strlen(name);
304   if (adjust_name && !parameters->output_is_object())
305     name = Layout::output_section_name(name, &len);
306
307   Stringpool::Key name_key;
308   name = this->namepool_.add_with_length(name, len, true, &name_key);
309
310   // Find or make the output section.  The output section is selected
311   // based on the section name, type, and flags.
312   return this->get_output_section(name, name_key, type, flags);
313 }
314
315 // Return the output section to use for input section SHNDX, with name
316 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
317 // index of a relocation section which applies to this section, or 0
318 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
319 // relocation section if there is one.  Set *OFF to the offset of this
320 // input section without the output section.  Return NULL if the
321 // section should be discarded.  Set *OFF to -1 if the section
322 // contents should not be written directly to the output file, but
323 // will instead receive special handling.
324
325 template<int size, bool big_endian>
326 Output_section*
327 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
328                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
329                unsigned int reloc_shndx, unsigned int, off_t* off)
330 {
331   if (!this->include_section(object, name, shdr))
332     return NULL;
333
334   Output_section* os;
335
336   // In a relocatable link a grouped section must not be combined with
337   // any other sections.
338   if (parameters->output_is_object()
339       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
340     {
341       name = this->namepool_.add(name, true, NULL);
342       os = this->make_output_section(name, shdr.get_sh_type(),
343                                      shdr.get_sh_flags());
344     }
345   else
346     {
347       os = this->choose_output_section(object, name, shdr.get_sh_type(),
348                                        shdr.get_sh_flags(), true);
349       if (os == NULL)
350         return NULL;
351     }
352
353   // FIXME: Handle SHF_LINK_ORDER somewhere.
354
355   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
356                                this->script_options_->saw_sections_clause());
357
358   return os;
359 }
360
361 // Handle a relocation section when doing a relocatable link.
362
363 template<int size, bool big_endian>
364 Output_section*
365 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
366                      unsigned int,
367                      const elfcpp::Shdr<size, big_endian>& shdr,
368                      Output_section* data_section,
369                      Relocatable_relocs* rr)
370 {
371   gold_assert(parameters->output_is_object());
372
373   int sh_type = shdr.get_sh_type();
374
375   std::string name;
376   if (sh_type == elfcpp::SHT_REL)
377     name = ".rel";
378   else if (sh_type == elfcpp::SHT_RELA)
379     name = ".rela";
380   else
381     gold_unreachable();
382   name += data_section->name();
383
384   Output_section* os = this->choose_output_section(object, name.c_str(),
385                                                    sh_type,
386                                                    shdr.get_sh_flags(),
387                                                    false);
388
389   os->set_should_link_to_symtab();
390   os->set_info_section(data_section);
391
392   Output_section_data* posd;
393   if (sh_type == elfcpp::SHT_REL)
394     {
395       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
396       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
397                                            size,
398                                            big_endian>(rr);
399     }
400   else if (sh_type == elfcpp::SHT_RELA)
401     {
402       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
403       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
404                                            size,
405                                            big_endian>(rr);
406     }
407   else
408     gold_unreachable();
409
410   os->add_output_section_data(posd);
411   rr->set_output_data(posd);
412
413   return os;
414 }
415
416 // Handle a group section when doing a relocatable link.
417
418 template<int size, bool big_endian>
419 void
420 Layout::layout_group(Symbol_table* symtab,
421                      Sized_relobj<size, big_endian>* object,
422                      unsigned int,
423                      const char* group_section_name,
424                      const char* signature,
425                      const elfcpp::Shdr<size, big_endian>& shdr,
426                      const elfcpp::Elf_Word* contents)
427 {
428   gold_assert(parameters->output_is_object());
429   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
430   group_section_name = this->namepool_.add(group_section_name, true, NULL);
431   Output_section* os = this->make_output_section(group_section_name,
432                                                  elfcpp::SHT_GROUP,
433                                                  shdr.get_sh_flags());
434
435   // We need to find a symbol with the signature in the symbol table.
436   // This is a hack to force that to happen.
437   Symbol* sym = symtab->lookup(signature, NULL);
438   if (sym == NULL)
439     sym = symtab->define_as_constant(signature, NULL, 0, 0,
440                                      elfcpp::STT_NOTYPE,
441                                      elfcpp::STB_WEAK,
442                                      elfcpp::STV_HIDDEN, 0, false);
443
444   os->set_should_link_to_symtab();
445   os->set_info_symndx(sym);
446   os->set_entsize(4);
447
448   section_size_type entry_count =
449     convert_to_section_size_type(shdr.get_sh_size() / 4);
450   Output_section_data* posd =
451     new Output_data_group<size, big_endian>(object, entry_count, contents);
452   os->add_output_section_data(posd);
453 }
454
455 // Special GNU handling of sections name .eh_frame.  They will
456 // normally hold exception frame data as defined by the C++ ABI
457 // (http://codesourcery.com/cxx-abi/).
458
459 template<int size, bool big_endian>
460 Output_section*
461 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
462                         const unsigned char* symbols,
463                         off_t symbols_size,
464                         const unsigned char* symbol_names,
465                         off_t symbol_names_size,
466                         unsigned int shndx,
467                         const elfcpp::Shdr<size, big_endian>& shdr,
468                         unsigned int reloc_shndx, unsigned int reloc_type,
469                         off_t* off)
470 {
471   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
472   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
473
474   const char* const name = ".eh_frame";
475   Output_section* os = this->choose_output_section(object,
476                                                    name,
477                                                    elfcpp::SHT_PROGBITS,
478                                                    elfcpp::SHF_ALLOC,
479                                                    false);
480   if (os == NULL)
481     return NULL;
482
483   if (this->eh_frame_section_ == NULL)
484     {
485       this->eh_frame_section_ = os;
486       this->eh_frame_data_ = new Eh_frame();
487       os->add_output_section_data(this->eh_frame_data_);
488
489       if (this->options_.create_eh_frame_hdr())
490         {
491           Output_section* hdr_os =
492             this->choose_output_section(NULL,
493                                         ".eh_frame_hdr",
494                                         elfcpp::SHT_PROGBITS,
495                                         elfcpp::SHF_ALLOC,
496                                         false);
497
498           if (hdr_os != NULL)
499             {
500               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
501                                                         this->eh_frame_data_);
502               hdr_os->add_output_section_data(hdr_posd);
503
504               hdr_os->set_after_input_sections();
505
506               if (!this->script_options_->saw_phdrs_clause())
507                 {
508                   Output_segment* hdr_oseg;
509                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
510                                                        elfcpp::PF_R);
511                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
512                 }
513
514               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
515             }
516         }
517     }
518
519   gold_assert(this->eh_frame_section_ == os);
520
521   if (this->eh_frame_data_->add_ehframe_input_section(object,
522                                                       symbols,
523                                                       symbols_size,
524                                                       symbol_names,
525                                                       symbol_names_size,
526                                                       shndx,
527                                                       reloc_shndx,
528                                                       reloc_type))
529     *off = -1;
530   else
531     {
532       // We couldn't handle this .eh_frame section for some reason.
533       // Add it as a normal section.
534       bool saw_sections_clause = this->script_options_->saw_sections_clause();
535       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
536                                    saw_sections_clause);
537     }
538
539   return os;
540 }
541
542 // Add POSD to an output section using NAME, TYPE, and FLAGS.
543
544 void
545 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
546                                 elfcpp::Elf_Xword flags,
547                                 Output_section_data* posd)
548 {
549   Output_section* os = this->choose_output_section(NULL, name, type, flags,
550                                                    false);
551   if (os != NULL)
552     os->add_output_section_data(posd);
553 }
554
555 // Map section flags to segment flags.
556
557 elfcpp::Elf_Word
558 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
559 {
560   elfcpp::Elf_Word ret = elfcpp::PF_R;
561   if ((flags & elfcpp::SHF_WRITE) != 0)
562     ret |= elfcpp::PF_W;
563   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
564     ret |= elfcpp::PF_X;
565   return ret;
566 }
567
568 // Sometimes we compress sections.  This is typically done for
569 // sections that are not part of normal program execution (such as
570 // .debug_* sections), and where the readers of these sections know
571 // how to deal with compressed sections.  (To make it easier for them,
572 // we will rename the ouput section in such cases from .foo to
573 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
574 // doesn't say for certain whether we'll compress -- it depends on
575 // commandline options as well -- just whether this section is a
576 // candidate for compression.
577
578 static bool
579 is_compressible_debug_section(const char* secname)
580 {
581   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
582 }
583
584 // Make a new Output_section, and attach it to segments as
585 // appropriate.
586
587 Output_section*
588 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
589                             elfcpp::Elf_Xword flags)
590 {
591   Output_section* os;
592   if ((flags & elfcpp::SHF_ALLOC) == 0
593       && this->options_.compress_debug_sections()
594       && is_compressible_debug_section(name))
595     os = new Output_compressed_section(&this->options_, name, type, flags);
596   else
597     os = new Output_section(name, type, flags);
598
599   this->section_list_.push_back(os);
600
601   if ((flags & elfcpp::SHF_ALLOC) == 0)
602     this->unattached_section_list_.push_back(os);
603   else
604     {
605       if (parameters->output_is_object())
606         return os;
607
608       // If we have a SECTIONS clause, we can't handle the attachment
609       // to segments until after we've seen all the sections.
610       if (this->script_options_->saw_sections_clause())
611         return os;
612
613       gold_assert(!this->script_options_->saw_phdrs_clause());
614
615       // This output section goes into a PT_LOAD segment.
