* layout.cc: Include "object.h".
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end <= p->end_)
172         {
173           if (p->start_ + 3 >= start && p->end_ <= end + 3)
174             this->list_.erase(p);
175           else if (p->start_ + 3 >= start)
176             p->start_ = end;
177           else if (p->end_ <= end + 3)
178             p->end_ = start;
179           else
180             {
181               Free_list_node newnode(p->start_, start);
182               p->start_ = end;
183               this->list_.insert(p, newnode);
184               ++Free_list::num_nodes;
185             }
186           return start;
187         }
188     }
189   return -1;
190 }
191
192 // Dump the free list (for debugging).
193 void
194 Free_list::dump()
195 {
196   gold_info("Free list:\n     start      end   length\n");
197   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
198     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
199               static_cast<long>(p->end_),
200               static_cast<long>(p->end_ - p->start_));
201 }
202
203 // Print the statistics for the free lists.
204 void
205 Free_list::print_stats()
206 {
207   fprintf(stderr, _("%s: total free lists: %u\n"),
208           program_name, Free_list::num_lists);
209   fprintf(stderr, _("%s: total free list nodes: %u\n"),
210           program_name, Free_list::num_nodes);
211   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
212           program_name, Free_list::num_removes);
213   fprintf(stderr, _("%s: nodes visited: %u\n"),
214           program_name, Free_list::num_remove_visits);
215   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
216           program_name, Free_list::num_allocates);
217   fprintf(stderr, _("%s: nodes visited: %u\n"),
218           program_name, Free_list::num_allocate_visits);
219 }
220
221 // Layout::Relaxation_debug_check methods.
222
223 // Check that sections and special data are in reset states.
224 // We do not save states for Output_sections and special Output_data.
225 // So we check that they have not assigned any addresses or offsets.
226 // clean_up_after_relaxation simply resets their addresses and offsets.
227 void
228 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
229     const Layout::Section_list& sections,
230     const Layout::Data_list& special_outputs)
231 {
232   for(Layout::Section_list::const_iterator p = sections.begin();
233       p != sections.end();
234       ++p)
235     gold_assert((*p)->address_and_file_offset_have_reset_values());
236
237   for(Layout::Data_list::const_iterator p = special_outputs.begin();
238       p != special_outputs.end();
239       ++p)
240     gold_assert((*p)->address_and_file_offset_have_reset_values());
241 }
242   
243 // Save information of SECTIONS for checking later.
244
245 void
246 Layout::Relaxation_debug_check::read_sections(
247     const Layout::Section_list& sections)
248 {
249   for(Layout::Section_list::const_iterator p = sections.begin();
250       p != sections.end();
251       ++p)
252     {
253       Output_section* os = *p;
254       Section_info info;
255       info.output_section = os;
256       info.address = os->is_address_valid() ? os->address() : 0;
257       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
258       info.offset = os->is_offset_valid()? os->offset() : -1 ;
259       this->section_infos_.push_back(info);
260     }
261 }
262
263 // Verify SECTIONS using previously recorded information.
264
265 void
266 Layout::Relaxation_debug_check::verify_sections(
267     const Layout::Section_list& sections)
268 {
269   size_t i = 0;
270   for(Layout::Section_list::const_iterator p = sections.begin();
271       p != sections.end();
272       ++p, ++i)
273     {
274       Output_section* os = *p;
275       uint64_t address = os->is_address_valid() ? os->address() : 0;
276       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
277       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278
279       if (i >= this->section_infos_.size())
280         {
281           gold_fatal("Section_info of %s missing.\n", os->name());
282         }
283       const Section_info& info = this->section_infos_[i];
284       if (os != info.output_section)
285         gold_fatal("Section order changed.  Expecting %s but see %s\n",
286                    info.output_section->name(), os->name());
287       if (address != info.address
288           || data_size != info.data_size
289           || offset != info.offset)
290         gold_fatal("Section %s changed.\n", os->name());
291     }
292 }
293
294 // Layout_task_runner methods.
295
296 // Lay out the sections.  This is called after all the input objects
297 // have been read.
298
299 void
300 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 {
302   Layout* layout = this->layout_;
303   off_t file_size = layout->finalize(this->input_objects_,
304                                      this->symtab_,
305                                      this->target_,
306                                      task);
307
308   // Now we know the final size of the output file and we know where
309   // each piece of information goes.
310
311   if (this->mapfile_ != NULL)
312     {
313       this->mapfile_->print_discarded_sections(this->input_objects_);
314       layout->print_to_mapfile(this->mapfile_);
315     }
316
317   Output_file* of;
318   if (layout->incremental_base() == NULL)
319     {
320       of = new Output_file(parameters->options().output_file_name());
321       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
322         of->set_is_temporary();
323       of->open(file_size);
324     }
325   else
326     {
327       of = layout->incremental_base()->output_file();
328
329       // Apply the incremental relocations for symbols whose values
330       // have changed.  We do this before we resize the file and start
331       // writing anything else to it, so that we can read the old
332       // incremental information from the file before (possibly)
333       // overwriting it.
334       if (parameters->incremental_update())
335         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
336                                                              this->layout_,
337                                                              of);
338
339       of->resize(file_size);
340     }
341
342   // Queue up the final set of tasks.
343   gold::queue_final_tasks(this->options_, this->input_objects_,
344                           this->symtab_, layout, workqueue, of);
345 }
346
347 // Layout methods.
348
349 Layout::Layout(int number_of_input_files, Script_options* script_options)
350   : number_of_input_files_(number_of_input_files),
351     script_options_(script_options),
352     namepool_(),
353     sympool_(),
354     dynpool_(),
355     signatures_(),
356     section_name_map_(),
357     segment_list_(),
358     section_list_(),
359     unattached_section_list_(),
360     special_output_list_(),
361     section_headers_(NULL),
362     tls_segment_(NULL),
363     relro_segment_(NULL),
364     interp_segment_(NULL),
365     increase_relro_(0),
366     symtab_section_(NULL),
367     symtab_xindex_(NULL),
368     dynsym_section_(NULL),
369     dynsym_xindex_(NULL),
370     dynamic_section_(NULL),
371     dynamic_symbol_(NULL),
372     dynamic_data_(NULL),
373     eh_frame_section_(NULL),
374     eh_frame_data_(NULL),
375     added_eh_frame_data_(false),
376     eh_frame_hdr_section_(NULL),
377     build_id_note_(NULL),
378     debug_abbrev_(NULL),
379     debug_info_(NULL),
380     group_signatures_(),
381     output_file_size_(-1),
382     have_added_input_section_(false),
383     sections_are_attached_(false),
384     input_requires_executable_stack_(false),
385     input_with_gnu_stack_note_(false),
386     input_without_gnu_stack_note_(false),
387     has_static_tls_(false),
388     any_postprocessing_sections_(false),
389     resized_signatures_(false),
390     have_stabstr_section_(false),
391     incremental_inputs_(NULL),
392     record_output_section_data_from_script_(false),
393     script_output_section_data_list_(),
394     segment_states_(NULL),
395     relaxation_debug_check_(NULL),
396     incremental_base_(NULL),
397     free_list_()
398 {
399   // Make space for more than enough segments for a typical file.
400   // This is just for efficiency--it's OK if we wind up needing more.
401   this->segment_list_.reserve(12);
402
403   // We expect two unattached Output_data objects: the file header and
404   // the segment headers.
405   this->special_output_list_.reserve(2);
406
407   // Initialize structure needed for an incremental build.
408   if (parameters->incremental())
409     this->incremental_inputs_ = new Incremental_inputs;
410
411   // The section name pool is worth optimizing in all cases, because
412   // it is small, but there are often overlaps due to .rel sections.
413   this->namepool_.set_optimize();
414 }
415
416 // For incremental links, record the base file to be modified.
417
418 void
419 Layout::set_incremental_base(Incremental_binary* base)
420 {
421   this->incremental_base_ = base;
422   this->free_list_.init(base->output_file()->filesize(), true);
423 }
424
425 // Hash a key we use to look up an output section mapping.
426
427 size_t
428 Layout::Hash_key::operator()(const Layout::Key& k) const
429 {
430  return k.first + k.second.first + k.second.second;
431 }
432
433 // Returns whether the given section is in the list of
434 // debug-sections-used-by-some-version-of-gdb.  Currently,
435 // we've checked versions of gdb up to and including 6.7.1.
436
437 static const char* gdb_sections[] =
438 { ".debug_abbrev",
439   // ".debug_aranges",   // not used by gdb as of 6.7.1
440   ".debug_frame",
441   ".debug_info",
442   ".debug_types",
443   ".debug_line",
444   ".debug_loc",
445   ".debug_macinfo",
446   // ".debug_pubnames",  // not used by gdb as of 6.7.1
447   ".debug_ranges",
448   ".debug_str",
449 };
450
451 static const char* lines_only_debug_sections[] =
452 { ".debug_abbrev",
453   // ".debug_aranges",   // not used by gdb as of 6.7.1
454   // ".debug_frame",
455   ".debug_info",
456   // ".debug_types",
457   ".debug_line",
458   // ".debug_loc",
459   // ".debug_macinfo",
460   // ".debug_pubnames",  // not used by gdb as of 6.7.1
461   // ".debug_ranges",
462   ".debug_str",
463 };
464
465 static inline bool
466 is_gdb_debug_section(const char* str)
467 {
468   // We can do this faster: binary search or a hashtable.  But why bother?
469   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
470     if (strcmp(str, gdb_sections[i]) == 0)
471       return true;
472   return false;
473 }
474
475 static inline bool
476 is_lines_only_debug_section(const char* str)
477 {
478   // We can do this faster: binary search or a hashtable.  But why bother?
479   for (size_t i = 0;
480        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
481        ++i)
482     if (strcmp(str, lines_only_debug_sections[i]) == 0)
483       return true;
484   return false;
485 }
486
487 // Sometimes we compress sections.  This is typically done for
488 // sections that are not part of normal program execution (such as
489 // .debug_* sections), and where the readers of these sections know
490 // how to deal with compressed sections.  This routine doesn't say for
491 // certain whether we'll compress -- it depends on commandline options
492 // as well -- just whether this section is a candidate for compression.
493 // (The Output_compressed_section class decides whether to compress
494 // a given section, and picks the name of the compressed section.)
495
496 static bool
497 is_compressible_debug_section(const char* secname)
498 {
499   return (is_prefix_of(".debug", secname));
500 }
501
502 // We may see compressed debug sections in input files.  Return TRUE
503 // if this is the name of a compressed debug section.
504
505 bool
506 is_compressed_debug_section(const char* secname)
507 {
508   return (is_prefix_of(".zdebug", secname));
509 }
510
511 // Whether to include this section in the link.
512
513 template<int size, bool big_endian>
514 bool
515 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
516                         const elfcpp::Shdr<size, big_endian>& shdr)
517 {
518   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
519     return false;
520
521   switch (shdr.get_sh_type())
522     {
523     case elfcpp::SHT_NULL:
524     case elfcpp::SHT_SYMTAB:
525     case elfcpp::SHT_DYNSYM:
526     case elfcpp::SHT_HASH:
527     case elfcpp::SHT_DYNAMIC:
528     case elfcpp::SHT_SYMTAB_SHNDX:
529       return false;
530
531     case elfcpp::SHT_STRTAB:
532       // Discard the sections which have special meanings in the ELF
533       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
534       // checking the sh_link fields of the appropriate sections.
535       return (strcmp(name, ".dynstr") != 0
536               && strcmp(name, ".strtab") != 0
537               && strcmp(name, ".shstrtab") != 0);
538
539     case elfcpp::SHT_RELA:
540     case elfcpp::SHT_REL:
541     case elfcpp::SHT_GROUP:
542       // If we are emitting relocations these should be handled
543       // elsewhere.
544       gold_assert(!parameters->options().relocatable()
545                   && !parameters->options().emit_relocs());
546       return false;
547
548     case elfcpp::SHT_PROGBITS:
549       if (parameters->options().strip_debug()
550           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
551         {
552           if (is_debug_info_section(name))
553             return false;
554         }
555       if (parameters->options().strip_debug_non_line()
556           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
557         {
558           // Debugging sections can only be recognized by name.
559           if (is_prefix_of(".debug", name)
560               && !is_lines_only_debug_section(name))
561             return false;
562         }
563       if (parameters->options().strip_debug_gdb()
564           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565         {
566           // Debugging sections can only be recognized by name.
567           if (is_prefix_of(".debug", name)
568               && !is_gdb_debug_section(name))
569             return false;
570         }
571       if (parameters->options().strip_lto_sections()
572           && !parameters->options().relocatable()
573           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574         {
575           // Ignore LTO sections containing intermediate code.
576           if (is_prefix_of(".gnu.lto_", name))
577             return false;
578         }
579       // The GNU linker strips .gnu_debuglink sections, so we do too.
580       // This is a feature used to keep debugging information in
581       // separate files.
582       if (strcmp(name, ".gnu_debuglink") == 0)
583         return false;
584       return true;
585
586     default:
587       return true;
588     }
589 }
590
591 // Return an output section named NAME, or NULL if there is none.
592
593 Output_section*
594 Layout::find_output_section(const char* name) const
595 {
596   for (Section_list::const_iterator p = this->section_list_.begin();
597        p != this->section_list_.end();
598        ++p)
599     if (strcmp((*p)->name(), name) == 0)
600       return *p;
601   return NULL;
602 }
603
604 // Return an output segment of type TYPE, with segment flags SET set
605 // and segment flags CLEAR clear.  Return NULL if there is none.
606
607 Output_segment*
608 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
609                             elfcpp::Elf_Word clear) const
610 {
611   for (Segment_list::const_iterator p = this->segment_list_.begin();
612        p != this->segment_list_.end();
613        ++p)
614     if (static_cast<elfcpp::PT>((*p)->type()) == type
615         && ((*p)->flags() & set) == set
616         && ((*p)->flags() & clear) == 0)
617       return *p;
618   return NULL;
619 }
620
621 // When we put a .ctors or .dtors section with more than one word into
622 // a .init_array or .fini_array section, we need to reverse the words
623 // in the .ctors/.dtors section.  This is because .init_array executes
624 // constructors front to back, where .ctors executes them back to
625 // front, and vice-versa for .fini_array/.dtors.  Although we do want
626 // to remap .ctors/.dtors into .init_array/.fini_array because it can
627 // be more efficient, we don't want to change the order in which
628 // constructors/destructors are run.  This set just keeps track of
629 // these sections which need to be reversed.  It is only changed by
630 // Layout::layout.  It should be a private member of Layout, but that
631 // would require layout.h to #include object.h to get the definition
632 // of Section_id.
633 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
634
635 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
636 // .init_array/.fini_array section.
637
638 bool
639 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
640 {
641   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
642           != ctors_sections_in_init_array.end());
643 }
644
645 // Return the output section to use for section NAME with type TYPE
646 // and section flags FLAGS.  NAME must be canonicalized in the string
647 // pool, and NAME_KEY is the key.  ORDER is where this should appear
648 // in the output sections.  IS_RELRO is true for a relro section.
649
650 Output_section*
651 Layout::get_output_section(const char* name, Stringpool::Key name_key,
652                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
653                            Output_section_order order, bool is_relro)
654 {
655   elfcpp::Elf_Word lookup_type = type;
656
657   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
658   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
659   // .init_array, .fini_array, and .preinit_array sections by name
660   // whatever their type in the input file.  We do this because the
661   // types are not always right in the input files.
662   if (lookup_type == elfcpp::SHT_INIT_ARRAY
663       || lookup_type == elfcpp::SHT_FINI_ARRAY
664       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
665     lookup_type = elfcpp::SHT_PROGBITS;
666
667   elfcpp::Elf_Xword lookup_flags = flags;
668
669   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
670   // read-write with read-only sections.  Some other ELF linkers do
671   // not do this.  FIXME: Perhaps there should be an option
672   // controlling this.
673   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
674
675   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
676   const std::pair<Key, Output_section*> v(key, NULL);
677   std::pair<Section_name_map::iterator, bool> ins(
678     this->section_name_map_.insert(v));
679
680   if (!ins.second)
681     return ins.first->second;
682   else
683     {
684       // This is the first time we've seen this name/type/flags
685       // combination.  For compatibility with the GNU linker, we
686       // combine sections with contents and zero flags with sections
687       // with non-zero flags.  This is a workaround for cases where
688       // assembler code forgets to set section flags.  FIXME: Perhaps
689       // there should be an option to control this.
690       Output_section* os = NULL;
691
692       if (lookup_type == elfcpp::SHT_PROGBITS)
693         {
694           if (flags == 0)
695             {
696               Output_section* same_name = this->find_output_section(name);
697               if (same_name != NULL
698                   && (same_name->type() == elfcpp::SHT_PROGBITS
699                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
700                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
701                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
702                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
703                 os = same_name;
704             }
705           else if ((flags & elfcpp::SHF_TLS) == 0)
706             {
707               elfcpp::Elf_Xword zero_flags = 0;
708               const Key zero_key(name_key, std::make_pair(lookup_type,
709                                                           zero_flags));
710               Section_name_map::iterator p =
711                   this->section_name_map_.find(zero_key);
712               if (p != this->section_name_map_.end())
713                 os = p->second;
714             }
715         }
716
717       if (os == NULL)
718         os = this->make_output_section(name, type, flags, order, is_relro);
719
720       ins.first->second = os;
721       return os;
722     }
723 }
724
725 // Pick the output section to use for section NAME, in input file
726 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
727 // linker created section.  IS_INPUT_SECTION is true if we are
728 // choosing an output section for an input section found in a input
729 // file.  ORDER is where this section should appear in the output
730 // sections.  IS_RELRO is true for a relro section.  This will return
731 // NULL if the input section should be discarded.
732
733 Output_section*
734 Layout::choose_output_section(const Relobj* relobj, const char* name,
735                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736                               bool is_input_section, Output_section_order order,
737                               bool is_relro)
738 {
739   // We should not see any input sections after we have attached
740   // sections to segments.
741   gold_assert(!is_input_section || !this->sections_are_attached_);
742
743   // Some flags in the input section should not be automatically
744   // copied to the output section.
745   flags &= ~ (elfcpp::SHF_INFO_LINK
746               | elfcpp::SHF_GROUP
747               | elfcpp::SHF_MERGE
748               | elfcpp::SHF_STRINGS);
749
750   // We only clear the SHF_LINK_ORDER flag in for
751   // a non-relocatable link.
752   if (!parameters->options().relocatable())
753     flags &= ~elfcpp::SHF_LINK_ORDER;
754
755   if (this->script_options_->saw_sections_clause())
756     {
757       // We are using a SECTIONS clause, so the output section is
758       // chosen based only on the name.
759
760       Script_sections* ss = this->script_options_->script_sections();
761       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
762       Output_section** output_section_slot;
763       Script_sections::Section_type script_section_type;
764       const char* orig_name = name;
765       name = ss->output_section_name(file_name, name, &output_section_slot,
766                                      &script_section_type);
767       if (name == NULL)
768         {
769           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
770                                      "because it is not allowed by the "
771                                      "SECTIONS clause of the linker script"),
772                      orig_name);
773           // The SECTIONS clause says to discard this input section.
774           return NULL;
775         }
776
777       // We can only handle script section types ST_NONE and ST_NOLOAD.
778       switch (script_section_type)
779         {
780         case Script_sections::ST_NONE:
781           break;
782         case Script_sections::ST_NOLOAD:
783           flags &= elfcpp::SHF_ALLOC;
784           break;
785         default:
786           gold_unreachable();
787         }
788
789       // If this is an orphan section--one not mentioned in the linker
790       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
791       // default processing below.
