From Craig Silverstein: rename option functions for future option
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             task);
56
57   // Now we know the final size of the output file and we know where
58   // each piece of information goes.
59   Output_file* of = new Output_file(parameters->output_file_name());
60   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
61     of->set_is_temporary();
62   of->open(file_size);
63
64   // Queue up the final set of tasks.
65   gold::queue_final_tasks(this->options_, this->input_objects_,
66                           this->symtab_, this->layout_, workqueue, of);
67 }
68
69 // Layout methods.
70
71 Layout::Layout(const General_options& options, Script_options* script_options)
72   : options_(options), script_options_(script_options), namepool_(),
73     sympool_(), dynpool_(), signatures_(),
74     section_name_map_(), segment_list_(), section_list_(),
75     unattached_section_list_(), special_output_list_(),
76     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
77     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
78     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
79     input_requires_executable_stack_(false),
80     input_with_gnu_stack_note_(false),
81     input_without_gnu_stack_note_(false),
82     has_static_tls_(false),
83     any_postprocessing_sections_(false)
84 {
85   // Make space for more than enough segments for a typical file.
86   // This is just for efficiency--it's OK if we wind up needing more.
87   this->segment_list_.reserve(12);
88
89   // We expect two unattached Output_data objects: the file header and
90   // the segment headers.
91   this->special_output_list_.reserve(2);
92 }
93
94 // Hash a key we use to look up an output section mapping.
95
96 size_t
97 Layout::Hash_key::operator()(const Layout::Key& k) const
98 {
99  return k.first + k.second.first + k.second.second;
100 }
101
102 // Return whether PREFIX is a prefix of STR.
103
104 static inline bool
105 is_prefix_of(const char* prefix, const char* str)
106 {
107   return strncmp(prefix, str, strlen(prefix)) == 0;
108 }
109
110 // Returns whether the given section is in the list of
111 // debug-sections-used-by-some-version-of-gdb.  Currently,
112 // we've checked versions of gdb up to and including 6.7.1.
113
114 static const char* gdb_sections[] =
115 { ".debug_abbrev",
116   // ".debug_aranges",   // not used by gdb as of 6.7.1
117   ".debug_frame",
118   ".debug_info",
119   ".debug_line",
120   ".debug_loc",
121   ".debug_macinfo",
122   // ".debug_pubnames",  // not used by gdb as of 6.7.1
123   ".debug_ranges",
124   ".debug_str",
125 };
126
127 static inline bool
128 is_gdb_debug_section(const char* str)
129 {
130   // We can do this faster: binary search or a hashtable.  But why bother?
131   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
132     if (strcmp(str, gdb_sections[i]) == 0)
133       return true;
134   return false;
135 }
136
137 // Whether to include this section in the link.
138
139 template<int size, bool big_endian>
140 bool
141 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
142                         const elfcpp::Shdr<size, big_endian>& shdr)
143 {
144   switch (shdr.get_sh_type())
145     {
146     case elfcpp::SHT_NULL:
147     case elfcpp::SHT_SYMTAB:
148     case elfcpp::SHT_DYNSYM:
149     case elfcpp::SHT_STRTAB:
150     case elfcpp::SHT_HASH:
151     case elfcpp::SHT_DYNAMIC:
152     case elfcpp::SHT_SYMTAB_SHNDX:
153       return false;
154
155     case elfcpp::SHT_RELA:
156     case elfcpp::SHT_REL:
157     case elfcpp::SHT_GROUP:
158       // For a relocatable link these should be handled elsewhere.
159       gold_assert(!parameters->output_is_object());
160       return false;
161
162     case elfcpp::SHT_PROGBITS:
163       if (parameters->strip_debug()
164           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
165         {
166           // Debugging sections can only be recognized by name.
167           if (is_prefix_of(".debug", name)
168               || is_prefix_of(".gnu.linkonce.wi.", name)
169               || is_prefix_of(".line", name)
170               || is_prefix_of(".stab", name))
171             return false;
172         }
173       if (parameters->strip_debug_gdb()
174           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
175         {
176           // Debugging sections can only be recognized by name.
177           if (is_prefix_of(".debug", name)
178               && !is_gdb_debug_section(name))
179             return false;
180         }
181       return true;
182
183     default:
184       return true;
185     }
186 }
187
188 // Return an output section named NAME, or NULL if there is none.
189
190 Output_section*
191 Layout::find_output_section(const char* name) const
192 {
193   for (Section_list::const_iterator p = this->section_list_.begin();
194        p != this->section_list_.end();
195        ++p)
196     if (strcmp((*p)->name(), name) == 0)
197       return *p;
198   return NULL;
199 }
200
201 // Return an output segment of type TYPE, with segment flags SET set
202 // and segment flags CLEAR clear.  Return NULL if there is none.
203
204 Output_segment*
205 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
206                             elfcpp::Elf_Word clear) const
207 {
208   for (Segment_list::const_iterator p = this->segment_list_.begin();
209        p != this->segment_list_.end();
210        ++p)
211     if (static_cast<elfcpp::PT>((*p)->type()) == type
212         && ((*p)->flags() & set) == set
213         && ((*p)->flags() & clear) == 0)
214       return *p;
215   return NULL;
216 }
217
218 // Return the output section to use for section NAME with type TYPE
219 // and section flags FLAGS.  NAME must be canonicalized in the string
220 // pool, and NAME_KEY is the key.
221
222 Output_section*
223 Layout::get_output_section(const char* name, Stringpool::Key name_key,
224                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
225 {
226   const Key key(name_key, std::make_pair(type, flags));
227   const std::pair<Key, Output_section*> v(key, NULL);
228   std::pair<Section_name_map::iterator, bool> ins(
229     this->section_name_map_.insert(v));
230
231   if (!ins.second)
232     return ins.first->second;
233   else
234     {
235       // This is the first time we've seen this name/type/flags
236       // combination.
237       Output_section* os = this->make_output_section(name, type, flags);
238       ins.first->second = os;
239       return os;
240     }
241 }
242
243 // Pick the output section to use for section NAME, in input file
244 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
245 // linker created section.  ADJUST_NAME is true if we should apply the
246 // standard name mappings in Layout::output_section_name.  This will
247 // return NULL if the input section should be discarded.
248
249 Output_section*
250 Layout::choose_output_section(const Relobj* relobj, const char* name,
251                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
252                               bool adjust_name)
253 {
254   // We should ignore some flags.  FIXME: This will need some
255   // adjustment for ld -r.
256   flags &= ~ (elfcpp::SHF_INFO_LINK
257               | elfcpp::SHF_LINK_ORDER
258               | elfcpp::SHF_GROUP
259               | elfcpp::SHF_MERGE
260               | elfcpp::SHF_STRINGS);
261
262   if (this->script_options_->saw_sections_clause())
263     {
264       // We are using a SECTIONS clause, so the output section is
265       // chosen based only on the name.
266
267       Script_sections* ss = this->script_options_->script_sections();
268       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
269       Output_section** output_section_slot;
270       name = ss->output_section_name(file_name, name, &output_section_slot);
271       if (name == NULL)
272         {
273           // The SECTIONS clause says to discard this input section.
274           return NULL;
275         }
276
277       // If this is an orphan section--one not mentioned in the linker
278       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
279       // default processing below.
280
281       if (output_section_slot != NULL)
282         {
283           if (*output_section_slot != NULL)
284             return *output_section_slot;
285
286           // We don't put sections found in the linker script into
287           // SECTION_NAME_MAP_.  That keeps us from getting confused
288           // if an orphan section is mapped to a section with the same
289           // name as one in the linker script.
290
291           name = this->namepool_.add(name, false, NULL);
292
293           Output_section* os = this->make_output_section(name, type, flags);
294           os->set_found_in_sections_clause();
295           *output_section_slot = os;
296           return os;
297         }
298     }
299
300   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
301
302   // Turn NAME from the name of the input section into the name of the
303   // output section.
304
305   size_t len = strlen(name);
306   if (adjust_name && !parameters->output_is_object())
307     name = Layout::output_section_name(name, &len);
308
309   Stringpool::Key name_key;
310   name = this->namepool_.add_with_length(name, len, true, &name_key);
311
312   // Find or make the output section.  The output section is selected
313   // based on the section name, type, and flags.
314   return this->get_output_section(name, name_key, type, flags);
315 }
316
317 // Return the output section to use for input section SHNDX, with name
318 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
319 // index of a relocation section which applies to this section, or 0
320 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
321 // relocation section if there is one.  Set *OFF to the offset of this
322 // input section without the output section.  Return NULL if the
323 // section should be discarded.  Set *OFF to -1 if the section
324 // contents should not be written directly to the output file, but
325 // will instead receive special handling.
326
327 template<int size, bool big_endian>
328 Output_section*
329 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
330                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
331                unsigned int reloc_shndx, unsigned int, off_t* off)
332 {
333   if (!this->include_section(object, name, shdr))
334     return NULL;
335
336   Output_section* os;
337
338   // In a relocatable link a grouped section must not be combined with
339   // any other sections.
340   if (parameters->output_is_object()
341       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
342     {
343       name = this->namepool_.add(name, true, NULL);
344       os = this->make_output_section(name, shdr.get_sh_type(),
345                                      shdr.get_sh_flags());
346     }
347   else
348     {
349       os = this->choose_output_section(object, name, shdr.get_sh_type(),
350                                        shdr.get_sh_flags(), true);
351       if (os == NULL)
352         return NULL;
353     }
354
355   // FIXME: Handle SHF_LINK_ORDER somewhere.
356
357   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
358                                this->script_options_->saw_sections_clause());
359
360   return os;
361 }
362
363 // Handle a relocation section when doing a relocatable link.
364
365 template<int size, bool big_endian>
366 Output_section*
367 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
368                      unsigned int,
369                      const elfcpp::Shdr<size, big_endian>& shdr,
370                      Output_section* data_section,
371                      Relocatable_relocs* rr)
372 {
373   gold_assert(parameters->output_is_object());
374
375   int sh_type = shdr.get_sh_type();
376
377   std::string name;
378   if (sh_type == elfcpp::SHT_REL)
379     name = ".rel";
380   else if (sh_type == elfcpp::SHT_RELA)
381     name = ".rela";
382   else
383     gold_unreachable();
384   name += data_section->name();
385
386   Output_section* os = this->choose_output_section(object, name.c_str(),
387                                                    sh_type,
388                                                    shdr.get_sh_flags(),
389                                                    false);
390
391   os->set_should_link_to_symtab();
392   os->set_info_section(data_section);
393
394   Output_section_data* posd;
395   if (sh_type == elfcpp::SHT_REL)
396     {
397       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
398       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
399                                            size,
400                                            big_endian>(rr);
401     }
402   else if (sh_type == elfcpp::SHT_RELA)
403     {
404       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
405       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
406                                            size,
407                                            big_endian>(rr);
408     }
409   else
410     gold_unreachable();
411
412   os->add_output_section_data(posd);
413   rr->set_output_data(posd);
414
415   return os;
416 }
417
418 // Handle a group section when doing a relocatable link.