616
617       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
618
619       // The only thing we really care about for PT_LOAD segments is
620       // whether or not they are writable, so that is how we search
621       // for them.  People who need segments sorted on some other
622       // basis will have to wait until we implement a mechanism for
623       // them to describe the segments they want.
624
625       Segment_list::const_iterator p;
626       for (p = this->segment_list_.begin();
627            p != this->segment_list_.end();
628            ++p)
629         {
630           if ((*p)->type() == elfcpp::PT_LOAD
631               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
632             {
633               (*p)->add_output_section(os, seg_flags);
634               break;
635             }
636         }
637
638       if (p == this->segment_list_.end())
639         {
640           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
641                                                            seg_flags);
642           oseg->add_output_section(os, seg_flags);
643         }
644
645       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
646       // segment.
647       if (type == elfcpp::SHT_NOTE)
648         {
649           // See if we already have an equivalent PT_NOTE segment.
650           for (p = this->segment_list_.begin();
651                p != segment_list_.end();
652                ++p)
653             {
654               if ((*p)->type() == elfcpp::PT_NOTE
655                   && (((*p)->flags() & elfcpp::PF_W)
656                       == (seg_flags & elfcpp::PF_W)))
657                 {
658                   (*p)->add_output_section(os, seg_flags);
659                   break;
660                 }
661             }
662
663           if (p == this->segment_list_.end())
664             {
665               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
666                                                                seg_flags);
667               oseg->add_output_section(os, seg_flags);
668             }
669         }
670
671       // If we see a loadable SHF_TLS section, we create a PT_TLS
672       // segment.  There can only be one such segment.
673       if ((flags & elfcpp::SHF_TLS) != 0)
674         {
675           if (this->tls_segment_ == NULL)
676             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
677                                                            seg_flags);
678           this->tls_segment_->add_output_section(os, seg_flags);
679         }
680     }
681
682   return os;
683 }
684
685 // Return the number of segments we expect to see.
686
687 size_t
688 Layout::expected_segment_count() const
689 {
690   size_t ret = this->segment_list_.size();
691
692   // If we didn't see a SECTIONS clause in a linker script, we should
693   // already have the complete list of segments.  Otherwise we ask the
694   // SECTIONS clause how many segments it expects, and add in the ones
695   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
696
697   if (!this->script_options_->saw_sections_clause())
698     return ret;
699   else
700     {
701       const Script_sections* ss = this->script_options_->script_sections();
702       return ret + ss->expected_segment_count(this);
703     }
704 }
705
706 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
707 // is whether we saw a .note.GNU-stack section in the object file.
708 // GNU_STACK_FLAGS is the section flags.  The flags give the
709 // protection required for stack memory.  We record this in an
710 // executable as a PT_GNU_STACK segment.  If an object file does not
711 // have a .note.GNU-stack segment, we must assume that it is an old
712 // object.  On some targets that will force an executable stack.
713
714 void
715 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
716 {
717   if (!seen_gnu_stack)
718     this->input_without_gnu_stack_note_ = true;
719   else
720     {
721       this->input_with_gnu_stack_note_ = true;
722       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
723         this->input_requires_executable_stack_ = true;
724     }
725 }
726
727 // Create the dynamic sections which are needed before we read the
728 // relocs.
729
730 void
731 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
732 {
733   if (parameters->doing_static_link())
734     return;
735
736   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
737                                                        elfcpp::SHT_DYNAMIC,
738                                                        (elfcpp::SHF_ALLOC
739                                                         | elfcpp::SHF_WRITE),
740                                                        false);
741
742   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
743                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
744                                 elfcpp::STV_HIDDEN, 0, false, false);
745
746   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
747
748   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
749 }
750
751 // For each output section whose name can be represented as C symbol,
752 // define __start and __stop symbols for the section.  This is a GNU
753 // extension.
754
755 void
756 Layout::define_section_symbols(Symbol_table* symtab)
757 {
758   for (Section_list::const_iterator p = this->section_list_.begin();
759        p != this->section_list_.end();
760        ++p)
761     {
762       const char* const name = (*p)->name();
763       if (name[strspn(name,
764                       ("0123456789"
765                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
766                        "abcdefghijklmnopqrstuvwxyz"
767                        "_"))]
768           == '\0')
769         {
770           const std::string name_string(name);
771           const std::string start_name("__start_" + name_string);
772           const std::string stop_name("__stop_" + name_string);
773
774           symtab->define_in_output_data(start_name.c_str(),
775                                         NULL, // version
776                                         *p,
777                                         0, // value
778                                         0, // symsize
779                                         elfcpp::STT_NOTYPE,
780                                         elfcpp::STB_GLOBAL,
781                                         elfcpp::STV_DEFAULT,
782                                         0, // nonvis
783                                         false, // offset_is_from_end
784                                         true); // only_if_ref
785
786           symtab->define_in_output_data(stop_name.c_str(),
787                                         NULL, // version
788                                         *p,
789                                         0, // value
790                                         0, // symsize
791                                         elfcpp::STT_NOTYPE,
792                                         elfcpp::STB_GLOBAL,
793                                         elfcpp::STV_DEFAULT,
794                                         0, // nonvis
795                                         true, // offset_is_from_end
796                                         true); // only_if_ref
797         }
798     }
799 }
800
801 // Find the first read-only PT_LOAD segment, creating one if
802 // necessary.
803
804 Output_segment*
805 Layout::find_first_load_seg()
806 {
807   for (Segment_list::const_iterator p = this->segment_list_.begin();
808        p != this->segment_list_.end();
809        ++p)
810     {
811       if ((*p)->type() == elfcpp::PT_LOAD
812           && ((*p)->flags() & elfcpp::PF_R) != 0
813           && ((*p)->flags() & elfcpp::PF_W) == 0)
814         return *p;
815     }
816
817   gold_assert(!this->script_options_->saw_phdrs_clause());
818
819   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
820                                                        elfcpp::PF_R);
821   return load_seg;
822 }
823
824 // Finalize the layout.  When this is called, we have created all the
825 // output sections and all the output segments which are based on
826 // input sections.  We have several things to do, and we have to do
827 // them in the right order, so that we get the right results correctly
828 // and efficiently.
829
830 // 1) Finalize the list of output segments and create the segment
831 // table header.
832
833 // 2) Finalize the dynamic symbol table and associated sections.
834
835 // 3) Determine the final file offset of all the output segments.
836
837 // 4) Determine the final file offset of all the SHF_ALLOC output
838 // sections.
839
840 // 5) Create the symbol table sections and the section name table
841 // section.
842
843 // 6) Finalize the symbol table: set symbol values to their final
844 // value and make a final determination of which symbols are going
845 // into the output symbol table.
846
847 // 7) Create the section table header.
848
849 // 8) Determine the final file offset of all the output sections which
850 // are not SHF_ALLOC, including the section table header.
851
852 // 9) Finalize the ELF file header.
853
854 // This function returns the size of the output file.
855
856 off_t
857 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
858                  const Task* task)
859 {
860   Target* const target = input_objects->target();
861
862   target->finalize_sections(this);
863
864   this->count_local_symbols(task, input_objects);
865
866   this->create_gold_note();
867   this->create_executable_stack_info(target);
868
869   Output_segment* phdr_seg = NULL;
870   if (!parameters->output_is_object() && !parameters->doing_static_link())
871     {
872       // There was a dynamic object in the link.  We need to create
873       // some information for the dynamic linker.
874
875       // Create the PT_PHDR segment which will hold the program
876       // headers.
877       if (!this->script_options_->saw_phdrs_clause())
878         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
879
880       // Create the dynamic symbol table, including the hash table.
881       Output_section* dynstr;
882       std::vector<Symbol*> dynamic_symbols;
883       unsigned int local_dynamic_count;
884       Versions versions(this->options_, &this->dynpool_);
885       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
886                                   &local_dynamic_count, &dynamic_symbols,
887                                   &versions);
888
889       // Create the .interp section to hold the name of the
890       // interpreter, and put it in a PT_INTERP segment.
891       if (!parameters->output_is_shared())
892         this->create_interp(target);
893
894       // Finish the .dynamic section to hold the dynamic data, and put
895       // it in a PT_DYNAMIC segment.
896       this->finish_dynamic_section(input_objects, symtab);
897
898       // We should have added everything we need to the dynamic string
899       // table.
900       this->dynpool_.set_string_offsets();
901
902       // Create the version sections.  We can't do this until the
903       // dynamic string table is complete.
904       this->create_version_sections(&versions, symtab, local_dynamic_count,
905                                     dynamic_symbols, dynstr);
906     }
907
908   // If there is a SECTIONS clause, put all the input sections into
909   // the required order.
910   Output_segment* load_seg;
911   if (parameters->output_is_object())
912     load_seg = NULL;
913   else if (this->script_options_->saw_sections_clause())
914     load_seg = this->set_section_addresses_from_script(symtab);
915   else
916     load_seg = this->find_first_load_seg();
917
918   gold_assert(phdr_seg == NULL || load_seg != NULL);
919
920   // Lay out the segment headers.
921   Output_segment_headers* segment_headers;
922   if (parameters->output_is_object())
923     segment_headers = NULL;
924   else
925     {
926       segment_headers = new Output_segment_headers(this->segment_list_);
927       if (load_seg != NULL)
928         load_seg->add_initial_output_data(segment_headers);
929       if (phdr_seg != NULL)
930         phdr_seg->add_initial_output_data(segment_headers);
931     }
932
933   // Lay out the file header.
