Originally from Craig Silverstein, with changes: support using a
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "output.h"
33 #include "symtab.h"
34 #include "dynobj.h"
35 #include "ehframe.h"
36 #include "compressed_output.h"
37 #include "layout.h"
38
39 namespace gold
40 {
41
42 // Layout_task_runner methods.
43
44 // Lay out the sections.  This is called after all the input objects
45 // have been read.
46
47 void
48 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
49 {
50   off_t file_size = this->layout_->finalize(this->input_objects_,
51                                             this->symtab_,
52                                             task);
53
54   // Now we know the final size of the output file and we know where
55   // each piece of information goes.
56   Output_file* of = new Output_file(parameters->output_file_name());
57   of->open(file_size);
58
59   // Queue up the final set of tasks.
60   gold::queue_final_tasks(this->options_, this->input_objects_,
61                           this->symtab_, this->layout_, workqueue, of);
62 }
63
64 // Layout methods.
65
66 Layout::Layout(const General_options& options, Script_options* script_options)
67   : options_(options), script_options_(script_options), namepool_(),
68     sympool_(), dynpool_(), signatures_(),
69     section_name_map_(), segment_list_(), section_list_(),
70     unattached_section_list_(), special_output_list_(),
71     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
72     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
73     eh_frame_section_(NULL), output_file_size_(-1),
74     input_requires_executable_stack_(false),
75     input_with_gnu_stack_note_(false),
76     input_without_gnu_stack_note_(false),
77     has_static_tls_(false),
78     any_postprocessing_sections_(false)
79 {
80   // Make space for more than enough segments for a typical file.
81   // This is just for efficiency--it's OK if we wind up needing more.
82   this->segment_list_.reserve(12);
83
84   // We expect two unattached Output_data objects: the file header and
85   // the segment headers.
86   this->special_output_list_.reserve(2);
87 }
88
89 // Hash a key we use to look up an output section mapping.
90
91 size_t
92 Layout::Hash_key::operator()(const Layout::Key& k) const
93 {
94  return k.first + k.second.first + k.second.second;
95 }
96
97 // Return whether PREFIX is a prefix of STR.
98
99 static inline bool
100 is_prefix_of(const char* prefix, const char* str)
101 {
102   return strncmp(prefix, str, strlen(prefix)) == 0;
103 }
104
105 // Returns whether the given section is in the list of
106 // debug-sections-used-by-some-version-of-gdb.  Currently,
107 // we've checked versions of gdb up to and including 6.7.1.
108
109 static const char* gdb_sections[] =
110 { ".debug_abbrev",
111   // ".debug_aranges",   // not used by gdb as of 6.7.1
112   ".debug_frame",
113   ".debug_info",
114   ".debug_line",
115   ".debug_loc",
116   ".debug_macinfo",
117   // ".debug_pubnames",  // not used by gdb as of 6.7.1
118   ".debug_ranges",
119   ".debug_str",
120 };
121
122 static inline bool
123 is_gdb_debug_section(const char* str)
124 {
125   // We can do this faster: binary search or a hashtable.  But why bother?
126   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
127     if (strcmp(str, gdb_sections[i]) == 0)
128       return true;
129   return false;
130 }
131
132 // Whether to include this section in the link.
133
134 template<int size, bool big_endian>
135 bool
136 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
137                         const elfcpp::Shdr<size, big_endian>& shdr)
138 {
139   // Some section types are never linked.  Some are only linked when
140   // doing a relocateable link.
141   switch (shdr.get_sh_type())
142     {
143     case elfcpp::SHT_NULL:
144     case elfcpp::SHT_SYMTAB:
145     case elfcpp::SHT_DYNSYM:
146     case elfcpp::SHT_STRTAB:
147     case elfcpp::SHT_HASH:
148     case elfcpp::SHT_DYNAMIC:
149     case elfcpp::SHT_SYMTAB_SHNDX:
150       return false;
151
152     case elfcpp::SHT_RELA:
153     case elfcpp::SHT_REL:
154     case elfcpp::SHT_GROUP:
155       return parameters->output_is_object();
156
157     case elfcpp::SHT_PROGBITS:
158       if (parameters->strip_debug()
159           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
160         {
161           // Debugging sections can only be recognized by name.
162           if (is_prefix_of(".debug", name)
163               || is_prefix_of(".gnu.linkonce.wi.", name)
164               || is_prefix_of(".line", name)
165               || is_prefix_of(".stab", name))
166             return false;
167         }
168       if (parameters->strip_debug_gdb()
169           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
170         {
171           // Debugging sections can only be recognized by name.
172           if (is_prefix_of(".debug", name)
173               && !is_gdb_debug_section(name))
174             return false;
175         }
176       return true;
177
178     default:
179       return true;
180     }
181 }
182
183 // Return an output section named NAME, or NULL if there is none.
184
185 Output_section*
186 Layout::find_output_section(const char* name) const
187 {
188   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
189        p != this->section_name_map_.end();
190        ++p)
191     if (strcmp(p->second->name(), name) == 0)
192       return p->second;
193   return NULL;
194 }
195
196 // Return an output segment of type TYPE, with segment flags SET set
197 // and segment flags CLEAR clear.  Return NULL if there is none.
198
199 Output_segment*
200 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
201                             elfcpp::Elf_Word clear) const
202 {
203   for (Segment_list::const_iterator p = this->segment_list_.begin();
204        p != this->segment_list_.end();
205        ++p)
206     if (static_cast<elfcpp::PT>((*p)->type()) == type
207         && ((*p)->flags() & set) == set
208         && ((*p)->flags() & clear) == 0)
209       return *p;
210   return NULL;
211 }
212
213 // Return the output section to use for section NAME with type TYPE
214 // and section flags FLAGS.
215
216 Output_section*
217 Layout::get_output_section(const char* name, Stringpool::Key name_key,
218                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
219 {
220   // We should ignore some flags.
221   flags &= ~ (elfcpp::SHF_INFO_LINK
222               | elfcpp::SHF_LINK_ORDER
223               | elfcpp::SHF_GROUP
224               | elfcpp::SHF_MERGE
225               | elfcpp::SHF_STRINGS);
226
227   const Key key(name_key, std::make_pair(type, flags));
228   const std::pair<Key, Output_section*> v(key, NULL);
229   std::pair<Section_name_map::iterator, bool> ins(
230     this->section_name_map_.insert(v));
231
232   if (!ins.second)
233     return ins.first->second;
234   else
235     {
236       // This is the first time we've seen this name/type/flags
237       // combination.
238       Output_section* os = this->make_output_section(name, type, flags);
239       ins.first->second = os;
240       return os;
241     }
242 }
243
244 // Return the output section to use for input section SHNDX, with name
245 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
246 // index of a relocation section which applies to this section, or 0
247 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
248 // relocation section if there is one.  Set *OFF to the offset of this
249 // input section without the output section.  Return NULL if the
250 // section should be discarded.  Set *OFF to -1 if the section
251 // contents should not be written directly to the output file, but
252 // will instead receive special handling.
253
254 template<int size, bool big_endian>
255 Output_section*
256 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
257                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
258                unsigned int reloc_shndx, unsigned int, off_t* off)
259 {
260   if (!this->include_section(object, name, shdr))
261     return NULL;
262
263   // If we are not doing a relocateable link, choose the name to use
264   // for the output section.
265   size_t len = strlen(name);
266   if (!parameters->output_is_object())
267     name = Layout::output_section_name(name, &len);
268
269   // FIXME: Handle SHF_OS_NONCONFORMING here.
270
271   // Canonicalize the section name.
272   Stringpool::Key name_key;
273   name = this->namepool_.add_with_length(name, len, true, &name_key);
274
275   // Find the output section.  The output section is selected based on
276   // the section name, type, and flags.
277   Output_section* os = this->get_output_section(name, name_key,
278                                                 shdr.get_sh_type(),
279                                                 shdr.get_sh_flags());
280
281   // FIXME: Handle SHF_LINK_ORDER somewhere.
282
283   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
284
285   return os;
286 }
287
288 // Special GNU handling of sections name .eh_frame.  They will
289 // normally hold exception frame data as defined by the C++ ABI
290 // (http://codesourcery.com/cxx-abi/).