792
793       if (output_section_slot != NULL)
794         {
795           if (*output_section_slot != NULL)
796             {
797               (*output_section_slot)->update_flags_for_input_section(flags);
798               return *output_section_slot;
799             }
800
801           // We don't put sections found in the linker script into
802           // SECTION_NAME_MAP_.  That keeps us from getting confused
803           // if an orphan section is mapped to a section with the same
804           // name as one in the linker script.
805
806           name = this->namepool_.add(name, false, NULL);
807
808           Output_section* os = this->make_output_section(name, type, flags,
809                                                          order, is_relro);
810
811           os->set_found_in_sections_clause();
812
813           // Special handling for NOLOAD sections.
814           if (script_section_type == Script_sections::ST_NOLOAD)
815             {
816               os->set_is_noload();
817
818               // The constructor of Output_section sets addresses of non-ALLOC
819               // sections to 0 by default.  We don't want that for NOLOAD
820               // sections even if they have no SHF_ALLOC flag.
821               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
822                   && os->is_address_valid())
823                 {
824                   gold_assert(os->address() == 0
825                               && !os->is_offset_valid()
826                               && !os->is_data_size_valid());
827                   os->reset_address_and_file_offset();
828                 }
829             }
830
831           *output_section_slot = os;
832           return os;
833         }
834     }
835
836   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
837
838   size_t len = strlen(name);
839   char* uncompressed_name = NULL;
840
841   // Compressed debug sections should be mapped to the corresponding
842   // uncompressed section.
843   if (is_compressed_debug_section(name))
844     {
845       uncompressed_name = new char[len];
846       uncompressed_name[0] = '.';
847       gold_assert(name[0] == '.' && name[1] == 'z');
848       strncpy(&uncompressed_name[1], &name[2], len - 2);
849       uncompressed_name[len - 1] = '\0';
850       len -= 1;
851       name = uncompressed_name;
852     }
853
854   // Turn NAME from the name of the input section into the name of the
855   // output section.
856   if (is_input_section
857       && !this->script_options_->saw_sections_clause()
858       && !parameters->options().relocatable())
859     name = Layout::output_section_name(relobj, name, &len);
860
861   Stringpool::Key name_key;
862   name = this->namepool_.add_with_length(name, len, true, &name_key);
863
864   if (uncompressed_name != NULL)
865     delete[] uncompressed_name;
866
867   // Find or make the output section.  The output section is selected
868   // based on the section name, type, and flags.
869   return this->get_output_section(name, name_key, type, flags, order, is_relro);
870 }
871
872 // For incremental links, record the initial fixed layout of a section
873 // from the base file, and return a pointer to the Output_section.
874
875 template<int size, bool big_endian>
876 Output_section*
877 Layout::init_fixed_output_section(const char* name,
878                                   elfcpp::Shdr<size, big_endian>& shdr)
879 {
880   unsigned int sh_type = shdr.get_sh_type();
881
882   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
883   // All others will be created from scratch and reallocated.
884   if (sh_type != elfcpp::SHT_PROGBITS
885       && sh_type != elfcpp::SHT_NOBITS
886       && sh_type != elfcpp::SHT_NOTE)
887     return NULL;
888
889   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
890   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
891   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
892   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
893   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
894       shdr.get_sh_addralign();
895
896   // Make the output section.
897   Stringpool::Key name_key;
898   name = this->namepool_.add(name, true, &name_key);
899   Output_section* os = this->get_output_section(name, name_key, sh_type,
900                                                 sh_flags, ORDER_INVALID, false);
901   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
902   if (sh_type != elfcpp::SHT_NOBITS)
903     this->free_list_.remove(sh_offset, sh_offset + sh_size);
904   return os;
905 }
906
907 // Return the output section to use for input section SHNDX, with name
908 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
909 // index of a relocation section which applies to this section, or 0
910 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
911 // relocation section if there is one.  Set *OFF to the offset of this
912 // input section without the output section.  Return NULL if the
913 // section should be discarded.  Set *OFF to -1 if the section
914 // contents should not be written directly to the output file, but
915 // will instead receive special handling.
916
917 template<int size, bool big_endian>
918 Output_section*
919 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
920                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
921                unsigned int reloc_shndx, unsigned int, off_t* off)
922 {
923   *off = 0;
924
925   if (!this->include_section(object, name, shdr))
926     return NULL;
927
928   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
929
930   // In a relocatable link a grouped section must not be combined with
931   // any other sections.
932   Output_section* os;
933   if (parameters->options().relocatable()
934       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
935     {
936       name = this->namepool_.add(name, true, NULL);
937       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
938                                      ORDER_INVALID, false);
939     }
940   else
941     {
942       os = this->choose_output_section(object, name, sh_type,
943                                        shdr.get_sh_flags(), true,
944                                        ORDER_INVALID, false);
945       if (os == NULL)
946         return NULL;
947     }
948
949   // By default the GNU linker sorts input sections whose names match
950   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
951   // sections are sorted by name.  This is used to implement
952   // constructor priority ordering.  We are compatible.  When we put
953   // .ctor sections in .init_array and .dtor sections in .fini_array,
954   // we must also sort plain .ctor and .dtor sections.
955   if (!this->script_options_->saw_sections_clause()
956       && !parameters->options().relocatable()
957       && (is_prefix_of(".ctors.", name)
958           || is_prefix_of(".dtors.", name)
959           || is_prefix_of(".init_array.", name)
960           || is_prefix_of(".fini_array.", name)
961           || (parameters->options().ctors_in_init_array()
962               && (strcmp(name, ".ctors") == 0
963                   || strcmp(name, ".dtors") == 0))))
964     os->set_must_sort_attached_input_sections();
965
966   // If this is a .ctors or .ctors.* section being mapped to a
967   // .init_array section, or a .dtors or .dtors.* section being mapped
968   // to a .fini_array section, we will need to reverse the words if
969   // there is more than one.  Record this section for later.  See
970   // ctors_sections_in_init_array above.
971   if (!this->script_options_->saw_sections_clause()
972       && !parameters->options().relocatable()
973       && shdr.get_sh_size() > size / 8
974       && (((strcmp(name, ".ctors") == 0
975             || is_prefix_of(".ctors.", name))
976            && strcmp(os->name(), ".init_array") == 0)
977           || ((strcmp(name, ".dtors") == 0
978                || is_prefix_of(".dtors.", name))
979               && strcmp(os->name(), ".fini_array") == 0)))
980     ctors_sections_in_init_array.insert(Section_id(object, shndx));
981
982   // FIXME: Handle SHF_LINK_ORDER somewhere.
983
984   elfcpp::Elf_Xword orig_flags = os->flags();
985
986   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
987                                this->script_options_->saw_sections_clause());
988
989   // If the flags changed, we may have to change the order.
990   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
991     {
992       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
993       elfcpp::Elf_Xword new_flags =
994         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
995       if (orig_flags != new_flags)
996         os->set_order(this->default_section_order(os, false));
997     }
998
999   this->have_added_input_section_ = true;
1000
1001   return os;
1002 }
1003
1004 // Handle a relocation section when doing a relocatable link.
1005
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1009                      unsigned int,
1010                      const elfcpp::Shdr<size, big_endian>& shdr,
1011                      Output_section* data_section,
1012                      Relocatable_relocs* rr)
1013 {
1014   gold_assert(parameters->options().relocatable()
1015               || parameters->options().emit_relocs());
1016
1017   int sh_type = shdr.get_sh_type();
1018
1019   std::string name;
1020   if (sh_type == elfcpp::SHT_REL)
1021     name = ".rel";
1022   else if (sh_type == elfcpp::SHT_RELA)
1023     name = ".rela";
1024   else
1025     gold_unreachable();
1026   name += data_section->name();
1027
1028   // In a relocatable link relocs for a grouped section must not be
1029   // combined with other reloc sections.
1030   Output_section* os;
1031   if (!parameters->options().relocatable()
1032       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1033     os = this->choose_output_section(object, name.c_str(), sh_type,
1034                                      shdr.get_sh_flags(), false,
1035                                      ORDER_INVALID, false);
1036   else
1037     {
1038       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1039       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1040                                      ORDER_INVALID, false);
1041     }
1042
1043   os->set_should_link_to_symtab();
1044   os->set_info_section(data_section);
1045
1046   Output_section_data* posd;
1047   if (sh_type == elfcpp::SHT_REL)
1048     {
1049       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1050       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1051                                            size,
1052                                            big_endian>(rr);
1053     }
1054   else if (sh_type == elfcpp::SHT_RELA)
1055     {
1056       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1057       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1058                                            size,
1059                                            big_endian>(rr);
1060     }
1061   else
1062     gold_unreachable();
1063
1064   os->add_output_section_data(posd);
1065   rr->set_output_data(posd);
1066
1067   return os;
1068 }
1069
1070 // Handle a group section when doing a relocatable link.
1071
1072 template<int size, bool big_endian>
1073 void
1074 Layout::layout_group(Symbol_table* symtab,
1075                      Sized_relobj_file<size, big_endian>* object,
1076                      unsigned int,
1077                      const char* group_section_name,
1078                      const char* signature,
1079                      const elfcpp::Shdr<size, big_endian>& shdr,
1080                      elfcpp::Elf_Word flags,
1081                      std::vector<unsigned int>* shndxes)
1082 {
1083   gold_assert(parameters->options().relocatable());
1084   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1085   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1086   Output_section* os = this->make_output_section(group_section_name,
1087                                                  elfcpp::SHT_GROUP,
1088                                                  shdr.get_sh_flags(),
1089                                                  ORDER_INVALID, false);
1090
1091   // We need to find a symbol with the signature in the symbol table.
1092   // If we don't find one now, we need to look again later.
1093   Symbol* sym = symtab->lookup(signature, NULL);
1094   if (sym != NULL)
1095     os->set_info_symndx(sym);
1096   else
1097     {
1098       // Reserve some space to minimize reallocations.
1099       if (this->group_signatures_.empty())
1100         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1101
1102       // We will wind up using a symbol whose name is the signature.
1103       // So just put the signature in the symbol name pool to save it.
1104       signature = symtab->canonicalize_name(signature);
1105       this->group_signatures_.push_back(Group_signature(os, signature));
1106     }
1107
1108   os->set_should_link_to_symtab();
1109   os->set_entsize(4);
1110
1111   section_size_type entry_count =
1112     convert_to_section_size_type(shdr.get_sh_size() / 4);
1113   Output_section_data* posd =
1114     new Output_data_group<size, big_endian>(object, entry_count, flags,
1115                                             shndxes);
1116   os->add_output_section_data(posd);
1117 }
1118
1119 // Special GNU handling of sections name .eh_frame.  They will
1120 // normally hold exception frame data as defined by the C++ ABI
1121 // (http://codesourcery.com/cxx-abi/).
1122
1123 template<int size, bool big_endian>
1124 Output_section*
1125 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1126                         const unsigned char* symbols,
1127                         off_t symbols_size,
1128                         const unsigned char* symbol_names,
1129                         off_t symbol_names_size,
1130                         unsigned int shndx,
1131                         const elfcpp::Shdr<size, big_endian>& shdr,
1132                         unsigned int reloc_shndx, unsigned int reloc_type,
1133                         off_t* off)
1134 {
1135   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1136   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1137
1138   const char* const name = ".eh_frame";
1139   Output_section* os = this->choose_output_section(object, name,
1140                                                    elfcpp::SHT_PROGBITS,
1141                                                    elfcpp::SHF_ALLOC, false,
1142                                                    ORDER_EHFRAME, false);
1143   if (os == NULL)
1144     return NULL;
1145
1146   if (this->eh_frame_section_ == NULL)
1147     {
1148       this->eh_frame_section_ = os;
1149       this->eh_frame_data_ = new Eh_frame();
1150
1151       // For incremental linking, we do not optimize .eh_frame sections
1152       // or create a .eh_frame_hdr section.
1153       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1154         {
1155           Output_section* hdr_os =
1156             this->choose_output_section(NULL, ".eh_frame_hdr",
1157                                         elfcpp::SHT_PROGBITS,
1158                                         elfcpp::SHF_ALLOC, false,
1159                                         ORDER_EHFRAME, false);
1160
1161           if (hdr_os != NULL)
1162             {
1163               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1164                                                         this->eh_frame_data_);
1165               hdr_os->add_output_section_data(hdr_posd);
1166
1167               hdr_os->set_after_input_sections();
1168
1169               if (!this->script_options_->saw_phdrs_clause())
1170                 {
1171                   Output_segment* hdr_oseg;
1172                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1173                                                        elfcpp::PF_R);
1174                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1175                                                           elfcpp::PF_R);
1176                 }
1177
1178               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1179             }
1180         }
1181     }
1182
1183   gold_assert(this->eh_frame_section_ == os);
1184
1185   elfcpp::Elf_Xword orig_flags = os->flags();
1186
1187   if (!parameters->incremental()
1188       && this->eh_frame_data_->add_ehframe_input_section(object,
1189                                                          symbols,
1190                                                          symbols_size,
1191                                                          symbol_names,
1192                                                          symbol_names_size,
1193                                                          shndx,
1194                                                          reloc_shndx,
1195                                                          reloc_type))
1196     {
1197       os->update_flags_for_input_section(shdr.get_sh_flags());
1198
1199       // A writable .eh_frame section is a RELRO section.
1200       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1201           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1202         {
1203           os->set_is_relro();
1204           os->set_order(ORDER_RELRO);
1205         }
1206
1207       // We found a .eh_frame section we are going to optimize, so now
1208       // we can add the set of optimized sections to the output
1209       // section.  We need to postpone adding this until we've found a
1210       // section we can optimize so that the .eh_frame section in
1211       // crtbegin.o winds up at the start of the output section.
1212       if (!this->added_eh_frame_data_)
1213         {
1214           os->add_output_section_data(this->eh_frame_data_);
1215           this->added_eh_frame_data_ = true;
1216         }
1217       *off = -1;
1218     }
1219   else
1220     {
1221       // We couldn't handle this .eh_frame section for some reason.
1222       // Add it as a normal section.
1223       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1224       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1225                                    saw_sections_clause);
1226       this->have_added_input_section_ = true;
1227
1228       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1229           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1230         os->set_order(this->default_section_order(os, false));
1231     }
1232
1233   return os;
1234 }
1235
1236 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1237 // the output section.
1238
1239 Output_section*
1240 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1241                                 elfcpp::Elf_Xword flags,
1242                                 Output_section_data* posd,
1243                                 Output_section_order order, bool is_relro)
1244 {
1245   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1246                                                    false, order, is_relro);
1247   if (os != NULL)
1248     os->add_output_section_data(posd);
1249   return os;
1250 }
1251
1252 // Map section flags to segment flags.
1253
1254 elfcpp::Elf_Word
1255 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1256 {
1257   elfcpp::Elf_Word ret = elfcpp::PF_R;
1258   if ((flags & elfcpp::SHF_WRITE) != 0)
1259     ret |= elfcpp::PF_W;
1260   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1261     ret |= elfcpp::PF_X;
1262   return ret;
1263 }
1264
1265 // Make a new Output_section, and attach it to segments as
1266 // appropriate.  ORDER is the order in which this section should
1267 // appear in the output segment.  IS_RELRO is true if this is a relro
1268 // (read-only after relocations) section.
1269
1270 Output_section*
1271 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1272                             elfcpp::Elf_Xword flags,
1273                             Output_section_order order, bool is_relro)
1274 {
1275   Output_section* os;
1276   if ((flags & elfcpp::SHF_ALLOC) == 0
1277       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1278       && is_compressible_debug_section(name))
1279     os = new Output_compressed_section(&parameters->options(), name, type,
1280                                        flags);
1281   else if ((flags & elfcpp::SHF_ALLOC) == 0
1282            && parameters->options().strip_debug_non_line()
1283            && strcmp(".debug_abbrev", name) == 0)
1284     {
1285       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1286           name, type, flags);
1287       if (this->debug_info_)
1288         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1289     }
1290   else if ((flags & elfcpp::SHF_ALLOC) == 0
1291            && parameters->options().strip_debug_non_line()
1292            && strcmp(".debug_info", name) == 0)
1293     {
1294       os = this->debug_info_ = new Output_reduced_debug_info_section(
1295           name, type, flags);
1296       if (this->debug_abbrev_)
1297         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1298     }
1299   else
1300     {
1301       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1302       // not have correct section types.  Force them here.
1303       if (type == elfcpp::SHT_PROGBITS)
1304         {
1305           if (is_prefix_of(".init_array", name))
1306             type = elfcpp::SHT_INIT_ARRAY;
1307           else if (is_prefix_of(".preinit_array", name))
1308             type = elfcpp::SHT_PREINIT_ARRAY;
1309           else if (is_prefix_of(".fini_array", name))
1310             type = elfcpp::SHT_FINI_ARRAY;
1311         }
1312
1313       // FIXME: const_cast is ugly.
1314       Target* target = const_cast<Target*>(&parameters->target());
1315       os = target->make_output_section(name, type, flags);
1316     }
1317
1318   // With -z relro, we have to recognize the special sections by name.
1319   // There is no other way.
1320   bool is_relro_local = false;
1321   if (!this->script_options_->saw_sections_clause()
1322       && parameters->options().relro()
1323       && type == elfcpp::SHT_PROGBITS
1324       && (flags & elfcpp::SHF_ALLOC) != 0
1325       && (flags & elfcpp::SHF_WRITE) != 0)
1326     {
1327       if (strcmp(name, ".data.rel.ro") == 0)
1328         is_relro = true;
1329       else if (strcmp(name, ".data.rel.ro.local") == 0)
1330         {
1331           is_relro = true;
1332           is_relro_local = true;
1333         }
1334       else if (type == elfcpp::SHT_INIT_ARRAY
1335                || type == elfcpp::SHT_FINI_ARRAY
1336                || type == elfcpp::SHT_PREINIT_ARRAY)
1337         is_relro = true;
1338       else if (strcmp(name, ".ctors") == 0
1339                || strcmp(name, ".dtors") == 0
1340                || strcmp(name, ".jcr") == 0)
1341         is_relro = true;
1342     }
1343
1344   if (is_relro)
1345     os->set_is_relro();
1346
1347   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1348     order = this->default_section_order(os, is_relro_local);
1349
1350   os->set_order(order);
1351
1352   parameters->target().new_output_section(os);
1353
1354   this->section_list_.push_back(os);
1355
1356   // The GNU linker by default sorts some sections by priority, so we
1357   // do the same.  We need to know that this might happen before we
1358   // attach any input sections.
1359   if (!this->script_options_->saw_sections_clause()
1360       && !parameters->options().relocatable()
1361       && (strcmp(name, ".init_array") == 0
1362           || strcmp(name, ".fini_array") == 0
1363           || (!parameters->options().ctors_in_init_array()
1364               && (strcmp(name, ".ctors") == 0
1365                   || strcmp(name, ".dtors") == 0))))
1366     os->set_may_sort_attached_input_sections();
1367
1368   // Check for .stab*str sections, as .stab* sections need to link to
1369   // them.
1370   if (type == elfcpp::SHT_STRTAB
1371       && !this->have_stabstr_section_
1372       && strncmp(name, ".stab", 5) == 0
1373       && strcmp(name + strlen(name) - 3, "str") == 0)
1374     this->have_stabstr_section_ = true;
1375
1376   // If we have already attached the sections to segments, then we
1377   // need to attach this one now.  This happens for sections created
1378   // directly by the linker.
1379   if (this->sections_are_attached_)
1380     this->attach_section_to_segment(os);
1381
1382   return os;
1383 }
1384
1385 // Return the default order in which a section should be placed in an
1386 // output segment.  This function captures a lot of the ideas in
1387 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1388 // linker created section is normally set when the section is created;
1389 // this function is used for input sections.
