From Cary Coutant: preliminary shared library support.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Return whether PREFIX is a prefix of STR.
90
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
93 {
94   return strncmp(prefix, str, strlen(prefix)) == 0;
95 }
96
97 // Whether to include this section in the link.
98
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102                         const elfcpp::Shdr<size, big_endian>& shdr)
103 {
104   // Some section types are never linked.  Some are only linked when
105   // doing a relocateable link.
106   switch (shdr.get_sh_type())
107     {
108     case elfcpp::SHT_NULL:
109     case elfcpp::SHT_SYMTAB:
110     case elfcpp::SHT_DYNSYM:
111     case elfcpp::SHT_STRTAB:
112     case elfcpp::SHT_HASH:
113     case elfcpp::SHT_DYNAMIC:
114     case elfcpp::SHT_SYMTAB_SHNDX:
115       return false;
116
117     case elfcpp::SHT_RELA:
118     case elfcpp::SHT_REL:
119     case elfcpp::SHT_GROUP:
120       return parameters->output_is_object();
121
122     case elfcpp::SHT_PROGBITS:
123       if (parameters->strip_debug()
124           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
125         {
126           // Debugging sections can only be recognized by name.
127           if (is_prefix_of(".debug", name)
128               || is_prefix_of(".gnu.linkonce.wi.", name)
129               || is_prefix_of(".line", name)
130               || is_prefix_of(".stab", name))
131             return false;
132         }
133       return true;
134
135     default:
136       return true;
137     }
138 }
139
140 // Return an output section named NAME, or NULL if there is none.
141
142 Output_section*
143 Layout::find_output_section(const char* name) const
144 {
145   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146        p != this->section_name_map_.end();
147        ++p)
148     if (strcmp(p->second->name(), name) == 0)
149       return p->second;
150   return NULL;
151 }
152
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear.  Return NULL if there is none.
155
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158                             elfcpp::Elf_Word clear) const
159 {
160   for (Segment_list::const_iterator p = this->segment_list_.begin();
161        p != this->segment_list_.end();
162        ++p)
163     if (static_cast<elfcpp::PT>((*p)->type()) == type
164         && ((*p)->flags() & set) == set
165         && ((*p)->flags() & clear) == 0)
166       return *p;
167   return NULL;
168 }
169
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
172
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
176 {
177   // We should ignore some flags.
178   flags &= ~ (elfcpp::SHF_INFO_LINK
179               | elfcpp::SHF_LINK_ORDER
180               | elfcpp::SHF_GROUP
181               | elfcpp::SHF_MERGE
182               | elfcpp::SHF_STRINGS);
183
184   const Key key(name_key, std::make_pair(type, flags));
185   const std::pair<Key, Output_section*> v(key, NULL);
186   std::pair<Section_name_map::iterator, bool> ins(
187     this->section_name_map_.insert(v));
188
189   if (!ins.second)
190     return ins.first->second;
191   else
192     {
193       // This is the first time we've seen this name/type/flags
194       // combination.
195       Output_section* os = this->make_output_section(name, type, flags);
196       ins.first->second = os;
197       return os;
198     }
199 }
200
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
203 // offset of this input section without the output section.
204
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
209 {
210   if (!this->include_section(object, name, shdr))
211     return NULL;
212
213   // If we are not doing a relocateable link, choose the name to use
214   // for the output section.
215   size_t len = strlen(name);
216   if (!parameters->output_is_object())
217     name = Layout::output_section_name(name, &len);
218
219   // FIXME: Handle SHF_OS_NONCONFORMING here.
220
221   // Canonicalize the section name.
222   Stringpool::Key name_key;
223   name = this->namepool_.add_prefix(name, len, &name_key);
224
225   // Find the output section.  The output section is selected based on
226   // the section name, type, and flags.
227   Output_section* os = this->get_output_section(name, name_key,
228                                                 shdr.get_sh_type(),
229                                                 shdr.get_sh_flags());
230
231   // Special GNU handling of sections named .eh_frame.
232   if (!parameters->output_is_object()
233       && strcmp(name, ".eh_frame") == 0
234       && shdr.get_sh_size() > 0
235       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
237     {
238       this->layout_eh_frame(object, shndx, name, shdr, os, off);
239       return os;
240     }
241
242   // FIXME: Handle SHF_LINK_ORDER somewhere.
243
244   *off = os->add_input_section(object, shndx, name, shdr);
245
246   return os;
247 }
248
249 // Special GNU handling of sections named .eh_frame.  They will
250 // normally hold exception frame data.
251
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255                         unsigned int shndx,
256                         const char* name,
257                         const elfcpp::Shdr<size, big_endian>& shdr,
258                         Output_section* os, off_t* off)
259 {
260   if (this->eh_frame_section_ == NULL)
261     {
262       this->eh_frame_section_ = os;
263
264       if (this->options_.create_eh_frame_hdr())
265         {
266           Stringpool::Key hdr_name_key;
267           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268                                                      false,
269                                                      &hdr_name_key);
270           Output_section* hdr_os =
271             this->get_output_section(hdr_name, hdr_name_key,
272                                      elfcpp::SHT_PROGBITS,
273                                      elfcpp::SHF_ALLOC);
274
275           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
276           hdr_os->add_output_section_data(hdr_posd);
277
278           Output_segment* hdr_oseg =
279             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
280           this->segment_list_.push_back(hdr_oseg);
281           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
282         }
283     }
284
285   gold_assert(this->eh_frame_section_ == os);
286
287   *off = os->add_input_section(object, shndx, name, shdr);
288 }
289
290 // Add POSD to an output section using NAME, TYPE, and FLAGS.
291
292 void
293 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
294                                 elfcpp::Elf_Xword flags,
295                                 Output_section_data* posd)
296 {
297   // Canonicalize the name.
298   Stringpool::Key name_key;
299   name = this->namepool_.add(name, true, &name_key);
300
301   Output_section* os = this->get_output_section(name, name_key, type, flags);
302   os->add_output_section_data(posd);
303 }
304
305 // Map section flags to segment flags.
306
307 elfcpp::Elf_Word
308 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
309 {
310   elfcpp::Elf_Word ret = elfcpp::PF_R;
311   if ((flags & elfcpp::SHF_WRITE) != 0)
312     ret |= elfcpp::PF_W;
313   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
314     ret |= elfcpp::PF_X;
315   return ret;
316 }
317
318 // Make a new Output_section, and attach it to segments as
319 // appropriate.
