PR gold/12910
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list.  Creates a single free list node that
74 // describes the entire region of length LEN.  If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81   this->list_.push_front(Free_list_node(0, len));
82   this->last_remove_ = this->list_.begin();
83   this->extend_ = extend;
84   this->length_ = len;
85   ++Free_list::num_lists;
86   ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list.  Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node.  We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101   if (start == end)
102     return;
103   gold_assert(start < end);
104
105   ++Free_list::num_removes;
106
107   Iterator p = this->last_remove_;
108   if (p->start_ > start)
109     p = this->list_.begin();
110
111   for (; p != this->list_.end(); ++p)
112     {
113       ++Free_list::num_remove_visits;
114       // Find a node that wholly contains the indicated region.
115       if (p->start_ <= start && p->end_ >= end)
116         {
117           // Case 1: the indicated region spans the whole node.
118           // Add some fuzz to avoid creating tiny free chunks.
119           if (p->start_ + 3 >= start && p->end_ <= end + 3)
120             p = this->list_.erase(p);
121           // Case 2: remove a chunk from the start of the node.
122           else if (p->start_ + 3 >= start)
123             p->start_ = end;
124           // Case 3: remove a chunk from the end of the node.
125           else if (p->end_ <= end + 3)
126             p->end_ = start;
127           // Case 4: remove a chunk from the middle, and split
128           // the node into two.
129           else
130             {
131               Free_list_node newnode(p->start_, start);
132               p->start_ = end;
133               this->list_.insert(p, newnode);
134               ++Free_list::num_nodes;
135             }
136           this->last_remove_ = p;
137           return;
138         }
139     }
140
141   // Did not find a node containing the given chunk.  This could happen
142   // because a small chunk was already removed due to the fuzz.
143   gold_debug(DEBUG_INCREMENTAL,
144              "Free_list::remove(%d,%d) not found",
145              static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155   gold_debug(DEBUG_INCREMENTAL,
156              "Free_list::allocate(%08lx, %d, %08lx)",
157              static_cast<long>(len), static_cast<int>(align),
158              static_cast<long>(minoff));
159   if (len == 0)
160     return align_address(minoff, align);
161
162   ++Free_list::num_allocates;
163
164   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165     {
166       ++Free_list::num_allocate_visits;
167       off_t start = p->start_ > minoff ? p->start_ : minoff;
168       start = align_address(start, align);
169       off_t end = start + len;
170       if (end <= p->end_)
171         {
172           if (p->start_ + 3 >= start && p->end_ <= end + 3)
173             this->list_.erase(p);
174           else if (p->start_ + 3 >= start)
175             p->start_ = end;
176           else if (p->end_ <= end + 3)
177             p->end_ = start;
178           else
179             {
180               Free_list_node newnode(p->start_, start);
181               p->start_ = end;
182               this->list_.insert(p, newnode);
183               ++Free_list::num_nodes;
184             }
185           return start;
186         }
187     }
188   return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195   gold_info("Free list:\n     start      end   length\n");
196   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
198               static_cast<long>(p->end_),
199               static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206   fprintf(stderr, _("%s: total free lists: %u\n"),
207           program_name, Free_list::num_lists);
208   fprintf(stderr, _("%s: total free list nodes: %u\n"),
209           program_name, Free_list::num_nodes);
210   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211           program_name, Free_list::num_removes);
212   fprintf(stderr, _("%s: nodes visited: %u\n"),
213           program_name, Free_list::num_remove_visits);
214   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215           program_name, Free_list::num_allocates);
216   fprintf(stderr, _("%s: nodes visited: %u\n"),
217           program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228     const Layout::Section_list& sections,
229     const Layout::Data_list& special_outputs)
230 {
231   for(Layout::Section_list::const_iterator p = sections.begin();
232       p != sections.end();
233       ++p)
234     gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236   for(Layout::Data_list::const_iterator p = special_outputs.begin();
237       p != special_outputs.end();
238       ++p)
239     gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241   
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246     const Layout::Section_list& sections)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     {
252       Output_section* os = *p;
253       Section_info info;
254       info.output_section = os;
255       info.address = os->is_address_valid() ? os->address() : 0;
256       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257       info.offset = os->is_offset_valid()? os->offset() : -1 ;
258       this->section_infos_.push_back(info);
259     }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266     const Layout::Section_list& sections)
267 {
268   size_t i = 0;
269   for(Layout::Section_list::const_iterator p = sections.begin();
270       p != sections.end();
271       ++p, ++i)
272     {
273       Output_section* os = *p;
274       uint64_t address = os->is_address_valid() ? os->address() : 0;
275       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278       if (i >= this->section_infos_.size())
279         {
280           gold_fatal("Section_info of %s missing.\n", os->name());
281         }
282       const Section_info& info = this->section_infos_[i];
283       if (os != info.output_section)
284         gold_fatal("Section order changed.  Expecting %s but see %s\n",
285                    info.output_section->name(), os->name());
286       if (address != info.address
287           || data_size != info.data_size
288           || offset != info.offset)
289         gold_fatal("Section %s changed.\n", os->name());
290     }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections.  This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301   Layout* layout = this->layout_;
302   off_t file_size = layout->finalize(this->input_objects_,
303                                      this->symtab_,
304                                      this->target_,
305                                      task);
306
307   // Now we know the final size of the output file and we know where
308   // each piece of information goes.
309
310   if (this->mapfile_ != NULL)
311     {
312       this->mapfile_->print_discarded_sections(this->input_objects_);
313       layout->print_to_mapfile(this->mapfile_);
314     }
315
316   Output_file* of;
317   if (layout->incremental_base() == NULL)
318     {
319       of = new Output_file(parameters->options().output_file_name());
320       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321         of->set_is_temporary();
322       of->open(file_size);
323     }
324   else
325     {
326       of = layout->incremental_base()->output_file();
327
328       // Apply the incremental relocations for symbols whose values
329       // have changed.  We do this before we resize the file and start
330       // writing anything else to it, so that we can read the old
331       // incremental information from the file before (possibly)
332       // overwriting it.
333       if (parameters->incremental_update())
334         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335                                                              this->layout_,
336                                                              of);
337
338       of->resize(file_size);
339     }
340
341   // Queue up the final set of tasks.
342   gold::queue_final_tasks(this->options_, this->input_objects_,
343                           this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349   : number_of_input_files_(number_of_input_files),
350     script_options_(script_options),
351     namepool_(),
352     sympool_(),
353     dynpool_(),
354     signatures_(),
355     section_name_map_(),
356     segment_list_(),
357     section_list_(),
358     unattached_section_list_(),
359     special_output_list_(),
360     section_headers_(NULL),
361     tls_segment_(NULL),
362     relro_segment_(NULL),
363     interp_segment_(NULL),
364     increase_relro_(0),
365     symtab_section_(NULL),
366     symtab_xindex_(NULL),
367     dynsym_section_(NULL),
368     dynsym_xindex_(NULL),
369     dynamic_section_(NULL),
370     dynamic_symbol_(NULL),
371     dynamic_data_(NULL),
372     eh_frame_section_(NULL),
373     eh_frame_data_(NULL),
374     added_eh_frame_data_(false),
375     eh_frame_hdr_section_(NULL),
376     build_id_note_(NULL),
377     debug_abbrev_(NULL),
378     debug_info_(NULL),
379     group_signatures_(),
380     output_file_size_(-1),
381     have_added_input_section_(false),
382     sections_are_attached_(false),
383     input_requires_executable_stack_(false),
384     input_with_gnu_stack_note_(false),
385     input_without_gnu_stack_note_(false),
386     has_static_tls_(false),
387     any_postprocessing_sections_(false),
388     resized_signatures_(false),
389     have_stabstr_section_(false),
390     incremental_inputs_(NULL),
391     record_output_section_data_from_script_(false),
392     script_output_section_data_list_(),
393     segment_states_(NULL),
394     relaxation_debug_check_(NULL),
395     incremental_base_(NULL),
396     free_list_()
397 {
398   // Make space for more than enough segments for a typical file.
399   // This is just for efficiency--it's OK if we wind up needing more.
400   this->segment_list_.reserve(12);
401
402   // We expect two unattached Output_data objects: the file header and
403   // the segment headers.
404   this->special_output_list_.reserve(2);
405
406   // Initialize structure needed for an incremental build.
407   if (parameters->incremental())
408     this->incremental_inputs_ = new Incremental_inputs;
409
410   // The section name pool is worth optimizing in all cases, because
411   // it is small, but there are often overlaps due to .rel sections.
412   this->namepool_.set_optimize();
413 }
414
415 // For incremental links, record the base file to be modified.
416
417 void
418 Layout::set_incremental_base(Incremental_binary* base)
419 {
420   this->incremental_base_ = base;
421   this->free_list_.init(base->output_file()->filesize(), true);
422 }
423
424 // Hash a key we use to look up an output section mapping.
425
426 size_t
427 Layout::Hash_key::operator()(const Layout::Key& k) const
428 {
429  return k.first + k.second.first + k.second.second;
430 }
431
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb.  Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
435
436 static const char* gdb_sections[] =
437 { ".debug_abbrev",
438   // ".debug_aranges",   // not used by gdb as of 6.7.1
439   ".debug_frame",
440   ".debug_info",
441   ".debug_types",
442   ".debug_line",
443   ".debug_loc",
444   ".debug_macinfo",
445   // ".debug_pubnames",  // not used by gdb as of 6.7.1
446   ".debug_ranges",
447   ".debug_str",
448 };
449
450 static const char* lines_only_debug_sections[] =
451 { ".debug_abbrev",
452   // ".debug_aranges",   // not used by gdb as of 6.7.1
453   // ".debug_frame",
454   ".debug_info",
455   // ".debug_types",
456   ".debug_line",
457   // ".debug_loc",
458   // ".debug_macinfo",
459   // ".debug_pubnames",  // not used by gdb as of 6.7.1
460   // ".debug_ranges",
461   ".debug_str",
462 };
463
464 static inline bool
465 is_gdb_debug_section(const char* str)
466 {
467   // We can do this faster: binary search or a hashtable.  But why bother?
468   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469     if (strcmp(str, gdb_sections[i]) == 0)
470       return true;
471   return false;
472 }
473
474 static inline bool
475 is_lines_only_debug_section(const char* str)
476 {
477   // We can do this faster: binary search or a hashtable.  But why bother?
478   for (size_t i = 0;
479        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
480        ++i)
481     if (strcmp(str, lines_only_debug_sections[i]) == 0)
482       return true;
483   return false;
484 }
485
486 // Sometimes we compress sections.  This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections.  This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
494
495 static bool
496 is_compressible_debug_section(const char* secname)
497 {
498   return (is_prefix_of(".debug", secname));
499 }
500
501 // We may see compressed debug sections in input files.  Return TRUE
502 // if this is the name of a compressed debug section.
503
504 bool
505 is_compressed_debug_section(const char* secname)
506 {
507   return (is_prefix_of(".zdebug", secname));
508 }
509
510 // Whether to include this section in the link.
511
512 template<int size, bool big_endian>
513 bool
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515                         const elfcpp::Shdr<size, big_endian>& shdr)
516 {
517   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
518     return false;
519
520   switch (shdr.get_sh_type())
521     {
522     case elfcpp::SHT_NULL:
523     case elfcpp::SHT_SYMTAB:
524     case elfcpp::SHT_DYNSYM:
525     case elfcpp::SHT_HASH:
526     case elfcpp::SHT_DYNAMIC:
527     case elfcpp::SHT_SYMTAB_SHNDX:
528       return false;
529
530     case elfcpp::SHT_STRTAB:
531       // Discard the sections which have special meanings in the ELF
532       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
533       // checking the sh_link fields of the appropriate sections.
534       return (strcmp(name, ".dynstr") != 0
535               && strcmp(name, ".strtab") != 0
536               && strcmp(name, ".shstrtab") != 0);
537
538     case elfcpp::SHT_RELA:
539     case elfcpp::SHT_REL:
540     case elfcpp::SHT_GROUP:
541       // If we are emitting relocations these should be handled
542       // elsewhere.
543       gold_assert(!parameters->options().relocatable()
544                   && !parameters->options().emit_relocs());
545       return false;
546
547     case elfcpp::SHT_PROGBITS:
548       if (parameters->options().strip_debug()
549           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
550         {
551           if (is_debug_info_section(name))
552             return false;
553         }
554       if (parameters->options().strip_debug_non_line()
555           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
556         {
557           // Debugging sections can only be recognized by name.
558           if (is_prefix_of(".debug", name)
559               && !is_lines_only_debug_section(name))
560             return false;
561         }
562       if (parameters->options().strip_debug_gdb()
563           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
564         {
565           // Debugging sections can only be recognized by name.
566           if (is_prefix_of(".debug", name)
567               && !is_gdb_debug_section(name))
568             return false;
569         }
570       if (parameters->options().strip_lto_sections()
571           && !parameters->options().relocatable()
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           // Ignore LTO sections containing intermediate code.
575           if (is_prefix_of(".gnu.lto_", name))
576             return false;
577         }
578       // The GNU linker strips .gnu_debuglink sections, so we do too.
579       // This is a feature used to keep debugging information in
580       // separate files.
581       if (strcmp(name, ".gnu_debuglink") == 0)
582         return false;
583       return true;
584
585     default:
586       return true;
587     }
588 }
589
590 // Return an output section named NAME, or NULL if there is none.
591
592 Output_section*
593 Layout::find_output_section(const char* name) const
594 {
595   for (Section_list::const_iterator p = this->section_list_.begin();
596        p != this->section_list_.end();
597        ++p)
598     if (strcmp((*p)->name(), name) == 0)
599       return *p;
600   return NULL;
601 }
602
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear.  Return NULL if there is none.
605
606 Output_segment*
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608                             elfcpp::Elf_Word clear) const
609 {
610   for (Segment_list::const_iterator p = this->segment_list_.begin();
611        p != this->segment_list_.end();
612        ++p)
613     if (static_cast<elfcpp::PT>((*p)->type()) == type
614         && ((*p)->flags() & set) == set
615         && ((*p)->flags() & clear) == 0)
616       return *p;
617   return NULL;
618 }
619
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS.  NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key.  ORDER is where this should appear
623 // in the output sections.  IS_RELRO is true for a relro section.
624
625 Output_section*
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628                            Output_section_order order, bool is_relro)
629 {
630   elfcpp::Elf_Word lookup_type = type;
631
632   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
633   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
634   // .init_array, .fini_array, and .preinit_array sections by name
635   // whatever their type in the input file.  We do this because the
636   // types are not always right in the input files.
637   if (lookup_type == elfcpp::SHT_INIT_ARRAY
638       || lookup_type == elfcpp::SHT_FINI_ARRAY
639       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
640     lookup_type = elfcpp::SHT_PROGBITS;
641
642   elfcpp::Elf_Xword lookup_flags = flags;
643
644   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
645   // read-write with read-only sections.  Some other ELF linkers do
646   // not do this.  FIXME: Perhaps there should be an option
647   // controlling this.
648   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
649
650   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
651   const std::pair<Key, Output_section*> v(key, NULL);
652   std::pair<Section_name_map::iterator, bool> ins(
653     this->section_name_map_.insert(v));
654
655   if (!ins.second)
656     return ins.first->second;
657   else
658     {
659       // This is the first time we've seen this name/type/flags
660       // combination.  For compatibility with the GNU linker, we
661       // combine sections with contents and zero flags with sections
662       // with non-zero flags.  This is a workaround for cases where
663       // assembler code forgets to set section flags.  FIXME: Perhaps
664       // there should be an option to control this.
665       Output_section* os = NULL;
666
667       if (lookup_type == elfcpp::SHT_PROGBITS)
668         {
669           if (flags == 0)
670             {
671               Output_section* same_name = this->find_output_section(name);
672               if (same_name != NULL
673                   && (same_name->type() == elfcpp::SHT_PROGBITS
674                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
675                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
676                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
677                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
678                 os = same_name;
679             }
680           else if ((flags & elfcpp::SHF_TLS) == 0)
681             {
682               elfcpp::Elf_Xword zero_flags = 0;
683               const Key zero_key(name_key, std::make_pair(lookup_type,
684                                                           zero_flags));
685               Section_name_map::iterator p =
686                   this->section_name_map_.find(zero_key);
687               if (p != this->section_name_map_.end())
688                 os = p->second;
689             }
690         }
691
692       if (os == NULL)
693         os = this->make_output_section(name, type, flags, order, is_relro);
694
695       ins.first->second = os;
696       return os;
697     }
698 }
699
700 // Pick the output section to use for section NAME, in input file
701 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
702 // linker created section.  IS_INPUT_SECTION is true if we are
703 // choosing an output section for an input section found in a input
704 // file.  ORDER is where this section should appear in the output
705 // sections.  IS_RELRO is true for a relro section.  This will return
706 // NULL if the input section should be discarded.
707
708 Output_section*
709 Layout::choose_output_section(const Relobj* relobj, const char* name,
710                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
711                               bool is_input_section, Output_section_order order,
712                               bool is_relro)
713 {
714   // We should not see any input sections after we have attached
715   // sections to segments.
716   gold_assert(!is_input_section || !this->sections_are_attached_);
717
718   // Some flags in the input section should not be automatically
719   // copied to the output section.
720   flags &= ~ (elfcpp::SHF_INFO_LINK
721               | elfcpp::SHF_GROUP
722               | elfcpp::SHF_MERGE
723               | elfcpp::SHF_STRINGS);
724
725   // We only clear the SHF_LINK_ORDER flag in for
726   // a non-relocatable link.
727   if (!parameters->options().relocatable())
728     flags &= ~elfcpp::SHF_LINK_ORDER;
729
730   if (this->script_options_->saw_sections_clause())
731     {
732       // We are using a SECTIONS clause, so the output section is
733       // chosen based only on the name.
734
735       Script_sections* ss = this->script_options_->script_sections();
736       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
737       Output_section** output_section_slot;
738       Script_sections::Section_type script_section_type;
739       const char* orig_name = name;
740       name = ss->output_section_name(file_name, name, &output_section_slot,
741                                      &script_section_type);
742       if (name == NULL)
743         {
744           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
745                                      "because it is not allowed by the "
746                                      "SECTIONS clause of the linker script"),
747                      orig_name);
748           // The SECTIONS clause says to discard this input section.
749           return NULL;
750         }
751
752       // We can only handle script section types ST_NONE and ST_NOLOAD.
753       switch (script_section_type)
754         {
755         case Script_sections::ST_NONE:
756           break;
757         case Script_sections::ST_NOLOAD:
758           flags &= elfcpp::SHF_ALLOC;
759           break;
760         default:
761           gold_unreachable();
762         }
763
764       // If this is an orphan section--one not mentioned in the linker
765       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
766       // default processing below.
767
768       if (output_section_slot != NULL)
769         {
770           if (*output_section_slot != NULL)
771             {
772               (*output_section_slot)->update_flags_for_input_section(flags);
773               return *output_section_slot;
774             }
775
776           // We don't put sections found in the linker script into
777           // SECTION_NAME_MAP_.  That keeps us from getting confused
778           // if an orphan section is mapped to a section with the same
779           // name as one in the linker script.
780
781           name = this->namepool_.add(name, false, NULL);
782
783           Output_section* os = this->make_output_section(name, type, flags,
784                                                          order, is_relro);
785
786           os->set_found_in_sections_clause();
787
788           // Special handling for NOLOAD sections.