1390
1391 Output_section_order
1392 Layout::default_section_order(Output_section* os, bool is_relro_local)
1393 {
1394   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1395   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1396   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1397   bool is_bss = false;
1398
1399   switch (os->type())
1400     {
1401     default:
1402     case elfcpp::SHT_PROGBITS:
1403       break;
1404     case elfcpp::SHT_NOBITS:
1405       is_bss = true;
1406       break;
1407     case elfcpp::SHT_RELA:
1408     case elfcpp::SHT_REL:
1409       if (!is_write)
1410         return ORDER_DYNAMIC_RELOCS;
1411       break;
1412     case elfcpp::SHT_HASH:
1413     case elfcpp::SHT_DYNAMIC:
1414     case elfcpp::SHT_SHLIB:
1415     case elfcpp::SHT_DYNSYM:
1416     case elfcpp::SHT_GNU_HASH:
1417     case elfcpp::SHT_GNU_verdef:
1418     case elfcpp::SHT_GNU_verneed:
1419     case elfcpp::SHT_GNU_versym:
1420       if (!is_write)
1421         return ORDER_DYNAMIC_LINKER;
1422       break;
1423     case elfcpp::SHT_NOTE:
1424       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1425     }
1426
1427   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1428     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1429
1430   if (!is_bss && !is_write)
1431     {
1432       if (is_execinstr)
1433         {
1434           if (strcmp(os->name(), ".init") == 0)
1435             return ORDER_INIT;
1436           else if (strcmp(os->name(), ".fini") == 0)
1437             return ORDER_FINI;
1438         }
1439       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1440     }
1441
1442   if (os->is_relro())
1443     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1444
1445   if (os->is_small_section())
1446     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1447   if (os->is_large_section())
1448     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1449
1450   return is_bss ? ORDER_BSS : ORDER_DATA;
1451 }
1452
1453 // Attach output sections to segments.  This is called after we have
1454 // seen all the input sections.
1455
1456 void
1457 Layout::attach_sections_to_segments()
1458 {
1459   for (Section_list::iterator p = this->section_list_.begin();
1460        p != this->section_list_.end();
1461        ++p)
1462     this->attach_section_to_segment(*p);
1463
1464   this->sections_are_attached_ = true;
1465 }
1466
1467 // Attach an output section to a segment.
1468
1469 void
1470 Layout::attach_section_to_segment(Output_section* os)
1471 {
1472   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1473     this->unattached_section_list_.push_back(os);
1474   else
1475     this->attach_allocated_section_to_segment(os);
1476 }
1477
1478 // Attach an allocated output section to a segment.
1479
1480 void
1481 Layout::attach_allocated_section_to_segment(Output_section* os)
1482 {
1483   elfcpp::Elf_Xword flags = os->flags();
1484   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1485
1486   if (parameters->options().relocatable())
1487     return;
1488
1489   // If we have a SECTIONS clause, we can't handle the attachment to
1490   // segments until after we've seen all the sections.
1491   if (this->script_options_->saw_sections_clause())
1492     return;
1493
1494   gold_assert(!this->script_options_->saw_phdrs_clause());
1495
1496   // This output section goes into a PT_LOAD segment.
1497
1498   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1499
1500   // Check for --section-start.
1501   uint64_t addr;
1502   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1503
1504   // In general the only thing we really care about for PT_LOAD
1505   // segments is whether or not they are writable or executable,
1506   // so that is how we search for them.
1507   // Large data sections also go into their own PT_LOAD segment.
1508   // People who need segments sorted on some other basis will
1509   // have to use a linker script.
1510
1511   Segment_list::const_iterator p;
1512   for (p = this->segment_list_.begin();
1513        p != this->segment_list_.end();
1514        ++p)
1515     {
1516       if ((*p)->type() != elfcpp::PT_LOAD)
1517         continue;
1518       if (!parameters->options().omagic()
1519           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1520         continue;
1521       if (parameters->options().rosegment()
1522           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1523         continue;
1524       // If -Tbss was specified, we need to separate the data and BSS
1525       // segments.
1526       if (parameters->options().user_set_Tbss())
1527         {
1528           if ((os->type() == elfcpp::SHT_NOBITS)
1529               == (*p)->has_any_data_sections())
1530             continue;
1531         }
1532       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1533         continue;
1534
1535       if (is_address_set)
1536         {
1537           if ((*p)->are_addresses_set())
1538             continue;
1539
1540           (*p)->add_initial_output_data(os);
1541           (*p)->update_flags_for_output_section(seg_flags);
1542           (*p)->set_addresses(addr, addr);
1543           break;
1544         }
1545
1546       (*p)->add_output_section_to_load(this, os, seg_flags);
1547       break;
1548     }
1549
1550   if (p == this->segment_list_.end())
1551     {
1552       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1553                                                        seg_flags);
1554       if (os->is_large_data_section())
1555         oseg->set_is_large_data_segment();
1556       oseg->add_output_section_to_load(this, os, seg_flags);
1557       if (is_address_set)
1558         oseg->set_addresses(addr, addr);
1559     }
1560
1561   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1562   // segment.
1563   if (os->type() == elfcpp::SHT_NOTE)
1564     {
1565       // See if we already have an equivalent PT_NOTE segment.
1566       for (p = this->segment_list_.begin();
1567            p != segment_list_.end();
1568            ++p)
1569         {
1570           if ((*p)->type() == elfcpp::PT_NOTE
1571               && (((*p)->flags() & elfcpp::PF_W)
1572                   == (seg_flags & elfcpp::PF_W)))
1573             {
1574               (*p)->add_output_section_to_nonload(os, seg_flags);
1575               break;
1576             }
1577         }
1578
1579       if (p == this->segment_list_.end())
1580         {
1581           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1582                                                            seg_flags);
1583           oseg->add_output_section_to_nonload(os, seg_flags);
1584         }
1585     }
1586
1587   // If we see a loadable SHF_TLS section, we create a PT_TLS
1588   // segment.  There can only be one such segment.
1589   if ((flags & elfcpp::SHF_TLS) != 0)
1590     {
1591       if (this->tls_segment_ == NULL)
1592         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1593       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1594     }
1595
1596   // If -z relro is in effect, and we see a relro section, we create a
1597   // PT_GNU_RELRO segment.  There can only be one such segment.
1598   if (os->is_relro() && parameters->options().relro())
1599     {
1600       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1601       if (this->relro_segment_ == NULL)
1602         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1603       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1604     }
1605
1606   // If we see a section named .interp, put it into a PT_INTERP
1607   // segment.  This seems broken to me, but this is what GNU ld does,
1608   // and glibc expects it.
1609   if (strcmp(os->name(), ".interp") == 0
1610       && !this->script_options_->saw_phdrs_clause())
1611     {
1612       if (this->interp_segment_ == NULL)
1613         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1614       else
1615         gold_warning(_("multiple '.interp' sections in input files "
1616                        "may cause confusing PT_INTERP segment"));
1617       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1618     }
1619 }
1620
1621 // Make an output section for a script.
1622
1623 Output_section*
1624 Layout::make_output_section_for_script(
1625     const char* name,
1626     Script_sections::Section_type section_type)
1627 {
1628   name = this->namepool_.add(name, false, NULL);
1629   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1630   if (section_type == Script_sections::ST_NOLOAD)
1631     sh_flags = 0;
1632   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1633                                                  sh_flags, ORDER_INVALID,
1634                                                  false);
1635   os->set_found_in_sections_clause();
1636   if (section_type == Script_sections::ST_NOLOAD)
1637     os->set_is_noload();
1638   return os;
1639 }
1640
1641 // Return the number of segments we expect to see.
1642
1643 size_t
1644 Layout::expected_segment_count() const
1645 {
1646   size_t ret = this->segment_list_.size();
1647
1648   // If we didn't see a SECTIONS clause in a linker script, we should
1649   // already have the complete list of segments.  Otherwise we ask the
1650   // SECTIONS clause how many segments it expects, and add in the ones
1651   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1652
1653   if (!this->script_options_->saw_sections_clause())
1654     return ret;
1655   else
1656     {
1657       const Script_sections* ss = this->script_options_->script_sections();
1658       return ret + ss->expected_segment_count(this);
1659     }
1660 }
1661
1662 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1663 // is whether we saw a .note.GNU-stack section in the object file.
1664 // GNU_STACK_FLAGS is the section flags.  The flags give the
1665 // protection required for stack memory.  We record this in an
1666 // executable as a PT_GNU_STACK segment.  If an object file does not
1667 // have a .note.GNU-stack segment, we must assume that it is an old
1668 // object.  On some targets that will force an executable stack.
1669
1670 void
1671 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1672                          const Object* obj)
1673 {
1674   if (!seen_gnu_stack)
1675     {
1676       this->input_without_gnu_stack_note_ = true;
1677       if (parameters->options().warn_execstack()
1678           && parameters->target().is_default_stack_executable())
1679         gold_warning(_("%s: missing .note.GNU-stack section"
1680                        " implies executable stack"),
1681                      obj->name().c_str());
1682     }
1683   else
1684     {
1685       this->input_with_gnu_stack_note_ = true;
1686       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1687         {
1688           this->input_requires_executable_stack_ = true;
1689           if (parameters->options().warn_execstack()
1690               || parameters->options().is_stack_executable())
1691             gold_warning(_("%s: requires executable stack"),
1692                          obj->name().c_str());
1693         }
1694     }
1695 }
1696
1697 // Create automatic note sections.
1698
1699 void
1700 Layout::create_notes()
1701 {
1702   this->create_gold_note();
1703   this->create_executable_stack_info();
1704   this->create_build_id();
1705 }
1706
1707 // Create the dynamic sections which are needed before we read the
1708 // relocs.
1709
1710 void
1711 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1712 {
1713   if (parameters->doing_static_link())
1714     return;
1715
1716   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1717                                                        elfcpp::SHT_DYNAMIC,
1718                                                        (elfcpp::SHF_ALLOC
1719                                                         | elfcpp::SHF_WRITE),
1720                                                        false, ORDER_RELRO,
1721                                                        true);
1722
1723   this->dynamic_symbol_ =
1724     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1725                                   this->dynamic_section_, 0, 0,
1726                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1727                                   elfcpp::STV_HIDDEN, 0, false, false);
1728
1729   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1730
1731   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1732 }
1733
1734 // For each output section whose name can be represented as C symbol,
1735 // define __start and __stop symbols for the section.  This is a GNU
1736 // extension.
1737
1738 void
1739 Layout::define_section_symbols(Symbol_table* symtab)
1740 {
1741   for (Section_list::const_iterator p = this->section_list_.begin();
1742        p != this->section_list_.end();
1743        ++p)
1744     {
1745       const char* const name = (*p)->name();
1746       if (is_cident(name))
1747         {
1748           const std::string name_string(name);
1749           const std::string start_name(cident_section_start_prefix
1750                                        + name_string);
1751           const std::string stop_name(cident_section_stop_prefix
1752                                       + name_string);
1753
1754           symtab->define_in_output_data(start_name.c_str(),
1755                                         NULL, // version
1756                                         Symbol_table::PREDEFINED,
1757                                         *p,
1758                                         0, // value
1759                                         0, // symsize
1760                                         elfcpp::STT_NOTYPE,
1761                                         elfcpp::STB_GLOBAL,
1762                                         elfcpp::STV_DEFAULT,
1763                                         0, // nonvis
1764                                         false, // offset_is_from_end
1765                                         true); // only_if_ref
1766
1767           symtab->define_in_output_data(stop_name.c_str(),
1768                                         NULL, // version
1769                                         Symbol_table::PREDEFINED,
1770                                         *p,
1771                                         0, // value
1772                                         0, // symsize
1773                                         elfcpp::STT_NOTYPE,
1774                                         elfcpp::STB_GLOBAL,
1775                                         elfcpp::STV_DEFAULT,
1776                                         0, // nonvis
1777                                         true, // offset_is_from_end
1778                                         true); // only_if_ref
1779         }
1780     }
1781 }
1782
1783 // Define symbols for group signatures.
1784
1785 void
1786 Layout::define_group_signatures(Symbol_table* symtab)
1787 {
1788   for (Group_signatures::iterator p = this->group_signatures_.begin();
1789        p != this->group_signatures_.end();
1790        ++p)
1791     {
1792       Symbol* sym = symtab->lookup(p->signature, NULL);
1793       if (sym != NULL)
1794         p->section->set_info_symndx(sym);
1795       else
1796         {
1797           // Force the name of the group section to the group
1798           // signature, and use the group's section symbol as the
1799           // signature symbol.
1800           if (strcmp(p->section->name(), p->signature) != 0)
1801             {
1802               const char* name = this->namepool_.add(p->signature,
1803                                                      true, NULL);
1804               p->section->set_name(name);
1805             }
1806           p->section->set_needs_symtab_index();
1807           p->section->set_info_section_symndx(p->section);
1808         }
1809     }
1810
1811   this->group_signatures_.clear();
1812 }
1813
1814 // Find the first read-only PT_LOAD segment, creating one if
1815 // necessary.
1816
1817 Output_segment*
1818 Layout::find_first_load_seg()
1819 {
1820   Output_segment* best = NULL;
1821   for (Segment_list::const_iterator p = this->segment_list_.begin();
1822        p != this->segment_list_.end();
1823        ++p)
1824     {
1825       if ((*p)->type() == elfcpp::PT_LOAD
1826           && ((*p)->flags() & elfcpp::PF_R) != 0
1827           && (parameters->options().omagic()
1828               || ((*p)->flags() & elfcpp::PF_W) == 0))
1829         {
1830           if (best == NULL || this->segment_precedes(*p, best))
1831             best = *p;
1832         }
1833     }
1834   if (best != NULL)
1835     return best;
1836
1837   gold_assert(!this->script_options_->saw_phdrs_clause());
1838
1839   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1840                                                        elfcpp::PF_R);
1841   return load_seg;
1842 }
1843
1844 // Save states of all current output segments.  Store saved states
1845 // in SEGMENT_STATES.
1846
1847 void
1848 Layout::save_segments(Segment_states* segment_states)
1849 {
1850   for (Segment_list::const_iterator p = this->segment_list_.begin();
1851        p != this->segment_list_.end();
1852        ++p)
1853     {
1854       Output_segment* segment = *p;
1855       // Shallow copy.
1856       Output_segment* copy = new Output_segment(*segment);
1857       (*segment_states)[segment] = copy;
1858     }
1859 }
1860
1861 // Restore states of output segments and delete any segment not found in
1862 // SEGMENT_STATES.
1863
1864 void
1865 Layout::restore_segments(const Segment_states* segment_states)
1866 {
1867   // Go through the segment list and remove any segment added in the
1868   // relaxation loop.
1869   this->tls_segment_ = NULL;
1870   this->relro_segment_ = NULL;
1871   Segment_list::iterator list_iter = this->segment_list_.begin();
1872   while (list_iter != this->segment_list_.end())
1873     {
1874       Output_segment* segment = *list_iter;
1875       Segment_states::const_iterator states_iter =
1876           segment_states->find(segment);
1877       if (states_iter != segment_states->end())
1878         {
1879           const Output_segment* copy = states_iter->second;
1880           // Shallow copy to restore states.
1881           *segment = *copy;
1882
1883           // Also fix up TLS and RELRO segment pointers as appropriate.
1884           if (segment->type() == elfcpp::PT_TLS)
1885             this->tls_segment_ = segment;
1886           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1887             this->relro_segment_ = segment;
1888
1889           ++list_iter;
1890         } 
1891       else
1892         {
1893           list_iter = this->segment_list_.erase(list_iter); 
1894           // This is a segment created during section layout.  It should be
1895           // safe to remove it since we should have removed all pointers to it.
1896           delete segment;
1897         }
1898     }
1899 }
1900
1901 // Clean up after relaxation so that sections can be laid out again.
1902
1903 void
1904 Layout::clean_up_after_relaxation()
1905 {
1906   // Restore the segments to point state just prior to the relaxation loop.
1907   Script_sections* script_section = this->script_options_->script_sections();
1908   script_section->release_segments();
1909   this->restore_segments(this->segment_states_);
1910
1911   // Reset section addresses and file offsets
1912   for (Section_list::iterator p = this->section_list_.begin();
1913        p != this->section_list_.end();
1914        ++p)
1915     {
1916       (*p)->restore_states();
1917
1918       // If an input section changes size because of relaxation,
1919       // we need to adjust the section offsets of all input sections.
1920       // after such a section.
1921       if ((*p)->section_offsets_need_adjustment())
1922         (*p)->adjust_section_offsets();
1923
1924       (*p)->reset_address_and_file_offset();
1925     }
1926   
1927   // Reset special output object address and file offsets.
1928   for (Data_list::iterator p = this->special_output_list_.begin();
1929        p != this->special_output_list_.end();
1930        ++p)
1931     (*p)->reset_address_and_file_offset();
1932
1933   // A linker script may have created some output section data objects.
1934   // They are useless now.
1935   for (Output_section_data_list::const_iterator p =
1936          this->script_output_section_data_list_.begin();
1937        p != this->script_output_section_data_list_.end();
1938        ++p)
1939     delete *p;
1940   this->script_output_section_data_list_.clear(); 
1941 }
1942
1943 // Prepare for relaxation.
1944
1945 void
1946 Layout::prepare_for_relaxation()
1947 {
1948   // Create an relaxation debug check if in debugging mode.
1949   if (is_debugging_enabled(DEBUG_RELAXATION))
1950     this->relaxation_debug_check_ = new Relaxation_debug_check();
1951
1952   // Save segment states.
1953   this->segment_states_ = new Segment_states();
1954   this->save_segments(this->segment_states_);
1955
1956   for(Section_list::const_iterator p = this->section_list_.begin();
1957       p != this->section_list_.end();
1958       ++p)
1959     (*p)->save_states();
1960
1961   if (is_debugging_enabled(DEBUG_RELAXATION))
1962     this->relaxation_debug_check_->check_output_data_for_reset_values(
1963         this->section_list_, this->special_output_list_);
1964
1965   // Also enable recording of output section data from scripts.
1966   this->record_output_section_data_from_script_ = true;
1967 }
1968
1969 // Relaxation loop body:  If target has no relaxation, this runs only once
1970 // Otherwise, the target relaxation hook is called at the end of
1971 // each iteration.  If the hook returns true, it means re-layout of
1972 // section is required.  
1973 //
1974 // The number of segments created by a linking script without a PHDRS
1975 // clause may be affected by section sizes and alignments.  There is
1976 // a remote chance that relaxation causes different number of PT_LOAD
1977 // segments are created and sections are attached to different segments.
1978 // Therefore, we always throw away all segments created during section
1979 // layout.  In order to be able to restart the section layout, we keep
1980 // a copy of the segment list right before the relaxation loop and use
1981 // that to restore the segments.
1982 // 
1983 // PASS is the current relaxation pass number. 
1984 // SYMTAB is a symbol table.
1985 // PLOAD_SEG is the address of a pointer for the load segment.
1986 // PHDR_SEG is a pointer to the PHDR segment.
1987 // SEGMENT_HEADERS points to the output segment header.
1988 // FILE_HEADER points to the output file header.
1989 // PSHNDX is the address to store the output section index.
1990
1991 off_t inline
1992 Layout::relaxation_loop_body(
1993     int pass,
1994     Target* target,
1995     Symbol_table* symtab,
1996     Output_segment** pload_seg,
1997     Output_segment* phdr_seg,
1998     Output_segment_headers* segment_headers,
1999     Output_file_header* file_header,
2000     unsigned int* pshndx)
2001 {
2002   // If this is not the first iteration, we need to clean up after
2003   // relaxation so that we can lay out the sections again.
2004   if (pass != 0)
2005     this->clean_up_after_relaxation();
2006
2007   // If there is a SECTIONS clause, put all the input sections into
2008   // the required order.