934   Output_file_header* file_header;
935   file_header = new Output_file_header(target, symtab, segment_headers,
936                                        this->script_options_->entry());
937   if (load_seg != NULL)
938     load_seg->add_initial_output_data(file_header);
939
940   this->special_output_list_.push_back(file_header);
941   if (segment_headers != NULL)
942     this->special_output_list_.push_back(segment_headers);
943
944   if (this->script_options_->saw_phdrs_clause()
945       && !parameters->output_is_object())
946     {
947       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
948       // clause in a linker script.
949       Script_sections* ss = this->script_options_->script_sections();
950       ss->put_headers_in_phdrs(file_header, segment_headers);
951     }
952
953   // We set the output section indexes in set_segment_offsets and
954   // set_section_indexes.
955   unsigned int shndx = 1;
956
957   // Set the file offsets of all the segments, and all the sections
958   // they contain.
959   off_t off;
960   if (!parameters->output_is_object())
961     off = this->set_segment_offsets(target, load_seg, &shndx);
962   else
963     off = this->set_relocatable_section_offsets(file_header, &shndx);
964
965   // Set the file offsets of all the non-data sections we've seen so
966   // far which don't have to wait for the input sections.  We need
967   // this in order to finalize local symbols in non-allocated
968   // sections.
969   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
970
971   // Create the symbol table sections.
972   this->create_symtab_sections(input_objects, symtab, &off);
973   if (!parameters->doing_static_link())
974     this->assign_local_dynsym_offsets(input_objects);
975
976   // Process any symbol assignments from a linker script.  This must
977   // be called after the symbol table has been finalized.
978   this->script_options_->finalize_symbols(symtab, this);
979
980   // Create the .shstrtab section.
981   Output_section* shstrtab_section = this->create_shstrtab();
982
983   // Set the file offsets of the rest of the non-data sections which
984   // don't have to wait for the input sections.
985   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
986
987   // Now that all sections have been created, set the section indexes.
988   shndx = this->set_section_indexes(shndx);
989
990   // Create the section table header.
991   this->create_shdrs(&off);
992
993   // If there are no sections which require postprocessing, we can
994   // handle the section names now, and avoid a resize later.
995   if (!this->any_postprocessing_sections_)
996     off = this->set_section_offsets(off,
997                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
998
999   file_header->set_section_info(this->section_headers_, shstrtab_section);
1000
1001   // Now we know exactly where everything goes in the output file
1002   // (except for non-allocated sections which require postprocessing).
1003   Output_data::layout_complete();
1004
1005   this->output_file_size_ = off;
1006
1007   return off;
1008 }
1009
1010 // Create a .note section for an executable or shared library.  This
1011 // records the version of gold used to create the binary.
1012
1013 void
1014 Layout::create_gold_note()
1015 {
1016   if (parameters->output_is_object())
1017     return;
1018
1019   // Authorities all agree that the values in a .note field should
1020   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1021   // they differ on what the alignment is for 64-bit binaries.
1022   // The GABI says unambiguously they take 8-byte alignment:
1023   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1024   // Other documentation says alignment should always be 4 bytes:
1025   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1026   // GNU ld and GNU readelf both support the latter (at least as of
1027   // version 2.16.91), and glibc always generates the latter for
1028   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1029   // here.
1030 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1031   const int size = parameters->get_size();
1032 #else
1033   const int size = 32;
1034 #endif
1035
1036   // The contents of the .note section.
1037   const char* name = "GNU";
1038   std::string desc(std::string("gold ") + gold::get_version_string());
1039   size_t namesz = strlen(name) + 1;
1040   size_t aligned_namesz = align_address(namesz, size / 8);
1041   size_t descsz = desc.length() + 1;
1042   size_t aligned_descsz = align_address(descsz, size / 8);
1043   const int note_type = 4;
1044
1045   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1046
1047   unsigned char buffer[128];
1048   gold_assert(sizeof buffer >= notesz);
1049   memset(buffer, 0, notesz);
1050
1051   bool is_big_endian = parameters->is_big_endian();
1052
1053   if (size == 32)
1054     {
1055       if (!is_big_endian)
1056         {
1057           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1058           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1059           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1060         }
1061       else
1062         {
1063           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1064           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1065           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1066         }
1067     }
1068   else if (size == 64)
1069     {
1070       if (!is_big_endian)
1071         {
1072           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1073           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1074           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1075         }
1076       else
1077         {
1078           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1079           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1080           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1081         }
1082     }
1083   else
1084     gold_unreachable();
1085
1086   memcpy(buffer + 3 * (size / 8), name, namesz);
1087   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1088
1089   const char* note_name = this->namepool_.add(".note", false, NULL);
1090   Output_section* os = this->make_output_section(note_name,
1091                                                  elfcpp::SHT_NOTE,
1092                                                  0);
1093   Output_section_data* posd = new Output_data_const(buffer, notesz,
1094                                                     size / 8);
1095   os->add_output_section_data(posd);
1096 }
1097
1098 // Record whether the stack should be executable.  This can be set
1099 // from the command line using the -z execstack or -z noexecstack
1100 // options.  Otherwise, if any input file has a .note.GNU-stack
1101 // section with the SHF_EXECINSTR flag set, the stack should be
1102 // executable.  Otherwise, if at least one input file a
1103 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1104 // section, we use the target default for whether the stack should be
1105 // executable.  Otherwise, we don't generate a stack note.  When
1106 // generating a object file, we create a .note.GNU-stack section with
1107 // the appropriate marking.  When generating an executable or shared
1108 // library, we create a PT_GNU_STACK segment.
1109
1110 void
1111 Layout::create_executable_stack_info(const Target* target)
1112 {
1113   bool is_stack_executable;
1114   if (this->options_.is_execstack_set())
1115     is_stack_executable = this->options_.is_stack_executable();
1116   else if (!this->input_with_gnu_stack_note_)
1117     return;
1118   else
1119     {
1120       if (this->input_requires_executable_stack_)
1121         is_stack_executable = true;
1122       else if (this->input_without_gnu_stack_note_)
1123         is_stack_executable = target->is_default_stack_executable();
1124       else
1125         is_stack_executable = false;
1126     }
1127
1128   if (parameters->output_is_object())
1129     {
1130       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1131       elfcpp::Elf_Xword flags = 0;
1132       if (is_stack_executable)
1133         flags |= elfcpp::SHF_EXECINSTR;
1134       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1135     }
1136   else
1137     {
1138       if (this->script_options_->saw_phdrs_clause())
1139         return;
1140       int flags = elfcpp::PF_R | elfcpp::PF_W;
1141       if (is_stack_executable)
1142         flags |= elfcpp::PF_X;
1143       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1144     }
1145 }
1146
1147 // Return whether SEG1 should be before SEG2 in the output file.  This
1148 // is based entirely on the segment type and flags.  When this is
1149 // called the segment addresses has normally not yet been set.
1150
1151 bool
1152 Layout::segment_precedes(const Output_segment* seg1,
1153                          const Output_segment* seg2)
1154 {
1155   elfcpp::Elf_Word type1 = seg1->type();
1156   elfcpp::Elf_Word type2 = seg2->type();
1157
1158   // The single PT_PHDR segment is required to precede any loadable
1159   // segment.  We simply make it always first.
1160   if (type1 == elfcpp::PT_PHDR)
1161     {
1162       gold_assert(type2 != elfcpp::PT_PHDR);
1163       return true;
1164     }
1165   if (type2 == elfcpp::PT_PHDR)
1166     return false;
1167
1168   // The single PT_INTERP segment is required to precede any loadable
1169   // segment.  We simply make it always second.
1170   if (type1 == elfcpp::PT_INTERP)
1171     {
1172       gold_assert(type2 != elfcpp::PT_INTERP);
1173       return true;
1174     }
1175   if (type2 == elfcpp::PT_INTERP)
1176     return false;
1177
1178   // We then put PT_LOAD segments before any other segments.
1179   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1180     return true;
1181   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1182     return false;
1183
1184   // We put the PT_TLS segment last, because that is where the dynamic
1185   // linker expects to find it (this is just for efficiency; other
1186   // positions would also work correctly).
1187   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1188     return false;
1189   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1190     return true;
1191
1192   const elfcpp::Elf_Word flags1 = seg1->flags();
1193   const elfcpp::Elf_Word flags2 = seg2->flags();
1194
1195   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1196   // by the numeric segment type and flags values.  There should not
1197   // be more than one segment with the same type and flags.
1198   if (type1 != elfcpp::PT_LOAD)
1199     {
1200       if (type1 != type2)
1201         return type1 < type2;
1202       gold_assert(flags1 != flags2);
1203       return flags1 < flags2;
1204     }
1205
1206   // If the addresses are set already, sort by load address.
1207   if (seg1->are_addresses_set())
1208     {
1209       if (!seg2->are_addresses_set())
1210         return true;
1211
1212       unsigned int section_count1 = seg1->output_section_count();
1213       unsigned int section_count2 = seg2->output_section_count();
1214       if (section_count1 == 0 && section_count2 > 0)
1215         return true;
1216       if (section_count1 > 0 && section_count2 == 0)
1217         return false;
1218
1219       uint64_t paddr1 = seg1->first_section_load_address();
1220       uint64_t paddr2 = seg2->first_section_load_address();
1221       if (paddr1 != paddr2)
1222         return paddr1 < paddr2;
1223     }
1224   else if (seg2->are_addresses_set())
1225     return false;
1226
1227   // We sort PT_LOAD segments based on the flags.  Readonly segments
1228   // come before writable segments.  Then executable segments come
1229   // before non-executable segments.  Then the unlikely case of a
1230   // non-readable segment comes before the normal case of a readable
1231   // segment.  If there are multiple segments with the same type and
1232   // flags, we require that the address be set, and we sort by
1233   // virtual address and then physical address.
