Update copyright years
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244  public:
245   Hash_task(const unsigned char* src,
246             size_t size,
247             unsigned char* dst,
248             Task_token* build_id_blocker,
249             Task_token* final_blocker)
250     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251       final_blocker_(final_blocker)
252   { }
253
254   void
255   run(Workqueue*)
256   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258   Task_token*
259   is_runnable();
260
261   // Unblock FINAL_BLOCKER_ when done.
262   void
263   locks(Task_locker* tl)
264   { tl->add(this, this->final_blocker_); }
265
266   std::string
267   get_name() const
268   { return "Hash_task"; }
269
270  private:
271   const unsigned char* const src_;
272   const size_t size_;
273   unsigned char* const dst_;
274   Task_token* const build_id_blocker_;
275   Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281   if (this->build_id_blocker_->is_blocked())
282     return this->build_id_blocker_;
283   return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     array_of_hashes_(NULL),
453     size_of_array_of_hashes_(0),
454     input_view_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     script_output_section_data_list_(),
473     segment_states_(NULL),
474     relaxation_debug_check_(NULL),
475     section_order_map_(),
476     section_segment_map_(),
477     input_section_position_(),
478     input_section_glob_(),
479     incremental_base_(NULL),
480     free_list_()
481 {
482   // Make space for more than enough segments for a typical file.
483   // This is just for efficiency--it's OK if we wind up needing more.
484   this->segment_list_.reserve(12);
485
486   // We expect two unattached Output_data objects: the file header and
487   // the segment headers.
488   this->special_output_list_.reserve(2);
489
490   // Initialize structure needed for an incremental build.
491   if (parameters->incremental())
492     this->incremental_inputs_ = new Incremental_inputs;
493
494   // The section name pool is worth optimizing in all cases, because
495   // it is small, but there are often overlaps due to .rel sections.
496   this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504   this->incremental_base_ = base;
505   this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513  return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523   "abbrev",
524   "addr",         // Fission extension
525   // "aranges",   // not used by gdb as of 7.4
526   "frame",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   "ranges",
536   "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543   "abbrev",
544   // "addr",      // Fission extension
545   // "aranges",   // not used by gdb as of 7.4
546   // "frame",
547   "info",
548   // "types",
549   "line",
550   // "loc",
551   // "macinfo",
552   // "macro",
553   // "pubnames",  // not used by gdb as of 7.4
554   // "pubtypes",  // not used by gdb as of 7.4
555   // "ranges",
556   "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564   "aranges",
565   "pubnames",
566   "pubtypes",
567 };
568
569 // Returns whether the given debug section is in the list of
570 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
571 // portion of the name following ".debug_" or ".zdebug_".
572
573 static inline bool
574 is_gdb_debug_section(const char* suffix)
575 {
576   // We can do this faster: binary search or a hashtable.  But why bother?
577   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
578     if (strcmp(suffix, gdb_sections[i]) == 0)
579       return true;
580   return false;
581 }
582
583 // Returns whether the given section is needed for lines-only debugging.
584
585 static inline bool
586 is_lines_only_debug_section(const char* suffix)
587 {
588   // We can do this faster: binary search or a hashtable.  But why bother?
589   for (size_t i = 0;
590        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
591        ++i)
592     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
593       return true;
594   return false;
595 }
596
597 // Returns whether the given section is a fast-lookup section that
598 // will not be needed when building a .gdb_index section.
599
600 static inline bool
601 is_gdb_fast_lookup_section(const char* suffix)
602 {
603   // We can do this faster: binary search or a hashtable.  But why bother?
604   for (size_t i = 0;
605        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
606        ++i)
607     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
608       return true;
609   return false;
610 }
611
612 // Sometimes we compress sections.  This is typically done for
613 // sections that are not part of normal program execution (such as
614 // .debug_* sections), and where the readers of these sections know
615 // how to deal with compressed sections.  This routine doesn't say for
616 // certain whether we'll compress -- it depends on commandline options
617 // as well -- just whether this section is a candidate for compression.
618 // (The Output_compressed_section class decides whether to compress
619 // a given section, and picks the name of the compressed section.)
620
621 static bool
622 is_compressible_debug_section(const char* secname)
623 {
624   return (is_prefix_of(".debug", secname));
625 }
626
627 // We may see compressed debug sections in input files.  Return TRUE
628 // if this is the name of a compressed debug section.
629
630 bool
631 is_compressed_debug_section(const char* secname)
632 {
633   return (is_prefix_of(".zdebug", secname));
634 }
635
636 // Whether to include this section in the link.
637
638 template<int size, bool big_endian>
639 bool
640 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
641                         const elfcpp::Shdr<size, big_endian>& shdr)
642 {
643   if (!parameters->options().relocatable()
644       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
645     return false;
646
647   switch (shdr.get_sh_type())
648     {
649     case elfcpp::SHT_NULL:
650     case elfcpp::SHT_SYMTAB:
651     case elfcpp::SHT_DYNSYM:
652     case elfcpp::SHT_HASH:
653     case elfcpp::SHT_DYNAMIC:
654     case elfcpp::SHT_SYMTAB_SHNDX:
655       return false;
656
657     case elfcpp::SHT_STRTAB:
658       // Discard the sections which have special meanings in the ELF
659       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
660       // checking the sh_link fields of the appropriate sections.
661       return (strcmp(name, ".dynstr") != 0
662               && strcmp(name, ".strtab") != 0
663               && strcmp(name, ".shstrtab") != 0);
664
665     case elfcpp::SHT_RELA:
666     case elfcpp::SHT_REL:
667     case elfcpp::SHT_GROUP:
668       // If we are emitting relocations these should be handled
669       // elsewhere.
670       gold_assert(!parameters->options().relocatable());
671       return false;
672
673     case elfcpp::SHT_PROGBITS:
674       if (parameters->options().strip_debug()
675           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
676         {
677           if (is_debug_info_section(name))
678             return false;
679         }
680       if (parameters->options().strip_debug_non_line()
681           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
682         {
683           // Debugging sections can only be recognized by name.
684           if (is_prefix_of(".debug_", name)
685               && !is_lines_only_debug_section(name + 7))
686             return false;
687           if (is_prefix_of(".zdebug_", name)
688               && !is_lines_only_debug_section(name + 8))
689             return false;
690         }
691       if (parameters->options().strip_debug_gdb()
692           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
693         {
694           // Debugging sections can only be recognized by name.
695           if (is_prefix_of(".debug_", name)
696               && !is_gdb_debug_section(name + 7))
697             return false;
698           if (is_prefix_of(".zdebug_", name)
699               && !is_gdb_debug_section(name + 8))
700             return false;
701         }
702       if (parameters->options().gdb_index()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // When building .gdb_index, we can strip .debug_pubnames,
706           // .debug_pubtypes, and .debug_aranges sections.
707           if (is_prefix_of(".debug_", name)
708               && is_gdb_fast_lookup_section(name + 7))
709             return false;
710           if (is_prefix_of(".zdebug_", name)
711               && is_gdb_fast_lookup_section(name + 8))
712             return false;
713         }
714       if (parameters->options().strip_lto_sections()
715           && !parameters->options().relocatable()
716           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717         {
718           // Ignore LTO sections containing intermediate code.
719           if (is_prefix_of(".gnu.lto_", name))
720             return false;
721         }
722       // The GNU linker strips .gnu_debuglink sections, so we do too.
723       // This is a feature used to keep debugging information in
724       // separate files.
725       if (strcmp(name, ".gnu_debuglink") == 0)
726         return false;
727       return true;
728
729     default:
730       return true;
731     }
732 }
733
734 // Return an output section named NAME, or NULL if there is none.
735
736 Output_section*
737 Layout::find_output_section(const char* name) const
738 {
739   for (Section_list::const_iterator p = this->section_list_.begin();
740        p != this->section_list_.end();
741        ++p)
742     if (strcmp((*p)->name(), name) == 0)
743       return *p;
744   return NULL;
745 }
746
747 // Return an output segment of type TYPE, with segment flags SET set
748 // and segment flags CLEAR clear.  Return NULL if there is none.
749
750 Output_segment*
751 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
752                             elfcpp::Elf_Word clear) const
753 {
754   for (Segment_list::const_iterator p = this->segment_list_.begin();
755        p != this->segment_list_.end();
756        ++p)
757     if (static_cast<elfcpp::PT>((*p)->type()) == type
758         && ((*p)->flags() & set) == set
759         && ((*p)->flags() & clear) == 0)
760       return *p;
761   return NULL;
762 }
763
764 // When we put a .ctors or .dtors section with more than one word into
765 // a .init_array or .fini_array section, we need to reverse the words
766 // in the .ctors/.dtors section.  This is because .init_array executes
767 // constructors front to back, where .ctors executes them back to
768 // front, and vice-versa for .fini_array/.dtors.  Although we do want
769 // to remap .ctors/.dtors into .init_array/.fini_array because it can
770 // be more efficient, we don't want to change the order in which
771 // constructors/destructors are run.  This set just keeps track of
772 // these sections which need to be reversed.  It is only changed by
773 // Layout::layout.  It should be a private member of Layout, but that
774 // would require layout.h to #include object.h to get the definition
775 // of Section_id.
776 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
777
778 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
779 // .init_array/.fini_array section.
780
781 bool
782 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
783 {
784   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
785           != ctors_sections_in_init_array.end());
786 }
787
788 // Return the output section to use for section NAME with type TYPE
789 // and section flags FLAGS.  NAME must be canonicalized in the string
790 // pool, and NAME_KEY is the key.  ORDER is where this should appear
791 // in the output sections.  IS_RELRO is true for a relro section.
792
793 Output_section*
794 Layout::get_output_section(const char* name, Stringpool::Key name_key,
795                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
796                            Output_section_order order, bool is_relro)
797 {
798   elfcpp::Elf_Word lookup_type = type;
799
800   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
801   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
802   // .init_array, .fini_array, and .preinit_array sections by name
803   // whatever their type in the input file.  We do this because the
804   // types are not always right in the input files.
805   if (lookup_type == elfcpp::SHT_INIT_ARRAY
806       || lookup_type == elfcpp::SHT_FINI_ARRAY
807       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
808     lookup_type = elfcpp::SHT_PROGBITS;
809
810   elfcpp::Elf_Xword lookup_flags = flags;
811
812   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
813   // read-write with read-only sections.  Some other ELF linkers do
814   // not do this.  FIXME: Perhaps there should be an option
815   // controlling this.
816   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
817
818   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
819   const std::pair<Key, Output_section*> v(key, NULL);
820   std::pair<Section_name_map::iterator, bool> ins(
821     this->section_name_map_.insert(v));
822
823   if (!ins.second)
824     return ins.first->second;
825   else
826     {
827       // This is the first time we've seen this name/type/flags
828       // combination.  For compatibility with the GNU linker, we
829       // combine sections with contents and zero flags with sections
830       // with non-zero flags.  This is a workaround for cases where
831       // assembler code forgets to set section flags.  FIXME: Perhaps
832       // there should be an option to control this.
833       Output_section* os = NULL;
834
835       if (lookup_type == elfcpp::SHT_PROGBITS)
836         {
837           if (flags == 0)
838             {
839               Output_section* same_name = this->find_output_section(name);
840               if (same_name != NULL
841                   && (same_name->type() == elfcpp::SHT_PROGBITS
842                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
843                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
844                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
845                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
846                 os = same_name;
847             }
848           else if ((flags & elfcpp::SHF_TLS) == 0)
849             {
850               elfcpp::Elf_Xword zero_flags = 0;
851               const Key zero_key(name_key, std::make_pair(lookup_type,
852                                                           zero_flags));
853               Section_name_map::iterator p =
854                   this->section_name_map_.find(zero_key);
855               if (p != this->section_name_map_.end())
856                 os = p->second;
857             }
858         }
859
860       if (os == NULL)
861         os = this->make_output_section(name, type, flags, order, is_relro);
862
863       ins.first->second = os;
864       return os;
865     }
866 }
867
868 // Returns TRUE iff NAME (an input section from RELOBJ) will
869 // be mapped to an output section that should be KEPT.
870
871 bool
872 Layout::keep_input_section(const Relobj* relobj, const char* name)
873 {
874   if (! this->script_options_->saw_sections_clause())
875     return false;
876
877   Script_sections* ss = this->script_options_->script_sections();
878   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
879   Output_section** output_section_slot;
880   Script_sections::Section_type script_section_type;
881   bool keep;
882
883   name = ss->output_section_name(file_name, name, &output_section_slot,
884                                  &script_section_type, &keep);
885   return name != NULL && keep;
886 }
887
888 // Clear the input section flags that should not be copied to the
889 // output section.
890
891 elfcpp::Elf_Xword
892 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
893 {
894   // Some flags in the input section should not be automatically
895   // copied to the output section.
896   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
897                             | elfcpp::SHF_GROUP
898                             | elfcpp::SHF_MERGE
899                             | elfcpp::SHF_STRINGS);
900
901   // We only clear the SHF_LINK_ORDER flag in for
902   // a non-relocatable link.
903   if (!parameters->options().relocatable())
904     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
905
906   return input_section_flags;
907 }
908
909 // Pick the output section to use for section NAME, in input file
910 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
911 // linker created section.  IS_INPUT_SECTION is true if we are
912 // choosing an output section for an input section found in a input
913 // file.  ORDER is where this section should appear in the output
914 // sections.  IS_RELRO is true for a relro section.  This will return
915 // NULL if the input section should be discarded.
916
917 Output_section*
918 Layout::choose_output_section(const Relobj* relobj, const char* name,
919                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
920                               bool is_input_section, Output_section_order order,
921                               bool is_relro)
922 {
923   // We should not see any input sections after we have attached
924   // sections to segments.
925   gold_assert(!is_input_section || !this->sections_are_attached_);
926
927   flags = this->get_output_section_flags(flags);
928
929   if (this->script_options_->saw_sections_clause())
930     {
931       // We are using a SECTIONS clause, so the output section is
932       // chosen based only on the name.
933
934       Script_sections* ss = this->script_options_->script_sections();
935       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
936       Output_section** output_section_slot;
937       Script_sections::Section_type script_section_type;
938       const char* orig_name = name;
939       bool keep;
940       name = ss->output_section_name(file_name, name, &output_section_slot,
941                                      &script_section_type, &keep);
942
943       if (name == NULL)
944         {
945           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
946                                      "because it is not allowed by the "
947                                      "SECTIONS clause of the linker script"),
948                      orig_name);
949           // The SECTIONS clause says to discard this input section.
950           return NULL;
951         }
952
953       // We can only handle script section types ST_NONE and ST_NOLOAD.
954       switch (script_section_type)
955         {
956         case Script_sections::ST_NONE:
957           break;
958         case Script_sections::ST_NOLOAD:
959           flags &= elfcpp::SHF_ALLOC;
960           break;
961         default:
962           gold_unreachable();
963         }
964
965       // If this is an orphan section--one not mentioned in the linker
966       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
967       // default processing below.
968
969       if (output_section_slot != NULL)
970         {
971           if (*output_section_slot != NULL)
972             {
973               (*output_section_slot)->update_flags_for_input_section(flags);
974               return *output_section_slot;
975             }
976
977           // We don't put sections found in the linker script into
978           // SECTION_NAME_MAP_.  That keeps us from getting confused
979           // if an orphan section is mapped to a section with the same
980           // name as one in the linker script.
981
982           name = this->namepool_.add(name, false, NULL);
983
984           Output_section* os = this->make_output_section(name, type, flags,
985                                                          order, is_relro);
986
987           os->set_found_in_sections_clause();
988
989           // Special handling for NOLOAD sections.
990           if (script_section_type == Script_sections::ST_NOLOAD)
991             {
992               os->set_is_noload();
993
994               // The constructor of Output_section sets addresses of non-ALLOC
995               // sections to 0 by default.  We don't want that for NOLOAD
996               // sections even if they have no SHF_ALLOC flag.
997               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
998                   && os->is_address_valid())
999                 {
1000                   gold_assert(os->address() == 0
1001                               && !os->is_offset_valid()
1002                               && !os->is_data_size_valid());
1003                   os->reset_address_and_file_offset();
1004                 }
1005             }
1006
1007           *output_section_slot = os;
1008           return os;
1009         }
1010     }
1011
1012   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1013
1014   size_t len = strlen(name);
1015   char* uncompressed_name = NULL;
1016
1017   // Compressed debug sections should be mapped to the corresponding
1018   // uncompressed section.
1019   if (is_compressed_debug_section(name))
1020     {
1021       uncompressed_name = new char[len];
1022       uncompressed_name[0] = '.';
1023       gold_assert(name[0] == '.' && name[1] == 'z');
1024       strncpy(&uncompressed_name[1], &name[2], len - 2);
1025       uncompressed_name[len - 1] = '\0';
1026       len -= 1;
1027       name = uncompressed_name;
1028     }
1029
1030   // Turn NAME from the name of the input section into the name of the
1031   // output section.
1032   if (is_input_section
1033       && !this->script_options_->saw_sections_clause()
1034       && !parameters->options().relocatable())
1035     {
1036       const char *orig_name = name;
1037       name = parameters->target().output_section_name(relobj, name, &len);
1038       if (name == NULL)
1039         name = Layout::output_section_name(relobj, orig_name, &len);
1040     }
1041
1042   Stringpool::Key name_key;
1043   name = this->namepool_.add_with_length(name, len, true, &name_key);
1044
1045   if (uncompressed_name != NULL)
1046     delete[] uncompressed_name;
1047
1048   // Find or make the output section.  The output section is selected
1049   // based on the section name, type, and flags.
1050   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1051 }
1052
1053 // For incremental links, record the initial fixed layout of a section
1054 // from the base file, and return a pointer to the Output_section.
1055
1056 template<int size, bool big_endian>
1057 Output_section*
1058 Layout::init_fixed_output_section(const char* name,
1059                                   elfcpp::Shdr<size, big_endian>& shdr)
1060 {
1061   unsigned int sh_type = shdr.get_sh_type();
1062
1063   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1064   // PRE_INIT_ARRAY, and NOTE sections.
1065   // All others will be created from scratch and reallocated.
1066   if (!can_incremental_update(sh_type))
1067     return NULL;
1068
1069   // If we're generating a .gdb_index section, we need to regenerate
1070   // it from scratch.
1071   if (parameters->options().gdb_index()
1072       && sh_type == elfcpp::SHT_PROGBITS
1073       && strcmp(name, ".gdb_index") == 0)
1074     return NULL;
1075
1076   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1077   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1078   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1079   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1080   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1081       shdr.get_sh_addralign();
1082
1083   // Make the output section.
1084   Stringpool::Key name_key;
1085   name = this->namepool_.add(name, true, &name_key);
1086   Output_section* os = this->get_output_section(name, name_key, sh_type,
1087                                                 sh_flags, ORDER_INVALID, false);
1088   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1089   if (sh_type != elfcpp::SHT_NOBITS)
1090     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1091   return os;
1092 }
1093
1094 // Return the index by which an input section should be ordered.  This
1095 // is used to sort some .text sections, for compatibility with GNU ld.
1096
1097 int
1098 Layout::special_ordering_of_input_section(const char* name)
1099 {
1100   // The GNU linker has some special handling for some sections that
1101   // wind up in the .text section.  Sections that start with these
1102   // prefixes must appear first, and must appear in the order listed
1103   // here.
1104   static const char* const text_section_sort[] =
1105   {
1106     ".text.unlikely",
1107     ".text.exit",
1108     ".text.startup",
1109     ".text.hot"
1110   };
1111
1112   for (size_t i = 0;
1113        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1114        i++)
1115     if (is_prefix_of(text_section_sort[i], name))
1116       return i;
1117
1118   return -1;
1119 }
1120
1121 // Return the output section to use for input section SHNDX, with name
1122 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1123 // index of a relocation section which applies to this section, or 0
1124 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1125 // relocation section if there is one.  Set *OFF to the offset of this
1126 // input section without the output section.  Return NULL if the
1127 // section should be discarded.  Set *OFF to -1 if the section
1128 // contents should not be written directly to the output file, but
1129 // will instead receive special handling.
1130
1131 template<int size, bool big_endian>
1132 Output_section*
1133 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1134                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1135                unsigned int reloc_shndx, unsigned int, off_t* off)
1136 {
1137   *off = 0;
1138
1139   if (!this->include_section(object, name, shdr))
1140     return NULL;
1141
1142   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1143
1144   // In a relocatable link a grouped section must not be combined with
1145   // any other sections.
1146   Output_section* os;
1147   if (parameters->options().relocatable()
1148       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1149     {
1150       name = this->namepool_.add(name, true, NULL);
1151       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1152                                      ORDER_INVALID, false);
1153     }
1154   else
1155     {
1156       // Plugins can choose to place one or more subsets of sections in
1157       // unique segments and this is done by mapping these section subsets
1158       // to unique output sections.  Check if this section needs to be
1159       // remapped to a unique output section.
1160       Section_segment_map::iterator it
1161           = this->section_segment_map_.find(Const_section_id(object, shndx));
1162       if (it == this->section_segment_map_.end())
1163         {
1164           os = this->choose_output_section(object, name, sh_type,
1165                                            shdr.get_sh_flags(), true,
1166                                            ORDER_INVALID, false);
1167         }
1168       else
1169         {
1170           // We know the name of the output section, directly call
1171           // get_output_section here by-passing choose_output_section.