291
292 template<int size, bool big_endian>
293 Output_section*
294 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
295                         const unsigned char* symbols,
296                         off_t symbols_size,
297                         const unsigned char* symbol_names,
298                         off_t symbol_names_size,
299                         unsigned int shndx,
300                         const elfcpp::Shdr<size, big_endian>& shdr,
301                         unsigned int reloc_shndx, unsigned int reloc_type,
302                         off_t* off)
303 {
304   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
305   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
306
307   Stringpool::Key name_key;
308   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
309
310   Output_section* os = this->get_output_section(name, name_key,
311                                                 elfcpp::SHT_PROGBITS,
312                                                 elfcpp::SHF_ALLOC);
313
314   if (this->eh_frame_section_ == NULL)
315     {
316       this->eh_frame_section_ = os;
317       this->eh_frame_data_ = new Eh_frame();
318       os->add_output_section_data(this->eh_frame_data_);
319
320       if (this->options_.create_eh_frame_hdr())
321         {
322           Stringpool::Key hdr_name_key;
323           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
324                                                      false,
325                                                      &hdr_name_key);
326           Output_section* hdr_os =
327             this->get_output_section(hdr_name, hdr_name_key,
328                                      elfcpp::SHT_PROGBITS,
329                                      elfcpp::SHF_ALLOC);
330
331           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
332           hdr_os->add_output_section_data(hdr_posd);
333
334           hdr_os->set_after_input_sections();
335
336           Output_segment* hdr_oseg =
337             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
338           this->segment_list_.push_back(hdr_oseg);
339           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
340
341           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
342         }
343     }
344
345   gold_assert(this->eh_frame_section_ == os);
346
347   if (this->eh_frame_data_->add_ehframe_input_section(object,
348                                                       symbols,
349                                                       symbols_size,
350                                                       symbol_names,
351                                                       symbol_names_size,
352                                                       shndx,
353                                                       reloc_shndx,
354                                                       reloc_type))
355     *off = -1;
356   else
357     {
358       // We couldn't handle this .eh_frame section for some reason.
359       // Add it as a normal section.
360       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
361     }
362
363   return os;
364 }
365
366 // Add POSD to an output section using NAME, TYPE, and FLAGS.
367
368 void
369 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
370                                 elfcpp::Elf_Xword flags,
371                                 Output_section_data* posd)
372 {
373   // Canonicalize the name.
374   Stringpool::Key name_key;
375   name = this->namepool_.add(name, true, &name_key);
376
377   Output_section* os = this->get_output_section(name, name_key, type, flags);
378   os->add_output_section_data(posd);
379 }
380
381 // Map section flags to segment flags.
382
383 elfcpp::Elf_Word
384 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
385 {
386   elfcpp::Elf_Word ret = elfcpp::PF_R;
387   if ((flags & elfcpp::SHF_WRITE) != 0)
388     ret |= elfcpp::PF_W;
389   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
390     ret |= elfcpp::PF_X;
391   return ret;
392 }
393
394 // Sometimes we compress sections.  This is typically done for
395 // sections that are not part of normal program execution (such as
396 // .debug_* sections), and where the readers of these sections know
397 // how to deal with compressed sections.  (To make it easier for them,
398 // we will rename the ouput section in such cases from .foo to
399 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
400 // doesn't say for certain whether we'll compress -- it depends on
401 // commandline options as well -- just whether this section is a
402 // candidate for compression.
403
404 static bool
405 is_compressible_debug_section(const char* secname)
406 {
407   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
408 }
409
410 // Make a new Output_section, and attach it to segments as
411 // appropriate.
412
413 Output_section*
414 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
415                             elfcpp::Elf_Xword flags)
416 {
417   Output_section* os;
418   if ((flags & elfcpp::SHF_ALLOC) == 0
419       && this->options_.compress_debug_sections()
420       && is_compressible_debug_section(name))
421     os = new Output_compressed_section(&this->options_, name, type, flags);
422   else
423     os = new Output_section(name, type, flags);
424
425   this->section_list_.push_back(os);
426
427   if ((flags & elfcpp::SHF_ALLOC) == 0)
428     this->unattached_section_list_.push_back(os);
429   else
430     {
431       // This output section goes into a PT_LOAD segment.
432
433       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
434
435       // The only thing we really care about for PT_LOAD segments is
436       // whether or not they are writable, so that is how we search
437       // for them.  People who need segments sorted on some other
438       // basis will have to wait until we implement a mechanism for
439       // them to describe the segments they want.
440
441       Segment_list::const_iterator p;
442       for (p = this->segment_list_.begin();
443            p != this->segment_list_.end();
444            ++p)
445         {
446           if ((*p)->type() == elfcpp::PT_LOAD
447               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
448             {
449               (*p)->add_output_section(os, seg_flags);
450               break;
451             }
452         }
453
454       if (p == this->segment_list_.end())
455         {
456           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
457                                                     seg_flags);
458           this->segment_list_.push_back(oseg);
459           oseg->add_output_section(os, seg_flags);
460         }
461
462       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
463       // segment.
464       if (type == elfcpp::SHT_NOTE)
465         {
466           // See if we already have an equivalent PT_NOTE segment.
467           for (p = this->segment_list_.begin();
468                p != segment_list_.end();
469                ++p)
470             {
471               if ((*p)->type() == elfcpp::PT_NOTE
472                   && (((*p)->flags() & elfcpp::PF_W)
473                       == (seg_flags & elfcpp::PF_W)))
474                 {
475                   (*p)->add_output_section(os, seg_flags);
476                   break;
477                 }
478             }
479
480           if (p == this->segment_list_.end())
481             {
482               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
483                                                         seg_flags);
484               this->segment_list_.push_back(oseg);
485               oseg->add_output_section(os, seg_flags);
486             }
487         }
488
489       // If we see a loadable SHF_TLS section, we create a PT_TLS
490       // segment.  There can only be one such segment.
491       if ((flags & elfcpp::SHF_TLS) != 0)
492         {
493           if (this->tls_segment_ == NULL)
494             {
495               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
496                                                       seg_flags);
497               this->segment_list_.push_back(this->tls_segment_);
498             }
499           this->tls_segment_->add_output_section(os, seg_flags);
500         }
501     }
502
503   return os;
504 }
505
506 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
507 // is whether we saw a .note.GNU-stack section in the object file.
508 // GNU_STACK_FLAGS is the section flags.  The flags give the
509 // protection required for stack memory.  We record this in an
510 // executable as a PT_GNU_STACK segment.  If an object file does not
511 // have a .note.GNU-stack segment, we must assume that it is an old
512 // object.  On some targets that will force an executable stack.
513
514 void
515 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
516 {
517   if (!seen_gnu_stack)
518     this->input_without_gnu_stack_note_ = true;
519   else
520     {
521       this->input_with_gnu_stack_note_ = true;
522       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
523         this->input_requires_executable_stack_ = true;
524     }
525 }
526
527 // Create the dynamic sections which are needed before we read the
528 // relocs.
529
530 void
531 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
532                                         Symbol_table* symtab)
533 {
534   if (parameters->doing_static_link())
535     return;
536
537   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
538   this->dynamic_section_ = this->make_output_section(dynamic_name,
539                                                      elfcpp::SHT_DYNAMIC,
540                                                      (elfcpp::SHF_ALLOC
541                                                       | elfcpp::SHF_WRITE));
542
543   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
544                                 this->dynamic_section_, 0, 0,
545                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
546                                 elfcpp::STV_HIDDEN, 0, false, false);
547
548   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
549
550   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
551 }
552
553 // For each output section whose name can be represented as C symbol,
554 // define __start and __stop symbols for the section.  This is a GNU
555 // extension.
556
557 void
558 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
559 {
560   for (Section_list::const_iterator p = this->section_list_.begin();
561        p != this->section_list_.end();
562        ++p)
563     {
564       const char* const name = (*p)->name();
565       if (name[strspn(name,
566                       ("0123456789"
567                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
568                        "abcdefghijklmnopqrstuvwxyz"
569                        "_"))]
570           == '\0')
571         {
572           const std::string name_string(name);
573           const std::string start_name("__start_" + name_string);
574           const std::string stop_name("__stop_" + name_string);
575
576           symtab->define_in_output_data(target,
577                                         start_name.c_str(),
578                                         NULL, // version
579                                         *p,
580                                         0, // value
581                                         0, // symsize
582                                         elfcpp::STT_NOTYPE,
583                                         elfcpp::STB_GLOBAL,
584                                         elfcpp::STV_DEFAULT,
585                                         0, // nonvis
586                                         false, // offset_is_from_end
587                                         false); // only_if_ref
588
589           symtab->define_in_output_data(target,
590                                         stop_name.c_str(),
591                                         NULL, // version
592                                         *p,
593                                         0, // value
594                                         0, // symsize
595                                         elfcpp::STT_NOTYPE,
596                                         elfcpp::STB_GLOBAL,
597                                         elfcpp::STV_DEFAULT,
598                                         0, // nonvis
599                                         true, // offset_is_from_end
600                                         false); // only_if_ref
601         }
602     }
603 }
604
605 // Find the first read-only PT_LOAD segment, creating one if
606 // necessary.