419
420 template<int size, bool big_endian>
421 void
422 Layout::layout_group(Symbol_table* symtab,
423                      Sized_relobj<size, big_endian>* object,
424                      unsigned int,
425                      const char* group_section_name,
426                      const char* signature,
427                      const elfcpp::Shdr<size, big_endian>& shdr,
428                      const elfcpp::Elf_Word* contents)
429 {
430   gold_assert(parameters->output_is_object());
431   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
432   group_section_name = this->namepool_.add(group_section_name, true, NULL);
433   Output_section* os = this->make_output_section(group_section_name,
434                                                  elfcpp::SHT_GROUP,
435                                                  shdr.get_sh_flags());
436
437   // We need to find a symbol with the signature in the symbol table.
438   // If we don't find one now, we need to look again later.
439   Symbol* sym = symtab->lookup(signature, NULL);
440   if (sym != NULL)
441     os->set_info_symndx(sym);
442   else
443     {
444       // We will wind up using a symbol whose name is the signature.
445       // So just put the signature in the symbol name pool to save it.
446       signature = symtab->canonicalize_name(signature);
447       this->group_signatures_.push_back(Group_signature(os, signature));
448     }
449
450   os->set_should_link_to_symtab();
451   os->set_entsize(4);
452
453   section_size_type entry_count =
454     convert_to_section_size_type(shdr.get_sh_size() / 4);
455   Output_section_data* posd =
456     new Output_data_group<size, big_endian>(object, entry_count, contents);
457   os->add_output_section_data(posd);
458 }
459
460 // Special GNU handling of sections name .eh_frame.  They will
461 // normally hold exception frame data as defined by the C++ ABI
462 // (http://codesourcery.com/cxx-abi/).
463
464 template<int size, bool big_endian>
465 Output_section*
466 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
467                         const unsigned char* symbols,
468                         off_t symbols_size,
469                         const unsigned char* symbol_names,
470                         off_t symbol_names_size,
471                         unsigned int shndx,
472                         const elfcpp::Shdr<size, big_endian>& shdr,
473                         unsigned int reloc_shndx, unsigned int reloc_type,
474                         off_t* off)
475 {
476   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
477   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
478
479   const char* const name = ".eh_frame";
480   Output_section* os = this->choose_output_section(object,
481                                                    name,
482                                                    elfcpp::SHT_PROGBITS,
483                                                    elfcpp::SHF_ALLOC,
484                                                    false);
485   if (os == NULL)
486     return NULL;
487
488   if (this->eh_frame_section_ == NULL)
489     {
490       this->eh_frame_section_ = os;
491       this->eh_frame_data_ = new Eh_frame();
492       os->add_output_section_data(this->eh_frame_data_);
493
494       if (this->options_.eh_frame_hdr())
495         {
496           Output_section* hdr_os =
497             this->choose_output_section(NULL,
498                                         ".eh_frame_hdr",
499                                         elfcpp::SHT_PROGBITS,
500                                         elfcpp::SHF_ALLOC,
501                                         false);
502
503           if (hdr_os != NULL)
504             {
505               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
506                                                         this->eh_frame_data_);
507               hdr_os->add_output_section_data(hdr_posd);
508
509               hdr_os->set_after_input_sections();
510
511               if (!this->script_options_->saw_phdrs_clause())
512                 {
513                   Output_segment* hdr_oseg;
514                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
515                                                        elfcpp::PF_R);
516                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
517                 }
518
519               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
520             }
521         }
522     }
523
524   gold_assert(this->eh_frame_section_ == os);
525
526   if (this->eh_frame_data_->add_ehframe_input_section(object,
527                                                       symbols,
528                                                       symbols_size,
529                                                       symbol_names,
530                                                       symbol_names_size,
531                                                       shndx,
532                                                       reloc_shndx,
533                                                       reloc_type))
534     *off = -1;
535   else
536     {
537       // We couldn't handle this .eh_frame section for some reason.
538       // Add it as a normal section.
539       bool saw_sections_clause = this->script_options_->saw_sections_clause();
540       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
541                                    saw_sections_clause);
542     }
543
544   return os;
545 }
546
547 // Add POSD to an output section using NAME, TYPE, and FLAGS.
548
549 void
550 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
551                                 elfcpp::Elf_Xword flags,
552                                 Output_section_data* posd)
553 {
554   Output_section* os = this->choose_output_section(NULL, name, type, flags,
555                                                    false);
556   if (os != NULL)
557     os->add_output_section_data(posd);
558 }
559
560 // Map section flags to segment flags.
561
562 elfcpp::Elf_Word
563 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
564 {
565   elfcpp::Elf_Word ret = elfcpp::PF_R;
566   if ((flags & elfcpp::SHF_WRITE) != 0)
567     ret |= elfcpp::PF_W;
568   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
569     ret |= elfcpp::PF_X;
570   return ret;
571 }
572
573 // Sometimes we compress sections.  This is typically done for
574 // sections that are not part of normal program execution (such as
575 // .debug_* sections), and where the readers of these sections know
576 // how to deal with compressed sections.  (To make it easier for them,
577 // we will rename the ouput section in such cases from .foo to
578 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
579 // doesn't say for certain whether we'll compress -- it depends on
580 // commandline options as well -- just whether this section is a
581 // candidate for compression.
582
583 static bool
584 is_compressible_debug_section(const char* secname)
585 {
586   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
587 }
588
589 // Make a new Output_section, and attach it to segments as
590 // appropriate.
591
592 Output_section*
593 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
594                             elfcpp::Elf_Xword flags)
595 {
596   Output_section* os;
597   if ((flags & elfcpp::SHF_ALLOC) == 0
598       && this->options_.compress_debug_sections()
599       && is_compressible_debug_section(name))
600     os = new Output_compressed_section(&this->options_, name, type, flags);
601   else
602     os = new Output_section(name, type, flags);
603
604   this->section_list_.push_back(os);
605
606   if ((flags & elfcpp::SHF_ALLOC) == 0)
607     this->unattached_section_list_.push_back(os);
608   else
609     {
610       if (parameters->output_is_object())
611         return os;
612
613       // If we have a SECTIONS clause, we can't handle the attachment
614       // to segments until after we've seen all the sections.
615       if (this->script_options_->saw_sections_clause())
616         return os;
617
618       gold_assert(!this->script_options_->saw_phdrs_clause());
619
620       // This output section goes into a PT_LOAD segment.
621
622       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
623
624       // In general the only thing we really care about for PT_LOAD
625       // segments is whether or not they are writable, so that is how
626       // we search for them.  People who need segments sorted on some
627       // other basis will have to use a linker script.
628
629       Segment_list::const_iterator p;
630       for (p = this->segment_list_.begin();
631            p != this->segment_list_.end();
632            ++p)
633         {
634           if ((*p)->type() == elfcpp::PT_LOAD
635               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
636             {
637               // If -Tbss was specified, we need to separate the data
638               // and BSS segments.
639               if (this->options_.user_set_Tbss())
640                 {
641                   if ((type == elfcpp::SHT_NOBITS)
642                       == (*p)->has_any_data_sections())
643                     continue;
644                 }
645
646               (*p)->add_output_section(os, seg_flags);
647               break;
648             }
649         }
650
651       if (p == this->segment_list_.end())
652         {
653           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
654                                                            seg_flags);
655           oseg->add_output_section(os, seg_flags);
656         }
657
658       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
659       // segment.
660       if (type == elfcpp::SHT_NOTE)
661         {
662           // See if we already have an equivalent PT_NOTE segment.
663           for (p = this->segment_list_.begin();
664                p != segment_list_.end();
665                ++p)
666             {
667               if ((*p)->type() == elfcpp::PT_NOTE
668                   && (((*p)->flags() & elfcpp::PF_W)
669                       == (seg_flags & elfcpp::PF_W)))
670                 {
671                   (*p)->add_output_section(os, seg_flags);
672                   break;
673                 }
674             }
675
676           if (p == this->segment_list_.end())
677             {
678               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
679                                                                seg_flags);
680               oseg->add_output_section(os, seg_flags);
681             }
682         }
683
684       // If we see a loadable SHF_TLS section, we create a PT_TLS
685       // segment.  There can only be one such segment.
686       if ((flags & elfcpp::SHF_TLS) != 0)
687         {
688           if (this->tls_segment_ == NULL)
689             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
690                                                            seg_flags);
691           this->tls_segment_->add_output_section(os, seg_flags);
692         }
693     }
694
695   return os;
696 }
697
698 // Return the number of segments we expect to see.
699
700 size_t
701 Layout::expected_segment_count() const
702 {
703   size_t ret = this->segment_list_.size();
704
705   // If we didn't see a SECTIONS clause in a linker script, we should
706   // already have the complete list of segments.  Otherwise we ask the
707   // SECTIONS clause how many segments it expects, and add in the ones
708   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
709
710   if (!this->script_options_->saw_sections_clause())
711     return ret;
712   else
713     {
714       const Script_sections* ss = this->script_options_->script_sections();
715       return ret + ss->expected_segment_count(this);
716     }
717 }
718
719 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
720 // is whether we saw a .note.GNU-stack section in the object file.
721 // GNU_STACK_FLAGS is the section flags.  The flags give the
722 // protection required for stack memory.  We record this in an
723 // executable as a PT_GNU_STACK segment.  If an object file does not
724 // have a .note.GNU-stack segment, we must assume that it is an old
725 // object.  On some targets that will force an executable stack.
726
727 void
728 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
729 {
730   if (!seen_gnu_stack)
731     this->input_without_gnu_stack_note_ = true;
732   else
733     {
734       this->input_with_gnu_stack_note_ = true;
735       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
736         this->input_requires_executable_stack_ = true;
737     }
738 }
739
740 // Create the dynamic sections which are needed before we read the
741 // relocs.
742
743 void
744 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
745 {
746   if (parameters->doing_static_link())
747     return;
748
749   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
750                                                        elfcpp::SHT_DYNAMIC,
751                                                        (elfcpp::SHF_ALLOC
752                                                         | elfcpp::SHF_WRITE),
753                                                        false);
754
755   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
756                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
757                                 elfcpp::STV_HIDDEN, 0, false, false);
758
759   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
760
761   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
762 }
763
764 // For each output section whose name can be represented as C symbol,
765 // define __start and __stop symbols for the section.  This is a GNU
766 // extension.
767
768 void
769 Layout::define_section_symbols(Symbol_table* symtab)
770 {
771   for (Section_list::const_iterator p = this->section_list_.begin();
772        p != this->section_list_.end();
773        ++p)
774     {
775       const char* const name = (*p)->name();
776       if (name[strspn(name,
777                       ("0123456789"
778                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
779                        "abcdefghijklmnopqrstuvwxyz"
780                        "_"))]
781           == '\0')
782         {
783           const std::string name_string(name);
784           const std::string start_name("__start_" + name_string);
785           const std::string stop_name("__stop_" + name_string);
786
787           symtab->define_in_output_data(start_name.c_str(),
788                                         NULL, // version
789                                         *p,
790                                         0, // value
791                                         0, // symsize
792                                         elfcpp::STT_NOTYPE,
793                                         elfcpp::STB_GLOBAL,
794                                         elfcpp::STV_DEFAULT,
795                                         0, // nonvis
796                                         false, // offset_is_from_end
797                                         true); // only_if_ref
798
799           symtab->define_in_output_data(stop_name.c_str(),
800                                         NULL, // version
801                                         *p,
802                                         0, // value
803                                         0, // symsize
804                                         elfcpp::STT_NOTYPE,
805                                         elfcpp::STB_GLOBAL,
806                                         elfcpp::STV_DEFAULT,
807                                         0, // nonvis
808                                         true, // offset_is_from_end
809                                         true); // only_if_ref
810         }
811     }
812 }
813
814 // Define symbols for group signatures.