320
321 Output_section*
322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
323                             elfcpp::Elf_Xword flags)
324 {
325   Output_section* os = new Output_section(name, type, flags);
326   this->section_list_.push_back(os);
327
328   if ((flags & elfcpp::SHF_ALLOC) == 0)
329     this->unattached_section_list_.push_back(os);
330   else
331     {
332       // This output section goes into a PT_LOAD segment.
333
334       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
335
336       // The only thing we really care about for PT_LOAD segments is
337       // whether or not they are writable, so that is how we search
338       // for them.  People who need segments sorted on some other
339       // basis will have to wait until we implement a mechanism for
340       // them to describe the segments they want.
341
342       Segment_list::const_iterator p;
343       for (p = this->segment_list_.begin();
344            p != this->segment_list_.end();
345            ++p)
346         {
347           if ((*p)->type() == elfcpp::PT_LOAD
348               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
349             {
350               (*p)->add_output_section(os, seg_flags);
351               break;
352             }
353         }
354
355       if (p == this->segment_list_.end())
356         {
357           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
358                                                     seg_flags);
359           this->segment_list_.push_back(oseg);
360           oseg->add_output_section(os, seg_flags);
361         }
362
363       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
364       // segment.
365       if (type == elfcpp::SHT_NOTE)
366         {
367           // See if we already have an equivalent PT_NOTE segment.
368           for (p = this->segment_list_.begin();
369                p != segment_list_.end();
370                ++p)
371             {
372               if ((*p)->type() == elfcpp::PT_NOTE
373                   && (((*p)->flags() & elfcpp::PF_W)
374                       == (seg_flags & elfcpp::PF_W)))
375                 {
376                   (*p)->add_output_section(os, seg_flags);
377                   break;
378                 }
379             }
380
381           if (p == this->segment_list_.end())
382             {
383               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
384                                                         seg_flags);
385               this->segment_list_.push_back(oseg);
386               oseg->add_output_section(os, seg_flags);
387             }
388         }
389
390       // If we see a loadable SHF_TLS section, we create a PT_TLS
391       // segment.  There can only be one such segment.
392       if ((flags & elfcpp::SHF_TLS) != 0)
393         {
394           if (this->tls_segment_ == NULL)
395             {
396               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
397                                                       seg_flags);
398               this->segment_list_.push_back(this->tls_segment_);
399             }
400           this->tls_segment_->add_output_section(os, seg_flags);
401         }
402     }
403
404   return os;
405 }
406
407 // Create the dynamic sections which are needed before we read the
408 // relocs.
409
410 void
411 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
412                                         Symbol_table* symtab)
413 {
414   if (parameters->doing_static_link())
415     return;
416
417   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
418   this->dynamic_section_ = this->make_output_section(dynamic_name,
419                                                      elfcpp::SHT_DYNAMIC,
420                                                      (elfcpp::SHF_ALLOC
421                                                       | elfcpp::SHF_WRITE));
422
423   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
424                                 this->dynamic_section_, 0, 0,
425                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
426                                 elfcpp::STV_HIDDEN, 0, false, false);
427
428   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
429
430   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
431 }
432
433 // For each output section whose name can be represented as C symbol,
434 // define __start and __stop symbols for the section.  This is a GNU
435 // extension.
436
437 void
438 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
439 {
440   for (Section_list::const_iterator p = this->section_list_.begin();
441        p != this->section_list_.end();
442        ++p)
443     {
444       const char* const name = (*p)->name();
445       if (name[strspn(name,
446                       ("0123456789"
447                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
448                        "abcdefghijklmnopqrstuvwxyz"
449                        "_"))]
450           == '\0')
451         {
452           const std::string name_string(name);
453           const std::string start_name("__start_" + name_string);
454           const std::string stop_name("__stop_" + name_string);
455
456           symtab->define_in_output_data(target,
457                                         start_name.c_str(),
458                                         NULL, // version
459                                         *p,
460                                         0, // value
461                                         0, // symsize
462                                         elfcpp::STT_NOTYPE,
463                                         elfcpp::STB_GLOBAL,
464                                         elfcpp::STV_DEFAULT,
465                                         0, // nonvis
466                                         false, // offset_is_from_end
467                                         false); // only_if_ref
468
469           symtab->define_in_output_data(target,
470                                         stop_name.c_str(),
471                                         NULL, // version
472                                         *p,
473                                         0, // value
474                                         0, // symsize
475                                         elfcpp::STT_NOTYPE,
476                                         elfcpp::STB_GLOBAL,
477                                         elfcpp::STV_DEFAULT,
478                                         0, // nonvis
479                                         true, // offset_is_from_end
480                                         false); // only_if_ref
481         }
482     }
483 }
484
485 // Find the first read-only PT_LOAD segment, creating one if
486 // necessary.
487
488 Output_segment*
489 Layout::find_first_load_seg()
490 {
491   for (Segment_list::const_iterator p = this->segment_list_.begin();
492        p != this->segment_list_.end();
493        ++p)
494     {
495       if ((*p)->type() == elfcpp::PT_LOAD
496           && ((*p)->flags() & elfcpp::PF_R) != 0
497           && ((*p)->flags() & elfcpp::PF_W) == 0)
498         return *p;
499     }
500
501   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
502   this->segment_list_.push_back(load_seg);
503   return load_seg;
504 }
505
506 // Finalize the layout.  When this is called, we have created all the
507 // output sections and all the output segments which are based on
508 // input sections.  We have several things to do, and we have to do
509 // them in the right order, so that we get the right results correctly
510 // and efficiently.
511
512 // 1) Finalize the list of output segments and create the segment
513 // table header.
514
515 // 2) Finalize the dynamic symbol table and associated sections.
516
517 // 3) Determine the final file offset of all the output segments.
518
519 // 4) Determine the final file offset of all the SHF_ALLOC output
520 // sections.
521
522 // 5) Create the symbol table sections and the section name table
523 // section.
524
525 // 6) Finalize the symbol table: set symbol values to their final
526 // value and make a final determination of which symbols are going
527 // into the output symbol table.
528
529 // 7) Create the section table header.