607
608 Output_segment*
609 Layout::find_first_load_seg()
610 {
611   for (Segment_list::const_iterator p = this->segment_list_.begin();
612        p != this->segment_list_.end();
613        ++p)
614     {
615       if ((*p)->type() == elfcpp::PT_LOAD
616           && ((*p)->flags() & elfcpp::PF_R) != 0
617           && ((*p)->flags() & elfcpp::PF_W) == 0)
618         return *p;
619     }
620
621   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
622   this->segment_list_.push_back(load_seg);
623   return load_seg;
624 }
625
626 // Finalize the layout.  When this is called, we have created all the
627 // output sections and all the output segments which are based on
628 // input sections.  We have several things to do, and we have to do
629 // them in the right order, so that we get the right results correctly
630 // and efficiently.
631
632 // 1) Finalize the list of output segments and create the segment
633 // table header.
634
635 // 2) Finalize the dynamic symbol table and associated sections.
636
637 // 3) Determine the final file offset of all the output segments.
638
639 // 4) Determine the final file offset of all the SHF_ALLOC output
640 // sections.
641
642 // 5) Create the symbol table sections and the section name table
643 // section.
644
645 // 6) Finalize the symbol table: set symbol values to their final
646 // value and make a final determination of which symbols are going
647 // into the output symbol table.
648
649 // 7) Create the section table header.
650
651 // 8) Determine the final file offset of all the output sections which
652 // are not SHF_ALLOC, including the section table header.
653
654 // 9) Finalize the ELF file header.
655
656 // This function returns the size of the output file.
657
658 off_t
659 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
660                  const Task* task)
661 {
662   Target* const target = input_objects->target();
663
664   target->finalize_sections(this);
665
666   this->count_local_symbols(task, input_objects);
667
668   this->create_gold_note();
669   this->create_executable_stack_info(target);
670
671   Output_segment* phdr_seg = NULL;
672   if (!parameters->doing_static_link())
673     {
674       // There was a dynamic object in the link.  We need to create
675       // some information for the dynamic linker.
676
677       // Create the PT_PHDR segment which will hold the program
678       // headers.
679       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
680       this->segment_list_.push_back(phdr_seg);
681
682       // Create the dynamic symbol table, including the hash table.
683       Output_section* dynstr;
684       std::vector<Symbol*> dynamic_symbols;
685       unsigned int local_dynamic_count;
686       Versions versions(this->options_, &this->dynpool_);
687       this->create_dynamic_symtab(input_objects, target, symtab, &dynstr,
688                                   &local_dynamic_count, &dynamic_symbols,
689                                   &versions);
690
691       // Create the .interp section to hold the name of the
692       // interpreter, and put it in a PT_INTERP segment.
693       if (!parameters->output_is_shared())
694         this->create_interp(target);
695
696       // Finish the .dynamic section to hold the dynamic data, and put
697       // it in a PT_DYNAMIC segment.
698       this->finish_dynamic_section(input_objects, symtab);
699
700       // We should have added everything we need to the dynamic string
701       // table.
702       this->dynpool_.set_string_offsets();
703
704       // Create the version sections.  We can't do this until the
705       // dynamic string table is complete.
706       this->create_version_sections(&versions, symtab, local_dynamic_count,
707                                     dynamic_symbols, dynstr);
708     }
709
710   // FIXME: Handle PT_GNU_STACK.
711
712   Output_segment* load_seg = this->find_first_load_seg();
713
714   // Lay out the segment headers.
715   Output_segment_headers* segment_headers;
716   segment_headers = new Output_segment_headers(this->segment_list_);
717   load_seg->add_initial_output_data(segment_headers);
718   this->special_output_list_.push_back(segment_headers);
719   if (phdr_seg != NULL)
720     phdr_seg->add_initial_output_data(segment_headers);
721
722   // Lay out the file header.
723   Output_file_header* file_header;
724   file_header = new Output_file_header(target, symtab, segment_headers,
725                                        this->script_options_->entry());
726   load_seg->add_initial_output_data(file_header);
727   this->special_output_list_.push_back(file_header);
728
729   // We set the output section indexes in set_segment_offsets and
730   // set_section_indexes.
731   unsigned int shndx = 1;
732
733   // Set the file offsets of all the segments, and all the sections
734   // they contain.
735   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
736
737   // Set the file offsets of all the non-data sections we've seen so
738   // far which don't have to wait for the input sections.  We need
739   // this in order to finalize local symbols in non-allocated
740   // sections.
741   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
742
743   // Create the symbol table sections.
744   this->create_symtab_sections(input_objects, symtab, &off);
745   if (!parameters->doing_static_link())
746     this->assign_local_dynsym_offsets(input_objects);
747
748   // Process any symbol assignments from a linker script.  This must
749   // be called after the symbol table has been finalized.
750   this->script_options_->finalize_symbols(symtab, this);
751
752   // Create the .shstrtab section.
753   Output_section* shstrtab_section = this->create_shstrtab();
754
755   // Set the file offsets of the rest of the non-data sections which
756   // don't have to wait for the input sections.
757   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
758
759   // Now that all sections have been created, set the section indexes.
760   shndx = this->set_section_indexes(shndx);
761
762   // Create the section table header.
763   this->create_shdrs(&off);
764
765   // If there are no sections which require postprocessing, we can
766   // handle the section names now, and avoid a resize later.
767   if (!this->any_postprocessing_sections_)
768     off = this->set_section_offsets(off,
769                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
770
771   file_header->set_section_info(this->section_headers_, shstrtab_section);
772
773   // Now we know exactly where everything goes in the output file
774   // (except for non-allocated sections which require postprocessing).
775   Output_data::layout_complete();
776
777   this->output_file_size_ = off;
778
779   return off;
780 }
781
782 // Create a .note section for an executable or shared library.  This
783 // records the version of gold used to create the binary.
784
785 void
786 Layout::create_gold_note()
787 {
788   if (parameters->output_is_object())
789     return;
790
791   // Authorities all agree that the values in a .note field should
792   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
793   // they differ on what the alignment is for 64-bit binaries.
794   // The GABI says unambiguously they take 8-byte alignment:
795   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
796   // Other documentation says alignment should always be 4 bytes:
797   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
798   // GNU ld and GNU readelf both support the latter (at least as of
799   // version 2.16.91), and glibc always generates the latter for
800   // .note.ABI-tag (as of version 1.6), so that's the one we go with
801   // here.
802 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
803   const int size = parameters->get_size();
804 #else
805   const int size = 32;
806 #endif
807
808   // The contents of the .note section.
809   const char* name = "GNU";
810   std::string desc(std::string("gold ") + gold::get_version_string());
811   size_t namesz = strlen(name) + 1;
812   size_t aligned_namesz = align_address(namesz, size / 8);
813   size_t descsz = desc.length() + 1;
814   size_t aligned_descsz = align_address(descsz, size / 8);
815   const int note_type = 4;
816
817   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
818
819   unsigned char buffer[128];
820   gold_assert(sizeof buffer >= notesz);
821   memset(buffer, 0, notesz);
822
823   bool is_big_endian = parameters->is_big_endian();
824
825   if (size == 32)
826     {
827       if (!is_big_endian)
828         {
829           elfcpp::Swap<32, false>::writeval(buffer, namesz);
830           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
831           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
832         }
833       else
834         {
835           elfcpp::Swap<32, true>::writeval(buffer, namesz);
836           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
837           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
838         }
839     }
840   else if (size == 64)
841     {
842       if (!is_big_endian)
843         {
844           elfcpp::Swap<64, false>::writeval(buffer, namesz);
845           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
846           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
847         }
848       else
849         {
850           elfcpp::Swap<64, true>::writeval(buffer, namesz);
851           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
852           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
853         }
854     }
855   else
856     gold_unreachable();
857
858   memcpy(buffer + 3 * (size / 8), name, namesz);
859   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
860
861   const char* note_name = this->namepool_.add(".note", false, NULL);
862   Output_section* os = this->make_output_section(note_name,
863                                                  elfcpp::SHT_NOTE,
864                                                  0);
865   Output_section_data* posd = new Output_data_const(buffer, notesz,
866                                                     size / 8);
867   os->add_output_section_data(posd);
868 }
869
870 // Record whether the stack should be executable.  This can be set
871 // from the command line using the -z execstack or -z noexecstack
872 // options.  Otherwise, if any input file has a .note.GNU-stack
873 // section with the SHF_EXECINSTR flag set, the stack should be
874 // executable.  Otherwise, if at least one input file a
875 // .note.GNU-stack section, and some input file has no .note.GNU-stack
876 // section, we use the target default for whether the stack should be
877 // executable.  Otherwise, we don't generate a stack note.  When
878 // generating a object file, we create a .note.GNU-stack section with
879 // the appropriate marking.  When generating an executable or shared
880 // library, we create a PT_GNU_STACK segment.