815
816 void
817 Layout::define_group_signatures(Symbol_table* symtab)
818 {
819   for (Group_signatures::iterator p = this->group_signatures_.begin();
820        p != this->group_signatures_.end();
821        ++p)
822     {
823       Symbol* sym = symtab->lookup(p->signature, NULL);
824       if (sym != NULL)
825         p->section->set_info_symndx(sym);
826       else
827         {
828           // Force the name of the group section to the group
829           // signature, and use the group's section symbol as the
830           // signature symbol.
831           if (strcmp(p->section->name(), p->signature) != 0)
832             {
833               const char* name = this->namepool_.add(p->signature,
834                                                      true, NULL);
835               p->section->set_name(name);
836             }
837           p->section->set_needs_symtab_index();
838           p->section->set_info_section_symndx(p->section);
839         }
840     }
841
842   this->group_signatures_.clear();
843 }
844
845 // Find the first read-only PT_LOAD segment, creating one if
846 // necessary.
847
848 Output_segment*
849 Layout::find_first_load_seg()
850 {
851   for (Segment_list::const_iterator p = this->segment_list_.begin();
852        p != this->segment_list_.end();
853        ++p)
854     {
855       if ((*p)->type() == elfcpp::PT_LOAD
856           && ((*p)->flags() & elfcpp::PF_R) != 0
857           && ((*p)->flags() & elfcpp::PF_W) == 0)
858         return *p;
859     }
860
861   gold_assert(!this->script_options_->saw_phdrs_clause());
862
863   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
864                                                        elfcpp::PF_R);
865   return load_seg;
866 }
867
868 // Finalize the layout.  When this is called, we have created all the
869 // output sections and all the output segments which are based on
870 // input sections.  We have several things to do, and we have to do
871 // them in the right order, so that we get the right results correctly
872 // and efficiently.
873
874 // 1) Finalize the list of output segments and create the segment
875 // table header.
876
877 // 2) Finalize the dynamic symbol table and associated sections.
878
879 // 3) Determine the final file offset of all the output segments.
880
881 // 4) Determine the final file offset of all the SHF_ALLOC output
882 // sections.
883
884 // 5) Create the symbol table sections and the section name table
885 // section.
886
887 // 6) Finalize the symbol table: set symbol values to their final
888 // value and make a final determination of which symbols are going
889 // into the output symbol table.
890
891 // 7) Create the section table header.
892
893 // 8) Determine the final file offset of all the output sections which
894 // are not SHF_ALLOC, including the section table header.
895
896 // 9) Finalize the ELF file header.
897
898 // This function returns the size of the output file.
899
900 off_t
901 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
902                  const Task* task)
903 {
904   Target* const target = parameters->target();
905
906   target->finalize_sections(this);
907
908   this->count_local_symbols(task, input_objects);
909
910   this->create_gold_note();
911   this->create_executable_stack_info(target);
912
913   Output_segment* phdr_seg = NULL;
914   if (!parameters->output_is_object() && !parameters->doing_static_link())
915     {
916       // There was a dynamic object in the link.  We need to create
917       // some information for the dynamic linker.
918
919       // Create the PT_PHDR segment which will hold the program
920       // headers.
921       if (!this->script_options_->saw_phdrs_clause())
922         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
923
924       // Create the dynamic symbol table, including the hash table.
925       Output_section* dynstr;
926       std::vector<Symbol*> dynamic_symbols;
927       unsigned int local_dynamic_count;
928       Versions versions(this->options_, &this->dynpool_);
929       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
930                                   &local_dynamic_count, &dynamic_symbols,
931                                   &versions);
932
933       // Create the .interp section to hold the name of the
934       // interpreter, and put it in a PT_INTERP segment.
935       if (!parameters->output_is_shared())
936         this->create_interp(target);
937
938       // Finish the .dynamic section to hold the dynamic data, and put
939       // it in a PT_DYNAMIC segment.
940       this->finish_dynamic_section(input_objects, symtab);
941
942       // We should have added everything we need to the dynamic string
943       // table.
944       this->dynpool_.set_string_offsets();
945
946       // Create the version sections.  We can't do this until the
947       // dynamic string table is complete.
948       this->create_version_sections(&versions, symtab, local_dynamic_count,
949                                     dynamic_symbols, dynstr);
950     }
951
952   // If there is a SECTIONS clause, put all the input sections into
953   // the required order.
954   Output_segment* load_seg;
955   if (this->script_options_->saw_sections_clause())
956     load_seg = this->set_section_addresses_from_script(symtab);
957   else if (parameters->output_is_object())
958     load_seg = NULL;
959   else
960     load_seg = this->find_first_load_seg();
961
962   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
963     load_seg = NULL;
964
965   gold_assert(phdr_seg == NULL || load_seg != NULL);
966
967   // Lay out the segment headers.
968   Output_segment_headers* segment_headers;
969   if (parameters->output_is_object())
970     segment_headers = NULL;
971   else
972     {
973       segment_headers = new Output_segment_headers(this->segment_list_);
974       if (load_seg != NULL)
975         load_seg->add_initial_output_data(segment_headers);
976       if (phdr_seg != NULL)
977         phdr_seg->add_initial_output_data(segment_headers);
978     }
979
980   // Lay out the file header.
981   Output_file_header* file_header;
982   file_header = new Output_file_header(target, symtab, segment_headers,
983                                        this->script_options_->entry());
984   if (load_seg != NULL)
985     load_seg->add_initial_output_data(file_header);
986
987   this->special_output_list_.push_back(file_header);
988   if (segment_headers != NULL)
989     this->special_output_list_.push_back(segment_headers);
990
991   if (this->script_options_->saw_phdrs_clause()
992       && !parameters->output_is_object())
993     {
994       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
995       // clause in a linker script.
996       Script_sections* ss = this->script_options_->script_sections();
997       ss->put_headers_in_phdrs(file_header, segment_headers);
998     }
999
1000   // We set the output section indexes in set_segment_offsets and
1001   // set_section_indexes.
1002   unsigned int shndx = 1;
1003
1004   // Set the file offsets of all the segments, and all the sections
1005   // they contain.
1006   off_t off;
1007   if (!parameters->output_is_object())
1008     off = this->set_segment_offsets(target, load_seg, &shndx);
1009   else
1010     off = this->set_relocatable_section_offsets(file_header, &shndx);
1011
1012   // Set the file offsets of all the non-data sections we've seen so
1013   // far which don't have to wait for the input sections.  We need
1014   // this in order to finalize local symbols in non-allocated
1015   // sections.
1016   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1017
1018   // Create the symbol table sections.
1019   this->create_symtab_sections(input_objects, symtab, &off);
1020   if (!parameters->doing_static_link())
1021     this->assign_local_dynsym_offsets(input_objects);
1022
1023   // Process any symbol assignments from a linker script.  This must
1024   // be called after the symbol table has been finalized.
1025   this->script_options_->finalize_symbols(symtab, this);
1026
1027   // Create the .shstrtab section.
1028   Output_section* shstrtab_section = this->create_shstrtab();
1029
1030   // Set the file offsets of the rest of the non-data sections which
1031   // don't have to wait for the input sections.
1032   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1033
1034   // Now that all sections have been created, set the section indexes.
1035   shndx = this->set_section_indexes(shndx);
1036
1037   // Create the section table header.
1038   this->create_shdrs(&off);
1039
1040   // If there are no sections which require postprocessing, we can
1041   // handle the section names now, and avoid a resize later.
1042   if (!this->any_postprocessing_sections_)
1043     off = this->set_section_offsets(off,
1044                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1045
1046   file_header->set_section_info(this->section_headers_, shstrtab_section);
1047
1048   // Now we know exactly where everything goes in the output file
1049   // (except for non-allocated sections which require postprocessing).
1050   Output_data::layout_complete();
1051
1052   this->output_file_size_ = off;
1053
1054   return off;
1055 }
1056
1057 // Create a .note section for an executable or shared library.  This
1058 // records the version of gold used to create the binary.
1059
1060 void
1061 Layout::create_gold_note()
1062 {
1063   if (parameters->output_is_object())
1064     return;
1065
1066   // Authorities all agree that the values in a .note field should
1067   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1068   // they differ on what the alignment is for 64-bit binaries.
1069   // The GABI says unambiguously they take 8-byte alignment:
1070   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1071   // Other documentation says alignment should always be 4 bytes:
1072   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1073   // GNU ld and GNU readelf both support the latter (at least as of
1074   // version 2.16.91), and glibc always generates the latter for
1075   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1076   // here.
1077 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1078   const int size = parameters->get_size();
1079 #else
1080   const int size = 32;
1081 #endif
1082
1083   // The contents of the .note section.
1084   const char* name = "GNU";
1085   std::string desc(std::string("gold ") + gold::get_version_string());
1086   size_t namesz = strlen(name) + 1;
1087   size_t aligned_namesz = align_address(namesz, size / 8);
1088   size_t descsz = desc.length() + 1;
1089   size_t aligned_descsz = align_address(descsz, size / 8);
1090   const int note_type = 4;
1091
1092   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1093
1094   unsigned char buffer[128];
1095   gold_assert(sizeof buffer >= notesz);
1096   memset(buffer, 0, notesz);
1097
1098   bool is_big_endian = parameters->is_big_endian();
1099
1100   if (size == 32)
1101     {
1102       if (!is_big_endian)
1103         {
1104           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1105           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1106           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1107         }
1108       else
1109         {
1110           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1111           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1112           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1113         }
1114     }
1115   else if (size == 64)
1116     {
1117       if (!is_big_endian)
1118         {
1119           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1120           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1121           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1122         }
1123       else
1124         {
1125           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1126           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1127           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1128         }
1129     }
1130   else
1131     gold_unreachable();
1132
1133   memcpy(buffer + 3 * (size / 8), name, namesz);
1134   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1135
1136   const char* note_name = this->namepool_.add(".note", false, NULL);
1137   Output_section* os = this->make_output_section(note_name,
1138                                                  elfcpp::SHT_NOTE,
1139                                                  0);
1140   Output_section_data* posd = new Output_data_const(buffer, notesz,
1141                                                     size / 8);
1142   os->add_output_section_data(posd);
1143 }
1144
1145 // Record whether the stack should be executable.  This can be set
1146 // from the command line using the -z execstack or -z noexecstack
1147 // options.  Otherwise, if any input file has a .note.GNU-stack
1148 // section with the SHF_EXECINSTR flag set, the stack should be
1149 // executable.  Otherwise, if at least one input file a
1150 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1151 // section, we use the target default for whether the stack should be
1152 // executable.  Otherwise, we don't generate a stack note.  When
1153 // generating a object file, we create a .note.GNU-stack section with
1154 // the appropriate marking.  When generating an executable or shared
1155 // library, we create a PT_GNU_STACK segment.