2009   Output_segment* load_seg;
2010   if (this->script_options_->saw_sections_clause())
2011     load_seg = this->set_section_addresses_from_script(symtab);
2012   else if (parameters->options().relocatable())
2013     load_seg = NULL;
2014   else
2015     load_seg = this->find_first_load_seg();
2016
2017   if (parameters->options().oformat_enum()
2018       != General_options::OBJECT_FORMAT_ELF)
2019     load_seg = NULL;
2020
2021   // If the user set the address of the text segment, that may not be
2022   // compatible with putting the segment headers and file headers into
2023   // that segment.
2024   if (parameters->options().user_set_Ttext())
2025     load_seg = NULL;
2026
2027   gold_assert(phdr_seg == NULL
2028               || load_seg != NULL
2029               || this->script_options_->saw_sections_clause());
2030
2031   // If the address of the load segment we found has been set by
2032   // --section-start rather than by a script, then adjust the VMA and
2033   // LMA downward if possible to include the file and section headers.
2034   uint64_t header_gap = 0;
2035   if (load_seg != NULL
2036       && load_seg->are_addresses_set()
2037       && !this->script_options_->saw_sections_clause()
2038       && !parameters->options().relocatable())
2039     {
2040       file_header->finalize_data_size();
2041       segment_headers->finalize_data_size();
2042       size_t sizeof_headers = (file_header->data_size()
2043                                + segment_headers->data_size());
2044       const uint64_t abi_pagesize = target->abi_pagesize();
2045       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2046       hdr_paddr &= ~(abi_pagesize - 1);
2047       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2048       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2049         load_seg = NULL;
2050       else
2051         {
2052           load_seg->set_addresses(load_seg->vaddr() - subtract,
2053                                   load_seg->paddr() - subtract);
2054           header_gap = subtract - sizeof_headers;
2055         }
2056     }
2057
2058   // Lay out the segment headers.
2059   if (!parameters->options().relocatable())
2060     {
2061       gold_assert(segment_headers != NULL);
2062       if (header_gap != 0 && load_seg != NULL)
2063         {
2064           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2065           load_seg->add_initial_output_data(z);
2066         }
2067       if (load_seg != NULL)
2068         load_seg->add_initial_output_data(segment_headers);
2069       if (phdr_seg != NULL)
2070         phdr_seg->add_initial_output_data(segment_headers);
2071     }
2072
2073   // Lay out the file header.
2074   if (load_seg != NULL)
2075     load_seg->add_initial_output_data(file_header);
2076
2077   if (this->script_options_->saw_phdrs_clause()
2078       && !parameters->options().relocatable())
2079     {
2080       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2081       // clause in a linker script.
2082       Script_sections* ss = this->script_options_->script_sections();
2083       ss->put_headers_in_phdrs(file_header, segment_headers);
2084     }
2085
2086   // We set the output section indexes in set_segment_offsets and
2087   // set_section_indexes.
2088   *pshndx = 1;
2089
2090   // Set the file offsets of all the segments, and all the sections
2091   // they contain.
2092   off_t off;
2093   if (!parameters->options().relocatable())
2094     off = this->set_segment_offsets(target, load_seg, pshndx);
2095   else
2096     off = this->set_relocatable_section_offsets(file_header, pshndx);
2097
2098    // Verify that the dummy relaxation does not change anything.
2099   if (is_debugging_enabled(DEBUG_RELAXATION))
2100     {
2101       if (pass == 0)
2102         this->relaxation_debug_check_->read_sections(this->section_list_);
2103       else
2104         this->relaxation_debug_check_->verify_sections(this->section_list_);
2105     }
2106
2107   *pload_seg = load_seg;
2108   return off;
2109 }
2110
2111 // Search the list of patterns and find the postion of the given section
2112 // name in the output section.  If the section name matches a glob
2113 // pattern and a non-glob name, then the non-glob position takes
2114 // precedence.  Return 0 if no match is found.
2115
2116 unsigned int
2117 Layout::find_section_order_index(const std::string& section_name)
2118 {
2119   Unordered_map<std::string, unsigned int>::iterator map_it;
2120   map_it = this->input_section_position_.find(section_name);
2121   if (map_it != this->input_section_position_.end())
2122     return map_it->second;
2123
2124   // Absolute match failed.  Linear search the glob patterns.
2125   std::vector<std::string>::iterator it;
2126   for (it = this->input_section_glob_.begin();
2127        it != this->input_section_glob_.end();
2128        ++it)
2129     {
2130        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2131          {
2132            map_it = this->input_section_position_.find(*it);
2133            gold_assert(map_it != this->input_section_position_.end());
2134            return map_it->second;
2135          }
2136     }
2137   return 0;
2138 }
2139
2140 // Read the sequence of input sections from the file specified with
2141 // --section-ordering-file.
2142
2143 void
2144 Layout::read_layout_from_file()
2145 {
2146   const char* filename = parameters->options().section_ordering_file();
2147   std::ifstream in;
2148   std::string line;
2149
2150   in.open(filename);
2151   if (!in)
2152     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2153                filename, strerror(errno));
2154
2155   std::getline(in, line);   // this chops off the trailing \n, if any
2156   unsigned int position = 1;
2157
2158   while (in)
2159     {
2160       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2161         line.resize(line.length() - 1);
2162       // Ignore comments, beginning with '#'
2163       if (line[0] == '#')
2164         {
2165           std::getline(in, line);
2166           continue;
2167         }
2168       this->input_section_position_[line] = position;
2169       // Store all glob patterns in a vector.
2170       if (is_wildcard_string(line.c_str()))
2171         this->input_section_glob_.push_back(line);
2172       position++;
2173       std::getline(in, line);
2174     }
2175 }
2176
2177 // Finalize the layout.  When this is called, we have created all the
2178 // output sections and all the output segments which are based on
2179 // input sections.  We have several things to do, and we have to do
2180 // them in the right order, so that we get the right results correctly
2181 // and efficiently.
2182
2183 // 1) Finalize the list of output segments and create the segment
2184 // table header.
2185
2186 // 2) Finalize the dynamic symbol table and associated sections.
2187
2188 // 3) Determine the final file offset of all the output segments.
2189
2190 // 4) Determine the final file offset of all the SHF_ALLOC output
2191 // sections.
2192
2193 // 5) Create the symbol table sections and the section name table
2194 // section.
2195
2196 // 6) Finalize the symbol table: set symbol values to their final
2197 // value and make a final determination of which symbols are going
2198 // into the output symbol table.
2199
2200 // 7) Create the section table header.
2201
2202 // 8) Determine the final file offset of all the output sections which
2203 // are not SHF_ALLOC, including the section table header.
2204
2205 // 9) Finalize the ELF file header.
2206
2207 // This function returns the size of the output file.
2208
2209 off_t
2210 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2211                  Target* target, const Task* task)
2212 {
2213   target->finalize_sections(this, input_objects, symtab);
2214
2215   this->count_local_symbols(task, input_objects);
2216
2217   this->link_stabs_sections();
2218
2219   Output_segment* phdr_seg = NULL;
2220   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2221     {
2222       // There was a dynamic object in the link.  We need to create
2223       // some information for the dynamic linker.
2224
2225       // Create the PT_PHDR segment which will hold the program
2226       // headers.
2227       if (!this->script_options_->saw_phdrs_clause())
2228         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2229
2230       // Create the dynamic symbol table, including the hash table.
2231       Output_section* dynstr;
2232       std::vector<Symbol*> dynamic_symbols;
2233       unsigned int local_dynamic_count;
2234       Versions versions(*this->script_options()->version_script_info(),
2235                         &this->dynpool_);
2236       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2237                                   &local_dynamic_count, &dynamic_symbols,
2238                                   &versions);
2239
2240       // Create the .interp section to hold the name of the
2241       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2242       // if we saw a .interp section in an input file.
2243       if ((!parameters->options().shared()
2244            || parameters->options().dynamic_linker() != NULL)
2245           && this->interp_segment_ == NULL)
2246         this->create_interp(target);
2247
2248       // Finish the .dynamic section to hold the dynamic data, and put
2249       // it in a PT_DYNAMIC segment.
2250       this->finish_dynamic_section(input_objects, symtab);
2251
2252       // We should have added everything we need to the dynamic string
2253       // table.
2254       this->dynpool_.set_string_offsets();
2255
2256       // Create the version sections.  We can't do this until the
2257       // dynamic string table is complete.
2258       this->create_version_sections(&versions, symtab, local_dynamic_count,
2259                                     dynamic_symbols, dynstr);
2260
2261       // Set the size of the _DYNAMIC symbol.  We can't do this until
2262       // after we call create_version_sections.
2263       this->set_dynamic_symbol_size(symtab);
2264     }
2265   
2266   // Create segment headers.
2267   Output_segment_headers* segment_headers =
2268     (parameters->options().relocatable()
2269      ? NULL
2270      : new Output_segment_headers(this->segment_list_));
2271
2272   // Lay out the file header.
2273   Output_file_header* file_header = new Output_file_header(target, symtab,
2274                                                            segment_headers);
2275
2276   this->special_output_list_.push_back(file_header);
2277   if (segment_headers != NULL)
2278     this->special_output_list_.push_back(segment_headers);
2279
2280   // Find approriate places for orphan output sections if we are using
2281   // a linker script.
2282   if (this->script_options_->saw_sections_clause())
2283     this->place_orphan_sections_in_script();
2284   
2285   Output_segment* load_seg;
2286   off_t off;
2287   unsigned int shndx;
2288   int pass = 0;
2289
2290   // Take a snapshot of the section layout as needed.
2291   if (target->may_relax())
2292     this->prepare_for_relaxation();
2293   
2294   // Run the relaxation loop to lay out sections.
2295   do
2296     {
2297       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2298                                        phdr_seg, segment_headers, file_header,
2299                                        &shndx);
2300       pass++;
2301     }
2302   while (target->may_relax()
2303          && target->relax(pass, input_objects, symtab, this, task));
2304
2305   // Set the file offsets of all the non-data sections we've seen so
2306   // far which don't have to wait for the input sections.  We need
2307   // this in order to finalize local symbols in non-allocated
2308   // sections.
2309   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2310
2311   // Set the section indexes of all unallocated sections seen so far,
2312   // in case any of them are somehow referenced by a symbol.
2313   shndx = this->set_section_indexes(shndx);
2314
2315   // Create the symbol table sections.
2316   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2317   if (!parameters->doing_static_link())
2318     this->assign_local_dynsym_offsets(input_objects);
2319
2320   // Process any symbol assignments from a linker script.  This must
2321   // be called after the symbol table has been finalized.
2322   this->script_options_->finalize_symbols(symtab, this);
2323
2324   // Create the incremental inputs sections.
2325   if (this->incremental_inputs_)
2326     {
2327       this->incremental_inputs_->finalize();
2328       this->create_incremental_info_sections(symtab);
2329     }
2330
2331   // Create the .shstrtab section.
2332   Output_section* shstrtab_section = this->create_shstrtab();
2333
2334   // Set the file offsets of the rest of the non-data sections which
2335   // don't have to wait for the input sections.
2336   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2337
2338   // Now that all sections have been created, set the section indexes
2339   // for any sections which haven't been done yet.
2340   shndx = this->set_section_indexes(shndx);
2341
2342   // Create the section table header.
2343   this->create_shdrs(shstrtab_section, &off);
2344
2345   // If there are no sections which require postprocessing, we can
2346   // handle the section names now, and avoid a resize later.
2347   if (!this->any_postprocessing_sections_)
2348     {
2349       off = this->set_section_offsets(off,
2350                                       POSTPROCESSING_SECTIONS_PASS);
2351       off =
2352           this->set_section_offsets(off,
2353                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2354     }
2355
2356   file_header->set_section_info(this->section_headers_, shstrtab_section);
2357
2358   // Now we know exactly where everything goes in the output file
2359   // (except for non-allocated sections which require postprocessing).
2360   Output_data::layout_complete();
2361
2362   this->output_file_size_ = off;
2363
2364   return off;
2365 }
2366
2367 // Create a note header following the format defined in the ELF ABI.
2368 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2369 // of the section to create, DESCSZ is the size of the descriptor.
2370 // ALLOCATE is true if the section should be allocated in memory.
2371 // This returns the new note section.  It sets *TRAILING_PADDING to
2372 // the number of trailing zero bytes required.
2373
2374 Output_section*
2375 Layout::create_note(const char* name, int note_type,
2376                     const char* section_name, size_t descsz,
2377                     bool allocate, size_t* trailing_padding)
2378 {
2379   // Authorities all agree that the values in a .note field should
2380   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2381   // they differ on what the alignment is for 64-bit binaries.
2382   // The GABI says unambiguously they take 8-byte alignment:
2383   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2384   // Other documentation says alignment should always be 4 bytes:
2385   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2386   // GNU ld and GNU readelf both support the latter (at least as of
2387   // version 2.16.91), and glibc always generates the latter for
2388   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2389   // here.
2390 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2391   const int size = parameters->target().get_size();
2392 #else
2393   const int size = 32;
2394 #endif
2395
2396   // The contents of the .note section.
2397   size_t namesz = strlen(name) + 1;
2398   size_t aligned_namesz = align_address(namesz, size / 8);
2399   size_t aligned_descsz = align_address(descsz, size / 8);
2400
2401   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2402
2403   unsigned char* buffer = new unsigned char[notehdrsz];
2404   memset(buffer, 0, notehdrsz);
2405
2406   bool is_big_endian = parameters->target().is_big_endian();
2407
2408   if (size == 32)
2409     {
2410       if (!is_big_endian)
2411         {
2412           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2413           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2414           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2415         }
2416       else
2417         {
2418           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2419           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2420           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2421         }
2422     }
2423   else if (size == 64)
2424     {
2425       if (!is_big_endian)
2426         {
2427           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2428           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2429           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2430         }
2431       else
2432         {
2433           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2434           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2435           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2436         }
2437     }
2438   else
2439     gold_unreachable();
2440
2441   memcpy(buffer + 3 * (size / 8), name, namesz);
2442
2443   elfcpp::Elf_Xword flags = 0;
2444   Output_section_order order = ORDER_INVALID;
2445   if (allocate)
2446     {
2447       flags = elfcpp::SHF_ALLOC;
2448       order = ORDER_RO_NOTE;
2449     }
2450   Output_section* os = this->choose_output_section(NULL, section_name,
2451                                                    elfcpp::SHT_NOTE,
2452                                                    flags, false, order, false);
2453   if (os == NULL)
2454     return NULL;
2455
2456   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2457                                                            size / 8,
2458                                                            "** note header");
2459   os->add_output_section_data(posd);
2460
2461   *trailing_padding = aligned_descsz - descsz;
2462
2463   return os;
2464 }
2465
2466 // For an executable or shared library, create a note to record the
2467 // version of gold used to create the binary.
2468
2469 void
2470 Layout::create_gold_note()
2471 {
2472   if (parameters->options().relocatable()
2473       || parameters->incremental_update())
2474     return;
2475
2476   std::string desc = std::string("gold ") + gold::get_version_string();
2477
2478   size_t trailing_padding;
2479   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2480                                          ".note.gnu.gold-version", desc.size(),
2481                                          false, &trailing_padding);
2482   if (os == NULL)
2483     return;
2484
2485   Output_section_data* posd = new Output_data_const(desc, 4);
2486   os->add_output_section_data(posd);
2487
2488   if (trailing_padding > 0)
2489     {
2490       posd = new Output_data_zero_fill(trailing_padding, 0);
2491       os->add_output_section_data(posd);
2492     }
2493 }
2494
2495 // Record whether the stack should be executable.  This can be set
2496 // from the command line using the -z execstack or -z noexecstack
2497 // options.  Otherwise, if any input file has a .note.GNU-stack
2498 // section with the SHF_EXECINSTR flag set, the stack should be
2499 // executable.  Otherwise, if at least one input file a
2500 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2501 // section, we use the target default for whether the stack should be
2502 // executable.  Otherwise, we don't generate a stack note.  When
2503 // generating a object file, we create a .note.GNU-stack section with
2504 // the appropriate marking.  When generating an executable or shared
2505 // library, we create a PT_GNU_STACK segment.
2506
2507 void
2508 Layout::create_executable_stack_info()
2509 {
2510   bool is_stack_executable;
2511   if (parameters->options().is_execstack_set())
2512     is_stack_executable = parameters->options().is_stack_executable();
2513   else if (!this->input_with_gnu_stack_note_)
2514     return;
2515   else
2516     {
2517       if (this->input_requires_executable_stack_)
2518         is_stack_executable = true;
2519       else if (this->input_without_gnu_stack_note_)
2520         is_stack_executable =
2521           parameters->target().is_default_stack_executable();
2522       else
2523         is_stack_executable = false;
2524     }
2525
2526   if (parameters->options().relocatable())
2527     {
2528       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2529       elfcpp::Elf_Xword flags = 0;
2530       if (is_stack_executable)
2531         flags |= elfcpp::SHF_EXECINSTR;
2532       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2533                                 ORDER_INVALID, false);
2534     }
2535   else
2536     {
2537       if (this->script_options_->saw_phdrs_clause())
2538         return;
2539       int flags = elfcpp::PF_R | elfcpp::PF_W;
2540       if (is_stack_executable)
2541         flags |= elfcpp::PF_X;
2542       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2543     }
2544 }
2545
2546 // If --build-id was used, set up the build ID note.
2547
2548 void
2549 Layout::create_build_id()
2550 {
2551   if (!parameters->options().user_set_build_id())
2552     return;
2553
2554   const char* style = parameters->options().build_id();
2555   if (strcmp(style, "none") == 0)
2556     return;
2557
2558   // Set DESCSZ to the size of the note descriptor.  When possible,
2559   // set DESC to the note descriptor contents.
2560   size_t descsz;
2561   std::string desc;
2562   if (strcmp(style, "md5") == 0)
2563     descsz = 128 / 8;
2564   else if (strcmp(style, "sha1") == 0)
2565     descsz = 160 / 8;
2566   else if (strcmp(style, "uuid") == 0)
2567     {
2568       const size_t uuidsz = 128 / 8;
2569
2570       char buffer[uuidsz];
2571       memset(buffer, 0, uuidsz);
2572
2573       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2574       if (descriptor < 0)
2575         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2576                    strerror(errno));
2577       else
2578         {
2579           ssize_t got = ::read(descriptor, buffer, uuidsz);
2580           release_descriptor(descriptor, true);
2581           if (got < 0)
2582             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2583           else if (static_cast<size_t>(got) != uuidsz)
2584             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2585                        uuidsz, got);
2586         }
2587
2588       desc.assign(buffer, uuidsz);
2589       descsz = uuidsz;
2590     }
2591   else if (strncmp(style, "0x", 2) == 0)
2592     {
2593       hex_init();
2594       const char* p = style + 2;
2595       while (*p != '\0')
2596         {
2597           if (hex_p(p[0]) && hex_p(p[1]))
2598             {
2599               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2600               desc += c;
2601               p += 2;
2602             }
2603           else if (*p == '-' || *p == ':')
2604             ++p;
2605           else
2606             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2607                        style);
2608         }
2609       descsz = desc.size();
2610     }
2611   else
2612     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2613
2614   // Create the note.
2615   size_t trailing_padding;
2616   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2617                                          ".note.gnu.build-id", descsz, true,
2618                                          &trailing_padding);
2619   if (os == NULL)
2620     return;
2621
2622   if (!desc.empty())
2623     {
2624       // We know the value already, so we fill it in now.
2625       gold_assert(desc.size() == descsz);
2626
2627       Output_section_data* posd = new Output_data_const(desc, 4);
2628       os->add_output_section_data(posd);
2629
2630       if (trailing_padding != 0)
2631         {
2632           posd = new Output_data_zero_fill(trailing_padding, 0);
2633           os->add_output_section_data(posd);
2634         }
2635     }
2636   else
2637     {
2638       // We need to compute a checksum after we have completed the
2639       // link.