881
882 void
883 Layout::create_executable_stack_info(const Target* target)
884 {
885   bool is_stack_executable;
886   if (this->options_.is_execstack_set())
887     is_stack_executable = this->options_.is_stack_executable();
888   else if (!this->input_with_gnu_stack_note_)
889     return;
890   else
891     {
892       if (this->input_requires_executable_stack_)
893         is_stack_executable = true;
894       else if (this->input_without_gnu_stack_note_)
895         is_stack_executable = target->is_default_stack_executable();
896       else
897         is_stack_executable = false;
898     }
899
900   if (parameters->output_is_object())
901     {
902       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
903       elfcpp::Elf_Xword flags = 0;
904       if (is_stack_executable)
905         flags |= elfcpp::SHF_EXECINSTR;
906       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
907     }
908   else
909     {
910       int flags = elfcpp::PF_R | elfcpp::PF_W;
911       if (is_stack_executable)
912         flags |= elfcpp::PF_X;
913       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
914       this->segment_list_.push_back(oseg);
915     }
916 }
917
918 // Return whether SEG1 should be before SEG2 in the output file.  This
919 // is based entirely on the segment type and flags.  When this is
920 // called the segment addresses has normally not yet been set.
921
922 bool
923 Layout::segment_precedes(const Output_segment* seg1,
924                          const Output_segment* seg2)
925 {
926   elfcpp::Elf_Word type1 = seg1->type();
927   elfcpp::Elf_Word type2 = seg2->type();
928
929   // The single PT_PHDR segment is required to precede any loadable
930   // segment.  We simply make it always first.
931   if (type1 == elfcpp::PT_PHDR)
932     {
933       gold_assert(type2 != elfcpp::PT_PHDR);
934       return true;
935     }
936   if (type2 == elfcpp::PT_PHDR)
937     return false;
938
939   // The single PT_INTERP segment is required to precede any loadable
940   // segment.  We simply make it always second.
941   if (type1 == elfcpp::PT_INTERP)
942     {
943       gold_assert(type2 != elfcpp::PT_INTERP);
944       return true;
945     }
946   if (type2 == elfcpp::PT_INTERP)
947     return false;
948
949   // We then put PT_LOAD segments before any other segments.
950   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
951     return true;
952   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
953     return false;
954
955   // We put the PT_TLS segment last, because that is where the dynamic
956   // linker expects to find it (this is just for efficiency; other
957   // positions would also work correctly).
958   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
959     return false;
960   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
961     return true;
962
963   const elfcpp::Elf_Word flags1 = seg1->flags();
964   const elfcpp::Elf_Word flags2 = seg2->flags();
965
966   // The order of non-PT_LOAD segments is unimportant.  We simply sort
967   // by the numeric segment type and flags values.  There should not
968   // be more than one segment with the same type and flags.
969   if (type1 != elfcpp::PT_LOAD)
970     {
971       if (type1 != type2)
972         return type1 < type2;
973       gold_assert(flags1 != flags2);
974       return flags1 < flags2;
975     }
976
977   // We sort PT_LOAD segments based on the flags.  Readonly segments
978   // come before writable segments.  Then executable segments come
979   // before non-executable segments.  Then the unlikely case of a
980   // non-readable segment comes before the normal case of a readable
981   // segment.  If there are multiple segments with the same type and
982   // flags, we require that the address be set, and we sort by
983   // virtual address and then physical address.
984   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
985     return (flags1 & elfcpp::PF_W) == 0;
986   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
987     return (flags1 & elfcpp::PF_X) != 0;
988   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
989     return (flags1 & elfcpp::PF_R) == 0;
990
991   uint64_t vaddr1 = seg1->vaddr();
992   uint64_t vaddr2 = seg2->vaddr();
993   if (vaddr1 != vaddr2)
994     return vaddr1 < vaddr2;
995
996   uint64_t paddr1 = seg1->paddr();
997   uint64_t paddr2 = seg2->paddr();
998   gold_assert(paddr1 != paddr2);
999   return paddr1 < paddr2;
1000 }
1001
1002 // Set the file offsets of all the segments, and all the sections they
1003 // contain.  They have all been created.  LOAD_SEG must be be laid out
1004 // first.  Return the offset of the data to follow.
1005
1006 off_t
1007 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1008                             unsigned int *pshndx)
1009 {
1010   // Sort them into the final order.
1011   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1012             Layout::Compare_segments());
1013
1014   // Find the PT_LOAD segments, and set their addresses and offsets
1015   // and their section's addresses and offsets.
1016   uint64_t addr;
1017   if (parameters->output_is_shared())
1018     addr = 0;
1019   else if (options_.user_set_text_segment_address())
1020     addr = options_.text_segment_address();
1021   else
1022     addr = target->default_text_segment_address();
1023   off_t off = 0;
1024   bool was_readonly = false;
1025   for (Segment_list::iterator p = this->segment_list_.begin();
1026        p != this->segment_list_.end();
1027        ++p)
1028     {
1029       if ((*p)->type() == elfcpp::PT_LOAD)
1030         {
1031           if (load_seg != NULL && load_seg != *p)
1032             gold_unreachable();
1033           load_seg = NULL;
1034
1035           // If the last segment was readonly, and this one is not,
1036           // then skip the address forward one page, maintaining the
1037           // same position within the page.  This lets us store both
1038           // segments overlapping on a single page in the file, but
1039           // the loader will put them on different pages in memory.
1040
1041           uint64_t orig_addr = addr;
1042           uint64_t orig_off = off;
1043
1044           uint64_t aligned_addr = addr;
1045           uint64_t abi_pagesize = target->abi_pagesize();
1046
1047           // FIXME: This should depend on the -n and -N options.
1048           (*p)->set_minimum_addralign(target->common_pagesize());
1049
1050           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1051             {
1052               uint64_t align = (*p)->addralign();
1053
1054               addr = align_address(addr, align);
1055               aligned_addr = addr;
1056               if ((addr & (abi_pagesize - 1)) != 0)
1057                 addr = addr + abi_pagesize;
1058             }
1059
1060           unsigned int shndx_hold = *pshndx;
1061           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1062           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1063
1064           // Now that we know the size of this segment, we may be able
1065           // to save a page in memory, at the cost of wasting some
1066           // file space, by instead aligning to the start of a new
1067           // page.  Here we use the real machine page size rather than
1068           // the ABI mandated page size.
1069
1070           if (aligned_addr != addr)
1071             {
1072               uint64_t common_pagesize = target->common_pagesize();
1073               uint64_t first_off = (common_pagesize
1074                                     - (aligned_addr
1075                                        & (common_pagesize - 1)));
1076               uint64_t last_off = new_addr & (common_pagesize - 1);
1077               if (first_off > 0
1078                   && last_off > 0
1079                   && ((aligned_addr & ~ (common_pagesize - 1))
1080                       != (new_addr & ~ (common_pagesize - 1)))
1081                   && first_off + last_off <= common_pagesize)
1082                 {
1083                   *pshndx = shndx_hold;
1084                   addr = align_address(aligned_addr, common_pagesize);
1085                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1086                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1087                 }
1088             }
1089
1090           addr = new_addr;
1091
1092           if (((*p)->flags() & elfcpp::PF_W) == 0)
1093             was_readonly = true;
1094         }
1095     }
1096
1097   // Handle the non-PT_LOAD segments, setting their offsets from their
1098   // section's offsets.
1099   for (Segment_list::iterator p = this->segment_list_.begin();
1100        p != this->segment_list_.end();
1101        ++p)
1102     {
1103       if ((*p)->type() != elfcpp::PT_LOAD)
1104         (*p)->set_offset();
1105     }
1106
1107   // Set the TLS offsets for each section in the PT_TLS segment.
1108   if (this->tls_segment_ != NULL)
1109     this->tls_segment_->set_tls_offsets();
1110
1111   return off;
1112 }
1113
1114 // Set the file offset of all the sections not associated with a
1115 // segment.
1116
1117 off_t
1118 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1119 {
1120   for (Section_list::iterator p = this->unattached_section_list_.begin();
1121        p != this->unattached_section_list_.end();
1122        ++p)
1123     {
1124       // The symtab section is handled in create_symtab_sections.
1125       if (*p == this->symtab_section_)
1126         continue;
1127
1128       // If we've already set the data size, don't set it again.
1129       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1130         continue;
1131
1132       if (pass == BEFORE_INPUT_SECTIONS_PASS
1133           && (*p)->requires_postprocessing())
1134         {
1135           (*p)->create_postprocessing_buffer();
1136           this->any_postprocessing_sections_ = true;
1137         }
1138
1139       if (pass == BEFORE_INPUT_SECTIONS_PASS
1140           && (*p)->after_input_sections())
1141         continue;
1142       else if (pass == POSTPROCESSING_SECTIONS_PASS
1143                && (!(*p)->after_input_sections()
1144                    || (*p)->type() == elfcpp::SHT_STRTAB))
1145         continue;
1146       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1147                && (!(*p)->after_input_sections()
1148                    || (*p)->type() != elfcpp::SHT_STRTAB))
1149         continue;
1150
1151       off = align_address(off, (*p)->addralign());
1152       (*p)->set_file_offset(off);
1153       (*p)->finalize_data_size();
1154       off += (*p)->data_size();
1155
1156       // At this point the name must be set.
