Fix problem where linker does not place .note sections according to script.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158   *off = 0;
1159
1160   if (!this->include_section(object, name, shdr))
1161     return NULL;
1162
1163   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // Plugins can choose to place one or more subsets of sections in
1182       // unique segments and this is done by mapping these section subsets
1183       // to unique output sections.  Check if this section needs to be
1184       // remapped to a unique output section.
1185       Section_segment_map::iterator it
1186           = this->section_segment_map_.find(Const_section_id(object, shndx));
1187       if (it == this->section_segment_map_.end())
1188         {
1189           os = this->choose_output_section(object, name, sh_type,
1190                                            shdr.get_sh_flags(), true,
1191                                            ORDER_INVALID, false, false,
1192                                            true);
1193         }
1194       else
1195         {
1196           // We know the name of the output section, directly call
1197           // get_output_section here by-passing choose_output_section.
1198           elfcpp::Elf_Xword flags
1199             = this->get_output_section_flags(shdr.get_sh_flags());
1200
1201           const char* os_name = it->second->name;
1202           Stringpool::Key name_key;
1203           os_name = this->namepool_.add(os_name, true, &name_key);
1204           os = this->get_output_section(os_name, name_key, sh_type, flags,
1205                                         ORDER_INVALID, false);
1206           if (!os->is_unique_segment())
1207             {
1208               os->set_is_unique_segment();
1209               os->set_extra_segment_flags(it->second->flags);
1210               os->set_segment_alignment(it->second->align);
1211             }
1212         }
1213       if (os == NULL)
1214         return NULL;
1215     }
1216
1217   // By default the GNU linker sorts input sections whose names match
1218   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1219   // sections are sorted by name.  This is used to implement
1220   // constructor priority ordering.  We are compatible.  When we put
1221   // .ctor sections in .init_array and .dtor sections in .fini_array,
1222   // we must also sort plain .ctor and .dtor sections.
1223   if (!this->script_options_->saw_sections_clause()
1224       && !parameters->options().relocatable()
1225       && (is_prefix_of(".ctors.", name)
1226           || is_prefix_of(".dtors.", name)
1227           || is_prefix_of(".init_array.", name)
1228           || is_prefix_of(".fini_array.", name)
1229           || (parameters->options().ctors_in_init_array()
1230               && (strcmp(name, ".ctors") == 0
1231                   || strcmp(name, ".dtors") == 0))))
1232     os->set_must_sort_attached_input_sections();
1233
1234   // By default the GNU linker sorts some special text sections ahead
1235   // of others.  We are compatible.
1236   if (parameters->options().text_reorder()
1237       && !this->script_options_->saw_sections_clause()
1238       && !this->is_section_ordering_specified()
1239       && !parameters->options().relocatable()
1240       && Layout::special_ordering_of_input_section(name) >= 0)
1241     os->set_must_sort_attached_input_sections();
1242
1243   // If this is a .ctors or .ctors.* section being mapped to a
1244   // .init_array section, or a .dtors or .dtors.* section being mapped
1245   // to a .fini_array section, we will need to reverse the words if
1246   // there is more than one.  Record this section for later.  See
1247   // ctors_sections_in_init_array above.
1248   if (!this->script_options_->saw_sections_clause()
1249       && !parameters->options().relocatable()
1250       && shdr.get_sh_size() > size / 8
1251       && (((strcmp(name, ".ctors") == 0
1252             || is_prefix_of(".ctors.", name))
1253            && strcmp(os->name(), ".init_array") == 0)
1254           || ((strcmp(name, ".dtors") == 0
1255                || is_prefix_of(".dtors.", name))
1256               && strcmp(os->name(), ".fini_array") == 0)))
1257     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1258
1259   // FIXME: Handle SHF_LINK_ORDER somewhere.
1260
1261   elfcpp::Elf_Xword orig_flags = os->flags();
1262
1263   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1264                                this->script_options_->saw_sections_clause());
1265
1266   // If the flags changed, we may have to change the order.
1267   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1268     {
1269       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1270       elfcpp::Elf_Xword new_flags =
1271         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1272       if (orig_flags != new_flags)
1273         os->set_order(this->default_section_order(os, false));
1274     }
1275
1276   this->have_added_input_section_ = true;
1277
1278   return os;
1279 }
1280
1281 // Maps section SECN to SEGMENT s.
1282 void
1283 Layout::insert_section_segment_map(Const_section_id secn,
1284                                    Unique_segment_info *s)
1285 {
1286   gold_assert(this->unique_segment_for_sections_specified_);
1287   this->section_segment_map_[secn] = s;
1288 }
1289
1290 // Handle a relocation section when doing a relocatable link.
1291
1292 template<int size, bool big_endian>
1293 Output_section*
1294 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1295                      unsigned int,
1296                      const elfcpp::Shdr<size, big_endian>& shdr,
1297                      Output_section* data_section,
1298                      Relocatable_relocs* rr)
1299 {
1300   gold_assert(parameters->options().relocatable()
1301               || parameters->options().emit_relocs());
1302
1303   int sh_type = shdr.get_sh_type();
1304
1305   std::string name;
1306   if (sh_type == elfcpp::SHT_REL)
1307     name = ".rel";
1308   else if (sh_type == elfcpp::SHT_RELA)
1309     name = ".rela";
1310   else
1311     gold_unreachable();
1312   name += data_section->name();
1313
1314   // In a relocatable link relocs for a grouped section must not be
1315   // combined with other reloc sections.
1316   Output_section* os;
1317   if (!parameters->options().relocatable()
1318       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1319     os = this->choose_output_section(object, name.c_str(), sh_type,
1320                                      shdr.get_sh_flags(), false,
1321                                      ORDER_INVALID, false, true, false);
1322   else
1323     {
1324       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1325       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1326                                      ORDER_INVALID, false);
1327     }
1328
1329   os->set_should_link_to_symtab();
1330   os->set_info_section(data_section);
1331
1332   Output_section_data* posd;
1333   if (sh_type == elfcpp::SHT_REL)
1334     {
1335       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1336       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1337                                            size,
1338                                            big_endian>(rr);
1339     }
1340   else if (sh_type == elfcpp::SHT_RELA)
1341     {
1342       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1343       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1344                                            size,
1345                                            big_endian>(rr);
1346     }
1347   else
1348     gold_unreachable();
1349
1350   os->add_output_section_data(posd);
1351   rr->set_output_data(posd);
1352
1353   return os;
1354 }
1355
1356 // Handle a group section when doing a relocatable link.
1357
1358 template<int size, bool big_endian>
1359 void
1360 Layout::layout_group(Symbol_table* symtab,
1361                      Sized_relobj_file<size, big_endian>* object,
1362                      unsigned int,
1363                      const char* group_section_name,
1364                      const char* signature,
1365                      const elfcpp::Shdr<size, big_endian>& shdr,
1366                      elfcpp::Elf_Word flags,
1367                      std::vector<unsigned int>* shndxes)
1368 {
1369   gold_assert(parameters->options().relocatable());
1370   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1371   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1372   Output_section* os = this->make_output_section(group_section_name,
1373                                                  elfcpp::SHT_GROUP,
1374                                                  shdr.get_sh_flags(),
1375                                                  ORDER_INVALID, false);
1376
1377   // We need to find a symbol with the signature in the symbol table.
1378   // If we don't find one now, we need to look again later.
1379   Symbol* sym = symtab->lookup(signature, NULL);
1380   if (sym != NULL)
1381     os->set_info_symndx(sym);
1382   else
1383     {
1384       // Reserve some space to minimize reallocations.
1385       if (this->group_signatures_.empty())
1386         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1387
1388       // We will wind up using a symbol whose name is the signature.
1389       // So just put the signature in the symbol name pool to save it.
1390       signature = symtab->canonicalize_name(signature);
1391       this->group_signatures_.push_back(Group_signature(os, signature));
1392     }
1393
1394   os->set_should_link_to_symtab();
1395   os->set_entsize(4);
1396
1397   section_size_type entry_count =
1398     convert_to_section_size_type(shdr.get_sh_size() / 4);
1399   Output_section_data* posd =
1400     new Output_data_group<size, big_endian>(object, entry_count, flags,
1401                                             shndxes);
1402   os->add_output_section_data(posd);
1403 }
1404
1405 // Special GNU handling of sections name .eh_frame.  They will
1406 // normally hold exception frame data as defined by the C++ ABI
1407 // (http://codesourcery.com/cxx-abi/).
1408
1409 template<int size, bool big_endian>
1410 Output_section*
1411 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1412                         const unsigned char* symbols,
1413                         off_t symbols_size,
1414                         const unsigned char* symbol_names,
1415                         off_t symbol_names_size,
1416                         unsigned int shndx,
1417                         const elfcpp::Shdr<size, big_endian>& shdr,
1418                         unsigned int reloc_shndx, unsigned int reloc_type,
1419                         off_t* off)
1420 {
1421   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1422               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1423   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1424
1425   Output_section* os = this->make_eh_frame_section(object);
1426   if (os == NULL)
1427     return NULL;
1428
1429   gold_assert(this->eh_frame_section_ == os);
1430
1431   elfcpp::Elf_Xword orig_flags = os->flags();
1432
1433   Eh_frame::Eh_frame_section_disposition disp =
1434       Eh_frame::EH_UNRECOGNIZED_SECTION;
1435   if (!parameters->incremental())
1436     {
1437       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1438                                                              symbols,
1439                                                              symbols_size,
1440                                                              symbol_names,
1441                                                              symbol_names_size,
1442                                                              shndx,
1443                                                              reloc_shndx,
1444                                                              reloc_type);
1445     }
1446
1447   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1448     {
1449       os->update_flags_for_input_section(shdr.get_sh_flags());
1450
1451       // A writable .eh_frame section is a RELRO section.
1452       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1453           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1454         {
1455           os->set_is_relro();
1456           os->set_order(ORDER_RELRO);
1457         }
1458
1459       *off = -1;
1460       return os;
1461     }
1462
1463   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1464     {
1465       // We found the end marker section, so now we can add the set of
1466       // optimized sections to the output section.  We need to postpone
1467       // adding this until we've found a section we can optimize so that
1468       // the .eh_frame section in crtbeginT.o winds up at the start of
1469       // the output section.
1470       os->add_output_section_data(this->eh_frame_data_);
1471       this->added_eh_frame_data_ = true;
1472      }
1473
1474   // We couldn't handle this .eh_frame section for some reason.
1475   // Add it as a normal section.
1476   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1477   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1478                                reloc_shndx, saw_sections_clause);
1479   this->have_added_input_section_ = true;
1480
1481   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1482       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1483     os->set_order(this->default_section_order(os, false));
1484
1485   return os;
1486 }
1487
1488 void
1489 Layout::finalize_eh_frame_section()
1490 {
1491   // If we never found an end marker section, we need to add the
1492   // optimized eh sections to the output section now.
1493   if (!parameters->incremental()
1494       && this->eh_frame_section_ != NULL
1495       && !this->added_eh_frame_data_)
1496     {
1497       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1498       this->added_eh_frame_data_ = true;
1499     }
1500 }
1501
1502 // Create and return the magic .eh_frame section.  Create
1503 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1504 // input .eh_frame section; it may be NULL.
1505
1506 Output_section*
1507 Layout::make_eh_frame_section(const Relobj* object)
1508 {
1509   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1510   // SHT_PROGBITS.
1511   Output_section* os = this->choose_output_section(object, ".eh_frame",
1512                                                    elfcpp::SHT_PROGBITS,
1513                                                    elfcpp::SHF_ALLOC, false,
1514                                                    ORDER_EHFRAME, false, false,
1515                                                    false);
1516   if (os == NULL)
1517     return NULL;
1518
1519   if (this->eh_frame_section_ == NULL)
1520     {
1521       this->eh_frame_section_ = os;
1522       this->eh_frame_data_ = new Eh_frame();
1523
1524       // For incremental linking, we do not optimize .eh_frame sections
1525       // or create a .eh_frame_hdr section.
1526       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1527         {
1528           Output_section* hdr_os =
1529             this->choose_output_section(NULL, ".eh_frame_hdr",
1530                                         elfcpp::SHT_PROGBITS,
1531                                         elfcpp::SHF_ALLOC, false,
1532                                         ORDER_EHFRAME, false, false,
1533                                         false);
1534
1535           if (hdr_os != NULL)
1536             {
1537               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1538                                                         this->eh_frame_data_);
1539               hdr_os->add_output_section_data(hdr_posd);
1540
1541               hdr_os->set_after_input_sections();
1542
1543               if (!this->script_options_->saw_phdrs_clause())
1544                 {
1545                   Output_segment* hdr_oseg;
1546                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1547                                                        elfcpp::PF_R);
1548                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1549                                                           elfcpp::PF_R);
1550                 }
1551
1552               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1553             }
1554         }
1555     }
1556
1557   return os;
1558 }
1559
1560 // Add an exception frame for a PLT.  This is called from target code.
1561
1562 void
1563 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1564                              size_t cie_length, const unsigned char* fde_data,
1565                              size_t fde_length)
1566 {
1567   if (parameters->incremental())
1568     {
1569       // FIXME: Maybe this could work some day....
1570       return;
1571     }
1572   Output_section* os = this->make_eh_frame_section(NULL);
1573   if (os == NULL)
1574     return;
1575   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1576                                             fde_data, fde_length);
1577   if (!this->added_eh_frame_data_)
1578     {
1579       os->add_output_section_data(this->eh_frame_data_);
1580       this->added_eh_frame_data_ = true;
1581     }
1582 }
1583
1584 // Scan a .debug_info or .debug_types section, and add summary
1585 // information to the .gdb_index section.