530
531 // 8) Determine the final file offset of all the output sections which
532 // are not SHF_ALLOC, including the section table header.
533
534 // 9) Finalize the ELF file header.
535
536 // This function returns the size of the output file.
537
538 off_t
539 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
540 {
541   Target* const target = input_objects->target();
542
543   target->finalize_sections(this);
544
545   this->create_note_section();
546
547   Output_segment* phdr_seg = NULL;
548   if (!parameters->doing_static_link())
549     {
550       // There was a dynamic object in the link.  We need to create
551       // some information for the dynamic linker.
552
553       // Create the PT_PHDR segment which will hold the program
554       // headers.
555       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
556       this->segment_list_.push_back(phdr_seg);
557
558       // Create the dynamic symbol table, including the hash table.
559       Output_section* dynstr;
560       std::vector<Symbol*> dynamic_symbols;
561       unsigned int local_dynamic_count;
562       Versions versions;
563       this->create_dynamic_symtab(target, symtab, &dynstr,
564                                   &local_dynamic_count, &dynamic_symbols,
565                                   &versions);
566
567       // Create the .interp section to hold the name of the
568       // interpreter, and put it in a PT_INTERP segment.
569       this->create_interp(target);
570
571       // Finish the .dynamic section to hold the dynamic data, and put
572       // it in a PT_DYNAMIC segment.
573       this->finish_dynamic_section(input_objects, symtab);
574
575       // We should have added everything we need to the dynamic string
576       // table.
577       this->dynpool_.set_string_offsets();
578
579       // Create the version sections.  We can't do this until the
580       // dynamic string table is complete.
581       this->create_version_sections(&versions, local_dynamic_count,
582                                     dynamic_symbols, dynstr);
583     }
584
585   // FIXME: Handle PT_GNU_STACK.
586
587   Output_segment* load_seg = this->find_first_load_seg();
588
589   // Lay out the segment headers.
590   Output_segment_headers* segment_headers;
591   segment_headers = new Output_segment_headers(this->segment_list_);
592   load_seg->add_initial_output_data(segment_headers);
593   this->special_output_list_.push_back(segment_headers);
594   if (phdr_seg != NULL)
595     phdr_seg->add_initial_output_data(segment_headers);
596
597   // Lay out the file header.
598   Output_file_header* file_header;
599   file_header = new Output_file_header(target, symtab, segment_headers);
600   load_seg->add_initial_output_data(file_header);
601   this->special_output_list_.push_back(file_header);
602
603   // We set the output section indexes in set_segment_offsets and
604   // set_section_offsets.
605   unsigned int shndx = 1;
606
607   // Set the file offsets of all the segments, and all the sections
608   // they contain.
609   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
610
611   // Create the symbol table sections.
612   this->create_symtab_sections(input_objects, symtab, &off);
613
614   // Create the .shstrtab section.
615   Output_section* shstrtab_section = this->create_shstrtab();
616
617   // Set the file offsets of all the sections not associated with
618   // segments.
619   off = this->set_section_offsets(off, &shndx);
620
621   // Create the section table header.
622   Output_section_headers* oshdrs = this->create_shdrs(&off);
623
624   file_header->set_section_info(oshdrs, shstrtab_section);
625
626   // Now we know exactly where everything goes in the output file.
627   Output_data::layout_complete();
628
629   this->output_file_size_ = off;
630
631   return off;
632 }
633
634 // Create a .note section for an executable or shared library.  This
635 // records the version of gold used to create the binary.
636
637 void
638 Layout::create_note_section()
639 {
640   if (parameters->output_is_object())
641     return;
642
643   // Authorities all agree that the values in a .note field should
644   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
645   // they differ on what the alignment is for 64-bit binaries.
646   // The GABI says unambiguously they take 8-byte alignment:
647   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
648   // Other documentation says alignment should always be 4 bytes:
649   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
650   // GNU ld and GNU readelf both support the latter (at least as of
651   // version 2.16.91), and glibc always generates the latter for
652   // .note.ABI-tag (as of version 1.6), so that's the one we go with
653   // here.
654 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // this is not defined by default
655   const int size = parameters->get_size();
656 #else
657   const int size = 32;
658 #endif
659
660   // The contents of the .note section.
661   const char* name = "GNU";
662   std::string desc(std::string("gold ") + gold::get_version_string());
663   size_t namesz = strlen(name) + 1;
664   size_t aligned_namesz = align_address(namesz, size / 8);
665   size_t descsz = desc.length() + 1;
666   size_t aligned_descsz = align_address(descsz, size / 8);
667   const int note_type = 4;
668
669   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
670
671   unsigned char buffer[128];
672   gold_assert(sizeof buffer >= notesz);
673   memset(buffer, 0, notesz);
674
675   bool is_big_endian = parameters->is_big_endian();
676
677   if (size == 32)
678     {
679       if (!is_big_endian)
680         {
681           elfcpp::Swap<32, false>::writeval(buffer, namesz);
682           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
683           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
684         }
685       else
686         {
687           elfcpp::Swap<32, true>::writeval(buffer, namesz);
688           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
689           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
690         }
691     }
692   else if (size == 64)
693     {
694       if (!is_big_endian)
695         {
696           elfcpp::Swap<64, false>::writeval(buffer, namesz);
697           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
698           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
699         }
700       else
701         {
702           elfcpp::Swap<64, true>::writeval(buffer, namesz);
703           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
704           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
705         }
706     }
707   else
708     gold_unreachable();
709
710   memcpy(buffer + 3 * (size / 8), name, namesz);
711   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
712
713   const char* note_name = this->namepool_.add(".note", false, NULL);
714   Output_section* os = this->make_output_section(note_name,
715                                                  elfcpp::SHT_NOTE,
716                                                  0);
717   Output_section_data* posd = new Output_data_const(buffer, notesz,
718                                                     size / 8);
719   os->add_output_section_data(posd);
720 }
721
722 // Return whether SEG1 should be before SEG2 in the output file.  This
723 // is based entirely on the segment type and flags.  When this is
724 // called the segment addresses has normally not yet been set.
725
726 bool
727 Layout::segment_precedes(const Output_segment* seg1,
728                          const Output_segment* seg2)
729 {
730   elfcpp::Elf_Word type1 = seg1->type();
731   elfcpp::Elf_Word type2 = seg2->type();
732
733   // The single PT_PHDR segment is required to precede any loadable
734   // segment.  We simply make it always first.