1157       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1158         this->namepool_.add((*p)->name(), false, NULL);
1159     }
1160   return off;
1161 }
1162
1163 // Set the section indexes of all the sections not associated with a
1164 // segment.
1165
1166 unsigned int
1167 Layout::set_section_indexes(unsigned int shndx)
1168 {
1169   for (Section_list::iterator p = this->unattached_section_list_.begin();
1170        p != this->unattached_section_list_.end();
1171        ++p)
1172     {
1173       (*p)->set_out_shndx(shndx);
1174       ++shndx;
1175     }
1176   return shndx;
1177 }
1178
1179 // Count the local symbols in the regular symbol table and the dynamic
1180 // symbol table, and build the respective string pools.
1181
1182 void
1183 Layout::count_local_symbols(const Task* task,
1184                             const Input_objects* input_objects)
1185 {
1186   // First, figure out an upper bound on the number of symbols we'll
1187   // be inserting into each pool.  This helps us create the pools with
1188   // the right size, to avoid unnecessary hashtable resizing.
1189   unsigned int symbol_count = 0;
1190   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1191        p != input_objects->relobj_end();
1192        ++p)
1193     symbol_count += (*p)->local_symbol_count();
1194
1195   // Go from "upper bound" to "estimate."  We overcount for two
1196   // reasons: we double-count symbols that occur in more than one
1197   // object file, and we count symbols that are dropped from the
1198   // output.  Add it all together and assume we overcount by 100%.
1199   symbol_count /= 2;
1200
1201   // We assume all symbols will go into both the sympool and dynpool.
1202   this->sympool_.reserve(symbol_count);
1203   this->dynpool_.reserve(symbol_count);
1204
1205   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1206        p != input_objects->relobj_end();
1207        ++p)
1208     {
1209       Task_lock_obj<Object> tlo(task, *p);
1210       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1211     }
1212 }
1213
1214 // Create the symbol table sections.  Here we also set the final
1215 // values of the symbols.  At this point all the loadable sections are
1216 // fully laid out.
1217
1218 void
1219 Layout::create_symtab_sections(const Input_objects* input_objects,
1220                                Symbol_table* symtab,
1221                                off_t* poff)
1222 {
1223   int symsize;
1224   unsigned int align;
1225   if (parameters->get_size() == 32)
1226     {
1227       symsize = elfcpp::Elf_sizes<32>::sym_size;
1228       align = 4;
1229     }
1230   else if (parameters->get_size() == 64)
1231     {
1232       symsize = elfcpp::Elf_sizes<64>::sym_size;
1233       align = 8;
1234     }
1235   else
1236     gold_unreachable();
1237
1238   off_t off = *poff;
1239   off = align_address(off, align);
1240   off_t startoff = off;
1241
1242   // Save space for the dummy symbol at the start of the section.  We
1243   // never bother to write this out--it will just be left as zero.
1244   off += symsize;
1245   unsigned int local_symbol_index = 1;
1246
1247   // Add STT_SECTION symbols for each Output section which needs one.
1248   for (Section_list::iterator p = this->section_list_.begin();
1249        p != this->section_list_.end();
1250        ++p)
1251     {
1252       if (!(*p)->needs_symtab_index())
1253         (*p)->set_symtab_index(-1U);
1254       else
1255         {
1256           (*p)->set_symtab_index(local_symbol_index);
1257           ++local_symbol_index;
1258           off += symsize;
1259         }
1260     }
1261
1262   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1263        p != input_objects->relobj_end();
1264        ++p)
1265     {
1266       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1267                                                         off);
1268       off += (index - local_symbol_index) * symsize;
1269       local_symbol_index = index;
1270     }
1271
1272   unsigned int local_symcount = local_symbol_index;
1273   gold_assert(local_symcount * symsize == off - startoff);
1274
1275   off_t dynoff;
1276   size_t dyn_global_index;
1277   size_t dyncount;
1278   if (this->dynsym_section_ == NULL)
1279     {
1280       dynoff = 0;
1281       dyn_global_index = 0;
1282       dyncount = 0;
1283     }
1284   else
1285     {
1286       dyn_global_index = this->dynsym_section_->info();
1287       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1288       dynoff = this->dynsym_section_->offset() + locsize;
1289       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1290       gold_assert(static_cast<off_t>(dyncount * symsize)
1291                   == this->dynsym_section_->data_size() - locsize);
1292     }
1293
1294   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1295                          &this->sympool_, &local_symcount);
1296
1297   if (!parameters->strip_all())
1298     {
1299       this->sympool_.set_string_offsets();
1300
1301       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1302       Output_section* osymtab = this->make_output_section(symtab_name,
1303                                                           elfcpp::SHT_SYMTAB,
1304                                                           0);
1305       this->symtab_section_ = osymtab;
1306
1307       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1308                                                              align);
1309       osymtab->add_output_section_data(pos);
1310
1311       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1312       Output_section* ostrtab = this->make_output_section(strtab_name,
1313                                                           elfcpp::SHT_STRTAB,
1314                                                           0);
1315
1316       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1317       ostrtab->add_output_section_data(pstr);
1318
1319       osymtab->set_file_offset(startoff);
1320       osymtab->finalize_data_size();
1321       osymtab->set_link_section(ostrtab);
1322       osymtab->set_info(local_symcount);
1323       osymtab->set_entsize(symsize);
1324
1325       *poff = off;
1326     }
1327 }
1328
1329 // Create the .shstrtab section, which holds the names of the
1330 // sections.  At the time this is called, we have created all the
1331 // output sections except .shstrtab itself.
1332
1333 Output_section*
1334 Layout::create_shstrtab()
1335 {
1336   // FIXME: We don't need to create a .shstrtab section if we are
1337   // stripping everything.
1338
1339   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1340
1341   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1342
1343   // We can't write out this section until we've set all the section
1344   // names, and we don't set the names of compressed output sections
1345   // until relocations are complete.
1346   os->set_after_input_sections();
1347
1348   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1349   os->add_output_section_data(posd);
1350
1351   return os;
1352 }
1353
1354 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1355 // offset.
1356
1357 void
1358 Layout::create_shdrs(off_t* poff)
1359 {
1360   Output_section_headers* oshdrs;
1361   oshdrs = new Output_section_headers(this,
1362                                       &this->segment_list_,
1363                                       &this->unattached_section_list_,
1364                                       &this->namepool_);
1365   off_t off = align_address(*poff, oshdrs->addralign());
1366   oshdrs->set_address_and_file_offset(0, off);
1367   off += oshdrs->data_size();
1368   *poff = off;
1369   this->section_headers_ = oshdrs;
1370 }
1371
1372 // Create the dynamic symbol table.
1373
1374 void
1375 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1376                               const Target* target, Symbol_table* symtab,
1377                               Output_section **pdynstr,
1378                               unsigned int* plocal_dynamic_count,
1379                               std::vector<Symbol*>* pdynamic_symbols,
1380                               Versions* pversions)
1381 {
1382   // Count all the symbols in the dynamic symbol table, and set the
1383   // dynamic symbol indexes.
1384
1385   // Skip symbol 0, which is always all zeroes.
1386   unsigned int index = 1;
1387
1388   // Add STT_SECTION symbols for each Output section which needs one.
1389   for (Section_list::iterator p = this->section_list_.begin();
1390        p != this->section_list_.end();
1391        ++p)
1392     {
1393       if (!(*p)->needs_dynsym_index())
1394         (*p)->set_dynsym_index(-1U);
1395       else
1396         {
1397           (*p)->set_dynsym_index(index);
1398           ++index;
1399         }
1400     }
1401
1402   // Count the local symbols that need to go in the dynamic symbol table,
1403   // and set the dynamic symbol indexes.
1404   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1405        p != input_objects->relobj_end();
1406        ++p)
1407     {
1408       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1409       index = new_index;
1410     }
1411
1412   unsigned int local_symcount = index;
1413   *plocal_dynamic_count = local_symcount;
1414
1415   // FIXME: We have to tell set_dynsym_indexes whether the
1416   // -E/--export-dynamic option was used.
1417   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1418                                      &this->dynpool_, pversions);
1419
1420   int symsize;
1421   unsigned int align;
1422   const int size = parameters->get_size();
1423   if (size == 32)
1424     {
1425       symsize = elfcpp::Elf_sizes<32>::sym_size;
1426       align = 4;
1427     }
1428   else if (size == 64)
1429     {
1430       symsize = elfcpp::Elf_sizes<64>::sym_size;
1431       align = 8;
1432     }
1433   else
1434     gold_unreachable();
1435
1436   // Create the dynamic symbol table section.