1156
1157 void
1158 Layout::create_executable_stack_info(const Target* target)
1159 {
1160   bool is_stack_executable;
1161   if (this->options_.is_execstack_set())
1162     is_stack_executable = this->options_.is_stack_executable();
1163   else if (!this->input_with_gnu_stack_note_)
1164     return;
1165   else
1166     {
1167       if (this->input_requires_executable_stack_)
1168         is_stack_executable = true;
1169       else if (this->input_without_gnu_stack_note_)
1170         is_stack_executable = target->is_default_stack_executable();
1171       else
1172         is_stack_executable = false;
1173     }
1174
1175   if (parameters->output_is_object())
1176     {
1177       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1178       elfcpp::Elf_Xword flags = 0;
1179       if (is_stack_executable)
1180         flags |= elfcpp::SHF_EXECINSTR;
1181       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1182     }
1183   else
1184     {
1185       if (this->script_options_->saw_phdrs_clause())
1186         return;
1187       int flags = elfcpp::PF_R | elfcpp::PF_W;
1188       if (is_stack_executable)
1189         flags |= elfcpp::PF_X;
1190       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1191     }
1192 }
1193
1194 // Return whether SEG1 should be before SEG2 in the output file.  This
1195 // is based entirely on the segment type and flags.  When this is
1196 // called the segment addresses has normally not yet been set.
1197
1198 bool
1199 Layout::segment_precedes(const Output_segment* seg1,
1200                          const Output_segment* seg2)
1201 {
1202   elfcpp::Elf_Word type1 = seg1->type();
1203   elfcpp::Elf_Word type2 = seg2->type();
1204
1205   // The single PT_PHDR segment is required to precede any loadable
1206   // segment.  We simply make it always first.
1207   if (type1 == elfcpp::PT_PHDR)
1208     {
1209       gold_assert(type2 != elfcpp::PT_PHDR);
1210       return true;
1211     }
1212   if (type2 == elfcpp::PT_PHDR)
1213     return false;
1214
1215   // The single PT_INTERP segment is required to precede any loadable
1216   // segment.  We simply make it always second.
1217   if (type1 == elfcpp::PT_INTERP)
1218     {
1219       gold_assert(type2 != elfcpp::PT_INTERP);
1220       return true;
1221     }
1222   if (type2 == elfcpp::PT_INTERP)
1223     return false;
1224
1225   // We then put PT_LOAD segments before any other segments.
1226   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1227     return true;
1228   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1229     return false;
1230
1231   // We put the PT_TLS segment last, because that is where the dynamic
1232   // linker expects to find it (this is just for efficiency; other
1233   // positions would also work correctly).
1234   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1235     return false;
1236   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1237     return true;
1238
1239   const elfcpp::Elf_Word flags1 = seg1->flags();
1240   const elfcpp::Elf_Word flags2 = seg2->flags();
1241
1242   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1243   // by the numeric segment type and flags values.  There should not
1244   // be more than one segment with the same type and flags.
1245   if (type1 != elfcpp::PT_LOAD)
1246     {
1247       if (type1 != type2)
1248         return type1 < type2;
1249       gold_assert(flags1 != flags2);
1250       return flags1 < flags2;
1251     }
1252
1253   // If the addresses are set already, sort by load address.
1254   if (seg1->are_addresses_set())
1255     {
1256       if (!seg2->are_addresses_set())
1257         return true;
1258
1259       unsigned int section_count1 = seg1->output_section_count();
1260       unsigned int section_count2 = seg2->output_section_count();
1261       if (section_count1 == 0 && section_count2 > 0)
1262         return true;
1263       if (section_count1 > 0 && section_count2 == 0)
1264         return false;
1265
1266       uint64_t paddr1 = seg1->first_section_load_address();
1267       uint64_t paddr2 = seg2->first_section_load_address();
1268       if (paddr1 != paddr2)
1269         return paddr1 < paddr2;
1270     }
1271   else if (seg2->are_addresses_set())
1272     return false;
1273
1274   // We sort PT_LOAD segments based on the flags.  Readonly segments
1275   // come before writable segments.  Then writable segments with data
1276   // come before writable segments without data.  Then executable
1277   // segments come before non-executable segments.  Then the unlikely
1278   // case of a non-readable segment comes before the normal case of a
1279   // readable segment.  If there are multiple segments with the same
1280   // type and flags, we require that the address be set, and we sort
1281   // by virtual address and then physical address.
1282   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1283     return (flags1 & elfcpp::PF_W) == 0;
1284   if ((flags1 & elfcpp::PF_W) != 0
1285       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1286     return seg1->has_any_data_sections();
1287   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1288     return (flags1 & elfcpp::PF_X) != 0;
1289   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1290     return (flags1 & elfcpp::PF_R) == 0;
1291
1292   // We shouldn't get here--we shouldn't create segments which we
1293   // can't distinguish.
1294   gold_unreachable();
1295 }
1296
1297 // Set the file offsets of all the segments, and all the sections they
1298 // contain.  They have all been created.  LOAD_SEG must be be laid out
1299 // first.  Return the offset of the data to follow.
1300
1301 off_t
1302 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1303                             unsigned int *pshndx)
1304 {
1305   // Sort them into the final order.
1306   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1307             Layout::Compare_segments());
1308
1309   // Find the PT_LOAD segments, and set their addresses and offsets
1310   // and their section's addresses and offsets.
1311   uint64_t addr;
1312   if (this->options_.user_set_Ttext())
1313     addr = this->options_.Ttext();
1314   else if (parameters->output_is_shared())
1315     addr = 0;
1316   else
1317     addr = target->default_text_segment_address();
1318   off_t off = 0;
1319
1320   // If LOAD_SEG is NULL, then the file header and segment headers
1321   // will not be loadable.  But they still need to be at offset 0 in
1322   // the file.  Set their offsets now.
1323   if (load_seg == NULL)
1324     {
1325       for (Data_list::iterator p = this->special_output_list_.begin();
1326            p != this->special_output_list_.end();
1327            ++p)
1328         {
1329           off = align_address(off, (*p)->addralign());
1330           (*p)->set_address_and_file_offset(0, off);
1331           off += (*p)->data_size();
1332         }
1333     }
1334
1335   bool was_readonly = false;
1336   for (Segment_list::iterator p = this->segment_list_.begin();
1337        p != this->segment_list_.end();
1338        ++p)
1339     {
1340       if ((*p)->type() == elfcpp::PT_LOAD)
1341         {
1342           if (load_seg != NULL && load_seg != *p)
1343             gold_unreachable();
1344           load_seg = NULL;
1345
1346           bool are_addresses_set = (*p)->are_addresses_set();
1347           if (are_addresses_set)
1348             {
1349               // When it comes to setting file offsets, we care about
1350               // the physical address.
1351               addr = (*p)->paddr();
1352             }
1353           else if (this->options_.user_set_Tdata()
1354                    && ((*p)->flags() & elfcpp::PF_W) != 0
1355                    && (!this->options_.user_set_Tbss()
1356                        || (*p)->has_any_data_sections()))
1357             {
1358               addr = this->options_.Tdata();
1359               are_addresses_set = true;
1360             }
1361           else if (this->options_.user_set_Tbss()
1362                    && ((*p)->flags() & elfcpp::PF_W) != 0
1363                    && !(*p)->has_any_data_sections())
1364             {
1365               addr = this->options_.Tbss();
1366               are_addresses_set = true;
1367             }
1368
1369           uint64_t orig_addr = addr;
1370           uint64_t orig_off = off;
1371
1372           uint64_t aligned_addr = 0;
1373           uint64_t abi_pagesize = target->abi_pagesize();
1374
1375           // FIXME: This should depend on the -n and -N options.
1376           (*p)->set_minimum_p_align(target->common_pagesize());
1377
1378           if (are_addresses_set)
1379             {
1380               // Adjust the file offset to the same address modulo the
1381               // page size.
1382               uint64_t unsigned_off = off;
1383               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1384                                       | (addr & (abi_pagesize - 1)));
1385               if (aligned_off < unsigned_off)
1386                 aligned_off += abi_pagesize;
1387               off = aligned_off;
1388             }
1389           else
1390             {
1391               // If the last segment was readonly, and this one is
1392               // not, then skip the address forward one page,
1393               // maintaining the same position within the page.  This
1394               // lets us store both segments overlapping on a single
1395               // page in the file, but the loader will put them on
1396               // different pages in memory.
1397
1398               addr = align_address(addr, (*p)->maximum_alignment());
1399               aligned_addr = addr;
1400
1401               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1402                 {
1403                   if ((addr & (abi_pagesize - 1)) != 0)
1404                     addr = addr + abi_pagesize;
1405                 }
1406
1407               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1408             }
1409
1410           unsigned int shndx_hold = *pshndx;
1411           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1412                                                           pshndx);
1413
1414           // Now that we know the size of this segment, we may be able
1415           // to save a page in memory, at the cost of wasting some
1416           // file space, by instead aligning to the start of a new
1417           // page.  Here we use the real machine page size rather than
1418           // the ABI mandated page size.
1419
1420           if (!are_addresses_set && aligned_addr != addr)
1421             {
1422               uint64_t common_pagesize = target->common_pagesize();
1423               uint64_t first_off = (common_pagesize
1424                                     - (aligned_addr
1425                                        & (common_pagesize - 1)));
1426               uint64_t last_off = new_addr & (common_pagesize - 1);
1427               if (first_off > 0
1428                   && last_off > 0
1429                   && ((aligned_addr & ~ (common_pagesize - 1))
1430                       != (new_addr & ~ (common_pagesize - 1)))
1431                   && first_off + last_off <= common_pagesize)
1432                 {
1433                   *pshndx = shndx_hold;
1434                   addr = align_address(aligned_addr, common_pagesize);
1435                   addr = align_address(addr, (*p)->maximum_alignment());
1436                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1437                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1438                                                          pshndx);
1439                 }
1440             }
1441
1442           addr = new_addr;
1443
1444           if (((*p)->flags() & elfcpp::PF_W) == 0)
1445             was_readonly = true;
1446         }
1447     }
1448
1449   // Handle the non-PT_LOAD segments, setting their offsets from their
1450   // section's offsets.
1451   for (Segment_list::iterator p = this->segment_list_.begin();
1452        p != this->segment_list_.end();
1453        ++p)
1454     {
1455       if ((*p)->type() != elfcpp::PT_LOAD)
1456         (*p)->set_offset();
1457     }
1458
1459   // Set the TLS offsets for each section in the PT_TLS segment.
1460   if (this->tls_segment_ != NULL)
1461     this->tls_segment_->set_tls_offsets();
1462
1463   return off;
1464 }
1465
1466 // Set the offsets of all the allocated sections when doing a
1467 // relocatable link.  This does the same jobs as set_segment_offsets,
1468 // only for a relocatable link.