789           if (script_section_type == Script_sections::ST_NOLOAD)
790             {
791               os->set_is_noload();
792
793               // The constructor of Output_section sets addresses of non-ALLOC
794               // sections to 0 by default.  We don't want that for NOLOAD
795               // sections even if they have no SHF_ALLOC flag.
796               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
797                   && os->is_address_valid())
798                 {
799                   gold_assert(os->address() == 0
800                               && !os->is_offset_valid()
801                               && !os->is_data_size_valid());
802                   os->reset_address_and_file_offset();
803                 }
804             }
805
806           *output_section_slot = os;
807           return os;
808         }
809     }
810
811   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
812
813   size_t len = strlen(name);
814   char* uncompressed_name = NULL;
815
816   // Compressed debug sections should be mapped to the corresponding
817   // uncompressed section.
818   if (is_compressed_debug_section(name))
819     {
820       uncompressed_name = new char[len];
821       uncompressed_name[0] = '.';
822       gold_assert(name[0] == '.' && name[1] == 'z');
823       strncpy(&uncompressed_name[1], &name[2], len - 2);
824       uncompressed_name[len - 1] = '\0';
825       len -= 1;
826       name = uncompressed_name;
827     }
828
829   // Turn NAME from the name of the input section into the name of the
830   // output section.
831   if (is_input_section
832       && !this->script_options_->saw_sections_clause()
833       && !parameters->options().relocatable())
834     name = Layout::output_section_name(relobj, name, &len);
835
836   Stringpool::Key name_key;
837   name = this->namepool_.add_with_length(name, len, true, &name_key);
838
839   if (uncompressed_name != NULL)
840     delete[] uncompressed_name;
841
842   // Find or make the output section.  The output section is selected
843   // based on the section name, type, and flags.
844   return this->get_output_section(name, name_key, type, flags, order, is_relro);
845 }
846
847 // For incremental links, record the initial fixed layout of a section
848 // from the base file, and return a pointer to the Output_section.
849
850 template<int size, bool big_endian>
851 Output_section*
852 Layout::init_fixed_output_section(const char* name,
853                                   elfcpp::Shdr<size, big_endian>& shdr)
854 {
855   unsigned int sh_type = shdr.get_sh_type();
856
857   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
858   // All others will be created from scratch and reallocated.
859   if (sh_type != elfcpp::SHT_PROGBITS
860       && sh_type != elfcpp::SHT_NOBITS
861       && sh_type != elfcpp::SHT_NOTE)
862     return NULL;
863
864   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
865   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
866   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
867   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
868   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
869       shdr.get_sh_addralign();
870
871   // Make the output section.
872   Stringpool::Key name_key;
873   name = this->namepool_.add(name, true, &name_key);
874   Output_section* os = this->get_output_section(name, name_key, sh_type,
875                                                 sh_flags, ORDER_INVALID, false);
876   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
877   if (sh_type != elfcpp::SHT_NOBITS)
878     this->free_list_.remove(sh_offset, sh_offset + sh_size);
879   return os;
880 }
881
882 // Return the output section to use for input section SHNDX, with name
883 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
884 // index of a relocation section which applies to this section, or 0
885 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
886 // relocation section if there is one.  Set *OFF to the offset of this
887 // input section without the output section.  Return NULL if the
888 // section should be discarded.  Set *OFF to -1 if the section
889 // contents should not be written directly to the output file, but
890 // will instead receive special handling.
891
892 template<int size, bool big_endian>
893 Output_section*
894 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
895                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
896                unsigned int reloc_shndx, unsigned int, off_t* off)
897 {
898   *off = 0;
899
900   if (!this->include_section(object, name, shdr))
901     return NULL;
902
903   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
904
905   // In a relocatable link a grouped section must not be combined with
906   // any other sections.
907   Output_section* os;
908   if (parameters->options().relocatable()
909       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
910     {
911       name = this->namepool_.add(name, true, NULL);
912       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
913                                      ORDER_INVALID, false);
914     }
915   else
916     {
917       os = this->choose_output_section(object, name, sh_type,
918                                        shdr.get_sh_flags(), true,
919                                        ORDER_INVALID, false);
920       if (os == NULL)
921         return NULL;
922     }
923
924   // By default the GNU linker sorts input sections whose names match
925   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
926   // are sorted by name.  This is used to implement constructor
927   // priority ordering.  We are compatible.  When we put .ctor
928   // sections in .init_array and .dtor sections in .fini_array, we
929   // must also sort plain .ctor and .dtor sections.
930   if (!this->script_options_->saw_sections_clause()
931       && !parameters->options().relocatable()
932       && (is_prefix_of(".ctors.", name)
933           || is_prefix_of(".dtors.", name)
934           || is_prefix_of(".init_array.", name)
935           || is_prefix_of(".fini_array.", name)
936           || (parameters->options().ctors_in_init_array()
937               && (strcmp(name, ".ctors") == 0
938                   || strcmp(name, ".dtors") == 0))))
939     os->set_must_sort_attached_input_sections();
940
941   // FIXME: Handle SHF_LINK_ORDER somewhere.
942
943   elfcpp::Elf_Xword orig_flags = os->flags();
944
945   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
946                                this->script_options_->saw_sections_clause());
947
948   // If the flags changed, we may have to change the order.
949   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
950     {
951       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
952       elfcpp::Elf_Xword new_flags =
953         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
954       if (orig_flags != new_flags)
955         os->set_order(this->default_section_order(os, false));
956     }
957
958   this->have_added_input_section_ = true;
959
960   return os;
961 }
962
963 // Handle a relocation section when doing a relocatable link.
964
965 template<int size, bool big_endian>
966 Output_section*
967 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
968                      unsigned int,
969                      const elfcpp::Shdr<size, big_endian>& shdr,
970                      Output_section* data_section,
971                      Relocatable_relocs* rr)
972 {
973   gold_assert(parameters->options().relocatable()
974               || parameters->options().emit_relocs());
975
976   int sh_type = shdr.get_sh_type();
977
978   std::string name;
979   if (sh_type == elfcpp::SHT_REL)
980     name = ".rel";
981   else if (sh_type == elfcpp::SHT_RELA)
982     name = ".rela";
983   else
984     gold_unreachable();
985   name += data_section->name();
986
987   // In a relocatable link relocs for a grouped section must not be
988   // combined with other reloc sections.
989   Output_section* os;
990   if (!parameters->options().relocatable()
991       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
992     os = this->choose_output_section(object, name.c_str(), sh_type,
993                                      shdr.get_sh_flags(), false,
994                                      ORDER_INVALID, false);
995   else
996     {
997       const char* n = this->namepool_.add(name.c_str(), true, NULL);
998       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
999                                      ORDER_INVALID, false);
1000     }
1001
1002   os->set_should_link_to_symtab();
1003   os->set_info_section(data_section);
1004
1005   Output_section_data* posd;
1006   if (sh_type == elfcpp::SHT_REL)
1007     {
1008       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1009       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1010                                            size,
1011                                            big_endian>(rr);
1012     }
1013   else if (sh_type == elfcpp::SHT_RELA)
1014     {
1015       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1016       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1017                                            size,
1018                                            big_endian>(rr);
1019     }
1020   else
1021     gold_unreachable();
1022
1023   os->add_output_section_data(posd);
1024   rr->set_output_data(posd);
1025
1026   return os;
1027 }
1028
1029 // Handle a group section when doing a relocatable link.
1030
1031 template<int size, bool big_endian>
1032 void
1033 Layout::layout_group(Symbol_table* symtab,
1034                      Sized_relobj_file<size, big_endian>* object,
1035                      unsigned int,
1036                      const char* group_section_name,
1037                      const char* signature,
1038                      const elfcpp::Shdr<size, big_endian>& shdr,
1039                      elfcpp::Elf_Word flags,
1040                      std::vector<unsigned int>* shndxes)
1041 {
1042   gold_assert(parameters->options().relocatable());
1043   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1044   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1045   Output_section* os = this->make_output_section(group_section_name,
1046                                                  elfcpp::SHT_GROUP,
1047                                                  shdr.get_sh_flags(),
1048                                                  ORDER_INVALID, false);
1049
1050   // We need to find a symbol with the signature in the symbol table.
1051   // If we don't find one now, we need to look again later.
1052   Symbol* sym = symtab->lookup(signature, NULL);
1053   if (sym != NULL)
1054     os->set_info_symndx(sym);
1055   else
1056     {
1057       // Reserve some space to minimize reallocations.
1058       if (this->group_signatures_.empty())
1059         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1060
1061       // We will wind up using a symbol whose name is the signature.
1062       // So just put the signature in the symbol name pool to save it.
1063       signature = symtab->canonicalize_name(signature);
1064       this->group_signatures_.push_back(Group_signature(os, signature));
1065     }
1066
1067   os->set_should_link_to_symtab();
1068   os->set_entsize(4);
1069
1070   section_size_type entry_count =
1071     convert_to_section_size_type(shdr.get_sh_size() / 4);
1072   Output_section_data* posd =
1073     new Output_data_group<size, big_endian>(object, entry_count, flags,
1074                                             shndxes);
1075   os->add_output_section_data(posd);
1076 }
1077
1078 // Special GNU handling of sections name .eh_frame.  They will
1079 // normally hold exception frame data as defined by the C++ ABI
1080 // (http://codesourcery.com/cxx-abi/).
1081
1082 template<int size, bool big_endian>
1083 Output_section*
1084 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1085                         const unsigned char* symbols,
1086                         off_t symbols_size,
1087                         const unsigned char* symbol_names,
1088                         off_t symbol_names_size,
1089                         unsigned int shndx,
1090                         const elfcpp::Shdr<size, big_endian>& shdr,
1091                         unsigned int reloc_shndx, unsigned int reloc_type,
1092                         off_t* off)
1093 {
1094   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1095   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1096
1097   const char* const name = ".eh_frame";
1098   Output_section* os = this->choose_output_section(object, name,
1099                                                    elfcpp::SHT_PROGBITS,
1100                                                    elfcpp::SHF_ALLOC, false,
1101                                                    ORDER_EHFRAME, false);
1102   if (os == NULL)
1103     return NULL;
1104
1105   if (this->eh_frame_section_ == NULL)
1106     {
1107       this->eh_frame_section_ = os;
1108       this->eh_frame_data_ = new Eh_frame();
1109
1110       // For incremental linking, we do not optimize .eh_frame sections
1111       // or create a .eh_frame_hdr section.
1112       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1113         {
1114           Output_section* hdr_os =
1115             this->choose_output_section(NULL, ".eh_frame_hdr",
1116                                         elfcpp::SHT_PROGBITS,
1117                                         elfcpp::SHF_ALLOC, false,
1118                                         ORDER_EHFRAME, false);
1119
1120           if (hdr_os != NULL)
1121             {
1122               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1123                                                         this->eh_frame_data_);
1124               hdr_os->add_output_section_data(hdr_posd);
1125
1126               hdr_os->set_after_input_sections();
1127
1128               if (!this->script_options_->saw_phdrs_clause())
1129                 {
1130                   Output_segment* hdr_oseg;
1131                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1132                                                        elfcpp::PF_R);
1133                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1134                                                           elfcpp::PF_R);
1135                 }
1136
1137               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1138             }
1139         }
1140     }
1141
1142   gold_assert(this->eh_frame_section_ == os);
1143
1144   elfcpp::Elf_Xword orig_flags = os->flags();
1145
1146   if (!parameters->incremental()
1147       && this->eh_frame_data_->add_ehframe_input_section(object,
1148                                                          symbols,
1149                                                          symbols_size,
1150                                                          symbol_names,
1151                                                          symbol_names_size,
1152                                                          shndx,
1153                                                          reloc_shndx,
1154                                                          reloc_type))
1155     {
1156       os->update_flags_for_input_section(shdr.get_sh_flags());
1157
1158       // A writable .eh_frame section is a RELRO section.
1159       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1160           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1161         {
1162           os->set_is_relro();
1163           os->set_order(ORDER_RELRO);
1164         }
1165
1166       // We found a .eh_frame section we are going to optimize, so now
1167       // we can add the set of optimized sections to the output
1168       // section.  We need to postpone adding this until we've found a
1169       // section we can optimize so that the .eh_frame section in
1170       // crtbegin.o winds up at the start of the output section.
1171       if (!this->added_eh_frame_data_)
1172         {
1173           os->add_output_section_data(this->eh_frame_data_);
1174           this->added_eh_frame_data_ = true;
1175         }
1176       *off = -1;
1177     }
1178   else
1179     {
1180       // We couldn't handle this .eh_frame section for some reason.
1181       // Add it as a normal section.
1182       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1183       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1184                                    saw_sections_clause);
1185       this->have_added_input_section_ = true;
1186
1187       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1188           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1189         os->set_order(this->default_section_order(os, false));
1190     }
1191
1192   return os;
1193 }
1194
1195 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1196 // the output section.
1197
1198 Output_section*
1199 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1200                                 elfcpp::Elf_Xword flags,
1201                                 Output_section_data* posd,
1202                                 Output_section_order order, bool is_relro)
1203 {
1204   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1205                                                    false, order, is_relro);
1206   if (os != NULL)
1207     os->add_output_section_data(posd);
1208   return os;
1209 }
1210
1211 // Map section flags to segment flags.
1212
1213 elfcpp::Elf_Word
1214 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1215 {
1216   elfcpp::Elf_Word ret = elfcpp::PF_R;
1217   if ((flags & elfcpp::SHF_WRITE) != 0)
1218     ret |= elfcpp::PF_W;
1219   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1220     ret |= elfcpp::PF_X;
1221   return ret;
1222 }
1223
1224 // Make a new Output_section, and attach it to segments as
1225 // appropriate.  ORDER is the order in which this section should
1226 // appear in the output segment.  IS_RELRO is true if this is a relro
1227 // (read-only after relocations) section.
1228
1229 Output_section*
1230 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1231                             elfcpp::Elf_Xword flags,
1232                             Output_section_order order, bool is_relro)
1233 {
1234   Output_section* os;
1235   if ((flags & elfcpp::SHF_ALLOC) == 0
1236       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1237       && is_compressible_debug_section(name))
1238     os = new Output_compressed_section(&parameters->options(), name, type,
1239                                        flags);
1240   else if ((flags & elfcpp::SHF_ALLOC) == 0
1241            && parameters->options().strip_debug_non_line()
1242            && strcmp(".debug_abbrev", name) == 0)
1243     {
1244       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1245           name, type, flags);
1246       if (this->debug_info_)
1247         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1248     }
1249   else if ((flags & elfcpp::SHF_ALLOC) == 0
1250            && parameters->options().strip_debug_non_line()
1251            && strcmp(".debug_info", name) == 0)
1252     {
1253       os = this->debug_info_ = new Output_reduced_debug_info_section(
1254           name, type, flags);
1255       if (this->debug_abbrev_)
1256         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1257     }
1258   else
1259     {
1260       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1261       // not have correct section types.  Force them here.
1262       if (type == elfcpp::SHT_PROGBITS)
1263         {
1264           if (is_prefix_of(".init_array", name))
1265             type = elfcpp::SHT_INIT_ARRAY;
1266           else if (is_prefix_of(".preinit_array", name))
1267             type = elfcpp::SHT_PREINIT_ARRAY;
1268           else if (is_prefix_of(".fini_array", name))
1269             type = elfcpp::SHT_FINI_ARRAY;
1270         }
1271
1272       // FIXME: const_cast is ugly.
1273       Target* target = const_cast<Target*>(&parameters->target());
1274       os = target->make_output_section(name, type, flags);
1275     }
1276
1277   // With -z relro, we have to recognize the special sections by name.
1278   // There is no other way.
1279   bool is_relro_local = false;
1280   if (!this->script_options_->saw_sections_clause()
1281       && parameters->options().relro()
1282       && type == elfcpp::SHT_PROGBITS
1283       && (flags & elfcpp::SHF_ALLOC) != 0
1284       && (flags & elfcpp::SHF_WRITE) != 0)
1285     {
1286       if (strcmp(name, ".data.rel.ro") == 0)
1287         is_relro = true;
1288       else if (strcmp(name, ".data.rel.ro.local") == 0)
1289         {
1290           is_relro = true;
1291           is_relro_local = true;
1292         }
1293       else if (type == elfcpp::SHT_INIT_ARRAY
1294                || type == elfcpp::SHT_FINI_ARRAY
1295                || type == elfcpp::SHT_PREINIT_ARRAY)
1296         is_relro = true;
1297       else if (strcmp(name, ".ctors") == 0
1298                || strcmp(name, ".dtors") == 0
1299                || strcmp(name, ".jcr") == 0)
1300         is_relro = true;
1301     }
1302
1303   if (is_relro)
1304     os->set_is_relro();
1305
1306   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1307     order = this->default_section_order(os, is_relro_local);
1308
1309   os->set_order(order);
1310
1311   parameters->target().new_output_section(os);
1312
1313   this->section_list_.push_back(os);
1314
1315   // The GNU linker by default sorts some sections by priority, so we
1316   // do the same.  We need to know that this might happen before we
1317   // attach any input sections.
1318   if (!this->script_options_->saw_sections_clause()
1319       && !parameters->options().relocatable()
1320       && (strcmp(name, ".init_array") == 0
1321           || strcmp(name, ".fini_array") == 0
1322           || (!parameters->options().ctors_in_init_array()
1323               && (strcmp(name, ".ctors") == 0
1324                   || strcmp(name, ".dtors") == 0))))
1325     os->set_may_sort_attached_input_sections();
1326
1327   // Check for .stab*str sections, as .stab* sections need to link to
1328   // them.
1329   if (type == elfcpp::SHT_STRTAB
1330       && !this->have_stabstr_section_
1331       && strncmp(name, ".stab", 5) == 0
1332       && strcmp(name + strlen(name) - 3, "str") == 0)
1333     this->have_stabstr_section_ = true;
1334
1335   // If we have already attached the sections to segments, then we
1336   // need to attach this one now.  This happens for sections created
1337   // directly by the linker.
1338   if (this->sections_are_attached_)
1339     this->attach_section_to_segment(os);
1340
1341   return os;
1342 }
1343
1344 // Return the default order in which a section should be placed in an
1345 // output segment.  This function captures a lot of the ideas in
1346 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1347 // linker created section is normally set when the section is created;
1348 // this function is used for input sections.
1349
1350 Output_section_order
1351 Layout::default_section_order(Output_section* os, bool is_relro_local)
1352 {
1353   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1354   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1355   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1356   bool is_bss = false;
1357
1358   switch (os->type())
1359     {
1360     default:
1361     case elfcpp::SHT_PROGBITS:
1362       break;
1363     case elfcpp::SHT_NOBITS:
1364       is_bss = true;
1365       break;
1366     case elfcpp::SHT_RELA:
1367     case elfcpp::SHT_REL:
1368       if (!is_write)
1369         return ORDER_DYNAMIC_RELOCS;
1370       break;
1371     case elfcpp::SHT_HASH:
1372     case elfcpp::SHT_DYNAMIC:
1373     case elfcpp::SHT_SHLIB:
1374     case elfcpp::SHT_DYNSYM:
1375     case elfcpp::SHT_GNU_HASH:
1376     case elfcpp::SHT_GNU_verdef:
1377     case elfcpp::SHT_GNU_verneed:
1378     case elfcpp::SHT_GNU_versym:
1379       if (!is_write)
1380         return ORDER_DYNAMIC_LINKER;
1381       break;
1382     case elfcpp::SHT_NOTE:
1383       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1384     }
1385
1386   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1387     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1388
1389   if (!is_bss && !is_write)
1390     {
1391       if (is_execinstr)
1392         {
1393           if (strcmp(os->name(), ".init") == 0)
1394             return ORDER_INIT;
1395           else if (strcmp(os->name(), ".fini") == 0)
1396             return ORDER_FINI;
1397         }
1398       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1399     }
1400
1401   if (os->is_relro())
1402     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1403
1404   if (os->is_small_section())
1405     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1406   if (os->is_large_section())
1407     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1408
1409   return is_bss ? ORDER_BSS : ORDER_DATA;
1410 }
1411
1412 // Attach output sections to segments.  This is called after we have
1413 // seen all the input sections.