1172           elfcpp::Elf_Xword flags
1173             = this->get_output_section_flags(shdr.get_sh_flags());
1174
1175           const char* os_name = it->second->name;
1176           Stringpool::Key name_key;
1177           os_name = this->namepool_.add(os_name, true, &name_key);
1178           os = this->get_output_section(os_name, name_key, sh_type, flags,
1179                                         ORDER_INVALID, false);
1180           if (!os->is_unique_segment())
1181             {
1182               os->set_is_unique_segment();
1183               os->set_extra_segment_flags(it->second->flags);
1184               os->set_segment_alignment(it->second->align);
1185             }
1186         }
1187       if (os == NULL)
1188         return NULL;
1189     }
1190
1191   // By default the GNU linker sorts input sections whose names match
1192   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1193   // sections are sorted by name.  This is used to implement
1194   // constructor priority ordering.  We are compatible.  When we put
1195   // .ctor sections in .init_array and .dtor sections in .fini_array,
1196   // we must also sort plain .ctor and .dtor sections.
1197   if (!this->script_options_->saw_sections_clause()
1198       && !parameters->options().relocatable()
1199       && (is_prefix_of(".ctors.", name)
1200           || is_prefix_of(".dtors.", name)
1201           || is_prefix_of(".init_array.", name)
1202           || is_prefix_of(".fini_array.", name)
1203           || (parameters->options().ctors_in_init_array()
1204               && (strcmp(name, ".ctors") == 0
1205                   || strcmp(name, ".dtors") == 0))))
1206     os->set_must_sort_attached_input_sections();
1207
1208   // By default the GNU linker sorts some special text sections ahead
1209   // of others.  We are compatible.
1210   if (parameters->options().text_reorder()
1211       && !this->script_options_->saw_sections_clause()
1212       && !this->is_section_ordering_specified()
1213       && !parameters->options().relocatable()
1214       && Layout::special_ordering_of_input_section(name) >= 0)
1215     os->set_must_sort_attached_input_sections();
1216
1217   // If this is a .ctors or .ctors.* section being mapped to a
1218   // .init_array section, or a .dtors or .dtors.* section being mapped
1219   // to a .fini_array section, we will need to reverse the words if
1220   // there is more than one.  Record this section for later.  See
1221   // ctors_sections_in_init_array above.
1222   if (!this->script_options_->saw_sections_clause()
1223       && !parameters->options().relocatable()
1224       && shdr.get_sh_size() > size / 8
1225       && (((strcmp(name, ".ctors") == 0
1226             || is_prefix_of(".ctors.", name))
1227            && strcmp(os->name(), ".init_array") == 0)
1228           || ((strcmp(name, ".dtors") == 0
1229                || is_prefix_of(".dtors.", name))
1230               && strcmp(os->name(), ".fini_array") == 0)))
1231     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1232
1233   // FIXME: Handle SHF_LINK_ORDER somewhere.
1234
1235   elfcpp::Elf_Xword orig_flags = os->flags();
1236
1237   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1238                                this->script_options_->saw_sections_clause());
1239
1240   // If the flags changed, we may have to change the order.
1241   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1242     {
1243       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1244       elfcpp::Elf_Xword new_flags =
1245         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1246       if (orig_flags != new_flags)
1247         os->set_order(this->default_section_order(os, false));
1248     }
1249
1250   this->have_added_input_section_ = true;
1251
1252   return os;
1253 }
1254
1255 // Maps section SECN to SEGMENT s.
1256 void
1257 Layout::insert_section_segment_map(Const_section_id secn,
1258                                    Unique_segment_info *s)
1259 {
1260   gold_assert(this->unique_segment_for_sections_specified_);
1261   this->section_segment_map_[secn] = s;
1262 }
1263
1264 // Handle a relocation section when doing a relocatable link.
1265
1266 template<int size, bool big_endian>
1267 Output_section*
1268 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1269                      unsigned int,
1270                      const elfcpp::Shdr<size, big_endian>& shdr,
1271                      Output_section* data_section,
1272                      Relocatable_relocs* rr)
1273 {
1274   gold_assert(parameters->options().relocatable()
1275               || parameters->options().emit_relocs());
1276
1277   int sh_type = shdr.get_sh_type();
1278
1279   std::string name;
1280   if (sh_type == elfcpp::SHT_REL)
1281     name = ".rel";
1282   else if (sh_type == elfcpp::SHT_RELA)
1283     name = ".rela";
1284   else
1285     gold_unreachable();
1286   name += data_section->name();
1287
1288   // In a relocatable link relocs for a grouped section must not be
1289   // combined with other reloc sections.
1290   Output_section* os;
1291   if (!parameters->options().relocatable()
1292       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1293     os = this->choose_output_section(object, name.c_str(), sh_type,
1294                                      shdr.get_sh_flags(), false,
1295                                      ORDER_INVALID, false);
1296   else
1297     {
1298       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1299       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1300                                      ORDER_INVALID, false);
1301     }
1302
1303   os->set_should_link_to_symtab();
1304   os->set_info_section(data_section);
1305
1306   Output_section_data* posd;
1307   if (sh_type == elfcpp::SHT_REL)
1308     {
1309       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1310       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1311                                            size,
1312                                            big_endian>(rr);
1313     }
1314   else if (sh_type == elfcpp::SHT_RELA)
1315     {
1316       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1317       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1318                                            size,
1319                                            big_endian>(rr);
1320     }
1321   else
1322     gold_unreachable();
1323
1324   os->add_output_section_data(posd);
1325   rr->set_output_data(posd);
1326
1327   return os;
1328 }
1329
1330 // Handle a group section when doing a relocatable link.
1331
1332 template<int size, bool big_endian>
1333 void
1334 Layout::layout_group(Symbol_table* symtab,
1335                      Sized_relobj_file<size, big_endian>* object,
1336                      unsigned int,
1337                      const char* group_section_name,
1338                      const char* signature,
1339                      const elfcpp::Shdr<size, big_endian>& shdr,
1340                      elfcpp::Elf_Word flags,
1341                      std::vector<unsigned int>* shndxes)
1342 {
1343   gold_assert(parameters->options().relocatable());
1344   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1345   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1346   Output_section* os = this->make_output_section(group_section_name,
1347                                                  elfcpp::SHT_GROUP,
1348                                                  shdr.get_sh_flags(),
1349                                                  ORDER_INVALID, false);
1350
1351   // We need to find a symbol with the signature in the symbol table.
1352   // If we don't find one now, we need to look again later.
1353   Symbol* sym = symtab->lookup(signature, NULL);
1354   if (sym != NULL)
1355     os->set_info_symndx(sym);
1356   else
1357     {
1358       // Reserve some space to minimize reallocations.
1359       if (this->group_signatures_.empty())
1360         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1361
1362       // We will wind up using a symbol whose name is the signature.
1363       // So just put the signature in the symbol name pool to save it.
1364       signature = symtab->canonicalize_name(signature);
1365       this->group_signatures_.push_back(Group_signature(os, signature));
1366     }
1367
1368   os->set_should_link_to_symtab();
1369   os->set_entsize(4);
1370
1371   section_size_type entry_count =
1372     convert_to_section_size_type(shdr.get_sh_size() / 4);
1373   Output_section_data* posd =
1374     new Output_data_group<size, big_endian>(object, entry_count, flags,
1375                                             shndxes);
1376   os->add_output_section_data(posd);
1377 }
1378
1379 // Special GNU handling of sections name .eh_frame.  They will
1380 // normally hold exception frame data as defined by the C++ ABI
1381 // (http://codesourcery.com/cxx-abi/).
1382
1383 template<int size, bool big_endian>
1384 Output_section*
1385 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1386                         const unsigned char* symbols,
1387                         off_t symbols_size,
1388                         const unsigned char* symbol_names,
1389                         off_t symbol_names_size,
1390                         unsigned int shndx,
1391                         const elfcpp::Shdr<size, big_endian>& shdr,
1392                         unsigned int reloc_shndx, unsigned int reloc_type,
1393                         off_t* off)
1394 {
1395   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1396               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1397   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1398
1399   Output_section* os = this->make_eh_frame_section(object);
1400   if (os == NULL)
1401     return NULL;
1402
1403   gold_assert(this->eh_frame_section_ == os);
1404
1405   elfcpp::Elf_Xword orig_flags = os->flags();
1406
1407   if (!parameters->incremental()
1408       && this->eh_frame_data_->add_ehframe_input_section(object,
1409                                                          symbols,
1410                                                          symbols_size,
1411                                                          symbol_names,
1412                                                          symbol_names_size,
1413                                                          shndx,
1414                                                          reloc_shndx,
1415                                                          reloc_type))
1416     {
1417       os->update_flags_for_input_section(shdr.get_sh_flags());
1418
1419       // A writable .eh_frame section is a RELRO section.
1420       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1421           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1422         {
1423           os->set_is_relro();
1424           os->set_order(ORDER_RELRO);
1425         }
1426
1427       // We found a .eh_frame section we are going to optimize, so now
1428       // we can add the set of optimized sections to the output
1429       // section.  We need to postpone adding this until we've found a
1430       // section we can optimize so that the .eh_frame section in
1431       // crtbegin.o winds up at the start of the output section.
1432       if (!this->added_eh_frame_data_)
1433         {
1434           os->add_output_section_data(this->eh_frame_data_);
1435           this->added_eh_frame_data_ = true;
1436         }
1437       *off = -1;
1438     }
1439   else
1440     {
1441       // We couldn't handle this .eh_frame section for some reason.
1442       // Add it as a normal section.
1443       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1444       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1445                                    reloc_shndx, saw_sections_clause);
1446       this->have_added_input_section_ = true;
1447
1448       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1449           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1450         os->set_order(this->default_section_order(os, false));
1451     }
1452
1453   return os;
1454 }
1455
1456 // Create and return the magic .eh_frame section.  Create
1457 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1458 // input .eh_frame section; it may be NULL.
1459
1460 Output_section*
1461 Layout::make_eh_frame_section(const Relobj* object)
1462 {
1463   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1464   // SHT_PROGBITS.
1465   Output_section* os = this->choose_output_section(object, ".eh_frame",
1466                                                    elfcpp::SHT_PROGBITS,
1467                                                    elfcpp::SHF_ALLOC, false,
1468                                                    ORDER_EHFRAME, false);
1469   if (os == NULL)
1470     return NULL;
1471
1472   if (this->eh_frame_section_ == NULL)
1473     {
1474       this->eh_frame_section_ = os;
1475       this->eh_frame_data_ = new Eh_frame();
1476
1477       // For incremental linking, we do not optimize .eh_frame sections
1478       // or create a .eh_frame_hdr section.
1479       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1480         {
1481           Output_section* hdr_os =
1482             this->choose_output_section(NULL, ".eh_frame_hdr",
1483                                         elfcpp::SHT_PROGBITS,
1484                                         elfcpp::SHF_ALLOC, false,
1485                                         ORDER_EHFRAME, false);
1486
1487           if (hdr_os != NULL)
1488             {
1489               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1490                                                         this->eh_frame_data_);
1491               hdr_os->add_output_section_data(hdr_posd);
1492
1493               hdr_os->set_after_input_sections();
1494
1495               if (!this->script_options_->saw_phdrs_clause())
1496                 {
1497                   Output_segment* hdr_oseg;
1498                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1499                                                        elfcpp::PF_R);
1500                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1501                                                           elfcpp::PF_R);
1502                 }
1503
1504               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1505             }
1506         }
1507     }
1508
1509   return os;
1510 }
1511
1512 // Add an exception frame for a PLT.  This is called from target code.
1513
1514 void
1515 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1516                              size_t cie_length, const unsigned char* fde_data,
1517                              size_t fde_length)
1518 {
1519   if (parameters->incremental())
1520     {
1521       // FIXME: Maybe this could work some day....
1522       return;
1523     }
1524   Output_section* os = this->make_eh_frame_section(NULL);
1525   if (os == NULL)
1526     return;
1527   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1528                                             fde_data, fde_length);
1529   if (!this->added_eh_frame_data_)
1530     {
1531       os->add_output_section_data(this->eh_frame_data_);
1532       this->added_eh_frame_data_ = true;
1533     }
1534 }
1535
1536 // Scan a .debug_info or .debug_types section, and add summary
1537 // information to the .gdb_index section.
1538
1539 template<int size, bool big_endian>
1540 void
1541 Layout::add_to_gdb_index(bool is_type_unit,
1542                          Sized_relobj<size, big_endian>* object,
1543                          const unsigned char* symbols,
1544                          off_t symbols_size,
1545                          unsigned int shndx,
1546                          unsigned int reloc_shndx,
1547                          unsigned int reloc_type)
1548 {
1549   if (this->gdb_index_data_ == NULL)
1550     {
1551       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1552                                                        elfcpp::SHT_PROGBITS, 0,
1553                                                        false, ORDER_INVALID,
1554                                                        false);
1555       if (os == NULL)
1556         return;
1557
1558       this->gdb_index_data_ = new Gdb_index(os);
1559       os->add_output_section_data(this->gdb_index_data_);
1560       os->set_after_input_sections();
1561     }
1562
1563   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1564                                          symbols_size, shndx, reloc_shndx,
1565                                          reloc_type);
1566 }
1567
1568 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1569 // the output section.
1570
1571 Output_section*
1572 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1573                                 elfcpp::Elf_Xword flags,
1574                                 Output_section_data* posd,
1575                                 Output_section_order order, bool is_relro)
1576 {
1577   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1578                                                    false, order, is_relro);
1579   if (os != NULL)
1580     os->add_output_section_data(posd);
1581   return os;
1582 }
1583
1584 // Map section flags to segment flags.
1585
1586 elfcpp::Elf_Word
1587 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1588 {
1589   elfcpp::Elf_Word ret = elfcpp::PF_R;
1590   if ((flags & elfcpp::SHF_WRITE) != 0)
1591     ret |= elfcpp::PF_W;
1592   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1593     ret |= elfcpp::PF_X;
1594   return ret;
1595 }
1596
1597 // Make a new Output_section, and attach it to segments as
1598 // appropriate.  ORDER is the order in which this section should
1599 // appear in the output segment.  IS_RELRO is true if this is a relro
1600 // (read-only after relocations) section.
1601
1602 Output_section*
1603 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1604                             elfcpp::Elf_Xword flags,
1605                             Output_section_order order, bool is_relro)
1606 {
1607   Output_section* os;
1608   if ((flags & elfcpp::SHF_ALLOC) == 0
1609       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1610       && is_compressible_debug_section(name))
1611     os = new Output_compressed_section(&parameters->options(), name, type,
1612                                        flags);
1613   else if ((flags & elfcpp::SHF_ALLOC) == 0
1614            && parameters->options().strip_debug_non_line()
1615            && strcmp(".debug_abbrev", name) == 0)
1616     {
1617       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1618           name, type, flags);
1619       if (this->debug_info_)
1620         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1621     }
1622   else if ((flags & elfcpp::SHF_ALLOC) == 0
1623            && parameters->options().strip_debug_non_line()
1624            && strcmp(".debug_info", name) == 0)
1625     {
1626       os = this->debug_info_ = new Output_reduced_debug_info_section(
1627           name, type, flags);
1628       if (this->debug_abbrev_)
1629         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1630     }
1631   else
1632     {
1633       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1634       // not have correct section types.  Force them here.
1635       if (type == elfcpp::SHT_PROGBITS)
1636         {
1637           if (is_prefix_of(".init_array", name))
1638             type = elfcpp::SHT_INIT_ARRAY;
1639           else if (is_prefix_of(".preinit_array", name))
1640             type = elfcpp::SHT_PREINIT_ARRAY;
1641           else if (is_prefix_of(".fini_array", name))
1642             type = elfcpp::SHT_FINI_ARRAY;
1643         }
1644
1645       // FIXME: const_cast is ugly.
1646       Target* target = const_cast<Target*>(&parameters->target());
1647       os = target->make_output_section(name, type, flags);
1648     }
1649
1650   // With -z relro, we have to recognize the special sections by name.
1651   // There is no other way.
1652   bool is_relro_local = false;
1653   if (!this->script_options_->saw_sections_clause()
1654       && parameters->options().relro()
1655       && (flags & elfcpp::SHF_ALLOC) != 0
1656       && (flags & elfcpp::SHF_WRITE) != 0)
1657     {
1658       if (type == elfcpp::SHT_PROGBITS)
1659         {
1660           if ((flags & elfcpp::SHF_TLS) != 0)
1661             is_relro = true;
1662           else if (strcmp(name, ".data.rel.ro") == 0)
1663             is_relro = true;
1664           else if (strcmp(name, ".data.rel.ro.local") == 0)
1665             {
1666               is_relro = true;
1667               is_relro_local = true;
1668             }
1669           else if (strcmp(name, ".ctors") == 0
1670                    || strcmp(name, ".dtors") == 0
1671                    || strcmp(name, ".jcr") == 0)
1672             is_relro = true;
1673         }
1674       else if (type == elfcpp::SHT_INIT_ARRAY
1675                || type == elfcpp::SHT_FINI_ARRAY
1676                || type == elfcpp::SHT_PREINIT_ARRAY)
1677         is_relro = true;
1678     }
1679
1680   if (is_relro)
1681     os->set_is_relro();
1682
1683   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1684     order = this->default_section_order(os, is_relro_local);
1685
1686   os->set_order(order);
1687
1688   parameters->target().new_output_section(os);
1689
1690   this->section_list_.push_back(os);
1691
1692   // The GNU linker by default sorts some sections by priority, so we
1693   // do the same.  We need to know that this might happen before we
1694   // attach any input sections.
1695   if (!this->script_options_->saw_sections_clause()
1696       && !parameters->options().relocatable()
1697       && (strcmp(name, ".init_array") == 0
1698           || strcmp(name, ".fini_array") == 0
1699           || (!parameters->options().ctors_in_init_array()
1700               && (strcmp(name, ".ctors") == 0
1701                   || strcmp(name, ".dtors") == 0))))
1702     os->set_may_sort_attached_input_sections();
1703
1704   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1705   // sections before other .text sections.  We are compatible.  We
1706   // need to know that this might happen before we attach any input
1707   // sections.
1708   if (parameters->options().text_reorder()
1709       && !this->script_options_->saw_sections_clause()
1710       && !this->is_section_ordering_specified()
1711       && !parameters->options().relocatable()
1712       && strcmp(name, ".text") == 0)
1713     os->set_may_sort_attached_input_sections();
1714
1715   // GNU linker sorts section by name with --sort-section=name.
1716   if (strcmp(parameters->options().sort_section(), "name") == 0)
1717       os->set_must_sort_attached_input_sections();
1718
1719   // Check for .stab*str sections, as .stab* sections need to link to
1720   // them.
1721   if (type == elfcpp::SHT_STRTAB
1722       && !this->have_stabstr_section_
1723       && strncmp(name, ".stab", 5) == 0
1724       && strcmp(name + strlen(name) - 3, "str") == 0)
1725     this->have_stabstr_section_ = true;
1726
1727   // During a full incremental link, we add patch space to most
1728   // PROGBITS and NOBITS sections.  Flag those that may be
1729   // arbitrarily padded.
1730   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1731       && order != ORDER_INTERP
1732       && order != ORDER_INIT
1733       && order != ORDER_PLT
1734       && order != ORDER_FINI
1735       && order != ORDER_RELRO_LAST
1736       && order != ORDER_NON_RELRO_FIRST
1737       && strcmp(name, ".eh_frame") != 0
1738       && strcmp(name, ".ctors") != 0
1739       && strcmp(name, ".dtors") != 0
1740       && strcmp(name, ".jcr") != 0)
1741     {
1742       os->set_is_patch_space_allowed();
1743
1744       // Certain sections require "holes" to be filled with
1745       // specific fill patterns.  These fill patterns may have
1746       // a minimum size, so we must prevent allocations from the
1747       // free list that leave a hole smaller than the minimum.
1748       if (strcmp(name, ".debug_info") == 0)
1749         os->set_free_space_fill(new Output_fill_debug_info(false));
1750       else if (strcmp(name, ".debug_types") == 0)
1751         os->set_free_space_fill(new Output_fill_debug_info(true));
1752       else if (strcmp(name, ".debug_line") == 0)
1753         os->set_free_space_fill(new Output_fill_debug_line());
1754     }
1755
1756   // If we have already attached the sections to segments, then we
1757   // need to attach this one now.  This happens for sections created
1758   // directly by the linker.
1759   if (this->sections_are_attached_)
1760     this->attach_section_to_segment(&parameters->target(), os);
1761
1762   return os;
1763 }
1764
1765 // Return the default order in which a section should be placed in an
1766 // output segment.  This function captures a lot of the ideas in
1767 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1768 // linker created section is normally set when the section is created;
1769 // this function is used for input sections.
1770
1771 Output_section_order
1772 Layout::default_section_order(Output_section* os, bool is_relro_local)
1773 {
1774   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1775   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1776   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1777   bool is_bss = false;
1778
1779   switch (os->type())
1780     {
1781     default:
1782     case elfcpp::SHT_PROGBITS:
1783       break;
1784     case elfcpp::SHT_NOBITS:
1785       is_bss = true;
1786       break;
1787     case elfcpp::SHT_RELA:
1788     case elfcpp::SHT_REL:
1789       if (!is_write)
1790         return ORDER_DYNAMIC_RELOCS;
1791       break;
1792     case elfcpp::SHT_HASH:
1793     case elfcpp::SHT_DYNAMIC:
1794     case elfcpp::SHT_SHLIB:
1795     case elfcpp::SHT_DYNSYM:
1796     case elfcpp::SHT_GNU_HASH:
1797     case elfcpp::SHT_GNU_verdef:
1798     case elfcpp::SHT_GNU_verneed:
1799     case elfcpp::SHT_GNU_versym:
1800       if (!is_write)
1801         return ORDER_DYNAMIC_LINKER;
1802       break;
1803     case elfcpp::SHT_NOTE:
1804       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1805     }
1806
1807   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1808     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1809
1810   if (!is_bss && !is_write)
1811     {
1812       if (is_execinstr)
1813         {
1814           if (strcmp(os->name(), ".init") == 0)
1815             return ORDER_INIT;
1816           else if (strcmp(os->name(), ".fini") == 0)
1817             return ORDER_FINI;
1818         }
1819       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1820     }
1821
1822   if (os->is_relro())
1823     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1824
1825   if (os->is_small_section())
1826     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1827   if (os->is_large_section())
1828     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1829
1830   return is_bss ? ORDER_BSS : ORDER_DATA;
1831 }
1832
1833 // Attach output sections to segments.  This is called after we have
1834 // seen all the input sections.