1437
1438   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1439   Output_section* dynsym = this->make_output_section(dynsym_name,
1440                                                      elfcpp::SHT_DYNSYM,
1441                                                      elfcpp::SHF_ALLOC);
1442
1443   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1444                                                            align);
1445   dynsym->add_output_section_data(odata);
1446
1447   dynsym->set_info(local_symcount);
1448   dynsym->set_entsize(symsize);
1449   dynsym->set_addralign(align);
1450
1451   this->dynsym_section_ = dynsym;
1452
1453   Output_data_dynamic* const odyn = this->dynamic_data_;
1454   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1455   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1456
1457   // Create the dynamic string table section.
1458
1459   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1460   Output_section* dynstr = this->make_output_section(dynstr_name,
1461                                                      elfcpp::SHT_STRTAB,
1462                                                      elfcpp::SHF_ALLOC);
1463
1464   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1465   dynstr->add_output_section_data(strdata);
1466
1467   dynsym->set_link_section(dynstr);
1468   this->dynamic_section_->set_link_section(dynstr);
1469
1470   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1471   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1472
1473   *pdynstr = dynstr;
1474
1475   // Create the hash tables.
1476
1477   // FIXME: We need an option to create a GNU hash table.
1478
1479   unsigned char* phash;
1480   unsigned int hashlen;
1481   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1482                                 &phash, &hashlen);
1483
1484   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1485   Output_section* hashsec = this->make_output_section(hash_name,
1486                                                       elfcpp::SHT_HASH,
1487                                                       elfcpp::SHF_ALLOC);
1488
1489   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1490                                                                hashlen,
1491                                                                align);
1492   hashsec->add_output_section_data(hashdata);
1493
1494   hashsec->set_link_section(dynsym);
1495   hashsec->set_entsize(4);
1496
1497   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1498 }
1499
1500 // Assign offsets to each local portion of the dynamic symbol table.
1501
1502 void
1503 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1504 {
1505   Output_section* dynsym = this->dynsym_section_;
1506   gold_assert(dynsym != NULL);
1507
1508   off_t off = dynsym->offset();
1509
1510   // Skip the dummy symbol at the start of the section.
1511   off += dynsym->entsize();
1512
1513   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1514        p != input_objects->relobj_end();
1515        ++p)
1516     {
1517       unsigned int count = (*p)->set_local_dynsym_offset(off);
1518       off += count * dynsym->entsize();
1519     }
1520 }
1521
1522 // Create the version sections.
1523
1524 void
1525 Layout::create_version_sections(const Versions* versions,
1526                                 const Symbol_table* symtab,
1527                                 unsigned int local_symcount,
1528                                 const std::vector<Symbol*>& dynamic_symbols,
1529                                 const Output_section* dynstr)
1530 {
1531   if (!versions->any_defs() && !versions->any_needs())
1532     return;
1533
1534   if (parameters->get_size() == 32)
1535     {
1536       if (parameters->is_big_endian())
1537         {
1538 #ifdef HAVE_TARGET_32_BIG
1539           this->sized_create_version_sections
1540               SELECT_SIZE_ENDIAN_NAME(32, true)(
1541                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1542                   SELECT_SIZE_ENDIAN(32, true));
1543 #else
1544           gold_unreachable();
1545 #endif
1546         }
1547       else
1548         {
1549 #ifdef HAVE_TARGET_32_LITTLE
1550           this->sized_create_version_sections
1551               SELECT_SIZE_ENDIAN_NAME(32, false)(
1552                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1553                   SELECT_SIZE_ENDIAN(32, false));
1554 #else
1555           gold_unreachable();
1556 #endif
1557         }
1558     }
1559   else if (parameters->get_size() == 64)
1560     {
1561       if (parameters->is_big_endian())
1562         {
1563 #ifdef HAVE_TARGET_64_BIG
1564           this->sized_create_version_sections
1565               SELECT_SIZE_ENDIAN_NAME(64, true)(
1566                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1567                   SELECT_SIZE_ENDIAN(64, true));
1568 #else
1569           gold_unreachable();
1570 #endif
1571         }
1572       else
1573         {
1574 #ifdef HAVE_TARGET_64_LITTLE
1575           this->sized_create_version_sections
1576               SELECT_SIZE_ENDIAN_NAME(64, false)(
1577                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1578                   SELECT_SIZE_ENDIAN(64, false));
1579 #else
1580           gold_unreachable();
1581 #endif
1582         }
1583     }
1584   else
1585     gold_unreachable();
1586 }
1587
1588 // Create the version sections, sized version.
1589
1590 template<int size, bool big_endian>
1591 void
1592 Layout::sized_create_version_sections(
1593     const Versions* versions,
1594     const Symbol_table* symtab,
1595     unsigned int local_symcount,
1596     const std::vector<Symbol*>& dynamic_symbols,
1597     const Output_section* dynstr
1598     ACCEPT_SIZE_ENDIAN)
1599 {
1600   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1601   Output_section* vsec = this->make_output_section(vname,
1602                                                    elfcpp::SHT_GNU_versym,
1603                                                    elfcpp::SHF_ALLOC);
1604
1605   unsigned char* vbuf;
1606   unsigned int vsize;
1607   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1608       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1609       SELECT_SIZE_ENDIAN(size, big_endian));
1610
1611   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1612
1613   vsec->add_output_section_data(vdata);
1614   vsec->set_entsize(2);
1615   vsec->set_link_section(this->dynsym_section_);
1616
1617   Output_data_dynamic* const odyn = this->dynamic_data_;
1618   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1619
1620   if (versions->any_defs())
1621     {
1622       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1623       Output_section *vdsec;
1624       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1625                                         elfcpp::SHF_ALLOC);
1626
1627       unsigned char* vdbuf;
1628       unsigned int vdsize;
1629       unsigned int vdentries;
1630       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1631           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1632           SELECT_SIZE_ENDIAN(size, big_endian));
1633
1634       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1635                                                                  vdsize,
1636                                                                  4);
1637
1638       vdsec->add_output_section_data(vddata);
1639       vdsec->set_link_section(dynstr);
1640       vdsec->set_info(vdentries);
1641
1642       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1643       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1644     }
1645
1646   if (versions->any_needs())
1647     {
1648       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1649       Output_section* vnsec;
1650       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1651                                         elfcpp::SHF_ALLOC);
1652
1653       unsigned char* vnbuf;
1654       unsigned int vnsize;
1655       unsigned int vnentries;
1656       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1657         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1658          SELECT_SIZE_ENDIAN(size, big_endian));
1659
1660       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1661                                                                  vnsize,
1662                                                                  4);
1663
1664       vnsec->add_output_section_data(vndata);
1665       vnsec->set_link_section(dynstr);
1666       vnsec->set_info(vnentries);
1667
1668       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1669       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1670     }
1671 }
1672
1673 // Create the .interp section and PT_INTERP segment.
1674
1675 void
1676 Layout::create_interp(const Target* target)
1677 {
1678   const char* interp = this->options_.dynamic_linker();
1679   if (interp == NULL)
1680     {
1681       interp = target->dynamic_linker();
1682       gold_assert(interp != NULL);
1683     }
1684
1685   size_t len = strlen(interp) + 1;
1686
1687   Output_section_data* odata = new Output_data_const(interp, len, 1);
1688
1689   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1690   Output_section* osec = this->make_output_section(interp_name,
1691                                                    elfcpp::SHT_PROGBITS,
1692                                                    elfcpp::SHF_ALLOC);
1693   osec->add_output_section_data(odata);
1694
1695   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1696   this->segment_list_.push_back(oseg);
1697   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1698 }
1699
1700 // Finish the .dynamic section and PT_DYNAMIC segment.
1701
1702 void
1703 Layout::finish_dynamic_section(const Input_objects* input_objects,
1704                                const Symbol_table* symtab)
1705 {
1706   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1707                                             elfcpp::PF_R | elfcpp::PF_W);
1708   this->segment_list_.push_back(oseg);
1709   oseg->add_initial_output_section(this->dynamic_section_,
1710                                    elfcpp::PF_R | elfcpp::PF_W);
1711
1712   Output_data_dynamic* const odyn = this->dynamic_data_;
1713
1714   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1715        p != input_objects->dynobj_end();
1716        ++p)
1717     {
1718       // FIXME: Handle --as-needed.
1719       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1720     }
1721
1722   if (parameters->output_is_shared())
1723     {
1724       const char* soname = this->options_.soname();
1725       if (soname != NULL)
1726         odyn->add_string(elfcpp::DT_SONAME, soname);
1727     }
1728
1729   // FIXME: Support --init and --fini.