2640       gold_assert(trailing_padding == 0);
2641       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2642       os->add_output_section_data(this->build_id_note_);
2643     }
2644 }
2645
2646 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2647 // field of the former should point to the latter.  I'm not sure who
2648 // started this, but the GNU linker does it, and some tools depend
2649 // upon it.
2650
2651 void
2652 Layout::link_stabs_sections()
2653 {
2654   if (!this->have_stabstr_section_)
2655     return;
2656
2657   for (Section_list::iterator p = this->section_list_.begin();
2658        p != this->section_list_.end();
2659        ++p)
2660     {
2661       if ((*p)->type() != elfcpp::SHT_STRTAB)
2662         continue;
2663
2664       const char* name = (*p)->name();
2665       if (strncmp(name, ".stab", 5) != 0)
2666         continue;
2667
2668       size_t len = strlen(name);
2669       if (strcmp(name + len - 3, "str") != 0)
2670         continue;
2671
2672       std::string stab_name(name, len - 3);
2673       Output_section* stab_sec;
2674       stab_sec = this->find_output_section(stab_name.c_str());
2675       if (stab_sec != NULL)
2676         stab_sec->set_link_section(*p);
2677     }
2678 }
2679
2680 // Create .gnu_incremental_inputs and related sections needed
2681 // for the next run of incremental linking to check what has changed.
2682
2683 void
2684 Layout::create_incremental_info_sections(Symbol_table* symtab)
2685 {
2686   Incremental_inputs* incr = this->incremental_inputs_;
2687
2688   gold_assert(incr != NULL);
2689
2690   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2691   incr->create_data_sections(symtab);
2692
2693   // Add the .gnu_incremental_inputs section.
2694   const char* incremental_inputs_name =
2695     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2696   Output_section* incremental_inputs_os =
2697     this->make_output_section(incremental_inputs_name,
2698                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2699                               ORDER_INVALID, false);
2700   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2701
2702   // Add the .gnu_incremental_symtab section.
2703   const char* incremental_symtab_name =
2704     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2705   Output_section* incremental_symtab_os =
2706     this->make_output_section(incremental_symtab_name,
2707                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2708                               ORDER_INVALID, false);
2709   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2710   incremental_symtab_os->set_entsize(4);
2711
2712   // Add the .gnu_incremental_relocs section.
2713   const char* incremental_relocs_name =
2714     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2715   Output_section* incremental_relocs_os =
2716     this->make_output_section(incremental_relocs_name,
2717                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2718                               ORDER_INVALID, false);
2719   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2720   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2721
2722   // Add the .gnu_incremental_got_plt section.
2723   const char* incremental_got_plt_name =
2724     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2725   Output_section* incremental_got_plt_os =
2726     this->make_output_section(incremental_got_plt_name,
2727                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2728                               ORDER_INVALID, false);
2729   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2730
2731   // Add the .gnu_incremental_strtab section.
2732   const char* incremental_strtab_name =
2733     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2734   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2735                                                         elfcpp::SHT_STRTAB, 0,
2736                                                         ORDER_INVALID, false);
2737   Output_data_strtab* strtab_data =
2738       new Output_data_strtab(incr->get_stringpool());
2739   incremental_strtab_os->add_output_section_data(strtab_data);
2740
2741   incremental_inputs_os->set_after_input_sections();
2742   incremental_symtab_os->set_after_input_sections();
2743   incremental_relocs_os->set_after_input_sections();
2744   incremental_got_plt_os->set_after_input_sections();
2745
2746   incremental_inputs_os->set_link_section(incremental_strtab_os);
2747   incremental_symtab_os->set_link_section(incremental_inputs_os);
2748   incremental_relocs_os->set_link_section(incremental_inputs_os);
2749   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2750 }
2751
2752 // Return whether SEG1 should be before SEG2 in the output file.  This
2753 // is based entirely on the segment type and flags.  When this is
2754 // called the segment addresses has normally not yet been set.
2755
2756 bool
2757 Layout::segment_precedes(const Output_segment* seg1,
2758                          const Output_segment* seg2)
2759 {
2760   elfcpp::Elf_Word type1 = seg1->type();
2761   elfcpp::Elf_Word type2 = seg2->type();
2762
2763   // The single PT_PHDR segment is required to precede any loadable
2764   // segment.  We simply make it always first.
2765   if (type1 == elfcpp::PT_PHDR)
2766     {
2767       gold_assert(type2 != elfcpp::PT_PHDR);
2768       return true;
2769     }
2770   if (type2 == elfcpp::PT_PHDR)
2771     return false;
2772
2773   // The single PT_INTERP segment is required to precede any loadable
2774   // segment.  We simply make it always second.
2775   if (type1 == elfcpp::PT_INTERP)
2776     {
2777       gold_assert(type2 != elfcpp::PT_INTERP);
2778       return true;
2779     }
2780   if (type2 == elfcpp::PT_INTERP)
2781     return false;
2782
2783   // We then put PT_LOAD segments before any other segments.
2784   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2785     return true;
2786   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2787     return false;
2788
2789   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2790   // segment, because that is where the dynamic linker expects to find
2791   // it (this is just for efficiency; other positions would also work
2792   // correctly).
2793   if (type1 == elfcpp::PT_TLS
2794       && type2 != elfcpp::PT_TLS
2795       && type2 != elfcpp::PT_GNU_RELRO)
2796     return false;
2797   if (type2 == elfcpp::PT_TLS
2798       && type1 != elfcpp::PT_TLS
2799       && type1 != elfcpp::PT_GNU_RELRO)
2800     return true;
2801
2802   // We put the PT_GNU_RELRO segment last, because that is where the
2803   // dynamic linker expects to find it (as with PT_TLS, this is just
2804   // for efficiency).
2805   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2806     return false;
2807   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2808     return true;
2809
2810   const elfcpp::Elf_Word flags1 = seg1->flags();
2811   const elfcpp::Elf_Word flags2 = seg2->flags();
2812
2813   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2814   // by the numeric segment type and flags values.  There should not
2815   // be more than one segment with the same type and flags.
2816   if (type1 != elfcpp::PT_LOAD)
2817     {
2818       if (type1 != type2)
2819         return type1 < type2;
2820       gold_assert(flags1 != flags2);
2821       return flags1 < flags2;
2822     }
2823
2824   // If the addresses are set already, sort by load address.
2825   if (seg1->are_addresses_set())
2826     {
2827       if (!seg2->are_addresses_set())
2828         return true;
2829
2830       unsigned int section_count1 = seg1->output_section_count();
2831       unsigned int section_count2 = seg2->output_section_count();
2832       if (section_count1 == 0 && section_count2 > 0)
2833         return true;
2834       if (section_count1 > 0 && section_count2 == 0)
2835         return false;
2836
2837       uint64_t paddr1 = (seg1->are_addresses_set()
2838                          ? seg1->paddr()
2839                          : seg1->first_section_load_address());
2840       uint64_t paddr2 = (seg2->are_addresses_set()
2841                          ? seg2->paddr()
2842                          : seg2->first_section_load_address());
2843
2844       if (paddr1 != paddr2)
2845         return paddr1 < paddr2;
2846     }
2847   else if (seg2->are_addresses_set())
2848     return false;
2849
2850   // A segment which holds large data comes after a segment which does
2851   // not hold large data.
2852   if (seg1->is_large_data_segment())
2853     {
2854       if (!seg2->is_large_data_segment())
2855         return false;
2856     }
2857   else if (seg2->is_large_data_segment())
2858     return true;
2859
2860   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2861   // segments come before writable segments.  Then writable segments
2862   // with data come before writable segments without data.  Then
2863   // executable segments come before non-executable segments.  Then
2864   // the unlikely case of a non-readable segment comes before the
2865   // normal case of a readable segment.  If there are multiple
2866   // segments with the same type and flags, we require that the
2867   // address be set, and we sort by virtual address and then physical
2868   // address.
2869   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2870     return (flags1 & elfcpp::PF_W) == 0;
2871   if ((flags1 & elfcpp::PF_W) != 0
2872       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2873     return seg1->has_any_data_sections();
2874   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2875     return (flags1 & elfcpp::PF_X) != 0;
2876   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2877     return (flags1 & elfcpp::PF_R) == 0;
2878
2879   // We shouldn't get here--we shouldn't create segments which we
2880   // can't distinguish.
2881   gold_unreachable();
2882 }
2883
2884 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2885
2886 static off_t
2887 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2888 {
2889   uint64_t unsigned_off = off;
2890   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2891                           | (addr & (abi_pagesize - 1)));
2892   if (aligned_off < unsigned_off)
2893     aligned_off += abi_pagesize;
2894   return aligned_off;
2895 }
2896
2897 // Set the file offsets of all the segments, and all the sections they
2898 // contain.  They have all been created.  LOAD_SEG must be be laid out
2899 // first.  Return the offset of the data to follow.
2900
2901 off_t
2902 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2903                             unsigned int* pshndx)
2904 {
2905   // Sort them into the final order.
2906   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2907             Layout::Compare_segments());
2908
2909   // Find the PT_LOAD segments, and set their addresses and offsets
2910   // and their section's addresses and offsets.
2911   uint64_t addr;
2912   if (parameters->options().user_set_Ttext())
2913     addr = parameters->options().Ttext();
2914   else if (parameters->options().output_is_position_independent())
2915     addr = 0;
2916   else
2917     addr = target->default_text_segment_address();
2918   off_t off = 0;
2919
2920   // If LOAD_SEG is NULL, then the file header and segment headers
2921   // will not be loadable.  But they still need to be at offset 0 in
2922   // the file.  Set their offsets now.
2923   if (load_seg == NULL)
2924     {
2925       for (Data_list::iterator p = this->special_output_list_.begin();
2926            p != this->special_output_list_.end();
2927            ++p)
2928         {
2929           off = align_address(off, (*p)->addralign());
2930           (*p)->set_address_and_file_offset(0, off);
2931           off += (*p)->data_size();
2932         }
2933     }
2934
2935   unsigned int increase_relro = this->increase_relro_;
2936   if (this->script_options_->saw_sections_clause())
2937     increase_relro = 0;
2938
2939   const bool check_sections = parameters->options().check_sections();
2940   Output_segment* last_load_segment = NULL;
2941
2942   for (Segment_list::iterator p = this->segment_list_.begin();
2943        p != this->segment_list_.end();
2944        ++p)
2945     {
2946       if ((*p)->type() == elfcpp::PT_LOAD)
2947         {
2948           if (load_seg != NULL && load_seg != *p)
2949             gold_unreachable();
2950           load_seg = NULL;
2951
2952           bool are_addresses_set = (*p)->are_addresses_set();
2953           if (are_addresses_set)
2954             {
2955               // When it comes to setting file offsets, we care about
2956               // the physical address.
2957               addr = (*p)->paddr();
2958             }
2959           else if (parameters->options().user_set_Tdata()
2960                    && ((*p)->flags() & elfcpp::PF_W) != 0
2961                    && (!parameters->options().user_set_Tbss()
2962                        || (*p)->has_any_data_sections()))
2963             {
2964               addr = parameters->options().Tdata();
2965               are_addresses_set = true;
2966             }
2967           else if (parameters->options().user_set_Tbss()
2968                    && ((*p)->flags() & elfcpp::PF_W) != 0
2969                    && !(*p)->has_any_data_sections())
2970             {
2971               addr = parameters->options().Tbss();
2972               are_addresses_set = true;
2973             }
2974
2975           uint64_t orig_addr = addr;
2976           uint64_t orig_off = off;
2977
2978           uint64_t aligned_addr = 0;
2979           uint64_t abi_pagesize = target->abi_pagesize();
2980           uint64_t common_pagesize = target->common_pagesize();
2981
2982           if (!parameters->options().nmagic()
2983               && !parameters->options().omagic())
2984             (*p)->set_minimum_p_align(common_pagesize);
2985
2986           if (!are_addresses_set)
2987             {
2988               // Skip the address forward one page, maintaining the same
2989               // position within the page.  This lets us store both segments
2990               // overlapping on a single page in the file, but the loader will
2991               // put them on different pages in memory. We will revisit this
2992               // decision once we know the size of the segment.
2993
2994               addr = align_address(addr, (*p)->maximum_alignment());
2995               aligned_addr = addr;
2996
2997               if ((addr & (abi_pagesize - 1)) != 0)
2998                 addr = addr + abi_pagesize;
2999
3000               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3001             }
3002
3003           if (!parameters->options().nmagic()
3004               && !parameters->options().omagic())
3005             off = align_file_offset(off, addr, abi_pagesize);
3006           else if (load_seg == NULL)
3007             {
3008               // This is -N or -n with a section script which prevents
3009               // us from using a load segment.  We need to ensure that
3010               // the file offset is aligned to the alignment of the
3011               // segment.  This is because the linker script
3012               // implicitly assumed a zero offset.  If we don't align
3013               // here, then the alignment of the sections in the
3014               // linker script may not match the alignment of the
3015               // sections in the set_section_addresses call below,
3016               // causing an error about dot moving backward.
3017               off = align_address(off, (*p)->maximum_alignment());
3018             }
3019
3020           unsigned int shndx_hold = *pshndx;
3021           bool has_relro = false;
3022           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3023                                                           &increase_relro,
3024                                                           &has_relro,
3025                                                           &off, pshndx);
3026
3027           // Now that we know the size of this segment, we may be able
3028           // to save a page in memory, at the cost of wasting some
3029           // file space, by instead aligning to the start of a new
3030           // page.  Here we use the real machine page size rather than
3031           // the ABI mandated page size.  If the segment has been
3032           // aligned so that the relro data ends at a page boundary,
3033           // we do not try to realign it.
3034
3035           if (!are_addresses_set
3036               && !has_relro
3037               && aligned_addr != addr
3038               && !parameters->incremental())
3039             {
3040               uint64_t first_off = (common_pagesize
3041                                     - (aligned_addr
3042                                        & (common_pagesize - 1)));
3043               uint64_t last_off = new_addr & (common_pagesize - 1);
3044               if (first_off > 0
3045                   && last_off > 0
3046                   && ((aligned_addr & ~ (common_pagesize - 1))
3047                       != (new_addr & ~ (common_pagesize - 1)))
3048                   && first_off + last_off <= common_pagesize)
3049                 {
3050                   *pshndx = shndx_hold;
3051                   addr = align_address(aligned_addr, common_pagesize);
3052                   addr = align_address(addr, (*p)->maximum_alignment());
3053                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3054                   off = align_file_offset(off, addr, abi_pagesize);
3055
3056                   increase_relro = this->increase_relro_;
3057                   if (this->script_options_->saw_sections_clause())
3058                     increase_relro = 0;
3059                   has_relro = false;
3060
3061                   new_addr = (*p)->set_section_addresses(this, true, addr,
3062                                                          &increase_relro,
3063                                                          &has_relro,
3064                                                          &off, pshndx);
3065                 }
3066             }
3067
3068           addr = new_addr;
3069
3070           // Implement --check-sections.  We know that the segments
3071           // are sorted by LMA.
3072           if (check_sections && last_load_segment != NULL)
3073             {
3074               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3075               if (last_load_segment->paddr() + last_load_segment->memsz()
3076                   > (*p)->paddr())
3077                 {
3078                   unsigned long long lb1 = last_load_segment->paddr();
3079                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3080                   unsigned long long lb2 = (*p)->paddr();
3081                   unsigned long long le2 = lb2 + (*p)->memsz();
3082                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3083                                "[0x%llx -> 0x%llx]"),
3084                              lb1, le1, lb2, le2);
3085                 }
3086             }
3087           last_load_segment = *p;
3088         }
3089     }
3090
3091   // Handle the non-PT_LOAD segments, setting their offsets from their
3092   // section's offsets.
3093   for (Segment_list::iterator p = this->segment_list_.begin();
3094        p != this->segment_list_.end();
3095        ++p)
3096     {
3097       if ((*p)->type() != elfcpp::PT_LOAD)
3098         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3099                          ? increase_relro
3100                          : 0);
3101     }
3102
3103   // Set the TLS offsets for each section in the PT_TLS segment.
3104   if (this->tls_segment_ != NULL)
3105     this->tls_segment_->set_tls_offsets();
3106
3107   return off;
3108 }
3109
3110 // Set the offsets of all the allocated sections when doing a
3111 // relocatable link.  This does the same jobs as set_segment_offsets,
3112 // only for a relocatable link.
3113
3114 off_t
3115 Layout::set_relocatable_section_offsets(Output_data* file_header,
3116                                         unsigned int* pshndx)
3117 {
3118   off_t off = 0;
3119
3120   file_header->set_address_and_file_offset(0, 0);
3121   off += file_header->data_size();
3122
3123   for (Section_list::iterator p = this->section_list_.begin();
3124        p != this->section_list_.end();
3125        ++p)
3126     {
3127       // We skip unallocated sections here, except that group sections
3128       // have to come first.
3129       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3130           && (*p)->type() != elfcpp::SHT_GROUP)
3131         continue;
3132
3133       off = align_address(off, (*p)->addralign());
3134
3135       // The linker script might have set the address.
3136       if (!(*p)->is_address_valid())
3137         (*p)->set_address(0);
3138       (*p)->set_file_offset(off);
3139       (*p)->finalize_data_size();
3140       off += (*p)->data_size();
3141
3142       (*p)->set_out_shndx(*pshndx);
3143       ++*pshndx;
3144     }
3145
3146   return off;
3147 }
3148
3149 // Set the file offset of all the sections not associated with a
3150 // segment.
3151
3152 off_t
3153 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3154 {
3155   off_t startoff = off;
3156   off_t maxoff = off;
3157
3158   for (Section_list::iterator p = this->unattached_section_list_.begin();
3159        p != this->unattached_section_list_.end();
3160        ++p)
3161     {
3162       // The symtab section is handled in create_symtab_sections.
3163       if (*p == this->symtab_section_)
3164         continue;
3165
3166       // If we've already set the data size, don't set it again.
3167       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3168         continue;
3169
3170       if (pass == BEFORE_INPUT_SECTIONS_PASS
3171           && (*p)->requires_postprocessing())
3172         {
3173           (*p)->create_postprocessing_buffer();
3174           this->any_postprocessing_sections_ = true;
3175         }
3176
3177       if (pass == BEFORE_INPUT_SECTIONS_PASS
3178           && (*p)->after_input_sections())
3179         continue;
3180       else if (pass == POSTPROCESSING_SECTIONS_PASS
3181                && (!(*p)->after_input_sections()
3182                    || (*p)->type() == elfcpp::SHT_STRTAB))
3183         continue;
3184       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3185                && (!(*p)->after_input_sections()
3186                    || (*p)->type() != elfcpp::SHT_STRTAB))
3187         continue;
3188
3189       if (!parameters->incremental_update())
3190         {
3191           off = align_address(off, (*p)->addralign());
3192           (*p)->set_file_offset(off);
3193           (*p)->finalize_data_size();
3194         }
3195       else
3196         {
3197           // Incremental update: allocate file space from free list.