1234   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1235     return (flags1 & elfcpp::PF_W) == 0;
1236   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1237     return (flags1 & elfcpp::PF_X) != 0;
1238   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1239     return (flags1 & elfcpp::PF_R) == 0;
1240
1241   // We shouldn't get here--we shouldn't create segments which we
1242   // can't distinguish.
1243   gold_unreachable();
1244 }
1245
1246 // Set the file offsets of all the segments, and all the sections they
1247 // contain.  They have all been created.  LOAD_SEG must be be laid out
1248 // first.  Return the offset of the data to follow.
1249
1250 off_t
1251 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1252                             unsigned int *pshndx)
1253 {
1254   // Sort them into the final order.
1255   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1256             Layout::Compare_segments());
1257
1258   // Find the PT_LOAD segments, and set their addresses and offsets
1259   // and their section's addresses and offsets.
1260   uint64_t addr;
1261   if (this->options_.user_set_text_segment_address())
1262     addr = options_.text_segment_address();
1263   else if (parameters->output_is_shared())
1264     addr = 0;
1265   else
1266     addr = target->default_text_segment_address();
1267   off_t off = 0;
1268
1269   // If LOAD_SEG is NULL, then the file header and segment headers
1270   // will not be loadable.  But they still need to be at offset 0 in
1271   // the file.  Set their offsets now.
1272   if (load_seg == NULL)
1273     {
1274       for (Data_list::iterator p = this->special_output_list_.begin();
1275            p != this->special_output_list_.end();
1276            ++p)
1277         {
1278           off = align_address(off, (*p)->addralign());
1279           (*p)->set_address_and_file_offset(0, off);
1280           off += (*p)->data_size();
1281         }
1282     }
1283
1284   bool was_readonly = false;
1285   for (Segment_list::iterator p = this->segment_list_.begin();
1286        p != this->segment_list_.end();
1287        ++p)
1288     {
1289       if ((*p)->type() == elfcpp::PT_LOAD)
1290         {
1291           if (load_seg != NULL && load_seg != *p)
1292             gold_unreachable();
1293           load_seg = NULL;
1294
1295           uint64_t orig_addr = addr;
1296           uint64_t orig_off = off;
1297
1298           uint64_t aligned_addr = 0;
1299           uint64_t abi_pagesize = target->abi_pagesize();
1300
1301           // FIXME: This should depend on the -n and -N options.
1302           (*p)->set_minimum_p_align(target->common_pagesize());
1303
1304           bool are_addresses_set = (*p)->are_addresses_set();
1305           if (are_addresses_set)
1306             {
1307               // When it comes to setting file offsets, we care about
1308               // the physical address.
1309               addr = (*p)->paddr();
1310
1311               // Adjust the file offset to the same address modulo the
1312               // page size.
1313               uint64_t unsigned_off = off;
1314               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1315                                       | (addr & (abi_pagesize - 1)));
1316               if (aligned_off < unsigned_off)
1317                 aligned_off += abi_pagesize;
1318               off = aligned_off;
1319             }
1320           else
1321             {
1322               // If the last segment was readonly, and this one is
1323               // not, then skip the address forward one page,
1324               // maintaining the same position within the page.  This
1325               // lets us store both segments overlapping on a single
1326               // page in the file, but the loader will put them on
1327               // different pages in memory.
1328
1329               addr = align_address(addr, (*p)->maximum_alignment());
1330               aligned_addr = addr;
1331
1332               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1333                 {
1334                   if ((addr & (abi_pagesize - 1)) != 0)
1335                     addr = addr + abi_pagesize;
1336                 }
1337
1338               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1339             }
1340
1341           unsigned int shndx_hold = *pshndx;
1342           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1343                                                           pshndx);
1344
1345           // Now that we know the size of this segment, we may be able
1346           // to save a page in memory, at the cost of wasting some
1347           // file space, by instead aligning to the start of a new
1348           // page.  Here we use the real machine page size rather than
1349           // the ABI mandated page size.
1350
1351           if (!are_addresses_set && aligned_addr != addr)
1352             {
1353               uint64_t common_pagesize = target->common_pagesize();
1354               uint64_t first_off = (common_pagesize
1355                                     - (aligned_addr
1356                                        & (common_pagesize - 1)));
1357               uint64_t last_off = new_addr & (common_pagesize - 1);
1358               if (first_off > 0
1359                   && last_off > 0
1360                   && ((aligned_addr & ~ (common_pagesize - 1))
1361                       != (new_addr & ~ (common_pagesize - 1)))
1362                   && first_off + last_off <= common_pagesize)
1363                 {
1364                   *pshndx = shndx_hold;
1365                   addr = align_address(aligned_addr, common_pagesize);
1366                   addr = align_address(addr, (*p)->maximum_alignment());
1367                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1368                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1369                                                          pshndx);
1370                 }
1371             }
1372
1373           addr = new_addr;
1374
1375           if (((*p)->flags() & elfcpp::PF_W) == 0)
1376             was_readonly = true;
1377         }
1378     }
1379
1380   // Handle the non-PT_LOAD segments, setting their offsets from their
1381   // section's offsets.
1382   for (Segment_list::iterator p = this->segment_list_.begin();
1383        p != this->segment_list_.end();
1384        ++p)
1385     {
1386       if ((*p)->type() != elfcpp::PT_LOAD)
1387         (*p)->set_offset();
1388     }
1389
1390   // Set the TLS offsets for each section in the PT_TLS segment.
1391   if (this->tls_segment_ != NULL)
1392     this->tls_segment_->set_tls_offsets();
1393
1394   return off;
1395 }
1396
1397 // Set the offsets of all the allocated sections when doing a
1398 // relocatable link.  This does the same jobs as set_segment_offsets,
1399 // only for a relocatable link.
1400
1401 off_t
1402 Layout::set_relocatable_section_offsets(Output_data* file_header,
1403                                         unsigned int *pshndx)
1404 {
1405   off_t off = 0;
1406
1407   file_header->set_address_and_file_offset(0, 0);
1408   off += file_header->data_size();
1409
1410   for (Section_list::iterator p = this->section_list_.begin();
1411        p != this->section_list_.end();
1412        ++p)
1413     {
1414       // We skip unallocated sections here, except that group sections
1415       // have to come first.
1416       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1417           && (*p)->type() != elfcpp::SHT_GROUP)
1418         continue;
1419
1420       off = align_address(off, (*p)->addralign());
1421
1422       // The linker script might have set the address.
1423       if (!(*p)->is_address_valid())
1424         (*p)->set_address(0);
1425       (*p)->set_file_offset(off);
1426       (*p)->finalize_data_size();
1427       off += (*p)->data_size();
1428
1429       (*p)->set_out_shndx(*pshndx);
1430       ++*pshndx;
1431     }
1432
1433   return off;
1434 }
1435
1436 // Set the file offset of all the sections not associated with a
1437 // segment.
1438
1439 off_t
1440 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1441 {
1442   for (Section_list::iterator p = this->unattached_section_list_.begin();
1443        p != this->unattached_section_list_.end();
1444        ++p)
1445     {
1446       // The symtab section is handled in create_symtab_sections.
1447       if (*p == this->symtab_section_)
1448         continue;
1449
1450       // If we've already set the data size, don't set it again.
1451       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1452         continue;
1453
1454       if (pass == BEFORE_INPUT_SECTIONS_PASS
1455           && (*p)->requires_postprocessing())
1456         {
1457           (*p)->create_postprocessing_buffer();
1458           this->any_postprocessing_sections_ = true;
1459         }
1460
1461       if (pass == BEFORE_INPUT_SECTIONS_PASS
1462           && (*p)->after_input_sections())
1463         continue;
1464       else if (pass == POSTPROCESSING_SECTIONS_PASS
1465                && (!(*p)->after_input_sections()
1466                    || (*p)->type() == elfcpp::SHT_STRTAB))
1467         continue;
1468       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1469                && (!(*p)->after_input_sections()
1470                    || (*p)->type() != elfcpp::SHT_STRTAB))
1471         continue;
1472
1473       off = align_address(off, (*p)->addralign());
1474       (*p)->set_file_offset(off);
1475       (*p)->finalize_data_size();
1476       off += (*p)->data_size();
1477
1478       // At this point the name must be set.
1479       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1480         this->namepool_.add((*p)->name(), false, NULL);
1481     }
1482   return off;
1483 }
1484
1485 // Set the section indexes of all the sections not associated with a
1486 // segment.
1487
1488 unsigned int
1489 Layout::set_section_indexes(unsigned int shndx)
1490 {
1491   const bool output_is_object = parameters->output_is_object();
1492   for (Section_list::iterator p = this->unattached_section_list_.begin();
1493        p != this->unattached_section_list_.end();
1494        ++p)
1495     {
1496       // In a relocatable link, we already did group sections.
1497       if (output_is_object
1498           && (*p)->type() == elfcpp::SHT_GROUP)
1499         continue;
1500
1501       (*p)->set_out_shndx(shndx);
1502       ++shndx;
1503     }
1504   return shndx;
1505 }
1506
1507 // Set the section addresses according to the linker script.  This is
1508 // only called when we see a SECTIONS clause.  This returns the
1509 // program segment which should hold the file header and segment
1510 // headers, if any.  It will return NULL if they should not be in a
1511 // segment.
1512
1513 Output_segment*
1514 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1515 {
1516   Script_sections* ss = this->script_options_->script_sections();
1517   gold_assert(ss->saw_sections_clause());
1518
1519   // Place each orphaned output section in the script.
