From Cary Coutant: Set DF_STATIC_TLS as appropriate.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "compressed_output.h"
36 #include "layout.h"
37
38 namespace gold
39 {
40
41 // Layout_task_runner methods.
42
43 // Lay out the sections.  This is called after all the input objects
44 // have been read.
45
46 void
47 Layout_task_runner::run(Workqueue* workqueue)
48 {
49   off_t file_size = this->layout_->finalize(this->input_objects_,
50                                             this->symtab_);
51
52   // Now we know the final size of the output file and we know where
53   // each piece of information goes.
54   Output_file* of = new Output_file(this->options_,
55                                     this->input_objects_->target());
56   of->open(file_size);
57
58   // Queue up the final set of tasks.
59   gold::queue_final_tasks(this->options_, this->input_objects_,
60                           this->symtab_, this->layout_, workqueue, of);
61 }
62
63 // Layout methods.
64
65 Layout::Layout(const General_options& options)
66   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
67     section_name_map_(), segment_list_(), section_list_(),
68     unattached_section_list_(), special_output_list_(),
69     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
70     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
71     eh_frame_section_(NULL), output_file_size_(-1),
72     input_requires_executable_stack_(false),
73     input_with_gnu_stack_note_(false),
74     input_without_gnu_stack_note_(false),
75     has_static_tls_(false)
76 {
77   // Make space for more than enough segments for a typical file.
78   // This is just for efficiency--it's OK if we wind up needing more.
79   this->segment_list_.reserve(12);
80
81   // We expect two unattached Output_data objects: the file header and
82   // the segment headers.
83   this->special_output_list_.reserve(2);
84 }
85
86 // Hash a key we use to look up an output section mapping.
87
88 size_t
89 Layout::Hash_key::operator()(const Layout::Key& k) const
90 {
91  return k.first + k.second.first + k.second.second;
92 }
93
94 // Return whether PREFIX is a prefix of STR.
95
96 static inline bool
97 is_prefix_of(const char* prefix, const char* str)
98 {
99   return strncmp(prefix, str, strlen(prefix)) == 0;
100 }
101
102 // Returns whether the given section is in the list of
103 // debug-sections-used-by-some-version-of-gdb.  Currently,
104 // we've checked versions of gdb up to and including 6.7.1.
105
106 static const char* gdb_sections[] =
107 { ".debug_abbrev",
108   // ".debug_aranges",   // not used by gdb as of 6.7.1
109   ".debug_frame",
110   ".debug_info",
111   ".debug_line",
112   ".debug_loc",
113   ".debug_macinfo",
114   // ".debug_pubnames",  // not used by gdb as of 6.7.1
115   ".debug_ranges",
116   ".debug_str",
117 };
118
119 static inline bool
120 is_gdb_debug_section(const char* str)
121 {
122   // We can do this faster: binary search or a hashtable.  But why bother?
123   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
124     if (strcmp(str, gdb_sections[i]) == 0)
125       return true;
126   return false;
127 }
128
129 // Whether to include this section in the link.
130
131 template<int size, bool big_endian>
132 bool
133 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
134                         const elfcpp::Shdr<size, big_endian>& shdr)
135 {
136   // Some section types are never linked.  Some are only linked when
137   // doing a relocateable link.
138   switch (shdr.get_sh_type())
139     {
140     case elfcpp::SHT_NULL:
141     case elfcpp::SHT_SYMTAB:
142     case elfcpp::SHT_DYNSYM:
143     case elfcpp::SHT_STRTAB:
144     case elfcpp::SHT_HASH:
145     case elfcpp::SHT_DYNAMIC:
146     case elfcpp::SHT_SYMTAB_SHNDX:
147       return false;
148
149     case elfcpp::SHT_RELA:
150     case elfcpp::SHT_REL:
151     case elfcpp::SHT_GROUP:
152       return parameters->output_is_object();
153
154     case elfcpp::SHT_PROGBITS:
155       if (parameters->strip_debug()
156           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
157         {
158           // Debugging sections can only be recognized by name.
159           if (is_prefix_of(".debug", name)
160               || is_prefix_of(".gnu.linkonce.wi.", name)
161               || is_prefix_of(".line", name)
162               || is_prefix_of(".stab", name))
163             return false;
164         }
165       if (parameters->strip_debug_gdb()
166           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
167         {
168           // Debugging sections can only be recognized by name.
169           if (is_prefix_of(".debug", name)
170               && !is_gdb_debug_section(name))
171             return false;
172         }
173       return true;
174
175     default:
176       return true;
177     }
178 }
179
180 // Return an output section named NAME, or NULL if there is none.
181
182 Output_section*
183 Layout::find_output_section(const char* name) const
184 {
185   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
186        p != this->section_name_map_.end();
187        ++p)
188     if (strcmp(p->second->name(), name) == 0)
189       return p->second;
190   return NULL;
191 }
192
193 // Return an output segment of type TYPE, with segment flags SET set
194 // and segment flags CLEAR clear.  Return NULL if there is none.
195
196 Output_segment*
197 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
198                             elfcpp::Elf_Word clear) const
199 {
200   for (Segment_list::const_iterator p = this->segment_list_.begin();
201        p != this->segment_list_.end();
202        ++p)
203     if (static_cast<elfcpp::PT>((*p)->type()) == type
204         && ((*p)->flags() & set) == set
205         && ((*p)->flags() & clear) == 0)
206       return *p;
207   return NULL;
208 }
209
210 // Return the output section to use for section NAME with type TYPE
211 // and section flags FLAGS.
212
213 Output_section*
214 Layout::get_output_section(const char* name, Stringpool::Key name_key,
215                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
216 {
217   // We should ignore some flags.
218   flags &= ~ (elfcpp::SHF_INFO_LINK
219               | elfcpp::SHF_LINK_ORDER
220               | elfcpp::SHF_GROUP
221               | elfcpp::SHF_MERGE
222               | elfcpp::SHF_STRINGS);
223
224   const Key key(name_key, std::make_pair(type, flags));
225   const std::pair<Key, Output_section*> v(key, NULL);
226   std::pair<Section_name_map::iterator, bool> ins(
227     this->section_name_map_.insert(v));
228
229   if (!ins.second)
230     return ins.first->second;
231   else
232     {
233       // This is the first time we've seen this name/type/flags
234       // combination.
235       Output_section* os = this->make_output_section(name, type, flags);
236       ins.first->second = os;
237       return os;
238     }
239 }
240
241 // Return the output section to use for input section SHNDX, with name
242 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
243 // index of a relocation section which applies to this section, or 0
244 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
245 // relocation section if there is one.  Set *OFF to the offset of this
246 // input section without the output section.  Return NULL if the
247 // section should be discarded.  Set *OFF to -1 if the section
248 // contents should not be written directly to the output file, but
249 // will instead receive special handling.
250
251 template<int size, bool big_endian>
252 Output_section*
253 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
254                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
255                unsigned int reloc_shndx, unsigned int, off_t* off)
256 {
257   if (!this->include_section(object, name, shdr))
258     return NULL;
259
260   // If we are not doing a relocateable link, choose the name to use
261   // for the output section.
262   size_t len = strlen(name);
263   if (!parameters->output_is_object())
264     name = Layout::output_section_name(name, &len);
265
266   // FIXME: Handle SHF_OS_NONCONFORMING here.
267
268   // Canonicalize the section name.
269   Stringpool::Key name_key;
270   name = this->namepool_.add_prefix(name, len, &name_key);
271
272   // Find the output section.  The output section is selected based on
273   // the section name, type, and flags.
274   Output_section* os = this->get_output_section(name, name_key,
275                                                 shdr.get_sh_type(),
276                                                 shdr.get_sh_flags());
277
278   // FIXME: Handle SHF_LINK_ORDER somewhere.
279
280   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
281
282   return os;
283 }
284
285 // Special GNU handling of sections name .eh_frame.  They will
286 // normally hold exception frame data as defined by the C++ ABI
287 // (http://codesourcery.com/cxx-abi/).