1469
1470 off_t
1471 Layout::set_relocatable_section_offsets(Output_data* file_header,
1472                                         unsigned int *pshndx)
1473 {
1474   off_t off = 0;
1475
1476   file_header->set_address_and_file_offset(0, 0);
1477   off += file_header->data_size();
1478
1479   for (Section_list::iterator p = this->section_list_.begin();
1480        p != this->section_list_.end();
1481        ++p)
1482     {
1483       // We skip unallocated sections here, except that group sections
1484       // have to come first.
1485       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1486           && (*p)->type() != elfcpp::SHT_GROUP)
1487         continue;
1488
1489       off = align_address(off, (*p)->addralign());
1490
1491       // The linker script might have set the address.
1492       if (!(*p)->is_address_valid())
1493         (*p)->set_address(0);
1494       (*p)->set_file_offset(off);
1495       (*p)->finalize_data_size();
1496       off += (*p)->data_size();
1497
1498       (*p)->set_out_shndx(*pshndx);
1499       ++*pshndx;
1500     }
1501
1502   return off;
1503 }
1504
1505 // Set the file offset of all the sections not associated with a
1506 // segment.
1507
1508 off_t
1509 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1510 {
1511   for (Section_list::iterator p = this->unattached_section_list_.begin();
1512        p != this->unattached_section_list_.end();
1513        ++p)
1514     {
1515       // The symtab section is handled in create_symtab_sections.
1516       if (*p == this->symtab_section_)
1517         continue;
1518
1519       // If we've already set the data size, don't set it again.
1520       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1521         continue;
1522
1523       if (pass == BEFORE_INPUT_SECTIONS_PASS
1524           && (*p)->requires_postprocessing())
1525         {
1526           (*p)->create_postprocessing_buffer();
1527           this->any_postprocessing_sections_ = true;
1528         }
1529
1530       if (pass == BEFORE_INPUT_SECTIONS_PASS
1531           && (*p)->after_input_sections())
1532         continue;
1533       else if (pass == POSTPROCESSING_SECTIONS_PASS
1534                && (!(*p)->after_input_sections()
1535                    || (*p)->type() == elfcpp::SHT_STRTAB))
1536         continue;
1537       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1538                && (!(*p)->after_input_sections()
1539                    || (*p)->type() != elfcpp::SHT_STRTAB))
1540         continue;
1541
1542       off = align_address(off, (*p)->addralign());
1543       (*p)->set_file_offset(off);
1544       (*p)->finalize_data_size();
1545       off += (*p)->data_size();
1546
1547       // At this point the name must be set.
1548       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1549         this->namepool_.add((*p)->name(), false, NULL);
1550     }
1551   return off;
1552 }
1553
1554 // Set the section indexes of all the sections not associated with a
1555 // segment.
1556
1557 unsigned int
1558 Layout::set_section_indexes(unsigned int shndx)
1559 {
1560   const bool output_is_object = parameters->output_is_object();
1561   for (Section_list::iterator p = this->unattached_section_list_.begin();
1562        p != this->unattached_section_list_.end();
1563        ++p)
1564     {
1565       // In a relocatable link, we already did group sections.
1566       if (output_is_object
1567           && (*p)->type() == elfcpp::SHT_GROUP)
1568         continue;
1569
1570       (*p)->set_out_shndx(shndx);
1571       ++shndx;
1572     }
1573   return shndx;
1574 }
1575
1576 // Set the section addresses according to the linker script.  This is
1577 // only called when we see a SECTIONS clause.  This returns the
1578 // program segment which should hold the file header and segment
1579 // headers, if any.  It will return NULL if they should not be in a
1580 // segment.
1581
1582 Output_segment*
1583 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1584 {
1585   Script_sections* ss = this->script_options_->script_sections();
1586   gold_assert(ss->saw_sections_clause());
1587
1588   // Place each orphaned output section in the script.
1589   for (Section_list::iterator p = this->section_list_.begin();
1590        p != this->section_list_.end();
1591        ++p)
1592     {
1593       if (!(*p)->found_in_sections_clause())
1594         ss->place_orphan(*p);
1595     }
1596
1597   return this->script_options_->set_section_addresses(symtab, this);
1598 }
1599
1600 // Count the local symbols in the regular symbol table and the dynamic
1601 // symbol table, and build the respective string pools.
1602
1603 void
1604 Layout::count_local_symbols(const Task* task,
1605                             const Input_objects* input_objects)
1606 {
1607   // First, figure out an upper bound on the number of symbols we'll
1608   // be inserting into each pool.  This helps us create the pools with
1609   // the right size, to avoid unnecessary hashtable resizing.
1610   unsigned int symbol_count = 0;
1611   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1612        p != input_objects->relobj_end();
1613        ++p)
1614     symbol_count += (*p)->local_symbol_count();
1615
1616   // Go from "upper bound" to "estimate."  We overcount for two
1617   // reasons: we double-count symbols that occur in more than one
1618   // object file, and we count symbols that are dropped from the
1619   // output.  Add it all together and assume we overcount by 100%.
1620   symbol_count /= 2;
1621
1622   // We assume all symbols will go into both the sympool and dynpool.
1623   this->sympool_.reserve(symbol_count);
1624   this->dynpool_.reserve(symbol_count);
1625
1626   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1627        p != input_objects->relobj_end();
1628        ++p)
1629     {
1630       Task_lock_obj<Object> tlo(task, *p);
1631       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1632     }
1633 }
1634
1635 // Create the symbol table sections.  Here we also set the final
1636 // values of the symbols.  At this point all the loadable sections are
1637 // fully laid out.
1638
1639 void
1640 Layout::create_symtab_sections(const Input_objects* input_objects,
1641                                Symbol_table* symtab,
1642                                off_t* poff)
1643 {
1644   int symsize;
1645   unsigned int align;
1646   if (parameters->get_size() == 32)
1647     {
1648       symsize = elfcpp::Elf_sizes<32>::sym_size;
1649       align = 4;
1650     }
1651   else if (parameters->get_size() == 64)
1652     {
1653       symsize = elfcpp::Elf_sizes<64>::sym_size;
1654       align = 8;
1655     }
1656   else
1657     gold_unreachable();
1658
1659   off_t off = *poff;
1660   off = align_address(off, align);
1661   off_t startoff = off;
1662
1663   // Save space for the dummy symbol at the start of the section.  We
1664   // never bother to write this out--it will just be left as zero.
1665   off += symsize;
1666   unsigned int local_symbol_index = 1;
1667
1668   // Add STT_SECTION symbols for each Output section which needs one.
1669   for (Section_list::iterator p = this->section_list_.begin();
1670        p != this->section_list_.end();
1671        ++p)
1672     {
1673       if (!(*p)->needs_symtab_index())
1674         (*p)->set_symtab_index(-1U);
1675       else
1676         {
1677           (*p)->set_symtab_index(local_symbol_index);
1678           ++local_symbol_index;
1679           off += symsize;
1680         }
1681     }
1682
1683   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1684        p != input_objects->relobj_end();
1685        ++p)
1686     {
1687       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1688                                                         off);
1689       off += (index - local_symbol_index) * symsize;
1690       local_symbol_index = index;
1691     }
1692
1693   unsigned int local_symcount = local_symbol_index;
1694   gold_assert(local_symcount * symsize == off - startoff);
1695
1696   off_t dynoff;
1697   size_t dyn_global_index;
1698   size_t dyncount;
1699   if (this->dynsym_section_ == NULL)
1700     {
1701       dynoff = 0;
1702       dyn_global_index = 0;
1703       dyncount = 0;
1704     }
1705   else
1706     {
1707       dyn_global_index = this->dynsym_section_->info();
1708       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1709       dynoff = this->dynsym_section_->offset() + locsize;
1710       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1711       gold_assert(static_cast<off_t>(dyncount * symsize)
1712                   == this->dynsym_section_->data_size() - locsize);
1713     }
1714
1715   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1716                          &this->sympool_, &local_symcount);
1717
1718   if (!parameters->strip_all())
1719     {
1720       this->sympool_.set_string_offsets();
1721
1722       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1723       Output_section* osymtab = this->make_output_section(symtab_name,
1724                                                           elfcpp::SHT_SYMTAB,
1725                                                           0);
1726       this->symtab_section_ = osymtab;
1727
1728       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1729                                                              align);
1730       osymtab->add_output_section_data(pos);
1731
1732       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1733       Output_section* ostrtab = this->make_output_section(strtab_name,
1734                                                           elfcpp::SHT_STRTAB,
1735                                                           0);
1736
1737       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1738       ostrtab->add_output_section_data(pstr);
1739
1740       osymtab->set_file_offset(startoff);
1741       osymtab->finalize_data_size();
1742       osymtab->set_link_section(ostrtab);
1743       osymtab->set_info(local_symcount);
1744       osymtab->set_entsize(symsize);
1745
1746       *poff = off;
1747     }
1748 }
1749
1750 // Create the .shstrtab section, which holds the names of the
1751 // sections.  At the time this is called, we have created all the
1752 // output sections except .shstrtab itself.
1753
1754 Output_section*
1755 Layout::create_shstrtab()
1756 {
1757   // FIXME: We don't need to create a .shstrtab section if we are
1758   // stripping everything.
1759
1760   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1761
1762   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1763
1764   // We can't write out this section until we've set all the section
1765   // names, and we don't set the names of compressed output sections
1766   // until relocations are complete.
1767   os->set_after_input_sections();
1768
1769   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1770   os->add_output_section_data(posd);
1771
1772   return os;
1773 }
1774
1775 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1776 // offset.
1777
1778 void
1779 Layout::create_shdrs(off_t* poff)
1780 {
1781   Output_section_headers* oshdrs;
1782   oshdrs = new Output_section_headers(this,
1783                                       &this->segment_list_,
1784                                       &this->section_list_,
1785                                       &this->unattached_section_list_,
1786                                       &this->namepool_);
1787   off_t off = align_address(*poff, oshdrs->addralign());
1788   oshdrs->set_address_and_file_offset(0, off);
1789   off += oshdrs->data_size();
1790   *poff = off;
1791   this->section_headers_ = oshdrs;
1792 }
1793
1794 // Create the dynamic symbol table.
1795
1796 void
1797 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1798                               Symbol_table* symtab,
1799                               Output_section **pdynstr,
1800                               unsigned int* plocal_dynamic_count,
1801                               std::vector<Symbol*>* pdynamic_symbols,
1802                               Versions* pversions)
1803 {
1804   // Count all the symbols in the dynamic symbol table, and set the
1805   // dynamic symbol indexes.
1806
1807   // Skip symbol 0, which is always all zeroes.
1808   unsigned int index = 1;
1809
1810   // Add STT_SECTION symbols for each Output section which needs one.
1811   for (Section_list::iterator p = this->section_list_.begin();
1812        p != this->section_list_.end();
1813        ++p)
1814     {
1815       if (!(*p)->needs_dynsym_index())
1816         (*p)->set_dynsym_index(-1U);
1817       else
1818         {
1819           (*p)->set_dynsym_index(index);
1820           ++index;
1821         }
1822     }
1823
1824   // Count the local symbols that need to go in the dynamic symbol table,
1825   // and set the dynamic symbol indexes.