1520   for (Section_list::iterator p = this->section_list_.begin();
1521        p != this->section_list_.end();
1522        ++p)
1523     {
1524       if (!(*p)->found_in_sections_clause())
1525         ss->place_orphan(*p);
1526     }
1527
1528   return this->script_options_->set_section_addresses(symtab, this);
1529 }
1530
1531 // Count the local symbols in the regular symbol table and the dynamic
1532 // symbol table, and build the respective string pools.
1533
1534 void
1535 Layout::count_local_symbols(const Task* task,
1536                             const Input_objects* input_objects)
1537 {
1538   // First, figure out an upper bound on the number of symbols we'll
1539   // be inserting into each pool.  This helps us create the pools with
1540   // the right size, to avoid unnecessary hashtable resizing.
1541   unsigned int symbol_count = 0;
1542   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1543        p != input_objects->relobj_end();
1544        ++p)
1545     symbol_count += (*p)->local_symbol_count();
1546
1547   // Go from "upper bound" to "estimate."  We overcount for two
1548   // reasons: we double-count symbols that occur in more than one
1549   // object file, and we count symbols that are dropped from the
1550   // output.  Add it all together and assume we overcount by 100%.
1551   symbol_count /= 2;
1552
1553   // We assume all symbols will go into both the sympool and dynpool.
1554   this->sympool_.reserve(symbol_count);
1555   this->dynpool_.reserve(symbol_count);
1556
1557   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1558        p != input_objects->relobj_end();
1559        ++p)
1560     {
1561       Task_lock_obj<Object> tlo(task, *p);
1562       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1563     }
1564 }
1565
1566 // Create the symbol table sections.  Here we also set the final
1567 // values of the symbols.  At this point all the loadable sections are
1568 // fully laid out.
1569
1570 void
1571 Layout::create_symtab_sections(const Input_objects* input_objects,
1572                                Symbol_table* symtab,
1573                                off_t* poff)
1574 {
1575   int symsize;
1576   unsigned int align;
1577   if (parameters->get_size() == 32)
1578     {
1579       symsize = elfcpp::Elf_sizes<32>::sym_size;
1580       align = 4;
1581     }
1582   else if (parameters->get_size() == 64)
1583     {
1584       symsize = elfcpp::Elf_sizes<64>::sym_size;
1585       align = 8;
1586     }
1587   else
1588     gold_unreachable();
1589
1590   off_t off = *poff;
1591   off = align_address(off, align);
1592   off_t startoff = off;
1593
1594   // Save space for the dummy symbol at the start of the section.  We
1595   // never bother to write this out--it will just be left as zero.
1596   off += symsize;
1597   unsigned int local_symbol_index = 1;
1598
1599   // Add STT_SECTION symbols for each Output section which needs one.
1600   for (Section_list::iterator p = this->section_list_.begin();
1601        p != this->section_list_.end();
1602        ++p)
1603     {
1604       if (!(*p)->needs_symtab_index())
1605         (*p)->set_symtab_index(-1U);
1606       else
1607         {
1608           (*p)->set_symtab_index(local_symbol_index);
1609           ++local_symbol_index;
1610           off += symsize;
1611         }
1612     }
1613
1614   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1615        p != input_objects->relobj_end();
1616        ++p)
1617     {
1618       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1619                                                         off);
1620       off += (index - local_symbol_index) * symsize;
1621       local_symbol_index = index;
1622     }
1623
1624   unsigned int local_symcount = local_symbol_index;
1625   gold_assert(local_symcount * symsize == off - startoff);
1626
1627   off_t dynoff;
1628   size_t dyn_global_index;
1629   size_t dyncount;
1630   if (this->dynsym_section_ == NULL)
1631     {
1632       dynoff = 0;
1633       dyn_global_index = 0;
1634       dyncount = 0;
1635     }
1636   else
1637     {
1638       dyn_global_index = this->dynsym_section_->info();
1639       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1640       dynoff = this->dynsym_section_->offset() + locsize;
1641       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1642       gold_assert(static_cast<off_t>(dyncount * symsize)
1643                   == this->dynsym_section_->data_size() - locsize);
1644     }
1645
1646   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1647                          &this->sympool_, &local_symcount);
1648
1649   if (!parameters->strip_all())
1650     {
1651       this->sympool_.set_string_offsets();
1652
1653       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1654       Output_section* osymtab = this->make_output_section(symtab_name,
1655                                                           elfcpp::SHT_SYMTAB,
1656                                                           0);
1657       this->symtab_section_ = osymtab;
1658
1659       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1660                                                              align);
1661       osymtab->add_output_section_data(pos);
1662
1663       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1664       Output_section* ostrtab = this->make_output_section(strtab_name,
1665                                                           elfcpp::SHT_STRTAB,
1666                                                           0);
1667
1668       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1669       ostrtab->add_output_section_data(pstr);
1670
1671       osymtab->set_file_offset(startoff);
1672       osymtab->finalize_data_size();
1673       osymtab->set_link_section(ostrtab);
1674       osymtab->set_info(local_symcount);
1675       osymtab->set_entsize(symsize);
1676
1677       *poff = off;
1678     }
1679 }
1680
1681 // Create the .shstrtab section, which holds the names of the
1682 // sections.  At the time this is called, we have created all the
1683 // output sections except .shstrtab itself.
1684
1685 Output_section*
1686 Layout::create_shstrtab()
1687 {
1688   // FIXME: We don't need to create a .shstrtab section if we are
1689   // stripping everything.
1690
1691   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1692
1693   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1694
1695   // We can't write out this section until we've set all the section
1696   // names, and we don't set the names of compressed output sections
1697   // until relocations are complete.
1698   os->set_after_input_sections();
1699
1700   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1701   os->add_output_section_data(posd);
1702
1703   return os;
1704 }
1705
1706 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1707 // offset.
1708
1709 void
1710 Layout::create_shdrs(off_t* poff)
1711 {
1712   Output_section_headers* oshdrs;
1713   oshdrs = new Output_section_headers(this,
1714                                       &this->segment_list_,
1715                                       &this->section_list_,
1716                                       &this->unattached_section_list_,
1717                                       &this->namepool_);
1718   off_t off = align_address(*poff, oshdrs->addralign());
1719   oshdrs->set_address_and_file_offset(0, off);
1720   off += oshdrs->data_size();
1721   *poff = off;
1722   this->section_headers_ = oshdrs;
1723 }
1724
1725 // Create the dynamic symbol table.
1726
1727 void
1728 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1729                               Symbol_table* symtab,
1730                               Output_section **pdynstr,
1731                               unsigned int* plocal_dynamic_count,
1732                               std::vector<Symbol*>* pdynamic_symbols,
1733                               Versions* pversions)
1734 {
1735   // Count all the symbols in the dynamic symbol table, and set the
1736   // dynamic symbol indexes.
1737
1738   // Skip symbol 0, which is always all zeroes.
1739   unsigned int index = 1;
1740
1741   // Add STT_SECTION symbols for each Output section which needs one.
1742   for (Section_list::iterator p = this->section_list_.begin();
1743        p != this->section_list_.end();
1744        ++p)
1745     {
1746       if (!(*p)->needs_dynsym_index())
1747         (*p)->set_dynsym_index(-1U);
1748       else
1749         {
1750           (*p)->set_dynsym_index(index);
1751           ++index;
1752         }
1753     }
1754
1755   // Count the local symbols that need to go in the dynamic symbol table,
1756   // and set the dynamic symbol indexes.
1757   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1758        p != input_objects->relobj_end();
1759        ++p)
1760     {
1761       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1762       index = new_index;
1763     }
1764
1765   unsigned int local_symcount = index;
1766   *plocal_dynamic_count = local_symcount;
1767
1768   // FIXME: We have to tell set_dynsym_indexes whether the
1769   // -E/--export-dynamic option was used.
1770   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1771                                      &this->dynpool_, pversions);
1772
1773   int symsize;
1774   unsigned int align;
1775   const int size = parameters->get_size();
1776   if (size == 32)
1777     {
1778       symsize = elfcpp::Elf_sizes<32>::sym_size;
1779       align = 4;
1780     }
1781   else if (size == 64)
1782     {
1783       symsize = elfcpp::Elf_sizes<64>::sym_size;
1784       align = 8;
1785     }
1786   else
1787     gold_unreachable();
1788
1789   // Create the dynamic symbol table section.
1790
1791   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1792                                                        elfcpp::SHT_DYNSYM,
1793                                                        elfcpp::SHF_ALLOC,
1794                                                        false);
1795
1796   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1797                                                            align);
1798   dynsym->add_output_section_data(odata);
1799
1800   dynsym->set_info(local_symcount);
1801   dynsym->set_entsize(symsize);
1802   dynsym->set_addralign(align);
1803
1804   this->dynsym_section_ = dynsym;
1805
1806   Output_data_dynamic* const odyn = this->dynamic_data_;
1807   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1808   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1809
1810   // Create the dynamic string table section.
1811
1812   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1813                                                        elfcpp::SHT_STRTAB,
1814                                                        elfcpp::SHF_ALLOC,
1815                                                        false);
1816
1817   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1818   dynstr->add_output_section_data(strdata);
1819
1820   dynsym->set_link_section(dynstr);
1821   this->dynamic_section_->set_link_section(dynstr);
1822
1823   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1824   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1825
1826   *pdynstr = dynstr;
1827
1828   // Create the hash tables.
1829
1830   // FIXME: We need an option to create a GNU hash table.