1586
1587 template<int size, bool big_endian>
1588 void
1589 Layout::add_to_gdb_index(bool is_type_unit,
1590                          Sized_relobj<size, big_endian>* object,
1591                          const unsigned char* symbols,
1592                          off_t symbols_size,
1593                          unsigned int shndx,
1594                          unsigned int reloc_shndx,
1595                          unsigned int reloc_type)
1596 {
1597   if (this->gdb_index_data_ == NULL)
1598     {
1599       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1600                                                        elfcpp::SHT_PROGBITS, 0,
1601                                                        false, ORDER_INVALID,
1602                                                        false, false, false);
1603       if (os == NULL)
1604         return;
1605
1606       this->gdb_index_data_ = new Gdb_index(os);
1607       os->add_output_section_data(this->gdb_index_data_);
1608       os->set_after_input_sections();
1609     }
1610
1611   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1612                                          symbols_size, shndx, reloc_shndx,
1613                                          reloc_type);
1614 }
1615
1616 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1617 // the output section.
1618
1619 Output_section*
1620 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1621                                 elfcpp::Elf_Xword flags,
1622                                 Output_section_data* posd,
1623                                 Output_section_order order, bool is_relro)
1624 {
1625   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1626                                                    false, order, is_relro,
1627                                                    false, false);
1628   if (os != NULL)
1629     os->add_output_section_data(posd);
1630   return os;
1631 }
1632
1633 // Map section flags to segment flags.
1634
1635 elfcpp::Elf_Word
1636 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1637 {
1638   elfcpp::Elf_Word ret = elfcpp::PF_R;
1639   if ((flags & elfcpp::SHF_WRITE) != 0)
1640     ret |= elfcpp::PF_W;
1641   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1642     ret |= elfcpp::PF_X;
1643   return ret;
1644 }
1645
1646 // Make a new Output_section, and attach it to segments as
1647 // appropriate.  ORDER is the order in which this section should
1648 // appear in the output segment.  IS_RELRO is true if this is a relro
1649 // (read-only after relocations) section.
1650
1651 Output_section*
1652 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1653                             elfcpp::Elf_Xword flags,
1654                             Output_section_order order, bool is_relro)
1655 {
1656   Output_section* os;
1657   if ((flags & elfcpp::SHF_ALLOC) == 0
1658       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1659       && is_compressible_debug_section(name))
1660     os = new Output_compressed_section(&parameters->options(), name, type,
1661                                        flags);
1662   else if ((flags & elfcpp::SHF_ALLOC) == 0
1663            && parameters->options().strip_debug_non_line()
1664            && strcmp(".debug_abbrev", name) == 0)
1665     {
1666       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1667           name, type, flags);
1668       if (this->debug_info_)
1669         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1670     }
1671   else if ((flags & elfcpp::SHF_ALLOC) == 0
1672            && parameters->options().strip_debug_non_line()
1673            && strcmp(".debug_info", name) == 0)
1674     {
1675       os = this->debug_info_ = new Output_reduced_debug_info_section(
1676           name, type, flags);
1677       if (this->debug_abbrev_)
1678         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1679     }
1680   else
1681     {
1682       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1683       // not have correct section types.  Force them here.
1684       if (type == elfcpp::SHT_PROGBITS)
1685         {
1686           if (is_prefix_of(".init_array", name))
1687             type = elfcpp::SHT_INIT_ARRAY;
1688           else if (is_prefix_of(".preinit_array", name))
1689             type = elfcpp::SHT_PREINIT_ARRAY;
1690           else if (is_prefix_of(".fini_array", name))
1691             type = elfcpp::SHT_FINI_ARRAY;
1692         }
1693
1694       // FIXME: const_cast is ugly.
1695       Target* target = const_cast<Target*>(&parameters->target());
1696       os = target->make_output_section(name, type, flags);
1697     }
1698
1699   // With -z relro, we have to recognize the special sections by name.
1700   // There is no other way.
1701   bool is_relro_local = false;
1702   if (!this->script_options_->saw_sections_clause()
1703       && parameters->options().relro()
1704       && (flags & elfcpp::SHF_ALLOC) != 0
1705       && (flags & elfcpp::SHF_WRITE) != 0)
1706     {
1707       if (type == elfcpp::SHT_PROGBITS)
1708         {
1709           if ((flags & elfcpp::SHF_TLS) != 0)
1710             is_relro = true;
1711           else if (strcmp(name, ".data.rel.ro") == 0)
1712             is_relro = true;
1713           else if (strcmp(name, ".data.rel.ro.local") == 0)
1714             {
1715               is_relro = true;
1716               is_relro_local = true;
1717             }
1718           else if (strcmp(name, ".ctors") == 0
1719                    || strcmp(name, ".dtors") == 0
1720                    || strcmp(name, ".jcr") == 0)
1721             is_relro = true;
1722         }
1723       else if (type == elfcpp::SHT_INIT_ARRAY
1724                || type == elfcpp::SHT_FINI_ARRAY
1725                || type == elfcpp::SHT_PREINIT_ARRAY)
1726         is_relro = true;
1727     }
1728
1729   if (is_relro)
1730     os->set_is_relro();
1731
1732   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1733     order = this->default_section_order(os, is_relro_local);
1734
1735   os->set_order(order);
1736
1737   parameters->target().new_output_section(os);
1738
1739   this->section_list_.push_back(os);
1740
1741   // The GNU linker by default sorts some sections by priority, so we
1742   // do the same.  We need to know that this might happen before we
1743   // attach any input sections.
1744   if (!this->script_options_->saw_sections_clause()
1745       && !parameters->options().relocatable()
1746       && (strcmp(name, ".init_array") == 0
1747           || strcmp(name, ".fini_array") == 0
1748           || (!parameters->options().ctors_in_init_array()
1749               && (strcmp(name, ".ctors") == 0
1750                   || strcmp(name, ".dtors") == 0))))
1751     os->set_may_sort_attached_input_sections();
1752
1753   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1754   // sections before other .text sections.  We are compatible.  We
1755   // need to know that this might happen before we attach any input
1756   // sections.
1757   if (parameters->options().text_reorder()
1758       && !this->script_options_->saw_sections_clause()
1759       && !this->is_section_ordering_specified()
1760       && !parameters->options().relocatable()
1761       && strcmp(name, ".text") == 0)
1762     os->set_may_sort_attached_input_sections();
1763
1764   // GNU linker sorts section by name with --sort-section=name.
1765   if (strcmp(parameters->options().sort_section(), "name") == 0)
1766       os->set_must_sort_attached_input_sections();
1767
1768   // Check for .stab*str sections, as .stab* sections need to link to
1769   // them.
1770   if (type == elfcpp::SHT_STRTAB
1771       && !this->have_stabstr_section_
1772       && strncmp(name, ".stab", 5) == 0
1773       && strcmp(name + strlen(name) - 3, "str") == 0)
1774     this->have_stabstr_section_ = true;
1775
1776   // During a full incremental link, we add patch space to most
1777   // PROGBITS and NOBITS sections.  Flag those that may be
1778   // arbitrarily padded.
1779   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1780       && order != ORDER_INTERP
1781       && order != ORDER_INIT
1782       && order != ORDER_PLT
1783       && order != ORDER_FINI
1784       && order != ORDER_RELRO_LAST
1785       && order != ORDER_NON_RELRO_FIRST
1786       && strcmp(name, ".eh_frame") != 0
1787       && strcmp(name, ".ctors") != 0
1788       && strcmp(name, ".dtors") != 0
1789       && strcmp(name, ".jcr") != 0)
1790     {
1791       os->set_is_patch_space_allowed();
1792
1793       // Certain sections require "holes" to be filled with
1794       // specific fill patterns.  These fill patterns may have
1795       // a minimum size, so we must prevent allocations from the
1796       // free list that leave a hole smaller than the minimum.
1797       if (strcmp(name, ".debug_info") == 0)
1798         os->set_free_space_fill(new Output_fill_debug_info(false));
1799       else if (strcmp(name, ".debug_types") == 0)
1800         os->set_free_space_fill(new Output_fill_debug_info(true));
1801       else if (strcmp(name, ".debug_line") == 0)
1802         os->set_free_space_fill(new Output_fill_debug_line());
1803     }
1804
1805   // If we have already attached the sections to segments, then we
1806   // need to attach this one now.  This happens for sections created
1807   // directly by the linker.
1808   if (this->sections_are_attached_)
1809     this->attach_section_to_segment(&parameters->target(), os);
1810
1811   return os;
1812 }
1813
1814 // Return the default order in which a section should be placed in an
1815 // output segment.  This function captures a lot of the ideas in
1816 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1817 // linker created section is normally set when the section is created;
1818 // this function is used for input sections.
1819
1820 Output_section_order
1821 Layout::default_section_order(Output_section* os, bool is_relro_local)
1822 {
1823   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1824   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1825   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1826   bool is_bss = false;
1827
1828   switch (os->type())
1829     {
1830     default:
1831     case elfcpp::SHT_PROGBITS:
1832       break;
1833     case elfcpp::SHT_NOBITS:
1834       is_bss = true;
1835       break;
1836     case elfcpp::SHT_RELA:
1837     case elfcpp::SHT_REL:
1838       if (!is_write)
1839         return ORDER_DYNAMIC_RELOCS;
1840       break;
1841     case elfcpp::SHT_HASH:
1842     case elfcpp::SHT_DYNAMIC:
1843     case elfcpp::SHT_SHLIB:
1844     case elfcpp::SHT_DYNSYM:
1845     case elfcpp::SHT_GNU_HASH:
1846     case elfcpp::SHT_GNU_verdef:
1847     case elfcpp::SHT_GNU_verneed:
1848     case elfcpp::SHT_GNU_versym:
1849       if (!is_write)
1850         return ORDER_DYNAMIC_LINKER;
1851       break;
1852     case elfcpp::SHT_NOTE:
1853       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1854     }
1855
1856   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1857     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1858
1859   if (!is_bss && !is_write)
1860     {
1861       if (is_execinstr)
1862         {
1863           if (strcmp(os->name(), ".init") == 0)
1864             return ORDER_INIT;
1865           else if (strcmp(os->name(), ".fini") == 0)
1866             return ORDER_FINI;
1867         }
1868       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1869     }
1870
1871   if (os->is_relro())
1872     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1873
1874   if (os->is_small_section())
1875     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1876   if (os->is_large_section())
1877     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1878
1879   return is_bss ? ORDER_BSS : ORDER_DATA;
1880 }
1881
1882 // Attach output sections to segments.  This is called after we have
1883 // seen all the input sections.
1884
1885 void
1886 Layout::attach_sections_to_segments(const Target* target)
1887 {
1888   for (Section_list::iterator p = this->section_list_.begin();
1889        p != this->section_list_.end();
1890        ++p)
1891     this->attach_section_to_segment(target, *p);
1892
1893   this->sections_are_attached_ = true;
1894 }
1895
1896 // Attach an output section to a segment.
1897
1898 void
1899 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1900 {
1901   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1902     this->unattached_section_list_.push_back(os);
1903   else
1904     this->attach_allocated_section_to_segment(target, os);
1905 }
1906
1907 // Attach an allocated output section to a segment.
1908
1909 void
1910 Layout::attach_allocated_section_to_segment(const Target* target,
1911                                             Output_section* os)
1912 {
1913   elfcpp::Elf_Xword flags = os->flags();
1914   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1915
1916   if (parameters->options().relocatable())
1917     return;
1918
1919   // If we have a SECTIONS clause, we can't handle the attachment to
1920   // segments until after we've seen all the sections.
1921   if (this->script_options_->saw_sections_clause())
1922     return;
1923
1924   gold_assert(!this->script_options_->saw_phdrs_clause());
1925
1926   // This output section goes into a PT_LOAD segment.
1927
1928   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1929
1930   // If this output section's segment has extra flags that need to be set,
1931   // coming from a linker plugin, do that.
1932   seg_flags |= os->extra_segment_flags();
1933
1934   // Check for --section-start.
1935   uint64_t addr;
1936   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1937
1938   // In general the only thing we really care about for PT_LOAD
1939   // segments is whether or not they are writable or executable,
1940   // so that is how we search for them.
1941   // Large data sections also go into their own PT_LOAD segment.
1942   // People who need segments sorted on some other basis will
1943   // have to use a linker script.
1944
1945   Segment_list::const_iterator p;
1946   if (!os->is_unique_segment())
1947     {
1948       for (p = this->segment_list_.begin();
1949            p != this->segment_list_.end();
1950            ++p)
1951         {
1952           if ((*p)->type() != elfcpp::PT_LOAD)
1953             continue;
1954           if ((*p)->is_unique_segment())
1955             continue;
1956           if (!parameters->options().omagic()
1957               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1958             continue;
1959           if ((target->isolate_execinstr() || parameters->options().rosegment())
1960               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1961             continue;
1962           // If -Tbss was specified, we need to separate the data and BSS
1963           // segments.
1964           if (parameters->options().user_set_Tbss())
1965             {
1966               if ((os->type() == elfcpp::SHT_NOBITS)
1967                   == (*p)->has_any_data_sections())
1968                 continue;
1969             }
1970           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1971             continue;
1972
1973           if (is_address_set)
1974             {
1975               if ((*p)->are_addresses_set())
1976                 continue;
1977
1978               (*p)->add_initial_output_data(os);
1979               (*p)->update_flags_for_output_section(seg_flags);
1980               (*p)->set_addresses(addr, addr);
1981               break;
1982             }
1983
1984           (*p)->add_output_section_to_load(this, os, seg_flags);
1985           break;
1986         }
1987     }
1988
1989   if (p == this->segment_list_.end()
1990       || os->is_unique_segment())
1991     {
1992       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1993                                                        seg_flags);
1994       if (os->is_large_data_section())
1995         oseg->set_is_large_data_segment();
1996       oseg->add_output_section_to_load(this, os, seg_flags);
1997       if (is_address_set)
1998         oseg->set_addresses(addr, addr);
1999       // Check if segment should be marked unique.  For segments marked
2000       // unique by linker plugins, set the new alignment if specified.