288
289 template<int size, bool big_endian>
290 Output_section*
291 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
292                         const unsigned char* symbols,
293                         off_t symbols_size,
294                         const unsigned char* symbol_names,
295                         off_t symbol_names_size,
296                         unsigned int shndx,
297                         const elfcpp::Shdr<size, big_endian>& shdr,
298                         unsigned int reloc_shndx, unsigned int reloc_type,
299                         off_t* off)
300 {
301   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
302   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
303
304   Stringpool::Key name_key;
305   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
306
307   Output_section* os = this->get_output_section(name, name_key,
308                                                 elfcpp::SHT_PROGBITS,
309                                                 elfcpp::SHF_ALLOC);
310
311   if (this->eh_frame_section_ == NULL)
312     {
313       this->eh_frame_section_ = os;
314       this->eh_frame_data_ = new Eh_frame();
315       os->add_output_section_data(this->eh_frame_data_);
316
317       if (this->options_.create_eh_frame_hdr())
318         {
319           Stringpool::Key hdr_name_key;
320           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
321                                                      false,
322                                                      &hdr_name_key);
323           Output_section* hdr_os =
324             this->get_output_section(hdr_name, hdr_name_key,
325                                      elfcpp::SHT_PROGBITS,
326                                      elfcpp::SHF_ALLOC);
327
328           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
329           hdr_os->add_output_section_data(hdr_posd);
330
331           hdr_os->set_after_input_sections();
332
333           Output_segment* hdr_oseg =
334             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
335           this->segment_list_.push_back(hdr_oseg);
336           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
337
338           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
339         }
340     }
341
342   gold_assert(this->eh_frame_section_ == os);
343
344   if (this->eh_frame_data_->add_ehframe_input_section(object,
345                                                       symbols,
346                                                       symbols_size,
347                                                       symbol_names,
348                                                       symbol_names_size,
349                                                       shndx,
350                                                       reloc_shndx,
351                                                       reloc_type))
352     *off = -1;
353   else
354     {
355       // We couldn't handle this .eh_frame section for some reason.
356       // Add it as a normal section.
357       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
358     }
359
360   return os;
361 }
362
363 // Add POSD to an output section using NAME, TYPE, and FLAGS.
364
365 void
366 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
367                                 elfcpp::Elf_Xword flags,
368                                 Output_section_data* posd)
369 {
370   // Canonicalize the name.
371   Stringpool::Key name_key;
372   name = this->namepool_.add(name, true, &name_key);
373
374   Output_section* os = this->get_output_section(name, name_key, type, flags);
375   os->add_output_section_data(posd);
376 }
377
378 // Map section flags to segment flags.
379
380 elfcpp::Elf_Word
381 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
382 {
383   elfcpp::Elf_Word ret = elfcpp::PF_R;
384   if ((flags & elfcpp::SHF_WRITE) != 0)
385     ret |= elfcpp::PF_W;
386   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
387     ret |= elfcpp::PF_X;
388   return ret;
389 }
390
391 // Sometimes we compress sections.  This is typically done for
392 // sections that are not part of normal program execution (such as
393 // .debug_* sections), and where the readers of these sections know
394 // how to deal with compressed sections.  (To make it easier for them,
395 // we will rename the ouput section in such cases from .foo to
396 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
397 // doesn't say for certain whether we'll compress -- it depends on
398 // commandline options as well -- just whether this section is a
399 // candidate for compression.
400
401 static bool
402 is_compressible_debug_section(const char* secname)
403 {
404   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
405 }
406
407 // Make a new Output_section, and attach it to segments as
408 // appropriate.
409
410 Output_section*
411 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
412                             elfcpp::Elf_Xword flags)
413 {
414   Output_section* os;
415   if ((flags & elfcpp::SHF_ALLOC) == 0
416       && this->options_.compress_debug_sections()
417       && is_compressible_debug_section(name))
418     os = new Output_compressed_section(&this->options_, name, type, flags);
419   else
420     os = new Output_section(name, type, flags);
421
422   this->section_list_.push_back(os);
423
424   if ((flags & elfcpp::SHF_ALLOC) == 0)
425     this->unattached_section_list_.push_back(os);
426   else
427     {
428       // This output section goes into a PT_LOAD segment.
429
430       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
431
432       // The only thing we really care about for PT_LOAD segments is
433       // whether or not they are writable, so that is how we search
434       // for them.  People who need segments sorted on some other
435       // basis will have to wait until we implement a mechanism for
436       // them to describe the segments they want.
437
438       Segment_list::const_iterator p;
439       for (p = this->segment_list_.begin();
440            p != this->segment_list_.end();
441            ++p)
442         {
443           if ((*p)->type() == elfcpp::PT_LOAD
444               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
445             {
446               (*p)->add_output_section(os, seg_flags);
447               break;
448             }
449         }
450
451       if (p == this->segment_list_.end())
452         {
453           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
454                                                     seg_flags);
455           this->segment_list_.push_back(oseg);
456           oseg->add_output_section(os, seg_flags);
457         }
458
459       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
460       // segment.
461       if (type == elfcpp::SHT_NOTE)
462         {
463           // See if we already have an equivalent PT_NOTE segment.
464           for (p = this->segment_list_.begin();
465                p != segment_list_.end();
466                ++p)
467             {
468               if ((*p)->type() == elfcpp::PT_NOTE
469                   && (((*p)->flags() & elfcpp::PF_W)
470                       == (seg_flags & elfcpp::PF_W)))
471                 {
472                   (*p)->add_output_section(os, seg_flags);
473                   break;
474                 }
475             }
476
477           if (p == this->segment_list_.end())
478             {
479               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
480                                                         seg_flags);
481               this->segment_list_.push_back(oseg);
482               oseg->add_output_section(os, seg_flags);
483             }
484         }
485
486       // If we see a loadable SHF_TLS section, we create a PT_TLS
487       // segment.  There can only be one such segment.
488       if ((flags & elfcpp::SHF_TLS) != 0)
489         {
490           if (this->tls_segment_ == NULL)
491             {
492               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
493                                                       seg_flags);
494               this->segment_list_.push_back(this->tls_segment_);
495             }
496           this->tls_segment_->add_output_section(os, seg_flags);
497         }
498     }
499
500   return os;
501 }
502
503 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
504 // is whether we saw a .note.GNU-stack section in the object file.
505 // GNU_STACK_FLAGS is the section flags.  The flags give the
506 // protection required for stack memory.  We record this in an
507 // executable as a PT_GNU_STACK segment.  If an object file does not
508 // have a .note.GNU-stack segment, we must assume that it is an old
509 // object.  On some targets that will force an executable stack.
510
511 void
512 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
513 {
514   if (!seen_gnu_stack)
515     this->input_without_gnu_stack_note_ = true;
516   else
517     {
518       this->input_with_gnu_stack_note_ = true;
519       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
520         this->input_requires_executable_stack_ = true;
521     }
522 }
523
524 // Create the dynamic sections which are needed before we read the
525 // relocs.
526
527 void
528 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
529                                         Symbol_table* symtab)
530 {
531   if (parameters->doing_static_link())
532     return;
533
534   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
535   this->dynamic_section_ = this->make_output_section(dynamic_name,
536                                                      elfcpp::SHT_DYNAMIC,
537                                                      (elfcpp::SHF_ALLOC
538                                                       | elfcpp::SHF_WRITE));
539
540   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
541                                 this->dynamic_section_, 0, 0,
542                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
543                                 elfcpp::STV_HIDDEN, 0, false, false);
544
545   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
546
547   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
548 }
549
550 // For each output section whose name can be represented as C symbol,
551 // define __start and __stop symbols for the section.  This is a GNU
552 // extension.
553
554 void
555 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
556 {
557   for (Section_list::const_iterator p = this->section_list_.begin();
558        p != this->section_list_.end();
559        ++p)
560     {
561       const char* const name = (*p)->name();
562       if (name[strspn(name,
563                       ("0123456789"
564                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
565                        "abcdefghijklmnopqrstuvwxyz"
566                        "_"))]
567           == '\0')
568         {
569           const std::string name_string(name);
570           const std::string start_name("__start_" + name_string);
571           const std::string stop_name("__stop_" + name_string);
572
573           symtab->define_in_output_data(target,
574                                         start_name.c_str(),
575                                         NULL, // version
576                                         *p,
577                                         0, // value
578                                         0, // symsize
579                                         elfcpp::STT_NOTYPE,
580                                         elfcpp::STB_GLOBAL,
581                                         elfcpp::STV_DEFAULT,
582                                         0, // nonvis
583                                         false, // offset_is_from_end
584                                         false); // only_if_ref
585
586           symtab->define_in_output_data(target,
587                                         stop_name.c_str(),
588                                         NULL, // version
589                                         *p,
590                                         0, // value
591                                         0, // symsize
592                                         elfcpp::STT_NOTYPE,
593                                         elfcpp::STB_GLOBAL,
594                                         elfcpp::STV_DEFAULT,
595                                         0, // nonvis
596                                         true, // offset_is_from_end
597                                         false); // only_if_ref
598         }
599     }
600 }
601
602 // Find the first read-only PT_LOAD segment, creating one if
603 // necessary.