1414
1415 void
1416 Layout::attach_sections_to_segments()
1417 {
1418   for (Section_list::iterator p = this->section_list_.begin();
1419        p != this->section_list_.end();
1420        ++p)
1421     this->attach_section_to_segment(*p);
1422
1423   this->sections_are_attached_ = true;
1424 }
1425
1426 // Attach an output section to a segment.
1427
1428 void
1429 Layout::attach_section_to_segment(Output_section* os)
1430 {
1431   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1432     this->unattached_section_list_.push_back(os);
1433   else
1434     this->attach_allocated_section_to_segment(os);
1435 }
1436
1437 // Attach an allocated output section to a segment.
1438
1439 void
1440 Layout::attach_allocated_section_to_segment(Output_section* os)
1441 {
1442   elfcpp::Elf_Xword flags = os->flags();
1443   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1444
1445   if (parameters->options().relocatable())
1446     return;
1447
1448   // If we have a SECTIONS clause, we can't handle the attachment to
1449   // segments until after we've seen all the sections.
1450   if (this->script_options_->saw_sections_clause())
1451     return;
1452
1453   gold_assert(!this->script_options_->saw_phdrs_clause());
1454
1455   // This output section goes into a PT_LOAD segment.
1456
1457   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1458
1459   // Check for --section-start.
1460   uint64_t addr;
1461   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1462
1463   // In general the only thing we really care about for PT_LOAD
1464   // segments is whether or not they are writable or executable,
1465   // so that is how we search for them.
1466   // Large data sections also go into their own PT_LOAD segment.
1467   // People who need segments sorted on some other basis will
1468   // have to use a linker script.
1469
1470   Segment_list::const_iterator p;
1471   for (p = this->segment_list_.begin();
1472        p != this->segment_list_.end();
1473        ++p)
1474     {
1475       if ((*p)->type() != elfcpp::PT_LOAD)
1476         continue;
1477       if (!parameters->options().omagic()
1478           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1479         continue;
1480       if (parameters->options().rosegment()
1481           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1482         continue;
1483       // If -Tbss was specified, we need to separate the data and BSS
1484       // segments.
1485       if (parameters->options().user_set_Tbss())
1486         {
1487           if ((os->type() == elfcpp::SHT_NOBITS)
1488               == (*p)->has_any_data_sections())
1489             continue;
1490         }
1491       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1492         continue;
1493
1494       if (is_address_set)
1495         {
1496           if ((*p)->are_addresses_set())
1497             continue;
1498
1499           (*p)->add_initial_output_data(os);
1500           (*p)->update_flags_for_output_section(seg_flags);
1501           (*p)->set_addresses(addr, addr);
1502           break;
1503         }
1504
1505       (*p)->add_output_section_to_load(this, os, seg_flags);
1506       break;
1507     }
1508
1509   if (p == this->segment_list_.end())
1510     {
1511       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1512                                                        seg_flags);
1513       if (os->is_large_data_section())
1514         oseg->set_is_large_data_segment();
1515       oseg->add_output_section_to_load(this, os, seg_flags);
1516       if (is_address_set)
1517         oseg->set_addresses(addr, addr);
1518     }
1519
1520   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1521   // segment.
1522   if (os->type() == elfcpp::SHT_NOTE)
1523     {
1524       // See if we already have an equivalent PT_NOTE segment.
1525       for (p = this->segment_list_.begin();
1526            p != segment_list_.end();
1527            ++p)
1528         {
1529           if ((*p)->type() == elfcpp::PT_NOTE
1530               && (((*p)->flags() & elfcpp::PF_W)
1531                   == (seg_flags & elfcpp::PF_W)))
1532             {
1533               (*p)->add_output_section_to_nonload(os, seg_flags);
1534               break;
1535             }
1536         }
1537
1538       if (p == this->segment_list_.end())
1539         {
1540           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1541                                                            seg_flags);
1542           oseg->add_output_section_to_nonload(os, seg_flags);
1543         }
1544     }
1545
1546   // If we see a loadable SHF_TLS section, we create a PT_TLS
1547   // segment.  There can only be one such segment.
1548   if ((flags & elfcpp::SHF_TLS) != 0)
1549     {
1550       if (this->tls_segment_ == NULL)
1551         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1552       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1553     }
1554
1555   // If -z relro is in effect, and we see a relro section, we create a
1556   // PT_GNU_RELRO segment.  There can only be one such segment.
1557   if (os->is_relro() && parameters->options().relro())
1558     {
1559       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1560       if (this->relro_segment_ == NULL)
1561         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1562       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1563     }
1564
1565   // If we see a section named .interp, put it into a PT_INTERP
1566   // segment.  This seems broken to me, but this is what GNU ld does,
1567   // and glibc expects it.
1568   if (strcmp(os->name(), ".interp") == 0
1569       && !this->script_options_->saw_phdrs_clause())
1570     {
1571       if (this->interp_segment_ == NULL)
1572         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1573       else
1574         gold_warning(_("multiple '.interp' sections in input files "
1575                        "may cause confusing PT_INTERP segment"));
1576       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1577     }
1578 }
1579
1580 // Make an output section for a script.
1581
1582 Output_section*
1583 Layout::make_output_section_for_script(
1584     const char* name,
1585     Script_sections::Section_type section_type)
1586 {
1587   name = this->namepool_.add(name, false, NULL);
1588   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1589   if (section_type == Script_sections::ST_NOLOAD)
1590     sh_flags = 0;
1591   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1592                                                  sh_flags, ORDER_INVALID,
1593                                                  false);
1594   os->set_found_in_sections_clause();
1595   if (section_type == Script_sections::ST_NOLOAD)
1596     os->set_is_noload();
1597   return os;
1598 }
1599
1600 // Return the number of segments we expect to see.
1601
1602 size_t
1603 Layout::expected_segment_count() const
1604 {
1605   size_t ret = this->segment_list_.size();
1606
1607   // If we didn't see a SECTIONS clause in a linker script, we should
1608   // already have the complete list of segments.  Otherwise we ask the
1609   // SECTIONS clause how many segments it expects, and add in the ones
1610   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1611
1612   if (!this->script_options_->saw_sections_clause())
1613     return ret;
1614   else
1615     {
1616       const Script_sections* ss = this->script_options_->script_sections();
1617       return ret + ss->expected_segment_count(this);
1618     }
1619 }
1620
1621 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1622 // is whether we saw a .note.GNU-stack section in the object file.
1623 // GNU_STACK_FLAGS is the section flags.  The flags give the
1624 // protection required for stack memory.  We record this in an
1625 // executable as a PT_GNU_STACK segment.  If an object file does not
1626 // have a .note.GNU-stack segment, we must assume that it is an old
1627 // object.  On some targets that will force an executable stack.
1628
1629 void
1630 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1631                          const Object* obj)
1632 {
1633   if (!seen_gnu_stack)
1634     {
1635       this->input_without_gnu_stack_note_ = true;
1636       if (parameters->options().warn_execstack()
1637           && parameters->target().is_default_stack_executable())
1638         gold_warning(_("%s: missing .note.GNU-stack section"
1639                        " implies executable stack"),
1640                      obj->name().c_str());
1641     }
1642   else
1643     {
1644       this->input_with_gnu_stack_note_ = true;
1645       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1646         {
1647           this->input_requires_executable_stack_ = true;
1648           if (parameters->options().warn_execstack()
1649               || parameters->options().is_stack_executable())
1650             gold_warning(_("%s: requires executable stack"),
1651                          obj->name().c_str());
1652         }
1653     }
1654 }
1655
1656 // Create automatic note sections.
1657
1658 void
1659 Layout::create_notes()
1660 {
1661   this->create_gold_note();
1662   this->create_executable_stack_info();
1663   this->create_build_id();
1664 }
1665
1666 // Create the dynamic sections which are needed before we read the
1667 // relocs.
1668
1669 void
1670 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1671 {
1672   if (parameters->doing_static_link())
1673     return;
1674
1675   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1676                                                        elfcpp::SHT_DYNAMIC,
1677                                                        (elfcpp::SHF_ALLOC
1678                                                         | elfcpp::SHF_WRITE),
1679                                                        false, ORDER_RELRO,
1680                                                        true);
1681
1682   this->dynamic_symbol_ =
1683     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1684                                   this->dynamic_section_, 0, 0,
1685                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1686                                   elfcpp::STV_HIDDEN, 0, false, false);
1687
1688   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1689
1690   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1691 }
1692
1693 // For each output section whose name can be represented as C symbol,
1694 // define __start and __stop symbols for the section.  This is a GNU
1695 // extension.
1696
1697 void
1698 Layout::define_section_symbols(Symbol_table* symtab)
1699 {
1700   for (Section_list::const_iterator p = this->section_list_.begin();
1701        p != this->section_list_.end();
1702        ++p)
1703     {
1704       const char* const name = (*p)->name();
1705       if (is_cident(name))
1706         {
1707           const std::string name_string(name);
1708           const std::string start_name(cident_section_start_prefix
1709                                        + name_string);
1710           const std::string stop_name(cident_section_stop_prefix
1711                                       + name_string);
1712
1713           symtab->define_in_output_data(start_name.c_str(),
1714                                         NULL, // version
1715                                         Symbol_table::PREDEFINED,
1716                                         *p,
1717                                         0, // value
1718                                         0, // symsize
1719                                         elfcpp::STT_NOTYPE,
1720                                         elfcpp::STB_GLOBAL,
1721                                         elfcpp::STV_DEFAULT,
1722                                         0, // nonvis
1723                                         false, // offset_is_from_end
1724                                         true); // only_if_ref
1725
1726           symtab->define_in_output_data(stop_name.c_str(),
1727                                         NULL, // version
1728                                         Symbol_table::PREDEFINED,
1729                                         *p,
1730                                         0, // value
1731                                         0, // symsize
1732                                         elfcpp::STT_NOTYPE,
1733                                         elfcpp::STB_GLOBAL,
1734                                         elfcpp::STV_DEFAULT,
1735                                         0, // nonvis
1736                                         true, // offset_is_from_end
1737                                         true); // only_if_ref
1738         }
1739     }
1740 }
1741
1742 // Define symbols for group signatures.
1743
1744 void
1745 Layout::define_group_signatures(Symbol_table* symtab)
1746 {
1747   for (Group_signatures::iterator p = this->group_signatures_.begin();
1748        p != this->group_signatures_.end();
1749        ++p)
1750     {
1751       Symbol* sym = symtab->lookup(p->signature, NULL);
1752       if (sym != NULL)
1753         p->section->set_info_symndx(sym);
1754       else
1755         {
1756           // Force the name of the group section to the group
1757           // signature, and use the group's section symbol as the
1758           // signature symbol.
1759           if (strcmp(p->section->name(), p->signature) != 0)
1760             {
1761               const char* name = this->namepool_.add(p->signature,
1762                                                      true, NULL);
1763               p->section->set_name(name);
1764             }
1765           p->section->set_needs_symtab_index();
1766           p->section->set_info_section_symndx(p->section);
1767         }
1768     }
1769
1770   this->group_signatures_.clear();
1771 }
1772
1773 // Find the first read-only PT_LOAD segment, creating one if
1774 // necessary.
1775
1776 Output_segment*
1777 Layout::find_first_load_seg()
1778 {
1779   Output_segment* best = NULL;
1780   for (Segment_list::const_iterator p = this->segment_list_.begin();
1781        p != this->segment_list_.end();
1782        ++p)
1783     {
1784       if ((*p)->type() == elfcpp::PT_LOAD
1785           && ((*p)->flags() & elfcpp::PF_R) != 0
1786           && (parameters->options().omagic()
1787               || ((*p)->flags() & elfcpp::PF_W) == 0))
1788         {
1789           if (best == NULL || this->segment_precedes(*p, best))
1790             best = *p;
1791         }
1792     }
1793   if (best != NULL)
1794     return best;
1795
1796   gold_assert(!this->script_options_->saw_phdrs_clause());
1797
1798   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1799                                                        elfcpp::PF_R);
1800   return load_seg;
1801 }
1802
1803 // Save states of all current output segments.  Store saved states
1804 // in SEGMENT_STATES.
1805
1806 void
1807 Layout::save_segments(Segment_states* segment_states)
1808 {
1809   for (Segment_list::const_iterator p = this->segment_list_.begin();
1810        p != this->segment_list_.end();
1811        ++p)
1812     {
1813       Output_segment* segment = *p;
1814       // Shallow copy.
1815       Output_segment* copy = new Output_segment(*segment);
1816       (*segment_states)[segment] = copy;
1817     }
1818 }
1819
1820 // Restore states of output segments and delete any segment not found in
1821 // SEGMENT_STATES.
1822
1823 void
1824 Layout::restore_segments(const Segment_states* segment_states)
1825 {
1826   // Go through the segment list and remove any segment added in the
1827   // relaxation loop.
1828   this->tls_segment_ = NULL;
1829   this->relro_segment_ = NULL;
1830   Segment_list::iterator list_iter = this->segment_list_.begin();
1831   while (list_iter != this->segment_list_.end())
1832     {
1833       Output_segment* segment = *list_iter;
1834       Segment_states::const_iterator states_iter =
1835           segment_states->find(segment);
1836       if (states_iter != segment_states->end())
1837         {
1838           const Output_segment* copy = states_iter->second;
1839           // Shallow copy to restore states.
1840           *segment = *copy;
1841
1842           // Also fix up TLS and RELRO segment pointers as appropriate.
1843           if (segment->type() == elfcpp::PT_TLS)
1844             this->tls_segment_ = segment;
1845           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1846             this->relro_segment_ = segment;
1847
1848           ++list_iter;
1849         } 
1850       else
1851         {
1852           list_iter = this->segment_list_.erase(list_iter); 
1853           // This is a segment created during section layout.  It should be
1854           // safe to remove it since we should have removed all pointers to it.
1855           delete segment;
1856         }
1857     }
1858 }
1859
1860 // Clean up after relaxation so that sections can be laid out again.
1861
1862 void
1863 Layout::clean_up_after_relaxation()
1864 {
1865   // Restore the segments to point state just prior to the relaxation loop.
1866   Script_sections* script_section = this->script_options_->script_sections();
1867   script_section->release_segments();
1868   this->restore_segments(this->segment_states_);
1869
1870   // Reset section addresses and file offsets
1871   for (Section_list::iterator p = this->section_list_.begin();
1872        p != this->section_list_.end();
1873        ++p)
1874     {
1875       (*p)->restore_states();
1876
1877       // If an input section changes size because of relaxation,
1878       // we need to adjust the section offsets of all input sections.
1879       // after such a section.
1880       if ((*p)->section_offsets_need_adjustment())
1881         (*p)->adjust_section_offsets();
1882
1883       (*p)->reset_address_and_file_offset();
1884     }
1885   
1886   // Reset special output object address and file offsets.
1887   for (Data_list::iterator p = this->special_output_list_.begin();
1888        p != this->special_output_list_.end();
1889        ++p)
1890     (*p)->reset_address_and_file_offset();
1891
1892   // A linker script may have created some output section data objects.
1893   // They are useless now.
1894   for (Output_section_data_list::const_iterator p =
1895          this->script_output_section_data_list_.begin();
1896        p != this->script_output_section_data_list_.end();
1897        ++p)
1898     delete *p;
1899   this->script_output_section_data_list_.clear(); 
1900 }
1901
1902 // Prepare for relaxation.
1903
1904 void
1905 Layout::prepare_for_relaxation()
1906 {
1907   // Create an relaxation debug check if in debugging mode.
1908   if (is_debugging_enabled(DEBUG_RELAXATION))
1909     this->relaxation_debug_check_ = new Relaxation_debug_check();
1910
1911   // Save segment states.
1912   this->segment_states_ = new Segment_states();
1913   this->save_segments(this->segment_states_);
1914
1915   for(Section_list::const_iterator p = this->section_list_.begin();
1916       p != this->section_list_.end();
1917       ++p)
1918     (*p)->save_states();
1919
1920   if (is_debugging_enabled(DEBUG_RELAXATION))
1921     this->relaxation_debug_check_->check_output_data_for_reset_values(
1922         this->section_list_, this->special_output_list_);
1923
1924   // Also enable recording of output section data from scripts.
1925   this->record_output_section_data_from_script_ = true;
1926 }
1927
1928 // Relaxation loop body:  If target has no relaxation, this runs only once
1929 // Otherwise, the target relaxation hook is called at the end of
1930 // each iteration.  If the hook returns true, it means re-layout of
1931 // section is required.  
1932 //
1933 // The number of segments created by a linking script without a PHDRS
1934 // clause may be affected by section sizes and alignments.  There is
1935 // a remote chance that relaxation causes different number of PT_LOAD
1936 // segments are created and sections are attached to different segments.
1937 // Therefore, we always throw away all segments created during section
1938 // layout.  In order to be able to restart the section layout, we keep
1939 // a copy of the segment list right before the relaxation loop and use
1940 // that to restore the segments.
1941 // 
1942 // PASS is the current relaxation pass number. 
1943 // SYMTAB is a symbol table.
1944 // PLOAD_SEG is the address of a pointer for the load segment.
1945 // PHDR_SEG is a pointer to the PHDR segment.
1946 // SEGMENT_HEADERS points to the output segment header.
1947 // FILE_HEADER points to the output file header.
1948 // PSHNDX is the address to store the output section index.
1949
1950 off_t inline
1951 Layout::relaxation_loop_body(
1952     int pass,
1953     Target* target,
1954     Symbol_table* symtab,
1955     Output_segment** pload_seg,
1956     Output_segment* phdr_seg,
1957     Output_segment_headers* segment_headers,
1958     Output_file_header* file_header,
1959     unsigned int* pshndx)
1960 {
1961   // If this is not the first iteration, we need to clean up after
1962   // relaxation so that we can lay out the sections again.
1963   if (pass != 0)
1964     this->clean_up_after_relaxation();
1965
1966   // If there is a SECTIONS clause, put all the input sections into
1967   // the required order.
1968   Output_segment* load_seg;
1969   if (this->script_options_->saw_sections_clause())
1970     load_seg = this->set_section_addresses_from_script(symtab);
1971   else if (parameters->options().relocatable())
1972     load_seg = NULL;
1973   else
1974     load_seg = this->find_first_load_seg();
1975
1976   if (parameters->options().oformat_enum()
1977       != General_options::OBJECT_FORMAT_ELF)
1978     load_seg = NULL;
1979
1980   // If the user set the address of the text segment, that may not be
1981   // compatible with putting the segment headers and file headers into
1982   // that segment.
1983   if (parameters->options().user_set_Ttext())
1984     load_seg = NULL;
1985
1986   gold_assert(phdr_seg == NULL
1987               || load_seg != NULL
1988               || this->script_options_->saw_sections_clause());
1989
1990   // If the address of the load segment we found has been set by
1991   // --section-start rather than by a script, then adjust the VMA and
1992   // LMA downward if possible to include the file and section headers.