1831
1832   unsigned char* phash;
1833   unsigned int hashlen;
1834   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1835                                 &phash, &hashlen);
1836
1837   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1838                                                         elfcpp::SHT_HASH,
1839                                                         elfcpp::SHF_ALLOC,
1840                                                         false);
1841
1842   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1843                                                                hashlen,
1844                                                                align);
1845   hashsec->add_output_section_data(hashdata);
1846
1847   hashsec->set_link_section(dynsym);
1848   hashsec->set_entsize(4);
1849
1850   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1851 }
1852
1853 // Assign offsets to each local portion of the dynamic symbol table.
1854
1855 void
1856 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1857 {
1858   Output_section* dynsym = this->dynsym_section_;
1859   gold_assert(dynsym != NULL);
1860
1861   off_t off = dynsym->offset();
1862
1863   // Skip the dummy symbol at the start of the section.
1864   off += dynsym->entsize();
1865
1866   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1867        p != input_objects->relobj_end();
1868        ++p)
1869     {
1870       unsigned int count = (*p)->set_local_dynsym_offset(off);
1871       off += count * dynsym->entsize();
1872     }
1873 }
1874
1875 // Create the version sections.
1876
1877 void
1878 Layout::create_version_sections(const Versions* versions,
1879                                 const Symbol_table* symtab,
1880                                 unsigned int local_symcount,
1881                                 const std::vector<Symbol*>& dynamic_symbols,
1882                                 const Output_section* dynstr)
1883 {
1884   if (!versions->any_defs() && !versions->any_needs())
1885     return;
1886
1887   if (parameters->get_size() == 32)
1888     {
1889       if (parameters->is_big_endian())
1890         {
1891 #ifdef HAVE_TARGET_32_BIG
1892           this->sized_create_version_sections
1893               SELECT_SIZE_ENDIAN_NAME(32, true)(
1894                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1895                   SELECT_SIZE_ENDIAN(32, true));
1896 #else
1897           gold_unreachable();
1898 #endif
1899         }
1900       else
1901         {
1902 #ifdef HAVE_TARGET_32_LITTLE
1903           this->sized_create_version_sections
1904               SELECT_SIZE_ENDIAN_NAME(32, false)(
1905                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1906                   SELECT_SIZE_ENDIAN(32, false));
1907 #else
1908           gold_unreachable();
1909 #endif
1910         }
1911     }
1912   else if (parameters->get_size() == 64)
1913     {
1914       if (parameters->is_big_endian())
1915         {
1916 #ifdef HAVE_TARGET_64_BIG
1917           this->sized_create_version_sections
1918               SELECT_SIZE_ENDIAN_NAME(64, true)(
1919                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1920                   SELECT_SIZE_ENDIAN(64, true));
1921 #else
1922           gold_unreachable();
1923 #endif
1924         }
1925       else
1926         {
1927 #ifdef HAVE_TARGET_64_LITTLE
1928           this->sized_create_version_sections
1929               SELECT_SIZE_ENDIAN_NAME(64, false)(
1930                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1931                   SELECT_SIZE_ENDIAN(64, false));
1932 #else
1933           gold_unreachable();
1934 #endif
1935         }
1936     }
1937   else
1938     gold_unreachable();
1939 }
1940
1941 // Create the version sections, sized version.
1942
1943 template<int size, bool big_endian>
1944 void
1945 Layout::sized_create_version_sections(
1946     const Versions* versions,
1947     const Symbol_table* symtab,
1948     unsigned int local_symcount,
1949     const std::vector<Symbol*>& dynamic_symbols,
1950     const Output_section* dynstr
1951     ACCEPT_SIZE_ENDIAN)
1952 {
1953   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
1954                                                      elfcpp::SHT_GNU_versym,
1955                                                      elfcpp::SHF_ALLOC,
1956                                                      false);
1957
1958   unsigned char* vbuf;
1959   unsigned int vsize;
1960   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1961       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1962       SELECT_SIZE_ENDIAN(size, big_endian));
1963
1964   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1965
1966   vsec->add_output_section_data(vdata);
1967   vsec->set_entsize(2);
1968   vsec->set_link_section(this->dynsym_section_);
1969
1970   Output_data_dynamic* const odyn = this->dynamic_data_;
1971   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1972
1973   if (versions->any_defs())
1974     {
1975       Output_section* vdsec;
1976       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
1977                                          elfcpp::SHT_GNU_verdef,
1978                                          elfcpp::SHF_ALLOC,
1979                                          false);
1980
1981       unsigned char* vdbuf;
1982       unsigned int vdsize;
1983       unsigned int vdentries;
1984       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1985           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1986           SELECT_SIZE_ENDIAN(size, big_endian));
1987
1988       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1989                                                                  vdsize,
1990                                                                  4);
1991
1992       vdsec->add_output_section_data(vddata);
1993       vdsec->set_link_section(dynstr);
1994       vdsec->set_info(vdentries);
1995
1996       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1997       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1998     }
1999
2000   if (versions->any_needs())
2001     {
2002       Output_section* vnsec;
2003       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2004                                           elfcpp::SHT_GNU_verneed,
2005                                           elfcpp::SHF_ALLOC,
2006                                           false);
2007
2008       unsigned char* vnbuf;
2009       unsigned int vnsize;
2010       unsigned int vnentries;
2011       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2012         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2013          SELECT_SIZE_ENDIAN(size, big_endian));
2014
2015       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2016                                                                  vnsize,
2017                                                                  4);
2018
2019       vnsec->add_output_section_data(vndata);
2020       vnsec->set_link_section(dynstr);
2021       vnsec->set_info(vnentries);
2022
2023       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2024       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2025     }
2026 }
2027
2028 // Create the .interp section and PT_INTERP segment.
2029
2030 void
2031 Layout::create_interp(const Target* target)
2032 {
2033   const char* interp = this->options_.dynamic_linker();
2034   if (interp == NULL)
2035     {
2036       interp = target->dynamic_linker();
2037       gold_assert(interp != NULL);
2038     }
2039
2040   size_t len = strlen(interp) + 1;
2041
2042   Output_section_data* odata = new Output_data_const(interp, len, 1);
2043
2044   Output_section* osec = this->choose_output_section(NULL, ".interp",
2045                                                      elfcpp::SHT_PROGBITS,
2046                                                      elfcpp::SHF_ALLOC,
2047                                                      false);
2048   osec->add_output_section_data(odata);
2049
2050   if (!this->script_options_->saw_phdrs_clause())
2051     {
2052       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2053                                                        elfcpp::PF_R);
2054       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2055     }
2056 }
2057
2058 // Finish the .dynamic section and PT_DYNAMIC segment.
2059
2060 void
2061 Layout::finish_dynamic_section(const Input_objects* input_objects,
2062                                const Symbol_table* symtab)
2063 {
2064   if (!this->script_options_->saw_phdrs_clause())
2065     {
2066       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2067                                                        (elfcpp::PF_R
2068                                                         | elfcpp::PF_W));
2069       oseg->add_initial_output_section(this->dynamic_section_,
2070                                        elfcpp::PF_R | elfcpp::PF_W);
2071     }
2072
2073   Output_data_dynamic* const odyn = this->dynamic_data_;
2074
2075   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2076        p != input_objects->dynobj_end();
2077        ++p)
2078     {
2079       // FIXME: Handle --as-needed.
2080       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2081     }
2082
2083   if (parameters->output_is_shared())
2084     {
2085       const char* soname = this->options_.soname();
2086       if (soname != NULL)
2087         odyn->add_string(elfcpp::DT_SONAME, soname);
2088     }
2089
2090   // FIXME: Support --init and --fini.
2091   Symbol* sym = symtab->lookup("_init");
2092   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2093     odyn->add_symbol(elfcpp::DT_INIT, sym);
2094
2095   sym = symtab->lookup("_fini");
2096   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2097     odyn->add_symbol(elfcpp::DT_FINI, sym);
2098
2099   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2100
2101   // Add a DT_RPATH entry if needed.
2102   const General_options::Dir_list& rpath(this->options_.rpath());
2103   if (!rpath.empty())
2104     {
2105       std::string rpath_val;
2106       for (General_options::Dir_list::const_iterator p = rpath.begin();
2107            p != rpath.end();
2108            ++p)
2109         {
2110           if (rpath_val.empty())
2111             rpath_val = p->name();
2112           else
2113             {
2114               // Eliminate duplicates.
2115               General_options::Dir_list::const_iterator q;
2116               for (q = rpath.begin(); q != p; ++q)
2117                 if (q->name() == p->name())
2118                   break;
2119               if (q == p)
2120                 {
2121                   rpath_val += ':';
2122                   rpath_val += p->name();
2123                 }
2124             }
2125         }
2126
2127       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2128     }
2129
2130   // Look for text segments that have dynamic relocations.
2131   bool have_textrel = false;
2132   for (Segment_list::const_iterator p = this->segment_list_.begin();
2133        p != this->segment_list_.end();
2134        ++p)
2135     {
2136       if (((*p)->flags() & elfcpp::PF_W) == 0
2137           && (*p)->dynamic_reloc_count() > 0)
2138         {
2139           have_textrel = true;
2140           break;
2141         }
2142     }
2143
2144   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2145   // post-link tools can easily modify these flags if desired.
2146   unsigned int flags = 0;
2147   if (have_textrel)
2148     {
2149       // Add a DT_TEXTREL for compatibility with older loaders.
2150       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2151       flags |= elfcpp::DF_TEXTREL;
2152     }
2153   if (parameters->output_is_shared() && this->has_static_tls())
2154     flags |= elfcpp::DF_STATIC_TLS;
2155   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2156 }
2157
2158 // The mapping of .gnu.linkonce section names to real section names.