1835
1836 void
1837 Layout::attach_sections_to_segments(const Target* target)
1838 {
1839   for (Section_list::iterator p = this->section_list_.begin();
1840        p != this->section_list_.end();
1841        ++p)
1842     this->attach_section_to_segment(target, *p);
1843
1844   this->sections_are_attached_ = true;
1845 }
1846
1847 // Attach an output section to a segment.
1848
1849 void
1850 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1851 {
1852   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1853     this->unattached_section_list_.push_back(os);
1854   else
1855     this->attach_allocated_section_to_segment(target, os);
1856 }
1857
1858 // Attach an allocated output section to a segment.
1859
1860 void
1861 Layout::attach_allocated_section_to_segment(const Target* target,
1862                                             Output_section* os)
1863 {
1864   elfcpp::Elf_Xword flags = os->flags();
1865   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1866
1867   if (parameters->options().relocatable())
1868     return;
1869
1870   // If we have a SECTIONS clause, we can't handle the attachment to
1871   // segments until after we've seen all the sections.
1872   if (this->script_options_->saw_sections_clause())
1873     return;
1874
1875   gold_assert(!this->script_options_->saw_phdrs_clause());
1876
1877   // This output section goes into a PT_LOAD segment.
1878
1879   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1880
1881   // If this output section's segment has extra flags that need to be set,
1882   // coming from a linker plugin, do that.
1883   seg_flags |= os->extra_segment_flags();
1884
1885   // Check for --section-start.
1886   uint64_t addr;
1887   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1888
1889   // In general the only thing we really care about for PT_LOAD
1890   // segments is whether or not they are writable or executable,
1891   // so that is how we search for them.
1892   // Large data sections also go into their own PT_LOAD segment.
1893   // People who need segments sorted on some other basis will
1894   // have to use a linker script.
1895
1896   Segment_list::const_iterator p;
1897   if (!os->is_unique_segment())
1898     {
1899       for (p = this->segment_list_.begin();
1900            p != this->segment_list_.end();
1901            ++p)
1902         {
1903           if ((*p)->type() != elfcpp::PT_LOAD)
1904             continue;
1905           if ((*p)->is_unique_segment())
1906             continue;
1907           if (!parameters->options().omagic()
1908               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1909             continue;
1910           if ((target->isolate_execinstr() || parameters->options().rosegment())
1911               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1912             continue;
1913           // If -Tbss was specified, we need to separate the data and BSS
1914           // segments.
1915           if (parameters->options().user_set_Tbss())
1916             {
1917               if ((os->type() == elfcpp::SHT_NOBITS)
1918                   == (*p)->has_any_data_sections())
1919                 continue;
1920             }
1921           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1922             continue;
1923
1924           if (is_address_set)
1925             {
1926               if ((*p)->are_addresses_set())
1927                 continue;
1928
1929               (*p)->add_initial_output_data(os);
1930               (*p)->update_flags_for_output_section(seg_flags);
1931               (*p)->set_addresses(addr, addr);
1932               break;
1933             }
1934
1935           (*p)->add_output_section_to_load(this, os, seg_flags);
1936           break;
1937         }
1938     }
1939
1940   if (p == this->segment_list_.end()
1941       || os->is_unique_segment())
1942     {
1943       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1944                                                        seg_flags);
1945       if (os->is_large_data_section())
1946         oseg->set_is_large_data_segment();
1947       oseg->add_output_section_to_load(this, os, seg_flags);
1948       if (is_address_set)
1949         oseg->set_addresses(addr, addr);
1950       // Check if segment should be marked unique.  For segments marked
1951       // unique by linker plugins, set the new alignment if specified.
1952       if (os->is_unique_segment())
1953         {
1954           oseg->set_is_unique_segment();
1955           if (os->segment_alignment() != 0)
1956             oseg->set_minimum_p_align(os->segment_alignment());
1957         }
1958     }
1959
1960   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1961   // segment.
1962   if (os->type() == elfcpp::SHT_NOTE)
1963     {
1964       // See if we already have an equivalent PT_NOTE segment.
1965       for (p = this->segment_list_.begin();
1966            p != segment_list_.end();
1967            ++p)
1968         {
1969           if ((*p)->type() == elfcpp::PT_NOTE
1970               && (((*p)->flags() & elfcpp::PF_W)
1971                   == (seg_flags & elfcpp::PF_W)))
1972             {
1973               (*p)->add_output_section_to_nonload(os, seg_flags);
1974               break;
1975             }
1976         }
1977
1978       if (p == this->segment_list_.end())
1979         {
1980           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1981                                                            seg_flags);
1982           oseg->add_output_section_to_nonload(os, seg_flags);
1983         }
1984     }
1985
1986   // If we see a loadable SHF_TLS section, we create a PT_TLS
1987   // segment.  There can only be one such segment.
1988   if ((flags & elfcpp::SHF_TLS) != 0)
1989     {
1990       if (this->tls_segment_ == NULL)
1991         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1992       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1993     }
1994
1995   // If -z relro is in effect, and we see a relro section, we create a
1996   // PT_GNU_RELRO segment.  There can only be one such segment.
1997   if (os->is_relro() && parameters->options().relro())
1998     {
1999       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2000       if (this->relro_segment_ == NULL)
2001         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2002       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2003     }
2004
2005   // If we see a section named .interp, put it into a PT_INTERP
2006   // segment.  This seems broken to me, but this is what GNU ld does,
2007   // and glibc expects it.
2008   if (strcmp(os->name(), ".interp") == 0
2009       && !this->script_options_->saw_phdrs_clause())
2010     {
2011       if (this->interp_segment_ == NULL)
2012         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2013       else
2014         gold_warning(_("multiple '.interp' sections in input files "
2015                        "may cause confusing PT_INTERP segment"));
2016       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2017     }
2018 }
2019
2020 // Make an output section for a script.
2021
2022 Output_section*
2023 Layout::make_output_section_for_script(
2024     const char* name,
2025     Script_sections::Section_type section_type)
2026 {
2027   name = this->namepool_.add(name, false, NULL);
2028   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2029   if (section_type == Script_sections::ST_NOLOAD)
2030     sh_flags = 0;
2031   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2032                                                  sh_flags, ORDER_INVALID,
2033                                                  false);
2034   os->set_found_in_sections_clause();
2035   if (section_type == Script_sections::ST_NOLOAD)
2036     os->set_is_noload();
2037   return os;
2038 }
2039
2040 // Return the number of segments we expect to see.
2041
2042 size_t
2043 Layout::expected_segment_count() const
2044 {
2045   size_t ret = this->segment_list_.size();
2046
2047   // If we didn't see a SECTIONS clause in a linker script, we should
2048   // already have the complete list of segments.  Otherwise we ask the
2049   // SECTIONS clause how many segments it expects, and add in the ones
2050   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2051
2052   if (!this->script_options_->saw_sections_clause())
2053     return ret;
2054   else
2055     {
2056       const Script_sections* ss = this->script_options_->script_sections();
2057       return ret + ss->expected_segment_count(this);
2058     }
2059 }
2060
2061 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2062 // is whether we saw a .note.GNU-stack section in the object file.
2063 // GNU_STACK_FLAGS is the section flags.  The flags give the
2064 // protection required for stack memory.  We record this in an
2065 // executable as a PT_GNU_STACK segment.  If an object file does not
2066 // have a .note.GNU-stack segment, we must assume that it is an old
2067 // object.  On some targets that will force an executable stack.
2068
2069 void
2070 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2071                          const Object* obj)
2072 {
2073   if (!seen_gnu_stack)
2074     {
2075       this->input_without_gnu_stack_note_ = true;
2076       if (parameters->options().warn_execstack()
2077           && parameters->target().is_default_stack_executable())
2078         gold_warning(_("%s: missing .note.GNU-stack section"
2079                        " implies executable stack"),
2080                      obj->name().c_str());
2081     }
2082   else
2083     {
2084       this->input_with_gnu_stack_note_ = true;
2085       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2086         {
2087           this->input_requires_executable_stack_ = true;
2088           if (parameters->options().warn_execstack()
2089               || parameters->options().is_stack_executable())
2090             gold_warning(_("%s: requires executable stack"),
2091                          obj->name().c_str());
2092         }
2093     }
2094 }
2095
2096 // Create automatic note sections.
2097
2098 void
2099 Layout::create_notes()
2100 {
2101   this->create_gold_note();
2102   this->create_executable_stack_info();
2103   this->create_build_id();
2104 }
2105
2106 // Create the dynamic sections which are needed before we read the
2107 // relocs.
2108
2109 void
2110 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2111 {
2112   if (parameters->doing_static_link())
2113     return;
2114
2115   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2116                                                        elfcpp::SHT_DYNAMIC,
2117                                                        (elfcpp::SHF_ALLOC
2118                                                         | elfcpp::SHF_WRITE),
2119                                                        false, ORDER_RELRO,
2120                                                        true);
2121
2122   // A linker script may discard .dynamic, so check for NULL.
2123   if (this->dynamic_section_ != NULL)
2124     {
2125       this->dynamic_symbol_ =
2126         symtab->define_in_output_data("_DYNAMIC", NULL,
2127                                       Symbol_table::PREDEFINED,
2128                                       this->dynamic_section_, 0, 0,
2129                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2130                                       elfcpp::STV_HIDDEN, 0, false, false);
2131
2132       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2133
2134       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2135     }
2136 }
2137
2138 // For each output section whose name can be represented as C symbol,
2139 // define __start and __stop symbols for the section.  This is a GNU
2140 // extension.
2141
2142 void
2143 Layout::define_section_symbols(Symbol_table* symtab)
2144 {
2145   for (Section_list::const_iterator p = this->section_list_.begin();
2146        p != this->section_list_.end();
2147        ++p)
2148     {
2149       const char* const name = (*p)->name();
2150       if (is_cident(name))
2151         {
2152           const std::string name_string(name);
2153           const std::string start_name(cident_section_start_prefix
2154                                        + name_string);
2155           const std::string stop_name(cident_section_stop_prefix
2156                                       + name_string);
2157
2158           symtab->define_in_output_data(start_name.c_str(),
2159                                         NULL, // version
2160                                         Symbol_table::PREDEFINED,
2161                                         *p,
2162                                         0, // value
2163                                         0, // symsize
2164                                         elfcpp::STT_NOTYPE,
2165                                         elfcpp::STB_GLOBAL,
2166                                         elfcpp::STV_DEFAULT,
2167                                         0, // nonvis
2168                                         false, // offset_is_from_end
2169                                         true); // only_if_ref
2170
2171           symtab->define_in_output_data(stop_name.c_str(),
2172                                         NULL, // version
2173                                         Symbol_table::PREDEFINED,
2174                                         *p,
2175                                         0, // value
2176                                         0, // symsize
2177                                         elfcpp::STT_NOTYPE,
2178                                         elfcpp::STB_GLOBAL,
2179                                         elfcpp::STV_DEFAULT,
2180                                         0, // nonvis
2181                                         true, // offset_is_from_end
2182                                         true); // only_if_ref
2183         }
2184     }
2185 }
2186
2187 // Define symbols for group signatures.
2188
2189 void
2190 Layout::define_group_signatures(Symbol_table* symtab)
2191 {
2192   for (Group_signatures::iterator p = this->group_signatures_.begin();
2193        p != this->group_signatures_.end();
2194        ++p)
2195     {
2196       Symbol* sym = symtab->lookup(p->signature, NULL);
2197       if (sym != NULL)
2198         p->section->set_info_symndx(sym);
2199       else
2200         {
2201           // Force the name of the group section to the group
2202           // signature, and use the group's section symbol as the
2203           // signature symbol.
2204           if (strcmp(p->section->name(), p->signature) != 0)
2205             {
2206               const char* name = this->namepool_.add(p->signature,
2207                                                      true, NULL);
2208               p->section->set_name(name);
2209             }
2210           p->section->set_needs_symtab_index();
2211           p->section->set_info_section_symndx(p->section);
2212         }
2213     }
2214
2215   this->group_signatures_.clear();
2216 }
2217
2218 // Find the first read-only PT_LOAD segment, creating one if
2219 // necessary.
2220
2221 Output_segment*
2222 Layout::find_first_load_seg(const Target* target)
2223 {
2224   Output_segment* best = NULL;
2225   for (Segment_list::const_iterator p = this->segment_list_.begin();
2226        p != this->segment_list_.end();
2227        ++p)
2228     {
2229       if ((*p)->type() == elfcpp::PT_LOAD
2230           && ((*p)->flags() & elfcpp::PF_R) != 0
2231           && (parameters->options().omagic()
2232               || ((*p)->flags() & elfcpp::PF_W) == 0)
2233           && (!target->isolate_execinstr()
2234               || ((*p)->flags() & elfcpp::PF_X) == 0))
2235         {
2236           if (best == NULL || this->segment_precedes(*p, best))
2237             best = *p;
2238         }
2239     }
2240   if (best != NULL)
2241     return best;
2242
2243   gold_assert(!this->script_options_->saw_phdrs_clause());
2244
2245   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2246                                                        elfcpp::PF_R);
2247   return load_seg;
2248 }
2249
2250 // Save states of all current output segments.  Store saved states
2251 // in SEGMENT_STATES.
2252
2253 void
2254 Layout::save_segments(Segment_states* segment_states)
2255 {
2256   for (Segment_list::const_iterator p = this->segment_list_.begin();
2257        p != this->segment_list_.end();
2258        ++p)
2259     {
2260       Output_segment* segment = *p;
2261       // Shallow copy.
2262       Output_segment* copy = new Output_segment(*segment);
2263       (*segment_states)[segment] = copy;
2264     }
2265 }
2266
2267 // Restore states of output segments and delete any segment not found in
2268 // SEGMENT_STATES.
2269
2270 void
2271 Layout::restore_segments(const Segment_states* segment_states)
2272 {
2273   // Go through the segment list and remove any segment added in the
2274   // relaxation loop.
2275   this->tls_segment_ = NULL;
2276   this->relro_segment_ = NULL;
2277   Segment_list::iterator list_iter = this->segment_list_.begin();
2278   while (list_iter != this->segment_list_.end())
2279     {
2280       Output_segment* segment = *list_iter;
2281       Segment_states::const_iterator states_iter =
2282           segment_states->find(segment);
2283       if (states_iter != segment_states->end())
2284         {
2285           const Output_segment* copy = states_iter->second;
2286           // Shallow copy to restore states.
2287           *segment = *copy;
2288
2289           // Also fix up TLS and RELRO segment pointers as appropriate.
2290           if (segment->type() == elfcpp::PT_TLS)
2291             this->tls_segment_ = segment;
2292           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2293             this->relro_segment_ = segment;
2294
2295           ++list_iter;
2296         }
2297       else
2298         {
2299           list_iter = this->segment_list_.erase(list_iter);
2300           // This is a segment created during section layout.  It should be
2301           // safe to remove it since we should have removed all pointers to it.
2302           delete segment;
2303         }
2304     }
2305 }
2306
2307 // Clean up after relaxation so that sections can be laid out again.
2308
2309 void
2310 Layout::clean_up_after_relaxation()
2311 {
2312   // Restore the segments to point state just prior to the relaxation loop.
2313   Script_sections* script_section = this->script_options_->script_sections();
2314   script_section->release_segments();
2315   this->restore_segments(this->segment_states_);
2316
2317   // Reset section addresses and file offsets
2318   for (Section_list::iterator p = this->section_list_.begin();
2319        p != this->section_list_.end();
2320        ++p)
2321     {
2322       (*p)->restore_states();
2323
2324       // If an input section changes size because of relaxation,
2325       // we need to adjust the section offsets of all input sections.
2326       // after such a section.
2327       if ((*p)->section_offsets_need_adjustment())
2328         (*p)->adjust_section_offsets();
2329
2330       (*p)->reset_address_and_file_offset();
2331     }
2332
2333   // Reset special output object address and file offsets.
2334   for (Data_list::iterator p = this->special_output_list_.begin();
2335        p != this->special_output_list_.end();
2336        ++p)
2337     (*p)->reset_address_and_file_offset();
2338
2339   // A linker script may have created some output section data objects.
2340   // They are useless now.
2341   for (Output_section_data_list::const_iterator p =
2342          this->script_output_section_data_list_.begin();
2343        p != this->script_output_section_data_list_.end();
2344        ++p)
2345     delete *p;
2346   this->script_output_section_data_list_.clear();
2347
2348   // Special-case fill output objects are recreated each time through
2349   // the relaxation loop.
2350   this->reset_relax_output();
2351 }
2352
2353 void
2354 Layout::reset_relax_output()
2355 {
2356   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2357        p != this->relax_output_list_.end();
2358        ++p)
2359     delete *p;
2360   this->relax_output_list_.clear();
2361 }
2362
2363 // Prepare for relaxation.
2364
2365 void
2366 Layout::prepare_for_relaxation()
2367 {
2368   // Create an relaxation debug check if in debugging mode.
2369   if (is_debugging_enabled(DEBUG_RELAXATION))
2370     this->relaxation_debug_check_ = new Relaxation_debug_check();
2371
2372   // Save segment states.
2373   this->segment_states_ = new Segment_states();
2374   this->save_segments(this->segment_states_);
2375
2376   for(Section_list::const_iterator p = this->section_list_.begin();
2377       p != this->section_list_.end();
2378       ++p)
2379     (*p)->save_states();
2380
2381   if (is_debugging_enabled(DEBUG_RELAXATION))
2382     this->relaxation_debug_check_->check_output_data_for_reset_values(
2383         this->section_list_, this->special_output_list_,
2384         this->relax_output_list_);
2385
2386   // Also enable recording of output section data from scripts.
2387   this->record_output_section_data_from_script_ = true;
2388 }
2389
2390 // If the user set the address of the text segment, that may not be
2391 // compatible with putting the segment headers and file headers into
2392 // that segment.  For isolate_execinstr() targets, it's the rodata
2393 // segment rather than text where we might put the headers.
2394 static inline bool
2395 load_seg_unusable_for_headers(const Target* target)
2396 {
2397   const General_options& options = parameters->options();
2398   if (target->isolate_execinstr())
2399     return (options.user_set_Trodata_segment()
2400             && options.Trodata_segment() % target->abi_pagesize() != 0);
2401   else
2402     return (options.user_set_Ttext()
2403             && options.Ttext() % target->abi_pagesize() != 0);
2404 }
2405
2406 // Relaxation loop body:  If target has no relaxation, this runs only once
2407 // Otherwise, the target relaxation hook is called at the end of
2408 // each iteration.  If the hook returns true, it means re-layout of
2409 // section is required.
2410 //
2411 // The number of segments created by a linking script without a PHDRS
2412 // clause may be affected by section sizes and alignments.  There is
2413 // a remote chance that relaxation causes different number of PT_LOAD
2414 // segments are created and sections are attached to different segments.
2415 // Therefore, we always throw away all segments created during section
2416 // layout.  In order to be able to restart the section layout, we keep
2417 // a copy of the segment list right before the relaxation loop and use
2418 // that to restore the segments.
2419 //
2420 // PASS is the current relaxation pass number.
2421 // SYMTAB is a symbol table.
2422 // PLOAD_SEG is the address of a pointer for the load segment.
2423 // PHDR_SEG is a pointer to the PHDR segment.
2424 // SEGMENT_HEADERS points to the output segment header.
2425 // FILE_HEADER points to the output file header.
2426 // PSHNDX is the address to store the output section index.
2427
2428 off_t inline
2429 Layout::relaxation_loop_body(
2430     int pass,
2431     Target* target,
2432     Symbol_table* symtab,
2433     Output_segment** pload_seg,
2434     Output_segment* phdr_seg,
2435     Output_segment_headers* segment_headers,
2436     Output_file_header* file_header,
2437     unsigned int* pshndx)
2438 {
2439   // If this is not the first iteration, we need to clean up after
2440   // relaxation so that we can lay out the sections again.
2441   if (pass != 0)
2442     this->clean_up_after_relaxation();
2443
2444   // If there is a SECTIONS clause, put all the input sections into
2445   // the required order.
2446   Output_segment* load_seg;
2447   if (this->script_options_->saw_sections_clause())
2448     load_seg = this->set_section_addresses_from_script(symtab);
2449   else if (parameters->options().relocatable())
2450     load_seg = NULL;
2451   else
2452     load_seg = this->find_first_load_seg(target);
2453
2454   if (parameters->options().oformat_enum()
2455       != General_options::OBJECT_FORMAT_ELF)
2456     load_seg = NULL;
2457
2458   if (load_seg_unusable_for_headers(target))
2459     {
2460       load_seg = NULL;
2461       phdr_seg = NULL;
2462     }
2463
2464   gold_assert(phdr_seg == NULL
2465               || load_seg != NULL
2466               || this->script_options_->saw_sections_clause());
2467
2468   // If the address of the load segment we found has been set by
2469   // --section-start rather than by a script, then adjust the VMA and
2470   // LMA downward if possible to include the file and section headers.
2471   uint64_t header_gap = 0;
2472   if (load_seg != NULL
2473       && load_seg->are_addresses_set()
2474       && !this->script_options_->saw_sections_clause()
2475       && !parameters->options().relocatable())
2476     {
2477       file_header->finalize_data_size();
2478       segment_headers->finalize_data_size();
2479       size_t sizeof_headers = (file_header->data_size()
2480                                + segment_headers->data_size());
2481       const uint64_t abi_pagesize = target->abi_pagesize();
2482       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2483       hdr_paddr &= ~(abi_pagesize - 1);
2484       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2485       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2486         load_seg = NULL;
2487       else
2488         {
2489           load_seg->set_addresses(load_seg->vaddr() - subtract,
2490                                   load_seg->paddr() - subtract);
2491           header_gap = subtract - sizeof_headers;
2492         }
2493     }
2494
2495   // Lay out the segment headers.