3198           (*p)->pre_finalize_data_size();
3199           off_t current_size = (*p)->current_data_size();
3200           off = this->allocate(current_size, (*p)->addralign(), startoff);
3201           if (off == -1)
3202             {
3203               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3204                 this->free_list_.dump();
3205               gold_assert((*p)->output_section() != NULL);
3206               gold_fallback(_("out of patch space for section %s; "
3207                               "relink with --incremental-full"),
3208                             (*p)->output_section()->name());
3209             }
3210           (*p)->set_file_offset(off);
3211           (*p)->finalize_data_size();
3212           if ((*p)->data_size() > current_size)
3213             {
3214               gold_assert((*p)->output_section() != NULL);
3215               gold_fallback(_("%s: section changed size; "
3216                               "relink with --incremental-full"),
3217                             (*p)->output_section()->name());
3218             }
3219           gold_debug(DEBUG_INCREMENTAL,
3220                      "set_section_offsets: %08lx %08lx %s",
3221                      static_cast<long>(off),
3222                      static_cast<long>((*p)->data_size()),
3223                      ((*p)->output_section() != NULL
3224                       ? (*p)->output_section()->name() : "(special)"));
3225         }
3226
3227       off += (*p)->data_size();
3228       if (off > maxoff)
3229         maxoff = off;
3230
3231       // At this point the name must be set.
3232       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3233         this->namepool_.add((*p)->name(), false, NULL);
3234     }
3235   return maxoff;
3236 }
3237
3238 // Set the section indexes of all the sections not associated with a
3239 // segment.
3240
3241 unsigned int
3242 Layout::set_section_indexes(unsigned int shndx)
3243 {
3244   for (Section_list::iterator p = this->unattached_section_list_.begin();
3245        p != this->unattached_section_list_.end();
3246        ++p)
3247     {
3248       if (!(*p)->has_out_shndx())
3249         {
3250           (*p)->set_out_shndx(shndx);
3251           ++shndx;
3252         }
3253     }
3254   return shndx;
3255 }
3256
3257 // Set the section addresses according to the linker script.  This is
3258 // only called when we see a SECTIONS clause.  This returns the
3259 // program segment which should hold the file header and segment
3260 // headers, if any.  It will return NULL if they should not be in a
3261 // segment.
3262
3263 Output_segment*
3264 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3265 {
3266   Script_sections* ss = this->script_options_->script_sections();
3267   gold_assert(ss->saw_sections_clause());
3268   return this->script_options_->set_section_addresses(symtab, this);
3269 }
3270
3271 // Place the orphan sections in the linker script.
3272
3273 void
3274 Layout::place_orphan_sections_in_script()
3275 {
3276   Script_sections* ss = this->script_options_->script_sections();
3277   gold_assert(ss->saw_sections_clause());
3278
3279   // Place each orphaned output section in the script.
3280   for (Section_list::iterator p = this->section_list_.begin();
3281        p != this->section_list_.end();
3282        ++p)
3283     {
3284       if (!(*p)->found_in_sections_clause())
3285         ss->place_orphan(*p);
3286     }
3287 }
3288
3289 // Count the local symbols in the regular symbol table and the dynamic
3290 // symbol table, and build the respective string pools.
3291
3292 void
3293 Layout::count_local_symbols(const Task* task,
3294                             const Input_objects* input_objects)
3295 {
3296   // First, figure out an upper bound on the number of symbols we'll
3297   // be inserting into each pool.  This helps us create the pools with
3298   // the right size, to avoid unnecessary hashtable resizing.
3299   unsigned int symbol_count = 0;
3300   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3301        p != input_objects->relobj_end();
3302        ++p)
3303     symbol_count += (*p)->local_symbol_count();
3304
3305   // Go from "upper bound" to "estimate."  We overcount for two
3306   // reasons: we double-count symbols that occur in more than one
3307   // object file, and we count symbols that are dropped from the
3308   // output.  Add it all together and assume we overcount by 100%.
3309   symbol_count /= 2;
3310
3311   // We assume all symbols will go into both the sympool and dynpool.
3312   this->sympool_.reserve(symbol_count);
3313   this->dynpool_.reserve(symbol_count);
3314
3315   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3316        p != input_objects->relobj_end();
3317        ++p)
3318     {
3319       Task_lock_obj<Object> tlo(task, *p);
3320       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3321     }
3322 }
3323
3324 // Create the symbol table sections.  Here we also set the final
3325 // values of the symbols.  At this point all the loadable sections are
3326 // fully laid out.  SHNUM is the number of sections so far.
3327
3328 void
3329 Layout::create_symtab_sections(const Input_objects* input_objects,
3330                                Symbol_table* symtab,
3331                                unsigned int shnum,
3332                                off_t* poff)
3333 {
3334   int symsize;
3335   unsigned int align;
3336   if (parameters->target().get_size() == 32)
3337     {
3338       symsize = elfcpp::Elf_sizes<32>::sym_size;
3339       align = 4;
3340     }
3341   else if (parameters->target().get_size() == 64)
3342     {
3343       symsize = elfcpp::Elf_sizes<64>::sym_size;
3344       align = 8;
3345     }
3346   else
3347     gold_unreachable();
3348
3349   // Compute file offsets relative to the start of the symtab section.
3350   off_t off = 0;
3351
3352   // Save space for the dummy symbol at the start of the section.  We
3353   // never bother to write this out--it will just be left as zero.
3354   off += symsize;
3355   unsigned int local_symbol_index = 1;
3356
3357   // Add STT_SECTION symbols for each Output section which needs one.
3358   for (Section_list::iterator p = this->section_list_.begin();
3359        p != this->section_list_.end();
3360        ++p)
3361     {
3362       if (!(*p)->needs_symtab_index())
3363         (*p)->set_symtab_index(-1U);
3364       else
3365         {
3366           (*p)->set_symtab_index(local_symbol_index);
3367           ++local_symbol_index;
3368           off += symsize;
3369         }
3370     }
3371
3372   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3373        p != input_objects->relobj_end();
3374        ++p)
3375     {
3376       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3377                                                         off, symtab);
3378       off += (index - local_symbol_index) * symsize;
3379       local_symbol_index = index;
3380     }
3381
3382   unsigned int local_symcount = local_symbol_index;
3383   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3384
3385   off_t dynoff;
3386   size_t dyn_global_index;
3387   size_t dyncount;
3388   if (this->dynsym_section_ == NULL)
3389     {
3390       dynoff = 0;
3391       dyn_global_index = 0;
3392       dyncount = 0;
3393     }
3394   else
3395     {
3396       dyn_global_index = this->dynsym_section_->info();
3397       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3398       dynoff = this->dynsym_section_->offset() + locsize;
3399       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3400       gold_assert(static_cast<off_t>(dyncount * symsize)
3401                   == this->dynsym_section_->data_size() - locsize);
3402     }
3403
3404   off_t global_off = off;
3405   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3406                          &this->sympool_, &local_symcount);
3407
3408   if (!parameters->options().strip_all())
3409     {
3410       this->sympool_.set_string_offsets();
3411
3412       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3413       Output_section* osymtab = this->make_output_section(symtab_name,
3414                                                           elfcpp::SHT_SYMTAB,
3415                                                           0, ORDER_INVALID,
3416                                                           false);
3417       this->symtab_section_ = osymtab;
3418
3419       Output_section_data* pos = new Output_data_fixed_space(off, align,
3420                                                              "** symtab");
3421       osymtab->add_output_section_data(pos);
3422
3423       // We generate a .symtab_shndx section if we have more than
3424       // SHN_LORESERVE sections.  Technically it is possible that we
3425       // don't need one, because it is possible that there are no
3426       // symbols in any of sections with indexes larger than
3427       // SHN_LORESERVE.  That is probably unusual, though, and it is
3428       // easier to always create one than to compute section indexes
3429       // twice (once here, once when writing out the symbols).
3430       if (shnum >= elfcpp::SHN_LORESERVE)
3431         {
3432           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3433                                                                false, NULL);
3434           Output_section* osymtab_xindex =
3435             this->make_output_section(symtab_xindex_name,
3436                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3437                                       ORDER_INVALID, false);
3438
3439           size_t symcount = off / symsize;
3440           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3441
3442           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3443
3444           osymtab_xindex->set_link_section(osymtab);
3445           osymtab_xindex->set_addralign(4);
3446           osymtab_xindex->set_entsize(4);
3447
3448           osymtab_xindex->set_after_input_sections();
3449
3450           // This tells the driver code to wait until the symbol table
3451           // has written out before writing out the postprocessing
3452           // sections, including the .symtab_shndx section.
3453           this->any_postprocessing_sections_ = true;
3454         }
3455
3456       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3457       Output_section* ostrtab = this->make_output_section(strtab_name,
3458                                                           elfcpp::SHT_STRTAB,
3459                                                           0, ORDER_INVALID,
3460                                                           false);
3461
3462       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3463       ostrtab->add_output_section_data(pstr);
3464
3465       off_t symtab_off;
3466       if (!parameters->incremental_update())
3467         symtab_off = align_address(*poff, align);
3468       else
3469         {
3470           symtab_off = this->allocate(off, align, *poff);
3471           if (off == -1)
3472             gold_fallback(_("out of patch space for symbol table; "
3473                             "relink with --incremental-full"));
3474           gold_debug(DEBUG_INCREMENTAL,
3475                      "create_symtab_sections: %08lx %08lx .symtab",
3476                      static_cast<long>(symtab_off),
3477                      static_cast<long>(off));
3478         }
3479
3480       symtab->set_file_offset(symtab_off + global_off);
3481       osymtab->set_file_offset(symtab_off);
3482       osymtab->finalize_data_size();
3483       osymtab->set_link_section(ostrtab);
3484       osymtab->set_info(local_symcount);
3485       osymtab->set_entsize(symsize);
3486
3487       if (symtab_off + off > *poff)
3488         *poff = symtab_off + off;
3489     }
3490 }
3491
3492 // Create the .shstrtab section, which holds the names of the
3493 // sections.  At the time this is called, we have created all the
3494 // output sections except .shstrtab itself.
3495
3496 Output_section*
3497 Layout::create_shstrtab()
3498 {
3499   // FIXME: We don't need to create a .shstrtab section if we are
3500   // stripping everything.
3501
3502   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3503
3504   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3505                                                  ORDER_INVALID, false);
3506
3507   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3508     {
3509       // We can't write out this section until we've set all the
3510       // section names, and we don't set the names of compressed
3511       // output sections until relocations are complete.  FIXME: With
3512       // the current names we use, this is unnecessary.
3513       os->set_after_input_sections();
3514     }
3515
3516   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3517   os->add_output_section_data(posd);
3518
3519   return os;
3520 }
3521
3522 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3523 // offset.
3524
3525 void
3526 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3527 {
3528   Output_section_headers* oshdrs;
3529   oshdrs = new Output_section_headers(this,
3530                                       &this->segment_list_,
3531                                       &this->section_list_,
3532                                       &this->unattached_section_list_,
3533                                       &this->namepool_,
3534                                       shstrtab_section);
3535   off_t off;
3536   if (!parameters->incremental_update())
3537     off = align_address(*poff, oshdrs->addralign());
3538   else
3539     {
3540       oshdrs->pre_finalize_data_size();
3541       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3542       if (off == -1)
3543           gold_fallback(_("out of patch space for section header table; "
3544                           "relink with --incremental-full"));
3545       gold_debug(DEBUG_INCREMENTAL,
3546                  "create_shdrs: %08lx %08lx (section header table)",
3547                  static_cast<long>(off),
3548                  static_cast<long>(off + oshdrs->data_size()));
3549     }
3550   oshdrs->set_address_and_file_offset(0, off);
3551   off += oshdrs->data_size();
3552   if (off > *poff)
3553     *poff = off;
3554   this->section_headers_ = oshdrs;
3555 }
3556
3557 // Count the allocated sections.
3558
3559 size_t
3560 Layout::allocated_output_section_count() const
3561 {
3562   size_t section_count = 0;
3563   for (Segment_list::const_iterator p = this->segment_list_.begin();
3564        p != this->segment_list_.end();
3565        ++p)
3566     section_count += (*p)->output_section_count();
3567   return section_count;
3568 }
3569
3570 // Create the dynamic symbol table.
3571
3572 void
3573 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3574                               Symbol_table* symtab,
3575                               Output_section** pdynstr,
3576                               unsigned int* plocal_dynamic_count,
3577                               std::vector<Symbol*>* pdynamic_symbols,
3578                               Versions* pversions)
3579 {
3580   // Count all the symbols in the dynamic symbol table, and set the
3581   // dynamic symbol indexes.
3582
3583   // Skip symbol 0, which is always all zeroes.
3584   unsigned int index = 1;
3585
3586   // Add STT_SECTION symbols for each Output section which needs one.
3587   for (Section_list::iterator p = this->section_list_.begin();
3588        p != this->section_list_.end();
3589        ++p)
3590     {
3591       if (!(*p)->needs_dynsym_index())
3592         (*p)->set_dynsym_index(-1U);
3593       else
3594         {
3595           (*p)->set_dynsym_index(index);
3596           ++index;
3597         }
3598     }
3599
3600   // Count the local symbols that need to go in the dynamic symbol table,
3601   // and set the dynamic symbol indexes.
3602   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3603        p != input_objects->relobj_end();
3604        ++p)
3605     {
3606       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3607       index = new_index;
3608     }
3609
3610   unsigned int local_symcount = index;
3611   *plocal_dynamic_count = local_symcount;
3612
3613   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3614                                      &this->dynpool_, pversions);
3615
3616   int symsize;
3617   unsigned int align;
3618   const int size = parameters->target().get_size();
3619   if (size == 32)
3620     {
3621       symsize = elfcpp::Elf_sizes<32>::sym_size;
3622       align = 4;
3623     }
3624   else if (size == 64)
3625     {
3626       symsize = elfcpp::Elf_sizes<64>::sym_size;
3627       align = 8;
3628     }
3629   else
3630     gold_unreachable();
3631
3632   // Create the dynamic symbol table section.
3633
3634   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3635                                                        elfcpp::SHT_DYNSYM,
3636                                                        elfcpp::SHF_ALLOC,
3637                                                        false,
3638                                                        ORDER_DYNAMIC_LINKER,
3639                                                        false);
3640
3641   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3642                                                            align,
3643                                                            "** dynsym");
3644   dynsym->add_output_section_data(odata);
3645
3646   dynsym->set_info(local_symcount);
3647   dynsym->set_entsize(symsize);
3648   dynsym->set_addralign(align);
3649
3650   this->dynsym_section_ = dynsym;
3651
3652   Output_data_dynamic* const odyn = this->dynamic_data_;
3653   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3654   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3655
3656   // If there are more than SHN_LORESERVE allocated sections, we
3657   // create a .dynsym_shndx section.  It is possible that we don't
3658   // need one, because it is possible that there are no dynamic
3659   // symbols in any of the sections with indexes larger than
3660   // SHN_LORESERVE.  This is probably unusual, though, and at this
3661   // time we don't know the actual section indexes so it is
3662   // inconvenient to check.
3663   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3664     {
3665       Output_section* dynsym_xindex =
3666         this->choose_output_section(NULL, ".dynsym_shndx",
3667                                     elfcpp::SHT_SYMTAB_SHNDX,
3668                                     elfcpp::SHF_ALLOC,
3669                                     false, ORDER_DYNAMIC_LINKER, false);
3670
3671       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3672
3673       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3674
3675       dynsym_xindex->set_link_section(dynsym);
3676       dynsym_xindex->set_addralign(4);
3677       dynsym_xindex->set_entsize(4);
3678
3679       dynsym_xindex->set_after_input_sections();
3680
3681       // This tells the driver code to wait until the symbol table has
3682       // written out before writing out the postprocessing sections,
3683       // including the .dynsym_shndx section.
3684       this->any_postprocessing_sections_ = true;
3685     }
3686
3687   // Create the dynamic string table section.
3688
3689   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3690                                                        elfcpp::SHT_STRTAB,
3691                                                        elfcpp::SHF_ALLOC,
3692                                                        false,
3693                                                        ORDER_DYNAMIC_LINKER,
3694                                                        false);
3695
3696   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3697   dynstr->add_output_section_data(strdata);
3698
3699   dynsym->set_link_section(dynstr);
3700   this->dynamic_section_->set_link_section(dynstr);
3701
3702   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3703   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3704
3705   *pdynstr = dynstr;
3706
3707   // Create the hash tables.
3708
3709   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3710       || strcmp(parameters->options().hash_style(), "both") == 0)
3711     {
3712       unsigned char* phash;
3713       unsigned int hashlen;
3714       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3715                                     &phash, &hashlen);
3716
3717       Output_section* hashsec =
3718         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3719                                     elfcpp::SHF_ALLOC, false,
3720                                     ORDER_DYNAMIC_LINKER, false);
3721
3722       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3723                                                                    hashlen,
3724                                                                    align,
3725                                                                    "** hash");
3726       hashsec->add_output_section_data(hashdata);
3727
3728       hashsec->set_link_section(dynsym);
3729       hashsec->set_entsize(4);
3730
3731       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3732     }
3733
3734   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3735       || strcmp(parameters->options().hash_style(), "both") == 0)
3736     {
3737       unsigned char* phash;
3738       unsigned int hashlen;
3739       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3740                                     &phash, &hashlen);
3741
3742       Output_section* hashsec =
3743         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3744                                     elfcpp::SHF_ALLOC, false,
3745                                     ORDER_DYNAMIC_LINKER, false);
3746
3747       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3748                                                                    hashlen,
3749                                                                    align,
3750                                                                    "** hash");
3751       hashsec->add_output_section_data(hashdata);
3752
3753       hashsec->set_link_section(dynsym);
3754
3755       // For a 64-bit target, the entries in .gnu.hash do not have a
3756       // uniform size, so we only set the entry size for a 32-bit
3757       // target.
3758       if (parameters->target().get_size() == 32)
3759         hashsec->set_entsize(4);
3760
3761       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3762     }
3763 }
3764
3765 // Assign offsets to each local portion of the dynamic symbol table.
3766
3767 void
3768 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3769 {
3770   Output_section* dynsym = this->dynsym_section_;
3771   gold_assert(dynsym != NULL);
3772
3773   off_t off = dynsym->offset();
3774
3775   // Skip the dummy symbol at the start of the section.
3776   off += dynsym->entsize();
3777
3778   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3779        p != input_objects->relobj_end();
3780        ++p)
3781     {
3782       unsigned int count = (*p)->set_local_dynsym_offset(off);
3783       off += count * dynsym->entsize();
3784     }
3785 }
3786
3787 // Create the version sections.
3788
3789 void
3790 Layout::create_version_sections(const Versions* versions,
3791                                 const Symbol_table* symtab,
3792                                 unsigned int local_symcount,
3793                                 const std::vector<Symbol*>& dynamic_symbols,
3794                                 const Output_section* dynstr)
3795 {
3796   if (!versions->any_defs() && !versions->any_needs())
3797     return;
3798
3799   switch (parameters->size_and_endianness())
3800     {
3801 #ifdef HAVE_TARGET_32_LITTLE
3802     case Parameters::TARGET_32_LITTLE:
3803       this->sized_create_version_sections<32, false>(versions, symtab,
3804                                                      local_symcount,
3805                                                      dynamic_symbols, dynstr);
3806       break;
3807 #endif
3808 #ifdef HAVE_TARGET_32_BIG
3809     case Parameters::TARGET_32_BIG:
3810       this->sized_create_version_sections<32, true>(versions, symtab,
3811                                                     local_symcount,
3812                                                     dynamic_symbols, dynstr);
3813       break;
3814 #endif
3815 #ifdef HAVE_TARGET_64_LITTLE
3816     case Parameters::TARGET_64_LITTLE:
3817       this->sized_create_version_sections<64, false>(versions, symtab,
3818                                                      local_symcount,
3819                                                      dynamic_symbols, dynstr);
3820       break;
3821 #endif
3822 #ifdef HAVE_TARGET_64_BIG
3823     case Parameters::TARGET_64_BIG:
3824       this->sized_create_version_sections<64, true>(versions, symtab,
3825                                                     local_symcount,
3826                                                     dynamic_symbols, dynstr);
3827       break;
3828 #endif
3829     default:
3830       gold_unreachable();
3831     }
3832 }
3833
3834 // Create the version sections, sized version.