2159
2160 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2161 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2162 {
2163   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2164   MAPPING_INIT("t", ".text"),
2165   MAPPING_INIT("r", ".rodata"),
2166   MAPPING_INIT("d", ".data"),
2167   MAPPING_INIT("b", ".bss"),
2168   MAPPING_INIT("s", ".sdata"),
2169   MAPPING_INIT("sb", ".sbss"),
2170   MAPPING_INIT("s2", ".sdata2"),
2171   MAPPING_INIT("sb2", ".sbss2"),
2172   MAPPING_INIT("wi", ".debug_info"),
2173   MAPPING_INIT("td", ".tdata"),
2174   MAPPING_INIT("tb", ".tbss"),
2175   MAPPING_INIT("lr", ".lrodata"),
2176   MAPPING_INIT("l", ".ldata"),
2177   MAPPING_INIT("lb", ".lbss"),
2178 };
2179 #undef MAPPING_INIT
2180
2181 const int Layout::linkonce_mapping_count =
2182   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2183
2184 // Return the name of the output section to use for a .gnu.linkonce
2185 // section.  This is based on the default ELF linker script of the old
2186 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2187 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2188 // initialized to the length of NAME.
2189
2190 const char*
2191 Layout::linkonce_output_name(const char* name, size_t *plen)
2192 {
2193   const char* s = name + sizeof(".gnu.linkonce") - 1;
2194   if (*s != '.')
2195     return name;
2196   ++s;
2197   const Linkonce_mapping* plm = linkonce_mapping;
2198   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2199     {
2200       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2201         {
2202           *plen = plm->tolen;
2203           return plm->to;
2204         }
2205     }
2206   return name;
2207 }
2208
2209 // Choose the output section name to use given an input section name.
2210 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2211 // length of NAME.
2212
2213 const char*
2214 Layout::output_section_name(const char* name, size_t* plen)
2215 {
2216   if (Layout::is_linkonce(name))
2217     {
2218       // .gnu.linkonce sections are laid out as though they were named
2219       // for the sections are placed into.
2220       return Layout::linkonce_output_name(name, plen);
2221     }
2222
2223   // gcc 4.3 generates the following sorts of section names when it
2224   // needs a section name specific to a function:
2225   //   .text.FN
2226   //   .rodata.FN
2227   //   .sdata2.FN
2228   //   .data.FN
2229   //   .data.rel.FN
2230   //   .data.rel.local.FN
2231   //   .data.rel.ro.FN
2232   //   .data.rel.ro.local.FN
2233   //   .sdata.FN
2234   //   .bss.FN
2235   //   .sbss.FN
2236   //   .tdata.FN
2237   //   .tbss.FN
2238
2239   // The GNU linker maps all of those to the part before the .FN,
2240   // except that .data.rel.local.FN is mapped to .data, and
2241   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2242   // beginning with .data.rel.ro.local are grouped together.
2243
2244   // For an anonymous namespace, the string FN can contain a '.'.
2245
2246   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2247   // GNU linker maps to .rodata.
2248
2249   // The .data.rel.ro sections enable a security feature triggered by
2250   // the -z relro option.  Section which need to be relocated at
2251   // program startup time but which may be readonly after startup are
2252   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2253   // segment.  The dynamic linker will make that segment writable,
2254   // perform relocations, and then make it read-only.  FIXME: We do
2255   // not yet implement this optimization.
2256
2257   // It is hard to handle this in a principled way.
2258
2259   // These are the rules we follow:
2260
2261   // If the section name has no initial '.', or no dot other than an
2262   // initial '.', we use the name unchanged (i.e., "mysection" and
2263   // ".text" are unchanged).
2264
2265   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2266
2267   // Otherwise, we drop the second '.' and everything that comes after
2268   // it (i.e., ".text.XXX" becomes ".text").
2269
2270   const char* s = name;
2271   if (*s != '.')
2272     return name;
2273   ++s;
2274   const char* sdot = strchr(s, '.');
2275   if (sdot == NULL)
2276     return name;
2277
2278   const char* const data_rel_ro = ".data.rel.ro";
2279   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2280     {
2281       *plen = strlen(data_rel_ro);
2282       return data_rel_ro;
2283     }
2284
2285   *plen = sdot - name;
2286   return name;
2287 }
2288
2289 // Record the signature of a comdat section, and return whether to
2290 // include it in the link.  If GROUP is true, this is a regular
2291 // section group.  If GROUP is false, this is a group signature
2292 // derived from the name of a linkonce section.  We want linkonce
2293 // signatures and group signatures to block each other, but we don't
2294 // want a linkonce signature to block another linkonce signature.
2295
2296 bool
2297 Layout::add_comdat(const char* signature, bool group)
2298 {
2299   std::string sig(signature);
2300   std::pair<Signatures::iterator, bool> ins(
2301     this->signatures_.insert(std::make_pair(sig, group)));
2302
2303   if (ins.second)
2304     {
2305       // This is the first time we've seen this signature.
2306       return true;
2307     }
2308
2309   if (ins.first->second)
2310     {
2311       // We've already seen a real section group with this signature.
2312       return false;
2313     }
2314   else if (group)
2315     {
2316       // This is a real section group, and we've already seen a
2317       // linkonce section with this signature.  Record that we've seen
2318       // a section group, and don't include this section group.
2319       ins.first->second = true;
2320       return false;
2321     }
2322   else
2323     {
2324       // We've already seen a linkonce section and this is a linkonce
2325       // section.  These don't block each other--this may be the same
2326       // symbol name with different section types.
2327       return true;
2328     }
2329 }
2330
2331 // Store the allocated sections into the section list.
2332
2333 void
2334 Layout::get_allocated_sections(Section_list* section_list) const
2335 {
2336   for (Section_list::const_iterator p = this->section_list_.begin();
2337        p != this->section_list_.end();
2338        ++p)
2339     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2340       section_list->push_back(*p);
2341 }
2342
2343 // Create an output segment.
2344
2345 Output_segment*
2346 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2347 {
2348   gold_assert(!parameters->output_is_object());
2349   Output_segment* oseg = new Output_segment(type, flags);
2350   this->segment_list_.push_back(oseg);
2351   return oseg;
2352 }
2353
2354 // Write out the Output_sections.  Most won't have anything to write,
2355 // since most of the data will come from input sections which are
2356 // handled elsewhere.  But some Output_sections do have Output_data.
2357
2358 void
2359 Layout::write_output_sections(Output_file* of) const
2360 {
2361   for (Section_list::const_iterator p = this->section_list_.begin();
2362        p != this->section_list_.end();
2363        ++p)
2364     {
2365       if (!(*p)->after_input_sections())
2366         (*p)->write(of);
2367     }
2368 }
2369
2370 // Write out data not associated with a section or the symbol table.
2371
2372 void
2373 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2374 {
2375   if (!parameters->strip_all())
2376     {
2377       const Output_section* symtab_section = this->symtab_section_;
2378       for (Section_list::const_iterator p = this->section_list_.begin();
2379            p != this->section_list_.end();
2380            ++p)
2381         {
2382           if ((*p)->needs_symtab_index())
2383             {
2384               gold_assert(symtab_section != NULL);
2385               unsigned int index = (*p)->symtab_index();
2386               gold_assert(index > 0 && index != -1U);
2387               off_t off = (symtab_section->offset()
2388                            + index * symtab_section->entsize());
2389               symtab->write_section_symbol(*p, of, off);
2390             }
2391         }
2392     }
2393
2394   const Output_section* dynsym_section = this->dynsym_section_;
2395   for (Section_list::const_iterator p = this->section_list_.begin();
2396        p != this->section_list_.end();
2397        ++p)
2398     {
2399       if ((*p)->needs_dynsym_index())
2400         {
2401           gold_assert(dynsym_section != NULL);
2402           unsigned int index = (*p)->dynsym_index();
2403           gold_assert(index > 0 && index != -1U);
2404           off_t off = (dynsym_section->offset()
2405                        + index * dynsym_section->entsize());
2406           symtab->write_section_symbol(*p, of, off);
2407         }
2408     }
2409
2410   // Write out the Output_data which are not in an Output_section.
2411   for (Data_list::const_iterator p = this->special_output_list_.begin();
2412        p != this->special_output_list_.end();
2413        ++p)
2414     (*p)->write(of);
2415 }
2416
2417 // Write out the Output_sections which can only be written after the
2418 // input sections are complete.
2419
2420 void
2421 Layout::write_sections_after_input_sections(Output_file* of)
2422 {
2423   // Determine the final section offsets, and thus the final output
2424   // file size.  Note we finalize the .shstrab last, to allow the
2425   // after_input_section sections to modify their section-names before
2426   // writing.
2427   if (this->any_postprocessing_sections_)
2428     {
2429       off_t off = this->output_file_size_;
2430       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2431       
2432       // Now that we've finalized the names, we can finalize the shstrab.
2433       off =
2434         this->set_section_offsets(off,
2435                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2436
2437       if (off > this->output_file_size_)
2438         {
2439           of->resize(off);
2440           this->output_file_size_ = off;
2441         }
2442     }
2443
2444   for (Section_list::const_iterator p = this->section_list_.begin();
2445        p != this->section_list_.end();
2446        ++p)
2447     {
2448       if ((*p)->after_input_sections())
2449         (*p)->write(of);
2450     }
2451
2452   this->section_headers_->write(of);
2453 }
2454
2455 // Print statistical information to stderr.  This is used for --stats.