1826   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1827        p != input_objects->relobj_end();
1828        ++p)
1829     {
1830       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1831       index = new_index;
1832     }
1833
1834   unsigned int local_symcount = index;
1835   *plocal_dynamic_count = local_symcount;
1836
1837   // FIXME: We have to tell set_dynsym_indexes whether the
1838   // -E/--export-dynamic option was used.
1839   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1840                                      &this->dynpool_, pversions);
1841
1842   int symsize;
1843   unsigned int align;
1844   const int size = parameters->get_size();
1845   if (size == 32)
1846     {
1847       symsize = elfcpp::Elf_sizes<32>::sym_size;
1848       align = 4;
1849     }
1850   else if (size == 64)
1851     {
1852       symsize = elfcpp::Elf_sizes<64>::sym_size;
1853       align = 8;
1854     }
1855   else
1856     gold_unreachable();
1857
1858   // Create the dynamic symbol table section.
1859
1860   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1861                                                        elfcpp::SHT_DYNSYM,
1862                                                        elfcpp::SHF_ALLOC,
1863                                                        false);
1864
1865   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1866                                                            align);
1867   dynsym->add_output_section_data(odata);
1868
1869   dynsym->set_info(local_symcount);
1870   dynsym->set_entsize(symsize);
1871   dynsym->set_addralign(align);
1872
1873   this->dynsym_section_ = dynsym;
1874
1875   Output_data_dynamic* const odyn = this->dynamic_data_;
1876   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1877   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1878
1879   // Create the dynamic string table section.
1880
1881   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1882                                                        elfcpp::SHT_STRTAB,
1883                                                        elfcpp::SHF_ALLOC,
1884                                                        false);
1885
1886   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1887   dynstr->add_output_section_data(strdata);
1888
1889   dynsym->set_link_section(dynstr);
1890   this->dynamic_section_->set_link_section(dynstr);
1891
1892   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1893   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1894
1895   *pdynstr = dynstr;
1896
1897   // Create the hash tables.
1898
1899   // FIXME: We need an option to create a GNU hash table.
1900
1901   unsigned char* phash;
1902   unsigned int hashlen;
1903   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1904                                 &phash, &hashlen);
1905
1906   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1907                                                         elfcpp::SHT_HASH,
1908                                                         elfcpp::SHF_ALLOC,
1909                                                         false);
1910
1911   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1912                                                                hashlen,
1913                                                                align);
1914   hashsec->add_output_section_data(hashdata);
1915
1916   hashsec->set_link_section(dynsym);
1917   hashsec->set_entsize(4);
1918
1919   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1920 }
1921
1922 // Assign offsets to each local portion of the dynamic symbol table.
1923
1924 void
1925 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1926 {
1927   Output_section* dynsym = this->dynsym_section_;
1928   gold_assert(dynsym != NULL);
1929
1930   off_t off = dynsym->offset();
1931
1932   // Skip the dummy symbol at the start of the section.
1933   off += dynsym->entsize();
1934
1935   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1936        p != input_objects->relobj_end();
1937        ++p)
1938     {
1939       unsigned int count = (*p)->set_local_dynsym_offset(off);
1940       off += count * dynsym->entsize();
1941     }
1942 }
1943
1944 // Create the version sections.
1945
1946 void
1947 Layout::create_version_sections(const Versions* versions,
1948                                 const Symbol_table* symtab,
1949                                 unsigned int local_symcount,
1950                                 const std::vector<Symbol*>& dynamic_symbols,
1951                                 const Output_section* dynstr)
1952 {
1953   if (!versions->any_defs() && !versions->any_needs())
1954     return;
1955
1956   if (parameters->get_size() == 32)
1957     {
1958       if (parameters->is_big_endian())
1959         {
1960 #ifdef HAVE_TARGET_32_BIG
1961           this->sized_create_version_sections
1962               SELECT_SIZE_ENDIAN_NAME(32, true)(
1963                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1964                   SELECT_SIZE_ENDIAN(32, true));
1965 #else
1966           gold_unreachable();
1967 #endif
1968         }
1969       else
1970         {
1971 #ifdef HAVE_TARGET_32_LITTLE
1972           this->sized_create_version_sections
1973               SELECT_SIZE_ENDIAN_NAME(32, false)(
1974                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1975                   SELECT_SIZE_ENDIAN(32, false));
1976 #else
1977           gold_unreachable();
1978 #endif
1979         }
1980     }
1981   else if (parameters->get_size() == 64)
1982     {
1983       if (parameters->is_big_endian())
1984         {
1985 #ifdef HAVE_TARGET_64_BIG
1986           this->sized_create_version_sections
1987               SELECT_SIZE_ENDIAN_NAME(64, true)(
1988                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1989                   SELECT_SIZE_ENDIAN(64, true));
1990 #else
1991           gold_unreachable();
1992 #endif
1993         }
1994       else
1995         {
1996 #ifdef HAVE_TARGET_64_LITTLE
1997           this->sized_create_version_sections
1998               SELECT_SIZE_ENDIAN_NAME(64, false)(
1999                   versions, symtab, local_symcount, dynamic_symbols, dynstr
2000                   SELECT_SIZE_ENDIAN(64, false));
2001 #else
2002           gold_unreachable();
2003 #endif
2004         }
2005     }
2006   else
2007     gold_unreachable();
2008 }
2009
2010 // Create the version sections, sized version.
2011
2012 template<int size, bool big_endian>
2013 void
2014 Layout::sized_create_version_sections(
2015     const Versions* versions,
2016     const Symbol_table* symtab,
2017     unsigned int local_symcount,
2018     const std::vector<Symbol*>& dynamic_symbols,
2019     const Output_section* dynstr
2020     ACCEPT_SIZE_ENDIAN)
2021 {
2022   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2023                                                      elfcpp::SHT_GNU_versym,
2024                                                      elfcpp::SHF_ALLOC,
2025                                                      false);
2026
2027   unsigned char* vbuf;
2028   unsigned int vsize;
2029   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2030       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2031       SELECT_SIZE_ENDIAN(size, big_endian));
2032
2033   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2034
2035   vsec->add_output_section_data(vdata);
2036   vsec->set_entsize(2);
2037   vsec->set_link_section(this->dynsym_section_);
2038
2039   Output_data_dynamic* const odyn = this->dynamic_data_;
2040   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2041
2042   if (versions->any_defs())
2043     {
2044       Output_section* vdsec;
2045       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2046                                          elfcpp::SHT_GNU_verdef,
2047                                          elfcpp::SHF_ALLOC,
2048                                          false);
2049
2050       unsigned char* vdbuf;
2051       unsigned int vdsize;
2052       unsigned int vdentries;
2053       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2054           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2055           SELECT_SIZE_ENDIAN(size, big_endian));
2056
2057       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2058                                                                  vdsize,
2059                                                                  4);
2060
2061       vdsec->add_output_section_data(vddata);
2062       vdsec->set_link_section(dynstr);
2063       vdsec->set_info(vdentries);
2064
2065       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2066       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2067     }
2068
2069   if (versions->any_needs())
2070     {
2071       Output_section* vnsec;
2072       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2073                                           elfcpp::SHT_GNU_verneed,
2074                                           elfcpp::SHF_ALLOC,
2075                                           false);
2076
2077       unsigned char* vnbuf;
2078       unsigned int vnsize;
2079       unsigned int vnentries;
2080       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2081         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2082          SELECT_SIZE_ENDIAN(size, big_endian));
2083
2084       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2085                                                                  vnsize,
2086                                                                  4);
2087
2088       vnsec->add_output_section_data(vndata);
2089       vnsec->set_link_section(dynstr);
2090       vnsec->set_info(vnentries);
2091
2092       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2093       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2094     }
2095 }
2096
2097 // Create the .interp section and PT_INTERP segment.
2098
2099 void
2100 Layout::create_interp(const Target* target)
2101 {
2102   const char* interp = this->options_.dynamic_linker();
2103   if (interp == NULL)
2104     {
2105       interp = target->dynamic_linker();
2106       gold_assert(interp != NULL);
2107     }
2108
2109   size_t len = strlen(interp) + 1;
2110
2111   Output_section_data* odata = new Output_data_const(interp, len, 1);
2112
2113   Output_section* osec = this->choose_output_section(NULL, ".interp",
2114                                                      elfcpp::SHT_PROGBITS,
2115                                                      elfcpp::SHF_ALLOC,
2116                                                      false);
2117   osec->add_output_section_data(odata);
2118
2119   if (!this->script_options_->saw_phdrs_clause())
2120     {
2121       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2122                                                        elfcpp::PF_R);
2123       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2124     }
2125 }
2126
2127 // Finish the .dynamic section and PT_DYNAMIC segment.
2128
2129 void
2130 Layout::finish_dynamic_section(const Input_objects* input_objects,
2131                                const Symbol_table* symtab)
2132 {
2133   if (!this->script_options_->saw_phdrs_clause())
2134     {
2135       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2136                                                        (elfcpp::PF_R
2137                                                         | elfcpp::PF_W));
2138       oseg->add_initial_output_section(this->dynamic_section_,
2139                                        elfcpp::PF_R | elfcpp::PF_W);
2140     }
2141
2142   Output_data_dynamic* const odyn = this->dynamic_data_;
2143
2144   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2145        p != input_objects->dynobj_end();
2146        ++p)
2147     {
2148       // FIXME: Handle --as-needed.
2149       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2150     }
2151
2152   if (parameters->output_is_shared())
2153     {
2154       const char* soname = this->options_.soname();
2155       if (soname != NULL)
2156         odyn->add_string(elfcpp::DT_SONAME, soname);
2157     }
2158
2159   // FIXME: Support --init and --fini.
2160   Symbol* sym = symtab->lookup("_init");
2161   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2162     odyn->add_symbol(elfcpp::DT_INIT, sym);
2163
2164   sym = symtab->lookup("_fini");
2165   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2166     odyn->add_symbol(elfcpp::DT_FINI, sym);
2167
2168   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2169
2170   // Add a DT_RPATH entry if needed.
2171   const General_options::Dir_list& rpath(this->options_.rpath());
2172   if (!rpath.empty())
2173     {
2174       std::string rpath_val;
2175       for (General_options::Dir_list::const_iterator p = rpath.begin();
2176            p != rpath.end();
2177            ++p)
2178         {
2179           if (rpath_val.empty())
2180             rpath_val = p->name();
2181           else
2182             {
2183               // Eliminate duplicates.
2184               General_options::Dir_list::const_iterator q;
2185               for (q = rpath.begin(); q != p; ++q)
2186                 if (q->name() == p->name())
2187                   break;
2188               if (q == p)
2189                 {
2190                   rpath_val += ':';
2191                   rpath_val += p->name();
2192                 }
2193             }
2194         }
2195
2196       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2197     }
2198
2199   // Look for text segments that have dynamic relocations.