604
605 Output_segment*
606 Layout::find_first_load_seg()
607 {
608   for (Segment_list::const_iterator p = this->segment_list_.begin();
609        p != this->segment_list_.end();
610        ++p)
611     {
612       if ((*p)->type() == elfcpp::PT_LOAD
613           && ((*p)->flags() & elfcpp::PF_R) != 0
614           && ((*p)->flags() & elfcpp::PF_W) == 0)
615         return *p;
616     }
617
618   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
619   this->segment_list_.push_back(load_seg);
620   return load_seg;
621 }
622
623 // Finalize the layout.  When this is called, we have created all the
624 // output sections and all the output segments which are based on
625 // input sections.  We have several things to do, and we have to do
626 // them in the right order, so that we get the right results correctly
627 // and efficiently.
628
629 // 1) Finalize the list of output segments and create the segment
630 // table header.
631
632 // 2) Finalize the dynamic symbol table and associated sections.
633
634 // 3) Determine the final file offset of all the output segments.
635
636 // 4) Determine the final file offset of all the SHF_ALLOC output
637 // sections.
638
639 // 5) Create the symbol table sections and the section name table
640 // section.
641
642 // 6) Finalize the symbol table: set symbol values to their final
643 // value and make a final determination of which symbols are going
644 // into the output symbol table.
645
646 // 7) Create the section table header.
647
648 // 8) Determine the final file offset of all the output sections which
649 // are not SHF_ALLOC, including the section table header.
650
651 // 9) Finalize the ELF file header.
652
653 // This function returns the size of the output file.
654
655 off_t
656 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
657 {
658   Target* const target = input_objects->target();
659
660   target->finalize_sections(this);
661
662   this->count_local_symbols(input_objects);
663
664   this->create_gold_note();
665   this->create_executable_stack_info(target);
666
667   Output_segment* phdr_seg = NULL;
668   if (!parameters->doing_static_link())
669     {
670       // There was a dynamic object in the link.  We need to create
671       // some information for the dynamic linker.
672
673       // Create the PT_PHDR segment which will hold the program
674       // headers.
675       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
676       this->segment_list_.push_back(phdr_seg);
677
678       // Create the dynamic symbol table, including the hash table.
679       Output_section* dynstr;
680       std::vector<Symbol*> dynamic_symbols;
681       unsigned int local_dynamic_count;
682       Versions versions;
683       this->create_dynamic_symtab(input_objects, target, symtab, &dynstr,
684                                   &local_dynamic_count, &dynamic_symbols,
685                                   &versions);
686
687       // Create the .interp section to hold the name of the
688       // interpreter, and put it in a PT_INTERP segment.
689       if (!parameters->output_is_shared())
690         this->create_interp(target);
691
692       // Finish the .dynamic section to hold the dynamic data, and put
693       // it in a PT_DYNAMIC segment.
694       this->finish_dynamic_section(input_objects, symtab);
695
696       // We should have added everything we need to the dynamic string
697       // table.
698       this->dynpool_.set_string_offsets();
699
700       // Create the version sections.  We can't do this until the
701       // dynamic string table is complete.
702       this->create_version_sections(&versions, symtab, local_dynamic_count,
703                                     dynamic_symbols, dynstr);
704     }
705
706   // FIXME: Handle PT_GNU_STACK.
707
708   Output_segment* load_seg = this->find_first_load_seg();
709
710   // Lay out the segment headers.
711   Output_segment_headers* segment_headers;
712   segment_headers = new Output_segment_headers(this->segment_list_);
713   load_seg->add_initial_output_data(segment_headers);
714   this->special_output_list_.push_back(segment_headers);
715   if (phdr_seg != NULL)
716     phdr_seg->add_initial_output_data(segment_headers);
717
718   // Lay out the file header.
719   Output_file_header* file_header;
720   file_header = new Output_file_header(target, symtab, segment_headers);
721   load_seg->add_initial_output_data(file_header);
722   this->special_output_list_.push_back(file_header);
723
724   // We set the output section indexes in set_segment_offsets and
725   // set_section_indexes.
726   unsigned int shndx = 1;
727
728   // Set the file offsets of all the segments, and all the sections
729   // they contain.
730   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
731
732   // Create the symbol table sections.
733   this->create_symtab_sections(input_objects, symtab, &off);
734   if (!parameters->doing_static_link())
735     this->assign_local_dynsym_offsets(input_objects);
736
737   // Create the .shstrtab section.
738   Output_section* shstrtab_section = this->create_shstrtab();
739
740   // Set the file offsets of all the non-data sections which don't
741   // have to wait for the input sections.
742   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
743
744   // Now that all sections have been created, set the section indexes.
745   shndx = this->set_section_indexes(shndx);
746
747   // Create the section table header.
748   this->create_shdrs(&off);
749
750   file_header->set_section_info(this->section_headers_, shstrtab_section);
751
752   // Now we know exactly where everything goes in the output file
753   // (except for non-allocated sections which require postprocessing).
754   Output_data::layout_complete();
755
756   this->output_file_size_ = off;
757
758   return off;
759 }
760
761 // Create a .note section for an executable or shared library.  This
762 // records the version of gold used to create the binary.
763
764 void
765 Layout::create_gold_note()
766 {
767   if (parameters->output_is_object())
768     return;
769
770   // Authorities all agree that the values in a .note field should
771   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
772   // they differ on what the alignment is for 64-bit binaries.
773   // The GABI says unambiguously they take 8-byte alignment:
774   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
775   // Other documentation says alignment should always be 4 bytes:
776   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
777   // GNU ld and GNU readelf both support the latter (at least as of
778   // version 2.16.91), and glibc always generates the latter for
779   // .note.ABI-tag (as of version 1.6), so that's the one we go with
780   // here.
781 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
782   const int size = parameters->get_size();
783 #else
784   const int size = 32;
785 #endif
786
787   // The contents of the .note section.
788   const char* name = "GNU";
789   std::string desc(std::string("gold ") + gold::get_version_string());
790   size_t namesz = strlen(name) + 1;
791   size_t aligned_namesz = align_address(namesz, size / 8);
792   size_t descsz = desc.length() + 1;
793   size_t aligned_descsz = align_address(descsz, size / 8);
794   const int note_type = 4;
795
796   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
797
798   unsigned char buffer[128];
799   gold_assert(sizeof buffer >= notesz);
800   memset(buffer, 0, notesz);
801
802   bool is_big_endian = parameters->is_big_endian();
803
804   if (size == 32)
805     {
806       if (!is_big_endian)
807         {
808           elfcpp::Swap<32, false>::writeval(buffer, namesz);
809           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
810           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
811         }
812       else
813         {
814           elfcpp::Swap<32, true>::writeval(buffer, namesz);
815           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
816           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
817         }
818     }
819   else if (size == 64)
820     {
821       if (!is_big_endian)
822         {
823           elfcpp::Swap<64, false>::writeval(buffer, namesz);
824           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
825           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
826         }
827       else
828         {
829           elfcpp::Swap<64, true>::writeval(buffer, namesz);
830           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
831           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
832         }
833     }
834   else
835     gold_unreachable();
836
837   memcpy(buffer + 3 * (size / 8), name, namesz);
838   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
839
840   const char* note_name = this->namepool_.add(".note", false, NULL);
841   Output_section* os = this->make_output_section(note_name,
842                                                  elfcpp::SHT_NOTE,
843                                                  0);
844   Output_section_data* posd = new Output_data_const(buffer, notesz,
845                                                     size / 8);
846   os->add_output_section_data(posd);
847 }
848
849 // Record whether the stack should be executable.  This can be set
850 // from the command line using the -z execstack or -z noexecstack
851 // options.  Otherwise, if any input file has a .note.GNU-stack
852 // section with the SHF_EXECINSTR flag set, the stack should be
853 // executable.  Otherwise, if at least one input file a
854 // .note.GNU-stack section, and some input file has no .note.GNU-stack
855 // section, we use the target default for whether the stack should be
856 // executable.  Otherwise, we don't generate a stack note.  When
857 // generating a object file, we create a .note.GNU-stack section with
858 // the appropriate marking.  When generating an executable or shared
859 // library, we create a PT_GNU_STACK segment.
860
861 void
862 Layout::create_executable_stack_info(const Target* target)
863 {
864   bool is_stack_executable;
865   if (this->options_.is_execstack_set())
866     is_stack_executable = this->options_.is_stack_executable();
867   else if (!this->input_with_gnu_stack_note_)
868     return;
869   else
870     {
871       if (this->input_requires_executable_stack_)
872         is_stack_executable = true;
873       else if (this->input_without_gnu_stack_note_)
874         is_stack_executable = target->is_default_stack_executable();
875       else
876         is_stack_executable = false;
877     }
878
879   if (parameters->output_is_object())
880     {
881       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
882       elfcpp::Elf_Xword flags = 0;
883       if (is_stack_executable)
884         flags |= elfcpp::SHF_EXECINSTR;
885       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
886     }
887   else
888     {
889       int flags = elfcpp::PF_R | elfcpp::PF_W;
890       if (is_stack_executable)
891         flags |= elfcpp::PF_X;
892       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
893       this->segment_list_.push_back(oseg);
894     }
895 }
896
897 // Return whether SEG1 should be before SEG2 in the output file.  This
898 // is based entirely on the segment type and flags.  When this is
899 // called the segment addresses has normally not yet been set.