1993   uint64_t header_gap = 0;
1994   if (load_seg != NULL
1995       && load_seg->are_addresses_set()
1996       && !this->script_options_->saw_sections_clause()
1997       && !parameters->options().relocatable())
1998     {
1999       file_header->finalize_data_size();
2000       segment_headers->finalize_data_size();
2001       size_t sizeof_headers = (file_header->data_size()
2002                                + segment_headers->data_size());
2003       const uint64_t abi_pagesize = target->abi_pagesize();
2004       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2005       hdr_paddr &= ~(abi_pagesize - 1);
2006       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2007       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2008         load_seg = NULL;
2009       else
2010         {
2011           load_seg->set_addresses(load_seg->vaddr() - subtract,
2012                                   load_seg->paddr() - subtract);
2013           header_gap = subtract - sizeof_headers;
2014         }
2015     }
2016
2017   // Lay out the segment headers.
2018   if (!parameters->options().relocatable())
2019     {
2020       gold_assert(segment_headers != NULL);
2021       if (header_gap != 0 && load_seg != NULL)
2022         {
2023           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2024           load_seg->add_initial_output_data(z);
2025         }
2026       if (load_seg != NULL)
2027         load_seg->add_initial_output_data(segment_headers);
2028       if (phdr_seg != NULL)
2029         phdr_seg->add_initial_output_data(segment_headers);
2030     }
2031
2032   // Lay out the file header.
2033   if (load_seg != NULL)
2034     load_seg->add_initial_output_data(file_header);
2035
2036   if (this->script_options_->saw_phdrs_clause()
2037       && !parameters->options().relocatable())
2038     {
2039       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2040       // clause in a linker script.
2041       Script_sections* ss = this->script_options_->script_sections();
2042       ss->put_headers_in_phdrs(file_header, segment_headers);
2043     }
2044
2045   // We set the output section indexes in set_segment_offsets and
2046   // set_section_indexes.
2047   *pshndx = 1;
2048
2049   // Set the file offsets of all the segments, and all the sections
2050   // they contain.
2051   off_t off;
2052   if (!parameters->options().relocatable())
2053     off = this->set_segment_offsets(target, load_seg, pshndx);
2054   else
2055     off = this->set_relocatable_section_offsets(file_header, pshndx);
2056
2057    // Verify that the dummy relaxation does not change anything.
2058   if (is_debugging_enabled(DEBUG_RELAXATION))
2059     {
2060       if (pass == 0)
2061         this->relaxation_debug_check_->read_sections(this->section_list_);
2062       else
2063         this->relaxation_debug_check_->verify_sections(this->section_list_);
2064     }
2065
2066   *pload_seg = load_seg;
2067   return off;
2068 }
2069
2070 // Search the list of patterns and find the postion of the given section
2071 // name in the output section.  If the section name matches a glob
2072 // pattern and a non-glob name, then the non-glob position takes
2073 // precedence.  Return 0 if no match is found.
2074
2075 unsigned int
2076 Layout::find_section_order_index(const std::string& section_name)
2077 {
2078   Unordered_map<std::string, unsigned int>::iterator map_it;
2079   map_it = this->input_section_position_.find(section_name);
2080   if (map_it != this->input_section_position_.end())
2081     return map_it->second;
2082
2083   // Absolute match failed.  Linear search the glob patterns.
2084   std::vector<std::string>::iterator it;
2085   for (it = this->input_section_glob_.begin();
2086        it != this->input_section_glob_.end();
2087        ++it)
2088     {
2089        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2090          {
2091            map_it = this->input_section_position_.find(*it);
2092            gold_assert(map_it != this->input_section_position_.end());
2093            return map_it->second;
2094          }
2095     }
2096   return 0;
2097 }
2098
2099 // Read the sequence of input sections from the file specified with
2100 // --section-ordering-file.
2101
2102 void
2103 Layout::read_layout_from_file()
2104 {
2105   const char* filename = parameters->options().section_ordering_file();
2106   std::ifstream in;
2107   std::string line;
2108
2109   in.open(filename);
2110   if (!in)
2111     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2112                filename, strerror(errno));
2113
2114   std::getline(in, line);   // this chops off the trailing \n, if any
2115   unsigned int position = 1;
2116
2117   while (in)
2118     {
2119       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2120         line.resize(line.length() - 1);
2121       // Ignore comments, beginning with '#'
2122       if (line[0] == '#')
2123         {
2124           std::getline(in, line);
2125           continue;
2126         }
2127       this->input_section_position_[line] = position;
2128       // Store all glob patterns in a vector.
2129       if (is_wildcard_string(line.c_str()))
2130         this->input_section_glob_.push_back(line);
2131       position++;
2132       std::getline(in, line);
2133     }
2134 }
2135
2136 // Finalize the layout.  When this is called, we have created all the
2137 // output sections and all the output segments which are based on
2138 // input sections.  We have several things to do, and we have to do
2139 // them in the right order, so that we get the right results correctly
2140 // and efficiently.
2141
2142 // 1) Finalize the list of output segments and create the segment
2143 // table header.
2144
2145 // 2) Finalize the dynamic symbol table and associated sections.
2146
2147 // 3) Determine the final file offset of all the output segments.
2148
2149 // 4) Determine the final file offset of all the SHF_ALLOC output
2150 // sections.
2151
2152 // 5) Create the symbol table sections and the section name table
2153 // section.
2154
2155 // 6) Finalize the symbol table: set symbol values to their final
2156 // value and make a final determination of which symbols are going
2157 // into the output symbol table.
2158
2159 // 7) Create the section table header.
2160
2161 // 8) Determine the final file offset of all the output sections which
2162 // are not SHF_ALLOC, including the section table header.
2163
2164 // 9) Finalize the ELF file header.
2165
2166 // This function returns the size of the output file.
2167
2168 off_t
2169 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2170                  Target* target, const Task* task)
2171 {
2172   target->finalize_sections(this, input_objects, symtab);
2173
2174   this->count_local_symbols(task, input_objects);
2175
2176   this->link_stabs_sections();
2177
2178   Output_segment* phdr_seg = NULL;
2179   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2180     {
2181       // There was a dynamic object in the link.  We need to create
2182       // some information for the dynamic linker.
2183
2184       // Create the PT_PHDR segment which will hold the program
2185       // headers.
2186       if (!this->script_options_->saw_phdrs_clause())
2187         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2188
2189       // Create the dynamic symbol table, including the hash table.
2190       Output_section* dynstr;
2191       std::vector<Symbol*> dynamic_symbols;
2192       unsigned int local_dynamic_count;
2193       Versions versions(*this->script_options()->version_script_info(),
2194                         &this->dynpool_);
2195       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2196                                   &local_dynamic_count, &dynamic_symbols,
2197                                   &versions);
2198
2199       // Create the .interp section to hold the name of the
2200       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2201       // if we saw a .interp section in an input file.
2202       if ((!parameters->options().shared()
2203            || parameters->options().dynamic_linker() != NULL)
2204           && this->interp_segment_ == NULL)
2205         this->create_interp(target);
2206
2207       // Finish the .dynamic section to hold the dynamic data, and put
2208       // it in a PT_DYNAMIC segment.
2209       this->finish_dynamic_section(input_objects, symtab);
2210
2211       // We should have added everything we need to the dynamic string
2212       // table.
2213       this->dynpool_.set_string_offsets();
2214
2215       // Create the version sections.  We can't do this until the
2216       // dynamic string table is complete.
2217       this->create_version_sections(&versions, symtab, local_dynamic_count,
2218                                     dynamic_symbols, dynstr);
2219
2220       // Set the size of the _DYNAMIC symbol.  We can't do this until
2221       // after we call create_version_sections.
2222       this->set_dynamic_symbol_size(symtab);
2223     }
2224   
2225   // Create segment headers.
2226   Output_segment_headers* segment_headers =
2227     (parameters->options().relocatable()
2228      ? NULL
2229      : new Output_segment_headers(this->segment_list_));
2230
2231   // Lay out the file header.
2232   Output_file_header* file_header = new Output_file_header(target, symtab,
2233                                                            segment_headers);
2234
2235   this->special_output_list_.push_back(file_header);
2236   if (segment_headers != NULL)
2237     this->special_output_list_.push_back(segment_headers);
2238
2239   // Find approriate places for orphan output sections if we are using
2240   // a linker script.
2241   if (this->script_options_->saw_sections_clause())
2242     this->place_orphan_sections_in_script();
2243   
2244   Output_segment* load_seg;
2245   off_t off;
2246   unsigned int shndx;
2247   int pass = 0;
2248
2249   // Take a snapshot of the section layout as needed.
2250   if (target->may_relax())
2251     this->prepare_for_relaxation();
2252   
2253   // Run the relaxation loop to lay out sections.
2254   do
2255     {
2256       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2257                                        phdr_seg, segment_headers, file_header,
2258                                        &shndx);
2259       pass++;
2260     }
2261   while (target->may_relax()
2262          && target->relax(pass, input_objects, symtab, this, task));
2263
2264   // Set the file offsets of all the non-data sections we've seen so
2265   // far which don't have to wait for the input sections.  We need
2266   // this in order to finalize local symbols in non-allocated
2267   // sections.
2268   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2269
2270   // Set the section indexes of all unallocated sections seen so far,
2271   // in case any of them are somehow referenced by a symbol.
2272   shndx = this->set_section_indexes(shndx);
2273
2274   // Create the symbol table sections.
2275   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2276   if (!parameters->doing_static_link())
2277     this->assign_local_dynsym_offsets(input_objects);
2278
2279   // Process any symbol assignments from a linker script.  This must
2280   // be called after the symbol table has been finalized.
2281   this->script_options_->finalize_symbols(symtab, this);
2282
2283   // Create the incremental inputs sections.
2284   if (this->incremental_inputs_)
2285     {
2286       this->incremental_inputs_->finalize();
2287       this->create_incremental_info_sections(symtab);
2288     }
2289
2290   // Create the .shstrtab section.
2291   Output_section* shstrtab_section = this->create_shstrtab();
2292
2293   // Set the file offsets of the rest of the non-data sections which
2294   // don't have to wait for the input sections.
2295   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2296
2297   // Now that all sections have been created, set the section indexes
2298   // for any sections which haven't been done yet.
2299   shndx = this->set_section_indexes(shndx);
2300
2301   // Create the section table header.
2302   this->create_shdrs(shstrtab_section, &off);
2303
2304   // If there are no sections which require postprocessing, we can
2305   // handle the section names now, and avoid a resize later.
2306   if (!this->any_postprocessing_sections_)
2307     {
2308       off = this->set_section_offsets(off,
2309                                       POSTPROCESSING_SECTIONS_PASS);
2310       off =
2311           this->set_section_offsets(off,
2312                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2313     }
2314
2315   file_header->set_section_info(this->section_headers_, shstrtab_section);
2316
2317   // Now we know exactly where everything goes in the output file
2318   // (except for non-allocated sections which require postprocessing).
2319   Output_data::layout_complete();
2320
2321   this->output_file_size_ = off;
2322
2323   return off;
2324 }
2325
2326 // Create a note header following the format defined in the ELF ABI.
2327 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2328 // of the section to create, DESCSZ is the size of the descriptor.
2329 // ALLOCATE is true if the section should be allocated in memory.
2330 // This returns the new note section.  It sets *TRAILING_PADDING to
2331 // the number of trailing zero bytes required.
2332
2333 Output_section*
2334 Layout::create_note(const char* name, int note_type,
2335                     const char* section_name, size_t descsz,
2336                     bool allocate, size_t* trailing_padding)
2337 {
2338   // Authorities all agree that the values in a .note field should
2339   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2340   // they differ on what the alignment is for 64-bit binaries.
2341   // The GABI says unambiguously they take 8-byte alignment:
2342   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2343   // Other documentation says alignment should always be 4 bytes:
2344   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2345   // GNU ld and GNU readelf both support the latter (at least as of
2346   // version 2.16.91), and glibc always generates the latter for
2347   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2348   // here.
2349 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2350   const int size = parameters->target().get_size();
2351 #else
2352   const int size = 32;
2353 #endif
2354
2355   // The contents of the .note section.
2356   size_t namesz = strlen(name) + 1;
2357   size_t aligned_namesz = align_address(namesz, size / 8);
2358   size_t aligned_descsz = align_address(descsz, size / 8);
2359
2360   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2361
2362   unsigned char* buffer = new unsigned char[notehdrsz];
2363   memset(buffer, 0, notehdrsz);
2364
2365   bool is_big_endian = parameters->target().is_big_endian();
2366
2367   if (size == 32)
2368     {
2369       if (!is_big_endian)
2370         {
2371           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2372           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2373           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2374         }
2375       else
2376         {
2377           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2378           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2379           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2380         }
2381     }
2382   else if (size == 64)
2383     {
2384       if (!is_big_endian)
2385         {
2386           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2387           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2388           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2389         }
2390       else
2391         {
2392           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2393           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2394           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2395         }
2396     }
2397   else
2398     gold_unreachable();
2399
2400   memcpy(buffer + 3 * (size / 8), name, namesz);
2401
2402   elfcpp::Elf_Xword flags = 0;
2403   Output_section_order order = ORDER_INVALID;
2404   if (allocate)
2405     {
2406       flags = elfcpp::SHF_ALLOC;
2407       order = ORDER_RO_NOTE;
2408     }
2409   Output_section* os = this->choose_output_section(NULL, section_name,
2410                                                    elfcpp::SHT_NOTE,
2411                                                    flags, false, order, false);
2412   if (os == NULL)
2413     return NULL;
2414
2415   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2416                                                            size / 8,
2417                                                            "** note header");
2418   os->add_output_section_data(posd);
2419
2420   *trailing_padding = aligned_descsz - descsz;
2421
2422   return os;
2423 }
2424
2425 // For an executable or shared library, create a note to record the
2426 // version of gold used to create the binary.
2427
2428 void
2429 Layout::create_gold_note()
2430 {
2431   if (parameters->options().relocatable()
2432       || parameters->incremental_update())
2433     return;
2434
2435   std::string desc = std::string("gold ") + gold::get_version_string();
2436
2437   size_t trailing_padding;
2438   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2439                                          ".note.gnu.gold-version", desc.size(),
2440                                          false, &trailing_padding);
2441   if (os == NULL)
2442     return;
2443
2444   Output_section_data* posd = new Output_data_const(desc, 4);
2445   os->add_output_section_data(posd);
2446
2447   if (trailing_padding > 0)
2448     {
2449       posd = new Output_data_zero_fill(trailing_padding, 0);
2450       os->add_output_section_data(posd);
2451     }
2452 }
2453
2454 // Record whether the stack should be executable.  This can be set
2455 // from the command line using the -z execstack or -z noexecstack
2456 // options.  Otherwise, if any input file has a .note.GNU-stack
2457 // section with the SHF_EXECINSTR flag set, the stack should be
2458 // executable.  Otherwise, if at least one input file a
2459 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2460 // section, we use the target default for whether the stack should be
2461 // executable.  Otherwise, we don't generate a stack note.  When
2462 // generating a object file, we create a .note.GNU-stack section with
2463 // the appropriate marking.  When generating an executable or shared
2464 // library, we create a PT_GNU_STACK segment.
2465
2466 void
2467 Layout::create_executable_stack_info()
2468 {
2469   bool is_stack_executable;
2470   if (parameters->options().is_execstack_set())
2471     is_stack_executable = parameters->options().is_stack_executable();
2472   else if (!this->input_with_gnu_stack_note_)
2473     return;
2474   else
2475     {
2476       if (this->input_requires_executable_stack_)
2477         is_stack_executable = true;
2478       else if (this->input_without_gnu_stack_note_)
2479         is_stack_executable =
2480           parameters->target().is_default_stack_executable();
2481       else
2482         is_stack_executable = false;
2483     }
2484
2485   if (parameters->options().relocatable())
2486     {
2487       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2488       elfcpp::Elf_Xword flags = 0;
2489       if (is_stack_executable)
2490         flags |= elfcpp::SHF_EXECINSTR;
2491       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2492                                 ORDER_INVALID, false);
2493     }
2494   else
2495     {
2496       if (this->script_options_->saw_phdrs_clause())
2497         return;
2498       int flags = elfcpp::PF_R | elfcpp::PF_W;
2499       if (is_stack_executable)
2500         flags |= elfcpp::PF_X;
2501       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2502     }
2503 }
2504
2505 // If --build-id was used, set up the build ID note.
2506
2507 void
2508 Layout::create_build_id()
2509 {
2510   if (!parameters->options().user_set_build_id())
2511     return;
2512
2513   const char* style = parameters->options().build_id();
2514   if (strcmp(style, "none") == 0)
2515     return;
2516
2517   // Set DESCSZ to the size of the note descriptor.  When possible,
2518   // set DESC to the note descriptor contents.
2519   size_t descsz;
2520   std::string desc;
2521   if (strcmp(style, "md5") == 0)
2522     descsz = 128 / 8;
2523   else if (strcmp(style, "sha1") == 0)
2524     descsz = 160 / 8;
2525   else if (strcmp(style, "uuid") == 0)
2526     {
2527       const size_t uuidsz = 128 / 8;
2528
2529       char buffer[uuidsz];
2530       memset(buffer, 0, uuidsz);
2531
2532       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2533       if (descriptor < 0)
2534         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2535                    strerror(errno));
2536       else
2537         {
2538           ssize_t got = ::read(descriptor, buffer, uuidsz);
2539           release_descriptor(descriptor, true);
2540           if (got < 0)
2541             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2542           else if (static_cast<size_t>(got) != uuidsz)
2543             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2544                        uuidsz, got);
2545         }
2546
2547       desc.assign(buffer, uuidsz);
2548       descsz = uuidsz;
2549     }
2550   else if (strncmp(style, "0x", 2) == 0)
2551     {
2552       hex_init();
2553       const char* p = style + 2;
2554       while (*p != '\0')
2555         {
2556           if (hex_p(p[0]) && hex_p(p[1]))
2557             {
2558               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2559               desc += c;
2560               p += 2;
2561             }
2562           else if (*p == '-' || *p == ':')
2563             ++p;
2564           else
2565             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2566                        style);
2567         }
2568       descsz = desc.size();
2569     }
2570   else
2571     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2572
2573   // Create the note.
2574   size_t trailing_padding;
2575   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2576                                          ".note.gnu.build-id", descsz, true,
2577                                          &trailing_padding);
2578   if (os == NULL)
2579     return;
2580
2581   if (!desc.empty())
2582     {
2583       // We know the value already, so we fill it in now.
2584       gold_assert(desc.size() == descsz);
2585
2586       Output_section_data* posd = new Output_data_const(desc, 4);
2587       os->add_output_section_data(posd);
2588
2589       if (trailing_padding != 0)
2590         {
2591           posd = new Output_data_zero_fill(trailing_padding, 0);
2592           os->add_output_section_data(posd);
2593         }
2594     }
2595   else
2596     {
2597       // We need to compute a checksum after we have completed the
2598       // link.
2599       gold_assert(trailing_padding == 0);
2600       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2601       os->add_output_section_data(this->build_id_note_);
2602     }
2603 }
2604
2605 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2606 // field of the former should point to the latter.  I'm not sure who
2607 // started this, but the GNU linker does it, and some tools depend
2608 // upon it.