2001       if (os->is_unique_segment())
2002         {
2003           oseg->set_is_unique_segment();
2004           if (os->segment_alignment() != 0)
2005             oseg->set_minimum_p_align(os->segment_alignment());
2006         }
2007     }
2008
2009   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2010   // segment.
2011   if (os->type() == elfcpp::SHT_NOTE)
2012     {
2013       // See if we already have an equivalent PT_NOTE segment.
2014       for (p = this->segment_list_.begin();
2015            p != segment_list_.end();
2016            ++p)
2017         {
2018           if ((*p)->type() == elfcpp::PT_NOTE
2019               && (((*p)->flags() & elfcpp::PF_W)
2020                   == (seg_flags & elfcpp::PF_W)))
2021             {
2022               (*p)->add_output_section_to_nonload(os, seg_flags);
2023               break;
2024             }
2025         }
2026
2027       if (p == this->segment_list_.end())
2028         {
2029           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2030                                                            seg_flags);
2031           oseg->add_output_section_to_nonload(os, seg_flags);
2032         }
2033     }
2034
2035   // If we see a loadable SHF_TLS section, we create a PT_TLS
2036   // segment.  There can only be one such segment.
2037   if ((flags & elfcpp::SHF_TLS) != 0)
2038     {
2039       if (this->tls_segment_ == NULL)
2040         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2041       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2042     }
2043
2044   // If -z relro is in effect, and we see a relro section, we create a
2045   // PT_GNU_RELRO segment.  There can only be one such segment.
2046   if (os->is_relro() && parameters->options().relro())
2047     {
2048       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2049       if (this->relro_segment_ == NULL)
2050         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2051       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2052     }
2053
2054   // If we see a section named .interp, put it into a PT_INTERP
2055   // segment.  This seems broken to me, but this is what GNU ld does,
2056   // and glibc expects it.
2057   if (strcmp(os->name(), ".interp") == 0
2058       && !this->script_options_->saw_phdrs_clause())
2059     {
2060       if (this->interp_segment_ == NULL)
2061         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2062       else
2063         gold_warning(_("multiple '.interp' sections in input files "
2064                        "may cause confusing PT_INTERP segment"));
2065       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2066     }
2067 }
2068
2069 // Make an output section for a script.
2070
2071 Output_section*
2072 Layout::make_output_section_for_script(
2073     const char* name,
2074     Script_sections::Section_type section_type)
2075 {
2076   name = this->namepool_.add(name, false, NULL);
2077   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2078   if (section_type == Script_sections::ST_NOLOAD)
2079     sh_flags = 0;
2080   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2081                                                  sh_flags, ORDER_INVALID,
2082                                                  false);
2083   os->set_found_in_sections_clause();
2084   if (section_type == Script_sections::ST_NOLOAD)
2085     os->set_is_noload();
2086   return os;
2087 }
2088
2089 // Return the number of segments we expect to see.
2090
2091 size_t
2092 Layout::expected_segment_count() const
2093 {
2094   size_t ret = this->segment_list_.size();
2095
2096   // If we didn't see a SECTIONS clause in a linker script, we should
2097   // already have the complete list of segments.  Otherwise we ask the
2098   // SECTIONS clause how many segments it expects, and add in the ones
2099   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2100
2101   if (!this->script_options_->saw_sections_clause())
2102     return ret;
2103   else
2104     {
2105       const Script_sections* ss = this->script_options_->script_sections();
2106       return ret + ss->expected_segment_count(this);
2107     }
2108 }
2109
2110 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2111 // is whether we saw a .note.GNU-stack section in the object file.
2112 // GNU_STACK_FLAGS is the section flags.  The flags give the
2113 // protection required for stack memory.  We record this in an
2114 // executable as a PT_GNU_STACK segment.  If an object file does not
2115 // have a .note.GNU-stack segment, we must assume that it is an old
2116 // object.  On some targets that will force an executable stack.
2117
2118 void
2119 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2120                          const Object* obj)
2121 {
2122   if (!seen_gnu_stack)
2123     {
2124       this->input_without_gnu_stack_note_ = true;
2125       if (parameters->options().warn_execstack()
2126           && parameters->target().is_default_stack_executable())
2127         gold_warning(_("%s: missing .note.GNU-stack section"
2128                        " implies executable stack"),
2129                      obj->name().c_str());
2130     }
2131   else
2132     {
2133       this->input_with_gnu_stack_note_ = true;
2134       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2135         {
2136           this->input_requires_executable_stack_ = true;
2137           if (parameters->options().warn_execstack())
2138             gold_warning(_("%s: requires executable stack"),
2139                          obj->name().c_str());
2140         }
2141     }
2142 }
2143
2144 // Create automatic note sections.
2145
2146 void
2147 Layout::create_notes()
2148 {
2149   this->create_gold_note();
2150   this->create_stack_segment();
2151   this->create_build_id();
2152 }
2153
2154 // Create the dynamic sections which are needed before we read the
2155 // relocs.
2156
2157 void
2158 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2159 {
2160   if (parameters->doing_static_link())
2161     return;
2162
2163   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2164                                                        elfcpp::SHT_DYNAMIC,
2165                                                        (elfcpp::SHF_ALLOC
2166                                                         | elfcpp::SHF_WRITE),
2167                                                        false, ORDER_RELRO,
2168                                                        true, false, false);
2169
2170   // A linker script may discard .dynamic, so check for NULL.
2171   if (this->dynamic_section_ != NULL)
2172     {
2173       this->dynamic_symbol_ =
2174         symtab->define_in_output_data("_DYNAMIC", NULL,
2175                                       Symbol_table::PREDEFINED,
2176                                       this->dynamic_section_, 0, 0,
2177                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2178                                       elfcpp::STV_HIDDEN, 0, false, false);
2179
2180       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2181
2182       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2183     }
2184 }
2185
2186 // For each output section whose name can be represented as C symbol,
2187 // define __start and __stop symbols for the section.  This is a GNU
2188 // extension.
2189
2190 void
2191 Layout::define_section_symbols(Symbol_table* symtab)
2192 {
2193   for (Section_list::const_iterator p = this->section_list_.begin();
2194        p != this->section_list_.end();
2195        ++p)
2196     {
2197       const char* const name = (*p)->name();
2198       if (is_cident(name))
2199         {
2200           const std::string name_string(name);
2201           const std::string start_name(cident_section_start_prefix
2202                                        + name_string);
2203           const std::string stop_name(cident_section_stop_prefix
2204                                       + name_string);
2205
2206           symtab->define_in_output_data(start_name.c_str(),
2207                                         NULL, // version
2208                                         Symbol_table::PREDEFINED,
2209                                         *p,
2210                                         0, // value
2211                                         0, // symsize
2212                                         elfcpp::STT_NOTYPE,
2213                                         elfcpp::STB_GLOBAL,
2214                                         elfcpp::STV_DEFAULT,
2215                                         0, // nonvis
2216                                         false, // offset_is_from_end
2217                                         true); // only_if_ref
2218
2219           symtab->define_in_output_data(stop_name.c_str(),
2220                                         NULL, // version
2221                                         Symbol_table::PREDEFINED,
2222                                         *p,
2223                                         0, // value
2224                                         0, // symsize
2225                                         elfcpp::STT_NOTYPE,
2226                                         elfcpp::STB_GLOBAL,
2227                                         elfcpp::STV_DEFAULT,
2228                                         0, // nonvis
2229                                         true, // offset_is_from_end
2230                                         true); // only_if_ref
2231         }
2232     }
2233 }
2234
2235 // Define symbols for group signatures.
2236
2237 void
2238 Layout::define_group_signatures(Symbol_table* symtab)
2239 {
2240   for (Group_signatures::iterator p = this->group_signatures_.begin();
2241        p != this->group_signatures_.end();
2242        ++p)
2243     {
2244       Symbol* sym = symtab->lookup(p->signature, NULL);
2245       if (sym != NULL)
2246         p->section->set_info_symndx(sym);
2247       else
2248         {
2249           // Force the name of the group section to the group
2250           // signature, and use the group's section symbol as the
2251           // signature symbol.
2252           if (strcmp(p->section->name(), p->signature) != 0)
2253             {
2254               const char* name = this->namepool_.add(p->signature,
2255                                                      true, NULL);
2256               p->section->set_name(name);
2257             }
2258           p->section->set_needs_symtab_index();
2259           p->section->set_info_section_symndx(p->section);
2260         }
2261     }
2262
2263   this->group_signatures_.clear();
2264 }
2265
2266 // Find the first read-only PT_LOAD segment, creating one if
2267 // necessary.
2268
2269 Output_segment*
2270 Layout::find_first_load_seg(const Target* target)
2271 {
2272   Output_segment* best = NULL;
2273   for (Segment_list::const_iterator p = this->segment_list_.begin();
2274        p != this->segment_list_.end();
2275        ++p)
2276     {
2277       if ((*p)->type() == elfcpp::PT_LOAD
2278           && ((*p)->flags() & elfcpp::PF_R) != 0
2279           && (parameters->options().omagic()
2280               || ((*p)->flags() & elfcpp::PF_W) == 0)
2281           && (!target->isolate_execinstr()
2282               || ((*p)->flags() & elfcpp::PF_X) == 0))
2283         {
2284           if (best == NULL || this->segment_precedes(*p, best))
2285             best = *p;
2286         }
2287     }
2288   if (best != NULL)
2289     return best;
2290
2291   gold_assert(!this->script_options_->saw_phdrs_clause());
2292
2293   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2294                                                        elfcpp::PF_R);
2295   return load_seg;
2296 }
2297
2298 // Save states of all current output segments.  Store saved states
2299 // in SEGMENT_STATES.
2300
2301 void
2302 Layout::save_segments(Segment_states* segment_states)
2303 {
2304   for (Segment_list::const_iterator p = this->segment_list_.begin();
2305        p != this->segment_list_.end();
2306        ++p)
2307     {
2308       Output_segment* segment = *p;
2309       // Shallow copy.
2310       Output_segment* copy = new Output_segment(*segment);
2311       (*segment_states)[segment] = copy;
2312     }
2313 }
2314
2315 // Restore states of output segments and delete any segment not found in
2316 // SEGMENT_STATES.
2317
2318 void
2319 Layout::restore_segments(const Segment_states* segment_states)
2320 {
2321   // Go through the segment list and remove any segment added in the
2322   // relaxation loop.
2323   this->tls_segment_ = NULL;
2324   this->relro_segment_ = NULL;
2325   Segment_list::iterator list_iter = this->segment_list_.begin();
2326   while (list_iter != this->segment_list_.end())
2327     {
2328       Output_segment* segment = *list_iter;
2329       Segment_states::const_iterator states_iter =
2330           segment_states->find(segment);
2331       if (states_iter != segment_states->end())
2332         {
2333           const Output_segment* copy = states_iter->second;
2334           // Shallow copy to restore states.
2335           *segment = *copy;
2336
2337           // Also fix up TLS and RELRO segment pointers as appropriate.
2338           if (segment->type() == elfcpp::PT_TLS)
2339             this->tls_segment_ = segment;
2340           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2341             this->relro_segment_ = segment;
2342
2343           ++list_iter;
2344         }
2345       else
2346         {
2347           list_iter = this->segment_list_.erase(list_iter);
2348           // This is a segment created during section layout.  It should be
2349           // safe to remove it since we should have removed all pointers to it.
2350           delete segment;
2351         }
2352     }
2353 }
2354
2355 // Clean up after relaxation so that sections can be laid out again.
2356
2357 void
2358 Layout::clean_up_after_relaxation()
2359 {
2360   // Restore the segments to point state just prior to the relaxation loop.
2361   Script_sections* script_section = this->script_options_->script_sections();
2362   script_section->release_segments();
2363   this->restore_segments(this->segment_states_);
2364
2365   // Reset section addresses and file offsets
2366   for (Section_list::iterator p = this->section_list_.begin();
2367        p != this->section_list_.end();
2368        ++p)
2369     {
2370       (*p)->restore_states();
2371
2372       // If an input section changes size because of relaxation,
2373       // we need to adjust the section offsets of all input sections.
2374       // after such a section.
2375       if ((*p)->section_offsets_need_adjustment())
2376         (*p)->adjust_section_offsets();
2377
2378       (*p)->reset_address_and_file_offset();
2379     }
2380
2381   // Reset special output object address and file offsets.
2382   for (Data_list::iterator p = this->special_output_list_.begin();
2383        p != this->special_output_list_.end();
2384        ++p)
2385     (*p)->reset_address_and_file_offset();
2386
2387   // A linker script may have created some output section data objects.
2388   // They are useless now.
2389   for (Output_section_data_list::const_iterator p =
2390          this->script_output_section_data_list_.begin();
2391        p != this->script_output_section_data_list_.end();
2392        ++p)
2393     delete *p;
2394   this->script_output_section_data_list_.clear();
2395
2396   // Special-case fill output objects are recreated each time through
2397   // the relaxation loop.
2398   this->reset_relax_output();
2399 }
2400
2401 void
2402 Layout::reset_relax_output()
2403 {
2404   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2405        p != this->relax_output_list_.end();
2406        ++p)
2407     delete *p;
2408   this->relax_output_list_.clear();
2409 }
2410
2411 // Prepare for relaxation.
2412
2413 void
2414 Layout::prepare_for_relaxation()
2415 {
2416   // Create an relaxation debug check if in debugging mode.
2417   if (is_debugging_enabled(DEBUG_RELAXATION))
2418     this->relaxation_debug_check_ = new Relaxation_debug_check();
2419
2420   // Save segment states.