900
901 bool
902 Layout::segment_precedes(const Output_segment* seg1,
903                          const Output_segment* seg2)
904 {
905   elfcpp::Elf_Word type1 = seg1->type();
906   elfcpp::Elf_Word type2 = seg2->type();
907
908   // The single PT_PHDR segment is required to precede any loadable
909   // segment.  We simply make it always first.
910   if (type1 == elfcpp::PT_PHDR)
911     {
912       gold_assert(type2 != elfcpp::PT_PHDR);
913       return true;
914     }
915   if (type2 == elfcpp::PT_PHDR)
916     return false;
917
918   // The single PT_INTERP segment is required to precede any loadable
919   // segment.  We simply make it always second.
920   if (type1 == elfcpp::PT_INTERP)
921     {
922       gold_assert(type2 != elfcpp::PT_INTERP);
923       return true;
924     }
925   if (type2 == elfcpp::PT_INTERP)
926     return false;
927
928   // We then put PT_LOAD segments before any other segments.
929   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
930     return true;
931   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
932     return false;
933
934   // We put the PT_TLS segment last, because that is where the dynamic
935   // linker expects to find it (this is just for efficiency; other
936   // positions would also work correctly).
937   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
938     return false;
939   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
940     return true;
941
942   const elfcpp::Elf_Word flags1 = seg1->flags();
943   const elfcpp::Elf_Word flags2 = seg2->flags();
944
945   // The order of non-PT_LOAD segments is unimportant.  We simply sort
946   // by the numeric segment type and flags values.  There should not
947   // be more than one segment with the same type and flags.
948   if (type1 != elfcpp::PT_LOAD)
949     {
950       if (type1 != type2)
951         return type1 < type2;
952       gold_assert(flags1 != flags2);
953       return flags1 < flags2;
954     }
955
956   // We sort PT_LOAD segments based on the flags.  Readonly segments
957   // come before writable segments.  Then executable segments come
958   // before non-executable segments.  Then the unlikely case of a
959   // non-readable segment comes before the normal case of a readable
960   // segment.  If there are multiple segments with the same type and
961   // flags, we require that the address be set, and we sort by
962   // virtual address and then physical address.
963   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
964     return (flags1 & elfcpp::PF_W) == 0;
965   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
966     return (flags1 & elfcpp::PF_X) != 0;
967   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
968     return (flags1 & elfcpp::PF_R) == 0;
969
970   uint64_t vaddr1 = seg1->vaddr();
971   uint64_t vaddr2 = seg2->vaddr();
972   if (vaddr1 != vaddr2)
973     return vaddr1 < vaddr2;
974
975   uint64_t paddr1 = seg1->paddr();
976   uint64_t paddr2 = seg2->paddr();
977   gold_assert(paddr1 != paddr2);
978   return paddr1 < paddr2;
979 }
980
981 // Set the file offsets of all the segments, and all the sections they
982 // contain.  They have all been created.  LOAD_SEG must be be laid out
983 // first.  Return the offset of the data to follow.
984
985 off_t
986 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
987                             unsigned int *pshndx)
988 {
989   // Sort them into the final order.
990   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
991             Layout::Compare_segments());
992
993   // Find the PT_LOAD segments, and set their addresses and offsets
994   // and their section's addresses and offsets.
995   uint64_t addr;
996   if (parameters->output_is_shared())
997     addr = 0;
998   else if (options_.user_set_text_segment_address())
999     addr = options_.text_segment_address();
1000   else
1001     addr = target->default_text_segment_address();
1002   off_t off = 0;
1003   bool was_readonly = false;
1004   for (Segment_list::iterator p = this->segment_list_.begin();
1005        p != this->segment_list_.end();
1006        ++p)
1007     {
1008       if ((*p)->type() == elfcpp::PT_LOAD)
1009         {
1010           if (load_seg != NULL && load_seg != *p)
1011             gold_unreachable();
1012           load_seg = NULL;
1013
1014           // If the last segment was readonly, and this one is not,
1015           // then skip the address forward one page, maintaining the
1016           // same position within the page.  This lets us store both
1017           // segments overlapping on a single page in the file, but
1018           // the loader will put them on different pages in memory.
1019
1020           uint64_t orig_addr = addr;
1021           uint64_t orig_off = off;
1022
1023           uint64_t aligned_addr = addr;
1024           uint64_t abi_pagesize = target->abi_pagesize();
1025
1026           // FIXME: This should depend on the -n and -N options.
1027           (*p)->set_minimum_addralign(target->common_pagesize());
1028
1029           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1030             {
1031               uint64_t align = (*p)->addralign();
1032
1033               addr = align_address(addr, align);
1034               aligned_addr = addr;
1035               if ((addr & (abi_pagesize - 1)) != 0)
1036                 addr = addr + abi_pagesize;
1037             }
1038
1039           unsigned int shndx_hold = *pshndx;
1040           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1041           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1042
1043           // Now that we know the size of this segment, we may be able
1044           // to save a page in memory, at the cost of wasting some
1045           // file space, by instead aligning to the start of a new
1046           // page.  Here we use the real machine page size rather than
1047           // the ABI mandated page size.
1048
1049           if (aligned_addr != addr)
1050             {
1051               uint64_t common_pagesize = target->common_pagesize();
1052               uint64_t first_off = (common_pagesize
1053                                     - (aligned_addr
1054                                        & (common_pagesize - 1)));
1055               uint64_t last_off = new_addr & (common_pagesize - 1);
1056               if (first_off > 0
1057                   && last_off > 0
1058                   && ((aligned_addr & ~ (common_pagesize - 1))
1059                       != (new_addr & ~ (common_pagesize - 1)))
1060                   && first_off + last_off <= common_pagesize)
1061                 {
1062                   *pshndx = shndx_hold;
1063                   addr = align_address(aligned_addr, common_pagesize);
1064                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1065                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1066                 }
1067             }
1068
1069           addr = new_addr;
1070
1071           if (((*p)->flags() & elfcpp::PF_W) == 0)
1072             was_readonly = true;
1073         }
1074     }
1075
1076   // Handle the non-PT_LOAD segments, setting their offsets from their
1077   // section's offsets.
1078   for (Segment_list::iterator p = this->segment_list_.begin();
1079        p != this->segment_list_.end();
1080        ++p)
1081     {
1082       if ((*p)->type() != elfcpp::PT_LOAD)
1083         (*p)->set_offset();
1084     }
1085
1086   // Set the TLS offsets for each section in the PT_TLS segment.
1087   if (this->tls_segment_ != NULL)
1088     this->tls_segment_->set_tls_offsets();
1089
1090   return off;
1091 }
1092
1093 // Set the file offset of all the sections not associated with a
1094 // segment.
1095
1096 off_t
1097 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1098 {
1099   for (Section_list::iterator p = this->unattached_section_list_.begin();
1100        p != this->unattached_section_list_.end();
1101        ++p)
1102     {
1103       // The symtab section is handled in create_symtab_sections.
1104       if (*p == this->symtab_section_)
1105         continue;
1106
1107       if (pass == BEFORE_INPUT_SECTIONS_PASS
1108           && (*p)->requires_postprocessing())
1109         (*p)->create_postprocessing_buffer();
1110
1111       if (pass == BEFORE_INPUT_SECTIONS_PASS
1112           && (*p)->after_input_sections())
1113         continue;
1114       else if (pass == AFTER_INPUT_SECTIONS_PASS
1115                && (!(*p)->after_input_sections()
1116                    || (*p)->type() == elfcpp::SHT_STRTAB))
1117         continue;
1118       else if (pass == STRTAB_AFTER_INPUT_SECTIONS_PASS
1119                && (!(*p)->after_input_sections()
1120                    || (*p)->type() != elfcpp::SHT_STRTAB))
1121         continue;
1122
1123       off = align_address(off, (*p)->addralign());
1124       (*p)->set_file_offset(off);
1125       (*p)->finalize_data_size();
1126       off += (*p)->data_size();
1127
1128       // At this point the name must be set.