735   if (type1 == elfcpp::PT_PHDR)
736     {
737       gold_assert(type2 != elfcpp::PT_PHDR);
738       return true;
739     }
740   if (type2 == elfcpp::PT_PHDR)
741     return false;
742
743   // The single PT_INTERP segment is required to precede any loadable
744   // segment.  We simply make it always second.
745   if (type1 == elfcpp::PT_INTERP)
746     {
747       gold_assert(type2 != elfcpp::PT_INTERP);
748       return true;
749     }
750   if (type2 == elfcpp::PT_INTERP)
751     return false;
752
753   // We then put PT_LOAD segments before any other segments.
754   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
755     return true;
756   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
757     return false;
758
759   // We put the PT_TLS segment last, because that is where the dynamic
760   // linker expects to find it (this is just for efficiency; other
761   // positions would also work correctly).
762   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
763     return false;
764   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
765     return true;
766
767   const elfcpp::Elf_Word flags1 = seg1->flags();
768   const elfcpp::Elf_Word flags2 = seg2->flags();
769
770   // The order of non-PT_LOAD segments is unimportant.  We simply sort
771   // by the numeric segment type and flags values.  There should not
772   // be more than one segment with the same type and flags.
773   if (type1 != elfcpp::PT_LOAD)
774     {
775       if (type1 != type2)
776         return type1 < type2;
777       gold_assert(flags1 != flags2);
778       return flags1 < flags2;
779     }
780
781   // We sort PT_LOAD segments based on the flags.  Readonly segments
782   // come before writable segments.  Then executable segments come
783   // before non-executable segments.  Then the unlikely case of a
784   // non-readable segment comes before the normal case of a readable
785   // segment.  If there are multiple segments with the same type and
786   // flags, we require that the address be set, and we sort by
787   // virtual address and then physical address.
788   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
789     return (flags1 & elfcpp::PF_W) == 0;
790   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
791     return (flags1 & elfcpp::PF_X) != 0;
792   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
793     return (flags1 & elfcpp::PF_R) == 0;
794
795   uint64_t vaddr1 = seg1->vaddr();
796   uint64_t vaddr2 = seg2->vaddr();
797   if (vaddr1 != vaddr2)
798     return vaddr1 < vaddr2;
799
800   uint64_t paddr1 = seg1->paddr();
801   uint64_t paddr2 = seg2->paddr();
802   gold_assert(paddr1 != paddr2);
803   return paddr1 < paddr2;
804 }
805
806 // Set the file offsets of all the segments, and all the sections they
807 // contain.  They have all been created.  LOAD_SEG must be be laid out
808 // first.  Return the offset of the data to follow.
809
810 off_t
811 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
812                             unsigned int *pshndx)
813 {
814   // Sort them into the final order.
815   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
816             Layout::Compare_segments());
817
818   // Find the PT_LOAD segments, and set their addresses and offsets
819   // and their section's addresses and offsets.
820   uint64_t addr;
821   if (options_.user_set_text_segment_address())
822     addr = options_.text_segment_address();
823   else
824     addr = target->default_text_segment_address();
825   off_t off = 0;
826   bool was_readonly = false;
827   for (Segment_list::iterator p = this->segment_list_.begin();
828        p != this->segment_list_.end();
829        ++p)
830     {
831       if ((*p)->type() == elfcpp::PT_LOAD)
832         {
833           if (load_seg != NULL && load_seg != *p)
834             gold_unreachable();
835           load_seg = NULL;
836
837           // If the last segment was readonly, and this one is not,
838           // then skip the address forward one page, maintaining the
839           // same position within the page.  This lets us store both
840           // segments overlapping on a single page in the file, but
841           // the loader will put them on different pages in memory.
842
843           uint64_t orig_addr = addr;
844           uint64_t orig_off = off;
845
846           uint64_t aligned_addr = addr;
847           uint64_t abi_pagesize = target->abi_pagesize();
848
849           // FIXME: This should depend on the -n and -N options.
850           (*p)->set_minimum_addralign(target->common_pagesize());
851
852           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
853             {
854               uint64_t align = (*p)->addralign();
855
856               addr = align_address(addr, align);
857               aligned_addr = addr;
858               if ((addr & (abi_pagesize - 1)) != 0)
859                 addr = addr + abi_pagesize;
860             }
861
862           unsigned int shndx_hold = *pshndx;
863           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
864           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
865
866           // Now that we know the size of this segment, we may be able
867           // to save a page in memory, at the cost of wasting some
868           // file space, by instead aligning to the start of a new
869           // page.  Here we use the real machine page size rather than
870           // the ABI mandated page size.
871
872           if (aligned_addr != addr)
873             {
874               uint64_t common_pagesize = target->common_pagesize();
875               uint64_t first_off = (common_pagesize
876                                     - (aligned_addr
877                                        & (common_pagesize - 1)));
878               uint64_t last_off = new_addr & (common_pagesize - 1);
879               if (first_off > 0
880                   && last_off > 0
881                   && ((aligned_addr & ~ (common_pagesize - 1))
882                       != (new_addr & ~ (common_pagesize - 1)))
883                   && first_off + last_off <= common_pagesize)
884                 {
885                   *pshndx = shndx_hold;
886                   addr = align_address(aligned_addr, common_pagesize);
887                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
888                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
889                 }
890             }
891
892           addr = new_addr;
893
894           if (((*p)->flags() & elfcpp::PF_W) == 0)
895             was_readonly = true;
896         }
897     }
898
899   // Handle the non-PT_LOAD segments, setting their offsets from their
900   // section's offsets.
901   for (Segment_list::iterator p = this->segment_list_.begin();
902        p != this->segment_list_.end();
903        ++p)
904     {
905       if ((*p)->type() != elfcpp::PT_LOAD)
906         (*p)->set_offset();
907     }
908
909   return off;
910 }
911
912 // Set the file offset of all the sections not associated with a
913 // segment.