2421   this->segment_states_ = new Segment_states();
2422   this->save_segments(this->segment_states_);
2423
2424   for(Section_list::const_iterator p = this->section_list_.begin();
2425       p != this->section_list_.end();
2426       ++p)
2427     (*p)->save_states();
2428
2429   if (is_debugging_enabled(DEBUG_RELAXATION))
2430     this->relaxation_debug_check_->check_output_data_for_reset_values(
2431         this->section_list_, this->special_output_list_,
2432         this->relax_output_list_);
2433
2434   // Also enable recording of output section data from scripts.
2435   this->record_output_section_data_from_script_ = true;
2436 }
2437
2438 // If the user set the address of the text segment, that may not be
2439 // compatible with putting the segment headers and file headers into
2440 // that segment.  For isolate_execinstr() targets, it's the rodata
2441 // segment rather than text where we might put the headers.
2442 static inline bool
2443 load_seg_unusable_for_headers(const Target* target)
2444 {
2445   const General_options& options = parameters->options();
2446   if (target->isolate_execinstr())
2447     return (options.user_set_Trodata_segment()
2448             && options.Trodata_segment() % target->abi_pagesize() != 0);
2449   else
2450     return (options.user_set_Ttext()
2451             && options.Ttext() % target->abi_pagesize() != 0);
2452 }
2453
2454 // Relaxation loop body:  If target has no relaxation, this runs only once
2455 // Otherwise, the target relaxation hook is called at the end of
2456 // each iteration.  If the hook returns true, it means re-layout of
2457 // section is required.
2458 //
2459 // The number of segments created by a linking script without a PHDRS
2460 // clause may be affected by section sizes and alignments.  There is
2461 // a remote chance that relaxation causes different number of PT_LOAD
2462 // segments are created and sections are attached to different segments.
2463 // Therefore, we always throw away all segments created during section
2464 // layout.  In order to be able to restart the section layout, we keep
2465 // a copy of the segment list right before the relaxation loop and use
2466 // that to restore the segments.
2467 //
2468 // PASS is the current relaxation pass number.
2469 // SYMTAB is a symbol table.
2470 // PLOAD_SEG is the address of a pointer for the load segment.
2471 // PHDR_SEG is a pointer to the PHDR segment.
2472 // SEGMENT_HEADERS points to the output segment header.
2473 // FILE_HEADER points to the output file header.
2474 // PSHNDX is the address to store the output section index.
2475
2476 off_t inline
2477 Layout::relaxation_loop_body(
2478     int pass,
2479     Target* target,
2480     Symbol_table* symtab,
2481     Output_segment** pload_seg,
2482     Output_segment* phdr_seg,
2483     Output_segment_headers* segment_headers,
2484     Output_file_header* file_header,
2485     unsigned int* pshndx)
2486 {
2487   // If this is not the first iteration, we need to clean up after
2488   // relaxation so that we can lay out the sections again.
2489   if (pass != 0)
2490     this->clean_up_after_relaxation();
2491
2492   // If there is a SECTIONS clause, put all the input sections into
2493   // the required order.
2494   Output_segment* load_seg;
2495   if (this->script_options_->saw_sections_clause())
2496     load_seg = this->set_section_addresses_from_script(symtab);
2497   else if (parameters->options().relocatable())
2498     load_seg = NULL;
2499   else
2500     load_seg = this->find_first_load_seg(target);
2501
2502   if (parameters->options().oformat_enum()
2503       != General_options::OBJECT_FORMAT_ELF)
2504     load_seg = NULL;
2505
2506   if (load_seg_unusable_for_headers(target))
2507     {
2508       load_seg = NULL;
2509       phdr_seg = NULL;
2510     }
2511
2512   gold_assert(phdr_seg == NULL
2513               || load_seg != NULL
2514               || this->script_options_->saw_sections_clause());
2515
2516   // If the address of the load segment we found has been set by
2517   // --section-start rather than by a script, then adjust the VMA and
2518   // LMA downward if possible to include the file and section headers.
2519   uint64_t header_gap = 0;
2520   if (load_seg != NULL
2521       && load_seg->are_addresses_set()
2522       && !this->script_options_->saw_sections_clause()
2523       && !parameters->options().relocatable())
2524     {
2525       file_header->finalize_data_size();
2526       segment_headers->finalize_data_size();
2527       size_t sizeof_headers = (file_header->data_size()
2528                                + segment_headers->data_size());
2529       const uint64_t abi_pagesize = target->abi_pagesize();
2530       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2531       hdr_paddr &= ~(abi_pagesize - 1);
2532       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2533       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2534         load_seg = NULL;
2535       else
2536         {
2537           load_seg->set_addresses(load_seg->vaddr() - subtract,
2538                                   load_seg->paddr() - subtract);
2539           header_gap = subtract - sizeof_headers;
2540         }
2541     }
2542
2543   // Lay out the segment headers.
2544   if (!parameters->options().relocatable())
2545     {
2546       gold_assert(segment_headers != NULL);
2547       if (header_gap != 0 && load_seg != NULL)
2548         {
2549           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2550           load_seg->add_initial_output_data(z);
2551         }
2552       if (load_seg != NULL)
2553         load_seg->add_initial_output_data(segment_headers);
2554       if (phdr_seg != NULL)
2555         phdr_seg->add_initial_output_data(segment_headers);
2556     }
2557
2558   // Lay out the file header.
2559   if (load_seg != NULL)
2560     load_seg->add_initial_output_data(file_header);
2561
2562   if (this->script_options_->saw_phdrs_clause()
2563       && !parameters->options().relocatable())
2564     {
2565       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2566       // clause in a linker script.
2567       Script_sections* ss = this->script_options_->script_sections();
2568       ss->put_headers_in_phdrs(file_header, segment_headers);
2569     }
2570
2571   // We set the output section indexes in set_segment_offsets and
2572   // set_section_indexes.
2573   *pshndx = 1;
2574
2575   // Set the file offsets of all the segments, and all the sections
2576   // they contain.
2577   off_t off;
2578   if (!parameters->options().relocatable())
2579     off = this->set_segment_offsets(target, load_seg, pshndx);
2580   else
2581     off = this->set_relocatable_section_offsets(file_header, pshndx);
2582
2583    // Verify that the dummy relaxation does not change anything.
2584   if (is_debugging_enabled(DEBUG_RELAXATION))
2585     {
2586       if (pass == 0)
2587         this->relaxation_debug_check_->read_sections(this->section_list_);
2588       else
2589         this->relaxation_debug_check_->verify_sections(this->section_list_);
2590     }
2591
2592   *pload_seg = load_seg;
2593   return off;
2594 }
2595
2596 // Search the list of patterns and find the position of the given section
2597 // name in the output section.  If the section name matches a glob
2598 // pattern and a non-glob name, then the non-glob position takes
2599 // precedence.  Return 0 if no match is found.
2600
2601 unsigned int
2602 Layout::find_section_order_index(const std::string& section_name)
2603 {
2604   Unordered_map<std::string, unsigned int>::iterator map_it;
2605   map_it = this->input_section_position_.find(section_name);
2606   if (map_it != this->input_section_position_.end())
2607     return map_it->second;
2608
2609   // Absolute match failed.  Linear search the glob patterns.
2610   std::vector<std::string>::iterator it;
2611   for (it = this->input_section_glob_.begin();
2612        it != this->input_section_glob_.end();
2613        ++it)
2614     {
2615        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2616          {
2617            map_it = this->input_section_position_.find(*it);
2618            gold_assert(map_it != this->input_section_position_.end());
2619            return map_it->second;
2620          }
2621     }
2622   return 0;
2623 }
2624
2625 // Read the sequence of input sections from the file specified with
2626 // option --section-ordering-file.
2627
2628 void
2629 Layout::read_layout_from_file()
2630 {
2631   const char* filename = parameters->options().section_ordering_file();
2632   std::ifstream in;
2633   std::string line;
2634
2635   in.open(filename);
2636   if (!in)
2637     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2638                filename, strerror(errno));
2639
2640   std::getline(in, line);   // this chops off the trailing \n, if any
2641   unsigned int position = 1;
2642   this->set_section_ordering_specified();
2643
2644   while (in)
2645     {
2646       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2647         line.resize(line.length() - 1);
2648       // Ignore comments, beginning with '#'
2649       if (line[0] == '#')
2650         {
2651           std::getline(in, line);
2652           continue;
2653         }
2654       this->input_section_position_[line] = position;
2655       // Store all glob patterns in a vector.
2656       if (is_wildcard_string(line.c_str()))
2657         this->input_section_glob_.push_back(line);
2658       position++;
2659       std::getline(in, line);
2660     }
2661 }
2662
2663 // Finalize the layout.  When this is called, we have created all the
2664 // output sections and all the output segments which are based on
2665 // input sections.  We have several things to do, and we have to do
2666 // them in the right order, so that we get the right results correctly
2667 // and efficiently.
2668
2669 // 1) Finalize the list of output segments and create the segment
2670 // table header.
2671
2672 // 2) Finalize the dynamic symbol table and associated sections.
2673
2674 // 3) Determine the final file offset of all the output segments.
2675
2676 // 4) Determine the final file offset of all the SHF_ALLOC output
2677 // sections.
2678
2679 // 5) Create the symbol table sections and the section name table
2680 // section.
2681
2682 // 6) Finalize the symbol table: set symbol values to their final
2683 // value and make a final determination of which symbols are going
2684 // into the output symbol table.
2685
2686 // 7) Create the section table header.
2687
2688 // 8) Determine the final file offset of all the output sections which
2689 // are not SHF_ALLOC, including the section table header.
2690
2691 // 9) Finalize the ELF file header.
2692
2693 // This function returns the size of the output file.
2694
2695 off_t
2696 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2697                  Target* target, const Task* task)
2698 {
2699   target->finalize_sections(this, input_objects, symtab);
2700
2701   this->count_local_symbols(task, input_objects);
2702
2703   this->link_stabs_sections();
2704
2705   Output_segment* phdr_seg = NULL;
2706   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2707     {
2708       // There was a dynamic object in the link.  We need to create
2709       // some information for the dynamic linker.
2710
2711       // Create the PT_PHDR segment which will hold the program
2712       // headers.
2713       if (!this->script_options_->saw_phdrs_clause())
2714         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2715
2716       // Create the dynamic symbol table, including the hash table.
2717       Output_section* dynstr;
2718       std::vector<Symbol*> dynamic_symbols;
2719       unsigned int local_dynamic_count;
2720       Versions versions(*this->script_options()->version_script_info(),
2721                         &this->dynpool_);
2722       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2723                                   &local_dynamic_count, &dynamic_symbols,
2724                                   &versions);
2725
2726       // Create the .interp section to hold the name of the
2727       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2728       // if we saw a .interp section in an input file.
2729       if ((!parameters->options().shared()
2730            || parameters->options().dynamic_linker() != NULL)
2731           && this->interp_segment_ == NULL)
2732         this->create_interp(target);
2733
2734       // Finish the .dynamic section to hold the dynamic data, and put
2735       // it in a PT_DYNAMIC segment.
2736       this->finish_dynamic_section(input_objects, symtab);
2737
2738       // We should have added everything we need to the dynamic string
2739       // table.
2740       this->dynpool_.set_string_offsets();
2741
2742       // Create the version sections.  We can't do this until the
2743       // dynamic string table is complete.
2744       this->create_version_sections(&versions, symtab, local_dynamic_count,
2745                                     dynamic_symbols, dynstr);
2746
2747       // Set the size of the _DYNAMIC symbol.  We can't do this until
2748       // after we call create_version_sections.
2749       this->set_dynamic_symbol_size(symtab);
2750     }
2751
2752   // Create segment headers.
2753   Output_segment_headers* segment_headers =
2754     (parameters->options().relocatable()
2755      ? NULL
2756      : new Output_segment_headers(this->segment_list_));
2757
2758   // Lay out the file header.
2759   Output_file_header* file_header = new Output_file_header(target, symtab,
2760                                                            segment_headers);
2761
2762   this->special_output_list_.push_back(file_header);
2763   if (segment_headers != NULL)
2764     this->special_output_list_.push_back(segment_headers);
2765
2766   // Find approriate places for orphan output sections if we are using
2767   // a linker script.
2768   if (this->script_options_->saw_sections_clause())
2769     this->place_orphan_sections_in_script();
2770
2771   Output_segment* load_seg;
2772   off_t off;
2773   unsigned int shndx;
2774   int pass = 0;
2775
2776   // Take a snapshot of the section layout as needed.
2777   if (target->may_relax())
2778     this->prepare_for_relaxation();
2779
2780   // Run the relaxation loop to lay out sections.
2781   do
2782     {
2783       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2784                                        phdr_seg, segment_headers, file_header,
2785                                        &shndx);
2786       pass++;
2787     }
2788   while (target->may_relax()
2789          && target->relax(pass, input_objects, symtab, this, task));
2790
2791   // If there is a load segment that contains the file and program headers,
2792   // provide a symbol __ehdr_start pointing there.
2793   // A program can use this to examine itself robustly.
2794   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2795   if (ehdr_start != NULL && ehdr_start->is_predefined())
2796     {
2797       if (load_seg != NULL)
2798         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2799       else
2800         ehdr_start->set_undefined();
2801     }
2802
2803   // Set the file offsets of all the non-data sections we've seen so
2804   // far which don't have to wait for the input sections.  We need
2805   // this in order to finalize local symbols in non-allocated
2806   // sections.
2807   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2808
2809   // Set the section indexes of all unallocated sections seen so far,
2810   // in case any of them are somehow referenced by a symbol.
2811   shndx = this->set_section_indexes(shndx);
2812
2813   // Create the symbol table sections.