1129       if (pass != STRTAB_AFTER_INPUT_SECTIONS_PASS)
1130         this->namepool_.add((*p)->name(), false, NULL);
1131     }
1132   return off;
1133 }
1134
1135 // Set the section indexes of all the sections not associated with a
1136 // segment.
1137
1138 unsigned int
1139 Layout::set_section_indexes(unsigned int shndx)
1140 {
1141   for (Section_list::iterator p = this->unattached_section_list_.begin();
1142        p != this->unattached_section_list_.end();
1143        ++p)
1144     {
1145       (*p)->set_out_shndx(shndx);
1146       ++shndx;
1147     }
1148   return shndx;
1149 }
1150
1151 // Count the local symbols in the regular symbol table and the dynamic
1152 // symbol table, and build the respective string pools.
1153
1154 void
1155 Layout::count_local_symbols(const Input_objects* input_objects)
1156 {
1157   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1158        p != input_objects->relobj_end();
1159        ++p)
1160     {
1161       Task_lock_obj<Object> tlo(**p);
1162       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1163     }
1164 }
1165
1166 // Create the symbol table sections.  Here we also set the final
1167 // values of the symbols.  At this point all the loadable sections are
1168 // fully laid out.
1169
1170 void
1171 Layout::create_symtab_sections(const Input_objects* input_objects,
1172                                Symbol_table* symtab,
1173                                off_t* poff)
1174 {
1175   int symsize;
1176   unsigned int align;
1177   if (parameters->get_size() == 32)
1178     {
1179       symsize = elfcpp::Elf_sizes<32>::sym_size;
1180       align = 4;
1181     }
1182   else if (parameters->get_size() == 64)
1183     {
1184       symsize = elfcpp::Elf_sizes<64>::sym_size;
1185       align = 8;
1186     }
1187   else
1188     gold_unreachable();
1189
1190   off_t off = *poff;
1191   off = align_address(off, align);
1192   off_t startoff = off;
1193
1194   // Save space for the dummy symbol at the start of the section.  We
1195   // never bother to write this out--it will just be left as zero.
1196   off += symsize;
1197   unsigned int local_symbol_index = 1;
1198
1199   // Add STT_SECTION symbols for each Output section which needs one.
1200   for (Section_list::iterator p = this->section_list_.begin();
1201        p != this->section_list_.end();
1202        ++p)
1203     {
1204       if (!(*p)->needs_symtab_index())
1205         (*p)->set_symtab_index(-1U);
1206       else
1207         {
1208           (*p)->set_symtab_index(local_symbol_index);
1209           ++local_symbol_index;
1210           off += symsize;
1211         }
1212     }
1213
1214   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1215        p != input_objects->relobj_end();
1216        ++p)
1217     {
1218       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1219                                                         off);
1220       off += (index - local_symbol_index) * symsize;
1221       local_symbol_index = index;
1222     }
1223
1224   unsigned int local_symcount = local_symbol_index;
1225   gold_assert(local_symcount * symsize == off - startoff);
1226
1227   off_t dynoff;
1228   size_t dyn_global_index;
1229   size_t dyncount;
1230   if (this->dynsym_section_ == NULL)
1231     {
1232       dynoff = 0;
1233       dyn_global_index = 0;
1234       dyncount = 0;
1235     }
1236   else
1237     {
1238       dyn_global_index = this->dynsym_section_->info();
1239       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1240       dynoff = this->dynsym_section_->offset() + locsize;
1241       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1242       gold_assert(static_cast<off_t>(dyncount * symsize)
1243                   == this->dynsym_section_->data_size() - locsize);
1244     }
1245
1246   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1247                          dyncount, &this->sympool_);
1248
1249   if (!parameters->strip_all())
1250     {
1251       this->sympool_.set_string_offsets();
1252
1253       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1254       Output_section* osymtab = this->make_output_section(symtab_name,
1255                                                           elfcpp::SHT_SYMTAB,
1256                                                           0);
1257       this->symtab_section_ = osymtab;
1258
1259       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1260                                                              align);
1261       osymtab->add_output_section_data(pos);
1262
1263       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1264       Output_section* ostrtab = this->make_output_section(strtab_name,
1265                                                           elfcpp::SHT_STRTAB,
1266                                                           0);
1267
1268       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1269       ostrtab->add_output_section_data(pstr);
1270
1271       osymtab->set_file_offset(startoff);
1272       osymtab->finalize_data_size();
1273       osymtab->set_link_section(ostrtab);
1274       osymtab->set_info(local_symcount);
1275       osymtab->set_entsize(symsize);
1276
1277       *poff = off;
1278     }
1279 }
1280
1281 // Create the .shstrtab section, which holds the names of the
1282 // sections.  At the time this is called, we have created all the
1283 // output sections except .shstrtab itself.
1284
1285 Output_section*
1286 Layout::create_shstrtab()
1287 {
1288   // FIXME: We don't need to create a .shstrtab section if we are
1289   // stripping everything.
1290
1291   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1292
1293   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1294
1295   // We can't write out this section until we've set all the section
1296   // names, and we don't set the names of compressed output sections
1297   // until relocations are complete.
1298   os->set_after_input_sections();
1299
1300   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1301   os->add_output_section_data(posd);
1302
1303   return os;
1304 }
1305
1306 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1307 // offset.
1308
1309 void
1310 Layout::create_shdrs(off_t* poff)
1311 {
1312   Output_section_headers* oshdrs;
1313   oshdrs = new Output_section_headers(this,
1314                                       &this->segment_list_,
1315                                       &this->unattached_section_list_,
1316                                       &this->namepool_);
1317   off_t off = align_address(*poff, oshdrs->addralign());
1318   oshdrs->set_address_and_file_offset(0, off);
1319   off += oshdrs->data_size();
1320   *poff = off;
1321   this->section_headers_ = oshdrs;
1322 }
1323
1324 // Create the dynamic symbol table.
1325
1326 void
1327 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1328                               const Target* target, Symbol_table* symtab,
1329                               Output_section **pdynstr,
1330                               unsigned int* plocal_dynamic_count,
1331                               std::vector<Symbol*>* pdynamic_symbols,
1332                               Versions* pversions)
1333 {
1334   // Count all the symbols in the dynamic symbol table, and set the
1335   // dynamic symbol indexes.
1336
1337   // Skip symbol 0, which is always all zeroes.
1338   unsigned int index = 1;
1339
1340   // Add STT_SECTION symbols for each Output section which needs one.
1341   for (Section_list::iterator p = this->section_list_.begin();
1342        p != this->section_list_.end();
1343        ++p)
1344     {
1345       if (!(*p)->needs_dynsym_index())
1346         (*p)->set_dynsym_index(-1U);
1347       else
1348         {
1349           (*p)->set_dynsym_index(index);
1350           ++index;
1351         }
1352     }
1353
1354   // Count the local symbols that need to go in the dynamic symbol table,
1355   // and set the dynamic symbol indexes.
1356   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1357        p != input_objects->relobj_end();
1358        ++p)
1359     {
1360       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1361       index = new_index;
1362     }
1363
1364   unsigned int local_symcount = index;
1365   *plocal_dynamic_count = local_symcount;
1366
1367   // FIXME: We have to tell set_dynsym_indexes whether the
1368   // -E/--export-dynamic option was used.
1369   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1370                                      &this->dynpool_, pversions);
1371
1372   int symsize;
1373   unsigned int align;
1374   const int size = parameters->get_size();
1375   if (size == 32)
1376     {
1377       symsize = elfcpp::Elf_sizes<32>::sym_size;
1378       align = 4;
1379     }
1380   else if (size == 64)
1381     {
1382       symsize = elfcpp::Elf_sizes<64>::sym_size;
1383       align = 8;
1384     }
1385   else
1386     gold_unreachable();
1387
1388   // Create the dynamic symbol table section.
1389
1390   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1391   Output_section* dynsym = this->make_output_section(dynsym_name,
1392                                                      elfcpp::SHT_DYNSYM,
1393                                                      elfcpp::SHF_ALLOC);
1394
1395   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1396                                                            align);
1397   dynsym->add_output_section_data(odata);
1398
1399   dynsym->set_info(local_symcount);
1400   dynsym->set_entsize(symsize);
1401   dynsym->set_addralign(align);
1402
1403   this->dynsym_section_ = dynsym;
1404
1405   Output_data_dynamic* const odyn = this->dynamic_data_;
1406   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1407   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1408
1409   // Create the dynamic string table section.
1410
1411   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1412   Output_section* dynstr = this->make_output_section(dynstr_name,
1413                                                      elfcpp::SHT_STRTAB,
1414                                                      elfcpp::SHF_ALLOC);
1415
1416   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1417   dynstr->add_output_section_data(strdata);
1418
1419   dynsym->set_link_section(dynstr);
1420   this->dynamic_section_->set_link_section(dynstr);
1421
1422   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1423   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1424
1425   *pdynstr = dynstr;
1426
1427   // Create the hash tables.