2456
2457 void
2458 Layout::print_stats() const
2459 {
2460   this->namepool_.print_stats("section name pool");
2461   this->sympool_.print_stats("output symbol name pool");
2462   this->dynpool_.print_stats("dynamic name pool");
2463
2464   for (Section_list::const_iterator p = this->section_list_.begin();
2465        p != this->section_list_.end();
2466        ++p)
2467     (*p)->print_merge_stats();
2468 }
2469
2470 // Write_sections_task methods.
2471
2472 // We can always run this task.
2473
2474 Task_token*
2475 Write_sections_task::is_runnable()
2476 {
2477   return NULL;
2478 }
2479
2480 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2481 // when finished.
2482
2483 void
2484 Write_sections_task::locks(Task_locker* tl)
2485 {
2486   tl->add(this, this->output_sections_blocker_);
2487   tl->add(this, this->final_blocker_);
2488 }
2489
2490 // Run the task--write out the data.
2491
2492 void
2493 Write_sections_task::run(Workqueue*)
2494 {
2495   this->layout_->write_output_sections(this->of_);
2496 }
2497
2498 // Write_data_task methods.
2499
2500 // We can always run this task.
2501
2502 Task_token*
2503 Write_data_task::is_runnable()
2504 {
2505   return NULL;
2506 }
2507
2508 // We need to unlock FINAL_BLOCKER when finished.
2509
2510 void
2511 Write_data_task::locks(Task_locker* tl)
2512 {
2513   tl->add(this, this->final_blocker_);
2514 }
2515
2516 // Run the task--write out the data.
2517
2518 void
2519 Write_data_task::run(Workqueue*)
2520 {
2521   this->layout_->write_data(this->symtab_, this->of_);
2522 }
2523
2524 // Write_symbols_task methods.
2525
2526 // We can always run this task.
2527
2528 Task_token*
2529 Write_symbols_task::is_runnable()
2530 {
2531   return NULL;
2532 }
2533
2534 // We need to unlock FINAL_BLOCKER when finished.
2535
2536 void
2537 Write_symbols_task::locks(Task_locker* tl)
2538 {
2539   tl->add(this, this->final_blocker_);
2540 }
2541
2542 // Run the task--write out the symbols.
2543
2544 void
2545 Write_symbols_task::run(Workqueue*)
2546 {
2547   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2548                                this->dynpool_, this->of_);
2549 }
2550
2551 // Write_after_input_sections_task methods.
2552
2553 // We can only run this task after the input sections have completed.
2554
2555 Task_token*
2556 Write_after_input_sections_task::is_runnable()
2557 {
2558   if (this->input_sections_blocker_->is_blocked())
2559     return this->input_sections_blocker_;
2560   return NULL;
2561 }
2562
2563 // We need to unlock FINAL_BLOCKER when finished.
2564
2565 void
2566 Write_after_input_sections_task::locks(Task_locker* tl)
2567 {
2568   tl->add(this, this->final_blocker_);
2569 }
2570
2571 // Run the task.
2572
2573 void
2574 Write_after_input_sections_task::run(Workqueue*)
2575 {
2576   this->layout_->write_sections_after_input_sections(this->of_);
2577 }
2578
2579 // Close_task_runner methods.
2580
2581 // Run the task--close the file.
2582
2583 void
2584 Close_task_runner::run(Workqueue*, const Task*)
2585 {
2586   this->of_->close();
2587 }
2588
2589 // Instantiate the templates we need.  We could use the configure
2590 // script to restrict this to only the ones for implemented targets.
2591
2592 #ifdef HAVE_TARGET_32_LITTLE
2593 template
2594 Output_section*
2595 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2596                           const char* name,
2597                           const elfcpp::Shdr<32, false>& shdr,
2598                           unsigned int, unsigned int, off_t*);
2599 #endif
2600
2601 #ifdef HAVE_TARGET_32_BIG
2602 template
2603 Output_section*
2604 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2605                          const char* name,
2606                          const elfcpp::Shdr<32, true>& shdr,
2607                          unsigned int, unsigned int, off_t*);
2608 #endif
2609
2610 #ifdef HAVE_TARGET_64_LITTLE
2611 template
2612 Output_section*
2613 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2614                           const char* name,
2615                           const elfcpp::Shdr<64, false>& shdr,
2616                           unsigned int, unsigned int, off_t*);
2617 #endif
2618
2619 #ifdef HAVE_TARGET_64_BIG
2620 template
2621 Output_section*
2622 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2623                          const char* name,
2624                          const elfcpp::Shdr<64, true>& shdr,
2625                          unsigned int, unsigned int, off_t*);
2626 #endif
2627
2628 #ifdef HAVE_TARGET_32_LITTLE
2629 template
2630 Output_section*
2631 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2632                                 unsigned int reloc_shndx,
2633                                 const elfcpp::Shdr<32, false>& shdr,
2634                                 Output_section* data_section,
2635                                 Relocatable_relocs* rr);
2636 #endif
2637
2638 #ifdef HAVE_TARGET_32_BIG
2639 template
2640 Output_section*
2641 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2642                                unsigned int reloc_shndx,
2643                                const elfcpp::Shdr<32, true>& shdr,
2644                                Output_section* data_section,
2645                                Relocatable_relocs* rr);
2646 #endif
2647
2648 #ifdef HAVE_TARGET_64_LITTLE
2649 template
2650 Output_section*
2651 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2652                                 unsigned int reloc_shndx,
2653                                 const elfcpp::Shdr<64, false>& shdr,
2654                                 Output_section* data_section,
2655                                 Relocatable_relocs* rr);
2656 #endif
2657
2658 #ifdef HAVE_TARGET_64_BIG
2659 template
2660 Output_section*
2661 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2662                                unsigned int reloc_shndx,
2663                                const elfcpp::Shdr<64, true>& shdr,
2664                                Output_section* data_section,
2665                                Relocatable_relocs* rr);
2666 #endif
2667
2668 #ifdef HAVE_TARGET_32_LITTLE
2669 template
2670 void
2671 Layout::layout_group<32, false>(Symbol_table* symtab,
2672                                 Sized_relobj<32, false>* object,
2673                                 unsigned int,
2674                                 const char* group_section_name,
2675                                 const char* signature,
2676                                 const elfcpp::Shdr<32, false>& shdr,
2677                                 const elfcpp::Elf_Word* contents);
2678 #endif
2679
2680 #ifdef HAVE_TARGET_32_BIG
2681 template
2682 void
2683 Layout::layout_group<32, true>(Symbol_table* symtab,
2684                                Sized_relobj<32, true>* object,
2685                                unsigned int,
2686                                const char* group_section_name,
2687                                const char* signature,
2688                                const elfcpp::Shdr<32, true>& shdr,
2689                                const elfcpp::Elf_Word* contents);
2690 #endif
2691
2692 #ifdef HAVE_TARGET_64_LITTLE
2693 template
2694 void
2695 Layout::layout_group<64, false>(Symbol_table* symtab,
2696                                 Sized_relobj<64, false>* object,
2697                                 unsigned int,
2698                                 const char* group_section_name,
2699                                 const char* signature,
2700                                 const elfcpp::Shdr<64, false>& shdr,
2701                                 const elfcpp::Elf_Word* contents);
2702 #endif
2703
2704 #ifdef HAVE_TARGET_64_BIG
2705 template
2706 void
2707 Layout::layout_group<64, true>(Symbol_table* symtab,
2708                                Sized_relobj<64, true>* object,
2709                                unsigned int,
2710                                const char* group_section_name,
2711                                const char* signature,
2712                                const elfcpp::Shdr<64, true>& shdr,
2713                                const elfcpp::Elf_Word* contents);
2714 #endif
2715
2716 #ifdef HAVE_TARGET_32_LITTLE
2717 template
2718 Output_section*
2719 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2720                                    const unsigned char* symbols,
2721                                    off_t symbols_size,
2722                                    const unsigned char* symbol_names,
2723                                    off_t symbol_names_size,
2724                                    unsigned int shndx,
2725                                    const elfcpp::Shdr<32, false>& shdr,
2726                                    unsigned int reloc_shndx,
2727                                    unsigned int reloc_type,
2728                                    off_t* off);
2729 #endif
2730
2731 #ifdef HAVE_TARGET_32_BIG
2732 template
2733 Output_section*
2734 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2735                                    const unsigned char* symbols,
2736                                    off_t symbols_size,
2737                                   const unsigned char* symbol_names,
2738                                   off_t symbol_names_size,
2739                                   unsigned int shndx,
2740                                   const elfcpp::Shdr<32, true>& shdr,
2741                                   unsigned int reloc_shndx,
2742                                   unsigned int reloc_type,
2743                                   off_t* off);
2744 #endif
2745
2746 #ifdef HAVE_TARGET_64_LITTLE
2747 template
2748 Output_section*
2749 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2750                                    const unsigned char* symbols,
2751                                    off_t symbols_size,
2752                                    const unsigned char* symbol_names,
2753                                    off_t symbol_names_size,
2754                                    unsigned int shndx,
2755                                    const elfcpp::Shdr<64, false>& shdr,
2756                                    unsigned int reloc_shndx,
2757                                    unsigned int reloc_type,
2758                                    off_t* off);
2759 #endif
2760
2761 #ifdef HAVE_TARGET_64_BIG
2762 template
2763 Output_section*
2764 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2765                                    const unsigned char* symbols,
2766                                    off_t symbols_size,
2767                                   const unsigned char* symbol_names,
2768                                   off_t symbol_names_size,
2769                                   unsigned int shndx,
2770                                   const elfcpp::Shdr<64, true>& shdr,
2771                                   unsigned int reloc_shndx,
2772                                   unsigned int reloc_type,
2773                                   off_t* off);
2774 #endif
2775
2776 } // End namespace gold.