2814   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2815   if (!parameters->doing_static_link())
2816     this->assign_local_dynsym_offsets(input_objects);
2817
2818   // Process any symbol assignments from a linker script.  This must
2819   // be called after the symbol table has been finalized.
2820   this->script_options_->finalize_symbols(symtab, this);
2821
2822   // Create the incremental inputs sections.
2823   if (this->incremental_inputs_)
2824     {
2825       this->incremental_inputs_->finalize();
2826       this->create_incremental_info_sections(symtab);
2827     }
2828
2829   // Create the .shstrtab section.
2830   Output_section* shstrtab_section = this->create_shstrtab();
2831
2832   // Set the file offsets of the rest of the non-data sections which
2833   // don't have to wait for the input sections.
2834   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2835
2836   // Now that all sections have been created, set the section indexes
2837   // for any sections which haven't been done yet.
2838   shndx = this->set_section_indexes(shndx);
2839
2840   // Create the section table header.
2841   this->create_shdrs(shstrtab_section, &off);
2842
2843   // If there are no sections which require postprocessing, we can
2844   // handle the section names now, and avoid a resize later.
2845   if (!this->any_postprocessing_sections_)
2846     {
2847       off = this->set_section_offsets(off,
2848                                       POSTPROCESSING_SECTIONS_PASS);
2849       off =
2850           this->set_section_offsets(off,
2851                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2852     }
2853
2854   file_header->set_section_info(this->section_headers_, shstrtab_section);
2855
2856   // Now we know exactly where everything goes in the output file
2857   // (except for non-allocated sections which require postprocessing).
2858   Output_data::layout_complete();
2859
2860   this->output_file_size_ = off;
2861
2862   return off;
2863 }
2864
2865 // Create a note header following the format defined in the ELF ABI.
2866 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2867 // of the section to create, DESCSZ is the size of the descriptor.
2868 // ALLOCATE is true if the section should be allocated in memory.
2869 // This returns the new note section.  It sets *TRAILING_PADDING to
2870 // the number of trailing zero bytes required.
2871
2872 Output_section*
2873 Layout::create_note(const char* name, int note_type,
2874                     const char* section_name, size_t descsz,
2875                     bool allocate, size_t* trailing_padding)
2876 {
2877   // Authorities all agree that the values in a .note field should
2878   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2879   // they differ on what the alignment is for 64-bit binaries.
2880   // The GABI says unambiguously they take 8-byte alignment:
2881   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2882   // Other documentation says alignment should always be 4 bytes:
2883   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2884   // GNU ld and GNU readelf both support the latter (at least as of
2885   // version 2.16.91), and glibc always generates the latter for
2886   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2887   // here.
2888 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2889   const int size = parameters->target().get_size();
2890 #else
2891   const int size = 32;
2892 #endif
2893
2894   // The contents of the .note section.
2895   size_t namesz = strlen(name) + 1;
2896   size_t aligned_namesz = align_address(namesz, size / 8);
2897   size_t aligned_descsz = align_address(descsz, size / 8);
2898
2899   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2900
2901   unsigned char* buffer = new unsigned char[notehdrsz];
2902   memset(buffer, 0, notehdrsz);
2903
2904   bool is_big_endian = parameters->target().is_big_endian();
2905
2906   if (size == 32)
2907     {
2908       if (!is_big_endian)
2909         {
2910           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2911           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2912           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2913         }
2914       else
2915         {
2916           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2917           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2918           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2919         }
2920     }
2921   else if (size == 64)
2922     {
2923       if (!is_big_endian)
2924         {
2925           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2926           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2927           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2928         }
2929       else
2930         {
2931           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2932           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2933           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2934         }
2935     }
2936   else
2937     gold_unreachable();
2938
2939   memcpy(buffer + 3 * (size / 8), name, namesz);
2940
2941   elfcpp::Elf_Xword flags = 0;
2942   Output_section_order order = ORDER_INVALID;
2943   if (allocate)
2944     {
2945       flags = elfcpp::SHF_ALLOC;
2946       order = ORDER_RO_NOTE;
2947     }
2948   Output_section* os = this->choose_output_section(NULL, section_name,
2949                                                    elfcpp::SHT_NOTE,
2950                                                    flags, false, order, false,
2951                                                    false, true);
2952   if (os == NULL)
2953     return NULL;
2954
2955   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2956                                                            size / 8,
2957                                                            "** note header");
2958   os->add_output_section_data(posd);
2959
2960   *trailing_padding = aligned_descsz - descsz;
2961
2962   return os;
2963 }
2964
2965 // For an executable or shared library, create a note to record the
2966 // version of gold used to create the binary.
2967
2968 void
2969 Layout::create_gold_note()
2970 {
2971   if (parameters->options().relocatable()
2972       || parameters->incremental_update())
2973     return;
2974
2975   std::string desc = std::string("gold ") + gold::get_version_string();
2976
2977   size_t trailing_padding;
2978   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2979                                          ".note.gnu.gold-version", desc.size(),
2980                                          false, &trailing_padding);
2981   if (os == NULL)
2982     return;
2983
2984   Output_section_data* posd = new Output_data_const(desc, 4);
2985   os->add_output_section_data(posd);
2986
2987   if (trailing_padding > 0)
2988     {
2989       posd = new Output_data_zero_fill(trailing_padding, 0);
2990       os->add_output_section_data(posd);
2991     }
2992 }
2993
2994 // Record whether the stack should be executable.  This can be set
2995 // from the command line using the -z execstack or -z noexecstack
2996 // options.  Otherwise, if any input file has a .note.GNU-stack
2997 // section with the SHF_EXECINSTR flag set, the stack should be
2998 // executable.  Otherwise, if at least one input file a
2999 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3000 // section, we use the target default for whether the stack should be
3001 // executable.  If -z stack-size was used to set a p_memsz value for
3002 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3003 // don't generate a stack note.  When generating a object file, we
3004 // create a .note.GNU-stack section with the appropriate marking.
3005 // When generating an executable or shared library, we create a
3006 // PT_GNU_STACK segment.
3007
3008 void
3009 Layout::create_stack_segment()
3010 {
3011   bool is_stack_executable;
3012   if (parameters->options().is_execstack_set())
3013     {
3014       is_stack_executable = parameters->options().is_stack_executable();
3015       if (!is_stack_executable
3016           && this->input_requires_executable_stack_
3017           && parameters->options().warn_execstack())
3018         gold_warning(_("one or more inputs require executable stack, "
3019                        "but -z noexecstack was given"));
3020     }
3021   else if (!this->input_with_gnu_stack_note_
3022            && (!parameters->options().user_set_stack_size()
3023                || parameters->options().relocatable()))
3024     return;
3025   else
3026     {
3027       if (this->input_requires_executable_stack_)
3028         is_stack_executable = true;
3029       else if (this->input_without_gnu_stack_note_)
3030         is_stack_executable =
3031           parameters->target().is_default_stack_executable();
3032       else
3033         is_stack_executable = false;
3034     }
3035
3036   if (parameters->options().relocatable())
3037     {
3038       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3039       elfcpp::Elf_Xword flags = 0;
3040       if (is_stack_executable)
3041         flags |= elfcpp::SHF_EXECINSTR;
3042       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3043                                 ORDER_INVALID, false);
3044     }
3045   else
3046     {
3047       if (this->script_options_->saw_phdrs_clause())
3048         return;
3049       int flags = elfcpp::PF_R | elfcpp::PF_W;
3050       if (is_stack_executable)
3051         flags |= elfcpp::PF_X;
3052       Output_segment* seg =
3053         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3054       seg->set_size(parameters->options().stack_size());
3055       // BFD lets targets override this default alignment, but the only
3056       // targets that do so are ones that Gold does not support so far.
3057       seg->set_minimum_p_align(16);
3058     }
3059 }
3060
3061 // If --build-id was used, set up the build ID note.
3062
3063 void
3064 Layout::create_build_id()
3065 {
3066   if (!parameters->options().user_set_build_id())
3067     return;
3068
3069   const char* style = parameters->options().build_id();
3070   if (strcmp(style, "none") == 0)
3071     return;
3072
3073   // Set DESCSZ to the size of the note descriptor.  When possible,
3074   // set DESC to the note descriptor contents.
3075   size_t descsz;
3076   std::string desc;
3077   if (strcmp(style, "md5") == 0)
3078     descsz = 128 / 8;
3079   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3080     descsz = 160 / 8;
3081   else if (strcmp(style, "uuid") == 0)
3082     {
3083 #ifndef __MINGW32__
3084       const size_t uuidsz = 128 / 8;
3085
3086       char buffer[uuidsz];
3087       memset(buffer, 0, uuidsz);
3088
3089       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3090       if (descriptor < 0)
3091         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3092                    strerror(errno));
3093       else
3094         {
3095           ssize_t got = ::read(descriptor, buffer, uuidsz);
3096           release_descriptor(descriptor, true);
3097           if (got < 0)
3098             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3099           else if (static_cast<size_t>(got) != uuidsz)
3100             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3101                        uuidsz, got);
3102         }
3103
3104       desc.assign(buffer, uuidsz);
3105       descsz = uuidsz;
3106 #else // __MINGW32__
3107       UUID uuid;
3108       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3109
3110       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3111       if (!rpc_library)
3112         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3113       else
3114         {
3115           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3116               GetProcAddress(rpc_library, "UuidCreate"));
3117           if (!uuid_create)
3118             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3119           else if (uuid_create(&uuid) != RPC_S_OK)
3120             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3121           FreeLibrary(rpc_library);
3122         }
3123       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3124       descsz = sizeof(UUID);
3125 #endif // __MINGW32__
3126     }
3127   else if (strncmp(style, "0x", 2) == 0)
3128     {
3129       hex_init();
3130       const char* p = style + 2;
3131       while (*p != '\0')
3132         {
3133           if (hex_p(p[0]) && hex_p(p[1]))
3134             {
3135               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3136               desc += c;
3137               p += 2;
3138             }
3139           else if (*p == '-' || *p == ':')
3140             ++p;
3141           else
3142             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3143                        style);
3144         }
3145       descsz = desc.size();
3146     }
3147   else
3148     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3149
3150   // Create the note.
3151   size_t trailing_padding;
3152   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3153                                          ".note.gnu.build-id", descsz, true,
3154                                          &trailing_padding);
3155   if (os == NULL)
3156     return;
3157
3158   if (!desc.empty())
3159     {
3160       // We know the value already, so we fill it in now.
3161       gold_assert(desc.size() == descsz);
3162
3163       Output_section_data* posd = new Output_data_const(desc, 4);
3164       os->add_output_section_data(posd);
3165
3166       if (trailing_padding != 0)
3167         {
3168           posd = new Output_data_zero_fill(trailing_padding, 0);
3169           os->add_output_section_data(posd);
3170         }
3171     }
3172   else
3173     {
3174       // We need to compute a checksum after we have completed the
3175       // link.
3176       gold_assert(trailing_padding == 0);
3177       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3178       os->add_output_section_data(this->build_id_note_);
3179     }
3180 }
3181
3182 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3183 // field of the former should point to the latter.  I'm not sure who
3184 // started this, but the GNU linker does it, and some tools depend
3185 // upon it.
3186
3187 void
3188 Layout::link_stabs_sections()
3189 {
3190   if (!this->have_stabstr_section_)
3191     return;
3192
3193   for (Section_list::iterator p = this->section_list_.begin();
3194        p != this->section_list_.end();
3195        ++p)
3196     {
3197       if ((*p)->type() != elfcpp::SHT_STRTAB)
3198         continue;
3199
3200       const char* name = (*p)->name();
3201       if (strncmp(name, ".stab", 5) != 0)
3202         continue;
3203
3204       size_t len = strlen(name);
3205       if (strcmp(name + len - 3, "str") != 0)
3206         continue;
3207
3208       std::string stab_name(name, len - 3);
3209       Output_section* stab_sec;
3210       stab_sec = this->find_output_section(stab_name.c_str());
3211       if (stab_sec != NULL)
3212         stab_sec->set_link_section(*p);
3213     }
3214 }
3215
3216 // Create .gnu_incremental_inputs and related sections needed
3217 // for the next run of incremental linking to check what has changed.
3218
3219 void
3220 Layout::create_incremental_info_sections(Symbol_table* symtab)
3221 {
3222   Incremental_inputs* incr = this->incremental_inputs_;
3223
3224   gold_assert(incr != NULL);
3225
3226   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3227   incr->create_data_sections(symtab);
3228
3229   // Add the .gnu_incremental_inputs section.
3230   const char* incremental_inputs_name =
3231     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3232   Output_section* incremental_inputs_os =
3233     this->make_output_section(incremental_inputs_name,
3234                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3235                               ORDER_INVALID, false);
3236   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3237
3238   // Add the .gnu_incremental_symtab section.
3239   const char* incremental_symtab_name =
3240     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3241   Output_section* incremental_symtab_os =
3242     this->make_output_section(incremental_symtab_name,
3243                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3244                               ORDER_INVALID, false);
3245   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3246   incremental_symtab_os->set_entsize(4);
3247
3248   // Add the .gnu_incremental_relocs section.
3249   const char* incremental_relocs_name =
3250     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3251   Output_section* incremental_relocs_os =
3252     this->make_output_section(incremental_relocs_name,
3253                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3254                               ORDER_INVALID, false);
3255   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3256   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3257
3258   // Add the .gnu_incremental_got_plt section.
3259   const char* incremental_got_plt_name =
3260     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3261   Output_section* incremental_got_plt_os =
3262     this->make_output_section(incremental_got_plt_name,
3263                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3264                               ORDER_INVALID, false);
3265   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3266
3267   // Add the .gnu_incremental_strtab section.