3835
3836 template<int size, bool big_endian>
3837 void
3838 Layout::sized_create_version_sections(
3839     const Versions* versions,
3840     const Symbol_table* symtab,
3841     unsigned int local_symcount,
3842     const std::vector<Symbol*>& dynamic_symbols,
3843     const Output_section* dynstr)
3844 {
3845   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3846                                                      elfcpp::SHT_GNU_versym,
3847                                                      elfcpp::SHF_ALLOC,
3848                                                      false,
3849                                                      ORDER_DYNAMIC_LINKER,
3850                                                      false);
3851
3852   unsigned char* vbuf;
3853   unsigned int vsize;
3854   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3855                                                       local_symcount,
3856                                                       dynamic_symbols,
3857                                                       &vbuf, &vsize);
3858
3859   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3860                                                             "** versions");
3861
3862   vsec->add_output_section_data(vdata);
3863   vsec->set_entsize(2);
3864   vsec->set_link_section(this->dynsym_section_);
3865
3866   Output_data_dynamic* const odyn = this->dynamic_data_;
3867   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3868
3869   if (versions->any_defs())
3870     {
3871       Output_section* vdsec;
3872       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3873                                          elfcpp::SHT_GNU_verdef,
3874                                          elfcpp::SHF_ALLOC,
3875                                          false, ORDER_DYNAMIC_LINKER, false);
3876
3877       unsigned char* vdbuf;
3878       unsigned int vdsize;
3879       unsigned int vdentries;
3880       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3881                                                        &vdsize, &vdentries);
3882
3883       Output_section_data* vddata =
3884         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3885
3886       vdsec->add_output_section_data(vddata);
3887       vdsec->set_link_section(dynstr);
3888       vdsec->set_info(vdentries);
3889
3890       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3891       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3892     }
3893
3894   if (versions->any_needs())
3895     {
3896       Output_section* vnsec;
3897       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3898                                           elfcpp::SHT_GNU_verneed,
3899                                           elfcpp::SHF_ALLOC,
3900                                           false, ORDER_DYNAMIC_LINKER, false);
3901
3902       unsigned char* vnbuf;
3903       unsigned int vnsize;
3904       unsigned int vnentries;
3905       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3906                                                         &vnbuf, &vnsize,
3907                                                         &vnentries);
3908
3909       Output_section_data* vndata =
3910         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3911
3912       vnsec->add_output_section_data(vndata);
3913       vnsec->set_link_section(dynstr);
3914       vnsec->set_info(vnentries);
3915
3916       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3917       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3918     }
3919 }
3920
3921 // Create the .interp section and PT_INTERP segment.
3922
3923 void
3924 Layout::create_interp(const Target* target)
3925 {
3926   gold_assert(this->interp_segment_ == NULL);
3927
3928   const char* interp = parameters->options().dynamic_linker();
3929   if (interp == NULL)
3930     {
3931       interp = target->dynamic_linker();
3932       gold_assert(interp != NULL);
3933     }
3934
3935   size_t len = strlen(interp) + 1;
3936
3937   Output_section_data* odata = new Output_data_const(interp, len, 1);
3938
3939   Output_section* osec = this->choose_output_section(NULL, ".interp",
3940                                                      elfcpp::SHT_PROGBITS,
3941                                                      elfcpp::SHF_ALLOC,
3942                                                      false, ORDER_INTERP,
3943                                                      false);
3944   osec->add_output_section_data(odata);
3945 }
3946
3947 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3948 // called by the target-specific code.  This does nothing if not doing
3949 // a dynamic link.
3950
3951 // USE_REL is true for REL relocs rather than RELA relocs.
3952
3953 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3954
3955 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3956 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3957 // some targets have multiple reloc sections in PLT_REL.
3958
3959 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3960 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3961
3962 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3963 // executable.
3964
3965 void
3966 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3967                                 const Output_data* plt_rel,
3968                                 const Output_data_reloc_generic* dyn_rel,
3969                                 bool add_debug, bool dynrel_includes_plt)
3970 {
3971   Output_data_dynamic* odyn = this->dynamic_data_;
3972   if (odyn == NULL)
3973     return;
3974
3975   if (plt_got != NULL && plt_got->output_section() != NULL)
3976     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3977
3978   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3979     {
3980       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3981       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3982       odyn->add_constant(elfcpp::DT_PLTREL,
3983                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3984     }
3985
3986   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3987     {
3988       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3989                                 dyn_rel);
3990       if (plt_rel != NULL && dynrel_includes_plt)
3991         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3992                                dyn_rel, plt_rel);
3993       else
3994         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3995                                dyn_rel);
3996       const int size = parameters->target().get_size();
3997       elfcpp::DT rel_tag;
3998       int rel_size;
3999       if (use_rel)
4000         {
4001           rel_tag = elfcpp::DT_RELENT;
4002           if (size == 32)
4003             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4004           else if (size == 64)
4005             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4006           else
4007             gold_unreachable();
4008         }
4009       else
4010         {
4011           rel_tag = elfcpp::DT_RELAENT;
4012           if (size == 32)
4013             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4014           else if (size == 64)
4015             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4016           else
4017             gold_unreachable();
4018         }
4019       odyn->add_constant(rel_tag, rel_size);
4020
4021       if (parameters->options().combreloc())
4022         {
4023           size_t c = dyn_rel->relative_reloc_count();
4024           if (c > 0)
4025             odyn->add_constant((use_rel
4026                                 ? elfcpp::DT_RELCOUNT
4027                                 : elfcpp::DT_RELACOUNT),
4028                                c);
4029         }
4030     }
4031
4032   if (add_debug && !parameters->options().shared())
4033     {
4034       // The value of the DT_DEBUG tag is filled in by the dynamic
4035       // linker at run time, and used by the debugger.
4036       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4037     }
4038 }
4039
4040 // Finish the .dynamic section and PT_DYNAMIC segment.
4041
4042 void
4043 Layout::finish_dynamic_section(const Input_objects* input_objects,
4044                                const Symbol_table* symtab)
4045 {
4046   if (!this->script_options_->saw_phdrs_clause())
4047     {
4048       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4049                                                        (elfcpp::PF_R
4050                                                         | elfcpp::PF_W));
4051       oseg->add_output_section_to_nonload(this->dynamic_section_,
4052                                           elfcpp::PF_R | elfcpp::PF_W);
4053     }
4054
4055   Output_data_dynamic* const odyn = this->dynamic_data_;
4056
4057   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4058        p != input_objects->dynobj_end();
4059        ++p)
4060     {
4061       if (!(*p)->is_needed() && (*p)->as_needed())
4062         {
4063           // This dynamic object was linked with --as-needed, but it
4064           // is not needed.
4065           continue;
4066         }
4067
4068       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4069     }
4070
4071   if (parameters->options().shared())
4072     {
4073       const char* soname = parameters->options().soname();
4074       if (soname != NULL)
4075         odyn->add_string(elfcpp::DT_SONAME, soname);
4076     }
4077
4078   Symbol* sym = symtab->lookup(parameters->options().init());
4079   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4080     odyn->add_symbol(elfcpp::DT_INIT, sym);
4081
4082   sym = symtab->lookup(parameters->options().fini());
4083   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4084     odyn->add_symbol(elfcpp::DT_FINI, sym);
4085
4086   // Look for .init_array, .preinit_array and .fini_array by checking
4087   // section types.
4088   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4089       p != this->section_list_.end();
4090       ++p)
4091     switch((*p)->type())
4092       {
4093       case elfcpp::SHT_FINI_ARRAY:
4094         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4095         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4096         break;
4097       case elfcpp::SHT_INIT_ARRAY:
4098         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4099         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4100         break;
4101       case elfcpp::SHT_PREINIT_ARRAY:
4102         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4103         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4104         break;
4105       default:
4106         break;
4107       }
4108   
4109   // Add a DT_RPATH entry if needed.
4110   const General_options::Dir_list& rpath(parameters->options().rpath());
4111   if (!rpath.empty())
4112     {
4113       std::string rpath_val;
4114       for (General_options::Dir_list::const_iterator p = rpath.begin();
4115            p != rpath.end();
4116            ++p)
4117         {
4118           if (rpath_val.empty())
4119             rpath_val = p->name();
4120           else
4121             {
4122               // Eliminate duplicates.
4123               General_options::Dir_list::const_iterator q;
4124               for (q = rpath.begin(); q != p; ++q)
4125                 if (q->name() == p->name())
4126                   break;
4127               if (q == p)
4128                 {
4129                   rpath_val += ':';
4130                   rpath_val += p->name();
4131                 }
4132             }
4133         }
4134
4135       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4136       if (parameters->options().enable_new_dtags())
4137         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4138     }
4139
4140   // Look for text segments that have dynamic relocations.
4141   bool have_textrel = false;
4142   if (!this->script_options_->saw_sections_clause())
4143     {
4144       for (Segment_list::const_iterator p = this->segment_list_.begin();
4145            p != this->segment_list_.end();
4146            ++p)
4147         {
4148           if ((*p)->type() == elfcpp::PT_LOAD
4149               && ((*p)->flags() & elfcpp::PF_W) == 0
4150               && (*p)->has_dynamic_reloc())
4151             {
4152               have_textrel = true;
4153               break;
4154             }
4155         }
4156     }
4157   else
4158     {
4159       // We don't know the section -> segment mapping, so we are
4160       // conservative and just look for readonly sections with
4161       // relocations.  If those sections wind up in writable segments,
4162       // then we have created an unnecessary DT_TEXTREL entry.
4163       for (Section_list::const_iterator p = this->section_list_.begin();
4164            p != this->section_list_.end();
4165            ++p)
4166         {
4167           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4168               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4169               && (*p)->has_dynamic_reloc())
4170             {
4171               have_textrel = true;
4172               break;
4173             }
4174         }
4175     }
4176
4177   // Add a DT_FLAGS entry. We add it even if no flags are set so that
4178   // post-link tools can easily modify these flags if desired.
4179   unsigned int flags = 0;
4180   if (have_textrel)
4181     {
4182       // Add a DT_TEXTREL for compatibility with older loaders.
4183       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4184       flags |= elfcpp::DF_TEXTREL;
4185
4186       if (parameters->options().text())
4187         gold_error(_("read-only segment has dynamic relocations"));
4188       else if (parameters->options().warn_shared_textrel()
4189                && parameters->options().shared())
4190         gold_warning(_("shared library text segment is not shareable"));
4191     }
4192   if (parameters->options().shared() && this->has_static_tls())
4193     flags |= elfcpp::DF_STATIC_TLS;
4194   if (parameters->options().origin())
4195     flags |= elfcpp::DF_ORIGIN;
4196   if (parameters->options().Bsymbolic())
4197     {
4198       flags |= elfcpp::DF_SYMBOLIC;
4199       // Add DT_SYMBOLIC for compatibility with older loaders.
4200       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4201     }
4202   if (parameters->options().now())
4203     flags |= elfcpp::DF_BIND_NOW;
4204   if (flags != 0)
4205     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4206
4207   flags = 0;
4208   if (parameters->options().initfirst())
4209     flags |= elfcpp::DF_1_INITFIRST;
4210   if (parameters->options().interpose())
4211     flags |= elfcpp::DF_1_INTERPOSE;
4212   if (parameters->options().loadfltr())
4213     flags |= elfcpp::DF_1_LOADFLTR;
4214   if (parameters->options().nodefaultlib())
4215     flags |= elfcpp::DF_1_NODEFLIB;
4216   if (parameters->options().nodelete())
4217     flags |= elfcpp::DF_1_NODELETE;
4218   if (parameters->options().nodlopen())
4219     flags |= elfcpp::DF_1_NOOPEN;
4220   if (parameters->options().nodump())
4221     flags |= elfcpp::DF_1_NODUMP;
4222   if (!parameters->options().shared())
4223     flags &= ~(elfcpp::DF_1_INITFIRST
4224                | elfcpp::DF_1_NODELETE
4225                | elfcpp::DF_1_NOOPEN);
4226   if (parameters->options().origin())
4227     flags |= elfcpp::DF_1_ORIGIN;
4228   if (parameters->options().now())
4229     flags |= elfcpp::DF_1_NOW;
4230   if (flags != 0)
4231     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4232 }
4233
4234 // Set the size of the _DYNAMIC symbol table to be the size of the
4235 // dynamic data.
4236
4237 void
4238 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4239 {
4240   Output_data_dynamic* const odyn = this->dynamic_data_;
4241   odyn->finalize_data_size();
4242   off_t data_size = odyn->data_size();
4243   const int size = parameters->target().get_size();
4244   if (size == 32)
4245     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4246   else if (size == 64)
4247     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4248   else
4249     gold_unreachable();
4250 }
4251
4252 // The mapping of input section name prefixes to output section names.
4253 // In some cases one prefix is itself a prefix of another prefix; in
4254 // such a case the longer prefix must come first.  These prefixes are
4255 // based on the GNU linker default ELF linker script.
4256
4257 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4258 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4259 {
4260   MAPPING_INIT(".text.", ".text"),
4261   MAPPING_INIT(".rodata.", ".rodata"),
4262   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4263   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4264   MAPPING_INIT(".data.", ".data"),
4265   MAPPING_INIT(".bss.", ".bss"),
4266   MAPPING_INIT(".tdata.", ".tdata"),
4267   MAPPING_INIT(".tbss.", ".tbss"),
4268   MAPPING_INIT(".init_array.", ".init_array"),
4269   MAPPING_INIT(".fini_array.", ".fini_array"),
4270   MAPPING_INIT(".sdata.", ".sdata"),
4271   MAPPING_INIT(".sbss.", ".sbss"),
4272   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4273   // differently depending on whether it is creating a shared library.
4274   MAPPING_INIT(".sdata2.", ".sdata"),
4275   MAPPING_INIT(".sbss2.", ".sbss"),
4276   MAPPING_INIT(".lrodata.", ".lrodata"),
4277   MAPPING_INIT(".ldata.", ".ldata"),
4278   MAPPING_INIT(".lbss.", ".lbss"),
4279   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4280   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4281   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4282   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4283   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4284   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4285   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4286   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4287   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4288   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4289   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4290   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4291   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4292   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4293   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4294   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4295   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4296   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4297   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4298   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4299   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4300 };
4301 #undef MAPPING_INIT
4302
4303 const int Layout::section_name_mapping_count =
4304   (sizeof(Layout::section_name_mapping)
4305    / sizeof(Layout::section_name_mapping[0]));
4306
4307 // Choose the output section name to use given an input section name.
4308 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4309 // length of NAME.
4310
4311 const char*
4312 Layout::output_section_name(const Relobj* relobj, const char* name,
4313                             size_t* plen)
4314 {
4315   // gcc 4.3 generates the following sorts of section names when it
4316   // needs a section name specific to a function:
4317   //   .text.FN
4318   //   .rodata.FN
4319   //   .sdata2.FN
4320   //   .data.FN
4321   //   .data.rel.FN
4322   //   .data.rel.local.FN
4323   //   .data.rel.ro.FN
4324   //   .data.rel.ro.local.FN
4325   //   .sdata.FN
4326   //   .bss.FN
4327   //   .sbss.FN
4328   //   .tdata.FN
4329   //   .tbss.FN
4330
4331   // The GNU linker maps all of those to the part before the .FN,
4332   // except that .data.rel.local.FN is mapped to .data, and
4333   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4334   // beginning with .data.rel.ro.local are grouped together.
4335
4336   // For an anonymous namespace, the string FN can contain a '.'.
4337
4338   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4339   // GNU linker maps to .rodata.
4340
4341   // The .data.rel.ro sections are used with -z relro.  The sections
4342   // are recognized by name.  We use the same names that the GNU
4343   // linker does for these sections.
4344
4345   // It is hard to handle this in a principled way, so we don't even
4346   // try.  We use a table of mappings.  If the input section name is
4347   // not found in the table, we simply use it as the output section
4348   // name.
4349
4350   const Section_name_mapping* psnm = section_name_mapping;
4351   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4352     {
4353       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4354         {
4355           *plen = psnm->tolen;
4356           return psnm->to;
4357         }
4358     }
4359
4360   // As an additional complication, .ctors sections are output in
4361   // either .ctors or .init_array sections, and .dtors sections are
4362   // output in either .dtors or .fini_array sections.
4363   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4364     {
4365       if (parameters->options().ctors_in_init_array())
4366         {
4367           *plen = 11;
4368           return name[1] == 'c' ? ".init_array" : ".fini_array";
4369         }
4370       else
4371         {
4372           *plen = 6;
4373           return name[1] == 'c' ? ".ctors" : ".dtors";
4374         }
4375     }
4376   if (parameters->options().ctors_in_init_array()
4377       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4378     {
4379       // To make .init_array/.fini_array work with gcc we must exclude
4380       // .ctors and .dtors sections from the crtbegin and crtend
4381       // files.
4382       if (relobj == NULL
4383           || (!Layout::match_file_name(relobj, "crtbegin")
4384               && !Layout::match_file_name(relobj, "crtend")))
4385         {
4386           *plen = 11;
4387           return name[1] == 'c' ? ".init_array" : ".fini_array";
4388         }
4389     }
4390
4391   return name;
4392 }
4393
4394 // Return true if RELOBJ is an input file whose base name matches
4395 // FILE_NAME.  The base name must have an extension of ".o", and must
4396 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4397 // to match crtbegin.o as well as crtbeginS.o without getting confused
4398 // by other possibilities.  Overall matching the file name this way is
4399 // a dreadful hack, but the GNU linker does it in order to better
4400 // support gcc, and we need to be compatible.
4401
4402 bool
4403 Layout::match_file_name(const Relobj* relobj, const char* match)
4404 {
4405   const std::string& file_name(relobj->name());
4406   const char* base_name = lbasename(file_name.c_str());
4407   size_t match_len = strlen(match);
4408   if (strncmp(base_name, match, match_len) != 0)
4409     return false;
4410   size_t base_len = strlen(base_name);
4411   if (base_len != match_len + 2 && base_len != match_len + 3)
4412     return false;
4413   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4414 }
4415
4416 // Check if a comdat group or .gnu.linkonce section with the given
4417 // NAME is selected for the link.  If there is already a section,
4418 // *KEPT_SECTION is set to point to the existing section and the
4419 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4420 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4421 // *KEPT_SECTION is set to the internal copy and the function returns
4422 // true.
4423
4424 bool
4425 Layout::find_or_add_kept_section(const std::string& name,
4426                                  Relobj* object,
4427                                  unsigned int shndx,
4428                                  bool is_comdat,
4429                                  bool is_group_name,
4430                                  Kept_section** kept_section)
4431 {
4432   // It's normal to see a couple of entries here, for the x86 thunk
4433   // sections.  If we see more than a few, we're linking a C++
4434   // program, and we resize to get more space to minimize rehashing.
4435   if (this->signatures_.size() > 4
4436       && !this->resized_signatures_)
4437     {
4438       reserve_unordered_map(&this->signatures_,
4439                             this->number_of_input_files_ * 64);
4440       this->resized_signatures_ = true;
4441     }
4442
4443   Kept_section candidate;
4444   std::pair<Signatures::iterator, bool> ins =
4445     this->signatures_.insert(std::make_pair(name, candidate));
4446
4447   if (kept_section != NULL)
4448     *kept_section = &ins.first->second;
4449   if (ins.second)
4450     {
4451       // This is the first time we've seen this signature.
4452       ins.first->second.set_object(object);
4453       ins.first->second.set_shndx(shndx);
4454       if (is_comdat)
4455         ins.first->second.set_is_comdat();
4456       if (is_group_name)
4457         ins.first->second.set_is_group_name();
4458       return true;
4459     }
4460
4461   // We have already seen this signature.
4462
4463   if (ins.first->second.is_group_name())
4464     {
4465       // We've already seen a real section group with this signature.