2200   bool have_textrel = false;
2201   if (!this->script_options_->saw_sections_clause())
2202     {
2203       for (Segment_list::const_iterator p = this->segment_list_.begin();
2204            p != this->segment_list_.end();
2205            ++p)
2206         {
2207           if (((*p)->flags() & elfcpp::PF_W) == 0
2208               && (*p)->dynamic_reloc_count() > 0)
2209             {
2210               have_textrel = true;
2211               break;
2212             }
2213         }
2214     }
2215   else
2216     {
2217       // We don't know the section -> segment mapping, so we are
2218       // conservative and just look for readonly sections with
2219       // relocations.  If those sections wind up in writable segments,
2220       // then we have created an unnecessary DT_TEXTREL entry.
2221       for (Section_list::const_iterator p = this->section_list_.begin();
2222            p != this->section_list_.end();
2223            ++p)
2224         {
2225           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2226               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2227               && ((*p)->dynamic_reloc_count() > 0))
2228             {
2229               have_textrel = true;
2230               break;
2231             }
2232         }
2233     }
2234
2235   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2236   // post-link tools can easily modify these flags if desired.
2237   unsigned int flags = 0;
2238   if (have_textrel)
2239     {
2240       // Add a DT_TEXTREL for compatibility with older loaders.
2241       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2242       flags |= elfcpp::DF_TEXTREL;
2243     }
2244   if (parameters->output_is_shared() && this->has_static_tls())
2245     flags |= elfcpp::DF_STATIC_TLS;
2246   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2247 }
2248
2249 // The mapping of .gnu.linkonce section names to real section names.
2250
2251 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2252 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2253 {
2254   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2255   MAPPING_INIT("t", ".text"),
2256   MAPPING_INIT("r", ".rodata"),
2257   MAPPING_INIT("d", ".data"),
2258   MAPPING_INIT("b", ".bss"),
2259   MAPPING_INIT("s", ".sdata"),
2260   MAPPING_INIT("sb", ".sbss"),
2261   MAPPING_INIT("s2", ".sdata2"),
2262   MAPPING_INIT("sb2", ".sbss2"),
2263   MAPPING_INIT("wi", ".debug_info"),
2264   MAPPING_INIT("td", ".tdata"),
2265   MAPPING_INIT("tb", ".tbss"),
2266   MAPPING_INIT("lr", ".lrodata"),
2267   MAPPING_INIT("l", ".ldata"),
2268   MAPPING_INIT("lb", ".lbss"),
2269 };
2270 #undef MAPPING_INIT
2271
2272 const int Layout::linkonce_mapping_count =
2273   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2274
2275 // Return the name of the output section to use for a .gnu.linkonce
2276 // section.  This is based on the default ELF linker script of the old
2277 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2278 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2279 // initialized to the length of NAME.
2280
2281 const char*
2282 Layout::linkonce_output_name(const char* name, size_t *plen)
2283 {
2284   const char* s = name + sizeof(".gnu.linkonce") - 1;
2285   if (*s != '.')
2286     return name;
2287   ++s;
2288   const Linkonce_mapping* plm = linkonce_mapping;
2289   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2290     {
2291       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2292         {
2293           *plen = plm->tolen;
2294           return plm->to;
2295         }
2296     }
2297   return name;
2298 }
2299
2300 // Choose the output section name to use given an input section name.
2301 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2302 // length of NAME.
2303
2304 const char*
2305 Layout::output_section_name(const char* name, size_t* plen)
2306 {
2307   if (Layout::is_linkonce(name))
2308     {
2309       // .gnu.linkonce sections are laid out as though they were named
2310       // for the sections are placed into.
2311       return Layout::linkonce_output_name(name, plen);
2312     }
2313
2314   // gcc 4.3 generates the following sorts of section names when it
2315   // needs a section name specific to a function:
2316   //   .text.FN
2317   //   .rodata.FN
2318   //   .sdata2.FN
2319   //   .data.FN
2320   //   .data.rel.FN
2321   //   .data.rel.local.FN
2322   //   .data.rel.ro.FN
2323   //   .data.rel.ro.local.FN
2324   //   .sdata.FN
2325   //   .bss.FN
2326   //   .sbss.FN
2327   //   .tdata.FN
2328   //   .tbss.FN
2329
2330   // The GNU linker maps all of those to the part before the .FN,
2331   // except that .data.rel.local.FN is mapped to .data, and
2332   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2333   // beginning with .data.rel.ro.local are grouped together.
2334
2335   // For an anonymous namespace, the string FN can contain a '.'.
2336
2337   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2338   // GNU linker maps to .rodata.
2339
2340   // The .data.rel.ro sections enable a security feature triggered by
2341   // the -z relro option.  Section which need to be relocated at
2342   // program startup time but which may be readonly after startup are
2343   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2344   // segment.  The dynamic linker will make that segment writable,
2345   // perform relocations, and then make it read-only.  FIXME: We do
2346   // not yet implement this optimization.
2347
2348   // It is hard to handle this in a principled way.
2349
2350   // These are the rules we follow:
2351
2352   // If the section name has no initial '.', or no dot other than an
2353   // initial '.', we use the name unchanged (i.e., "mysection" and
2354   // ".text" are unchanged).
2355
2356   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2357
2358   // Otherwise, we drop the second '.' and everything that comes after
2359   // it (i.e., ".text.XXX" becomes ".text").
2360
2361   const char* s = name;
2362   if (*s != '.')
2363     return name;
2364   ++s;
2365   const char* sdot = strchr(s, '.');
2366   if (sdot == NULL)
2367     return name;
2368
2369   const char* const data_rel_ro = ".data.rel.ro";
2370   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2371     {
2372       *plen = strlen(data_rel_ro);
2373       return data_rel_ro;
2374     }
2375
2376   *plen = sdot - name;
2377   return name;
2378 }
2379
2380 // Record the signature of a comdat section, and return whether to
2381 // include it in the link.  If GROUP is true, this is a regular
2382 // section group.  If GROUP is false, this is a group signature
2383 // derived from the name of a linkonce section.  We want linkonce
2384 // signatures and group signatures to block each other, but we don't
2385 // want a linkonce signature to block another linkonce signature.
2386
2387 bool
2388 Layout::add_comdat(const char* signature, bool group)
2389 {
2390   std::string sig(signature);
2391   std::pair<Signatures::iterator, bool> ins(
2392     this->signatures_.insert(std::make_pair(sig, group)));
2393
2394   if (ins.second)
2395     {
2396       // This is the first time we've seen this signature.
2397       return true;
2398     }
2399
2400   if (ins.first->second)
2401     {
2402       // We've already seen a real section group with this signature.
2403       return false;
2404     }
2405   else if (group)
2406     {
2407       // This is a real section group, and we've already seen a
2408       // linkonce section with this signature.  Record that we've seen
2409       // a section group, and don't include this section group.
2410       ins.first->second = true;
2411       return false;
2412     }
2413   else
2414     {
2415       // We've already seen a linkonce section and this is a linkonce
2416       // section.  These don't block each other--this may be the same
2417       // symbol name with different section types.
2418       return true;
2419     }
2420 }
2421
2422 // Store the allocated sections into the section list.
2423
2424 void
2425 Layout::get_allocated_sections(Section_list* section_list) const
2426 {
2427   for (Section_list::const_iterator p = this->section_list_.begin();
2428        p != this->section_list_.end();
2429        ++p)
2430     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2431       section_list->push_back(*p);
2432 }
2433
2434 // Create an output segment.
2435
2436 Output_segment*
2437 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2438 {
2439   gold_assert(!parameters->output_is_object());
2440   Output_segment* oseg = new Output_segment(type, flags);
2441   this->segment_list_.push_back(oseg);
2442   return oseg;
2443 }
2444
2445 // Write out the Output_sections.  Most won't have anything to write,
2446 // since most of the data will come from input sections which are
2447 // handled elsewhere.  But some Output_sections do have Output_data.
2448
2449 void
2450 Layout::write_output_sections(Output_file* of) const
2451 {
2452   for (Section_list::const_iterator p = this->section_list_.begin();
2453        p != this->section_list_.end();
2454        ++p)
2455     {
2456       if (!(*p)->after_input_sections())
2457         (*p)->write(of);
2458     }
2459 }
2460
2461 // Write out data not associated with a section or the symbol table.
2462
2463 void
2464 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2465 {
2466   if (!parameters->strip_all())
2467     {
2468       const Output_section* symtab_section = this->symtab_section_;
2469       for (Section_list::const_iterator p = this->section_list_.begin();
2470            p != this->section_list_.end();
2471            ++p)
2472         {
2473           if ((*p)->needs_symtab_index())
2474             {
2475               gold_assert(symtab_section != NULL);
2476               unsigned int index = (*p)->symtab_index();
2477               gold_assert(index > 0 && index != -1U);
2478               off_t off = (symtab_section->offset()
2479                            + index * symtab_section->entsize());
2480               symtab->write_section_symbol(*p, of, off);
2481             }
2482         }
2483     }
2484
2485   const Output_section* dynsym_section = this->dynsym_section_;
2486   for (Section_list::const_iterator p = this->section_list_.begin();
2487        p != this->section_list_.end();
2488        ++p)
2489     {
2490       if ((*p)->needs_dynsym_index())
2491         {
2492           gold_assert(dynsym_section != NULL);
2493           unsigned int index = (*p)->dynsym_index();
2494           gold_assert(index > 0 && index != -1U);
2495           off_t off = (dynsym_section->offset()
2496                        + index * dynsym_section->entsize());
2497           symtab->write_section_symbol(*p, of, off);
2498         }
2499     }
2500
2501   // Write out the Output_data which are not in an Output_section.
2502   for (Data_list::const_iterator p = this->special_output_list_.begin();
2503        p != this->special_output_list_.end();
2504        ++p)
2505     (*p)->write(of);
2506 }
2507
2508 // Write out the Output_sections which can only be written after the
2509 // input sections are complete.
2510
2511 void
2512 Layout::write_sections_after_input_sections(Output_file* of)
2513 {
2514   // Determine the final section offsets, and thus the final output
2515   // file size.  Note we finalize the .shstrab last, to allow the
2516   // after_input_section sections to modify their section-names before
2517   // writing.
2518   if (this->any_postprocessing_sections_)
2519     {
2520       off_t off = this->output_file_size_;
2521       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2522       
2523       // Now that we've finalized the names, we can finalize the shstrab.
2524       off =
2525         this->set_section_offsets(off,
2526                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2527
2528       if (off > this->output_file_size_)
2529         {
2530           of->resize(off);
2531           this->output_file_size_ = off;
2532         }
2533     }
2534
2535   for (Section_list::const_iterator p = this->section_list_.begin();
2536        p != this->section_list_.end();
2537        ++p)
2538     {
2539       if ((*p)->after_input_sections())
2540         (*p)->write(of);
2541     }
2542
2543   this->section_headers_->write(of);
2544 }
2545
2546 // Write out a binary file.  This is called after the link is
2547 // complete.  IN is the temporary output file we used to generate the
2548 // ELF code.  We simply walk through the segments, read them from
2549 // their file offset in IN, and write them to their load address in
2550 // the output file.  FIXME: with a bit more work, we could support
2551 // S-records and/or Intel hex format here.