2609
2610 void
2611 Layout::link_stabs_sections()
2612 {
2613   if (!this->have_stabstr_section_)
2614     return;
2615
2616   for (Section_list::iterator p = this->section_list_.begin();
2617        p != this->section_list_.end();
2618        ++p)
2619     {
2620       if ((*p)->type() != elfcpp::SHT_STRTAB)
2621         continue;
2622
2623       const char* name = (*p)->name();
2624       if (strncmp(name, ".stab", 5) != 0)
2625         continue;
2626
2627       size_t len = strlen(name);
2628       if (strcmp(name + len - 3, "str") != 0)
2629         continue;
2630
2631       std::string stab_name(name, len - 3);
2632       Output_section* stab_sec;
2633       stab_sec = this->find_output_section(stab_name.c_str());
2634       if (stab_sec != NULL)
2635         stab_sec->set_link_section(*p);
2636     }
2637 }
2638
2639 // Create .gnu_incremental_inputs and related sections needed
2640 // for the next run of incremental linking to check what has changed.
2641
2642 void
2643 Layout::create_incremental_info_sections(Symbol_table* symtab)
2644 {
2645   Incremental_inputs* incr = this->incremental_inputs_;
2646
2647   gold_assert(incr != NULL);
2648
2649   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2650   incr->create_data_sections(symtab);
2651
2652   // Add the .gnu_incremental_inputs section.
2653   const char* incremental_inputs_name =
2654     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2655   Output_section* incremental_inputs_os =
2656     this->make_output_section(incremental_inputs_name,
2657                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2658                               ORDER_INVALID, false);
2659   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2660
2661   // Add the .gnu_incremental_symtab section.
2662   const char* incremental_symtab_name =
2663     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2664   Output_section* incremental_symtab_os =
2665     this->make_output_section(incremental_symtab_name,
2666                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2667                               ORDER_INVALID, false);
2668   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2669   incremental_symtab_os->set_entsize(4);
2670
2671   // Add the .gnu_incremental_relocs section.
2672   const char* incremental_relocs_name =
2673     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2674   Output_section* incremental_relocs_os =
2675     this->make_output_section(incremental_relocs_name,
2676                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2677                               ORDER_INVALID, false);
2678   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2679   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2680
2681   // Add the .gnu_incremental_got_plt section.
2682   const char* incremental_got_plt_name =
2683     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2684   Output_section* incremental_got_plt_os =
2685     this->make_output_section(incremental_got_plt_name,
2686                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2687                               ORDER_INVALID, false);
2688   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2689
2690   // Add the .gnu_incremental_strtab section.
2691   const char* incremental_strtab_name =
2692     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2693   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2694                                                         elfcpp::SHT_STRTAB, 0,
2695                                                         ORDER_INVALID, false);
2696   Output_data_strtab* strtab_data =
2697       new Output_data_strtab(incr->get_stringpool());
2698   incremental_strtab_os->add_output_section_data(strtab_data);
2699
2700   incremental_inputs_os->set_after_input_sections();
2701   incremental_symtab_os->set_after_input_sections();
2702   incremental_relocs_os->set_after_input_sections();
2703   incremental_got_plt_os->set_after_input_sections();
2704
2705   incremental_inputs_os->set_link_section(incremental_strtab_os);
2706   incremental_symtab_os->set_link_section(incremental_inputs_os);
2707   incremental_relocs_os->set_link_section(incremental_inputs_os);
2708   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2709 }
2710
2711 // Return whether SEG1 should be before SEG2 in the output file.  This
2712 // is based entirely on the segment type and flags.  When this is
2713 // called the segment addresses has normally not yet been set.
2714
2715 bool
2716 Layout::segment_precedes(const Output_segment* seg1,
2717                          const Output_segment* seg2)
2718 {
2719   elfcpp::Elf_Word type1 = seg1->type();
2720   elfcpp::Elf_Word type2 = seg2->type();
2721
2722   // The single PT_PHDR segment is required to precede any loadable
2723   // segment.  We simply make it always first.
2724   if (type1 == elfcpp::PT_PHDR)
2725     {
2726       gold_assert(type2 != elfcpp::PT_PHDR);
2727       return true;
2728     }
2729   if (type2 == elfcpp::PT_PHDR)
2730     return false;
2731
2732   // The single PT_INTERP segment is required to precede any loadable
2733   // segment.  We simply make it always second.
2734   if (type1 == elfcpp::PT_INTERP)
2735     {
2736       gold_assert(type2 != elfcpp::PT_INTERP);
2737       return true;
2738     }
2739   if (type2 == elfcpp::PT_INTERP)
2740     return false;
2741
2742   // We then put PT_LOAD segments before any other segments.
2743   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2744     return true;
2745   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2746     return false;
2747
2748   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2749   // segment, because that is where the dynamic linker expects to find
2750   // it (this is just for efficiency; other positions would also work
2751   // correctly).
2752   if (type1 == elfcpp::PT_TLS
2753       && type2 != elfcpp::PT_TLS
2754       && type2 != elfcpp::PT_GNU_RELRO)
2755     return false;
2756   if (type2 == elfcpp::PT_TLS
2757       && type1 != elfcpp::PT_TLS
2758       && type1 != elfcpp::PT_GNU_RELRO)
2759     return true;
2760
2761   // We put the PT_GNU_RELRO segment last, because that is where the
2762   // dynamic linker expects to find it (as with PT_TLS, this is just
2763   // for efficiency).
2764   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2765     return false;
2766   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2767     return true;
2768
2769   const elfcpp::Elf_Word flags1 = seg1->flags();
2770   const elfcpp::Elf_Word flags2 = seg2->flags();
2771
2772   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2773   // by the numeric segment type and flags values.  There should not
2774   // be more than one segment with the same type and flags.
2775   if (type1 != elfcpp::PT_LOAD)
2776     {
2777       if (type1 != type2)
2778         return type1 < type2;
2779       gold_assert(flags1 != flags2);
2780       return flags1 < flags2;
2781     }
2782
2783   // If the addresses are set already, sort by load address.
2784   if (seg1->are_addresses_set())
2785     {
2786       if (!seg2->are_addresses_set())
2787         return true;
2788
2789       unsigned int section_count1 = seg1->output_section_count();
2790       unsigned int section_count2 = seg2->output_section_count();
2791       if (section_count1 == 0 && section_count2 > 0)
2792         return true;
2793       if (section_count1 > 0 && section_count2 == 0)
2794         return false;
2795
2796       uint64_t paddr1 = (seg1->are_addresses_set()
2797                          ? seg1->paddr()
2798                          : seg1->first_section_load_address());
2799       uint64_t paddr2 = (seg2->are_addresses_set()
2800                          ? seg2->paddr()
2801                          : seg2->first_section_load_address());
2802
2803       if (paddr1 != paddr2)
2804         return paddr1 < paddr2;
2805     }
2806   else if (seg2->are_addresses_set())
2807     return false;
2808
2809   // A segment which holds large data comes after a segment which does
2810   // not hold large data.
2811   if (seg1->is_large_data_segment())
2812     {
2813       if (!seg2->is_large_data_segment())
2814         return false;
2815     }
2816   else if (seg2->is_large_data_segment())
2817     return true;
2818
2819   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2820   // segments come before writable segments.  Then writable segments
2821   // with data come before writable segments without data.  Then
2822   // executable segments come before non-executable segments.  Then
2823   // the unlikely case of a non-readable segment comes before the
2824   // normal case of a readable segment.  If there are multiple
2825   // segments with the same type and flags, we require that the
2826   // address be set, and we sort by virtual address and then physical
2827   // address.
2828   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2829     return (flags1 & elfcpp::PF_W) == 0;
2830   if ((flags1 & elfcpp::PF_W) != 0
2831       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2832     return seg1->has_any_data_sections();
2833   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2834     return (flags1 & elfcpp::PF_X) != 0;
2835   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2836     return (flags1 & elfcpp::PF_R) == 0;
2837
2838   // We shouldn't get here--we shouldn't create segments which we
2839   // can't distinguish.
2840   gold_unreachable();
2841 }
2842
2843 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2844
2845 static off_t
2846 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2847 {
2848   uint64_t unsigned_off = off;
2849   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2850                           | (addr & (abi_pagesize - 1)));
2851   if (aligned_off < unsigned_off)
2852     aligned_off += abi_pagesize;
2853   return aligned_off;
2854 }
2855
2856 // Set the file offsets of all the segments, and all the sections they
2857 // contain.  They have all been created.  LOAD_SEG must be be laid out
2858 // first.  Return the offset of the data to follow.
2859
2860 off_t
2861 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2862                             unsigned int* pshndx)
2863 {
2864   // Sort them into the final order.
2865   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2866             Layout::Compare_segments());
2867
2868   // Find the PT_LOAD segments, and set their addresses and offsets
2869   // and their section's addresses and offsets.
2870   uint64_t addr;
2871   if (parameters->options().user_set_Ttext())
2872     addr = parameters->options().Ttext();
2873   else if (parameters->options().output_is_position_independent())
2874     addr = 0;
2875   else
2876     addr = target->default_text_segment_address();
2877   off_t off = 0;
2878
2879   // If LOAD_SEG is NULL, then the file header and segment headers
2880   // will not be loadable.  But they still need to be at offset 0 in
2881   // the file.  Set their offsets now.
2882   if (load_seg == NULL)
2883     {
2884       for (Data_list::iterator p = this->special_output_list_.begin();
2885            p != this->special_output_list_.end();
2886            ++p)
2887         {
2888           off = align_address(off, (*p)->addralign());
2889           (*p)->set_address_and_file_offset(0, off);
2890           off += (*p)->data_size();
2891         }
2892     }
2893
2894   unsigned int increase_relro = this->increase_relro_;
2895   if (this->script_options_->saw_sections_clause())
2896     increase_relro = 0;
2897
2898   const bool check_sections = parameters->options().check_sections();
2899   Output_segment* last_load_segment = NULL;
2900
2901   for (Segment_list::iterator p = this->segment_list_.begin();
2902        p != this->segment_list_.end();
2903        ++p)
2904     {
2905       if ((*p)->type() == elfcpp::PT_LOAD)
2906         {
2907           if (load_seg != NULL && load_seg != *p)
2908             gold_unreachable();
2909           load_seg = NULL;
2910
2911           bool are_addresses_set = (*p)->are_addresses_set();
2912           if (are_addresses_set)
2913             {
2914               // When it comes to setting file offsets, we care about
2915               // the physical address.
2916               addr = (*p)->paddr();
2917             }
2918           else if (parameters->options().user_set_Tdata()
2919                    && ((*p)->flags() & elfcpp::PF_W) != 0
2920                    && (!parameters->options().user_set_Tbss()
2921                        || (*p)->has_any_data_sections()))
2922             {
2923               addr = parameters->options().Tdata();
2924               are_addresses_set = true;
2925             }
2926           else if (parameters->options().user_set_Tbss()
2927                    && ((*p)->flags() & elfcpp::PF_W) != 0
2928                    && !(*p)->has_any_data_sections())
2929             {
2930               addr = parameters->options().Tbss();
2931               are_addresses_set = true;
2932             }
2933
2934           uint64_t orig_addr = addr;
2935           uint64_t orig_off = off;
2936
2937           uint64_t aligned_addr = 0;
2938           uint64_t abi_pagesize = target->abi_pagesize();
2939           uint64_t common_pagesize = target->common_pagesize();
2940
2941           if (!parameters->options().nmagic()
2942               && !parameters->options().omagic())
2943             (*p)->set_minimum_p_align(common_pagesize);
2944
2945           if (!are_addresses_set)
2946             {
2947               // Skip the address forward one page, maintaining the same
2948               // position within the page.  This lets us store both segments
2949               // overlapping on a single page in the file, but the loader will
2950               // put them on different pages in memory. We will revisit this
2951               // decision once we know the size of the segment.
2952
2953               addr = align_address(addr, (*p)->maximum_alignment());
2954               aligned_addr = addr;
2955
2956               if ((addr & (abi_pagesize - 1)) != 0)
2957                 addr = addr + abi_pagesize;
2958
2959               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2960             }
2961
2962           if (!parameters->options().nmagic()
2963               && !parameters->options().omagic())
2964             off = align_file_offset(off, addr, abi_pagesize);
2965           else if (load_seg == NULL)
2966             {
2967               // This is -N or -n with a section script which prevents
2968               // us from using a load segment.  We need to ensure that
2969               // the file offset is aligned to the alignment of the
2970               // segment.  This is because the linker script
2971               // implicitly assumed a zero offset.  If we don't align
2972               // here, then the alignment of the sections in the
2973               // linker script may not match the alignment of the
2974               // sections in the set_section_addresses call below,
2975               // causing an error about dot moving backward.
2976               off = align_address(off, (*p)->maximum_alignment());
2977             }
2978
2979           unsigned int shndx_hold = *pshndx;
2980           bool has_relro = false;
2981           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2982                                                           &increase_relro,
2983                                                           &has_relro,
2984                                                           &off, pshndx);
2985
2986           // Now that we know the size of this segment, we may be able
2987           // to save a page in memory, at the cost of wasting some
2988           // file space, by instead aligning to the start of a new
2989           // page.  Here we use the real machine page size rather than
2990           // the ABI mandated page size.  If the segment has been
2991           // aligned so that the relro data ends at a page boundary,
2992           // we do not try to realign it.
2993
2994           if (!are_addresses_set
2995               && !has_relro
2996               && aligned_addr != addr
2997               && !parameters->incremental())
2998             {
2999               uint64_t first_off = (common_pagesize
3000                                     - (aligned_addr
3001                                        & (common_pagesize - 1)));
3002               uint64_t last_off = new_addr & (common_pagesize - 1);
3003               if (first_off > 0
3004                   && last_off > 0
3005                   && ((aligned_addr & ~ (common_pagesize - 1))
3006                       != (new_addr & ~ (common_pagesize - 1)))
3007                   && first_off + last_off <= common_pagesize)
3008                 {
3009                   *pshndx = shndx_hold;
3010                   addr = align_address(aligned_addr, common_pagesize);
3011                   addr = align_address(addr, (*p)->maximum_alignment());
3012                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3013                   off = align_file_offset(off, addr, abi_pagesize);
3014
3015                   increase_relro = this->increase_relro_;
3016                   if (this->script_options_->saw_sections_clause())
3017                     increase_relro = 0;
3018                   has_relro = false;
3019
3020                   new_addr = (*p)->set_section_addresses(this, true, addr,
3021                                                          &increase_relro,
3022                                                          &has_relro,
3023                                                          &off, pshndx);
3024                 }
3025             }
3026
3027           addr = new_addr;
3028
3029           // Implement --check-sections.  We know that the segments
3030           // are sorted by LMA.
3031           if (check_sections && last_load_segment != NULL)
3032             {
3033               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3034               if (last_load_segment->paddr() + last_load_segment->memsz()
3035                   > (*p)->paddr())
3036                 {
3037                   unsigned long long lb1 = last_load_segment->paddr();
3038                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3039                   unsigned long long lb2 = (*p)->paddr();
3040                   unsigned long long le2 = lb2 + (*p)->memsz();
3041                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3042                                "[0x%llx -> 0x%llx]"),
3043                              lb1, le1, lb2, le2);
3044                 }
3045             }
3046           last_load_segment = *p;
3047         }
3048     }
3049
3050   // Handle the non-PT_LOAD segments, setting their offsets from their
3051   // section's offsets.
3052   for (Segment_list::iterator p = this->segment_list_.begin();
3053        p != this->segment_list_.end();
3054        ++p)
3055     {
3056       if ((*p)->type() != elfcpp::PT_LOAD)
3057         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3058                          ? increase_relro
3059                          : 0);
3060     }
3061
3062   // Set the TLS offsets for each section in the PT_TLS segment.
3063   if (this->tls_segment_ != NULL)
3064     this->tls_segment_->set_tls_offsets();
3065
3066   return off;
3067 }
3068
3069 // Set the offsets of all the allocated sections when doing a
3070 // relocatable link.  This does the same jobs as set_segment_offsets,
3071 // only for a relocatable link.
3072
3073 off_t
3074 Layout::set_relocatable_section_offsets(Output_data* file_header,
3075                                         unsigned int* pshndx)
3076 {
3077   off_t off = 0;
3078
3079   file_header->set_address_and_file_offset(0, 0);
3080   off += file_header->data_size();
3081
3082   for (Section_list::iterator p = this->section_list_.begin();
3083        p != this->section_list_.end();
3084        ++p)
3085     {
3086       // We skip unallocated sections here, except that group sections
3087       // have to come first.
3088       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3089           && (*p)->type() != elfcpp::SHT_GROUP)
3090         continue;
3091
3092       off = align_address(off, (*p)->addralign());
3093
3094       // The linker script might have set the address.
3095       if (!(*p)->is_address_valid())
3096         (*p)->set_address(0);
3097       (*p)->set_file_offset(off);
3098       (*p)->finalize_data_size();
3099       off += (*p)->data_size();
3100
3101       (*p)->set_out_shndx(*pshndx);
3102       ++*pshndx;
3103     }
3104
3105   return off;
3106 }
3107
3108 // Set the file offset of all the sections not associated with a
3109 // segment.
3110
3111 off_t
3112 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3113 {
3114   off_t startoff = off;
3115   off_t maxoff = off;
3116
3117   for (Section_list::iterator p = this->unattached_section_list_.begin();
3118        p != this->unattached_section_list_.end();
3119        ++p)
3120     {
3121       // The symtab section is handled in create_symtab_sections.
3122       if (*p == this->symtab_section_)
3123         continue;
3124
3125       // If we've already set the data size, don't set it again.
3126       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3127         continue;
3128
3129       if (pass == BEFORE_INPUT_SECTIONS_PASS
3130           && (*p)->requires_postprocessing())
3131         {
3132           (*p)->create_postprocessing_buffer();
3133           this->any_postprocessing_sections_ = true;
3134         }
3135
3136       if (pass == BEFORE_INPUT_SECTIONS_PASS
3137           && (*p)->after_input_sections())
3138         continue;
3139       else if (pass == POSTPROCESSING_SECTIONS_PASS
3140                && (!(*p)->after_input_sections()
3141                    || (*p)->type() == elfcpp::SHT_STRTAB))
3142         continue;
3143       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3144                && (!(*p)->after_input_sections()
3145                    || (*p)->type() != elfcpp::SHT_STRTAB))
3146         continue;
3147
3148       if (!parameters->incremental_update())
3149         {
3150           off = align_address(off, (*p)->addralign());
3151           (*p)->set_file_offset(off);
3152           (*p)->finalize_data_size();
3153         }
3154       else
3155         {
3156           // Incremental update: allocate file space from free list.
3157           (*p)->pre_finalize_data_size();
3158           off_t current_size = (*p)->current_data_size();
3159           off = this->allocate(current_size, (*p)->addralign(), startoff);
3160           if (off == -1)
3161             {
3162               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3163                 this->free_list_.dump();
3164               gold_assert((*p)->output_section() != NULL);
3165               gold_fallback(_("out of patch space for section %s; "
3166                               "relink with --incremental-full"),
3167                             (*p)->output_section()->name());
3168             }
3169           (*p)->set_file_offset(off);
3170           (*p)->finalize_data_size();
3171           if ((*p)->data_size() > current_size)
3172             {
3173               gold_assert((*p)->output_section() != NULL);
3174               gold_fallback(_("%s: section changed size; "
3175                               "relink with --incremental-full"),
3176                             (*p)->output_section()->name());
3177             }
3178           gold_debug(DEBUG_INCREMENTAL,
3179                      "set_section_offsets: %08lx %08lx %s",
3180                      static_cast<long>(off),
3181                      static_cast<long>((*p)->data_size()),
3182                      ((*p)->output_section() != NULL
3183                       ? (*p)->output_section()->name() : "(special)"));
3184         }
3185
3186       off += (*p)->data_size();
3187       if (off > maxoff)
3188         maxoff = off;
3189
3190       // At this point the name must be set.