1428
1429   // FIXME: We need an option to create a GNU hash table.
1430
1431   unsigned char* phash;
1432   unsigned int hashlen;
1433   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1434                                 &phash, &hashlen);
1435
1436   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1437   Output_section* hashsec = this->make_output_section(hash_name,
1438                                                       elfcpp::SHT_HASH,
1439                                                       elfcpp::SHF_ALLOC);
1440
1441   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1442                                                                hashlen,
1443                                                                align);
1444   hashsec->add_output_section_data(hashdata);
1445
1446   hashsec->set_link_section(dynsym);
1447   hashsec->set_entsize(4);
1448
1449   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1450 }
1451
1452 // Assign offsets to each local portion of the dynamic symbol table.
1453
1454 void
1455 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1456 {
1457   Output_section* dynsym = this->dynsym_section_;
1458   gold_assert(dynsym != NULL);
1459
1460   off_t off = dynsym->offset();
1461
1462   // Skip the dummy symbol at the start of the section.
1463   off += dynsym->entsize();
1464
1465   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1466        p != input_objects->relobj_end();
1467        ++p)
1468     {
1469       unsigned int count = (*p)->set_local_dynsym_offset(off);
1470       off += count * dynsym->entsize();
1471     }
1472 }
1473
1474 // Create the version sections.
1475
1476 void
1477 Layout::create_version_sections(const Versions* versions,
1478                                 const Symbol_table* symtab,
1479                                 unsigned int local_symcount,
1480                                 const std::vector<Symbol*>& dynamic_symbols,
1481                                 const Output_section* dynstr)
1482 {
1483   if (!versions->any_defs() && !versions->any_needs())
1484     return;
1485
1486   if (parameters->get_size() == 32)
1487     {
1488       if (parameters->is_big_endian())
1489         {
1490 #ifdef HAVE_TARGET_32_BIG
1491           this->sized_create_version_sections
1492               SELECT_SIZE_ENDIAN_NAME(32, true)(
1493                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1494                   SELECT_SIZE_ENDIAN(32, true));
1495 #else
1496           gold_unreachable();
1497 #endif
1498         }
1499       else
1500         {
1501 #ifdef HAVE_TARGET_32_LITTLE
1502           this->sized_create_version_sections
1503               SELECT_SIZE_ENDIAN_NAME(32, false)(
1504                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1505                   SELECT_SIZE_ENDIAN(32, false));
1506 #else
1507           gold_unreachable();
1508 #endif
1509         }
1510     }
1511   else if (parameters->get_size() == 64)
1512     {
1513       if (parameters->is_big_endian())
1514         {
1515 #ifdef HAVE_TARGET_64_BIG
1516           this->sized_create_version_sections
1517               SELECT_SIZE_ENDIAN_NAME(64, true)(
1518                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1519                   SELECT_SIZE_ENDIAN(64, true));
1520 #else
1521           gold_unreachable();
1522 #endif
1523         }
1524       else
1525         {
1526 #ifdef HAVE_TARGET_64_LITTLE
1527           this->sized_create_version_sections
1528               SELECT_SIZE_ENDIAN_NAME(64, false)(
1529                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1530                   SELECT_SIZE_ENDIAN(64, false));
1531 #else
1532           gold_unreachable();
1533 #endif
1534         }
1535     }
1536   else
1537     gold_unreachable();
1538 }
1539
1540 // Create the version sections, sized version.
1541
1542 template<int size, bool big_endian>
1543 void
1544 Layout::sized_create_version_sections(
1545     const Versions* versions,
1546     const Symbol_table* symtab,
1547     unsigned int local_symcount,
1548     const std::vector<Symbol*>& dynamic_symbols,
1549     const Output_section* dynstr
1550     ACCEPT_SIZE_ENDIAN)
1551 {
1552   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1553   Output_section* vsec = this->make_output_section(vname,
1554                                                    elfcpp::SHT_GNU_versym,
1555                                                    elfcpp::SHF_ALLOC);
1556
1557   unsigned char* vbuf;
1558   unsigned int vsize;
1559   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1560       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1561       SELECT_SIZE_ENDIAN(size, big_endian));
1562
1563   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1564
1565   vsec->add_output_section_data(vdata);
1566   vsec->set_entsize(2);
1567   vsec->set_link_section(this->dynsym_section_);
1568
1569   Output_data_dynamic* const odyn = this->dynamic_data_;
1570   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1571
1572   if (versions->any_defs())
1573     {
1574       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1575       Output_section *vdsec;
1576       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1577                                         elfcpp::SHF_ALLOC);
1578
1579       unsigned char* vdbuf;
1580       unsigned int vdsize;
1581       unsigned int vdentries;
1582       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1583           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1584           SELECT_SIZE_ENDIAN(size, big_endian));
1585
1586       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1587                                                                  vdsize,
1588                                                                  4);
1589
1590       vdsec->add_output_section_data(vddata);
1591       vdsec->set_link_section(dynstr);
1592       vdsec->set_info(vdentries);
1593
1594       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1595       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1596     }
1597
1598   if (versions->any_needs())
1599     {
1600       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1601       Output_section* vnsec;
1602       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1603                                         elfcpp::SHF_ALLOC);
1604
1605       unsigned char* vnbuf;
1606       unsigned int vnsize;
1607       unsigned int vnentries;
1608       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1609         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1610          SELECT_SIZE_ENDIAN(size, big_endian));
1611
1612       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1613                                                                  vnsize,
1614                                                                  4);
1615
1616       vnsec->add_output_section_data(vndata);
1617       vnsec->set_link_section(dynstr);
1618       vnsec->set_info(vnentries);
1619
1620       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1621       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1622     }
1623 }
1624
1625 // Create the .interp section and PT_INTERP segment.
1626
1627 void
1628 Layout::create_interp(const Target* target)
1629 {
1630   const char* interp = this->options_.dynamic_linker();
1631   if (interp == NULL)
1632     {
1633       interp = target->dynamic_linker();
1634       gold_assert(interp != NULL);
1635     }
1636
1637   size_t len = strlen(interp) + 1;
1638
1639   Output_section_data* odata = new Output_data_const(interp, len, 1);
1640
1641   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1642   Output_section* osec = this->make_output_section(interp_name,
1643                                                    elfcpp::SHT_PROGBITS,
1644                                                    elfcpp::SHF_ALLOC);
1645   osec->add_output_section_data(odata);
1646
1647   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1648   this->segment_list_.push_back(oseg);
1649   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1650 }
1651
1652 // Finish the .dynamic section and PT_DYNAMIC segment.
1653
1654 void
1655 Layout::finish_dynamic_section(const Input_objects* input_objects,
1656                                const Symbol_table* symtab)
1657 {
1658   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1659                                             elfcpp::PF_R | elfcpp::PF_W);
1660   this->segment_list_.push_back(oseg);
1661   oseg->add_initial_output_section(this->dynamic_section_,
1662                                    elfcpp::PF_R | elfcpp::PF_W);
1663
1664   Output_data_dynamic* const odyn = this->dynamic_data_;
1665
1666   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1667        p != input_objects->dynobj_end();
1668        ++p)
1669     {
1670       // FIXME: Handle --as-needed.
1671       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1672     }
1673
1674   // FIXME: Support --init and --fini.
1675   Symbol* sym = symtab->lookup("_init");
1676   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1677     odyn->add_symbol(elfcpp::DT_INIT, sym);
1678
1679   sym = symtab->lookup("_fini");
1680   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1681     odyn->add_symbol(elfcpp::DT_FINI, sym);
1682
1683   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1684
1685   // Add a DT_RPATH entry if needed.
1686   const General_options::Dir_list& rpath(this->options_.rpath());
1687   if (!rpath.empty())
1688     {
1689       std::string rpath_val;
1690       for (General_options::Dir_list::const_iterator p = rpath.begin();
1691            p != rpath.end();
1692            ++p)
1693         {
1694           if (rpath_val.empty())
1695             rpath_val = p->name();
1696           else
1697             {
1698               // Eliminate duplicates.
1699               General_options::Dir_list::const_iterator q;
1700               for (q = rpath.begin(); q != p; ++q)
1701                 if (q->name() == p->name())
1702                   break;
1703               if (q == p)
1704                 {
1705                   rpath_val += ':';
1706                   rpath_val += p->name();
1707                 }
1708             }
1709         }
1710
1711       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1712     }
1713
1714   // Look for text segments that have dynamic relocations.