2496   if (!parameters->options().relocatable())
2497     {
2498       gold_assert(segment_headers != NULL);
2499       if (header_gap != 0 && load_seg != NULL)
2500         {
2501           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2502           load_seg->add_initial_output_data(z);
2503         }
2504       if (load_seg != NULL)
2505         load_seg->add_initial_output_data(segment_headers);
2506       if (phdr_seg != NULL)
2507         phdr_seg->add_initial_output_data(segment_headers);
2508     }
2509
2510   // Lay out the file header.
2511   if (load_seg != NULL)
2512     load_seg->add_initial_output_data(file_header);
2513
2514   if (this->script_options_->saw_phdrs_clause()
2515       && !parameters->options().relocatable())
2516     {
2517       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2518       // clause in a linker script.
2519       Script_sections* ss = this->script_options_->script_sections();
2520       ss->put_headers_in_phdrs(file_header, segment_headers);
2521     }
2522
2523   // We set the output section indexes in set_segment_offsets and
2524   // set_section_indexes.
2525   *pshndx = 1;
2526
2527   // Set the file offsets of all the segments, and all the sections
2528   // they contain.
2529   off_t off;
2530   if (!parameters->options().relocatable())
2531     off = this->set_segment_offsets(target, load_seg, pshndx);
2532   else
2533     off = this->set_relocatable_section_offsets(file_header, pshndx);
2534
2535    // Verify that the dummy relaxation does not change anything.
2536   if (is_debugging_enabled(DEBUG_RELAXATION))
2537     {
2538       if (pass == 0)
2539         this->relaxation_debug_check_->read_sections(this->section_list_);
2540       else
2541         this->relaxation_debug_check_->verify_sections(this->section_list_);
2542     }
2543
2544   *pload_seg = load_seg;
2545   return off;
2546 }
2547
2548 // Search the list of patterns and find the postion of the given section
2549 // name in the output section.  If the section name matches a glob
2550 // pattern and a non-glob name, then the non-glob position takes
2551 // precedence.  Return 0 if no match is found.
2552
2553 unsigned int
2554 Layout::find_section_order_index(const std::string& section_name)
2555 {
2556   Unordered_map<std::string, unsigned int>::iterator map_it;
2557   map_it = this->input_section_position_.find(section_name);
2558   if (map_it != this->input_section_position_.end())
2559     return map_it->second;
2560
2561   // Absolute match failed.  Linear search the glob patterns.
2562   std::vector<std::string>::iterator it;
2563   for (it = this->input_section_glob_.begin();
2564        it != this->input_section_glob_.end();
2565        ++it)
2566     {
2567        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2568          {
2569            map_it = this->input_section_position_.find(*it);
2570            gold_assert(map_it != this->input_section_position_.end());
2571            return map_it->second;
2572          }
2573     }
2574   return 0;
2575 }
2576
2577 // Read the sequence of input sections from the file specified with
2578 // option --section-ordering-file.
2579
2580 void
2581 Layout::read_layout_from_file()
2582 {
2583   const char* filename = parameters->options().section_ordering_file();
2584   std::ifstream in;
2585   std::string line;
2586
2587   in.open(filename);
2588   if (!in)
2589     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2590                filename, strerror(errno));
2591
2592   std::getline(in, line);   // this chops off the trailing \n, if any
2593   unsigned int position = 1;
2594   this->set_section_ordering_specified();
2595
2596   while (in)
2597     {
2598       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2599         line.resize(line.length() - 1);
2600       // Ignore comments, beginning with '#'
2601       if (line[0] == '#')
2602         {
2603           std::getline(in, line);
2604           continue;
2605         }
2606       this->input_section_position_[line] = position;
2607       // Store all glob patterns in a vector.
2608       if (is_wildcard_string(line.c_str()))
2609         this->input_section_glob_.push_back(line);
2610       position++;
2611       std::getline(in, line);
2612     }
2613 }
2614
2615 // Finalize the layout.  When this is called, we have created all the
2616 // output sections and all the output segments which are based on
2617 // input sections.  We have several things to do, and we have to do
2618 // them in the right order, so that we get the right results correctly
2619 // and efficiently.
2620
2621 // 1) Finalize the list of output segments and create the segment
2622 // table header.
2623
2624 // 2) Finalize the dynamic symbol table and associated sections.
2625
2626 // 3) Determine the final file offset of all the output segments.
2627
2628 // 4) Determine the final file offset of all the SHF_ALLOC output
2629 // sections.
2630
2631 // 5) Create the symbol table sections and the section name table
2632 // section.
2633
2634 // 6) Finalize the symbol table: set symbol values to their final
2635 // value and make a final determination of which symbols are going
2636 // into the output symbol table.
2637
2638 // 7) Create the section table header.
2639
2640 // 8) Determine the final file offset of all the output sections which
2641 // are not SHF_ALLOC, including the section table header.
2642
2643 // 9) Finalize the ELF file header.
2644
2645 // This function returns the size of the output file.
2646
2647 off_t
2648 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2649                  Target* target, const Task* task)
2650 {
2651   target->finalize_sections(this, input_objects, symtab);
2652
2653   this->count_local_symbols(task, input_objects);
2654
2655   this->link_stabs_sections();
2656
2657   Output_segment* phdr_seg = NULL;
2658   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2659     {
2660       // There was a dynamic object in the link.  We need to create
2661       // some information for the dynamic linker.
2662
2663       // Create the PT_PHDR segment which will hold the program
2664       // headers.
2665       if (!this->script_options_->saw_phdrs_clause())
2666         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2667
2668       // Create the dynamic symbol table, including the hash table.
2669       Output_section* dynstr;
2670       std::vector<Symbol*> dynamic_symbols;
2671       unsigned int local_dynamic_count;
2672       Versions versions(*this->script_options()->version_script_info(),
2673                         &this->dynpool_);
2674       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2675                                   &local_dynamic_count, &dynamic_symbols,
2676                                   &versions);
2677
2678       // Create the .interp section to hold the name of the
2679       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2680       // if we saw a .interp section in an input file.
2681       if ((!parameters->options().shared()
2682            || parameters->options().dynamic_linker() != NULL)
2683           && this->interp_segment_ == NULL)
2684         this->create_interp(target);
2685
2686       // Finish the .dynamic section to hold the dynamic data, and put
2687       // it in a PT_DYNAMIC segment.
2688       this->finish_dynamic_section(input_objects, symtab);
2689
2690       // We should have added everything we need to the dynamic string
2691       // table.
2692       this->dynpool_.set_string_offsets();
2693
2694       // Create the version sections.  We can't do this until the
2695       // dynamic string table is complete.
2696       this->create_version_sections(&versions, symtab, local_dynamic_count,
2697                                     dynamic_symbols, dynstr);
2698
2699       // Set the size of the _DYNAMIC symbol.  We can't do this until
2700       // after we call create_version_sections.
2701       this->set_dynamic_symbol_size(symtab);
2702     }
2703
2704   // Create segment headers.
2705   Output_segment_headers* segment_headers =
2706     (parameters->options().relocatable()
2707      ? NULL
2708      : new Output_segment_headers(this->segment_list_));
2709
2710   // Lay out the file header.
2711   Output_file_header* file_header = new Output_file_header(target, symtab,
2712                                                            segment_headers);
2713
2714   this->special_output_list_.push_back(file_header);
2715   if (segment_headers != NULL)
2716     this->special_output_list_.push_back(segment_headers);
2717
2718   // Find approriate places for orphan output sections if we are using
2719   // a linker script.
2720   if (this->script_options_->saw_sections_clause())
2721     this->place_orphan_sections_in_script();
2722
2723   Output_segment* load_seg;
2724   off_t off;
2725   unsigned int shndx;
2726   int pass = 0;
2727
2728   // Take a snapshot of the section layout as needed.
2729   if (target->may_relax())
2730     this->prepare_for_relaxation();
2731
2732   // Run the relaxation loop to lay out sections.
2733   do
2734     {
2735       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2736                                        phdr_seg, segment_headers, file_header,
2737                                        &shndx);
2738       pass++;
2739     }
2740   while (target->may_relax()
2741          && target->relax(pass, input_objects, symtab, this, task));
2742
2743   // If there is a load segment that contains the file and program headers,
2744   // provide a symbol __ehdr_start pointing there.
2745   // A program can use this to examine itself robustly.
2746   if (load_seg != NULL)
2747     symtab->define_in_output_segment("__ehdr_start", NULL,
2748                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2749                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2750                                      elfcpp::STV_HIDDEN, 0,
2751                                      Symbol::SEGMENT_START, true);
2752
2753   // Set the file offsets of all the non-data sections we've seen so
2754   // far which don't have to wait for the input sections.  We need
2755   // this in order to finalize local symbols in non-allocated
2756   // sections.
2757   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2758
2759   // Set the section indexes of all unallocated sections seen so far,
2760   // in case any of them are somehow referenced by a symbol.
2761   shndx = this->set_section_indexes(shndx);
2762
2763   // Create the symbol table sections.
2764   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2765   if (!parameters->doing_static_link())
2766     this->assign_local_dynsym_offsets(input_objects);
2767
2768   // Process any symbol assignments from a linker script.  This must
2769   // be called after the symbol table has been finalized.
2770   this->script_options_->finalize_symbols(symtab, this);
2771
2772   // Create the incremental inputs sections.
2773   if (this->incremental_inputs_)
2774     {
2775       this->incremental_inputs_->finalize();
2776       this->create_incremental_info_sections(symtab);
2777     }
2778
2779   // Create the .shstrtab section.
2780   Output_section* shstrtab_section = this->create_shstrtab();
2781
2782   // Set the file offsets of the rest of the non-data sections which
2783   // don't have to wait for the input sections.
2784   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2785
2786   // Now that all sections have been created, set the section indexes
2787   // for any sections which haven't been done yet.
2788   shndx = this->set_section_indexes(shndx);
2789
2790   // Create the section table header.
2791   this->create_shdrs(shstrtab_section, &off);
2792
2793   // If there are no sections which require postprocessing, we can
2794   // handle the section names now, and avoid a resize later.
2795   if (!this->any_postprocessing_sections_)
2796     {
2797       off = this->set_section_offsets(off,
2798                                       POSTPROCESSING_SECTIONS_PASS);
2799       off =
2800           this->set_section_offsets(off,
2801                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2802     }
2803
2804   file_header->set_section_info(this->section_headers_, shstrtab_section);
2805
2806   // Now we know exactly where everything goes in the output file
2807   // (except for non-allocated sections which require postprocessing).
2808   Output_data::layout_complete();
2809
2810   this->output_file_size_ = off;
2811
2812   return off;
2813 }
2814
2815 // Create a note header following the format defined in the ELF ABI.
2816 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2817 // of the section to create, DESCSZ is the size of the descriptor.
2818 // ALLOCATE is true if the section should be allocated in memory.
2819 // This returns the new note section.  It sets *TRAILING_PADDING to
2820 // the number of trailing zero bytes required.
2821
2822 Output_section*
2823 Layout::create_note(const char* name, int note_type,
2824                     const char* section_name, size_t descsz,
2825                     bool allocate, size_t* trailing_padding)
2826 {
2827   // Authorities all agree that the values in a .note field should
2828   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2829   // they differ on what the alignment is for 64-bit binaries.
2830   // The GABI says unambiguously they take 8-byte alignment:
2831   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2832   // Other documentation says alignment should always be 4 bytes:
2833   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2834   // GNU ld and GNU readelf both support the latter (at least as of
2835   // version 2.16.91), and glibc always generates the latter for
2836   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2837   // here.
2838 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2839   const int size = parameters->target().get_size();
2840 #else
2841   const int size = 32;
2842 #endif
2843
2844   // The contents of the .note section.
2845   size_t namesz = strlen(name) + 1;
2846   size_t aligned_namesz = align_address(namesz, size / 8);
2847   size_t aligned_descsz = align_address(descsz, size / 8);
2848
2849   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2850
2851   unsigned char* buffer = new unsigned char[notehdrsz];
2852   memset(buffer, 0, notehdrsz);
2853
2854   bool is_big_endian = parameters->target().is_big_endian();
2855
2856   if (size == 32)
2857     {
2858       if (!is_big_endian)
2859         {
2860           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2861           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2862           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2863         }
2864       else
2865         {
2866           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2867           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2868           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2869         }
2870     }
2871   else if (size == 64)
2872     {
2873       if (!is_big_endian)
2874         {
2875           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2876           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2877           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2878         }
2879       else
2880         {
2881           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2882           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2883           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2884         }
2885     }
2886   else
2887     gold_unreachable();
2888
2889   memcpy(buffer + 3 * (size / 8), name, namesz);
2890
2891   elfcpp::Elf_Xword flags = 0;
2892   Output_section_order order = ORDER_INVALID;
2893   if (allocate)
2894     {
2895       flags = elfcpp::SHF_ALLOC;
2896       order = ORDER_RO_NOTE;
2897     }
2898   Output_section* os = this->choose_output_section(NULL, section_name,
2899                                                    elfcpp::SHT_NOTE,
2900                                                    flags, false, order, false);
2901   if (os == NULL)
2902     return NULL;
2903
2904   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2905                                                            size / 8,
2906                                                            "** note header");
2907   os->add_output_section_data(posd);
2908
2909   *trailing_padding = aligned_descsz - descsz;
2910
2911   return os;
2912 }
2913
2914 // For an executable or shared library, create a note to record the
2915 // version of gold used to create the binary.
2916
2917 void
2918 Layout::create_gold_note()
2919 {
2920   if (parameters->options().relocatable()
2921       || parameters->incremental_update())
2922     return;
2923
2924   std::string desc = std::string("gold ") + gold::get_version_string();
2925
2926   size_t trailing_padding;
2927   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2928                                          ".note.gnu.gold-version", desc.size(),
2929                                          false, &trailing_padding);
2930   if (os == NULL)
2931     return;
2932
2933   Output_section_data* posd = new Output_data_const(desc, 4);
2934   os->add_output_section_data(posd);
2935
2936   if (trailing_padding > 0)
2937     {
2938       posd = new Output_data_zero_fill(trailing_padding, 0);
2939       os->add_output_section_data(posd);
2940     }
2941 }
2942
2943 // Record whether the stack should be executable.  This can be set
2944 // from the command line using the -z execstack or -z noexecstack
2945 // options.  Otherwise, if any input file has a .note.GNU-stack
2946 // section with the SHF_EXECINSTR flag set, the stack should be
2947 // executable.  Otherwise, if at least one input file a
2948 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2949 // section, we use the target default for whether the stack should be
2950 // executable.  Otherwise, we don't generate a stack note.  When
2951 // generating a object file, we create a .note.GNU-stack section with
2952 // the appropriate marking.  When generating an executable or shared
2953 // library, we create a PT_GNU_STACK segment.
2954
2955 void
2956 Layout::create_executable_stack_info()
2957 {
2958   bool is_stack_executable;
2959   if (parameters->options().is_execstack_set())
2960     is_stack_executable = parameters->options().is_stack_executable();
2961   else if (!this->input_with_gnu_stack_note_)
2962     return;
2963   else
2964     {
2965       if (this->input_requires_executable_stack_)
2966         is_stack_executable = true;
2967       else if (this->input_without_gnu_stack_note_)
2968         is_stack_executable =
2969           parameters->target().is_default_stack_executable();
2970       else
2971         is_stack_executable = false;
2972     }
2973
2974   if (parameters->options().relocatable())
2975     {
2976       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2977       elfcpp::Elf_Xword flags = 0;
2978       if (is_stack_executable)
2979         flags |= elfcpp::SHF_EXECINSTR;
2980       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2981                                 ORDER_INVALID, false);
2982     }
2983   else
2984     {
2985       if (this->script_options_->saw_phdrs_clause())
2986         return;
2987       int flags = elfcpp::PF_R | elfcpp::PF_W;
2988       if (is_stack_executable)
2989         flags |= elfcpp::PF_X;
2990       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2991     }
2992 }
2993
2994 // If --build-id was used, set up the build ID note.
2995
2996 void
2997 Layout::create_build_id()
2998 {
2999   if (!parameters->options().user_set_build_id())
3000     return;
3001
3002   const char* style = parameters->options().build_id();
3003   if (strcmp(style, "none") == 0)
3004     return;
3005
3006   // Set DESCSZ to the size of the note descriptor.  When possible,
3007   // set DESC to the note descriptor contents.
3008   size_t descsz;
3009   std::string desc;
3010   if (strcmp(style, "md5") == 0)
3011     descsz = 128 / 8;
3012   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3013     descsz = 160 / 8;
3014   else if (strcmp(style, "uuid") == 0)
3015     {
3016       const size_t uuidsz = 128 / 8;
3017
3018       char buffer[uuidsz];
3019       memset(buffer, 0, uuidsz);
3020
3021       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3022       if (descriptor < 0)
3023         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3024                    strerror(errno));
3025       else
3026         {
3027           ssize_t got = ::read(descriptor, buffer, uuidsz);
3028           release_descriptor(descriptor, true);
3029           if (got < 0)
3030             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3031           else if (static_cast<size_t>(got) != uuidsz)
3032             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3033                        uuidsz, got);
3034         }
3035
3036       desc.assign(buffer, uuidsz);
3037       descsz = uuidsz;
3038     }
3039   else if (strncmp(style, "0x", 2) == 0)
3040     {
3041       hex_init();
3042       const char* p = style + 2;
3043       while (*p != '\0')
3044         {
3045           if (hex_p(p[0]) && hex_p(p[1]))
3046             {
3047               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3048               desc += c;
3049               p += 2;
3050             }
3051           else if (*p == '-' || *p == ':')
3052             ++p;
3053           else
3054             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3055                        style);
3056         }
3057       descsz = desc.size();
3058     }
3059   else
3060     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3061
3062   // Create the note.
3063   size_t trailing_padding;
3064   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3065                                          ".note.gnu.build-id", descsz, true,
3066                                          &trailing_padding);
3067   if (os == NULL)
3068     return;
3069
3070   if (!desc.empty())
3071     {
3072       // We know the value already, so we fill it in now.
3073       gold_assert(desc.size() == descsz);
3074
3075       Output_section_data* posd = new Output_data_const(desc, 4);
3076       os->add_output_section_data(posd);
3077
3078       if (trailing_padding != 0)
3079         {
3080           posd = new Output_data_zero_fill(trailing_padding, 0);
3081           os->add_output_section_data(posd);
3082         }
3083     }
3084   else
3085     {
3086       // We need to compute a checksum after we have completed the
3087       // link.
3088       gold_assert(trailing_padding == 0);
3089       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3090       os->add_output_section_data(this->build_id_note_);
3091     }
3092 }
3093
3094 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3095 // field of the former should point to the latter.  I'm not sure who
3096 // started this, but the GNU linker does it, and some tools depend
3097 // upon it.
3098
3099 void
3100 Layout::link_stabs_sections()
3101 {
3102   if (!this->have_stabstr_section_)
3103     return;
3104
3105   for (Section_list::iterator p = this->section_list_.begin();
3106        p != this->section_list_.end();
3107        ++p)
3108     {
3109       if ((*p)->type() != elfcpp::SHT_STRTAB)
3110         continue;
3111
3112       const char* name = (*p)->name();
3113       if (strncmp(name, ".stab", 5) != 0)
3114         continue;
3115
3116       size_t len = strlen(name);
3117       if (strcmp(name + len - 3, "str") != 0)
3118         continue;
3119
3120       std::string stab_name(name, len - 3);
3121       Output_section* stab_sec;
3122       stab_sec = this->find_output_section(stab_name.c_str());
3123       if (stab_sec != NULL)
3124         stab_sec->set_link_section(*p);
3125     }
3126 }
3127
3128 // Create .gnu_incremental_inputs and related sections needed
3129 // for the next run of incremental linking to check what has changed.
3130
3131 void
3132 Layout::create_incremental_info_sections(Symbol_table* symtab)
3133 {
3134   Incremental_inputs* incr = this->incremental_inputs_;
3135
3136   gold_assert(incr != NULL);
3137
3138   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3139   incr->create_data_sections(symtab);
3140
3141   // Add the .gnu_incremental_inputs section.
3142   const char* incremental_inputs_name =
3143     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3144   Output_section* incremental_inputs_os =
3145     this->make_output_section(incremental_inputs_name,
3146                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3147                               ORDER_INVALID, false);
3148   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3149
3150   // Add the .gnu_incremental_symtab section.
3151   const char* incremental_symtab_name =
3152     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3153   Output_section* incremental_symtab_os =
3154     this->make_output_section(incremental_symtab_name,
3155                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3156                               ORDER_INVALID, false);
3157   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3158   incremental_symtab_os->set_entsize(4);
3159
3160   // Add the .gnu_incremental_relocs section.
3161   const char* incremental_relocs_name =
3162     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3163   Output_section* incremental_relocs_os =
3164     this->make_output_section(incremental_relocs_name,
3165                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3166                               ORDER_INVALID, false);
3167   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3168   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3169
3170   // Add the .gnu_incremental_got_plt section.
3171   const char* incremental_got_plt_name =
3172     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3173   Output_section* incremental_got_plt_os =
3174     this->make_output_section(incremental_got_plt_name,
3175                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3176                               ORDER_INVALID, false);
3177   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3178
3179   // Add the .gnu_incremental_strtab section.