3191       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3192         this->namepool_.add((*p)->name(), false, NULL);
3193     }
3194   return maxoff;
3195 }
3196
3197 // Set the section indexes of all the sections not associated with a
3198 // segment.
3199
3200 unsigned int
3201 Layout::set_section_indexes(unsigned int shndx)
3202 {
3203   for (Section_list::iterator p = this->unattached_section_list_.begin();
3204        p != this->unattached_section_list_.end();
3205        ++p)
3206     {
3207       if (!(*p)->has_out_shndx())
3208         {
3209           (*p)->set_out_shndx(shndx);
3210           ++shndx;
3211         }
3212     }
3213   return shndx;
3214 }
3215
3216 // Set the section addresses according to the linker script.  This is
3217 // only called when we see a SECTIONS clause.  This returns the
3218 // program segment which should hold the file header and segment
3219 // headers, if any.  It will return NULL if they should not be in a
3220 // segment.
3221
3222 Output_segment*
3223 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3224 {
3225   Script_sections* ss = this->script_options_->script_sections();
3226   gold_assert(ss->saw_sections_clause());
3227   return this->script_options_->set_section_addresses(symtab, this);
3228 }
3229
3230 // Place the orphan sections in the linker script.
3231
3232 void
3233 Layout::place_orphan_sections_in_script()
3234 {
3235   Script_sections* ss = this->script_options_->script_sections();
3236   gold_assert(ss->saw_sections_clause());
3237
3238   // Place each orphaned output section in the script.
3239   for (Section_list::iterator p = this->section_list_.begin();
3240        p != this->section_list_.end();
3241        ++p)
3242     {
3243       if (!(*p)->found_in_sections_clause())
3244         ss->place_orphan(*p);
3245     }
3246 }
3247
3248 // Count the local symbols in the regular symbol table and the dynamic
3249 // symbol table, and build the respective string pools.
3250
3251 void
3252 Layout::count_local_symbols(const Task* task,
3253                             const Input_objects* input_objects)
3254 {
3255   // First, figure out an upper bound on the number of symbols we'll
3256   // be inserting into each pool.  This helps us create the pools with
3257   // the right size, to avoid unnecessary hashtable resizing.
3258   unsigned int symbol_count = 0;
3259   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3260        p != input_objects->relobj_end();
3261        ++p)
3262     symbol_count += (*p)->local_symbol_count();
3263
3264   // Go from "upper bound" to "estimate."  We overcount for two
3265   // reasons: we double-count symbols that occur in more than one
3266   // object file, and we count symbols that are dropped from the
3267   // output.  Add it all together and assume we overcount by 100%.
3268   symbol_count /= 2;
3269
3270   // We assume all symbols will go into both the sympool and dynpool.
3271   this->sympool_.reserve(symbol_count);
3272   this->dynpool_.reserve(symbol_count);
3273
3274   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3275        p != input_objects->relobj_end();
3276        ++p)
3277     {
3278       Task_lock_obj<Object> tlo(task, *p);
3279       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3280     }
3281 }
3282
3283 // Create the symbol table sections.  Here we also set the final
3284 // values of the symbols.  At this point all the loadable sections are
3285 // fully laid out.  SHNUM is the number of sections so far.
3286
3287 void
3288 Layout::create_symtab_sections(const Input_objects* input_objects,
3289                                Symbol_table* symtab,
3290                                unsigned int shnum,
3291                                off_t* poff)
3292 {
3293   int symsize;
3294   unsigned int align;
3295   if (parameters->target().get_size() == 32)
3296     {
3297       symsize = elfcpp::Elf_sizes<32>::sym_size;
3298       align = 4;
3299     }
3300   else if (parameters->target().get_size() == 64)
3301     {
3302       symsize = elfcpp::Elf_sizes<64>::sym_size;
3303       align = 8;
3304     }
3305   else
3306     gold_unreachable();
3307
3308   // Compute file offsets relative to the start of the symtab section.
3309   off_t off = 0;
3310
3311   // Save space for the dummy symbol at the start of the section.  We
3312   // never bother to write this out--it will just be left as zero.
3313   off += symsize;
3314   unsigned int local_symbol_index = 1;
3315
3316   // Add STT_SECTION symbols for each Output section which needs one.
3317   for (Section_list::iterator p = this->section_list_.begin();
3318        p != this->section_list_.end();
3319        ++p)
3320     {
3321       if (!(*p)->needs_symtab_index())
3322         (*p)->set_symtab_index(-1U);
3323       else
3324         {
3325           (*p)->set_symtab_index(local_symbol_index);
3326           ++local_symbol_index;
3327           off += symsize;
3328         }
3329     }
3330
3331   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3332        p != input_objects->relobj_end();
3333        ++p)
3334     {
3335       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3336                                                         off, symtab);
3337       off += (index - local_symbol_index) * symsize;
3338       local_symbol_index = index;
3339     }
3340
3341   unsigned int local_symcount = local_symbol_index;
3342   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3343
3344   off_t dynoff;
3345   size_t dyn_global_index;
3346   size_t dyncount;
3347   if (this->dynsym_section_ == NULL)
3348     {
3349       dynoff = 0;
3350       dyn_global_index = 0;
3351       dyncount = 0;
3352     }
3353   else
3354     {
3355       dyn_global_index = this->dynsym_section_->info();
3356       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3357       dynoff = this->dynsym_section_->offset() + locsize;
3358       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3359       gold_assert(static_cast<off_t>(dyncount * symsize)
3360                   == this->dynsym_section_->data_size() - locsize);
3361     }
3362
3363   off_t global_off = off;
3364   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3365                          &this->sympool_, &local_symcount);
3366
3367   if (!parameters->options().strip_all())
3368     {
3369       this->sympool_.set_string_offsets();
3370
3371       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3372       Output_section* osymtab = this->make_output_section(symtab_name,
3373                                                           elfcpp::SHT_SYMTAB,
3374                                                           0, ORDER_INVALID,
3375                                                           false);
3376       this->symtab_section_ = osymtab;
3377
3378       Output_section_data* pos = new Output_data_fixed_space(off, align,
3379                                                              "** symtab");
3380       osymtab->add_output_section_data(pos);
3381
3382       // We generate a .symtab_shndx section if we have more than
3383       // SHN_LORESERVE sections.  Technically it is possible that we
3384       // don't need one, because it is possible that there are no
3385       // symbols in any of sections with indexes larger than
3386       // SHN_LORESERVE.  That is probably unusual, though, and it is
3387       // easier to always create one than to compute section indexes
3388       // twice (once here, once when writing out the symbols).
3389       if (shnum >= elfcpp::SHN_LORESERVE)
3390         {
3391           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3392                                                                false, NULL);
3393           Output_section* osymtab_xindex =
3394             this->make_output_section(symtab_xindex_name,
3395                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3396                                       ORDER_INVALID, false);
3397
3398           size_t symcount = off / symsize;
3399           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3400
3401           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3402
3403           osymtab_xindex->set_link_section(osymtab);
3404           osymtab_xindex->set_addralign(4);
3405           osymtab_xindex->set_entsize(4);
3406
3407           osymtab_xindex->set_after_input_sections();
3408
3409           // This tells the driver code to wait until the symbol table
3410           // has written out before writing out the postprocessing
3411           // sections, including the .symtab_shndx section.
3412           this->any_postprocessing_sections_ = true;
3413         }
3414
3415       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3416       Output_section* ostrtab = this->make_output_section(strtab_name,
3417                                                           elfcpp::SHT_STRTAB,
3418                                                           0, ORDER_INVALID,
3419                                                           false);
3420
3421       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3422       ostrtab->add_output_section_data(pstr);
3423
3424       off_t symtab_off;
3425       if (!parameters->incremental_update())
3426         symtab_off = align_address(*poff, align);
3427       else
3428         {
3429           symtab_off = this->allocate(off, align, *poff);
3430           if (off == -1)
3431             gold_fallback(_("out of patch space for symbol table; "
3432                             "relink with --incremental-full"));
3433           gold_debug(DEBUG_INCREMENTAL,
3434                      "create_symtab_sections: %08lx %08lx .symtab",
3435                      static_cast<long>(symtab_off),
3436                      static_cast<long>(off));
3437         }
3438
3439       symtab->set_file_offset(symtab_off + global_off);
3440       osymtab->set_file_offset(symtab_off);
3441       osymtab->finalize_data_size();
3442       osymtab->set_link_section(ostrtab);
3443       osymtab->set_info(local_symcount);
3444       osymtab->set_entsize(symsize);
3445
3446       if (symtab_off + off > *poff)
3447         *poff = symtab_off + off;
3448     }
3449 }
3450
3451 // Create the .shstrtab section, which holds the names of the
3452 // sections.  At the time this is called, we have created all the
3453 // output sections except .shstrtab itself.
3454
3455 Output_section*
3456 Layout::create_shstrtab()
3457 {
3458   // FIXME: We don't need to create a .shstrtab section if we are
3459   // stripping everything.
3460
3461   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3462
3463   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3464                                                  ORDER_INVALID, false);
3465
3466   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3467     {
3468       // We can't write out this section until we've set all the
3469       // section names, and we don't set the names of compressed
3470       // output sections until relocations are complete.  FIXME: With
3471       // the current names we use, this is unnecessary.
3472       os->set_after_input_sections();
3473     }
3474
3475   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3476   os->add_output_section_data(posd);
3477
3478   return os;
3479 }
3480
3481 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3482 // offset.
3483
3484 void
3485 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3486 {
3487   Output_section_headers* oshdrs;
3488   oshdrs = new Output_section_headers(this,
3489                                       &this->segment_list_,
3490                                       &this->section_list_,
3491                                       &this->unattached_section_list_,
3492                                       &this->namepool_,
3493                                       shstrtab_section);
3494   off_t off;
3495   if (!parameters->incremental_update())
3496     off = align_address(*poff, oshdrs->addralign());
3497   else
3498     {
3499       oshdrs->pre_finalize_data_size();
3500       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3501       if (off == -1)
3502           gold_fallback(_("out of patch space for section header table; "
3503                           "relink with --incremental-full"));
3504       gold_debug(DEBUG_INCREMENTAL,
3505                  "create_shdrs: %08lx %08lx (section header table)",
3506                  static_cast<long>(off),
3507                  static_cast<long>(off + oshdrs->data_size()));
3508     }
3509   oshdrs->set_address_and_file_offset(0, off);
3510   off += oshdrs->data_size();
3511   if (off > *poff)
3512     *poff = off;
3513   this->section_headers_ = oshdrs;
3514 }
3515
3516 // Count the allocated sections.
3517
3518 size_t
3519 Layout::allocated_output_section_count() const
3520 {
3521   size_t section_count = 0;
3522   for (Segment_list::const_iterator p = this->segment_list_.begin();
3523        p != this->segment_list_.end();
3524        ++p)
3525     section_count += (*p)->output_section_count();
3526   return section_count;
3527 }
3528
3529 // Create the dynamic symbol table.
3530
3531 void
3532 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3533                               Symbol_table* symtab,
3534                               Output_section** pdynstr,
3535                               unsigned int* plocal_dynamic_count,
3536                               std::vector<Symbol*>* pdynamic_symbols,
3537                               Versions* pversions)
3538 {
3539   // Count all the symbols in the dynamic symbol table, and set the
3540   // dynamic symbol indexes.
3541
3542   // Skip symbol 0, which is always all zeroes.
3543   unsigned int index = 1;
3544
3545   // Add STT_SECTION symbols for each Output section which needs one.
3546   for (Section_list::iterator p = this->section_list_.begin();
3547        p != this->section_list_.end();
3548        ++p)
3549     {
3550       if (!(*p)->needs_dynsym_index())
3551         (*p)->set_dynsym_index(-1U);
3552       else
3553         {
3554           (*p)->set_dynsym_index(index);
3555           ++index;
3556         }
3557     }
3558
3559   // Count the local symbols that need to go in the dynamic symbol table,
3560   // and set the dynamic symbol indexes.
3561   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3562        p != input_objects->relobj_end();
3563        ++p)
3564     {
3565       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3566       index = new_index;
3567     }
3568
3569   unsigned int local_symcount = index;
3570   *plocal_dynamic_count = local_symcount;
3571
3572   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3573                                      &this->dynpool_, pversions);
3574
3575   int symsize;
3576   unsigned int align;
3577   const int size = parameters->target().get_size();
3578   if (size == 32)
3579     {
3580       symsize = elfcpp::Elf_sizes<32>::sym_size;
3581       align = 4;
3582     }
3583   else if (size == 64)
3584     {
3585       symsize = elfcpp::Elf_sizes<64>::sym_size;
3586       align = 8;
3587     }
3588   else
3589     gold_unreachable();
3590
3591   // Create the dynamic symbol table section.
3592
3593   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3594                                                        elfcpp::SHT_DYNSYM,
3595                                                        elfcpp::SHF_ALLOC,
3596                                                        false,
3597                                                        ORDER_DYNAMIC_LINKER,
3598                                                        false);
3599
3600   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3601                                                            align,
3602                                                            "** dynsym");
3603   dynsym->add_output_section_data(odata);
3604
3605   dynsym->set_info(local_symcount);
3606   dynsym->set_entsize(symsize);
3607   dynsym->set_addralign(align);
3608
3609   this->dynsym_section_ = dynsym;
3610
3611   Output_data_dynamic* const odyn = this->dynamic_data_;
3612   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3613   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3614
3615   // If there are more than SHN_LORESERVE allocated sections, we
3616   // create a .dynsym_shndx section.  It is possible that we don't
3617   // need one, because it is possible that there are no dynamic
3618   // symbols in any of the sections with indexes larger than
3619   // SHN_LORESERVE.  This is probably unusual, though, and at this
3620   // time we don't know the actual section indexes so it is
3621   // inconvenient to check.
3622   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3623     {
3624       Output_section* dynsym_xindex =
3625         this->choose_output_section(NULL, ".dynsym_shndx",
3626                                     elfcpp::SHT_SYMTAB_SHNDX,
3627                                     elfcpp::SHF_ALLOC,
3628                                     false, ORDER_DYNAMIC_LINKER, false);
3629
3630       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3631
3632       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3633
3634       dynsym_xindex->set_link_section(dynsym);
3635       dynsym_xindex->set_addralign(4);
3636       dynsym_xindex->set_entsize(4);
3637
3638       dynsym_xindex->set_after_input_sections();
3639
3640       // This tells the driver code to wait until the symbol table has
3641       // written out before writing out the postprocessing sections,
3642       // including the .dynsym_shndx section.
3643       this->any_postprocessing_sections_ = true;
3644     }
3645
3646   // Create the dynamic string table section.
3647
3648   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3649                                                        elfcpp::SHT_STRTAB,
3650                                                        elfcpp::SHF_ALLOC,
3651                                                        false,
3652                                                        ORDER_DYNAMIC_LINKER,
3653                                                        false);
3654
3655   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3656   dynstr->add_output_section_data(strdata);
3657
3658   dynsym->set_link_section(dynstr);
3659   this->dynamic_section_->set_link_section(dynstr);
3660
3661   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3662   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3663
3664   *pdynstr = dynstr;
3665
3666   // Create the hash tables.
3667
3668   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3669       || strcmp(parameters->options().hash_style(), "both") == 0)
3670     {
3671       unsigned char* phash;
3672       unsigned int hashlen;
3673       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3674                                     &phash, &hashlen);
3675
3676       Output_section* hashsec =
3677         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3678                                     elfcpp::SHF_ALLOC, false,
3679                                     ORDER_DYNAMIC_LINKER, false);
3680
3681       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3682                                                                    hashlen,
3683                                                                    align,
3684                                                                    "** hash");
3685       hashsec->add_output_section_data(hashdata);
3686
3687       hashsec->set_link_section(dynsym);
3688       hashsec->set_entsize(4);
3689
3690       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3691     }
3692
3693   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3694       || strcmp(parameters->options().hash_style(), "both") == 0)
3695     {
3696       unsigned char* phash;
3697       unsigned int hashlen;
3698       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3699                                     &phash, &hashlen);
3700
3701       Output_section* hashsec =
3702         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3703                                     elfcpp::SHF_ALLOC, false,
3704                                     ORDER_DYNAMIC_LINKER, false);
3705
3706       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3707                                                                    hashlen,
3708                                                                    align,
3709                                                                    "** hash");
3710       hashsec->add_output_section_data(hashdata);
3711
3712       hashsec->set_link_section(dynsym);
3713
3714       // For a 64-bit target, the entries in .gnu.hash do not have a
3715       // uniform size, so we only set the entry size for a 32-bit
3716       // target.
3717       if (parameters->target().get_size() == 32)
3718         hashsec->set_entsize(4);
3719
3720       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3721     }
3722 }
3723
3724 // Assign offsets to each local portion of the dynamic symbol table.
3725
3726 void
3727 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3728 {
3729   Output_section* dynsym = this->dynsym_section_;
3730   gold_assert(dynsym != NULL);
3731
3732   off_t off = dynsym->offset();
3733
3734   // Skip the dummy symbol at the start of the section.
3735   off += dynsym->entsize();
3736
3737   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3738        p != input_objects->relobj_end();
3739        ++p)
3740     {
3741       unsigned int count = (*p)->set_local_dynsym_offset(off);
3742       off += count * dynsym->entsize();
3743     }
3744 }
3745
3746 // Create the version sections.
3747
3748 void
3749 Layout::create_version_sections(const Versions* versions,
3750                                 const Symbol_table* symtab,
3751                                 unsigned int local_symcount,
3752                                 const std::vector<Symbol*>& dynamic_symbols,
3753                                 const Output_section* dynstr)
3754 {
3755   if (!versions->any_defs() && !versions->any_needs())
3756     return;
3757
3758   switch (parameters->size_and_endianness())
3759     {
3760 #ifdef HAVE_TARGET_32_LITTLE
3761     case Parameters::TARGET_32_LITTLE:
3762       this->sized_create_version_sections<32, false>(versions, symtab,
3763                                                      local_symcount,
3764                                                      dynamic_symbols, dynstr);
3765       break;
3766 #endif
3767 #ifdef HAVE_TARGET_32_BIG
3768     case Parameters::TARGET_32_BIG:
3769       this->sized_create_version_sections<32, true>(versions, symtab,
3770                                                     local_symcount,
3771                                                     dynamic_symbols, dynstr);
3772       break;
3773 #endif
3774 #ifdef HAVE_TARGET_64_LITTLE
3775     case Parameters::TARGET_64_LITTLE:
3776       this->sized_create_version_sections<64, false>(versions, symtab,
3777                                                      local_symcount,
3778                                                      dynamic_symbols, dynstr);
3779       break;
3780 #endif
3781 #ifdef HAVE_TARGET_64_BIG
3782     case Parameters::TARGET_64_BIG:
3783       this->sized_create_version_sections<64, true>(versions, symtab,
3784                                                     local_symcount,
3785                                                     dynamic_symbols, dynstr);
3786       break;
3787 #endif
3788     default:
3789       gold_unreachable();
3790     }
3791 }
3792
3793 // Create the version sections, sized version.