1715   bool have_textrel = false;
1716   for (Segment_list::const_iterator p = this->segment_list_.begin();
1717        p != this->segment_list_.end();
1718        ++p)
1719     {
1720       if (((*p)->flags() & elfcpp::PF_W) == 0
1721           && (*p)->dynamic_reloc_count() > 0)
1722         {
1723           have_textrel = true;
1724           break;
1725         }
1726     }
1727
1728   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1729   // post-link tools can easily modify these flags if desired.
1730   unsigned int flags = 0;
1731   if (have_textrel)
1732     {
1733       // Add a DT_TEXTREL for compatibility with older loaders.
1734       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1735       flags |= elfcpp::DF_TEXTREL;
1736     }
1737   if (parameters->output_is_shared() && this->has_static_tls())
1738     flags |= elfcpp::DF_STATIC_TLS;
1739   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1740 }
1741
1742 // The mapping of .gnu.linkonce section names to real section names.
1743
1744 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1745 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1746 {
1747   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1748   MAPPING_INIT("t", ".text"),
1749   MAPPING_INIT("r", ".rodata"),
1750   MAPPING_INIT("d", ".data"),
1751   MAPPING_INIT("b", ".bss"),
1752   MAPPING_INIT("s", ".sdata"),
1753   MAPPING_INIT("sb", ".sbss"),
1754   MAPPING_INIT("s2", ".sdata2"),
1755   MAPPING_INIT("sb2", ".sbss2"),
1756   MAPPING_INIT("wi", ".debug_info"),
1757   MAPPING_INIT("td", ".tdata"),
1758   MAPPING_INIT("tb", ".tbss"),
1759   MAPPING_INIT("lr", ".lrodata"),
1760   MAPPING_INIT("l", ".ldata"),
1761   MAPPING_INIT("lb", ".lbss"),
1762 };
1763 #undef MAPPING_INIT
1764
1765 const int Layout::linkonce_mapping_count =
1766   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1767
1768 // Return the name of the output section to use for a .gnu.linkonce
1769 // section.  This is based on the default ELF linker script of the old
1770 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1771 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1772 // initialized to the length of NAME.
1773
1774 const char*
1775 Layout::linkonce_output_name(const char* name, size_t *plen)
1776 {
1777   const char* s = name + sizeof(".gnu.linkonce") - 1;
1778   if (*s != '.')
1779     return name;
1780   ++s;
1781   const Linkonce_mapping* plm = linkonce_mapping;
1782   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1783     {
1784       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1785         {
1786           *plen = plm->tolen;
1787           return plm->to;
1788         }
1789     }
1790   return name;
1791 }
1792
1793 // Choose the output section name to use given an input section name.
1794 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1795 // length of NAME.
1796
1797 const char*
1798 Layout::output_section_name(const char* name, size_t* plen)
1799 {
1800   if (Layout::is_linkonce(name))
1801     {
1802       // .gnu.linkonce sections are laid out as though they were named
1803       // for the sections are placed into.
1804       return Layout::linkonce_output_name(name, plen);
1805     }
1806
1807   // gcc 4.3 generates the following sorts of section names when it
1808   // needs a section name specific to a function:
1809   //   .text.FN
1810   //   .rodata.FN
1811   //   .sdata2.FN
1812   //   .data.FN
1813   //   .data.rel.FN
1814   //   .data.rel.local.FN
1815   //   .data.rel.ro.FN
1816   //   .data.rel.ro.local.FN
1817   //   .sdata.FN
1818   //   .bss.FN
1819   //   .sbss.FN
1820   //   .tdata.FN
1821   //   .tbss.FN
1822
1823   // The GNU linker maps all of those to the part before the .FN,
1824   // except that .data.rel.local.FN is mapped to .data, and
1825   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1826   // beginning with .data.rel.ro.local are grouped together.
1827
1828   // For an anonymous namespace, the string FN can contain a '.'.
1829
1830   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1831   // GNU linker maps to .rodata.
1832
1833   // The .data.rel.ro sections enable a security feature triggered by
1834   // the -z relro option.  Section which need to be relocated at
1835   // program startup time but which may be readonly after startup are
1836   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1837   // segment.  The dynamic linker will make that segment writable,
1838   // perform relocations, and then make it read-only.  FIXME: We do
1839   // not yet implement this optimization.
1840
1841   // It is hard to handle this in a principled way.
1842
1843   // These are the rules we follow:
1844
1845   // If the section name has no initial '.', or no dot other than an
1846   // initial '.', we use the name unchanged (i.e., "mysection" and
1847   // ".text" are unchanged).
1848
1849   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1850
1851   // Otherwise, we drop the second '.' and everything that comes after
1852   // it (i.e., ".text.XXX" becomes ".text").
1853
1854   const char* s = name;
1855   if (*s != '.')
1856     return name;
1857   ++s;
1858   const char* sdot = strchr(s, '.');
1859   if (sdot == NULL)
1860     return name;
1861
1862   const char* const data_rel_ro = ".data.rel.ro";
1863   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1864     {
1865       *plen = strlen(data_rel_ro);
1866       return data_rel_ro;
1867     }
1868
1869   *plen = sdot - name;
1870   return name;
1871 }
1872
1873 // Record the signature of a comdat section, and return whether to
1874 // include it in the link.  If GROUP is true, this is a regular
1875 // section group.  If GROUP is false, this is a group signature
1876 // derived from the name of a linkonce section.  We want linkonce
1877 // signatures and group signatures to block each other, but we don't
1878 // want a linkonce signature to block another linkonce signature.
1879
1880 bool
1881 Layout::add_comdat(const char* signature, bool group)
1882 {
1883   std::string sig(signature);
1884   std::pair<Signatures::iterator, bool> ins(
1885     this->signatures_.insert(std::make_pair(sig, group)));
1886
1887   if (ins.second)
1888     {
1889       // This is the first time we've seen this signature.
1890       return true;
1891     }
1892
1893   if (ins.first->second)
1894     {
1895       // We've already seen a real section group with this signature.
1896       return false;
1897     }
1898   else if (group)
1899     {
1900       // This is a real section group, and we've already seen a
1901       // linkonce section with this signature.  Record that we've seen
1902       // a section group, and don't include this section group.
1903       ins.first->second = true;
1904       return false;
1905     }
1906   else
1907     {
1908       // We've already seen a linkonce section and this is a linkonce
1909       // section.  These don't block each other--this may be the same
1910       // symbol name with different section types.
1911       return true;
1912     }
1913 }
1914
1915 // Write out the Output_sections.  Most won't have anything to write,
1916 // since most of the data will come from input sections which are
1917 // handled elsewhere.  But some Output_sections do have Output_data.
1918
1919 void
1920 Layout::write_output_sections(Output_file* of) const
1921 {
1922   for (Section_list::const_iterator p = this->section_list_.begin();
1923        p != this->section_list_.end();
1924        ++p)
1925     {
1926       if (!(*p)->after_input_sections())
1927         (*p)->write(of);
1928     }
1929 }
1930
1931 // Write out data not associated with a section or the symbol table.
1932
1933 void
1934 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1935 {
1936   if (!parameters->strip_all())
1937     {
1938       const Output_section* symtab_section = this->symtab_section_;
1939       for (Section_list::const_iterator p = this->section_list_.begin();
1940            p != this->section_list_.end();
1941            ++p)
1942         {
1943           if ((*p)->needs_symtab_index())
1944             {
1945               gold_assert(symtab_section != NULL);
1946               unsigned int index = (*p)->symtab_index();
1947               gold_assert(index > 0 && index != -1U);
1948               off_t off = (symtab_section->offset()
1949                            + index * symtab_section->entsize());
1950               symtab->write_section_symbol(*p, of, off);
1951             }
1952         }
1953     }
1954
1955   const Output_section* dynsym_section = this->dynsym_section_;
1956   for (Section_list::const_iterator p = this->section_list_.begin();
1957        p != this->section_list_.end();
1958        ++p)
1959     {
1960       if ((*p)->needs_dynsym_index())
1961         {
1962           gold_assert(dynsym_section != NULL);
1963           unsigned int index = (*p)->dynsym_index();
1964           gold_assert(index > 0 && index != -1U);
1965           off_t off = (dynsym_section->offset()
1966                        + index * dynsym_section->entsize());
1967           symtab->write_section_symbol(*p, of, off);
1968         }
1969     }
1970
1971   // Write out the Output_data which are not in an Output_section.
1972   for (Data_list::const_iterator p = this->special_output_list_.begin();
1973        p != this->special_output_list_.end();
1974        ++p)
1975     (*p)->write(of);
1976 }
1977
1978 // Write out the Output_sections which can only be written after the
1979 // input sections are complete.