3268   const char* incremental_strtab_name =
3269     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3270   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3271                                                         elfcpp::SHT_STRTAB, 0,
3272                                                         ORDER_INVALID, false);
3273   Output_data_strtab* strtab_data =
3274       new Output_data_strtab(incr->get_stringpool());
3275   incremental_strtab_os->add_output_section_data(strtab_data);
3276
3277   incremental_inputs_os->set_after_input_sections();
3278   incremental_symtab_os->set_after_input_sections();
3279   incremental_relocs_os->set_after_input_sections();
3280   incremental_got_plt_os->set_after_input_sections();
3281
3282   incremental_inputs_os->set_link_section(incremental_strtab_os);
3283   incremental_symtab_os->set_link_section(incremental_inputs_os);
3284   incremental_relocs_os->set_link_section(incremental_inputs_os);
3285   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3286 }
3287
3288 // Return whether SEG1 should be before SEG2 in the output file.  This
3289 // is based entirely on the segment type and flags.  When this is
3290 // called the segment addresses have normally not yet been set.
3291
3292 bool
3293 Layout::segment_precedes(const Output_segment* seg1,
3294                          const Output_segment* seg2)
3295 {
3296   elfcpp::Elf_Word type1 = seg1->type();
3297   elfcpp::Elf_Word type2 = seg2->type();
3298
3299   // The single PT_PHDR segment is required to precede any loadable
3300   // segment.  We simply make it always first.
3301   if (type1 == elfcpp::PT_PHDR)
3302     {
3303       gold_assert(type2 != elfcpp::PT_PHDR);
3304       return true;
3305     }
3306   if (type2 == elfcpp::PT_PHDR)
3307     return false;
3308
3309   // The single PT_INTERP segment is required to precede any loadable
3310   // segment.  We simply make it always second.
3311   if (type1 == elfcpp::PT_INTERP)
3312     {
3313       gold_assert(type2 != elfcpp::PT_INTERP);
3314       return true;
3315     }
3316   if (type2 == elfcpp::PT_INTERP)
3317     return false;
3318
3319   // We then put PT_LOAD segments before any other segments.
3320   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3321     return true;
3322   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3323     return false;
3324
3325   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3326   // segment, because that is where the dynamic linker expects to find
3327   // it (this is just for efficiency; other positions would also work
3328   // correctly).
3329   if (type1 == elfcpp::PT_TLS
3330       && type2 != elfcpp::PT_TLS
3331       && type2 != elfcpp::PT_GNU_RELRO)
3332     return false;
3333   if (type2 == elfcpp::PT_TLS
3334       && type1 != elfcpp::PT_TLS
3335       && type1 != elfcpp::PT_GNU_RELRO)
3336     return true;
3337
3338   // We put the PT_GNU_RELRO segment last, because that is where the
3339   // dynamic linker expects to find it (as with PT_TLS, this is just
3340   // for efficiency).
3341   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3342     return false;
3343   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3344     return true;
3345
3346   const elfcpp::Elf_Word flags1 = seg1->flags();
3347   const elfcpp::Elf_Word flags2 = seg2->flags();
3348
3349   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3350   // by the numeric segment type and flags values.  There should not
3351   // be more than one segment with the same type and flags, except
3352   // when a linker script specifies such.
3353   if (type1 != elfcpp::PT_LOAD)
3354     {
3355       if (type1 != type2)
3356         return type1 < type2;
3357       gold_assert(flags1 != flags2
3358                   || this->script_options_->saw_phdrs_clause());
3359       return flags1 < flags2;
3360     }
3361
3362   // If the addresses are set already, sort by load address.
3363   if (seg1->are_addresses_set())
3364     {
3365       if (!seg2->are_addresses_set())
3366         return true;
3367
3368       unsigned int section_count1 = seg1->output_section_count();
3369       unsigned int section_count2 = seg2->output_section_count();
3370       if (section_count1 == 0 && section_count2 > 0)
3371         return true;
3372       if (section_count1 > 0 && section_count2 == 0)
3373         return false;
3374
3375       uint64_t paddr1 = (seg1->are_addresses_set()
3376                          ? seg1->paddr()
3377                          : seg1->first_section_load_address());
3378       uint64_t paddr2 = (seg2->are_addresses_set()
3379                          ? seg2->paddr()
3380                          : seg2->first_section_load_address());
3381
3382       if (paddr1 != paddr2)
3383         return paddr1 < paddr2;
3384     }
3385   else if (seg2->are_addresses_set())
3386     return false;
3387
3388   // A segment which holds large data comes after a segment which does
3389   // not hold large data.
3390   if (seg1->is_large_data_segment())
3391     {
3392       if (!seg2->is_large_data_segment())
3393         return false;
3394     }
3395   else if (seg2->is_large_data_segment())
3396     return true;
3397
3398   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3399   // segments come before writable segments.  Then writable segments
3400   // with data come before writable segments without data.  Then
3401   // executable segments come before non-executable segments.  Then
3402   // the unlikely case of a non-readable segment comes before the
3403   // normal case of a readable segment.  If there are multiple
3404   // segments with the same type and flags, we require that the
3405   // address be set, and we sort by virtual address and then physical
3406   // address.
3407   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3408     return (flags1 & elfcpp::PF_W) == 0;
3409   if ((flags1 & elfcpp::PF_W) != 0
3410       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3411     return seg1->has_any_data_sections();
3412   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3413     return (flags1 & elfcpp::PF_X) != 0;
3414   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3415     return (flags1 & elfcpp::PF_R) == 0;
3416
3417   // We shouldn't get here--we shouldn't create segments which we
3418   // can't distinguish.  Unless of course we are using a weird linker
3419   // script or overlapping --section-start options.  We could also get
3420   // here if plugins want unique segments for subsets of sections.
3421   gold_assert(this->script_options_->saw_phdrs_clause()
3422               || parameters->options().any_section_start()
3423               || this->is_unique_segment_for_sections_specified());
3424   return false;
3425 }
3426
3427 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3428
3429 static off_t
3430 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3431 {
3432   uint64_t unsigned_off = off;
3433   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3434                           | (addr & (abi_pagesize - 1)));
3435   if (aligned_off < unsigned_off)
3436     aligned_off += abi_pagesize;
3437   return aligned_off;
3438 }
3439
3440 // On targets where the text segment contains only executable code,
3441 // a non-executable segment is never the text segment.
3442
3443 static inline bool
3444 is_text_segment(const Target* target, const Output_segment* seg)
3445 {
3446   elfcpp::Elf_Xword flags = seg->flags();
3447   if ((flags & elfcpp::PF_W) != 0)
3448     return false;
3449   if ((flags & elfcpp::PF_X) == 0)
3450     return !target->isolate_execinstr();
3451   return true;
3452 }
3453
3454 // Set the file offsets of all the segments, and all the sections they
3455 // contain.  They have all been created.  LOAD_SEG must be be laid out
3456 // first.  Return the offset of the data to follow.
3457
3458 off_t
3459 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3460                             unsigned int* pshndx)
3461 {
3462   // Sort them into the final order.  We use a stable sort so that we
3463   // don't randomize the order of indistinguishable segments created
3464   // by linker scripts.
3465   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3466                    Layout::Compare_segments(this));
3467
3468   // Find the PT_LOAD segments, and set their addresses and offsets
3469   // and their section's addresses and offsets.
3470   uint64_t start_addr;
3471   if (parameters->options().user_set_Ttext())
3472     start_addr = parameters->options().Ttext();
3473   else if (parameters->options().output_is_position_independent())
3474     start_addr = 0;
3475   else
3476     start_addr = target->default_text_segment_address();
3477
3478   uint64_t addr = start_addr;
3479   off_t off = 0;
3480
3481   // If LOAD_SEG is NULL, then the file header and segment headers
3482   // will not be loadable.  But they still need to be at offset 0 in
3483   // the file.  Set their offsets now.
3484   if (load_seg == NULL)
3485     {
3486       for (Data_list::iterator p = this->special_output_list_.begin();
3487            p != this->special_output_list_.end();
3488            ++p)
3489         {
3490           off = align_address(off, (*p)->addralign());
3491           (*p)->set_address_and_file_offset(0, off);
3492           off += (*p)->data_size();
3493         }
3494     }
3495
3496   unsigned int increase_relro = this->increase_relro_;
3497   if (this->script_options_->saw_sections_clause())
3498     increase_relro = 0;
3499
3500   const bool check_sections = parameters->options().check_sections();
3501   Output_segment* last_load_segment = NULL;
3502
3503   unsigned int shndx_begin = *pshndx;
3504   unsigned int shndx_load_seg = *pshndx;
3505
3506   for (Segment_list::iterator p = this->segment_list_.begin();
3507        p != this->segment_list_.end();
3508        ++p)
3509     {
3510       if ((*p)->type() == elfcpp::PT_LOAD)
3511         {
3512           if (target->isolate_execinstr())
3513             {
3514               // When we hit the segment that should contain the
3515               // file headers, reset the file offset so we place
3516               // it and subsequent segments appropriately.
3517               // We'll fix up the preceding segments below.
3518               if (load_seg == *p)
3519                 {
3520                   if (off == 0)
3521                     load_seg = NULL;
3522                   else
3523                     {
3524                       off = 0;
3525                       shndx_load_seg = *pshndx;
3526                     }
3527                 }
3528             }
3529           else
3530             {
3531               // Verify that the file headers fall into the first segment.
3532               if (load_seg != NULL && load_seg != *p)
3533                 gold_unreachable();
3534               load_seg = NULL;
3535             }
3536
3537           bool are_addresses_set = (*p)->are_addresses_set();
3538           if (are_addresses_set)
3539             {
3540               // When it comes to setting file offsets, we care about
3541               // the physical address.
3542               addr = (*p)->paddr();
3543             }
3544           else if (parameters->options().user_set_Ttext()
3545                    && (parameters->options().omagic()
3546                        || is_text_segment(target, *p)))
3547             {
3548               are_addresses_set = true;
3549             }
3550           else if (parameters->options().user_set_Trodata_segment()
3551                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3552             {
3553               addr = parameters->options().Trodata_segment();
3554               are_addresses_set = true;
3555             }
3556           else if (parameters->options().user_set_Tdata()
3557                    && ((*p)->flags() & elfcpp::PF_W) != 0
3558                    && (!parameters->options().user_set_Tbss()
3559                        || (*p)->has_any_data_sections()))
3560             {
3561               addr = parameters->options().Tdata();
3562               are_addresses_set = true;
3563             }
3564           else if (parameters->options().user_set_Tbss()
3565                    && ((*p)->flags() & elfcpp::PF_W) != 0
3566                    && !(*p)->has_any_data_sections())
3567             {
3568               addr = parameters->options().Tbss();
3569               are_addresses_set = true;
3570             }
3571
3572           uint64_t orig_addr = addr;
3573           uint64_t orig_off = off;
3574
3575           uint64_t aligned_addr = 0;
3576           uint64_t abi_pagesize = target->abi_pagesize();
3577           uint64_t common_pagesize = target->common_pagesize();
3578
3579           if (!parameters->options().nmagic()
3580               && !parameters->options().omagic())
3581             (*p)->set_minimum_p_align(abi_pagesize);
3582
3583           if (!are_addresses_set)
3584             {
3585               // Skip the address forward one page, maintaining the same
3586               // position within the page.  This lets us store both segments
3587               // overlapping on a single page in the file, but the loader will
3588               // put them on different pages in memory. We will revisit this
3589               // decision once we know the size of the segment.
3590
3591               uint64_t max_align = (*p)->maximum_alignment();
3592               if (max_align > abi_pagesize)
3593                 addr = align_address(addr, max_align);
3594               aligned_addr = addr;
3595
3596               if (load_seg == *p)
3597                 {
3598                   // This is the segment that will contain the file
3599                   // headers, so its offset will have to be exactly zero.
3600                   gold_assert(orig_off == 0);
3601
3602                   // If the target wants a fixed minimum distance from the
3603                   // text segment to the read-only segment, move up now.
3604                   uint64_t min_addr =
3605                     start_addr + (parameters->options().user_set_rosegment_gap()
3606                                   ? parameters->options().rosegment_gap()
3607                                   : target->rosegment_gap());
3608                   if (addr < min_addr)
3609                     addr = min_addr;
3610
3611                   // But this is not the first segment!  To make its
3612                   // address congruent with its offset, that address better
3613                   // be aligned to the ABI-mandated page size.
3614                   addr = align_address(addr, abi_pagesize);
3615                   aligned_addr = addr;
3616                 }
3617               else
3618                 {
3619                   if ((addr & (abi_pagesize - 1)) != 0)
3620                     addr = addr + abi_pagesize;
3621
3622                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3623                 }
3624             }
3625
3626           if (!parameters->options().nmagic()
3627               && !parameters->options().omagic())
3628             {
3629               // Here we are also taking care of the case when
3630               // the maximum segment alignment is larger than the page size.
3631               off = align_file_offset(off, addr,
3632                                       std::max(abi_pagesize,
3633                                                (*p)->maximum_alignment()));
3634             }
3635           else
3636             {
3637               // This is -N or -n with a section script which prevents
3638               // us from using a load segment.  We need to ensure that
3639               // the file offset is aligned to the alignment of the
3640               // segment.  This is because the linker script
3641               // implicitly assumed a zero offset.  If we don't align
3642               // here, then the alignment of the sections in the
3643               // linker script may not match the alignment of the
3644               // sections in the set_section_addresses call below,
3645               // causing an error about dot moving backward.
3646               off = align_address(off, (*p)->maximum_alignment());
3647             }
3648
3649           unsigned int shndx_hold = *pshndx;
3650           bool has_relro = false;
3651           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3652                                                           false, addr,
3653                                                           &increase_relro,
3654                                                           &has_relro,
3655                                                           &off, pshndx);
3656
3657           // Now that we know the size of this segment, we may be able
3658           // to save a page in memory, at the cost of wasting some
3659           // file space, by instead aligning to the start of a new
3660           // page.  Here we use the real machine page size rather than
3661           // the ABI mandated page size.  If the segment has been
3662           // aligned so that the relro data ends at a page boundary,
3663           // we do not try to realign it.