3180   const char* incremental_strtab_name =
3181     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3182   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3183                                                         elfcpp::SHT_STRTAB, 0,
3184                                                         ORDER_INVALID, false);
3185   Output_data_strtab* strtab_data =
3186       new Output_data_strtab(incr->get_stringpool());
3187   incremental_strtab_os->add_output_section_data(strtab_data);
3188
3189   incremental_inputs_os->set_after_input_sections();
3190   incremental_symtab_os->set_after_input_sections();
3191   incremental_relocs_os->set_after_input_sections();
3192   incremental_got_plt_os->set_after_input_sections();
3193
3194   incremental_inputs_os->set_link_section(incremental_strtab_os);
3195   incremental_symtab_os->set_link_section(incremental_inputs_os);
3196   incremental_relocs_os->set_link_section(incremental_inputs_os);
3197   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3198 }
3199
3200 // Return whether SEG1 should be before SEG2 in the output file.  This
3201 // is based entirely on the segment type and flags.  When this is
3202 // called the segment addresses have normally not yet been set.
3203
3204 bool
3205 Layout::segment_precedes(const Output_segment* seg1,
3206                          const Output_segment* seg2)
3207 {
3208   elfcpp::Elf_Word type1 = seg1->type();
3209   elfcpp::Elf_Word type2 = seg2->type();
3210
3211   // The single PT_PHDR segment is required to precede any loadable
3212   // segment.  We simply make it always first.
3213   if (type1 == elfcpp::PT_PHDR)
3214     {
3215       gold_assert(type2 != elfcpp::PT_PHDR);
3216       return true;
3217     }
3218   if (type2 == elfcpp::PT_PHDR)
3219     return false;
3220
3221   // The single PT_INTERP segment is required to precede any loadable
3222   // segment.  We simply make it always second.
3223   if (type1 == elfcpp::PT_INTERP)
3224     {
3225       gold_assert(type2 != elfcpp::PT_INTERP);
3226       return true;
3227     }
3228   if (type2 == elfcpp::PT_INTERP)
3229     return false;
3230
3231   // We then put PT_LOAD segments before any other segments.
3232   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3233     return true;
3234   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3235     return false;
3236
3237   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3238   // segment, because that is where the dynamic linker expects to find
3239   // it (this is just for efficiency; other positions would also work
3240   // correctly).
3241   if (type1 == elfcpp::PT_TLS
3242       && type2 != elfcpp::PT_TLS
3243       && type2 != elfcpp::PT_GNU_RELRO)
3244     return false;
3245   if (type2 == elfcpp::PT_TLS
3246       && type1 != elfcpp::PT_TLS
3247       && type1 != elfcpp::PT_GNU_RELRO)
3248     return true;
3249
3250   // We put the PT_GNU_RELRO segment last, because that is where the
3251   // dynamic linker expects to find it (as with PT_TLS, this is just
3252   // for efficiency).
3253   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3254     return false;
3255   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3256     return true;
3257
3258   const elfcpp::Elf_Word flags1 = seg1->flags();
3259   const elfcpp::Elf_Word flags2 = seg2->flags();
3260
3261   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3262   // by the numeric segment type and flags values.  There should not
3263   // be more than one segment with the same type and flags, except
3264   // when a linker script specifies such.
3265   if (type1 != elfcpp::PT_LOAD)
3266     {
3267       if (type1 != type2)
3268         return type1 < type2;
3269       gold_assert(flags1 != flags2
3270                   || this->script_options_->saw_phdrs_clause());
3271       return flags1 < flags2;
3272     }
3273
3274   // If the addresses are set already, sort by load address.
3275   if (seg1->are_addresses_set())
3276     {
3277       if (!seg2->are_addresses_set())
3278         return true;
3279
3280       unsigned int section_count1 = seg1->output_section_count();
3281       unsigned int section_count2 = seg2->output_section_count();
3282       if (section_count1 == 0 && section_count2 > 0)
3283         return true;
3284       if (section_count1 > 0 && section_count2 == 0)
3285         return false;
3286
3287       uint64_t paddr1 = (seg1->are_addresses_set()
3288                          ? seg1->paddr()
3289                          : seg1->first_section_load_address());
3290       uint64_t paddr2 = (seg2->are_addresses_set()
3291                          ? seg2->paddr()
3292                          : seg2->first_section_load_address());
3293
3294       if (paddr1 != paddr2)
3295         return paddr1 < paddr2;
3296     }
3297   else if (seg2->are_addresses_set())
3298     return false;
3299
3300   // A segment which holds large data comes after a segment which does
3301   // not hold large data.
3302   if (seg1->is_large_data_segment())
3303     {
3304       if (!seg2->is_large_data_segment())
3305         return false;
3306     }
3307   else if (seg2->is_large_data_segment())
3308     return true;
3309
3310   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3311   // segments come before writable segments.  Then writable segments
3312   // with data come before writable segments without data.  Then
3313   // executable segments come before non-executable segments.  Then
3314   // the unlikely case of a non-readable segment comes before the
3315   // normal case of a readable segment.  If there are multiple
3316   // segments with the same type and flags, we require that the
3317   // address be set, and we sort by virtual address and then physical
3318   // address.
3319   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3320     return (flags1 & elfcpp::PF_W) == 0;
3321   if ((flags1 & elfcpp::PF_W) != 0
3322       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3323     return seg1->has_any_data_sections();
3324   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3325     return (flags1 & elfcpp::PF_X) != 0;
3326   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3327     return (flags1 & elfcpp::PF_R) == 0;
3328
3329   // We shouldn't get here--we shouldn't create segments which we
3330   // can't distinguish.  Unless of course we are using a weird linker
3331   // script or overlapping --section-start options.  We could also get
3332   // here if plugins want unique segments for subsets of sections.
3333   gold_assert(this->script_options_->saw_phdrs_clause()
3334               || parameters->options().any_section_start()
3335               || this->is_unique_segment_for_sections_specified());
3336   return false;
3337 }
3338
3339 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3340
3341 static off_t
3342 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3343 {
3344   uint64_t unsigned_off = off;
3345   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3346                           | (addr & (abi_pagesize - 1)));
3347   if (aligned_off < unsigned_off)
3348     aligned_off += abi_pagesize;
3349   return aligned_off;
3350 }
3351
3352 // On targets where the text segment contains only executable code,
3353 // a non-executable segment is never the text segment.
3354
3355 static inline bool
3356 is_text_segment(const Target* target, const Output_segment* seg)
3357 {
3358   elfcpp::Elf_Xword flags = seg->flags();
3359   if ((flags & elfcpp::PF_W) != 0)
3360     return false;
3361   if ((flags & elfcpp::PF_X) == 0)
3362     return !target->isolate_execinstr();
3363   return true;
3364 }
3365
3366 // Set the file offsets of all the segments, and all the sections they
3367 // contain.  They have all been created.  LOAD_SEG must be be laid out
3368 // first.  Return the offset of the data to follow.
3369
3370 off_t
3371 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3372                             unsigned int* pshndx)
3373 {
3374   // Sort them into the final order.  We use a stable sort so that we
3375   // don't randomize the order of indistinguishable segments created
3376   // by linker scripts.
3377   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3378                    Layout::Compare_segments(this));
3379
3380   // Find the PT_LOAD segments, and set their addresses and offsets
3381   // and their section's addresses and offsets.
3382   uint64_t start_addr;
3383   if (parameters->options().user_set_Ttext())
3384     start_addr = parameters->options().Ttext();
3385   else if (parameters->options().output_is_position_independent())
3386     start_addr = 0;
3387   else
3388     start_addr = target->default_text_segment_address();
3389
3390   uint64_t addr = start_addr;
3391   off_t off = 0;
3392
3393   // If LOAD_SEG is NULL, then the file header and segment headers
3394   // will not be loadable.  But they still need to be at offset 0 in
3395   // the file.  Set their offsets now.
3396   if (load_seg == NULL)
3397     {
3398       for (Data_list::iterator p = this->special_output_list_.begin();
3399            p != this->special_output_list_.end();
3400            ++p)
3401         {
3402           off = align_address(off, (*p)->addralign());
3403           (*p)->set_address_and_file_offset(0, off);
3404           off += (*p)->data_size();
3405         }
3406     }
3407
3408   unsigned int increase_relro = this->increase_relro_;
3409   if (this->script_options_->saw_sections_clause())
3410     increase_relro = 0;
3411
3412   const bool check_sections = parameters->options().check_sections();
3413   Output_segment* last_load_segment = NULL;
3414
3415   unsigned int shndx_begin = *pshndx;
3416   unsigned int shndx_load_seg = *pshndx;
3417
3418   for (Segment_list::iterator p = this->segment_list_.begin();
3419        p != this->segment_list_.end();
3420        ++p)
3421     {
3422       if ((*p)->type() == elfcpp::PT_LOAD)
3423         {
3424           if (target->isolate_execinstr())
3425             {
3426               // When we hit the segment that should contain the
3427               // file headers, reset the file offset so we place
3428               // it and subsequent segments appropriately.
3429               // We'll fix up the preceding segments below.
3430               if (load_seg == *p)
3431                 {
3432                   if (off == 0)
3433                     load_seg = NULL;
3434                   else
3435                     {
3436                       off = 0;
3437                       shndx_load_seg = *pshndx;
3438                     }
3439                 }
3440             }
3441           else
3442             {
3443               // Verify that the file headers fall into the first segment.
3444               if (load_seg != NULL && load_seg != *p)
3445                 gold_unreachable();
3446               load_seg = NULL;
3447             }
3448
3449           bool are_addresses_set = (*p)->are_addresses_set();
3450           if (are_addresses_set)
3451             {
3452               // When it comes to setting file offsets, we care about
3453               // the physical address.
3454               addr = (*p)->paddr();
3455             }
3456           else if (parameters->options().user_set_Ttext()
3457                    && (parameters->options().omagic()
3458                        || is_text_segment(target, *p)))
3459             {
3460               are_addresses_set = true;
3461             }
3462           else if (parameters->options().user_set_Trodata_segment()
3463                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3464             {
3465               addr = parameters->options().Trodata_segment();
3466               are_addresses_set = true;
3467             }
3468           else if (parameters->options().user_set_Tdata()
3469                    && ((*p)->flags() & elfcpp::PF_W) != 0
3470                    && (!parameters->options().user_set_Tbss()
3471                        || (*p)->has_any_data_sections()))
3472             {
3473               addr = parameters->options().Tdata();
3474               are_addresses_set = true;
3475             }
3476           else if (parameters->options().user_set_Tbss()
3477                    && ((*p)->flags() & elfcpp::PF_W) != 0
3478                    && !(*p)->has_any_data_sections())
3479             {
3480               addr = parameters->options().Tbss();
3481               are_addresses_set = true;
3482             }
3483
3484           uint64_t orig_addr = addr;
3485           uint64_t orig_off = off;
3486
3487           uint64_t aligned_addr = 0;
3488           uint64_t abi_pagesize = target->abi_pagesize();
3489           uint64_t common_pagesize = target->common_pagesize();
3490
3491           if (!parameters->options().nmagic()
3492               && !parameters->options().omagic())
3493             (*p)->set_minimum_p_align(abi_pagesize);
3494
3495           if (!are_addresses_set)
3496             {
3497               // Skip the address forward one page, maintaining the same
3498               // position within the page.  This lets us store both segments
3499               // overlapping on a single page in the file, but the loader will
3500               // put them on different pages in memory. We will revisit this
3501               // decision once we know the size of the segment.
3502
3503               addr = align_address(addr, (*p)->maximum_alignment());
3504               aligned_addr = addr;
3505
3506               if (load_seg == *p)
3507                 {
3508                   // This is the segment that will contain the file
3509                   // headers, so its offset will have to be exactly zero.
3510                   gold_assert(orig_off == 0);
3511
3512                   // If the target wants a fixed minimum distance from the
3513                   // text segment to the read-only segment, move up now.
3514                   uint64_t min_addr =
3515                     start_addr + (parameters->options().user_set_rosegment_gap()
3516                                   ? parameters->options().rosegment_gap()
3517                                   : target->rosegment_gap());
3518                   if (addr < min_addr)
3519                     addr = min_addr;
3520
3521                   // But this is not the first segment!  To make its
3522                   // address congruent with its offset, that address better
3523                   // be aligned to the ABI-mandated page size.
3524                   addr = align_address(addr, abi_pagesize);
3525                   aligned_addr = addr;
3526                 }
3527               else
3528                 {
3529                   if ((addr & (abi_pagesize - 1)) != 0)
3530                     addr = addr + abi_pagesize;
3531
3532                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3533                 }
3534             }
3535
3536           if (!parameters->options().nmagic()
3537               && !parameters->options().omagic())
3538             {
3539               // Here we are also taking care of the case when
3540               // the maximum segment alignment is larger than the page size.
3541               off = align_file_offset(off, addr,
3542                                       std::max(abi_pagesize,
3543                                                (*p)->maximum_alignment()));
3544             }
3545           else
3546             {
3547               // This is -N or -n with a section script which prevents
3548               // us from using a load segment.  We need to ensure that
3549               // the file offset is aligned to the alignment of the
3550               // segment.  This is because the linker script
3551               // implicitly assumed a zero offset.  If we don't align
3552               // here, then the alignment of the sections in the
3553               // linker script may not match the alignment of the
3554               // sections in the set_section_addresses call below,
3555               // causing an error about dot moving backward.
3556               off = align_address(off, (*p)->maximum_alignment());
3557             }
3558
3559           unsigned int shndx_hold = *pshndx;
3560           bool has_relro = false;
3561           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3562                                                           false, addr,
3563                                                           &increase_relro,
3564                                                           &has_relro,
3565                                                           &off, pshndx);
3566
3567           // Now that we know the size of this segment, we may be able
3568           // to save a page in memory, at the cost of wasting some
3569           // file space, by instead aligning to the start of a new
3570           // page.  Here we use the real machine page size rather than
3571           // the ABI mandated page size.  If the segment has been
3572           // aligned so that the relro data ends at a page boundary,
3573           // we do not try to realign it.
3574
3575           if (!are_addresses_set
3576               && !has_relro
3577               && aligned_addr != addr
3578               && !parameters->incremental())
3579             {
3580               uint64_t first_off = (common_pagesize
3581                                     - (aligned_addr
3582                                        & (common_pagesize - 1)));
3583               uint64_t last_off = new_addr & (common_pagesize - 1);
3584               if (first_off > 0
3585                   && last_off > 0
3586                   && ((aligned_addr & ~ (common_pagesize - 1))
3587                       != (new_addr & ~ (common_pagesize - 1)))
3588                   && first_off + last_off <= common_pagesize)
3589                 {
3590                   *pshndx = shndx_hold;
3591                   addr = align_address(aligned_addr, common_pagesize);
3592                   addr = align_address(addr, (*p)->maximum_alignment());
3593                   if ((addr & (abi_pagesize - 1)) != 0)
3594                     addr = addr + abi_pagesize;
3595                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3596                   off = align_file_offset(off, addr, abi_pagesize);
3597
3598                   increase_relro = this->increase_relro_;
3599                   if (this->script_options_->saw_sections_clause())
3600                     increase_relro = 0;
3601                   has_relro = false;
3602
3603                   new_addr = (*p)->set_section_addresses(target, this,
3604                                                          true, addr,
3605                                                          &increase_relro,
3606                                                          &has_relro,
3607                                                          &off, pshndx);
3608                 }
3609             }
3610
3611           addr = new_addr;
3612
3613           // Implement --check-sections.  We know that the segments
3614           // are sorted by LMA.
3615           if (check_sections && last_load_segment != NULL)
3616             {
3617               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3618               if (last_load_segment->paddr() + last_load_segment->memsz()
3619                   > (*p)->paddr())
3620                 {
3621                   unsigned long long lb1 = last_load_segment->paddr();
3622                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3623                   unsigned long long lb2 = (*p)->paddr();
3624                   unsigned long long le2 = lb2 + (*p)->memsz();
3625                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3626                                "[0x%llx -> 0x%llx]"),
3627                              lb1, le1, lb2, le2);
3628                 }
3629             }
3630           last_load_segment = *p;
3631         }
3632     }
3633
3634   if (load_seg != NULL && target->isolate_execinstr())
3635     {
3636       // Process the early segments again, setting their file offsets
3637       // so they land after the segments starting at LOAD_SEG.
3638       off = align_file_offset(off, 0, target->abi_pagesize());
3639
3640       this->reset_relax_output();
3641
3642       for (Segment_list::iterator p = this->segment_list_.begin();
3643            *p != load_seg;
3644            ++p)
3645         {
3646           if ((*p)->type() == elfcpp::PT_LOAD)
3647             {
3648               // We repeat the whole job of assigning addresses and
3649               // offsets, but we really only want to change the offsets and
3650               // must ensure that the addresses all come out the same as
3651               // they did the first time through.
3652               bool has_relro = false;
3653               const uint64_t old_addr = (*p)->vaddr();
3654               const uint64_t old_end = old_addr + (*p)->memsz();
3655               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3656                                                               true, old_addr,
3657                                                               &increase_relro,
3658                                                               &has_relro,
3659                                                               &off,
3660                                                               &shndx_begin);
3661               gold_assert(new_addr == old_end);
3662             }
3663         }
3664
3665       gold_assert(shndx_begin == shndx_load_seg);
3666     }
3667
3668   // Handle the non-PT_LOAD segments, setting their offsets from their
3669   // section's offsets.
3670   for (Segment_list::iterator p = this->segment_list_.begin();
3671        p != this->segment_list_.end();
3672        ++p)
3673     {
3674       if ((*p)->type() != elfcpp::PT_LOAD)
3675         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3676                          ? increase_relro
3677                          : 0);
3678     }
3679
3680   // Set the TLS offsets for each section in the PT_TLS segment.
3681   if (this->tls_segment_ != NULL)
3682     this->tls_segment_->set_tls_offsets();
3683
3684   return off;
3685 }
3686
3687 // Set the offsets of all the allocated sections when doing a
3688 // relocatable link.  This does the same jobs as set_segment_offsets,
3689 // only for a relocatable link.
3690
3691 off_t
3692 Layout::set_relocatable_section_offsets(Output_data* file_header,
3693                                         unsigned int* pshndx)
3694 {
3695   off_t off = 0;
3696
3697   file_header->set_address_and_file_offset(0, 0);
3698   off += file_header->data_size();
3699
3700   for (Section_list::iterator p = this->section_list_.begin();
3701        p != this->section_list_.end();
3702        ++p)
3703     {
3704       // We skip unallocated sections here, except that group sections
3705       // have to come first.
3706       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3707           && (*p)->type() != elfcpp::SHT_GROUP)
3708         continue;
3709
3710       off = align_address(off, (*p)->addralign());
3711
3712       // The linker script might have set the address.
3713       if (!(*p)->is_address_valid())
3714         (*p)->set_address(0);
3715       (*p)->set_file_offset(off);
3716       (*p)->finalize_data_size();
3717       if ((*p)->type() != elfcpp::SHT_NOBITS)
3718         off += (*p)->data_size();
3719
3720       (*p)->set_out_shndx(*pshndx);
3721       ++*pshndx;
3722     }
3723
3724   return off;
3725 }
3726
3727 // Set the file offset of all the sections not associated with a
3728 // segment.
3729
3730 off_t
3731 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3732 {
3733   off_t startoff = off;
3734   off_t maxoff = off;
3735
3736   for (Section_list::iterator p = this->unattached_section_list_.begin();
3737        p != this->unattached_section_list_.end();
3738        ++p)
3739     {
3740       // The symtab section is handled in create_symtab_sections.
3741       if (*p == this->symtab_section_)
3742         continue;
3743
3744       // If we've already set the data size, don't set it again.
3745       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3746         continue;
3747
3748       if (pass == BEFORE_INPUT_SECTIONS_PASS
3749           && (*p)->requires_postprocessing())
3750         {
3751           (*p)->create_postprocessing_buffer();
3752           this->any_postprocessing_sections_ = true;
3753         }
3754
3755       if (pass == BEFORE_INPUT_SECTIONS_PASS
3756           && (*p)->after_input_sections())
3757         continue;
3758       else if (pass == POSTPROCESSING_SECTIONS_PASS
3759                && (!(*p)->after_input_sections()
3760                    || (*p)->type() == elfcpp::SHT_STRTAB))
3761         continue;
3762       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3763                && (!(*p)->after_input_sections()
3764                    || (*p)->type() != elfcpp::SHT_STRTAB))
3765         continue;
3766
3767       if (!parameters->incremental_update())
3768         {
3769           off = align_address(off, (*p)->addralign());
3770           (*p)->set_file_offset(off);
3771           (*p)->finalize_data_size();
3772         }
3773       else
3774         {
3775           // Incremental update: allocate file space from free list.
3776           (*p)->pre_finalize_data_size();
3777           off_t current_size = (*p)->current_data_size();
3778           off = this->allocate(current_size, (*p)->addralign(), startoff);
3779           if (off == -1)
3780             {
3781               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3782                 this->free_list_.dump();
3783               gold_assert((*p)->output_section() != NULL);
3784               gold_fallback(_("out of patch space for section %s; "
3785                               "relink with --incremental-full"),
3786                             (*p)->output_section()->name());
3787             }
3788           (*p)->set_file_offset(off);
3789           (*p)->finalize_data_size();
3790           if ((*p)->data_size() > current_size)
3791             {
3792               gold_assert((*p)->output_section() != NULL);
3793               gold_fallback(_("%s: section changed size; "
3794                               "relink with --incremental-full"),
3795                             (*p)->output_section()->name());
3796             }
3797           gold_debug(DEBUG_INCREMENTAL,
3798                      "set_section_offsets: %08lx %08lx %s",
3799                      static_cast<long>(off),
3800                      static_cast<long>((*p)->data_size()),
3801                      ((*p)->output_section() != NULL
3802                       ? (*p)->output_section()->name() : "(special)"));
3803         }
3804
3805       off += (*p)->data_size();
3806       if (off > maxoff)
3807         maxoff = off;
3808
3809       // At this point the name must be set.
3810       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3811         this->namepool_.add((*p)->name(), false, NULL);
3812     }
3813   return maxoff;
3814 }
3815
3816 // Set the section indexes of all the sections not associated with a
3817 // segment.