1980
1981 void
1982 Layout::write_sections_after_input_sections(Output_file* of)
1983 {
1984   // Determine the final section offsets, and thus the final output
1985   // file size.  Note we finalize the .shstrab last, to allow the
1986   // after_input_section sections to modify their section-names before
1987   // writing.
1988   off_t off = this->output_file_size_;
1989   off = this->set_section_offsets(off, AFTER_INPUT_SECTIONS_PASS);
1990
1991   // Now that we've finalized the names, we can finalize the shstrab.
1992   off = this->set_section_offsets(off, STRTAB_AFTER_INPUT_SECTIONS_PASS);
1993
1994   if (off > this->output_file_size_)
1995     {
1996       of->resize(off);
1997       this->output_file_size_ = off;
1998     }
1999
2000   for (Section_list::const_iterator p = this->section_list_.begin();
2001        p != this->section_list_.end();
2002        ++p)
2003     {
2004       if ((*p)->after_input_sections())
2005         (*p)->write(of);
2006     }
2007
2008   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
2009        p != this->unattached_section_list_.end();
2010        ++p)
2011     {
2012       if ((*p)->after_input_sections())
2013         (*p)->write(of);
2014     }
2015
2016   this->section_headers_->write(of);
2017 }
2018
2019 // Print statistical information to stderr.  This is used for --stats.
2020
2021 void
2022 Layout::print_stats() const
2023 {
2024   this->namepool_.print_stats("section name pool");
2025   this->sympool_.print_stats("output symbol name pool");
2026   this->dynpool_.print_stats("dynamic name pool");
2027 }
2028
2029 // Write_sections_task methods.
2030
2031 // We can always run this task.
2032
2033 Task::Is_runnable_type
2034 Write_sections_task::is_runnable(Workqueue*)
2035 {
2036   return IS_RUNNABLE;
2037 }
2038
2039 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2040 // when finished.
2041
2042 class Write_sections_task::Write_sections_locker : public Task_locker
2043 {
2044  public:
2045   Write_sections_locker(Task_token& output_sections_blocker,
2046                         Task_token& final_blocker,
2047                         Workqueue* workqueue)
2048     : output_sections_block_(output_sections_blocker, workqueue),
2049       final_block_(final_blocker, workqueue)
2050   { }
2051
2052  private:
2053   Task_block_token output_sections_block_;
2054   Task_block_token final_block_;
2055 };
2056
2057 Task_locker*
2058 Write_sections_task::locks(Workqueue* workqueue)
2059 {
2060   return new Write_sections_locker(*this->output_sections_blocker_,
2061                                    *this->final_blocker_,
2062                                    workqueue);
2063 }
2064
2065 // Run the task--write out the data.
2066
2067 void
2068 Write_sections_task::run(Workqueue*)
2069 {
2070   this->layout_->write_output_sections(this->of_);
2071 }
2072
2073 // Write_data_task methods.
2074
2075 // We can always run this task.
2076
2077 Task::Is_runnable_type
2078 Write_data_task::is_runnable(Workqueue*)
2079 {
2080   return IS_RUNNABLE;
2081 }
2082
2083 // We need to unlock FINAL_BLOCKER when finished.
2084
2085 Task_locker*
2086 Write_data_task::locks(Workqueue* workqueue)
2087 {
2088   return new Task_locker_block(*this->final_blocker_, workqueue);
2089 }
2090
2091 // Run the task--write out the data.
2092
2093 void
2094 Write_data_task::run(Workqueue*)
2095 {
2096   this->layout_->write_data(this->symtab_, this->of_);
2097 }
2098
2099 // Write_symbols_task methods.
2100
2101 // We can always run this task.
2102
2103 Task::Is_runnable_type
2104 Write_symbols_task::is_runnable(Workqueue*)
2105 {
2106   return IS_RUNNABLE;
2107 }
2108
2109 // We need to unlock FINAL_BLOCKER when finished.
2110
2111 Task_locker*
2112 Write_symbols_task::locks(Workqueue* workqueue)
2113 {
2114   return new Task_locker_block(*this->final_blocker_, workqueue);
2115 }
2116
2117 // Run the task--write out the symbols.
2118
2119 void
2120 Write_symbols_task::run(Workqueue*)
2121 {
2122   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2123                                this->dynpool_, this->of_);
2124 }
2125
2126 // Write_after_input_sections_task methods.
2127
2128 // We can only run this task after the input sections have completed.
2129
2130 Task::Is_runnable_type
2131 Write_after_input_sections_task::is_runnable(Workqueue*)
2132 {
2133   if (this->input_sections_blocker_->is_blocked())
2134     return IS_BLOCKED;
2135   return IS_RUNNABLE;
2136 }
2137
2138 // We need to unlock FINAL_BLOCKER when finished.
2139
2140 Task_locker*
2141 Write_after_input_sections_task::locks(Workqueue* workqueue)
2142 {
2143   return new Task_locker_block(*this->final_blocker_, workqueue);
2144 }
2145
2146 // Run the task.
2147
2148 void
2149 Write_after_input_sections_task::run(Workqueue*)
2150 {
2151   this->layout_->write_sections_after_input_sections(this->of_);
2152 }
2153
2154 // Close_task_runner methods.
2155
2156 // Run the task--close the file.
2157
2158 void
2159 Close_task_runner::run(Workqueue*)
2160 {
2161   this->of_->close();
2162 }
2163
2164 // Instantiate the templates we need.  We could use the configure
2165 // script to restrict this to only the ones for implemented targets.
2166
2167 #ifdef HAVE_TARGET_32_LITTLE
2168 template
2169 Output_section*
2170 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2171                           const char* name,
2172                           const elfcpp::Shdr<32, false>& shdr,
2173                           unsigned int, unsigned int, off_t*);
2174 #endif
2175
2176 #ifdef HAVE_TARGET_32_BIG
2177 template
2178 Output_section*
2179 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2180                          const char* name,
2181                          const elfcpp::Shdr<32, true>& shdr,
2182                          unsigned int, unsigned int, off_t*);
2183 #endif
2184
2185 #ifdef HAVE_TARGET_64_LITTLE
2186 template
2187 Output_section*
2188 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2189                           const char* name,
2190                           const elfcpp::Shdr<64, false>& shdr,
2191                           unsigned int, unsigned int, off_t*);
2192 #endif
2193
2194 #ifdef HAVE_TARGET_64_BIG
2195 template
2196 Output_section*
2197 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2198                          const char* name,
2199                          const elfcpp::Shdr<64, true>& shdr,
2200                          unsigned int, unsigned int, off_t*);
2201 #endif
2202
2203 #ifdef HAVE_TARGET_32_LITTLE
2204 template
2205 Output_section*
2206 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2207                                    const unsigned char* symbols,
2208                                    off_t symbols_size,
2209                                    const unsigned char* symbol_names,
2210                                    off_t symbol_names_size,
2211                                    unsigned int shndx,
2212                                    const elfcpp::Shdr<32, false>& shdr,
2213                                    unsigned int reloc_shndx,
2214                                    unsigned int reloc_type,
2215                                    off_t* off);
2216 #endif
2217
2218 #ifdef HAVE_TARGET_32_BIG
2219 template
2220 Output_section*
2221 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2222                                    const unsigned char* symbols,
2223                                    off_t symbols_size,
2224                                   const unsigned char* symbol_names,
2225                                   off_t symbol_names_size,
2226                                   unsigned int shndx,
2227                                   const elfcpp::Shdr<32, true>& shdr,
2228                                   unsigned int reloc_shndx,
2229                                   unsigned int reloc_type,
2230                                   off_t* off);
2231 #endif
2232
2233 #ifdef HAVE_TARGET_64_LITTLE
2234 template
2235 Output_section*
2236 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2237                                    const unsigned char* symbols,
2238                                    off_t symbols_size,
2239                                    const unsigned char* symbol_names,
2240                                    off_t symbol_names_size,
2241                                    unsigned int shndx,
2242                                    const elfcpp::Shdr<64, false>& shdr,
2243                                    unsigned int reloc_shndx,
2244                                    unsigned int reloc_type,
2245                                    off_t* off);
2246 #endif
2247
2248 #ifdef HAVE_TARGET_64_BIG
2249 template
2250 Output_section*
2251 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2252                                    const unsigned char* symbols,
2253                                    off_t symbols_size,
2254                                   const unsigned char* symbol_names,
2255                                   off_t symbol_names_size,
2256                                   unsigned int shndx,
2257                                   const elfcpp::Shdr<64, true>& shdr,
2258                                   unsigned int reloc_shndx,
2259                                   unsigned int reloc_type,
2260                                   off_t* off);
2261 #endif
2262
2263 } // End namespace gold.