3794
3795 template<int size, bool big_endian>
3796 void
3797 Layout::sized_create_version_sections(
3798     const Versions* versions,
3799     const Symbol_table* symtab,
3800     unsigned int local_symcount,
3801     const std::vector<Symbol*>& dynamic_symbols,
3802     const Output_section* dynstr)
3803 {
3804   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3805                                                      elfcpp::SHT_GNU_versym,
3806                                                      elfcpp::SHF_ALLOC,
3807                                                      false,
3808                                                      ORDER_DYNAMIC_LINKER,
3809                                                      false);
3810
3811   unsigned char* vbuf;
3812   unsigned int vsize;
3813   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3814                                                       local_symcount,
3815                                                       dynamic_symbols,
3816                                                       &vbuf, &vsize);
3817
3818   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3819                                                             "** versions");
3820
3821   vsec->add_output_section_data(vdata);
3822   vsec->set_entsize(2);
3823   vsec->set_link_section(this->dynsym_section_);
3824
3825   Output_data_dynamic* const odyn = this->dynamic_data_;
3826   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3827
3828   if (versions->any_defs())
3829     {
3830       Output_section* vdsec;
3831       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3832                                          elfcpp::SHT_GNU_verdef,
3833                                          elfcpp::SHF_ALLOC,
3834                                          false, ORDER_DYNAMIC_LINKER, false);
3835
3836       unsigned char* vdbuf;
3837       unsigned int vdsize;
3838       unsigned int vdentries;
3839       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3840                                                        &vdsize, &vdentries);
3841
3842       Output_section_data* vddata =
3843         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3844
3845       vdsec->add_output_section_data(vddata);
3846       vdsec->set_link_section(dynstr);
3847       vdsec->set_info(vdentries);
3848
3849       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3850       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3851     }
3852
3853   if (versions->any_needs())
3854     {
3855       Output_section* vnsec;
3856       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3857                                           elfcpp::SHT_GNU_verneed,
3858                                           elfcpp::SHF_ALLOC,
3859                                           false, ORDER_DYNAMIC_LINKER, false);
3860
3861       unsigned char* vnbuf;
3862       unsigned int vnsize;
3863       unsigned int vnentries;
3864       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3865                                                         &vnbuf, &vnsize,
3866                                                         &vnentries);
3867
3868       Output_section_data* vndata =
3869         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3870
3871       vnsec->add_output_section_data(vndata);
3872       vnsec->set_link_section(dynstr);
3873       vnsec->set_info(vnentries);
3874
3875       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3876       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3877     }
3878 }
3879
3880 // Create the .interp section and PT_INTERP segment.
3881
3882 void
3883 Layout::create_interp(const Target* target)
3884 {
3885   gold_assert(this->interp_segment_ == NULL);
3886
3887   const char* interp = parameters->options().dynamic_linker();
3888   if (interp == NULL)
3889     {
3890       interp = target->dynamic_linker();
3891       gold_assert(interp != NULL);
3892     }
3893
3894   size_t len = strlen(interp) + 1;
3895
3896   Output_section_data* odata = new Output_data_const(interp, len, 1);
3897
3898   Output_section* osec = this->choose_output_section(NULL, ".interp",
3899                                                      elfcpp::SHT_PROGBITS,
3900                                                      elfcpp::SHF_ALLOC,
3901                                                      false, ORDER_INTERP,
3902                                                      false);
3903   osec->add_output_section_data(odata);
3904 }
3905
3906 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3907 // called by the target-specific code.  This does nothing if not doing
3908 // a dynamic link.
3909
3910 // USE_REL is true for REL relocs rather than RELA relocs.
3911
3912 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3913
3914 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3915 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3916 // some targets have multiple reloc sections in PLT_REL.
3917
3918 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3919 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3920
3921 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3922 // executable.
3923
3924 void
3925 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3926                                 const Output_data* plt_rel,
3927                                 const Output_data_reloc_generic* dyn_rel,
3928                                 bool add_debug, bool dynrel_includes_plt)
3929 {
3930   Output_data_dynamic* odyn = this->dynamic_data_;
3931   if (odyn == NULL)
3932     return;
3933
3934   if (plt_got != NULL && plt_got->output_section() != NULL)
3935     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3936
3937   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3938     {
3939       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3940       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3941       odyn->add_constant(elfcpp::DT_PLTREL,
3942                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3943     }
3944
3945   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3946     {
3947       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3948                                 dyn_rel);
3949       if (plt_rel != NULL && dynrel_includes_plt)
3950         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3951                                dyn_rel, plt_rel);
3952       else
3953         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3954                                dyn_rel);
3955       const int size = parameters->target().get_size();
3956       elfcpp::DT rel_tag;
3957       int rel_size;
3958       if (use_rel)
3959         {
3960           rel_tag = elfcpp::DT_RELENT;
3961           if (size == 32)
3962             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3963           else if (size == 64)
3964             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3965           else
3966             gold_unreachable();
3967         }
3968       else
3969         {
3970           rel_tag = elfcpp::DT_RELAENT;
3971           if (size == 32)
3972             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3973           else if (size == 64)
3974             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3975           else
3976             gold_unreachable();
3977         }
3978       odyn->add_constant(rel_tag, rel_size);
3979
3980       if (parameters->options().combreloc())
3981         {
3982           size_t c = dyn_rel->relative_reloc_count();
3983           if (c > 0)
3984             odyn->add_constant((use_rel
3985                                 ? elfcpp::DT_RELCOUNT
3986                                 : elfcpp::DT_RELACOUNT),
3987                                c);
3988         }
3989     }
3990
3991   if (add_debug && !parameters->options().shared())
3992     {
3993       // The value of the DT_DEBUG tag is filled in by the dynamic
3994       // linker at run time, and used by the debugger.
3995       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3996     }
3997 }
3998
3999 // Finish the .dynamic section and PT_DYNAMIC segment.
4000
4001 void
4002 Layout::finish_dynamic_section(const Input_objects* input_objects,
4003                                const Symbol_table* symtab)
4004 {
4005   if (!this->script_options_->saw_phdrs_clause())
4006     {
4007       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4008                                                        (elfcpp::PF_R
4009                                                         | elfcpp::PF_W));
4010       oseg->add_output_section_to_nonload(this->dynamic_section_,
4011                                           elfcpp::PF_R | elfcpp::PF_W);
4012     }
4013
4014   Output_data_dynamic* const odyn = this->dynamic_data_;
4015
4016   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4017        p != input_objects->dynobj_end();
4018        ++p)
4019     {
4020       if (!(*p)->is_needed() && (*p)->as_needed())
4021         {
4022           // This dynamic object was linked with --as-needed, but it
4023           // is not needed.
4024           continue;
4025         }
4026
4027       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4028     }
4029
4030   if (parameters->options().shared())
4031     {
4032       const char* soname = parameters->options().soname();
4033       if (soname != NULL)
4034         odyn->add_string(elfcpp::DT_SONAME, soname);
4035     }
4036
4037   Symbol* sym = symtab->lookup(parameters->options().init());
4038   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4039     odyn->add_symbol(elfcpp::DT_INIT, sym);
4040
4041   sym = symtab->lookup(parameters->options().fini());
4042   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4043     odyn->add_symbol(elfcpp::DT_FINI, sym);
4044
4045   // Look for .init_array, .preinit_array and .fini_array by checking
4046   // section types.
4047   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4048       p != this->section_list_.end();
4049       ++p)
4050     switch((*p)->type())
4051       {
4052       case elfcpp::SHT_FINI_ARRAY:
4053         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4054         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4055         break;
4056       case elfcpp::SHT_INIT_ARRAY:
4057         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4058         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4059         break;
4060       case elfcpp::SHT_PREINIT_ARRAY:
4061         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4062         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4063         break;
4064       default:
4065         break;
4066       }
4067   
4068   // Add a DT_RPATH entry if needed.
4069   const General_options::Dir_list& rpath(parameters->options().rpath());
4070   if (!rpath.empty())
4071     {
4072       std::string rpath_val;
4073       for (General_options::Dir_list::const_iterator p = rpath.begin();
4074            p != rpath.end();
4075            ++p)
4076         {
4077           if (rpath_val.empty())
4078             rpath_val = p->name();
4079           else
4080             {
4081               // Eliminate duplicates.
4082               General_options::Dir_list::const_iterator q;
4083               for (q = rpath.begin(); q != p; ++q)
4084                 if (q->name() == p->name())
4085                   break;
4086               if (q == p)
4087                 {
4088                   rpath_val += ':';
4089                   rpath_val += p->name();
4090                 }
4091             }
4092         }
4093
4094       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4095       if (parameters->options().enable_new_dtags())
4096         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4097     }
4098
4099   // Look for text segments that have dynamic relocations.
4100   bool have_textrel = false;
4101   if (!this->script_options_->saw_sections_clause())
4102     {
4103       for (Segment_list::const_iterator p = this->segment_list_.begin();
4104            p != this->segment_list_.end();
4105            ++p)
4106         {
4107           if ((*p)->type() == elfcpp::PT_LOAD
4108               && ((*p)->flags() & elfcpp::PF_W) == 0
4109               && (*p)->has_dynamic_reloc())
4110             {
4111               have_textrel = true;
4112               break;
4113             }
4114         }
4115     }
4116   else
4117     {
4118       // We don't know the section -> segment mapping, so we are
4119       // conservative and just look for readonly sections with
4120       // relocations.  If those sections wind up in writable segments,
4121       // then we have created an unnecessary DT_TEXTREL entry.
4122       for (Section_list::const_iterator p = this->section_list_.begin();
4123            p != this->section_list_.end();
4124            ++p)
4125         {
4126           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4127               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4128               && (*p)->has_dynamic_reloc())
4129             {
4130               have_textrel = true;
4131               break;
4132             }
4133         }
4134     }
4135
4136   // Add a DT_FLAGS entry. We add it even if no flags are set so that
4137   // post-link tools can easily modify these flags if desired.
4138   unsigned int flags = 0;
4139   if (have_textrel)
4140     {
4141       // Add a DT_TEXTREL for compatibility with older loaders.
4142       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4143       flags |= elfcpp::DF_TEXTREL;
4144
4145       if (parameters->options().text())
4146         gold_error(_("read-only segment has dynamic relocations"));
4147       else if (parameters->options().warn_shared_textrel()
4148                && parameters->options().shared())
4149         gold_warning(_("shared library text segment is not shareable"));
4150     }
4151   if (parameters->options().shared() && this->has_static_tls())
4152     flags |= elfcpp::DF_STATIC_TLS;
4153   if (parameters->options().origin())
4154     flags |= elfcpp::DF_ORIGIN;
4155   if (parameters->options().Bsymbolic())
4156     {
4157       flags |= elfcpp::DF_SYMBOLIC;
4158       // Add DT_SYMBOLIC for compatibility with older loaders.
4159       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4160     }
4161   if (parameters->options().now())
4162     flags |= elfcpp::DF_BIND_NOW;
4163   if (flags != 0)
4164     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4165
4166   flags = 0;
4167   if (parameters->options().initfirst())
4168     flags |= elfcpp::DF_1_INITFIRST;
4169   if (parameters->options().interpose())
4170     flags |= elfcpp::DF_1_INTERPOSE;
4171   if (parameters->options().loadfltr())
4172     flags |= elfcpp::DF_1_LOADFLTR;
4173   if (parameters->options().nodefaultlib())
4174     flags |= elfcpp::DF_1_NODEFLIB;
4175   if (parameters->options().nodelete())
4176     flags |= elfcpp::DF_1_NODELETE;
4177   if (parameters->options().nodlopen())
4178     flags |= elfcpp::DF_1_NOOPEN;
4179   if (parameters->options().nodump())
4180     flags |= elfcpp::DF_1_NODUMP;
4181   if (!parameters->options().shared())
4182     flags &= ~(elfcpp::DF_1_INITFIRST
4183                | elfcpp::DF_1_NODELETE
4184                | elfcpp::DF_1_NOOPEN);
4185   if (parameters->options().origin())
4186     flags |= elfcpp::DF_1_ORIGIN;
4187   if (parameters->options().now())
4188     flags |= elfcpp::DF_1_NOW;
4189   if (flags != 0)
4190     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4191 }
4192
4193 // Set the size of the _DYNAMIC symbol table to be the size of the
4194 // dynamic data.
4195
4196 void
4197 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4198 {
4199   Output_data_dynamic* const odyn = this->dynamic_data_;
4200   odyn->finalize_data_size();
4201   off_t data_size = odyn->data_size();
4202   const int size = parameters->target().get_size();
4203   if (size == 32)
4204     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4205   else if (size == 64)
4206     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4207   else
4208     gold_unreachable();
4209 }
4210
4211 // The mapping of input section name prefixes to output section names.
4212 // In some cases one prefix is itself a prefix of another prefix; in
4213 // such a case the longer prefix must come first.  These prefixes are
4214 // based on the GNU linker default ELF linker script.
4215
4216 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4217 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4218 {
4219   MAPPING_INIT(".text.", ".text"),
4220   MAPPING_INIT(".rodata.", ".rodata"),
4221   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4222   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4223   MAPPING_INIT(".data.", ".data"),
4224   MAPPING_INIT(".bss.", ".bss"),
4225   MAPPING_INIT(".tdata.", ".tdata"),
4226   MAPPING_INIT(".tbss.", ".tbss"),
4227   MAPPING_INIT(".init_array.", ".init_array"),
4228   MAPPING_INIT(".fini_array.", ".fini_array"),
4229   MAPPING_INIT(".sdata.", ".sdata"),
4230   MAPPING_INIT(".sbss.", ".sbss"),
4231   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4232   // differently depending on whether it is creating a shared library.
4233   MAPPING_INIT(".sdata2.", ".sdata"),
4234   MAPPING_INIT(".sbss2.", ".sbss"),
4235   MAPPING_INIT(".lrodata.", ".lrodata"),
4236   MAPPING_INIT(".ldata.", ".ldata"),
4237   MAPPING_INIT(".lbss.", ".lbss"),
4238   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4239   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4240   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4241   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4242   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4243   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4244   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4245   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4246   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4247   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4248   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4249   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4250   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4251   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4252   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4253   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4254   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4255   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4256   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4257   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4258   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4259 };
4260 #undef MAPPING_INIT
4261
4262 const int Layout::section_name_mapping_count =
4263   (sizeof(Layout::section_name_mapping)
4264    / sizeof(Layout::section_name_mapping[0]));
4265
4266 // Choose the output section name to use given an input section name.
4267 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4268 // length of NAME.
4269
4270 const char*
4271 Layout::output_section_name(const Relobj* relobj, const char* name,
4272                             size_t* plen)
4273 {
4274   // gcc 4.3 generates the following sorts of section names when it
4275   // needs a section name specific to a function:
4276   //   .text.FN
4277   //   .rodata.FN
4278   //   .sdata2.FN
4279   //   .data.FN
4280   //   .data.rel.FN
4281   //   .data.rel.local.FN
4282   //   .data.rel.ro.FN
4283   //   .data.rel.ro.local.FN
4284   //   .sdata.FN
4285   //   .bss.FN
4286   //   .sbss.FN
4287   //   .tdata.FN
4288   //   .tbss.FN
4289
4290   // The GNU linker maps all of those to the part before the .FN,
4291   // except that .data.rel.local.FN is mapped to .data, and
4292   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4293   // beginning with .data.rel.ro.local are grouped together.
4294
4295   // For an anonymous namespace, the string FN can contain a '.'.
4296
4297   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4298   // GNU linker maps to .rodata.
4299
4300   // The .data.rel.ro sections are used with -z relro.  The sections
4301   // are recognized by name.  We use the same names that the GNU
4302   // linker does for these sections.
4303
4304   // It is hard to handle this in a principled way, so we don't even
4305   // try.  We use a table of mappings.  If the input section name is
4306   // not found in the table, we simply use it as the output section
4307   // name.
4308
4309   const Section_name_mapping* psnm = section_name_mapping;
4310   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4311     {
4312       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4313         {
4314           *plen = psnm->tolen;
4315           return psnm->to;
4316         }
4317     }
4318
4319   // As an additional complication, .ctors sections are output in
4320   // either .ctors or .init_array sections, and .dtors sections are
4321   // output in either .dtors or .fini_array sections.
4322   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4323     {
4324       if (parameters->options().ctors_in_init_array())
4325         {
4326           *plen = 11;
4327           return name[1] == 'c' ? ".init_array" : ".fini_array";
4328         }
4329       else
4330         {
4331           *plen = 6;
4332           return name[1] == 'c' ? ".ctors" : ".dtors";
4333         }
4334     }
4335   if (parameters->options().ctors_in_init_array()
4336       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4337     {
4338       // To make .init_array/.fini_array work with gcc we must exclude
4339       // .ctors and .dtors sections from the crtbegin and crtend
4340       // files.
4341       if (relobj == NULL
4342           || (!Layout::match_file_name(relobj, "crtbegin")
4343               && !Layout::match_file_name(relobj, "crtend")))
4344         {
4345           *plen = 11;
4346           return name[1] == 'c' ? ".init_array" : ".fini_array";
4347         }
4348     }
4349
4350   return name;
4351 }
4352
4353 // Return true if RELOBJ is an input file whose base name matches
4354 // FILE_NAME.  The base name must have an extension of ".o", and must
4355 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4356 // to match crtbegin.o as well as crtbeginS.o without getting confused
4357 // by other possibilities.  Overall matching the file name this way is
4358 // a dreadful hack, but the GNU linker does it in order to better
4359 // support gcc, and we need to be compatible.
4360
4361 bool
4362 Layout::match_file_name(const Relobj* relobj, const char* match)
4363 {
4364   const std::string& file_name(relobj->name());
4365   const char* base_name = lbasename(file_name.c_str());
4366   size_t match_len = strlen(match);
4367   if (strncmp(base_name, match, match_len) != 0)
4368     return false;
4369   size_t base_len = strlen(base_name);
4370   if (base_len != match_len + 2 && base_len != match_len + 3)
4371     return false;
4372   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4373 }
4374
4375 // Check if a comdat group or .gnu.linkonce section with the given
4376 // NAME is selected for the link.  If there is already a section,
4377 // *KEPT_SECTION is set to point to the existing section and the
4378 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4379 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4380 // *KEPT_SECTION is set to the internal copy and the function returns
4381 // true.
4382
4383 bool
4384 Layout::find_or_add_kept_section(const std::string& name,
4385                                  Relobj* object,
4386                                  unsigned int shndx,
4387                                  bool is_comdat,
4388                                  bool is_group_name,
4389                                  Kept_section** kept_section)
4390 {
4391   // It's normal to see a couple of entries here, for the x86 thunk
4392   // sections.  If we see more than a few, we're linking a C++
4393   // program, and we resize to get more space to minimize rehashing.
4394   if (this->signatures_.size() > 4
4395       && !this->resized_signatures_)
4396     {
4397       reserve_unordered_map(&this->signatures_,
4398                             this->number_of_input_files_ * 64);
4399       this->resized_signatures_ = true;
4400     }
4401
4402   Kept_section candidate;
4403   std::pair<Signatures::iterator, bool> ins =
4404     this->signatures_.insert(std::make_pair(name, candidate));
4405
4406   if (kept_section != NULL)
4407     *kept_section = &ins.first->second;
4408   if (ins.second)
4409     {
4410       // This is the first time we've seen this signature.
4411       ins.first->second.set_object(object);
4412       ins.first->second.set_shndx(shndx);
4413       if (is_comdat)
4414         ins.first->second.set_is_comdat();
4415       if (is_group_name)
4416         ins.first->second.set_is_group_name();
4417       return true;
4418     }
4419
4420   // We have already seen this signature.
4421
4422   if (ins.first->second.is_group_name())
4423     {
4424       // We've already seen a real section group with this signature.
4425       // If the kept group is from a plugin object, and we're in the
4426       // replacement phase, accept the new one as a replacement.