914
915 off_t
916 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
917 {
918   for (Section_list::iterator p = this->unattached_section_list_.begin();
919        p != this->unattached_section_list_.end();
920        ++p)
921     {
922       (*p)->set_out_shndx(*pshndx);
923       ++*pshndx;
924       if ((*p)->offset() != -1)
925         continue;
926       off = align_address(off, (*p)->addralign());
927       (*p)->set_address(0, off);
928       off += (*p)->data_size();
929     }
930   return off;
931 }
932
933 // Create the symbol table sections.  Here we also set the final
934 // values of the symbols.  At this point all the loadable sections are
935 // fully laid out.
936
937 void
938 Layout::create_symtab_sections(const Input_objects* input_objects,
939                                Symbol_table* symtab,
940                                off_t* poff)
941 {
942   int symsize;
943   unsigned int align;
944   if (parameters->get_size() == 32)
945     {
946       symsize = elfcpp::Elf_sizes<32>::sym_size;
947       align = 4;
948     }
949   else if (parameters->get_size() == 64)
950     {
951       symsize = elfcpp::Elf_sizes<64>::sym_size;
952       align = 8;
953     }
954   else
955     gold_unreachable();
956
957   off_t off = *poff;
958   off = align_address(off, align);
959   off_t startoff = off;
960
961   // Save space for the dummy symbol at the start of the section.  We
962   // never bother to write this out--it will just be left as zero.
963   off += symsize;
964   unsigned int local_symbol_index = 1;
965
966   // Add STT_SECTION symbols for each Output section which needs one.
967   for (Section_list::iterator p = this->section_list_.begin();
968        p != this->section_list_.end();
969        ++p)
970     {
971       if (!(*p)->needs_symtab_index())
972         (*p)->set_symtab_index(-1U);
973       else
974         {
975           (*p)->set_symtab_index(local_symbol_index);
976           ++local_symbol_index;
977           off += symsize;
978         }
979     }
980
981   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
982        p != input_objects->relobj_end();
983        ++p)
984     {
985       Task_lock_obj<Object> tlo(**p);
986       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
987                                                         off,
988                                                         &this->sympool_);
989       off += (index - local_symbol_index) * symsize;
990       local_symbol_index = index;
991     }
992
993   unsigned int local_symcount = local_symbol_index;
994   gold_assert(local_symcount * symsize == off - startoff);
995
996   off_t dynoff;
997   size_t dyn_global_index;
998   size_t dyncount;
999   if (this->dynsym_section_ == NULL)
1000     {
1001       dynoff = 0;
1002       dyn_global_index = 0;
1003       dyncount = 0;
1004     }
1005   else
1006     {
1007       dyn_global_index = this->dynsym_section_->info();
1008       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1009       dynoff = this->dynsym_section_->offset() + locsize;
1010       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1011       gold_assert(static_cast<off_t>(dyncount * symsize)
1012                   == this->dynsym_section_->data_size() - locsize);
1013     }
1014
1015   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1016                          dyncount, &this->sympool_);
1017
1018   if (!parameters->strip_all())
1019     {
1020       this->sympool_.set_string_offsets();
1021
1022       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1023       Output_section* osymtab = this->make_output_section(symtab_name,
1024                                                           elfcpp::SHT_SYMTAB,
1025                                                           0);
1026       this->symtab_section_ = osymtab;
1027
1028       Output_section_data* pos = new Output_data_space(off - startoff,
1029                                                        align);
1030       osymtab->add_output_section_data(pos);
1031
1032       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1033       Output_section* ostrtab = this->make_output_section(strtab_name,
1034                                                           elfcpp::SHT_STRTAB,
1035                                                           0);
1036
1037       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1038       ostrtab->add_output_section_data(pstr);
1039
1040       osymtab->set_address(0, startoff);
1041       osymtab->set_link_section(ostrtab);
1042       osymtab->set_info(local_symcount);
1043       osymtab->set_entsize(symsize);
1044
1045       *poff = off;
1046     }
1047 }
1048
1049 // Create the .shstrtab section, which holds the names of the
1050 // sections.  At the time this is called, we have created all the
1051 // output sections except .shstrtab itself.
1052
1053 Output_section*
1054 Layout::create_shstrtab()
1055 {
1056   // FIXME: We don't need to create a .shstrtab section if we are
1057   // stripping everything.
1058
1059   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1060
1061   this->namepool_.set_string_offsets();
1062
1063   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1064
1065   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1066   os->add_output_section_data(posd);
1067
1068   return os;
1069 }
1070
1071 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1072 // offset.
1073
1074 Output_section_headers*
1075 Layout::create_shdrs(off_t* poff)
1076 {
1077   Output_section_headers* oshdrs;
1078   oshdrs = new Output_section_headers(this,
1079                                       &this->segment_list_,
1080                                       &this->unattached_section_list_,
1081                                       &this->namepool_);
1082   off_t off = align_address(*poff, oshdrs->addralign());
1083   oshdrs->set_address(0, off);
1084   off += oshdrs->data_size();
1085   *poff = off;
1086   this->special_output_list_.push_back(oshdrs);
1087   return oshdrs;
1088 }
1089
1090 // Create the dynamic symbol table.
1091
1092 void
1093 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1094                               Output_section **pdynstr,
1095                               unsigned int* plocal_dynamic_count,
1096                               std::vector<Symbol*>* pdynamic_symbols,
1097                               Versions* pversions)
1098 {
1099   // Count all the symbols in the dynamic symbol table, and set the
1100   // dynamic symbol indexes.
1101
1102   // Skip symbol 0, which is always all zeroes.
1103   unsigned int index = 1;
1104
1105   // Add STT_SECTION symbols for each Output section which needs one.
1106   for (Section_list::iterator p = this->section_list_.begin();
1107        p != this->section_list_.end();
1108        ++p)
1109     {
1110       if (!(*p)->needs_dynsym_index())
1111         (*p)->set_dynsym_index(-1U);
1112       else
1113         {
1114           (*p)->set_dynsym_index(index);
1115           ++index;
1116         }
1117     }
1118
1119   // FIXME: Some targets apparently require local symbols in the
1120   // dynamic symbol table.  Here is where we will have to count them,
1121   // and set the dynamic symbol indexes, and add the names to
1122   // this->dynpool_.
1123
1124   unsigned int local_symcount = index;
1125   *plocal_dynamic_count = local_symcount;
1126
1127   // FIXME: We have to tell set_dynsym_indexes whether the
1128   // -E/--export-dynamic option was used.