1730   Symbol* sym = symtab->lookup("_init");
1731   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1732     odyn->add_symbol(elfcpp::DT_INIT, sym);
1733
1734   sym = symtab->lookup("_fini");
1735   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1736     odyn->add_symbol(elfcpp::DT_FINI, sym);
1737
1738   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1739
1740   // Add a DT_RPATH entry if needed.
1741   const General_options::Dir_list& rpath(this->options_.rpath());
1742   if (!rpath.empty())
1743     {
1744       std::string rpath_val;
1745       for (General_options::Dir_list::const_iterator p = rpath.begin();
1746            p != rpath.end();
1747            ++p)
1748         {
1749           if (rpath_val.empty())
1750             rpath_val = p->name();
1751           else
1752             {
1753               // Eliminate duplicates.
1754               General_options::Dir_list::const_iterator q;
1755               for (q = rpath.begin(); q != p; ++q)
1756                 if (q->name() == p->name())
1757                   break;
1758               if (q == p)
1759                 {
1760                   rpath_val += ':';
1761                   rpath_val += p->name();
1762                 }
1763             }
1764         }
1765
1766       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1767     }
1768
1769   // Look for text segments that have dynamic relocations.
1770   bool have_textrel = false;
1771   for (Segment_list::const_iterator p = this->segment_list_.begin();
1772        p != this->segment_list_.end();
1773        ++p)
1774     {
1775       if (((*p)->flags() & elfcpp::PF_W) == 0
1776           && (*p)->dynamic_reloc_count() > 0)
1777         {
1778           have_textrel = true;
1779           break;
1780         }
1781     }
1782
1783   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1784   // post-link tools can easily modify these flags if desired.
1785   unsigned int flags = 0;
1786   if (have_textrel)
1787     {
1788       // Add a DT_TEXTREL for compatibility with older loaders.
1789       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1790       flags |= elfcpp::DF_TEXTREL;
1791     }
1792   if (parameters->output_is_shared() && this->has_static_tls())
1793     flags |= elfcpp::DF_STATIC_TLS;
1794   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1795 }
1796
1797 // The mapping of .gnu.linkonce section names to real section names.
1798
1799 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1800 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1801 {
1802   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1803   MAPPING_INIT("t", ".text"),
1804   MAPPING_INIT("r", ".rodata"),
1805   MAPPING_INIT("d", ".data"),
1806   MAPPING_INIT("b", ".bss"),
1807   MAPPING_INIT("s", ".sdata"),
1808   MAPPING_INIT("sb", ".sbss"),
1809   MAPPING_INIT("s2", ".sdata2"),
1810   MAPPING_INIT("sb2", ".sbss2"),
1811   MAPPING_INIT("wi", ".debug_info"),
1812   MAPPING_INIT("td", ".tdata"),
1813   MAPPING_INIT("tb", ".tbss"),
1814   MAPPING_INIT("lr", ".lrodata"),
1815   MAPPING_INIT("l", ".ldata"),
1816   MAPPING_INIT("lb", ".lbss"),
1817 };
1818 #undef MAPPING_INIT
1819
1820 const int Layout::linkonce_mapping_count =
1821   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1822
1823 // Return the name of the output section to use for a .gnu.linkonce
1824 // section.  This is based on the default ELF linker script of the old
1825 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1826 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1827 // initialized to the length of NAME.
1828
1829 const char*
1830 Layout::linkonce_output_name(const char* name, size_t *plen)
1831 {
1832   const char* s = name + sizeof(".gnu.linkonce") - 1;
1833   if (*s != '.')
1834     return name;
1835   ++s;
1836   const Linkonce_mapping* plm = linkonce_mapping;
1837   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1838     {
1839       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1840         {
1841           *plen = plm->tolen;
1842           return plm->to;
1843         }
1844     }
1845   return name;
1846 }
1847
1848 // Choose the output section name to use given an input section name.
1849 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1850 // length of NAME.
1851
1852 const char*
1853 Layout::output_section_name(const char* name, size_t* plen)
1854 {
1855   if (Layout::is_linkonce(name))
1856     {
1857       // .gnu.linkonce sections are laid out as though they were named
1858       // for the sections are placed into.
1859       return Layout::linkonce_output_name(name, plen);
1860     }
1861
1862   // gcc 4.3 generates the following sorts of section names when it
1863   // needs a section name specific to a function:
1864   //   .text.FN
1865   //   .rodata.FN
1866   //   .sdata2.FN
1867   //   .data.FN
1868   //   .data.rel.FN
1869   //   .data.rel.local.FN
1870   //   .data.rel.ro.FN
1871   //   .data.rel.ro.local.FN
1872   //   .sdata.FN
1873   //   .bss.FN
1874   //   .sbss.FN
1875   //   .tdata.FN
1876   //   .tbss.FN
1877
1878   // The GNU linker maps all of those to the part before the .FN,
1879   // except that .data.rel.local.FN is mapped to .data, and
1880   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1881   // beginning with .data.rel.ro.local are grouped together.
1882
1883   // For an anonymous namespace, the string FN can contain a '.'.
1884
1885   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1886   // GNU linker maps to .rodata.
1887
1888   // The .data.rel.ro sections enable a security feature triggered by
1889   // the -z relro option.  Section which need to be relocated at
1890   // program startup time but which may be readonly after startup are
1891   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1892   // segment.  The dynamic linker will make that segment writable,
1893   // perform relocations, and then make it read-only.  FIXME: We do
1894   // not yet implement this optimization.
1895
1896   // It is hard to handle this in a principled way.
1897
1898   // These are the rules we follow:
1899
1900   // If the section name has no initial '.', or no dot other than an
1901   // initial '.', we use the name unchanged (i.e., "mysection" and
1902   // ".text" are unchanged).
1903
1904   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1905
1906   // Otherwise, we drop the second '.' and everything that comes after
1907   // it (i.e., ".text.XXX" becomes ".text").
1908
1909   const char* s = name;
1910   if (*s != '.')
1911     return name;
1912   ++s;
1913   const char* sdot = strchr(s, '.');
1914   if (sdot == NULL)
1915     return name;
1916
1917   const char* const data_rel_ro = ".data.rel.ro";
1918   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1919     {
1920       *plen = strlen(data_rel_ro);
1921       return data_rel_ro;
1922     }
1923
1924   *plen = sdot - name;
1925   return name;
1926 }
1927
1928 // Record the signature of a comdat section, and return whether to
1929 // include it in the link.  If GROUP is true, this is a regular
1930 // section group.  If GROUP is false, this is a group signature
1931 // derived from the name of a linkonce section.  We want linkonce
1932 // signatures and group signatures to block each other, but we don't
1933 // want a linkonce signature to block another linkonce signature.
1934
1935 bool
1936 Layout::add_comdat(const char* signature, bool group)
1937 {
1938   std::string sig(signature);
1939   std::pair<Signatures::iterator, bool> ins(
1940     this->signatures_.insert(std::make_pair(sig, group)));
1941
1942   if (ins.second)
1943     {
1944       // This is the first time we've seen this signature.
1945       return true;
1946     }
1947
1948   if (ins.first->second)
1949     {
1950       // We've already seen a real section group with this signature.
1951       return false;
1952     }
1953   else if (group)
1954     {
1955       // This is a real section group, and we've already seen a
1956       // linkonce section with this signature.  Record that we've seen
1957       // a section group, and don't include this section group.
1958       ins.first->second = true;
1959       return false;
1960     }
1961   else
1962     {
1963       // We've already seen a linkonce section and this is a linkonce
1964       // section.  These don't block each other--this may be the same
1965       // symbol name with different section types.
1966       return true;
1967     }
1968 }
1969
1970 // Write out the Output_sections.  Most won't have anything to write,
1971 // since most of the data will come from input sections which are
1972 // handled elsewhere.  But some Output_sections do have Output_data.
1973
1974 void
1975 Layout::write_output_sections(Output_file* of) const
1976 {
1977   for (Section_list::const_iterator p = this->section_list_.begin();
1978        p != this->section_list_.end();
1979        ++p)
1980     {
1981       if (!(*p)->after_input_sections())
1982         (*p)->write(of);
1983     }
1984 }
1985
1986 // Write out data not associated with a section or the symbol table.