3818
3819 unsigned int
3820 Layout::set_section_indexes(unsigned int shndx)
3821 {
3822   for (Section_list::iterator p = this->unattached_section_list_.begin();
3823        p != this->unattached_section_list_.end();
3824        ++p)
3825     {
3826       if (!(*p)->has_out_shndx())
3827         {
3828           (*p)->set_out_shndx(shndx);
3829           ++shndx;
3830         }
3831     }
3832   return shndx;
3833 }
3834
3835 // Set the section addresses according to the linker script.  This is
3836 // only called when we see a SECTIONS clause.  This returns the
3837 // program segment which should hold the file header and segment
3838 // headers, if any.  It will return NULL if they should not be in a
3839 // segment.
3840
3841 Output_segment*
3842 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3843 {
3844   Script_sections* ss = this->script_options_->script_sections();
3845   gold_assert(ss->saw_sections_clause());
3846   return this->script_options_->set_section_addresses(symtab, this);
3847 }
3848
3849 // Place the orphan sections in the linker script.
3850
3851 void
3852 Layout::place_orphan_sections_in_script()
3853 {
3854   Script_sections* ss = this->script_options_->script_sections();
3855   gold_assert(ss->saw_sections_clause());
3856
3857   // Place each orphaned output section in the script.
3858   for (Section_list::iterator p = this->section_list_.begin();
3859        p != this->section_list_.end();
3860        ++p)
3861     {
3862       if (!(*p)->found_in_sections_clause())
3863         ss->place_orphan(*p);
3864     }
3865 }
3866
3867 // Count the local symbols in the regular symbol table and the dynamic
3868 // symbol table, and build the respective string pools.
3869
3870 void
3871 Layout::count_local_symbols(const Task* task,
3872                             const Input_objects* input_objects)
3873 {
3874   // First, figure out an upper bound on the number of symbols we'll
3875   // be inserting into each pool.  This helps us create the pools with
3876   // the right size, to avoid unnecessary hashtable resizing.
3877   unsigned int symbol_count = 0;
3878   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3879        p != input_objects->relobj_end();
3880        ++p)
3881     symbol_count += (*p)->local_symbol_count();
3882
3883   // Go from "upper bound" to "estimate."  We overcount for two
3884   // reasons: we double-count symbols that occur in more than one
3885   // object file, and we count symbols that are dropped from the
3886   // output.  Add it all together and assume we overcount by 100%.
3887   symbol_count /= 2;
3888
3889   // We assume all symbols will go into both the sympool and dynpool.
3890   this->sympool_.reserve(symbol_count);
3891   this->dynpool_.reserve(symbol_count);
3892
3893   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3894        p != input_objects->relobj_end();
3895        ++p)
3896     {
3897       Task_lock_obj<Object> tlo(task, *p);
3898       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3899     }
3900 }
3901
3902 // Create the symbol table sections.  Here we also set the final
3903 // values of the symbols.  At this point all the loadable sections are
3904 // fully laid out.  SHNUM is the number of sections so far.
3905
3906 void
3907 Layout::create_symtab_sections(const Input_objects* input_objects,
3908                                Symbol_table* symtab,
3909                                unsigned int shnum,
3910                                off_t* poff)
3911 {
3912   int symsize;
3913   unsigned int align;
3914   if (parameters->target().get_size() == 32)
3915     {
3916       symsize = elfcpp::Elf_sizes<32>::sym_size;
3917       align = 4;
3918     }
3919   else if (parameters->target().get_size() == 64)
3920     {
3921       symsize = elfcpp::Elf_sizes<64>::sym_size;
3922       align = 8;
3923     }
3924   else
3925     gold_unreachable();
3926
3927   // Compute file offsets relative to the start of the symtab section.
3928   off_t off = 0;
3929
3930   // Save space for the dummy symbol at the start of the section.  We
3931   // never bother to write this out--it will just be left as zero.
3932   off += symsize;
3933   unsigned int local_symbol_index = 1;
3934
3935   // Add STT_SECTION symbols for each Output section which needs one.
3936   for (Section_list::iterator p = this->section_list_.begin();
3937        p != this->section_list_.end();
3938        ++p)
3939     {
3940       if (!(*p)->needs_symtab_index())
3941         (*p)->set_symtab_index(-1U);
3942       else
3943         {
3944           (*p)->set_symtab_index(local_symbol_index);
3945           ++local_symbol_index;
3946           off += symsize;
3947         }
3948     }
3949
3950   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3951        p != input_objects->relobj_end();
3952        ++p)
3953     {
3954       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3955                                                         off, symtab);
3956       off += (index - local_symbol_index) * symsize;
3957       local_symbol_index = index;
3958     }
3959
3960   unsigned int local_symcount = local_symbol_index;
3961   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3962
3963   off_t dynoff;
3964   size_t dyn_global_index;
3965   size_t dyncount;
3966   if (this->dynsym_section_ == NULL)
3967     {
3968       dynoff = 0;
3969       dyn_global_index = 0;
3970       dyncount = 0;
3971     }
3972   else
3973     {
3974       dyn_global_index = this->dynsym_section_->info();
3975       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3976       dynoff = this->dynsym_section_->offset() + locsize;
3977       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3978       gold_assert(static_cast<off_t>(dyncount * symsize)
3979                   == this->dynsym_section_->data_size() - locsize);
3980     }
3981
3982   off_t global_off = off;
3983   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3984                          &this->sympool_, &local_symcount);
3985
3986   if (!parameters->options().strip_all())
3987     {
3988       this->sympool_.set_string_offsets();
3989
3990       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3991       Output_section* osymtab = this->make_output_section(symtab_name,
3992                                                           elfcpp::SHT_SYMTAB,
3993                                                           0, ORDER_INVALID,
3994                                                           false);
3995       this->symtab_section_ = osymtab;
3996
3997       Output_section_data* pos = new Output_data_fixed_space(off, align,
3998                                                              "** symtab");
3999       osymtab->add_output_section_data(pos);
4000
4001       // We generate a .symtab_shndx section if we have more than
4002       // SHN_LORESERVE sections.  Technically it is possible that we
4003       // don't need one, because it is possible that there are no
4004       // symbols in any of sections with indexes larger than
4005       // SHN_LORESERVE.  That is probably unusual, though, and it is
4006       // easier to always create one than to compute section indexes
4007       // twice (once here, once when writing out the symbols).
4008       if (shnum >= elfcpp::SHN_LORESERVE)
4009         {
4010           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4011                                                                false, NULL);
4012           Output_section* osymtab_xindex =
4013             this->make_output_section(symtab_xindex_name,
4014                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4015                                       ORDER_INVALID, false);
4016
4017           size_t symcount = off / symsize;
4018           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4019
4020           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4021
4022           osymtab_xindex->set_link_section(osymtab);
4023           osymtab_xindex->set_addralign(4);
4024           osymtab_xindex->set_entsize(4);
4025
4026           osymtab_xindex->set_after_input_sections();
4027
4028           // This tells the driver code to wait until the symbol table
4029           // has written out before writing out the postprocessing
4030           // sections, including the .symtab_shndx section.
4031           this->any_postprocessing_sections_ = true;
4032         }
4033
4034       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4035       Output_section* ostrtab = this->make_output_section(strtab_name,
4036                                                           elfcpp::SHT_STRTAB,
4037                                                           0, ORDER_INVALID,
4038                                                           false);
4039
4040       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4041       ostrtab->add_output_section_data(pstr);
4042
4043       off_t symtab_off;
4044       if (!parameters->incremental_update())
4045         symtab_off = align_address(*poff, align);
4046       else
4047         {
4048           symtab_off = this->allocate(off, align, *poff);
4049           if (off == -1)
4050             gold_fallback(_("out of patch space for symbol table; "
4051                             "relink with --incremental-full"));
4052           gold_debug(DEBUG_INCREMENTAL,
4053                      "create_symtab_sections: %08lx %08lx .symtab",
4054                      static_cast<long>(symtab_off),
4055                      static_cast<long>(off));
4056         }
4057
4058       symtab->set_file_offset(symtab_off + global_off);
4059       osymtab->set_file_offset(symtab_off);
4060       osymtab->finalize_data_size();
4061       osymtab->set_link_section(ostrtab);
4062       osymtab->set_info(local_symcount);
4063       osymtab->set_entsize(symsize);
4064
4065       if (symtab_off + off > *poff)
4066         *poff = symtab_off + off;
4067     }
4068 }
4069
4070 // Create the .shstrtab section, which holds the names of the
4071 // sections.  At the time this is called, we have created all the
4072 // output sections except .shstrtab itself.
4073
4074 Output_section*
4075 Layout::create_shstrtab()
4076 {
4077   // FIXME: We don't need to create a .shstrtab section if we are
4078   // stripping everything.
4079
4080   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4081
4082   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4083                                                  ORDER_INVALID, false);
4084
4085   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4086     {
4087       // We can't write out this section until we've set all the
4088       // section names, and we don't set the names of compressed
4089       // output sections until relocations are complete.  FIXME: With
4090       // the current names we use, this is unnecessary.
4091       os->set_after_input_sections();
4092     }
4093
4094   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4095   os->add_output_section_data(posd);
4096
4097   return os;
4098 }
4099
4100 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4101 // offset.
4102
4103 void
4104 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4105 {
4106   Output_section_headers* oshdrs;
4107   oshdrs = new Output_section_headers(this,
4108                                       &this->segment_list_,
4109                                       &this->section_list_,
4110                                       &this->unattached_section_list_,
4111                                       &this->namepool_,
4112                                       shstrtab_section);
4113   off_t off;
4114   if (!parameters->incremental_update())
4115     off = align_address(*poff, oshdrs->addralign());
4116   else
4117     {
4118       oshdrs->pre_finalize_data_size();
4119       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4120       if (off == -1)
4121           gold_fallback(_("out of patch space for section header table; "
4122                           "relink with --incremental-full"));
4123       gold_debug(DEBUG_INCREMENTAL,
4124                  "create_shdrs: %08lx %08lx (section header table)",
4125                  static_cast<long>(off),
4126                  static_cast<long>(off + oshdrs->data_size()));
4127     }
4128   oshdrs->set_address_and_file_offset(0, off);
4129   off += oshdrs->data_size();
4130   if (off > *poff)
4131     *poff = off;
4132   this->section_headers_ = oshdrs;
4133 }
4134
4135 // Count the allocated sections.
4136
4137 size_t
4138 Layout::allocated_output_section_count() const
4139 {
4140   size_t section_count = 0;
4141   for (Segment_list::const_iterator p = this->segment_list_.begin();
4142        p != this->segment_list_.end();
4143        ++p)
4144     section_count += (*p)->output_section_count();
4145   return section_count;
4146 }
4147
4148 // Create the dynamic symbol table.
4149
4150 void
4151 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4152                               Symbol_table* symtab,
4153                               Output_section** pdynstr,
4154                               unsigned int* plocal_dynamic_count,
4155                               std::vector<Symbol*>* pdynamic_symbols,
4156                               Versions* pversions)
4157 {
4158   // Count all the symbols in the dynamic symbol table, and set the
4159   // dynamic symbol indexes.
4160
4161   // Skip symbol 0, which is always all zeroes.
4162   unsigned int index = 1;
4163
4164   // Add STT_SECTION symbols for each Output section which needs one.
4165   for (Section_list::iterator p = this->section_list_.begin();
4166        p != this->section_list_.end();
4167        ++p)
4168     {
4169       if (!(*p)->needs_dynsym_index())
4170         (*p)->set_dynsym_index(-1U);
4171       else
4172         {
4173           (*p)->set_dynsym_index(index);
4174           ++index;
4175         }
4176     }
4177
4178   // Count the local symbols that need to go in the dynamic symbol table,
4179   // and set the dynamic symbol indexes.
4180   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4181        p != input_objects->relobj_end();
4182        ++p)
4183     {
4184       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4185       index = new_index;
4186     }
4187
4188   unsigned int local_symcount = index;
4189   *plocal_dynamic_count = local_symcount;
4190
4191   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4192                                      &this->dynpool_, pversions);
4193
4194   int symsize;
4195   unsigned int align;
4196   const int size = parameters->target().get_size();
4197   if (size == 32)
4198     {
4199       symsize = elfcpp::Elf_sizes<32>::sym_size;
4200       align = 4;
4201     }
4202   else if (size == 64)
4203     {
4204       symsize = elfcpp::Elf_sizes<64>::sym_size;
4205       align = 8;
4206     }
4207   else
4208     gold_unreachable();
4209
4210   // Create the dynamic symbol table section.
4211
4212   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4213                                                        elfcpp::SHT_DYNSYM,
4214                                                        elfcpp::SHF_ALLOC,
4215                                                        false,
4216                                                        ORDER_DYNAMIC_LINKER,
4217                                                        false);
4218
4219   // Check for NULL as a linker script may discard .dynsym.
4220   if (dynsym != NULL)
4221     {
4222       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4223                                                                align,
4224                                                                "** dynsym");
4225       dynsym->add_output_section_data(odata);
4226
4227       dynsym->set_info(local_symcount);
4228       dynsym->set_entsize(symsize);
4229       dynsym->set_addralign(align);
4230
4231       this->dynsym_section_ = dynsym;
4232     }
4233
4234   Output_data_dynamic* const odyn = this->dynamic_data_;
4235   if (odyn != NULL)
4236     {
4237       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4238       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4239     }
4240
4241   // If there are more than SHN_LORESERVE allocated sections, we
4242   // create a .dynsym_shndx section.  It is possible that we don't
4243   // need one, because it is possible that there are no dynamic
4244   // symbols in any of the sections with indexes larger than
4245   // SHN_LORESERVE.  This is probably unusual, though, and at this
4246   // time we don't know the actual section indexes so it is
4247   // inconvenient to check.
4248   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4249     {
4250       Output_section* dynsym_xindex =
4251         this->choose_output_section(NULL, ".dynsym_shndx",
4252                                     elfcpp::SHT_SYMTAB_SHNDX,
4253                                     elfcpp::SHF_ALLOC,
4254                                     false, ORDER_DYNAMIC_LINKER, false);
4255
4256       if (dynsym_xindex != NULL)
4257         {
4258           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4259
4260           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4261
4262           dynsym_xindex->set_link_section(dynsym);
4263           dynsym_xindex->set_addralign(4);
4264           dynsym_xindex->set_entsize(4);
4265
4266           dynsym_xindex->set_after_input_sections();
4267
4268           // This tells the driver code to wait until the symbol table
4269           // has written out before writing out the postprocessing
4270           // sections, including the .dynsym_shndx section.
4271           this->any_postprocessing_sections_ = true;
4272         }
4273     }
4274
4275   // Create the dynamic string table section.
4276
4277   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4278                                                        elfcpp::SHT_STRTAB,
4279                                                        elfcpp::SHF_ALLOC,
4280                                                        false,
4281                                                        ORDER_DYNAMIC_LINKER,
4282                                                        false);
4283   *pdynstr = dynstr;
4284   if (dynstr != NULL)
4285     {
4286       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4287       dynstr->add_output_section_data(strdata);
4288
4289       if (dynsym != NULL)
4290         dynsym->set_link_section(dynstr);
4291       if (this->dynamic_section_ != NULL)
4292         this->dynamic_section_->set_link_section(dynstr);
4293
4294       if (odyn != NULL)
4295         {
4296           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4297           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4298         }
4299     }
4300
4301   // Create the hash tables.
4302
4303   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4304       || strcmp(parameters->options().hash_style(), "both") == 0)
4305     {
4306       unsigned char* phash;
4307       unsigned int hashlen;
4308       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4309                                     &phash, &hashlen);
4310
4311       Output_section* hashsec =
4312         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4313                                     elfcpp::SHF_ALLOC, false,
4314                                     ORDER_DYNAMIC_LINKER, false);
4315
4316       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4317                                                                    hashlen,
4318                                                                    align,
4319                                                                    "** hash");
4320       if (hashsec != NULL && hashdata != NULL)
4321         hashsec->add_output_section_data(hashdata);
4322
4323       if (hashsec != NULL)
4324         {
4325           if (dynsym != NULL)
4326             hashsec->set_link_section(dynsym);
4327           hashsec->set_entsize(4);
4328         }
4329
4330       if (odyn != NULL)
4331         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4332     }
4333
4334   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4335       || strcmp(parameters->options().hash_style(), "both") == 0)
4336     {
4337       unsigned char* phash;
4338       unsigned int hashlen;
4339       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4340                                     &phash, &hashlen);
4341
4342       Output_section* hashsec =
4343         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4344                                     elfcpp::SHF_ALLOC, false,
4345                                     ORDER_DYNAMIC_LINKER, false);
4346
4347       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4348                                                                    hashlen,
4349                                                                    align,
4350                                                                    "** hash");
4351       if (hashsec != NULL && hashdata != NULL)
4352         hashsec->add_output_section_data(hashdata);
4353
4354       if (hashsec != NULL)
4355         {
4356           if (dynsym != NULL)
4357             hashsec->set_link_section(dynsym);
4358
4359           // For a 64-bit target, the entries in .gnu.hash do not have
4360           // a uniform size, so we only set the entry size for a
4361           // 32-bit target.
4362           if (parameters->target().get_size() == 32)
4363             hashsec->set_entsize(4);
4364
4365           if (odyn != NULL)
4366             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4367         }
4368     }
4369 }
4370
4371 // Assign offsets to each local portion of the dynamic symbol table.
4372
4373 void
4374 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4375 {
4376   Output_section* dynsym = this->dynsym_section_;
4377   if (dynsym == NULL)
4378     return;
4379
4380   off_t off = dynsym->offset();
4381
4382   // Skip the dummy symbol at the start of the section.
4383   off += dynsym->entsize();
4384
4385   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4386        p != input_objects->relobj_end();
4387        ++p)
4388     {
4389       unsigned int count = (*p)->set_local_dynsym_offset(off);
4390       off += count * dynsym->entsize();
4391     }
4392 }
4393
4394 // Create the version sections.
4395
4396 void
4397 Layout::create_version_sections(const Versions* versions,
4398                                 const Symbol_table* symtab,
4399                                 unsigned int local_symcount,
4400                                 const std::vector<Symbol*>& dynamic_symbols,
4401                                 const Output_section* dynstr)
4402 {
4403   if (!versions->any_defs() && !versions->any_needs())
4404     return;
4405
4406   switch (parameters->size_and_endianness())
4407     {
4408 #ifdef HAVE_TARGET_32_LITTLE
4409     case Parameters::TARGET_32_LITTLE:
4410       this->sized_create_version_sections<32, false>(versions, symtab,
4411                                                      local_symcount,
4412                                                      dynamic_symbols, dynstr);
4413       break;
4414 #endif
4415 #ifdef HAVE_TARGET_32_BIG
4416     case Parameters::TARGET_32_BIG:
4417       this->sized_create_version_sections<32, true>(versions, symtab,
4418                                                     local_symcount,
4419                                                     dynamic_symbols, dynstr);
4420       break;
4421 #endif
4422 #ifdef HAVE_TARGET_64_LITTLE
4423     case Parameters::TARGET_64_LITTLE:
4424       this->sized_create_version_sections<64, false>(versions, symtab,
4425                                                      local_symcount,
4426                                                      dynamic_symbols, dynstr);
4427       break;
4428 #endif
4429 #ifdef HAVE_TARGET_64_BIG
4430     case Parameters::TARGET_64_BIG:
4431       this->sized_create_version_sections<64, true>(versions, symtab,
4432                                                     local_symcount,
4433                                                     dynamic_symbols, dynstr);
4434       break;
4435 #endif
4436     default:
4437       gold_unreachable();
4438     }
4439 }
4440
4441 // Create the version sections, sized version.
4442
4443 template<int size, bool big_endian>
4444 void
4445 Layout::sized_create_version_sections(
4446     const Versions* versions,
4447     const Symbol_table* symtab,
4448     unsigned int local_symcount,
4449     const std::vector<Symbol*>& dynamic_symbols,
4450     const Output_section* dynstr)
4451 {
4452   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4453                                                      elfcpp::SHT_GNU_versym,
4454                                                      elfcpp::SHF_ALLOC,
4455                                                      false,
4456                                                      ORDER_DYNAMIC_LINKER,
4457                                                      false);
4458
4459   // Check for NULL since a linker script may discard this section.
4460   if (vsec != NULL)
4461     {
4462       unsigned char* vbuf;
4463       unsigned int vsize;
4464       versions->symbol_section_contents<size, big_endian>(symtab,
4465                                                           &this->dynpool_,
4466                                                           local_symcount,
4467                                                           dynamic_symbols,
4468                                                           &vbuf, &vsize);
4469
4470       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4471                                                                 "** versions");
4472
4473       vsec->add_output_section_data(vdata);
4474       vsec->set_entsize(2);
4475       vsec->set_link_section(this->dynsym_section_);
4476     }
4477
4478   Output_data_dynamic* const odyn = this->dynamic_data_;
4479   if (odyn != NULL && vsec != NULL)
4480     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4481
4482   if (versions->any_defs())
4483     {
4484       Output_section* vdsec;
4485       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4486                                           elfcpp::SHT_GNU_verdef,
4487                                           elfcpp::SHF_ALLOC,
4488                                           false, ORDER_DYNAMIC_LINKER, false);
4489
4490       if (vdsec != NULL)
4491         {
4492           unsigned char* vdbuf;
4493           unsigned int vdsize;
4494           unsigned int vdentries;
4495           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4496                                                            &vdbuf, &vdsize,
4497                                                            &vdentries);
4498
4499           Output_section_data* vddata =
4500             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4501
4502           vdsec->add_output_section_data(vddata);
4503           vdsec->set_link_section(dynstr);
4504           vdsec->set_info(vdentries);
4505
4506           if (odyn != NULL)
4507             {
4508               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4509               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4510             }
4511         }
4512     }
4513
4514   if (versions->any_needs())
4515     {
4516       Output_section* vnsec;
4517       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4518                                           elfcpp::SHT_GNU_verneed,
4519                                           elfcpp::SHF_ALLOC,
4520                                           false, ORDER_DYNAMIC_LINKER, false);
4521
4522       if (vnsec != NULL)
4523         {
4524           unsigned char* vnbuf;
4525           unsigned int vnsize;
4526           unsigned int vnentries;
4527           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4528                                                             &vnbuf, &vnsize,
4529                                                             &vnentries);
4530
4531           Output_section_data* vndata =
4532             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4533
4534           vnsec->add_output_section_data(vndata);
4535           vnsec->set_link_section(dynstr);
4536           vnsec->set_info(vnentries);
4537
4538           if (odyn != NULL)
4539             {
4540               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4541               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4542             }
4543         }
4544     }
4545 }
4546
4547 // Create the .interp section and PT_INTERP segment.