1129   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1130                                      pdynamic_symbols, &this->dynpool_,
1131                                      pversions);
1132
1133   int symsize;
1134   unsigned int align;
1135   const int size = parameters->get_size();
1136   if (size == 32)
1137     {
1138       symsize = elfcpp::Elf_sizes<32>::sym_size;
1139       align = 4;
1140     }
1141   else if (size == 64)
1142     {
1143       symsize = elfcpp::Elf_sizes<64>::sym_size;
1144       align = 8;
1145     }
1146   else
1147     gold_unreachable();
1148
1149   // Create the dynamic symbol table section.
1150
1151   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1152   Output_section* dynsym = this->make_output_section(dynsym_name,
1153                                                      elfcpp::SHT_DYNSYM,
1154                                                      elfcpp::SHF_ALLOC);
1155
1156   Output_section_data* odata = new Output_data_space(index * symsize,
1157                                                      align);
1158   dynsym->add_output_section_data(odata);
1159
1160   dynsym->set_info(local_symcount);
1161   dynsym->set_entsize(symsize);
1162   dynsym->set_addralign(align);
1163
1164   this->dynsym_section_ = dynsym;
1165
1166   Output_data_dynamic* const odyn = this->dynamic_data_;
1167   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1168   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1169
1170   // Create the dynamic string table section.
1171
1172   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1173   Output_section* dynstr = this->make_output_section(dynstr_name,
1174                                                      elfcpp::SHT_STRTAB,
1175                                                      elfcpp::SHF_ALLOC);
1176
1177   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1178   dynstr->add_output_section_data(strdata);
1179
1180   dynsym->set_link_section(dynstr);
1181   this->dynamic_section_->set_link_section(dynstr);
1182
1183   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1184   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1185
1186   *pdynstr = dynstr;
1187
1188   // Create the hash tables.
1189
1190   // FIXME: We need an option to create a GNU hash table.
1191
1192   unsigned char* phash;
1193   unsigned int hashlen;
1194   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1195                                 &phash, &hashlen);
1196
1197   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1198   Output_section* hashsec = this->make_output_section(hash_name,
1199                                                       elfcpp::SHT_HASH,
1200                                                       elfcpp::SHF_ALLOC);
1201
1202   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1203                                                                hashlen,
1204                                                                align);
1205   hashsec->add_output_section_data(hashdata);
1206
1207   hashsec->set_link_section(dynsym);
1208   hashsec->set_entsize(4);
1209
1210   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1211 }
1212
1213 // Create the version sections.
1214
1215 void
1216 Layout::create_version_sections(const Versions* versions,
1217                                 unsigned int local_symcount,
1218                                 const std::vector<Symbol*>& dynamic_symbols,
1219                                 const Output_section* dynstr)
1220 {
1221   if (!versions->any_defs() && !versions->any_needs())
1222     return;
1223
1224   if (parameters->get_size() == 32)
1225     {
1226       if (parameters->is_big_endian())
1227         {
1228 #ifdef HAVE_TARGET_32_BIG
1229           this->sized_create_version_sections
1230               SELECT_SIZE_ENDIAN_NAME(32, true)(
1231                   versions, local_symcount, dynamic_symbols, dynstr
1232                   SELECT_SIZE_ENDIAN(32, true));
1233 #else
1234           gold_unreachable();
1235 #endif
1236         }
1237       else
1238         {
1239 #ifdef HAVE_TARGET_32_LITTLE
1240           this->sized_create_version_sections
1241               SELECT_SIZE_ENDIAN_NAME(32, false)(
1242                   versions, local_symcount, dynamic_symbols, dynstr
1243                   SELECT_SIZE_ENDIAN(32, false));
1244 #else
1245           gold_unreachable();
1246 #endif
1247         }
1248     }
1249   else if (parameters->get_size() == 64)
1250     {
1251       if (parameters->is_big_endian())
1252         {
1253 #ifdef HAVE_TARGET_64_BIG
1254           this->sized_create_version_sections
1255               SELECT_SIZE_ENDIAN_NAME(64, true)(
1256                   versions, local_symcount, dynamic_symbols, dynstr
1257                   SELECT_SIZE_ENDIAN(64, true));
1258 #else
1259           gold_unreachable();
1260 #endif
1261         }
1262       else
1263         {
1264 #ifdef HAVE_TARGET_64_LITTLE
1265           this->sized_create_version_sections
1266               SELECT_SIZE_ENDIAN_NAME(64, false)(
1267                   versions, local_symcount, dynamic_symbols, dynstr
1268                   SELECT_SIZE_ENDIAN(64, false));
1269 #else
1270           gold_unreachable();
1271 #endif
1272         }
1273     }
1274   else
1275     gold_unreachable();
1276 }
1277
1278 // Create the version sections, sized version.
1279
1280 template<int size, bool big_endian>
1281 void
1282 Layout::sized_create_version_sections(
1283     const Versions* versions,
1284     unsigned int local_symcount,
1285     const std::vector<Symbol*>& dynamic_symbols,
1286     const Output_section* dynstr
1287     ACCEPT_SIZE_ENDIAN)
1288 {
1289   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1290   Output_section* vsec = this->make_output_section(vname,
1291                                                    elfcpp::SHT_GNU_versym,
1292                                                    elfcpp::SHF_ALLOC);
1293
1294   unsigned char* vbuf;
1295   unsigned int vsize;
1296   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1297       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1298       SELECT_SIZE_ENDIAN(size, big_endian));
1299
1300   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1301
1302   vsec->add_output_section_data(vdata);
1303   vsec->set_entsize(2);
1304   vsec->set_link_section(this->dynsym_section_);
1305
1306   Output_data_dynamic* const odyn = this->dynamic_data_;
1307   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1308
1309   if (versions->any_defs())
1310     {
1311       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1312       Output_section *vdsec;
1313       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1314                                         elfcpp::SHF_ALLOC);
1315
1316       unsigned char* vdbuf;
1317       unsigned int vdsize;
1318       unsigned int vdentries;
1319       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1320           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1321           SELECT_SIZE_ENDIAN(size, big_endian));
1322
1323       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1324                                                                  vdsize,
1325                                                                  4);
1326
1327       vdsec->add_output_section_data(vddata);
1328       vdsec->set_link_section(dynstr);
1329       vdsec->set_info(vdentries);
1330
1331       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1332       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1333     }
1334
1335   if (versions->any_needs())
1336     {
1337       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1338       Output_section* vnsec;
1339       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1340                                         elfcpp::SHF_ALLOC);
1341
1342       unsigned char* vnbuf;
1343       unsigned int vnsize;
1344       unsigned int vnentries;
1345       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1346         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1347          SELECT_SIZE_ENDIAN(size, big_endian));
1348
1349       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1350                                                                  vnsize,
1351                                                                  4);
1352
1353       vnsec->add_output_section_data(vndata);
1354       vnsec->set_link_section(dynstr);
1355       vnsec->set_info(vnentries);
1356
1357       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1358       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1359     }
1360 }
1361
1362 // Create the .interp section and PT_INTERP segment.