2552
2553 void
2554 Layout::write_binary(Output_file* in) const
2555 {
2556   gold_assert(this->options_.oformat()
2557               == General_options::OBJECT_FORMAT_BINARY);
2558
2559   // Get the size of the binary file.
2560   uint64_t max_load_address = 0;
2561   for (Segment_list::const_iterator p = this->segment_list_.begin();
2562        p != this->segment_list_.end();
2563        ++p)
2564     {
2565       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2566         {
2567           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2568           if (max_paddr > max_load_address)
2569             max_load_address = max_paddr;
2570         }
2571     }
2572
2573   Output_file out(parameters->output_file_name());
2574   out.open(max_load_address);
2575
2576   for (Segment_list::const_iterator p = this->segment_list_.begin();
2577        p != this->segment_list_.end();
2578        ++p)
2579     {
2580       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2581         {
2582           const unsigned char* vin = in->get_input_view((*p)->offset(),
2583                                                         (*p)->filesz());
2584           unsigned char* vout = out.get_output_view((*p)->paddr(),
2585                                                     (*p)->filesz());
2586           memcpy(vout, vin, (*p)->filesz());
2587           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2588           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2589         }
2590     }
2591
2592   out.close();
2593 }
2594
2595 // Print statistical information to stderr.  This is used for --stats.
2596
2597 void
2598 Layout::print_stats() const
2599 {
2600   this->namepool_.print_stats("section name pool");
2601   this->sympool_.print_stats("output symbol name pool");
2602   this->dynpool_.print_stats("dynamic name pool");
2603
2604   for (Section_list::const_iterator p = this->section_list_.begin();
2605        p != this->section_list_.end();
2606        ++p)
2607     (*p)->print_merge_stats();
2608 }
2609
2610 // Write_sections_task methods.
2611
2612 // We can always run this task.
2613
2614 Task_token*
2615 Write_sections_task::is_runnable()
2616 {
2617   return NULL;
2618 }
2619
2620 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2621 // when finished.
2622
2623 void
2624 Write_sections_task::locks(Task_locker* tl)
2625 {
2626   tl->add(this, this->output_sections_blocker_);
2627   tl->add(this, this->final_blocker_);
2628 }
2629
2630 // Run the task--write out the data.
2631
2632 void
2633 Write_sections_task::run(Workqueue*)
2634 {
2635   this->layout_->write_output_sections(this->of_);
2636 }
2637
2638 // Write_data_task methods.
2639
2640 // We can always run this task.
2641
2642 Task_token*
2643 Write_data_task::is_runnable()
2644 {
2645   return NULL;
2646 }
2647
2648 // We need to unlock FINAL_BLOCKER when finished.
2649
2650 void
2651 Write_data_task::locks(Task_locker* tl)
2652 {
2653   tl->add(this, this->final_blocker_);
2654 }
2655
2656 // Run the task--write out the data.
2657
2658 void
2659 Write_data_task::run(Workqueue*)
2660 {
2661   this->layout_->write_data(this->symtab_, this->of_);
2662 }
2663
2664 // Write_symbols_task methods.
2665
2666 // We can always run this task.
2667
2668 Task_token*
2669 Write_symbols_task::is_runnable()
2670 {
2671   return NULL;
2672 }
2673
2674 // We need to unlock FINAL_BLOCKER when finished.
2675
2676 void
2677 Write_symbols_task::locks(Task_locker* tl)
2678 {
2679   tl->add(this, this->final_blocker_);
2680 }
2681
2682 // Run the task--write out the symbols.
2683
2684 void
2685 Write_symbols_task::run(Workqueue*)
2686 {
2687   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2688                                this->dynpool_, this->of_);
2689 }
2690
2691 // Write_after_input_sections_task methods.
2692
2693 // We can only run this task after the input sections have completed.
2694
2695 Task_token*
2696 Write_after_input_sections_task::is_runnable()
2697 {
2698   if (this->input_sections_blocker_->is_blocked())
2699     return this->input_sections_blocker_;
2700   return NULL;
2701 }
2702
2703 // We need to unlock FINAL_BLOCKER when finished.
2704
2705 void
2706 Write_after_input_sections_task::locks(Task_locker* tl)
2707 {
2708   tl->add(this, this->final_blocker_);
2709 }
2710
2711 // Run the task.
2712
2713 void
2714 Write_after_input_sections_task::run(Workqueue*)
2715 {
2716   this->layout_->write_sections_after_input_sections(this->of_);
2717 }
2718
2719 // Close_task_runner methods.
2720
2721 // Run the task--close the file.
2722
2723 void
2724 Close_task_runner::run(Workqueue*, const Task*)
2725 {
2726   // If we've been asked to create a binary file, we do so here.
2727   if (this->options_->oformat() != General_options::OBJECT_FORMAT_ELF)
2728     this->layout_->write_binary(this->of_);
2729
2730   this->of_->close();
2731 }
2732
2733 // Instantiate the templates we need.  We could use the configure
2734 // script to restrict this to only the ones for implemented targets.
2735
2736 #ifdef HAVE_TARGET_32_LITTLE
2737 template
2738 Output_section*
2739 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2740                           const char* name,
2741                           const elfcpp::Shdr<32, false>& shdr,
2742                           unsigned int, unsigned int, off_t*);
2743 #endif
2744
2745 #ifdef HAVE_TARGET_32_BIG
2746 template
2747 Output_section*
2748 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2749                          const char* name,
2750                          const elfcpp::Shdr<32, true>& shdr,
2751                          unsigned int, unsigned int, off_t*);
2752 #endif
2753
2754 #ifdef HAVE_TARGET_64_LITTLE
2755 template
2756 Output_section*
2757 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2758                           const char* name,
2759                           const elfcpp::Shdr<64, false>& shdr,
2760                           unsigned int, unsigned int, off_t*);
2761 #endif
2762
2763 #ifdef HAVE_TARGET_64_BIG
2764 template
2765 Output_section*
2766 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2767                          const char* name,
2768                          const elfcpp::Shdr<64, true>& shdr,
2769                          unsigned int, unsigned int, off_t*);
2770 #endif
2771
2772 #ifdef HAVE_TARGET_32_LITTLE
2773 template
2774 Output_section*
2775 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2776                                 unsigned int reloc_shndx,
2777                                 const elfcpp::Shdr<32, false>& shdr,
2778                                 Output_section* data_section,
2779                                 Relocatable_relocs* rr);
2780 #endif
2781
2782 #ifdef HAVE_TARGET_32_BIG
2783 template
2784 Output_section*
2785 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2786                                unsigned int reloc_shndx,
2787                                const elfcpp::Shdr<32, true>& shdr,
2788                                Output_section* data_section,
2789                                Relocatable_relocs* rr);
2790 #endif
2791
2792 #ifdef HAVE_TARGET_64_LITTLE
2793 template
2794 Output_section*
2795 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2796                                 unsigned int reloc_shndx,
2797                                 const elfcpp::Shdr<64, false>& shdr,
2798                                 Output_section* data_section,
2799                                 Relocatable_relocs* rr);
2800 #endif
2801
2802 #ifdef HAVE_TARGET_64_BIG
2803 template
2804 Output_section*
2805 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2806                                unsigned int reloc_shndx,
2807                                const elfcpp::Shdr<64, true>& shdr,
2808                                Output_section* data_section,
2809                                Relocatable_relocs* rr);
2810 #endif
2811
2812 #ifdef HAVE_TARGET_32_LITTLE
2813 template
2814 void
2815 Layout::layout_group<32, false>(Symbol_table* symtab,
2816                                 Sized_relobj<32, false>* object,
2817                                 unsigned int,
2818                                 const char* group_section_name,
2819                                 const char* signature,
2820                                 const elfcpp::Shdr<32, false>& shdr,
2821                                 const elfcpp::Elf_Word* contents);
2822 #endif
2823
2824 #ifdef HAVE_TARGET_32_BIG
2825 template
2826 void
2827 Layout::layout_group<32, true>(Symbol_table* symtab,
2828                                Sized_relobj<32, true>* object,
2829                                unsigned int,
2830                                const char* group_section_name,
2831                                const char* signature,
2832                                const elfcpp::Shdr<32, true>& shdr,
2833                                const elfcpp::Elf_Word* contents);
2834 #endif
2835
2836 #ifdef HAVE_TARGET_64_LITTLE
2837 template
2838 void
2839 Layout::layout_group<64, false>(Symbol_table* symtab,
2840                                 Sized_relobj<64, false>* object,
2841                                 unsigned int,
2842                                 const char* group_section_name,
2843                                 const char* signature,
2844                                 const elfcpp::Shdr<64, false>& shdr,
2845                                 const elfcpp::Elf_Word* contents);
2846 #endif
2847
2848 #ifdef HAVE_TARGET_64_BIG
2849 template
2850 void
2851 Layout::layout_group<64, true>(Symbol_table* symtab,
2852                                Sized_relobj<64, true>* object,
2853                                unsigned int,
2854                                const char* group_section_name,
2855                                const char* signature,
2856                                const elfcpp::Shdr<64, true>& shdr,
2857                                const elfcpp::Elf_Word* contents);
2858 #endif
2859
2860 #ifdef HAVE_TARGET_32_LITTLE
2861 template
2862 Output_section*
2863 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2864                                    const unsigned char* symbols,
2865                                    off_t symbols_size,
2866                                    const unsigned char* symbol_names,
2867                                    off_t symbol_names_size,
2868                                    unsigned int shndx,
2869                                    const elfcpp::Shdr<32, false>& shdr,
2870                                    unsigned int reloc_shndx,
2871                                    unsigned int reloc_type,
2872                                    off_t* off);
2873 #endif
2874
2875 #ifdef HAVE_TARGET_32_BIG
2876 template
2877 Output_section*
2878 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2879                                    const unsigned char* symbols,
2880                                    off_t symbols_size,
2881                                   const unsigned char* symbol_names,
2882                                   off_t symbol_names_size,
2883                                   unsigned int shndx,
2884                                   const elfcpp::Shdr<32, true>& shdr,
2885                                   unsigned int reloc_shndx,
2886                                   unsigned int reloc_type,
2887                                   off_t* off);
2888 #endif
2889
2890 #ifdef HAVE_TARGET_64_LITTLE
2891 template
2892 Output_section*
2893 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2894                                    const unsigned char* symbols,
2895                                    off_t symbols_size,
2896                                    const unsigned char* symbol_names,
2897                                    off_t symbol_names_size,
2898                                    unsigned int shndx,
2899                                    const elfcpp::Shdr<64, false>& shdr,
2900                                    unsigned int reloc_shndx,
2901                                    unsigned int reloc_type,
2902                                    off_t* off);
2903 #endif
2904
2905 #ifdef HAVE_TARGET_64_BIG
2906 template
2907 Output_section*
2908 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2909                                    const unsigned char* symbols,
2910                                    off_t symbols_size,
2911                                   const unsigned char* symbol_names,
2912                                   off_t symbol_names_size,
2913                                   unsigned int shndx,
2914                                   const elfcpp::Shdr<64, true>& shdr,
2915                                   unsigned int reloc_shndx,
2916                                   unsigned int reloc_type,
2917                                   off_t* off);
2918 #endif
2919
2920 } // End namespace gold.