3664
3665           if (!are_addresses_set
3666               && !has_relro
3667               && aligned_addr != addr
3668               && !parameters->incremental())
3669             {
3670               uint64_t first_off = (common_pagesize
3671                                     - (aligned_addr
3672                                        & (common_pagesize - 1)));
3673               uint64_t last_off = new_addr & (common_pagesize - 1);
3674               if (first_off > 0
3675                   && last_off > 0
3676                   && ((aligned_addr & ~ (common_pagesize - 1))
3677                       != (new_addr & ~ (common_pagesize - 1)))
3678                   && first_off + last_off <= common_pagesize)
3679                 {
3680                   *pshndx = shndx_hold;
3681                   addr = align_address(aligned_addr, common_pagesize);
3682                   addr = align_address(addr, (*p)->maximum_alignment());
3683                   if ((addr & (abi_pagesize - 1)) != 0)
3684                     addr = addr + abi_pagesize;
3685                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3686                   off = align_file_offset(off, addr, abi_pagesize);
3687
3688                   increase_relro = this->increase_relro_;
3689                   if (this->script_options_->saw_sections_clause())
3690                     increase_relro = 0;
3691                   has_relro = false;
3692
3693                   new_addr = (*p)->set_section_addresses(target, this,
3694                                                          true, addr,
3695                                                          &increase_relro,
3696                                                          &has_relro,
3697                                                          &off, pshndx);
3698                 }
3699             }
3700
3701           addr = new_addr;
3702
3703           // Implement --check-sections.  We know that the segments
3704           // are sorted by LMA.
3705           if (check_sections && last_load_segment != NULL)
3706             {
3707               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3708               if (last_load_segment->paddr() + last_load_segment->memsz()
3709                   > (*p)->paddr())
3710                 {
3711                   unsigned long long lb1 = last_load_segment->paddr();
3712                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3713                   unsigned long long lb2 = (*p)->paddr();
3714                   unsigned long long le2 = lb2 + (*p)->memsz();
3715                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3716                                "[0x%llx -> 0x%llx]"),
3717                              lb1, le1, lb2, le2);
3718                 }
3719             }
3720           last_load_segment = *p;
3721         }
3722     }
3723
3724   if (load_seg != NULL && target->isolate_execinstr())
3725     {
3726       // Process the early segments again, setting their file offsets
3727       // so they land after the segments starting at LOAD_SEG.
3728       off = align_file_offset(off, 0, target->abi_pagesize());
3729
3730       this->reset_relax_output();
3731
3732       for (Segment_list::iterator p = this->segment_list_.begin();
3733            *p != load_seg;
3734            ++p)
3735         {
3736           if ((*p)->type() == elfcpp::PT_LOAD)
3737             {
3738               // We repeat the whole job of assigning addresses and
3739               // offsets, but we really only want to change the offsets and
3740               // must ensure that the addresses all come out the same as
3741               // they did the first time through.
3742               bool has_relro = false;
3743               const uint64_t old_addr = (*p)->vaddr();
3744               const uint64_t old_end = old_addr + (*p)->memsz();
3745               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3746                                                               true, old_addr,
3747                                                               &increase_relro,
3748                                                               &has_relro,
3749                                                               &off,
3750                                                               &shndx_begin);
3751               gold_assert(new_addr == old_end);
3752             }
3753         }
3754
3755       gold_assert(shndx_begin == shndx_load_seg);
3756     }
3757
3758   // Handle the non-PT_LOAD segments, setting their offsets from their
3759   // section's offsets.
3760   for (Segment_list::iterator p = this->segment_list_.begin();
3761        p != this->segment_list_.end();
3762        ++p)
3763     {
3764       // PT_GNU_STACK was set up correctly when it was created.
3765       if ((*p)->type() != elfcpp::PT_LOAD
3766           && (*p)->type() != elfcpp::PT_GNU_STACK)
3767         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3768                          ? increase_relro
3769                          : 0);
3770     }
3771
3772   // Set the TLS offsets for each section in the PT_TLS segment.
3773   if (this->tls_segment_ != NULL)
3774     this->tls_segment_->set_tls_offsets();
3775
3776   return off;
3777 }
3778
3779 // Set the offsets of all the allocated sections when doing a
3780 // relocatable link.  This does the same jobs as set_segment_offsets,
3781 // only for a relocatable link.
3782
3783 off_t
3784 Layout::set_relocatable_section_offsets(Output_data* file_header,
3785                                         unsigned int* pshndx)
3786 {
3787   off_t off = 0;
3788
3789   file_header->set_address_and_file_offset(0, 0);
3790   off += file_header->data_size();
3791
3792   for (Section_list::iterator p = this->section_list_.begin();
3793        p != this->section_list_.end();
3794        ++p)
3795     {
3796       // We skip unallocated sections here, except that group sections
3797       // have to come first.
3798       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3799           && (*p)->type() != elfcpp::SHT_GROUP)
3800         continue;
3801
3802       off = align_address(off, (*p)->addralign());
3803
3804       // The linker script might have set the address.
3805       if (!(*p)->is_address_valid())
3806         (*p)->set_address(0);
3807       (*p)->set_file_offset(off);
3808       (*p)->finalize_data_size();
3809       if ((*p)->type() != elfcpp::SHT_NOBITS)
3810         off += (*p)->data_size();
3811
3812       (*p)->set_out_shndx(*pshndx);
3813       ++*pshndx;
3814     }
3815
3816   return off;
3817 }
3818
3819 // Set the file offset of all the sections not associated with a
3820 // segment.
3821
3822 off_t
3823 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3824 {
3825   off_t startoff = off;
3826   off_t maxoff = off;
3827
3828   for (Section_list::iterator p = this->unattached_section_list_.begin();
3829        p != this->unattached_section_list_.end();
3830        ++p)
3831     {
3832       // The symtab section is handled in create_symtab_sections.
3833       if (*p == this->symtab_section_)
3834         continue;
3835
3836       // If we've already set the data size, don't set it again.
3837       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3838         continue;
3839
3840       if (pass == BEFORE_INPUT_SECTIONS_PASS
3841           && (*p)->requires_postprocessing())
3842         {
3843           (*p)->create_postprocessing_buffer();
3844           this->any_postprocessing_sections_ = true;
3845         }
3846
3847       if (pass == BEFORE_INPUT_SECTIONS_PASS
3848           && (*p)->after_input_sections())
3849         continue;
3850       else if (pass == POSTPROCESSING_SECTIONS_PASS
3851                && (!(*p)->after_input_sections()
3852                    || (*p)->type() == elfcpp::SHT_STRTAB))
3853         continue;
3854       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3855                && (!(*p)->after_input_sections()
3856                    || (*p)->type() != elfcpp::SHT_STRTAB))
3857         continue;
3858
3859       if (!parameters->incremental_update())
3860         {
3861           off = align_address(off, (*p)->addralign());
3862           (*p)->set_file_offset(off);
3863           (*p)->finalize_data_size();
3864         }
3865       else
3866         {
3867           // Incremental update: allocate file space from free list.
3868           (*p)->pre_finalize_data_size();
3869           off_t current_size = (*p)->current_data_size();
3870           off = this->allocate(current_size, (*p)->addralign(), startoff);
3871           if (off == -1)
3872             {
3873               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3874                 this->free_list_.dump();
3875               gold_assert((*p)->output_section() != NULL);
3876               gold_fallback(_("out of patch space for section %s; "
3877                               "relink with --incremental-full"),
3878                             (*p)->output_section()->name());
3879             }
3880           (*p)->set_file_offset(off);
3881           (*p)->finalize_data_size();
3882           if ((*p)->data_size() > current_size)
3883             {
3884               gold_assert((*p)->output_section() != NULL);
3885               gold_fallback(_("%s: section changed size; "
3886                               "relink with --incremental-full"),
3887                             (*p)->output_section()->name());
3888             }
3889           gold_debug(DEBUG_INCREMENTAL,
3890                      "set_section_offsets: %08lx %08lx %s",
3891                      static_cast<long>(off),
3892                      static_cast<long>((*p)->data_size()),
3893                      ((*p)->output_section() != NULL
3894                       ? (*p)->output_section()->name() : "(special)"));
3895         }
3896
3897       off += (*p)->data_size();
3898       if (off > maxoff)
3899         maxoff = off;
3900
3901       // At this point the name must be set.
3902       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3903         this->namepool_.add((*p)->name(), false, NULL);
3904     }
3905   return maxoff;
3906 }
3907
3908 // Set the section indexes of all the sections not associated with a
3909 // segment.
3910
3911 unsigned int
3912 Layout::set_section_indexes(unsigned int shndx)
3913 {
3914   for (Section_list::iterator p = this->unattached_section_list_.begin();
3915        p != this->unattached_section_list_.end();
3916        ++p)
3917     {
3918       if (!(*p)->has_out_shndx())
3919         {
3920           (*p)->set_out_shndx(shndx);
3921           ++shndx;
3922         }
3923     }
3924   return shndx;
3925 }
3926
3927 // Set the section addresses according to the linker script.  This is
3928 // only called when we see a SECTIONS clause.  This returns the
3929 // program segment which should hold the file header and segment
3930 // headers, if any.  It will return NULL if they should not be in a
3931 // segment.
3932
3933 Output_segment*
3934 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3935 {
3936   Script_sections* ss = this->script_options_->script_sections();
3937   gold_assert(ss->saw_sections_clause());
3938   return this->script_options_->set_section_addresses(symtab, this);
3939 }
3940
3941 // Place the orphan sections in the linker script.
3942
3943 void
3944 Layout::place_orphan_sections_in_script()
3945 {
3946   Script_sections* ss = this->script_options_->script_sections();
3947   gold_assert(ss->saw_sections_clause());
3948
3949   // Place each orphaned output section in the script.
3950   for (Section_list::iterator p = this->section_list_.begin();
3951        p != this->section_list_.end();
3952        ++p)
3953     {
3954       if (!(*p)->found_in_sections_clause())
3955         ss->place_orphan(*p);
3956     }
3957 }
3958
3959 // Count the local symbols in the regular symbol table and the dynamic
3960 // symbol table, and build the respective string pools.
3961
3962 void
3963 Layout::count_local_symbols(const Task* task,
3964                             const Input_objects* input_objects)
3965 {
3966   // First, figure out an upper bound on the number of symbols we'll
3967   // be inserting into each pool.  This helps us create the pools with
3968   // the right size, to avoid unnecessary hashtable resizing.
3969   unsigned int symbol_count = 0;
3970   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3971        p != input_objects->relobj_end();
3972        ++p)
3973     symbol_count += (*p)->local_symbol_count();
3974
3975   // Go from "upper bound" to "estimate."  We overcount for two
3976   // reasons: we double-count symbols that occur in more than one
3977   // object file, and we count symbols that are dropped from the
3978   // output.  Add it all together and assume we overcount by 100%.
3979   symbol_count /= 2;
3980
3981   // We assume all symbols will go into both the sympool and dynpool.
3982   this->sympool_.reserve(symbol_count);
3983   this->dynpool_.reserve(symbol_count);
3984
3985   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3986        p != input_objects->relobj_end();
3987        ++p)
3988     {
3989       Task_lock_obj<Object> tlo(task, *p);
3990       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3991     }
3992 }
3993
3994 // Create the symbol table sections.  Here we also set the final
3995 // values of the symbols.  At this point all the loadable sections are
3996 // fully laid out.  SHNUM is the number of sections so far.
3997
3998 void
3999 Layout::create_symtab_sections(const Input_objects* input_objects,
4000                                Symbol_table* symtab,
4001                                unsigned int shnum,
4002                                off_t* poff)
4003 {
4004   int symsize;
4005   unsigned int align;
4006   if (parameters->target().get_size() == 32)
4007     {
4008       symsize = elfcpp::Elf_sizes<32>::sym_size;
4009       align = 4;
4010     }
4011   else if (parameters->target().get_size() == 64)
4012     {
4013       symsize = elfcpp::Elf_sizes<64>::sym_size;
4014       align = 8;
4015     }
4016   else
4017     gold_unreachable();
4018
4019   // Compute file offsets relative to the start of the symtab section.
4020   off_t off = 0;
4021
4022   // Save space for the dummy symbol at the start of the section.  We
4023   // never bother to write this out--it will just be left as zero.
4024   off += symsize;
4025   unsigned int local_symbol_index = 1;
4026
4027   // Add STT_SECTION symbols for each Output section which needs one.