1363
1364 void
1365 Layout::create_interp(const Target* target)
1366 {
1367   const char* interp = this->options_.dynamic_linker();
1368   if (interp == NULL)
1369     {
1370       interp = target->dynamic_linker();
1371       gold_assert(interp != NULL);
1372     }
1373
1374   size_t len = strlen(interp) + 1;
1375
1376   Output_section_data* odata = new Output_data_const(interp, len, 1);
1377
1378   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1379   Output_section* osec = this->make_output_section(interp_name,
1380                                                    elfcpp::SHT_PROGBITS,
1381                                                    elfcpp::SHF_ALLOC);
1382   osec->add_output_section_data(odata);
1383
1384   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1385   this->segment_list_.push_back(oseg);
1386   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1387 }
1388
1389 // Finish the .dynamic section and PT_DYNAMIC segment.
1390
1391 void
1392 Layout::finish_dynamic_section(const Input_objects* input_objects,
1393                                const Symbol_table* symtab)
1394 {
1395   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1396                                             elfcpp::PF_R | elfcpp::PF_W);
1397   this->segment_list_.push_back(oseg);
1398   oseg->add_initial_output_section(this->dynamic_section_,
1399                                    elfcpp::PF_R | elfcpp::PF_W);
1400
1401   Output_data_dynamic* const odyn = this->dynamic_data_;
1402
1403   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1404        p != input_objects->dynobj_end();
1405        ++p)
1406     {
1407       // FIXME: Handle --as-needed.
1408       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1409     }
1410
1411   // FIXME: Support --init and --fini.
1412   Symbol* sym = symtab->lookup("_init");
1413   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1414     odyn->add_symbol(elfcpp::DT_INIT, sym);
1415
1416   sym = symtab->lookup("_fini");
1417   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1418     odyn->add_symbol(elfcpp::DT_FINI, sym);
1419
1420   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1421
1422   // Add a DT_RPATH entry if needed.
1423   const General_options::Dir_list& rpath(this->options_.rpath());
1424   if (!rpath.empty())
1425     {
1426       std::string rpath_val;
1427       for (General_options::Dir_list::const_iterator p = rpath.begin();
1428            p != rpath.end();
1429            ++p)
1430         {
1431           if (rpath_val.empty())
1432             rpath_val = p->name();
1433           else
1434             {
1435               // Eliminate duplicates.
1436               General_options::Dir_list::const_iterator q;
1437               for (q = rpath.begin(); q != p; ++q)
1438                 if (q->name() == p->name())
1439                   break;
1440               if (q == p)
1441                 {
1442                   rpath_val += ':';
1443                   rpath_val += p->name();
1444                 }
1445             }
1446         }
1447
1448       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1449     }
1450 }
1451
1452 // The mapping of .gnu.linkonce section names to real section names.
1453
1454 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1455 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1456 {
1457   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1458   MAPPING_INIT("t", ".text"),
1459   MAPPING_INIT("r", ".rodata"),
1460   MAPPING_INIT("d", ".data"),
1461   MAPPING_INIT("b", ".bss"),
1462   MAPPING_INIT("s", ".sdata"),
1463   MAPPING_INIT("sb", ".sbss"),
1464   MAPPING_INIT("s2", ".sdata2"),
1465   MAPPING_INIT("sb2", ".sbss2"),
1466   MAPPING_INIT("wi", ".debug_info"),
1467   MAPPING_INIT("td", ".tdata"),
1468   MAPPING_INIT("tb", ".tbss"),
1469   MAPPING_INIT("lr", ".lrodata"),
1470   MAPPING_INIT("l", ".ldata"),
1471   MAPPING_INIT("lb", ".lbss"),
1472 };
1473 #undef MAPPING_INIT
1474
1475 const int Layout::linkonce_mapping_count =
1476   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1477
1478 // Return the name of the output section to use for a .gnu.linkonce
1479 // section.  This is based on the default ELF linker script of the old
1480 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1481 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1482 // initialized to the length of NAME.
1483
1484 const char*
1485 Layout::linkonce_output_name(const char* name, size_t *plen)
1486 {
1487   const char* s = name + sizeof(".gnu.linkonce") - 1;
1488   if (*s != '.')
1489     return name;
1490   ++s;
1491   const Linkonce_mapping* plm = linkonce_mapping;
1492   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1493     {
1494       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1495         {
1496           *plen = plm->tolen;
1497           return plm->to;
1498         }
1499     }
1500   return name;
1501 }
1502
1503 // Choose the output section name to use given an input section name.
1504 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1505 // length of NAME.
1506
1507 const char*
1508 Layout::output_section_name(const char* name, size_t* plen)
1509 {
1510   if (Layout::is_linkonce(name))
1511     {
1512       // .gnu.linkonce sections are laid out as though they were named
1513       // for the sections are placed into.
1514       return Layout::linkonce_output_name(name, plen);
1515     }
1516
1517   // If the section name has no '.', or only an initial '.', we use
1518   // the name unchanged (i.e., ".text" is unchanged).
1519
1520   // Otherwise, if the section name does not include ".rel", we drop
1521   // the last '.'  and everything that follows (i.e., ".text.XXX"
1522   // becomes ".text").
1523
1524   // Otherwise, if the section name has zero or one '.' after the
1525   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1526   // unchanged).
1527
1528   // Otherwise, we drop the last '.' and everything that follows
1529   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1530
1531   const char* s = name;
1532   if (*s == '.')