4548
4549 void
4550 Layout::create_interp(const Target* target)
4551 {
4552   gold_assert(this->interp_segment_ == NULL);
4553
4554   const char* interp = parameters->options().dynamic_linker();
4555   if (interp == NULL)
4556     {
4557       interp = target->dynamic_linker();
4558       gold_assert(interp != NULL);
4559     }
4560
4561   size_t len = strlen(interp) + 1;
4562
4563   Output_section_data* odata = new Output_data_const(interp, len, 1);
4564
4565   Output_section* osec = this->choose_output_section(NULL, ".interp",
4566                                                      elfcpp::SHT_PROGBITS,
4567                                                      elfcpp::SHF_ALLOC,
4568                                                      false, ORDER_INTERP,
4569                                                      false);
4570   if (osec != NULL)
4571     osec->add_output_section_data(odata);
4572 }
4573
4574 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4575 // called by the target-specific code.  This does nothing if not doing
4576 // a dynamic link.
4577
4578 // USE_REL is true for REL relocs rather than RELA relocs.
4579
4580 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4581
4582 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4583 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4584 // some targets have multiple reloc sections in PLT_REL.
4585
4586 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4587 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4588 // section.
4589
4590 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4591 // executable.
4592
4593 void
4594 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4595                                 const Output_data* plt_rel,
4596                                 const Output_data_reloc_generic* dyn_rel,
4597                                 bool add_debug, bool dynrel_includes_plt)
4598 {
4599   Output_data_dynamic* odyn = this->dynamic_data_;
4600   if (odyn == NULL)
4601     return;
4602
4603   if (plt_got != NULL && plt_got->output_section() != NULL)
4604     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4605
4606   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4607     {
4608       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4609       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4610       odyn->add_constant(elfcpp::DT_PLTREL,
4611                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4612     }
4613
4614   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4615       || (dynrel_includes_plt
4616           && plt_rel != NULL
4617           && plt_rel->output_section() != NULL))
4618     {
4619       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4620       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4621       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4622                                 (have_dyn_rel
4623                                  ? dyn_rel->output_section()
4624                                  : plt_rel->output_section()));
4625       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4626       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4627         odyn->add_section_size(size_tag,
4628                                dyn_rel->output_section(),
4629                                plt_rel->output_section());
4630       else if (have_dyn_rel)
4631         odyn->add_section_size(size_tag, dyn_rel->output_section());
4632       else
4633         odyn->add_section_size(size_tag, plt_rel->output_section());
4634       const int size = parameters->target().get_size();
4635       elfcpp::DT rel_tag;
4636       int rel_size;
4637       if (use_rel)
4638         {
4639           rel_tag = elfcpp::DT_RELENT;
4640           if (size == 32)
4641             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4642           else if (size == 64)
4643             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4644           else
4645             gold_unreachable();
4646         }
4647       else
4648         {
4649           rel_tag = elfcpp::DT_RELAENT;
4650           if (size == 32)
4651             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4652           else if (size == 64)
4653             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4654           else
4655             gold_unreachable();
4656         }
4657       odyn->add_constant(rel_tag, rel_size);
4658
4659       if (parameters->options().combreloc() && have_dyn_rel)
4660         {
4661           size_t c = dyn_rel->relative_reloc_count();
4662           if (c > 0)
4663             odyn->add_constant((use_rel
4664                                 ? elfcpp::DT_RELCOUNT
4665                                 : elfcpp::DT_RELACOUNT),
4666                                c);
4667         }
4668     }
4669
4670   if (add_debug && !parameters->options().shared())
4671     {
4672       // The value of the DT_DEBUG tag is filled in by the dynamic
4673       // linker at run time, and used by the debugger.
4674       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4675     }
4676 }
4677
4678 // Finish the .dynamic section and PT_DYNAMIC segment.
4679
4680 void
4681 Layout::finish_dynamic_section(const Input_objects* input_objects,
4682                                const Symbol_table* symtab)
4683 {
4684   if (!this->script_options_->saw_phdrs_clause()
4685       && this->dynamic_section_ != NULL)
4686     {
4687       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4688                                                        (elfcpp::PF_R
4689                                                         | elfcpp::PF_W));
4690       oseg->add_output_section_to_nonload(this->dynamic_section_,
4691                                           elfcpp::PF_R | elfcpp::PF_W);
4692     }
4693
4694   Output_data_dynamic* const odyn = this->dynamic_data_;
4695   if (odyn == NULL)
4696     return;
4697
4698   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4699        p != input_objects->dynobj_end();
4700        ++p)
4701     {
4702       if (!(*p)->is_needed() && (*p)->as_needed())
4703         {
4704           // This dynamic object was linked with --as-needed, but it
4705           // is not needed.
4706           continue;
4707         }
4708
4709       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4710     }
4711
4712   if (parameters->options().shared())
4713     {
4714       const char* soname = parameters->options().soname();
4715       if (soname != NULL)
4716         odyn->add_string(elfcpp::DT_SONAME, soname);
4717     }
4718
4719   Symbol* sym = symtab->lookup(parameters->options().init());
4720   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4721     odyn->add_symbol(elfcpp::DT_INIT, sym);
4722
4723   sym = symtab->lookup(parameters->options().fini());
4724   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4725     odyn->add_symbol(elfcpp::DT_FINI, sym);
4726
4727   // Look for .init_array, .preinit_array and .fini_array by checking
4728   // section types.
4729   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4730       p != this->section_list_.end();
4731       ++p)
4732     switch((*p)->type())
4733       {
4734       case elfcpp::SHT_FINI_ARRAY:
4735         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4736         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4737         break;
4738       case elfcpp::SHT_INIT_ARRAY:
4739         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4740         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4741         break;
4742       case elfcpp::SHT_PREINIT_ARRAY:
4743         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4744         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4745         break;
4746       default:
4747         break;
4748       }
4749
4750   // Add a DT_RPATH entry if needed.
4751   const General_options::Dir_list& rpath(parameters->options().rpath());
4752   if (!rpath.empty())
4753     {
4754       std::string rpath_val;
4755       for (General_options::Dir_list::const_iterator p = rpath.begin();
4756            p != rpath.end();
4757            ++p)
4758         {
4759           if (rpath_val.empty())
4760             rpath_val = p->name();
4761           else
4762             {
4763               // Eliminate duplicates.
4764               General_options::Dir_list::const_iterator q;
4765               for (q = rpath.begin(); q != p; ++q)
4766                 if (q->name() == p->name())
4767                   break;
4768               if (q == p)
4769                 {
4770                   rpath_val += ':';
4771                   rpath_val += p->name();
4772                 }
4773             }
4774         }
4775
4776       if (!parameters->options().enable_new_dtags())
4777         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4778       else
4779         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4780     }
4781
4782   // Look for text segments that have dynamic relocations.
4783   bool have_textrel = false;
4784   if (!this->script_options_->saw_sections_clause())
4785     {
4786       for (Segment_list::const_iterator p = this->segment_list_.begin();
4787            p != this->segment_list_.end();
4788            ++p)
4789         {
4790           if ((*p)->type() == elfcpp::PT_LOAD
4791               && ((*p)->flags() & elfcpp::PF_W) == 0
4792               && (*p)->has_dynamic_reloc())
4793             {
4794               have_textrel = true;
4795               break;
4796             }
4797         }
4798     }
4799   else
4800     {
4801       // We don't know the section -> segment mapping, so we are
4802       // conservative and just look for readonly sections with
4803       // relocations.  If those sections wind up in writable segments,
4804       // then we have created an unnecessary DT_TEXTREL entry.
4805       for (Section_list::const_iterator p = this->section_list_.begin();
4806            p != this->section_list_.end();
4807            ++p)
4808         {
4809           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4810               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4811               && (*p)->has_dynamic_reloc())
4812             {
4813               have_textrel = true;
4814               break;
4815             }
4816         }
4817     }
4818
4819   if (parameters->options().filter() != NULL)
4820     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4821   if (parameters->options().any_auxiliary())
4822     {
4823       for (options::String_set::const_iterator p =
4824              parameters->options().auxiliary_begin();
4825            p != parameters->options().auxiliary_end();
4826            ++p)
4827         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4828     }
4829
4830   // Add a DT_FLAGS entry if necessary.
4831   unsigned int flags = 0;
4832   if (have_textrel)
4833     {
4834       // Add a DT_TEXTREL for compatibility with older loaders.
4835       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4836       flags |= elfcpp::DF_TEXTREL;
4837
4838       if (parameters->options().text())
4839         gold_error(_("read-only segment has dynamic relocations"));
4840       else if (parameters->options().warn_shared_textrel()
4841                && parameters->options().shared())
4842         gold_warning(_("shared library text segment is not shareable"));
4843     }
4844   if (parameters->options().shared() && this->has_static_tls())
4845     flags |= elfcpp::DF_STATIC_TLS;
4846   if (parameters->options().origin())
4847     flags |= elfcpp::DF_ORIGIN;
4848   if (parameters->options().Bsymbolic())
4849     {
4850       flags |= elfcpp::DF_SYMBOLIC;
4851       // Add DT_SYMBOLIC for compatibility with older loaders.
4852       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4853     }
4854   if (parameters->options().now())
4855     flags |= elfcpp::DF_BIND_NOW;
4856   if (flags != 0)
4857     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4858
4859   flags = 0;
4860   if (parameters->options().initfirst())
4861     flags |= elfcpp::DF_1_INITFIRST;
4862   if (parameters->options().interpose())
4863     flags |= elfcpp::DF_1_INTERPOSE;
4864   if (parameters->options().loadfltr())
4865     flags |= elfcpp::DF_1_LOADFLTR;
4866   if (parameters->options().nodefaultlib())
4867     flags |= elfcpp::DF_1_NODEFLIB;
4868   if (parameters->options().nodelete())
4869     flags |= elfcpp::DF_1_NODELETE;
4870   if (parameters->options().nodlopen())
4871     flags |= elfcpp::DF_1_NOOPEN;
4872   if (parameters->options().nodump())
4873     flags |= elfcpp::DF_1_NODUMP;
4874   if (!parameters->options().shared())
4875     flags &= ~(elfcpp::DF_1_INITFIRST
4876                | elfcpp::DF_1_NODELETE
4877                | elfcpp::DF_1_NOOPEN);
4878   if (parameters->options().origin())
4879     flags |= elfcpp::DF_1_ORIGIN;
4880   if (parameters->options().now())
4881     flags |= elfcpp::DF_1_NOW;
4882   if (parameters->options().Bgroup())
4883     flags |= elfcpp::DF_1_GROUP;
4884   if (flags != 0)
4885     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4886 }
4887
4888 // Set the size of the _DYNAMIC symbol table to be the size of the
4889 // dynamic data.
4890
4891 void
4892 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4893 {
4894   Output_data_dynamic* const odyn = this->dynamic_data_;
4895   if (odyn == NULL)
4896     return;
4897   odyn->finalize_data_size();
4898   if (this->dynamic_symbol_ == NULL)
4899     return;
4900   off_t data_size = odyn->data_size();
4901   const int size = parameters->target().get_size();
4902   if (size == 32)
4903     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4904   else if (size == 64)
4905     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4906   else
4907     gold_unreachable();
4908 }
4909
4910 // The mapping of input section name prefixes to output section names.
4911 // In some cases one prefix is itself a prefix of another prefix; in
4912 // such a case the longer prefix must come first.  These prefixes are
4913 // based on the GNU linker default ELF linker script.
4914
4915 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4916 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4917 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4918 {
4919   MAPPING_INIT(".text.", ".text"),
4920   MAPPING_INIT(".rodata.", ".rodata"),
4921   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4922   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4923   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4924   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4925   MAPPING_INIT(".data.", ".data"),
4926   MAPPING_INIT(".bss.", ".bss"),
4927   MAPPING_INIT(".tdata.", ".tdata"),
4928   MAPPING_INIT(".tbss.", ".tbss"),
4929   MAPPING_INIT(".init_array.", ".init_array"),
4930   MAPPING_INIT(".fini_array.", ".fini_array"),
4931   MAPPING_INIT(".sdata.", ".sdata"),
4932   MAPPING_INIT(".sbss.", ".sbss"),
4933   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4934   // differently depending on whether it is creating a shared library.
4935   MAPPING_INIT(".sdata2.", ".sdata"),
4936   MAPPING_INIT(".sbss2.", ".sbss"),
4937   MAPPING_INIT(".lrodata.", ".lrodata"),
4938   MAPPING_INIT(".ldata.", ".ldata"),
4939   MAPPING_INIT(".lbss.", ".lbss"),
4940   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4941   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4942   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4943   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4944   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4945   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4946   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4947   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4948   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4949   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4950   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4951   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4952   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4953   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4954   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4955   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4956   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4957   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4958   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4959   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4960   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4961 };
4962 #undef MAPPING_INIT
4963 #undef MAPPING_INIT_EXACT
4964
4965 const int Layout::section_name_mapping_count =
4966   (sizeof(Layout::section_name_mapping)
4967    / sizeof(Layout::section_name_mapping[0]));
4968
4969 // Choose the output section name to use given an input section name.
4970 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4971 // length of NAME.
4972
4973 const char*
4974 Layout::output_section_name(const Relobj* relobj, const char* name,
4975                             size_t* plen)
4976 {
4977   // gcc 4.3 generates the following sorts of section names when it
4978   // needs a section name specific to a function:
4979   //   .text.FN
4980   //   .rodata.FN
4981   //   .sdata2.FN
4982   //   .data.FN
4983   //   .data.rel.FN
4984   //   .data.rel.local.FN
4985   //   .data.rel.ro.FN
4986   //   .data.rel.ro.local.FN
4987   //   .sdata.FN
4988   //   .bss.FN
4989   //   .sbss.FN
4990   //   .tdata.FN
4991   //   .tbss.FN
4992
4993   // The GNU linker maps all of those to the part before the .FN,
4994   // except that .data.rel.local.FN is mapped to .data, and
4995   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4996   // beginning with .data.rel.ro.local are grouped together.
4997
4998   // For an anonymous namespace, the string FN can contain a '.'.
4999
5000   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5001   // GNU linker maps to .rodata.
5002
5003   // The .data.rel.ro sections are used with -z relro.  The sections
5004   // are recognized by name.  We use the same names that the GNU
5005   // linker does for these sections.
5006
5007   // It is hard to handle this in a principled way, so we don't even
5008   // try.  We use a table of mappings.  If the input section name is
5009   // not found in the table, we simply use it as the output section
5010   // name.
5011
5012   const Section_name_mapping* psnm = section_name_mapping;
5013   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5014     {
5015       if (psnm->fromlen > 0)
5016         {
5017           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5018             {
5019               *plen = psnm->tolen;
5020               return psnm->to;
5021             }
5022         }
5023       else
5024         {
5025           if (strcmp(name, psnm->from) == 0)
5026             {
5027               *plen = psnm->tolen;
5028               return psnm->to;
5029             }
5030         }
5031     }
5032
5033   // As an additional complication, .ctors sections are output in
5034   // either .ctors or .init_array sections, and .dtors sections are
5035   // output in either .dtors or .fini_array sections.
5036   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5037     {
5038       if (parameters->options().ctors_in_init_array())
5039         {
5040           *plen = 11;
5041           return name[1] == 'c' ? ".init_array" : ".fini_array";
5042         }
5043       else
5044         {
5045           *plen = 6;
5046           return name[1] == 'c' ? ".ctors" : ".dtors";
5047         }
5048     }
5049   if (parameters->options().ctors_in_init_array()
5050       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5051     {
5052       // To make .init_array/.fini_array work with gcc we must exclude
5053       // .ctors and .dtors sections from the crtbegin and crtend
5054       // files.
5055       if (relobj == NULL
5056           || (!Layout::match_file_name(relobj, "crtbegin")
5057               && !Layout::match_file_name(relobj, "crtend")))
5058         {
5059           *plen = 11;
5060           return name[1] == 'c' ? ".init_array" : ".fini_array";
5061         }
5062     }
5063
5064   return name;
5065 }
5066
5067 // Return true if RELOBJ is an input file whose base name matches
5068 // FILE_NAME.  The base name must have an extension of ".o", and must
5069 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5070 // to match crtbegin.o as well as crtbeginS.o without getting confused
5071 // by other possibilities.  Overall matching the file name this way is
5072 // a dreadful hack, but the GNU linker does it in order to better
5073 // support gcc, and we need to be compatible.
5074
5075 bool
5076 Layout::match_file_name(const Relobj* relobj, const char* match)
5077 {
5078   const std::string& file_name(relobj->name());
5079   const char* base_name = lbasename(file_name.c_str());
5080   size_t match_len = strlen(match);
5081   if (strncmp(base_name, match, match_len) != 0)
5082     return false;
5083   size_t base_len = strlen(base_name);
5084   if (base_len != match_len + 2 && base_len != match_len + 3)
5085     return false;
5086   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5087 }
5088
5089 // Check if a comdat group or .gnu.linkonce section with the given
5090 // NAME is selected for the link.  If there is already a section,
5091 // *KEPT_SECTION is set to point to the existing section and the
5092 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5093 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5094 // *KEPT_SECTION is set to the internal copy and the function returns
5095 // true.
5096
5097 bool
5098 Layout::find_or_add_kept_section(const std::string& name,
5099                                  Relobj* object,
5100                                  unsigned int shndx,
5101                                  bool is_comdat,
5102                                  bool is_group_name,
5103                                  Kept_section** kept_section)
5104 {
5105   // It's normal to see a couple of entries here, for the x86 thunk
5106   // sections.  If we see more than a few, we're linking a C++
5107   // program, and we resize to get more space to minimize rehashing.
5108   if (this->signatures_.size() > 4
5109       && !this->resized_signatures_)
5110     {
5111       reserve_unordered_map(&this->signatures_,
5112                             this->number_of_input_files_ * 64);
5113       this->resized_signatures_ = true;
5114     }
5115
5116   Kept_section candidate;
5117   std::pair<Signatures::iterator, bool> ins =
5118     this->signatures_.insert(std::make_pair(name, candidate));
5119
5120   if (kept_section != NULL)
5121     *kept_section = &ins.first->second;
5122   if (ins.second)
5123     {
5124       // This is the first time we've seen this signature.
5125       ins.first->second.set_object(object);
5126       ins.first->second.set_shndx(shndx);
5127       if (is_comdat)
5128         ins.first->second.set_is_comdat();
5129       if (is_group_name)
5130         ins.first->second.set_is_group_name();
5131       return true;
5132     }
5133
5134   // We have already seen this signature.
5135
5136   if (ins.first->second.is_group_name())
5137     {
5138       // We've already seen a real section group with this signature.
5139       // If the kept group is from a plugin object, and we're in the
5140       // replacement phase, accept the new one as a replacement.
5141       if (ins.first->second.object() == NULL
5142           && parameters->options().plugins()->in_replacement_phase())
5143         {
5144           ins.first->second.set_object(object);
5145           ins.first->second.set_shndx(shndx);
5146           return true;
5147         }
5148       return false;
5149     }
5150   else if (is_group_name)
5151     {
5152       // This is a real section group, and we've already seen a
5153       // linkonce section with this signature.  Record that we've seen
5154       // a section group, and don't include this section group.
5155       ins.first->second.set_is_group_name();
5156       return false;
5157     }
5158   else
5159     {
5160       // We've already seen a linkonce section and this is a linkonce
5161       // section.  These don't block each other--this may be the same
5162       // symbol name with different section types.
5163       return true;
5164     }
5165 }
5166
5167 // Store the allocated sections into the section list.
5168
5169 void
5170 Layout::get_allocated_sections(Section_list* section_list) const
5171 {
5172   for (Section_list::const_iterator p = this->section_list_.begin();
5173        p != this->section_list_.end();
5174        ++p)
5175     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5176       section_list->push_back(*p);
5177 }
5178
5179 // Store the executable sections into the section list.
5180
5181 void
5182 Layout::get_executable_sections(Section_list* section_list) const
5183 {
5184   for (Section_list::const_iterator p = this->section_list_.begin();
5185        p != this->section_list_.end();
5186        ++p)
5187     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5188         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5189       section_list->push_back(*p);
5190 }
5191
5192 // Create an output segment.
5193
5194 Output_segment*
5195 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5196 {
5197   gold_assert(!parameters->options().relocatable());
5198   Output_segment* oseg = new Output_segment(type, flags);
5199   this->segment_list_.push_back(oseg);
5200
5201   if (type == elfcpp::PT_TLS)
5202     this->tls_segment_ = oseg;
5203   else if (type == elfcpp::PT_GNU_RELRO)
5204     this->relro_segment_ = oseg;
5205   else if (type == elfcpp::PT_INTERP)
5206     this->interp_segment_ = oseg;
5207
5208   return oseg;
5209 }
5210
5211 // Return the file offset of the normal symbol table.