4466       // If the kept group is from a plugin object, and we're in the
4467       // replacement phase, accept the new one as a replacement.
4468       if (ins.first->second.object() == NULL
4469           && parameters->options().plugins()->in_replacement_phase())
4470         {
4471           ins.first->second.set_object(object);
4472           ins.first->second.set_shndx(shndx);
4473           return true;
4474         }
4475       return false;
4476     }
4477   else if (is_group_name)
4478     {
4479       // This is a real section group, and we've already seen a
4480       // linkonce section with this signature.  Record that we've seen
4481       // a section group, and don't include this section group.
4482       ins.first->second.set_is_group_name();
4483       return false;
4484     }
4485   else
4486     {
4487       // We've already seen a linkonce section and this is a linkonce
4488       // section.  These don't block each other--this may be the same
4489       // symbol name with different section types.
4490       return true;
4491     }
4492 }
4493
4494 // Store the allocated sections into the section list.
4495
4496 void
4497 Layout::get_allocated_sections(Section_list* section_list) const
4498 {
4499   for (Section_list::const_iterator p = this->section_list_.begin();
4500        p != this->section_list_.end();
4501        ++p)
4502     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4503       section_list->push_back(*p);
4504 }
4505
4506 // Create an output segment.
4507
4508 Output_segment*
4509 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4510 {
4511   gold_assert(!parameters->options().relocatable());
4512   Output_segment* oseg = new Output_segment(type, flags);
4513   this->segment_list_.push_back(oseg);
4514
4515   if (type == elfcpp::PT_TLS)
4516     this->tls_segment_ = oseg;
4517   else if (type == elfcpp::PT_GNU_RELRO)
4518     this->relro_segment_ = oseg;
4519   else if (type == elfcpp::PT_INTERP)
4520     this->interp_segment_ = oseg;
4521
4522   return oseg;
4523 }
4524
4525 // Return the file offset of the normal symbol table.
4526
4527 off_t
4528 Layout::symtab_section_offset() const
4529 {
4530   if (this->symtab_section_ != NULL)
4531     return this->symtab_section_->offset();
4532   return 0;
4533 }
4534
4535 // Write out the Output_sections.  Most won't have anything to write,
4536 // since most of the data will come from input sections which are
4537 // handled elsewhere.  But some Output_sections do have Output_data.
4538
4539 void
4540 Layout::write_output_sections(Output_file* of) const
4541 {
4542   for (Section_list::const_iterator p = this->section_list_.begin();
4543        p != this->section_list_.end();
4544        ++p)
4545     {
4546       if (!(*p)->after_input_sections())
4547         (*p)->write(of);
4548     }
4549 }
4550
4551 // Write out data not associated with a section or the symbol table.
4552
4553 void
4554 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4555 {
4556   if (!parameters->options().strip_all())
4557     {
4558       const Output_section* symtab_section = this->symtab_section_;
4559       for (Section_list::const_iterator p = this->section_list_.begin();
4560            p != this->section_list_.end();
4561            ++p)
4562         {
4563           if ((*p)->needs_symtab_index())
4564             {
4565               gold_assert(symtab_section != NULL);
4566               unsigned int index = (*p)->symtab_index();
4567               gold_assert(index > 0 && index != -1U);
4568               off_t off = (symtab_section->offset()
4569                            + index * symtab_section->entsize());
4570               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4571             }
4572         }
4573     }
4574
4575   const Output_section* dynsym_section = this->dynsym_section_;
4576   for (Section_list::const_iterator p = this->section_list_.begin();
4577        p != this->section_list_.end();
4578        ++p)
4579     {
4580       if ((*p)->needs_dynsym_index())
4581         {
4582           gold_assert(dynsym_section != NULL);
4583           unsigned int index = (*p)->dynsym_index();
4584           gold_assert(index > 0 && index != -1U);
4585           off_t off = (dynsym_section->offset()
4586                        + index * dynsym_section->entsize());
4587           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4588         }
4589     }
4590
4591   // Write out the Output_data which are not in an Output_section.
4592   for (Data_list::const_iterator p = this->special_output_list_.begin();
4593        p != this->special_output_list_.end();
4594        ++p)
4595     (*p)->write(of);
4596 }
4597
4598 // Write out the Output_sections which can only be written after the
4599 // input sections are complete.
4600
4601 void
4602 Layout::write_sections_after_input_sections(Output_file* of)
4603 {
4604   // Determine the final section offsets, and thus the final output
4605   // file size.  Note we finalize the .shstrab last, to allow the
4606   // after_input_section sections to modify their section-names before
4607   // writing.
4608   if (this->any_postprocessing_sections_)
4609     {
4610       off_t off = this->output_file_size_;
4611       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4612
4613       // Now that we've finalized the names, we can finalize the shstrab.
4614       off =
4615         this->set_section_offsets(off,
4616                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4617
4618       if (off > this->output_file_size_)
4619         {
4620           of->resize(off);
4621           this->output_file_size_ = off;
4622         }
4623     }
4624
4625   for (Section_list::const_iterator p = this->section_list_.begin();
4626        p != this->section_list_.end();
4627        ++p)
4628     {
4629       if ((*p)->after_input_sections())
4630         (*p)->write(of);
4631     }
4632
4633   this->section_headers_->write(of);
4634 }
4635
4636 // If the build ID requires computing a checksum, do so here, and
4637 // write it out.  We compute a checksum over the entire file because
4638 // that is simplest.
4639
4640 void
4641 Layout::write_build_id(Output_file* of) const
4642 {
4643   if (this->build_id_note_ == NULL)
4644     return;
4645
4646   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4647
4648   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4649                                           this->build_id_note_->data_size());
4650
4651   const char* style = parameters->options().build_id();
4652   if (strcmp(style, "sha1") == 0)
4653     {
4654       sha1_ctx ctx;
4655       sha1_init_ctx(&ctx);
4656       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4657       sha1_finish_ctx(&ctx, ov);
4658     }
4659   else if (strcmp(style, "md5") == 0)
4660     {
4661       md5_ctx ctx;
4662       md5_init_ctx(&ctx);
4663       md5_process_bytes(iv, this->output_file_size_, &ctx);
4664       md5_finish_ctx(&ctx, ov);
4665     }
4666   else
4667     gold_unreachable();
4668
4669   of->write_output_view(this->build_id_note_->offset(),
4670                         this->build_id_note_->data_size(),
4671                         ov);
4672
4673   of->free_input_view(0, this->output_file_size_, iv);
4674 }
4675
4676 // Write out a binary file.  This is called after the link is
4677 // complete.  IN is the temporary output file we used to generate the
4678 // ELF code.  We simply walk through the segments, read them from
4679 // their file offset in IN, and write them to their load address in
4680 // the output file.  FIXME: with a bit more work, we could support
4681 // S-records and/or Intel hex format here.
4682
4683 void
4684 Layout::write_binary(Output_file* in) const
4685 {
4686   gold_assert(parameters->options().oformat_enum()
4687               == General_options::OBJECT_FORMAT_BINARY);
4688
4689   // Get the size of the binary file.
4690   uint64_t max_load_address = 0;
4691   for (Segment_list::const_iterator p = this->segment_list_.begin();
4692        p != this->segment_list_.end();
4693        ++p)
4694     {
4695       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4696         {
4697           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4698           if (max_paddr > max_load_address)
4699             max_load_address = max_paddr;
4700         }
4701     }
4702
4703   Output_file out(parameters->options().output_file_name());
4704   out.open(max_load_address);
4705
4706   for (Segment_list::const_iterator p = this->segment_list_.begin();
4707        p != this->segment_list_.end();
4708        ++p)
4709     {
4710       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4711         {
4712           const unsigned char* vin = in->get_input_view((*p)->offset(),
4713                                                         (*p)->filesz());
4714           unsigned char* vout = out.get_output_view((*p)->paddr(),
4715                                                     (*p)->filesz());
4716           memcpy(vout, vin, (*p)->filesz());
4717           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4718           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4719         }
4720     }
4721
4722   out.close();
4723 }
4724
4725 // Print the output sections to the map file.
4726
4727 void
4728 Layout::print_to_mapfile(Mapfile* mapfile) const
4729 {
4730   for (Segment_list::const_iterator p = this->segment_list_.begin();
4731        p != this->segment_list_.end();
4732        ++p)
4733     (*p)->print_sections_to_mapfile(mapfile);
4734 }
4735
4736 // Print statistical information to stderr.  This is used for --stats.
4737
4738 void
4739 Layout::print_stats() const
4740 {
4741   this->namepool_.print_stats("section name pool");
4742   this->sympool_.print_stats("output symbol name pool");
4743   this->dynpool_.print_stats("dynamic name pool");
4744
4745   for (Section_list::const_iterator p = this->section_list_.begin();
4746        p != this->section_list_.end();
4747        ++p)
4748     (*p)->print_merge_stats();
4749 }
4750
4751 // Write_sections_task methods.
4752
4753 // We can always run this task.
4754
4755 Task_token*
4756 Write_sections_task::is_runnable()
4757 {
4758   return NULL;
4759 }
4760
4761 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4762 // when finished.
4763
4764 void
4765 Write_sections_task::locks(Task_locker* tl)
4766 {
4767   tl->add(this, this->output_sections_blocker_);
4768   tl->add(this, this->final_blocker_);
4769 }
4770
4771 // Run the task--write out the data.
4772
4773 void
4774 Write_sections_task::run(Workqueue*)
4775 {
4776   this->layout_->write_output_sections(this->of_);
4777 }
4778
4779 // Write_data_task methods.
4780
4781 // We can always run this task.
4782
4783 Task_token*
4784 Write_data_task::is_runnable()
4785 {
4786   return NULL;
4787 }
4788
4789 // We need to unlock FINAL_BLOCKER when finished.
4790
4791 void
4792 Write_data_task::locks(Task_locker* tl)
4793 {
4794   tl->add(this, this->final_blocker_);
4795 }
4796
4797 // Run the task--write out the data.
4798
4799 void
4800 Write_data_task::run(Workqueue*)
4801 {
4802   this->layout_->write_data(this->symtab_, this->of_);
4803 }
4804
4805 // Write_symbols_task methods.
4806
4807 // We can always run this task.
4808
4809 Task_token*
4810 Write_symbols_task::is_runnable()
4811 {
4812   return NULL;
4813 }
4814
4815 // We need to unlock FINAL_BLOCKER when finished.
4816
4817 void
4818 Write_symbols_task::locks(Task_locker* tl)
4819 {
4820   tl->add(this, this->final_blocker_);
4821 }
4822
4823 // Run the task--write out the symbols.
4824
4825 void
4826 Write_symbols_task::run(Workqueue*)
4827 {
4828   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4829                                this->layout_->symtab_xindex(),
4830                                this->layout_->dynsym_xindex(), this->of_);
4831 }
4832
4833 // Write_after_input_sections_task methods.
4834
4835 // We can only run this task after the input sections have completed.
4836
4837 Task_token*
4838 Write_after_input_sections_task::is_runnable()
4839 {
4840   if (this->input_sections_blocker_->is_blocked())
4841     return this->input_sections_blocker_;
4842   return NULL;
4843 }
4844
4845 // We need to unlock FINAL_BLOCKER when finished.
4846
4847 void
4848 Write_after_input_sections_task::locks(Task_locker* tl)
4849 {
4850   tl->add(this, this->final_blocker_);
4851 }
4852
4853 // Run the task.
4854
4855 void
4856 Write_after_input_sections_task::run(Workqueue*)
4857 {
4858   this->layout_->write_sections_after_input_sections(this->of_);
4859 }
4860
4861 // Close_task_runner methods.
4862
4863 // Run the task--close the file.
4864
4865 void
4866 Close_task_runner::run(Workqueue*, const Task*)
4867 {
4868   // If we need to compute a checksum for the BUILD if, we do so here.
4869   this->layout_->write_build_id(this->of_);
4870
4871   // If we've been asked to create a binary file, we do so here.
4872   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4873     this->layout_->write_binary(this->of_);
4874
4875   this->of_->close();
4876 }
4877
4878 // Instantiate the templates we need.  We could use the configure
4879 // script to restrict this to only the ones for implemented targets.
4880
4881 #ifdef HAVE_TARGET_32_LITTLE
4882 template
4883 Output_section*
4884 Layout::init_fixed_output_section<32, false>(
4885     const char* name,
4886     elfcpp::Shdr<32, false>& shdr);
4887 #endif
4888
4889 #ifdef HAVE_TARGET_32_BIG
4890 template
4891 Output_section*
4892 Layout::init_fixed_output_section<32, true>(
4893     const char* name,
4894     elfcpp::Shdr<32, true>& shdr);
4895 #endif
4896
4897 #ifdef HAVE_TARGET_64_LITTLE
4898 template
4899 Output_section*
4900 Layout::init_fixed_output_section<64, false>(
4901     const char* name,
4902     elfcpp::Shdr<64, false>& shdr);
4903 #endif
4904
4905 #ifdef HAVE_TARGET_64_BIG
4906 template
4907 Output_section*
4908 Layout::init_fixed_output_section<64, true>(
4909     const char* name,
4910     elfcpp::Shdr<64, true>& shdr);
4911 #endif
4912
4913 #ifdef HAVE_TARGET_32_LITTLE
4914 template
4915 Output_section*
4916 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4917                           unsigned int shndx,
4918                           const char* name,
4919                           const elfcpp::Shdr<32, false>& shdr,
4920                           unsigned int, unsigned int, off_t*);
4921 #endif
4922
4923 #ifdef HAVE_TARGET_32_BIG
4924 template
4925 Output_section*
4926 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4927                          unsigned int shndx,
4928                          const char* name,
4929                          const elfcpp::Shdr<32, true>& shdr,
4930                          unsigned int, unsigned int, off_t*);
4931 #endif
4932
4933 #ifdef HAVE_TARGET_64_LITTLE
4934 template
4935 Output_section*
4936 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4937                           unsigned int shndx,
4938                           const char* name,
4939                           const elfcpp::Shdr<64, false>& shdr,
4940                           unsigned int, unsigned int, off_t*);
4941 #endif
4942
4943 #ifdef HAVE_TARGET_64_BIG
4944 template
4945 Output_section*
4946 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4947                          unsigned int shndx,
4948                          const char* name,
4949                          const elfcpp::Shdr<64, true>& shdr,
4950                          unsigned int, unsigned int, off_t*);
4951 #endif
4952
4953 #ifdef HAVE_TARGET_32_LITTLE
4954 template
4955 Output_section*
4956 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4957                                 unsigned int reloc_shndx,
4958                                 const elfcpp::Shdr<32, false>& shdr,
4959                                 Output_section* data_section,
4960                                 Relocatable_relocs* rr);
4961 #endif
4962
4963 #ifdef HAVE_TARGET_32_BIG
4964 template
4965 Output_section*
4966 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4967                                unsigned int reloc_shndx,
4968                                const elfcpp::Shdr<32, true>& shdr,
4969                                Output_section* data_section,
4970                                Relocatable_relocs* rr);
4971 #endif
4972
4973 #ifdef HAVE_TARGET_64_LITTLE
4974 template
4975 Output_section*
4976 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4977                                 unsigned int reloc_shndx,
4978                                 const elfcpp::Shdr<64, false>& shdr,
4979                                 Output_section* data_section,
4980                                 Relocatable_relocs* rr);
4981 #endif
4982
4983 #ifdef HAVE_TARGET_64_BIG
4984 template
4985 Output_section*
4986 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4987                                unsigned int reloc_shndx,
4988                                const elfcpp::Shdr<64, true>& shdr,
4989                                Output_section* data_section,
4990                                Relocatable_relocs* rr);
4991 #endif
4992
4993 #ifdef HAVE_TARGET_32_LITTLE
4994 template
4995 void
4996 Layout::layout_group<32, false>(Symbol_table* symtab,
4997                                 Sized_relobj_file<32, false>* object,
4998                                 unsigned int,
4999                                 const char* group_section_name,
5000                                 const char* signature,
5001                                 const elfcpp::Shdr<32, false>& shdr,
5002                                 elfcpp::Elf_Word flags,
5003                                 std::vector<unsigned int>* shndxes);
5004 #endif
5005
5006 #ifdef HAVE_TARGET_32_BIG
5007 template
5008 void
5009 Layout::layout_group<32, true>(Symbol_table* symtab,
5010                                Sized_relobj_file<32, true>* object,
5011                                unsigned int,
5012                                const char* group_section_name,
5013                                const char* signature,
5014                                const elfcpp::Shdr<32, true>& shdr,
5015                                elfcpp::Elf_Word flags,
5016                                std::vector<unsigned int>* shndxes);
5017 #endif
5018
5019 #ifdef HAVE_TARGET_64_LITTLE
5020 template
5021 void
5022 Layout::layout_group<64, false>(Symbol_table* symtab,
5023                                 Sized_relobj_file<64, false>* object,
5024                                 unsigned int,
5025                                 const char* group_section_name,
5026                                 const char* signature,
5027                                 const elfcpp::Shdr<64, false>& shdr,
5028                                 elfcpp::Elf_Word flags,
5029                                 std::vector<unsigned int>* shndxes);
5030 #endif
5031
5032 #ifdef HAVE_TARGET_64_BIG
5033 template
5034 void
5035 Layout::layout_group<64, true>(Symbol_table* symtab,
5036                                Sized_relobj_file<64, true>* object,
5037                                unsigned int,
5038                                const char* group_section_name,
5039                                const char* signature,
5040                                const elfcpp::Shdr<64, true>& shdr,
5041                                elfcpp::Elf_Word flags,
5042                                std::vector<unsigned int>* shndxes);
5043 #endif
5044
5045 #ifdef HAVE_TARGET_32_LITTLE
5046 template
5047 Output_section*
5048 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5049                                    const unsigned char* symbols,
5050                                    off_t symbols_size,
5051                                    const unsigned char* symbol_names,
5052                                    off_t symbol_names_size,
5053                                    unsigned int shndx,
5054                                    const elfcpp::Shdr<32, false>& shdr,
5055                                    unsigned int reloc_shndx,
5056                                    unsigned int reloc_type,
5057                                    off_t* off);
5058 #endif
5059
5060 #ifdef HAVE_TARGET_32_BIG
5061 template
5062 Output_section*
5063 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5064                                   const unsigned char* symbols,
5065                                   off_t symbols_size,
5066                                   const unsigned char* symbol_names,
5067                                   off_t symbol_names_size,
5068                                   unsigned int shndx,
5069                                   const elfcpp::Shdr<32, true>& shdr,
5070                                   unsigned int reloc_shndx,
5071                                   unsigned int reloc_type,
5072                                   off_t* off);
5073 #endif
5074
5075 #ifdef HAVE_TARGET_64_LITTLE
5076 template
5077 Output_section*
5078 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5079                                    const unsigned char* symbols,
5080                                    off_t symbols_size,
5081                                    const unsigned char* symbol_names,
5082                                    off_t symbol_names_size,
5083                                    unsigned int shndx,
5084                                    const elfcpp::Shdr<64, false>& shdr,
5085                                    unsigned int reloc_shndx,
5086                                    unsigned int reloc_type,
5087                                    off_t* off);
5088 #endif
5089
5090 #ifdef HAVE_TARGET_64_BIG
5091 template
5092 Output_section*
5093 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5094                                   const unsigned char* symbols,
5095                                   off_t symbols_size,
5096                                   const unsigned char* symbol_names,
5097                                   off_t symbol_names_size,
5098                                   unsigned int shndx,
5099                                   const elfcpp::Shdr<64, true>& shdr,
5100                                   unsigned int reloc_shndx,
5101                                   unsigned int reloc_type,
5102                                   off_t* off);
5103 #endif
5104
5105 } // End namespace gold.