4427       if (ins.first->second.object() == NULL
4428           && parameters->options().plugins()->in_replacement_phase())
4429         {
4430           ins.first->second.set_object(object);
4431           ins.first->second.set_shndx(shndx);
4432           return true;
4433         }
4434       return false;
4435     }
4436   else if (is_group_name)
4437     {
4438       // This is a real section group, and we've already seen a
4439       // linkonce section with this signature.  Record that we've seen
4440       // a section group, and don't include this section group.
4441       ins.first->second.set_is_group_name();
4442       return false;
4443     }
4444   else
4445     {
4446       // We've already seen a linkonce section and this is a linkonce
4447       // section.  These don't block each other--this may be the same
4448       // symbol name with different section types.
4449       return true;
4450     }
4451 }
4452
4453 // Store the allocated sections into the section list.
4454
4455 void
4456 Layout::get_allocated_sections(Section_list* section_list) const
4457 {
4458   for (Section_list::const_iterator p = this->section_list_.begin();
4459        p != this->section_list_.end();
4460        ++p)
4461     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4462       section_list->push_back(*p);
4463 }
4464
4465 // Create an output segment.
4466
4467 Output_segment*
4468 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4469 {
4470   gold_assert(!parameters->options().relocatable());
4471   Output_segment* oseg = new Output_segment(type, flags);
4472   this->segment_list_.push_back(oseg);
4473
4474   if (type == elfcpp::PT_TLS)
4475     this->tls_segment_ = oseg;
4476   else if (type == elfcpp::PT_GNU_RELRO)
4477     this->relro_segment_ = oseg;
4478   else if (type == elfcpp::PT_INTERP)
4479     this->interp_segment_ = oseg;
4480
4481   return oseg;
4482 }
4483
4484 // Return the file offset of the normal symbol table.
4485
4486 off_t
4487 Layout::symtab_section_offset() const
4488 {
4489   if (this->symtab_section_ != NULL)
4490     return this->symtab_section_->offset();
4491   return 0;
4492 }
4493
4494 // Write out the Output_sections.  Most won't have anything to write,
4495 // since most of the data will come from input sections which are
4496 // handled elsewhere.  But some Output_sections do have Output_data.
4497
4498 void
4499 Layout::write_output_sections(Output_file* of) const
4500 {
4501   for (Section_list::const_iterator p = this->section_list_.begin();
4502        p != this->section_list_.end();
4503        ++p)
4504     {
4505       if (!(*p)->after_input_sections())
4506         (*p)->write(of);
4507     }
4508 }
4509
4510 // Write out data not associated with a section or the symbol table.
4511
4512 void
4513 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4514 {
4515   if (!parameters->options().strip_all())
4516     {
4517       const Output_section* symtab_section = this->symtab_section_;
4518       for (Section_list::const_iterator p = this->section_list_.begin();
4519            p != this->section_list_.end();
4520            ++p)
4521         {
4522           if ((*p)->needs_symtab_index())
4523             {
4524               gold_assert(symtab_section != NULL);
4525               unsigned int index = (*p)->symtab_index();
4526               gold_assert(index > 0 && index != -1U);
4527               off_t off = (symtab_section->offset()
4528                            + index * symtab_section->entsize());
4529               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4530             }
4531         }
4532     }
4533
4534   const Output_section* dynsym_section = this->dynsym_section_;
4535   for (Section_list::const_iterator p = this->section_list_.begin();
4536        p != this->section_list_.end();
4537        ++p)
4538     {
4539       if ((*p)->needs_dynsym_index())
4540         {
4541           gold_assert(dynsym_section != NULL);
4542           unsigned int index = (*p)->dynsym_index();
4543           gold_assert(index > 0 && index != -1U);
4544           off_t off = (dynsym_section->offset()
4545                        + index * dynsym_section->entsize());
4546           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4547         }
4548     }
4549
4550   // Write out the Output_data which are not in an Output_section.
4551   for (Data_list::const_iterator p = this->special_output_list_.begin();
4552        p != this->special_output_list_.end();
4553        ++p)
4554     (*p)->write(of);
4555 }
4556
4557 // Write out the Output_sections which can only be written after the
4558 // input sections are complete.
4559
4560 void
4561 Layout::write_sections_after_input_sections(Output_file* of)
4562 {
4563   // Determine the final section offsets, and thus the final output
4564   // file size.  Note we finalize the .shstrab last, to allow the
4565   // after_input_section sections to modify their section-names before
4566   // writing.
4567   if (this->any_postprocessing_sections_)
4568     {
4569       off_t off = this->output_file_size_;
4570       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4571
4572       // Now that we've finalized the names, we can finalize the shstrab.
4573       off =
4574         this->set_section_offsets(off,
4575                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4576
4577       if (off > this->output_file_size_)
4578         {
4579           of->resize(off);
4580           this->output_file_size_ = off;
4581         }
4582     }
4583
4584   for (Section_list::const_iterator p = this->section_list_.begin();
4585        p != this->section_list_.end();
4586        ++p)
4587     {
4588       if ((*p)->after_input_sections())
4589         (*p)->write(of);
4590     }
4591
4592   this->section_headers_->write(of);
4593 }
4594
4595 // If the build ID requires computing a checksum, do so here, and
4596 // write it out.  We compute a checksum over the entire file because
4597 // that is simplest.
4598
4599 void
4600 Layout::write_build_id(Output_file* of) const
4601 {
4602   if (this->build_id_note_ == NULL)
4603     return;
4604
4605   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4606
4607   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4608                                           this->build_id_note_->data_size());
4609
4610   const char* style = parameters->options().build_id();
4611   if (strcmp(style, "sha1") == 0)
4612     {
4613       sha1_ctx ctx;
4614       sha1_init_ctx(&ctx);
4615       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4616       sha1_finish_ctx(&ctx, ov);
4617     }
4618   else if (strcmp(style, "md5") == 0)
4619     {
4620       md5_ctx ctx;
4621       md5_init_ctx(&ctx);
4622       md5_process_bytes(iv, this->output_file_size_, &ctx);
4623       md5_finish_ctx(&ctx, ov);
4624     }
4625   else
4626     gold_unreachable();
4627
4628   of->write_output_view(this->build_id_note_->offset(),
4629                         this->build_id_note_->data_size(),
4630                         ov);
4631
4632   of->free_input_view(0, this->output_file_size_, iv);
4633 }
4634
4635 // Write out a binary file.  This is called after the link is
4636 // complete.  IN is the temporary output file we used to generate the
4637 // ELF code.  We simply walk through the segments, read them from
4638 // their file offset in IN, and write them to their load address in
4639 // the output file.  FIXME: with a bit more work, we could support
4640 // S-records and/or Intel hex format here.
4641
4642 void
4643 Layout::write_binary(Output_file* in) const
4644 {
4645   gold_assert(parameters->options().oformat_enum()
4646               == General_options::OBJECT_FORMAT_BINARY);
4647
4648   // Get the size of the binary file.
4649   uint64_t max_load_address = 0;
4650   for (Segment_list::const_iterator p = this->segment_list_.begin();
4651        p != this->segment_list_.end();
4652        ++p)
4653     {
4654       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4655         {
4656           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4657           if (max_paddr > max_load_address)
4658             max_load_address = max_paddr;
4659         }
4660     }
4661
4662   Output_file out(parameters->options().output_file_name());
4663   out.open(max_load_address);
4664
4665   for (Segment_list::const_iterator p = this->segment_list_.begin();
4666        p != this->segment_list_.end();
4667        ++p)
4668     {
4669       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4670         {
4671           const unsigned char* vin = in->get_input_view((*p)->offset(),
4672                                                         (*p)->filesz());
4673           unsigned char* vout = out.get_output_view((*p)->paddr(),
4674                                                     (*p)->filesz());
4675           memcpy(vout, vin, (*p)->filesz());
4676           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4677           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4678         }
4679     }
4680
4681   out.close();
4682 }
4683
4684 // Print the output sections to the map file.
4685
4686 void
4687 Layout::print_to_mapfile(Mapfile* mapfile) const
4688 {
4689   for (Segment_list::const_iterator p = this->segment_list_.begin();
4690        p != this->segment_list_.end();
4691        ++p)
4692     (*p)->print_sections_to_mapfile(mapfile);
4693 }
4694
4695 // Print statistical information to stderr.  This is used for --stats.
4696
4697 void
4698 Layout::print_stats() const
4699 {
4700   this->namepool_.print_stats("section name pool");
4701   this->sympool_.print_stats("output symbol name pool");
4702   this->dynpool_.print_stats("dynamic name pool");
4703
4704   for (Section_list::const_iterator p = this->section_list_.begin();
4705        p != this->section_list_.end();
4706        ++p)
4707     (*p)->print_merge_stats();
4708 }
4709
4710 // Write_sections_task methods.
4711
4712 // We can always run this task.
4713
4714 Task_token*
4715 Write_sections_task::is_runnable()
4716 {
4717   return NULL;
4718 }
4719
4720 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4721 // when finished.
4722
4723 void
4724 Write_sections_task::locks(Task_locker* tl)
4725 {
4726   tl->add(this, this->output_sections_blocker_);
4727   tl->add(this, this->final_blocker_);
4728 }
4729
4730 // Run the task--write out the data.
4731
4732 void
4733 Write_sections_task::run(Workqueue*)
4734 {
4735   this->layout_->write_output_sections(this->of_);
4736 }
4737
4738 // Write_data_task methods.
4739
4740 // We can always run this task.
4741
4742 Task_token*
4743 Write_data_task::is_runnable()
4744 {
4745   return NULL;
4746 }
4747
4748 // We need to unlock FINAL_BLOCKER when finished.
4749
4750 void
4751 Write_data_task::locks(Task_locker* tl)
4752 {
4753   tl->add(this, this->final_blocker_);
4754 }
4755
4756 // Run the task--write out the data.
4757
4758 void
4759 Write_data_task::run(Workqueue*)
4760 {
4761   this->layout_->write_data(this->symtab_, this->of_);
4762 }
4763
4764 // Write_symbols_task methods.
4765
4766 // We can always run this task.
4767
4768 Task_token*
4769 Write_symbols_task::is_runnable()
4770 {
4771   return NULL;
4772 }
4773
4774 // We need to unlock FINAL_BLOCKER when finished.
4775
4776 void
4777 Write_symbols_task::locks(Task_locker* tl)
4778 {
4779   tl->add(this, this->final_blocker_);
4780 }
4781
4782 // Run the task--write out the symbols.
4783
4784 void
4785 Write_symbols_task::run(Workqueue*)
4786 {
4787   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4788                                this->layout_->symtab_xindex(),
4789                                this->layout_->dynsym_xindex(), this->of_);
4790 }
4791
4792 // Write_after_input_sections_task methods.
4793
4794 // We can only run this task after the input sections have completed.
4795
4796 Task_token*
4797 Write_after_input_sections_task::is_runnable()
4798 {
4799   if (this->input_sections_blocker_->is_blocked())
4800     return this->input_sections_blocker_;
4801   return NULL;
4802 }
4803
4804 // We need to unlock FINAL_BLOCKER when finished.
4805
4806 void
4807 Write_after_input_sections_task::locks(Task_locker* tl)
4808 {
4809   tl->add(this, this->final_blocker_);
4810 }
4811
4812 // Run the task.
4813
4814 void
4815 Write_after_input_sections_task::run(Workqueue*)
4816 {
4817   this->layout_->write_sections_after_input_sections(this->of_);
4818 }
4819
4820 // Close_task_runner methods.
4821
4822 // Run the task--close the file.
4823
4824 void
4825 Close_task_runner::run(Workqueue*, const Task*)
4826 {
4827   // If we need to compute a checksum for the BUILD if, we do so here.
4828   this->layout_->write_build_id(this->of_);
4829
4830   // If we've been asked to create a binary file, we do so here.
4831   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4832     this->layout_->write_binary(this->of_);
4833
4834   this->of_->close();
4835 }
4836
4837 // Instantiate the templates we need.  We could use the configure
4838 // script to restrict this to only the ones for implemented targets.
4839
4840 #ifdef HAVE_TARGET_32_LITTLE
4841 template
4842 Output_section*
4843 Layout::init_fixed_output_section<32, false>(
4844     const char* name,
4845     elfcpp::Shdr<32, false>& shdr);
4846 #endif
4847
4848 #ifdef HAVE_TARGET_32_BIG
4849 template
4850 Output_section*
4851 Layout::init_fixed_output_section<32, true>(
4852     const char* name,
4853     elfcpp::Shdr<32, true>& shdr);
4854 #endif
4855
4856 #ifdef HAVE_TARGET_64_LITTLE
4857 template
4858 Output_section*
4859 Layout::init_fixed_output_section<64, false>(
4860     const char* name,
4861     elfcpp::Shdr<64, false>& shdr);
4862 #endif
4863
4864 #ifdef HAVE_TARGET_64_BIG
4865 template
4866 Output_section*
4867 Layout::init_fixed_output_section<64, true>(
4868     const char* name,
4869     elfcpp::Shdr<64, true>& shdr);
4870 #endif
4871
4872 #ifdef HAVE_TARGET_32_LITTLE
4873 template
4874 Output_section*
4875 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4876                           unsigned int shndx,
4877                           const char* name,
4878                           const elfcpp::Shdr<32, false>& shdr,
4879                           unsigned int, unsigned int, off_t*);
4880 #endif
4881
4882 #ifdef HAVE_TARGET_32_BIG
4883 template
4884 Output_section*
4885 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4886                          unsigned int shndx,
4887                          const char* name,
4888                          const elfcpp::Shdr<32, true>& shdr,
4889                          unsigned int, unsigned int, off_t*);
4890 #endif
4891
4892 #ifdef HAVE_TARGET_64_LITTLE
4893 template
4894 Output_section*
4895 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4896                           unsigned int shndx,
4897                           const char* name,
4898                           const elfcpp::Shdr<64, false>& shdr,
4899                           unsigned int, unsigned int, off_t*);
4900 #endif
4901
4902 #ifdef HAVE_TARGET_64_BIG
4903 template
4904 Output_section*
4905 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4906                          unsigned int shndx,
4907                          const char* name,
4908                          const elfcpp::Shdr<64, true>& shdr,
4909                          unsigned int, unsigned int, off_t*);
4910 #endif
4911
4912 #ifdef HAVE_TARGET_32_LITTLE
4913 template
4914 Output_section*
4915 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4916                                 unsigned int reloc_shndx,
4917                                 const elfcpp::Shdr<32, false>& shdr,
4918                                 Output_section* data_section,
4919                                 Relocatable_relocs* rr);
4920 #endif
4921
4922 #ifdef HAVE_TARGET_32_BIG
4923 template
4924 Output_section*
4925 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4926                                unsigned int reloc_shndx,
4927                                const elfcpp::Shdr<32, true>& shdr,
4928                                Output_section* data_section,
4929                                Relocatable_relocs* rr);
4930 #endif
4931
4932 #ifdef HAVE_TARGET_64_LITTLE
4933 template
4934 Output_section*
4935 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4936                                 unsigned int reloc_shndx,
4937                                 const elfcpp::Shdr<64, false>& shdr,
4938                                 Output_section* data_section,
4939                                 Relocatable_relocs* rr);
4940 #endif
4941
4942 #ifdef HAVE_TARGET_64_BIG
4943 template
4944 Output_section*
4945 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4946                                unsigned int reloc_shndx,
4947                                const elfcpp::Shdr<64, true>& shdr,
4948                                Output_section* data_section,
4949                                Relocatable_relocs* rr);
4950 #endif
4951
4952 #ifdef HAVE_TARGET_32_LITTLE
4953 template
4954 void
4955 Layout::layout_group<32, false>(Symbol_table* symtab,
4956                                 Sized_relobj_file<32, false>* object,
4957                                 unsigned int,
4958                                 const char* group_section_name,
4959                                 const char* signature,
4960                                 const elfcpp::Shdr<32, false>& shdr,
4961                                 elfcpp::Elf_Word flags,
4962                                 std::vector<unsigned int>* shndxes);
4963 #endif
4964
4965 #ifdef HAVE_TARGET_32_BIG
4966 template
4967 void
4968 Layout::layout_group<32, true>(Symbol_table* symtab,
4969                                Sized_relobj_file<32, true>* object,
4970                                unsigned int,
4971                                const char* group_section_name,
4972                                const char* signature,
4973                                const elfcpp::Shdr<32, true>& shdr,
4974                                elfcpp::Elf_Word flags,
4975                                std::vector<unsigned int>* shndxes);
4976 #endif
4977
4978 #ifdef HAVE_TARGET_64_LITTLE
4979 template
4980 void
4981 Layout::layout_group<64, false>(Symbol_table* symtab,
4982                                 Sized_relobj_file<64, false>* object,
4983                                 unsigned int,
4984                                 const char* group_section_name,
4985                                 const char* signature,
4986                                 const elfcpp::Shdr<64, false>& shdr,
4987                                 elfcpp::Elf_Word flags,
4988                                 std::vector<unsigned int>* shndxes);
4989 #endif
4990
4991 #ifdef HAVE_TARGET_64_BIG
4992 template
4993 void
4994 Layout::layout_group<64, true>(Symbol_table* symtab,
4995                                Sized_relobj_file<64, true>* object,
4996                                unsigned int,
4997                                const char* group_section_name,
4998                                const char* signature,
4999                                const elfcpp::Shdr<64, true>& shdr,
5000                                elfcpp::Elf_Word flags,
5001                                std::vector<unsigned int>* shndxes);
5002 #endif
5003
5004 #ifdef HAVE_TARGET_32_LITTLE
5005 template
5006 Output_section*
5007 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5008                                    const unsigned char* symbols,
5009                                    off_t symbols_size,
5010                                    const unsigned char* symbol_names,
5011                                    off_t symbol_names_size,
5012                                    unsigned int shndx,
5013                                    const elfcpp::Shdr<32, false>& shdr,
5014                                    unsigned int reloc_shndx,
5015                                    unsigned int reloc_type,
5016                                    off_t* off);
5017 #endif
5018
5019 #ifdef HAVE_TARGET_32_BIG
5020 template
5021 Output_section*
5022 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5023                                   const unsigned char* symbols,
5024                                   off_t symbols_size,
5025                                   const unsigned char* symbol_names,
5026                                   off_t symbol_names_size,
5027                                   unsigned int shndx,
5028                                   const elfcpp::Shdr<32, true>& shdr,
5029                                   unsigned int reloc_shndx,
5030                                   unsigned int reloc_type,
5031                                   off_t* off);
5032 #endif
5033
5034 #ifdef HAVE_TARGET_64_LITTLE
5035 template
5036 Output_section*
5037 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5038                                    const unsigned char* symbols,
5039                                    off_t symbols_size,
5040                                    const unsigned char* symbol_names,
5041                                    off_t symbol_names_size,
5042                                    unsigned int shndx,
5043                                    const elfcpp::Shdr<64, false>& shdr,
5044                                    unsigned int reloc_shndx,
5045                                    unsigned int reloc_type,
5046                                    off_t* off);
5047 #endif
5048
5049 #ifdef HAVE_TARGET_64_BIG
5050 template
5051 Output_section*
5052 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5053                                   const unsigned char* symbols,
5054                                   off_t symbols_size,
5055                                   const unsigned char* symbol_names,
5056                                   off_t symbol_names_size,
5057                                   unsigned int shndx,
5058                                   const elfcpp::Shdr<64, true>& shdr,
5059                                   unsigned int reloc_shndx,
5060                                   unsigned int reloc_type,
5061                                   off_t* off);
5062 #endif
5063
5064 } // End namespace gold.