1533     ++s;
1534   const char* sdot = strchr(s, '.');
1535   if (sdot == NULL)
1536     return name;
1537
1538   const char* srel = strstr(s, ".rel");
1539   if (srel == NULL)
1540     {
1541       *plen = sdot - name;
1542       return name;
1543     }
1544
1545   sdot = strchr(srel + 1, '.');
1546   if (sdot == NULL)
1547     return name;
1548   sdot = strchr(sdot + 1, '.');
1549   if (sdot == NULL)
1550     return name;
1551
1552   *plen = sdot - name;
1553   return name;
1554 }
1555
1556 // Record the signature of a comdat section, and return whether to
1557 // include it in the link.  If GROUP is true, this is a regular
1558 // section group.  If GROUP is false, this is a group signature
1559 // derived from the name of a linkonce section.  We want linkonce
1560 // signatures and group signatures to block each other, but we don't
1561 // want a linkonce signature to block another linkonce signature.
1562
1563 bool
1564 Layout::add_comdat(const char* signature, bool group)
1565 {
1566   std::string sig(signature);
1567   std::pair<Signatures::iterator, bool> ins(
1568     this->signatures_.insert(std::make_pair(sig, group)));
1569
1570   if (ins.second)
1571     {
1572       // This is the first time we've seen this signature.
1573       return true;
1574     }
1575
1576   if (ins.first->second)
1577     {
1578       // We've already seen a real section group with this signature.
1579       return false;
1580     }
1581   else if (group)
1582     {
1583       // This is a real section group, and we've already seen a
1584       // linkonce section with this signature.  Record that we've seen
1585       // a section group, and don't include this section group.
1586       ins.first->second = true;
1587       return false;
1588     }
1589   else
1590     {
1591       // We've already seen a linkonce section and this is a linkonce
1592       // section.  These don't block each other--this may be the same
1593       // symbol name with different section types.
1594       return true;
1595     }
1596 }
1597
1598 // Write out data not associated with a section or the symbol table.
1599
1600 void
1601 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1602 {
1603   if (!parameters->strip_all())
1604     {
1605       const Output_section* symtab_section = this->symtab_section_;
1606       for (Section_list::const_iterator p = this->section_list_.begin();
1607            p != this->section_list_.end();
1608            ++p)
1609         {
1610           if ((*p)->needs_symtab_index())
1611             {
1612               gold_assert(symtab_section != NULL);
1613               unsigned int index = (*p)->symtab_index();
1614               gold_assert(index > 0 && index != -1U);
1615               off_t off = (symtab_section->offset()
1616                            + index * symtab_section->entsize());
1617               symtab->write_section_symbol(*p, of, off);
1618             }
1619         }
1620     }
1621
1622   const Output_section* dynsym_section = this->dynsym_section_;
1623   for (Section_list::const_iterator p = this->section_list_.begin();
1624        p != this->section_list_.end();
1625        ++p)
1626     {
1627       if ((*p)->needs_dynsym_index())
1628         {
1629           gold_assert(dynsym_section != NULL);
1630           unsigned int index = (*p)->dynsym_index();
1631           gold_assert(index > 0 && index != -1U);
1632           off_t off = (dynsym_section->offset()
1633                        + index * dynsym_section->entsize());
1634           symtab->write_section_symbol(*p, of, off);
1635         }
1636     }
1637
1638   // Write out the Output_sections.  Most won't have anything to
1639   // write, since most of the data will come from input sections which
1640   // are handled elsewhere.  But some Output_sections do have
1641   // Output_data.
1642   for (Section_list::const_iterator p = this->section_list_.begin();
1643        p != this->section_list_.end();
1644        ++p)
1645     (*p)->write(of);
1646
1647   // Write out the Output_data which are not in an Output_section.
1648   for (Data_list::const_iterator p = this->special_output_list_.begin();
1649        p != this->special_output_list_.end();
1650        ++p)
1651     (*p)->write(of);
1652 }
1653
1654 // Write_data_task methods.
1655
1656 // We can always run this task.
1657
1658 Task::Is_runnable_type
1659 Write_data_task::is_runnable(Workqueue*)
1660 {
1661   return IS_RUNNABLE;
1662 }
1663
1664 // We need to unlock FINAL_BLOCKER when finished.
1665
1666 Task_locker*
1667 Write_data_task::locks(Workqueue* workqueue)
1668 {
1669   return new Task_locker_block(*this->final_blocker_, workqueue);
1670 }
1671
1672 // Run the task--write out the data.
1673
1674 void
1675 Write_data_task::run(Workqueue*)
1676 {
1677   this->layout_->write_data(this->symtab_, this->of_);
1678 }
1679
1680 // Write_symbols_task methods.
1681
1682 // We can always run this task.
1683
1684 Task::Is_runnable_type
1685 Write_symbols_task::is_runnable(Workqueue*)
1686 {
1687   return IS_RUNNABLE;
1688 }
1689
1690 // We need to unlock FINAL_BLOCKER when finished.
1691
1692 Task_locker*
1693 Write_symbols_task::locks(Workqueue* workqueue)
1694 {
1695   return new Task_locker_block(*this->final_blocker_, workqueue);
1696 }
1697
1698 // Run the task--write out the symbols.
1699
1700 void
1701 Write_symbols_task::run(Workqueue*)
1702 {
1703   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1704                                this->of_);
1705 }
1706
1707 // Close_task_runner methods.
1708
1709 // Run the task--close the file.
1710
1711 void
1712 Close_task_runner::run(Workqueue*)
1713 {
1714   this->of_->close();
1715 }
1716
1717 // Instantiate the templates we need.  We could use the configure
1718 // script to restrict this to only the ones for implemented targets.
1719
1720 #ifdef HAVE_TARGET_32_LITTLE
1721 template
1722 Output_section*
1723 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1724                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1725 #endif
1726
1727 #ifdef HAVE_TARGET_32_BIG
1728 template
1729 Output_section*
1730 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1731                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1732 #endif
1733
1734 #ifdef HAVE_TARGET_64_LITTLE
1735 template
1736 Output_section*
1737 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1738                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1739 #endif
1740
1741 #ifdef HAVE_TARGET_64_BIG
1742 template
1743 Output_section*
1744 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1745                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1746 #endif
1747
1748
1749 } // End namespace gold.