5212
5213 off_t
5214 Layout::symtab_section_offset() const
5215 {
5216   if (this->symtab_section_ != NULL)
5217     return this->symtab_section_->offset();
5218   return 0;
5219 }
5220
5221 // Return the section index of the normal symbol table.  It may have
5222 // been stripped by the -s/--strip-all option.
5223
5224 unsigned int
5225 Layout::symtab_section_shndx() const
5226 {
5227   if (this->symtab_section_ != NULL)
5228     return this->symtab_section_->out_shndx();
5229   return 0;
5230 }
5231
5232 // Write out the Output_sections.  Most won't have anything to write,
5233 // since most of the data will come from input sections which are
5234 // handled elsewhere.  But some Output_sections do have Output_data.
5235
5236 void
5237 Layout::write_output_sections(Output_file* of) const
5238 {
5239   for (Section_list::const_iterator p = this->section_list_.begin();
5240        p != this->section_list_.end();
5241        ++p)
5242     {
5243       if (!(*p)->after_input_sections())
5244         (*p)->write(of);
5245     }
5246 }
5247
5248 // Write out data not associated with a section or the symbol table.
5249
5250 void
5251 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5252 {
5253   if (!parameters->options().strip_all())
5254     {
5255       const Output_section* symtab_section = this->symtab_section_;
5256       for (Section_list::const_iterator p = this->section_list_.begin();
5257            p != this->section_list_.end();
5258            ++p)
5259         {
5260           if ((*p)->needs_symtab_index())
5261             {
5262               gold_assert(symtab_section != NULL);
5263               unsigned int index = (*p)->symtab_index();
5264               gold_assert(index > 0 && index != -1U);
5265               off_t off = (symtab_section->offset()
5266                            + index * symtab_section->entsize());
5267               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5268             }
5269         }
5270     }
5271
5272   const Output_section* dynsym_section = this->dynsym_section_;
5273   for (Section_list::const_iterator p = this->section_list_.begin();
5274        p != this->section_list_.end();
5275        ++p)
5276     {
5277       if ((*p)->needs_dynsym_index())
5278         {
5279           gold_assert(dynsym_section != NULL);
5280           unsigned int index = (*p)->dynsym_index();
5281           gold_assert(index > 0 && index != -1U);
5282           off_t off = (dynsym_section->offset()
5283                        + index * dynsym_section->entsize());
5284           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5285         }
5286     }
5287
5288   // Write out the Output_data which are not in an Output_section.
5289   for (Data_list::const_iterator p = this->special_output_list_.begin();
5290        p != this->special_output_list_.end();
5291        ++p)
5292     (*p)->write(of);
5293
5294   // Write out the Output_data which are not in an Output_section
5295   // and are regenerated in each iteration of relaxation.
5296   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5297        p != this->relax_output_list_.end();
5298        ++p)
5299     (*p)->write(of);
5300 }
5301
5302 // Write out the Output_sections which can only be written after the
5303 // input sections are complete.
5304
5305 void
5306 Layout::write_sections_after_input_sections(Output_file* of)
5307 {
5308   // Determine the final section offsets, and thus the final output
5309   // file size.  Note we finalize the .shstrab last, to allow the
5310   // after_input_section sections to modify their section-names before
5311   // writing.
5312   if (this->any_postprocessing_sections_)
5313     {
5314       off_t off = this->output_file_size_;
5315       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5316
5317       // Now that we've finalized the names, we can finalize the shstrab.
5318       off =
5319         this->set_section_offsets(off,
5320                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5321
5322       if (off > this->output_file_size_)
5323         {
5324           of->resize(off);
5325           this->output_file_size_ = off;
5326         }
5327     }
5328
5329   for (Section_list::const_iterator p = this->section_list_.begin();
5330        p != this->section_list_.end();
5331        ++p)
5332     {
5333       if ((*p)->after_input_sections())
5334         (*p)->write(of);
5335     }
5336
5337   this->section_headers_->write(of);
5338 }
5339
5340 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5341 // or as a "tree" where each chunk of the string is hashed and then those
5342 // hashes are put into a (much smaller) string which is hashed with sha1.
5343 // We compute a checksum over the entire file because that is simplest.
5344
5345 Task_token*
5346 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5347                              Output_file* of)
5348 {
5349   const size_t filesize = (this->output_file_size() <= 0 ? 0
5350                            : static_cast<size_t>(this->output_file_size()));
5351   if (this->build_id_note_ != NULL
5352       && strcmp(parameters->options().build_id(), "tree") == 0
5353       && parameters->options().build_id_chunk_size_for_treehash() > 0
5354       && filesize > 0
5355       && (filesize >=
5356           parameters->options().build_id_min_file_size_for_treehash()))
5357     {
5358       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5359       const size_t chunk_size =
5360           parameters->options().build_id_chunk_size_for_treehash();
5361       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5362       Task_token* post_hash_tasks_blocker = new Task_token(true);
5363       post_hash_tasks_blocker->add_blockers(num_hashes);
5364       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5365       const unsigned char* src = of->get_input_view(0, filesize);
5366       this->input_view_ = src;
5367       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5368       this->array_of_hashes_ = dst;
5369       for (size_t i = 0, src_offset = 0; i < num_hashes;
5370            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5371         {
5372           size_t size = std::min(chunk_size, filesize - src_offset);
5373           workqueue->queue(new Hash_task(src + src_offset,
5374                                          size,
5375                                          dst,
5376                                          build_id_blocker,
5377                                          post_hash_tasks_blocker));
5378         }
5379       return post_hash_tasks_blocker;
5380     }
5381   return build_id_blocker;
5382 }
5383
5384 // If a tree-style build ID was requested, the parallel part of that computation
5385 // is already done, and the final hash-of-hashes is computed here.  For other
5386 // types of build IDs, all the work is done here.
5387
5388 void
5389 Layout::write_build_id(Output_file* of) const
5390 {
5391   if (this->build_id_note_ == NULL)
5392     return;
5393
5394   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5395                                           this->build_id_note_->data_size());
5396
5397   if (this->array_of_hashes_ == NULL)
5398     {
5399       const size_t output_file_size = this->output_file_size();
5400       const unsigned char* iv = of->get_input_view(0, output_file_size);
5401       const char* style = parameters->options().build_id();
5402
5403       // If we get here with style == "tree" then the output must be
5404       // too small for chunking, and we use SHA-1 in that case.
5405       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5406         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5407       else if (strcmp(style, "md5") == 0)
5408         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5409       else
5410         gold_unreachable();
5411
5412       of->free_input_view(0, output_file_size, iv);
5413     }
5414   else
5415     {
5416       // Non-overlapping substrings of the output file have been hashed.
5417       // Compute SHA-1 hash of the hashes.
5418       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5419                   this->size_of_array_of_hashes_, ov);
5420       delete[] this->array_of_hashes_;
5421       of->free_input_view(0, this->output_file_size(), this->input_view_);
5422     }
5423
5424   of->write_output_view(this->build_id_note_->offset(),
5425                         this->build_id_note_->data_size(),
5426                         ov);
5427 }
5428
5429 // Write out a binary file.  This is called after the link is
5430 // complete.  IN is the temporary output file we used to generate the
5431 // ELF code.  We simply walk through the segments, read them from
5432 // their file offset in IN, and write them to their load address in
5433 // the output file.  FIXME: with a bit more work, we could support
5434 // S-records and/or Intel hex format here.
5435
5436 void
5437 Layout::write_binary(Output_file* in) const
5438 {
5439   gold_assert(parameters->options().oformat_enum()
5440               == General_options::OBJECT_FORMAT_BINARY);
5441
5442   // Get the size of the binary file.
5443   uint64_t max_load_address = 0;
5444   for (Segment_list::const_iterator p = this->segment_list_.begin();
5445        p != this->segment_list_.end();
5446        ++p)
5447     {
5448       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5449         {
5450           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5451           if (max_paddr > max_load_address)
5452             max_load_address = max_paddr;
5453         }
5454     }
5455
5456   Output_file out(parameters->options().output_file_name());
5457   out.open(max_load_address);
5458
5459   for (Segment_list::const_iterator p = this->segment_list_.begin();
5460        p != this->segment_list_.end();
5461        ++p)
5462     {
5463       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5464         {
5465           const unsigned char* vin = in->get_input_view((*p)->offset(),
5466                                                         (*p)->filesz());
5467           unsigned char* vout = out.get_output_view((*p)->paddr(),
5468                                                     (*p)->filesz());
5469           memcpy(vout, vin, (*p)->filesz());
5470           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5471           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5472         }
5473     }
5474
5475   out.close();
5476 }
5477
5478 // Print the output sections to the map file.
5479
5480 void
5481 Layout::print_to_mapfile(Mapfile* mapfile) const
5482 {
5483   for (Segment_list::const_iterator p = this->segment_list_.begin();
5484        p != this->segment_list_.end();
5485        ++p)
5486     (*p)->print_sections_to_mapfile(mapfile);
5487 }
5488
5489 // Print statistical information to stderr.  This is used for --stats.
5490
5491 void
5492 Layout::print_stats() const
5493 {
5494   this->namepool_.print_stats("section name pool");
5495   this->sympool_.print_stats("output symbol name pool");
5496   this->dynpool_.print_stats("dynamic name pool");
5497
5498   for (Section_list::const_iterator p = this->section_list_.begin();
5499        p != this->section_list_.end();
5500        ++p)
5501     (*p)->print_merge_stats();
5502 }
5503
5504 // Write_sections_task methods.
5505
5506 // We can always run this task.
5507
5508 Task_token*
5509 Write_sections_task::is_runnable()
5510 {
5511   return NULL;
5512 }
5513
5514 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5515 // when finished.
5516
5517 void
5518 Write_sections_task::locks(Task_locker* tl)
5519 {
5520   tl->add(this, this->output_sections_blocker_);
5521   tl->add(this, this->final_blocker_);
5522 }
5523
5524 // Run the task--write out the data.
5525
5526 void
5527 Write_sections_task::run(Workqueue*)
5528 {
5529   this->layout_->write_output_sections(this->of_);
5530 }
5531
5532 // Write_data_task methods.
5533
5534 // We can always run this task.
5535
5536 Task_token*
5537 Write_data_task::is_runnable()
5538 {
5539   return NULL;
5540 }
5541
5542 // We need to unlock FINAL_BLOCKER when finished.
5543
5544 void
5545 Write_data_task::locks(Task_locker* tl)
5546 {
5547   tl->add(this, this->final_blocker_);
5548 }
5549
5550 // Run the task--write out the data.
5551
5552 void
5553 Write_data_task::run(Workqueue*)
5554 {
5555   this->layout_->write_data(this->symtab_, this->of_);
5556 }
5557
5558 // Write_symbols_task methods.
5559
5560 // We can always run this task.
5561
5562 Task_token*
5563 Write_symbols_task::is_runnable()
5564 {
5565   return NULL;
5566 }
5567
5568 // We need to unlock FINAL_BLOCKER when finished.
5569
5570 void
5571 Write_symbols_task::locks(Task_locker* tl)
5572 {
5573   tl->add(this, this->final_blocker_);
5574 }
5575
5576 // Run the task--write out the symbols.
5577
5578 void
5579 Write_symbols_task::run(Workqueue*)
5580 {
5581   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5582                                this->layout_->symtab_xindex(),
5583                                this->layout_->dynsym_xindex(), this->of_);
5584 }
5585
5586 // Write_after_input_sections_task methods.
5587
5588 // We can only run this task after the input sections have completed.
5589
5590 Task_token*
5591 Write_after_input_sections_task::is_runnable()
5592 {
5593   if (this->input_sections_blocker_->is_blocked())
5594     return this->input_sections_blocker_;
5595   return NULL;
5596 }
5597
5598 // We need to unlock FINAL_BLOCKER when finished.
5599
5600 void
5601 Write_after_input_sections_task::locks(Task_locker* tl)
5602 {
5603   tl->add(this, this->final_blocker_);
5604 }
5605
5606 // Run the task.
5607
5608 void
5609 Write_after_input_sections_task::run(Workqueue*)
5610 {
5611   this->layout_->write_sections_after_input_sections(this->of_);
5612 }
5613
5614 // Close_task_runner methods.
5615
5616 // Finish up the build ID computation, if necessary, and write a binary file,
5617 // if necessary.  Then close the output file.
5618
5619 void
5620 Close_task_runner::run(Workqueue*, const Task*)
5621 {
5622   // At this point the multi-threaded part of the build ID computation,
5623   // if any, is done.  See queue_build_id_tasks().
5624   this->layout_->write_build_id(this->of_);
5625
5626   // If we've been asked to create a binary file, we do so here.
5627   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5628     this->layout_->write_binary(this->of_);
5629
5630   this->of_->close();
5631 }
5632
5633 // Instantiate the templates we need.  We could use the configure
5634 // script to restrict this to only the ones for implemented targets.
5635
5636 #ifdef HAVE_TARGET_32_LITTLE
5637 template
5638 Output_section*
5639 Layout::init_fixed_output_section<32, false>(
5640     const char* name,
5641     elfcpp::Shdr<32, false>& shdr);
5642 #endif
5643
5644 #ifdef HAVE_TARGET_32_BIG
5645 template
5646 Output_section*
5647 Layout::init_fixed_output_section<32, true>(
5648     const char* name,
5649     elfcpp::Shdr<32, true>& shdr);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_64_LITTLE
5653 template
5654 Output_section*
5655 Layout::init_fixed_output_section<64, false>(
5656     const char* name,
5657     elfcpp::Shdr<64, false>& shdr);
5658 #endif
5659
5660 #ifdef HAVE_TARGET_64_BIG
5661 template
5662 Output_section*
5663 Layout::init_fixed_output_section<64, true>(
5664     const char* name,
5665     elfcpp::Shdr<64, true>& shdr);
5666 #endif
5667
5668 #ifdef HAVE_TARGET_32_LITTLE
5669 template
5670 Output_section*
5671 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5672                           unsigned int shndx,
5673                           const char* name,
5674                           const elfcpp::Shdr<32, false>& shdr,
5675                           unsigned int, unsigned int, off_t*);
5676 #endif
5677
5678 #ifdef HAVE_TARGET_32_BIG
5679 template
5680 Output_section*
5681 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5682                          unsigned int shndx,
5683                          const char* name,
5684                          const elfcpp::Shdr<32, true>& shdr,
5685                          unsigned int, unsigned int, off_t*);
5686 #endif
5687
5688 #ifdef HAVE_TARGET_64_LITTLE
5689 template
5690 Output_section*
5691 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5692                           unsigned int shndx,
5693                           const char* name,
5694                           const elfcpp::Shdr<64, false>& shdr,
5695                           unsigned int, unsigned int, off_t*);
5696 #endif
5697
5698 #ifdef HAVE_TARGET_64_BIG
5699 template
5700 Output_section*
5701 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5702                          unsigned int shndx,
5703                          const char* name,
5704                          const elfcpp::Shdr<64, true>& shdr,
5705                          unsigned int, unsigned int, off_t*);
5706 #endif
5707
5708 #ifdef HAVE_TARGET_32_LITTLE
5709 template
5710 Output_section*
5711 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5712                                 unsigned int reloc_shndx,
5713                                 const elfcpp::Shdr<32, false>& shdr,
5714                                 Output_section* data_section,
5715                                 Relocatable_relocs* rr);
5716 #endif
5717
5718 #ifdef HAVE_TARGET_32_BIG
5719 template
5720 Output_section*
5721 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5722                                unsigned int reloc_shndx,
5723                                const elfcpp::Shdr<32, true>& shdr,
5724                                Output_section* data_section,
5725                                Relocatable_relocs* rr);
5726 #endif
5727
5728 #ifdef HAVE_TARGET_64_LITTLE
5729 template
5730 Output_section*
5731 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5732                                 unsigned int reloc_shndx,
5733                                 const elfcpp::Shdr<64, false>& shdr,
5734                                 Output_section* data_section,
5735                                 Relocatable_relocs* rr);
5736 #endif
5737
5738 #ifdef HAVE_TARGET_64_BIG
5739 template
5740 Output_section*
5741 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5742                                unsigned int reloc_shndx,
5743                                const elfcpp::Shdr<64, true>& shdr,
5744                                Output_section* data_section,
5745                                Relocatable_relocs* rr);
5746 #endif
5747
5748 #ifdef HAVE_TARGET_32_LITTLE
5749 template
5750 void
5751 Layout::layout_group<32, false>(Symbol_table* symtab,
5752                                 Sized_relobj_file<32, false>* object,
5753                                 unsigned int,
5754                                 const char* group_section_name,
5755                                 const char* signature,
5756                                 const elfcpp::Shdr<32, false>& shdr,
5757                                 elfcpp::Elf_Word flags,
5758                                 std::vector<unsigned int>* shndxes);
5759 #endif
5760
5761 #ifdef HAVE_TARGET_32_BIG
5762 template
5763 void
5764 Layout::layout_group<32, true>(Symbol_table* symtab,
5765                                Sized_relobj_file<32, true>* object,
5766                                unsigned int,
5767                                const char* group_section_name,
5768                                const char* signature,
5769                                const elfcpp::Shdr<32, true>& shdr,
5770                                elfcpp::Elf_Word flags,
5771                                std::vector<unsigned int>* shndxes);
5772 #endif
5773
5774 #ifdef HAVE_TARGET_64_LITTLE
5775 template
5776 void
5777 Layout::layout_group<64, false>(Symbol_table* symtab,
5778                                 Sized_relobj_file<64, false>* object,
5779                                 unsigned int,
5780                                 const char* group_section_name,
5781                                 const char* signature,
5782                                 const elfcpp::Shdr<64, false>& shdr,
5783                                 elfcpp::Elf_Word flags,
5784                                 std::vector<unsigned int>* shndxes);
5785 #endif
5786
5787 #ifdef HAVE_TARGET_64_BIG
5788 template
5789 void
5790 Layout::layout_group<64, true>(Symbol_table* symtab,
5791                                Sized_relobj_file<64, true>* object,
5792                                unsigned int,
5793                                const char* group_section_name,
5794                                const char* signature,
5795                                const elfcpp::Shdr<64, true>& shdr,
5796                                elfcpp::Elf_Word flags,
5797                                std::vector<unsigned int>* shndxes);
5798 #endif
5799
5800 #ifdef HAVE_TARGET_32_LITTLE
5801 template
5802 Output_section*
5803 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5804                                    const unsigned char* symbols,
5805                                    off_t symbols_size,
5806                                    const unsigned char* symbol_names,
5807                                    off_t symbol_names_size,
5808                                    unsigned int shndx,
5809                                    const elfcpp::Shdr<32, false>& shdr,
5810                                    unsigned int reloc_shndx,
5811                                    unsigned int reloc_type,
5812                                    off_t* off);
5813 #endif
5814
5815 #ifdef HAVE_TARGET_32_BIG
5816 template
5817 Output_section*
5818 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5819                                   const unsigned char* symbols,
5820                                   off_t symbols_size,
5821                                   const unsigned char* symbol_names,
5822                                   off_t symbol_names_size,
5823                                   unsigned int shndx,
5824                                   const elfcpp::Shdr<32, true>& shdr,
5825                                   unsigned int reloc_shndx,
5826                                   unsigned int reloc_type,
5827                                   off_t* off);
5828 #endif
5829
5830 #ifdef HAVE_TARGET_64_LITTLE
5831 template
5832 Output_section*
5833 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5834                                    const unsigned char* symbols,
5835                                    off_t symbols_size,
5836                                    const unsigned char* symbol_names,
5837                                    off_t symbol_names_size,
5838                                    unsigned int shndx,
5839                                    const elfcpp::Shdr<64, false>& shdr,
5840                                    unsigned int reloc_shndx,
5841                                    unsigned int reloc_type,
5842                                    off_t* off);
5843 #endif
5844
5845 #ifdef HAVE_TARGET_64_BIG
5846 template
5847 Output_section*
5848 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5849                                   const unsigned char* symbols,
5850                                   off_t symbols_size,
5851                                   const unsigned char* symbol_names,
5852                                   off_t symbol_names_size,
5853                                   unsigned int shndx,
5854                                   const elfcpp::Shdr<64, true>& shdr,
5855                                   unsigned int reloc_shndx,
5856                                   unsigned int reloc_type,
5857                                   off_t* off);
5858 #endif
5859
5860 #ifdef HAVE_TARGET_32_LITTLE
5861 template
5862 void
5863 Layout::add_to_gdb_index(bool is_type_unit,
5864                          Sized_relobj<32, false>* object,
5865                          const unsigned char* symbols,
5866                          off_t symbols_size,
5867                          unsigned int shndx,
5868                          unsigned int reloc_shndx,
5869                          unsigned int reloc_type);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_BIG
5873 template
5874 void
5875 Layout::add_to_gdb_index(bool is_type_unit,
5876                          Sized_relobj<32, true>* object,
5877                          const unsigned char* symbols,
5878                          off_t symbols_size,
5879                          unsigned int shndx,
5880                          unsigned int reloc_shndx,
5881                          unsigned int reloc_type);
5882 #endif
5883
5884 #ifdef HAVE_TARGET_64_LITTLE
5885 template
5886 void
5887 Layout::add_to_gdb_index(bool is_type_unit,
5888                          Sized_relobj<64, false>* object,
5889                          const unsigned char* symbols,
5890                          off_t symbols_size,
5891                          unsigned int shndx,
5892                          unsigned int reloc_shndx,
5893                          unsigned int reloc_type);
5894 #endif
5895
5896 #ifdef HAVE_TARGET_64_BIG
5897 template
5898 void
5899 Layout::add_to_gdb_index(bool is_type_unit,
5900                          Sized_relobj<64, true>* object,
5901                          const unsigned char* symbols,
5902                          off_t symbols_size,
5903                          unsigned int shndx,
5904                          unsigned int reloc_shndx,
5905                          unsigned int reloc_type);
5906 #endif
5907
5908 } // End namespace gold.