1987
1988 void
1989 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1990 {
1991   if (!parameters->strip_all())
1992     {
1993       const Output_section* symtab_section = this->symtab_section_;
1994       for (Section_list::const_iterator p = this->section_list_.begin();
1995            p != this->section_list_.end();
1996            ++p)
1997         {
1998           if ((*p)->needs_symtab_index())
1999             {
2000               gold_assert(symtab_section != NULL);
2001               unsigned int index = (*p)->symtab_index();
2002               gold_assert(index > 0 && index != -1U);
2003               off_t off = (symtab_section->offset()
2004                            + index * symtab_section->entsize());
2005               symtab->write_section_symbol(*p, of, off);
2006             }
2007         }
2008     }
2009
2010   const Output_section* dynsym_section = this->dynsym_section_;
2011   for (Section_list::const_iterator p = this->section_list_.begin();
2012        p != this->section_list_.end();
2013        ++p)
2014     {
2015       if ((*p)->needs_dynsym_index())
2016         {
2017           gold_assert(dynsym_section != NULL);
2018           unsigned int index = (*p)->dynsym_index();
2019           gold_assert(index > 0 && index != -1U);
2020           off_t off = (dynsym_section->offset()
2021                        + index * dynsym_section->entsize());
2022           symtab->write_section_symbol(*p, of, off);
2023         }
2024     }
2025
2026   // Write out the Output_data which are not in an Output_section.
2027   for (Data_list::const_iterator p = this->special_output_list_.begin();
2028        p != this->special_output_list_.end();
2029        ++p)
2030     (*p)->write(of);
2031 }
2032
2033 // Write out the Output_sections which can only be written after the
2034 // input sections are complete.
2035
2036 void
2037 Layout::write_sections_after_input_sections(Output_file* of)
2038 {
2039   // Determine the final section offsets, and thus the final output
2040   // file size.  Note we finalize the .shstrab last, to allow the
2041   // after_input_section sections to modify their section-names before
2042   // writing.
2043   if (this->any_postprocessing_sections_)
2044     {
2045       off_t off = this->output_file_size_;
2046       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2047       
2048       // Now that we've finalized the names, we can finalize the shstrab.
2049       off =
2050         this->set_section_offsets(off,
2051                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2052
2053       if (off > this->output_file_size_)
2054         {
2055           of->resize(off);
2056           this->output_file_size_ = off;
2057         }
2058     }
2059
2060   for (Section_list::const_iterator p = this->section_list_.begin();
2061        p != this->section_list_.end();
2062        ++p)
2063     {
2064       if ((*p)->after_input_sections())
2065         (*p)->write(of);
2066     }
2067
2068   this->section_headers_->write(of);
2069 }
2070
2071 // Print statistical information to stderr.  This is used for --stats.
2072
2073 void
2074 Layout::print_stats() const
2075 {
2076   this->namepool_.print_stats("section name pool");
2077   this->sympool_.print_stats("output symbol name pool");
2078   this->dynpool_.print_stats("dynamic name pool");
2079
2080   for (Section_list::const_iterator p = this->section_list_.begin();
2081        p != this->section_list_.end();
2082        ++p)
2083     (*p)->print_merge_stats();
2084 }
2085
2086 // Write_sections_task methods.
2087
2088 // We can always run this task.
2089
2090 Task_token*
2091 Write_sections_task::is_runnable()
2092 {
2093   return NULL;
2094 }
2095
2096 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2097 // when finished.
2098
2099 void
2100 Write_sections_task::locks(Task_locker* tl)
2101 {
2102   tl->add(this, this->output_sections_blocker_);
2103   tl->add(this, this->final_blocker_);
2104 }
2105
2106 // Run the task--write out the data.
2107
2108 void
2109 Write_sections_task::run(Workqueue*)
2110 {
2111   this->layout_->write_output_sections(this->of_);
2112 }
2113
2114 // Write_data_task methods.
2115
2116 // We can always run this task.
2117
2118 Task_token*
2119 Write_data_task::is_runnable()
2120 {
2121   return NULL;
2122 }
2123
2124 // We need to unlock FINAL_BLOCKER when finished.
2125
2126 void
2127 Write_data_task::locks(Task_locker* tl)
2128 {
2129   tl->add(this, this->final_blocker_);
2130 }
2131
2132 // Run the task--write out the data.
2133
2134 void
2135 Write_data_task::run(Workqueue*)
2136 {
2137   this->layout_->write_data(this->symtab_, this->of_);
2138 }
2139
2140 // Write_symbols_task methods.
2141
2142 // We can always run this task.
2143
2144 Task_token*
2145 Write_symbols_task::is_runnable()
2146 {
2147   return NULL;
2148 }
2149
2150 // We need to unlock FINAL_BLOCKER when finished.
2151
2152 void
2153 Write_symbols_task::locks(Task_locker* tl)
2154 {
2155   tl->add(this, this->final_blocker_);
2156 }
2157
2158 // Run the task--write out the symbols.
2159
2160 void
2161 Write_symbols_task::run(Workqueue*)
2162 {
2163   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2164                                this->dynpool_, this->of_);
2165 }
2166
2167 // Write_after_input_sections_task methods.
2168
2169 // We can only run this task after the input sections have completed.
2170
2171 Task_token*
2172 Write_after_input_sections_task::is_runnable()
2173 {
2174   if (this->input_sections_blocker_->is_blocked())
2175     return this->input_sections_blocker_;
2176   return NULL;
2177 }
2178
2179 // We need to unlock FINAL_BLOCKER when finished.
2180
2181 void
2182 Write_after_input_sections_task::locks(Task_locker* tl)
2183 {
2184   tl->add(this, this->final_blocker_);
2185 }
2186
2187 // Run the task.
2188
2189 void
2190 Write_after_input_sections_task::run(Workqueue*)
2191 {
2192   this->layout_->write_sections_after_input_sections(this->of_);
2193 }
2194
2195 // Close_task_runner methods.
2196
2197 // Run the task--close the file.
2198
2199 void
2200 Close_task_runner::run(Workqueue*, const Task*)
2201 {
2202   this->of_->close();
2203 }
2204
2205 // Instantiate the templates we need.  We could use the configure
2206 // script to restrict this to only the ones for implemented targets.
2207
2208 #ifdef HAVE_TARGET_32_LITTLE
2209 template
2210 Output_section*
2211 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2212                           const char* name,
2213                           const elfcpp::Shdr<32, false>& shdr,
2214                           unsigned int, unsigned int, off_t*);
2215 #endif
2216
2217 #ifdef HAVE_TARGET_32_BIG
2218 template
2219 Output_section*
2220 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2221                          const char* name,
2222                          const elfcpp::Shdr<32, true>& shdr,
2223                          unsigned int, unsigned int, off_t*);
2224 #endif
2225
2226 #ifdef HAVE_TARGET_64_LITTLE
2227 template
2228 Output_section*
2229 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2230                           const char* name,
2231                           const elfcpp::Shdr<64, false>& shdr,
2232                           unsigned int, unsigned int, off_t*);
2233 #endif
2234
2235 #ifdef HAVE_TARGET_64_BIG
2236 template
2237 Output_section*
2238 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2239                          const char* name,
2240                          const elfcpp::Shdr<64, true>& shdr,
2241                          unsigned int, unsigned int, off_t*);
2242 #endif
2243
2244 #ifdef HAVE_TARGET_32_LITTLE
2245 template
2246 Output_section*
2247 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2248                                    const unsigned char* symbols,
2249                                    off_t symbols_size,
2250                                    const unsigned char* symbol_names,
2251                                    off_t symbol_names_size,
2252                                    unsigned int shndx,
2253                                    const elfcpp::Shdr<32, false>& shdr,
2254                                    unsigned int reloc_shndx,
2255                                    unsigned int reloc_type,
2256                                    off_t* off);
2257 #endif
2258
2259 #ifdef HAVE_TARGET_32_BIG
2260 template
2261 Output_section*
2262 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2263                                    const unsigned char* symbols,
2264                                    off_t symbols_size,
2265                                   const unsigned char* symbol_names,
2266                                   off_t symbol_names_size,
2267                                   unsigned int shndx,
2268                                   const elfcpp::Shdr<32, true>& shdr,
2269                                   unsigned int reloc_shndx,
2270                                   unsigned int reloc_type,
2271                                   off_t* off);
2272 #endif
2273
2274 #ifdef HAVE_TARGET_64_LITTLE
2275 template
2276 Output_section*
2277 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2278                                    const unsigned char* symbols,
2279                                    off_t symbols_size,
2280                                    const unsigned char* symbol_names,
2281                                    off_t symbol_names_size,
2282                                    unsigned int shndx,
2283                                    const elfcpp::Shdr<64, false>& shdr,
2284                                    unsigned int reloc_shndx,
2285                                    unsigned int reloc_type,
2286                                    off_t* off);
2287 #endif
2288
2289 #ifdef HAVE_TARGET_64_BIG
2290 template
2291 Output_section*
2292 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2293                                    const unsigned char* symbols,
2294                                    off_t symbols_size,
2295                                   const unsigned char* symbol_names,
2296                                   off_t symbol_names_size,
2297                                   unsigned int shndx,
2298                                   const elfcpp::Shdr<64, true>& shdr,
2299                                   unsigned int reloc_shndx,
2300                                   unsigned int reloc_type,
2301                                   off_t* off);
2302 #endif
2303
2304 } // End namespace gold.