4028   for (Section_list::iterator p = this->section_list_.begin();
4029        p != this->section_list_.end();
4030        ++p)
4031     {
4032       if (!(*p)->needs_symtab_index())
4033         (*p)->set_symtab_index(-1U);
4034       else
4035         {
4036           (*p)->set_symtab_index(local_symbol_index);
4037           ++local_symbol_index;
4038           off += symsize;
4039         }
4040     }
4041
4042   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4043        p != input_objects->relobj_end();
4044        ++p)
4045     {
4046       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4047                                                         off, symtab);
4048       off += (index - local_symbol_index) * symsize;
4049       local_symbol_index = index;
4050     }
4051
4052   unsigned int local_symcount = local_symbol_index;
4053   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4054
4055   off_t dynoff;
4056   size_t dyn_global_index;
4057   size_t dyncount;
4058   if (this->dynsym_section_ == NULL)
4059     {
4060       dynoff = 0;
4061       dyn_global_index = 0;
4062       dyncount = 0;
4063     }
4064   else
4065     {
4066       dyn_global_index = this->dynsym_section_->info();
4067       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4068       dynoff = this->dynsym_section_->offset() + locsize;
4069       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4070       gold_assert(static_cast<off_t>(dyncount * symsize)
4071                   == this->dynsym_section_->data_size() - locsize);
4072     }
4073
4074   off_t global_off = off;
4075   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4076                          &this->sympool_, &local_symcount);
4077
4078   if (!parameters->options().strip_all())
4079     {
4080       this->sympool_.set_string_offsets();
4081
4082       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4083       Output_section* osymtab = this->make_output_section(symtab_name,
4084                                                           elfcpp::SHT_SYMTAB,
4085                                                           0, ORDER_INVALID,
4086                                                           false);
4087       this->symtab_section_ = osymtab;
4088
4089       Output_section_data* pos = new Output_data_fixed_space(off, align,
4090                                                              "** symtab");
4091       osymtab->add_output_section_data(pos);
4092
4093       // We generate a .symtab_shndx section if we have more than
4094       // SHN_LORESERVE sections.  Technically it is possible that we
4095       // don't need one, because it is possible that there are no
4096       // symbols in any of sections with indexes larger than
4097       // SHN_LORESERVE.  That is probably unusual, though, and it is
4098       // easier to always create one than to compute section indexes
4099       // twice (once here, once when writing out the symbols).
4100       if (shnum >= elfcpp::SHN_LORESERVE)
4101         {
4102           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4103                                                                false, NULL);
4104           Output_section* osymtab_xindex =
4105             this->make_output_section(symtab_xindex_name,
4106                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4107                                       ORDER_INVALID, false);
4108
4109           size_t symcount = off / symsize;
4110           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4111
4112           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4113
4114           osymtab_xindex->set_link_section(osymtab);
4115           osymtab_xindex->set_addralign(4);
4116           osymtab_xindex->set_entsize(4);
4117
4118           osymtab_xindex->set_after_input_sections();
4119
4120           // This tells the driver code to wait until the symbol table
4121           // has written out before writing out the postprocessing
4122           // sections, including the .symtab_shndx section.
4123           this->any_postprocessing_sections_ = true;
4124         }
4125
4126       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4127       Output_section* ostrtab = this->make_output_section(strtab_name,
4128                                                           elfcpp::SHT_STRTAB,
4129                                                           0, ORDER_INVALID,
4130                                                           false);
4131
4132       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4133       ostrtab->add_output_section_data(pstr);
4134
4135       off_t symtab_off;
4136       if (!parameters->incremental_update())
4137         symtab_off = align_address(*poff, align);
4138       else
4139         {
4140           symtab_off = this->allocate(off, align, *poff);
4141           if (off == -1)
4142             gold_fallback(_("out of patch space for symbol table; "
4143                             "relink with --incremental-full"));
4144           gold_debug(DEBUG_INCREMENTAL,
4145                      "create_symtab_sections: %08lx %08lx .symtab",
4146                      static_cast<long>(symtab_off),
4147                      static_cast<long>(off));
4148         }
4149
4150       symtab->set_file_offset(symtab_off + global_off);
4151       osymtab->set_file_offset(symtab_off);
4152       osymtab->finalize_data_size();
4153       osymtab->set_link_section(ostrtab);
4154       osymtab->set_info(local_symcount);
4155       osymtab->set_entsize(symsize);
4156
4157       if (symtab_off + off > *poff)
4158         *poff = symtab_off + off;
4159     }
4160 }
4161
4162 // Create the .shstrtab section, which holds the names of the
4163 // sections.  At the time this is called, we have created all the
4164 // output sections except .shstrtab itself.
4165
4166 Output_section*
4167 Layout::create_shstrtab()
4168 {
4169   // FIXME: We don't need to create a .shstrtab section if we are
4170   // stripping everything.
4171
4172   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4173
4174   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4175                                                  ORDER_INVALID, false);
4176
4177   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4178     {
4179       // We can't write out this section until we've set all the
4180       // section names, and we don't set the names of compressed
4181       // output sections until relocations are complete.  FIXME: With
4182       // the current names we use, this is unnecessary.
4183       os->set_after_input_sections();
4184     }
4185
4186   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4187   os->add_output_section_data(posd);
4188
4189   return os;
4190 }
4191
4192 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4193 // offset.
4194
4195 void
4196 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4197 {
4198   Output_section_headers* oshdrs;
4199   oshdrs = new Output_section_headers(this,
4200                                       &this->segment_list_,
4201                                       &this->section_list_,
4202                                       &this->unattached_section_list_,
4203                                       &this->namepool_,
4204                                       shstrtab_section);
4205   off_t off;
4206   if (!parameters->incremental_update())
4207     off = align_address(*poff, oshdrs->addralign());
4208   else
4209     {
4210       oshdrs->pre_finalize_data_size();
4211       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4212       if (off == -1)
4213           gold_fallback(_("out of patch space for section header table; "
4214                           "relink with --incremental-full"));
4215       gold_debug(DEBUG_INCREMENTAL,
4216                  "create_shdrs: %08lx %08lx (section header table)",
4217                  static_cast<long>(off),
4218                  static_cast<long>(off + oshdrs->data_size()));
4219     }
4220   oshdrs->set_address_and_file_offset(0, off);
4221   off += oshdrs->data_size();
4222   if (off > *poff)
4223     *poff = off;
4224   this->section_headers_ = oshdrs;
4225 }
4226
4227 // Count the allocated sections.
4228
4229 size_t
4230 Layout::allocated_output_section_count() const
4231 {
4232   size_t section_count = 0;
4233   for (Segment_list::const_iterator p = this->segment_list_.begin();
4234        p != this->segment_list_.end();
4235        ++p)
4236     section_count += (*p)->output_section_count();
4237   return section_count;
4238 }
4239
4240 // Create the dynamic symbol table.
4241
4242 void
4243 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4244                               Symbol_table* symtab,
4245                               Output_section** pdynstr,
4246                               unsigned int* plocal_dynamic_count,
4247                               std::vector<Symbol*>* pdynamic_symbols,
4248                               Versions* pversions)
4249 {
4250   // Count all the symbols in the dynamic symbol table, and set the
4251   // dynamic symbol indexes.
4252
4253   // Skip symbol 0, which is always all zeroes.
4254   unsigned int index = 1;
4255
4256   // Add STT_SECTION symbols for each Output section which needs one.
4257   for (Section_list::iterator p = this->section_list_.begin();
4258        p != this->section_list_.end();
4259        ++p)
4260     {
4261       if (!(*p)->needs_dynsym_index())
4262         (*p)->set_dynsym_index(-1U);
4263       else
4264         {
4265           (*p)->set_dynsym_index(index);
4266           ++index;
4267         }
4268     }
4269
4270   // Count the local symbols that need to go in the dynamic symbol table,
4271   // and set the dynamic symbol indexes.
4272   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4273        p != input_objects->relobj_end();
4274        ++p)
4275     {
4276       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4277       index = new_index;
4278     }
4279
4280   unsigned int local_symcount = index;
4281   *plocal_dynamic_count = local_symcount;
4282
4283   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4284                                      &this->dynpool_, pversions);
4285
4286   int symsize;
4287   unsigned int align;
4288   const int size = parameters->target().get_size();
4289   if (size == 32)
4290     {
4291       symsize = elfcpp::Elf_sizes<32>::sym_size;
4292       align = 4;
4293     }
4294   else if (size == 64)
4295     {
4296       symsize = elfcpp::Elf_sizes<64>::sym_size;
4297       align = 8;
4298     }
4299   else
4300     gold_unreachable();
4301
4302   // Create the dynamic symbol table section.
4303
4304   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4305                                                        elfcpp::SHT_DYNSYM,
4306                                                        elfcpp::SHF_ALLOC,
4307                                                        false,
4308                                                        ORDER_DYNAMIC_LINKER,
4309                                                        false, false, false);
4310
4311   // Check for NULL as a linker script may discard .dynsym.
4312   if (dynsym != NULL)
4313     {
4314       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4315                                                                align,
4316                                                                "** dynsym");
4317       dynsym->add_output_section_data(odata);
4318
4319       dynsym->set_info(local_symcount);
4320       dynsym->set_entsize(symsize);
4321       dynsym->set_addralign(align);
4322
4323       this->dynsym_section_ = dynsym;
4324     }
4325
4326   Output_data_dynamic* const odyn = this->dynamic_data_;
4327   if (odyn != NULL)
4328     {
4329       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4330       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4331     }
4332
4333   // If there are more than SHN_LORESERVE allocated sections, we
4334   // create a .dynsym_shndx section.  It is possible that we don't
4335   // need one, because it is possible that there are no dynamic
4336   // symbols in any of the sections with indexes larger than
4337   // SHN_LORESERVE.  This is probably unusual, though, and at this
4338   // time we don't know the actual section indexes so it is
4339   // inconvenient to check.
4340   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4341     {
4342       Output_section* dynsym_xindex =
4343         this->choose_output_section(NULL, ".dynsym_shndx",
4344                                     elfcpp::SHT_SYMTAB_SHNDX,
4345                                     elfcpp::SHF_ALLOC,
4346                                     false, ORDER_DYNAMIC_LINKER, false, false,
4347                                     false);
4348
4349       if (dynsym_xindex != NULL)
4350         {
4351           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4352
4353           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4354
4355           dynsym_xindex->set_link_section(dynsym);
4356           dynsym_xindex->set_addralign(4);
4357           dynsym_xindex->set_entsize(4);
4358
4359           dynsym_xindex->set_after_input_sections();
4360
4361           // This tells the driver code to wait until the symbol table
4362           // has written out before writing out the postprocessing
4363           // sections, including the .dynsym_shndx section.
4364           this->any_postprocessing_sections_ = true;
4365         }
4366     }
4367
4368   // Create the dynamic string table section.
4369
4370   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4371                                                        elfcpp::SHT_STRTAB,
4372                                                        elfcpp::SHF_ALLOC,
4373                                                        false,
4374                                                        ORDER_DYNAMIC_LINKER,
4375                                                        false, false, false);
4376   *pdynstr = dynstr;
4377   if (dynstr != NULL)
4378     {
4379       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4380       dynstr->add_output_section_data(strdata);
4381
4382       if (dynsym != NULL)
4383         dynsym->set_link_section(dynstr);
4384       if (this->dynamic_section_ != NULL)
4385         this->dynamic_section_->set_link_section(dynstr);
4386
4387       if (odyn != NULL)
4388         {
4389           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4390           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4391         }
4392     }
4393
4394   // Create the hash tables.  The Gnu-style hash table must be
4395   // built first, because it changes the order of the symbols
4396   // in the dynamic symbol table.
4397
4398   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4399       || strcmp(parameters->options().hash_style(), "both") == 0)
4400     {
4401       unsigned char* phash;
4402       unsigned int hashlen;
4403       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4404                                     &phash, &hashlen);
4405
4406       Output_section* hashsec =
4407         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4408                                     elfcpp::SHF_ALLOC, false,
4409                                     ORDER_DYNAMIC_LINKER, false, false,
4410                                     false);
4411
4412       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4413                                                                    hashlen,
4414                                                                    align,
4415                                                                    "** hash");
4416       if (hashsec != NULL && hashdata != NULL)
4417         hashsec->add_output_section_data(hashdata);
4418
4419       if (hashsec != NULL)
4420         {
4421           if (dynsym != NULL)
4422             hashsec->set_link_section(dynsym);
4423
4424           // For a 64-bit target, the entries in .gnu.hash do not have
4425           // a uniform size, so we only set the entry size for a
4426           // 32-bit target.
4427           if (parameters->target().get_size() == 32)
4428             hashsec->set_entsize(4);
4429
4430           if (odyn != NULL)
4431             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4432         }
4433     }
4434
4435   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4436       || strcmp(parameters->options().hash_style(), "both") == 0)
4437     {
4438       unsigned char* phash;
4439       unsigned int hashlen;
4440       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4441                                     &phash, &hashlen);
4442
4443       Output_section* hashsec =
4444         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4445                                     elfcpp::SHF_ALLOC, false,
4446                                     ORDER_DYNAMIC_LINKER, false, false,
4447                                     false);
4448
4449       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4450                                                                    hashlen,
4451                                                                    align,
4452                                                                    "** hash");
4453       if (hashsec != NULL && hashdata != NULL)
4454         hashsec->add_output_section_data(hashdata);
4455
4456       if (hashsec != NULL)
4457         {
4458           if (dynsym != NULL)
4459             hashsec->set_link_section(dynsym);
4460           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4461         }
4462
4463       if (odyn != NULL)
4464         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4465     }
4466 }
4467
4468 // Assign offsets to each local portion of the dynamic symbol table.
4469
4470 void
4471 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4472 {
4473   Output_section* dynsym = this->dynsym_section_;
4474   if (dynsym == NULL)
4475     return;
4476
4477   off_t off = dynsym->offset();
4478
4479   // Skip the dummy symbol at the start of the section.
4480   off += dynsym->entsize();
4481
4482   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4483        p != input_objects->relobj_end();
4484        ++p)
4485     {
4486       unsigned int count = (*p)->set_local_dynsym_offset(off);
4487       off += count * dynsym->entsize();
4488     }
4489 }
4490
4491 // Create the version sections.
4492
4493 void
4494 Layout::create_version_sections(const Versions* versions,
4495                                 const Symbol_table* symtab,
4496                                 unsigned int local_symcount,
4497                                 const std::vector<Symbol*>& dynamic_symbols,
4498                                 const Output_section* dynstr)
4499 {
4500   if (!versions->any_defs() && !versions->any_needs())
4501     return;
4502
4503   switch (parameters->size_and_endianness())
4504     {
4505 #ifdef HAVE_TARGET_32_LITTLE
4506     case Parameters::TARGET_32_LITTLE:
4507       this->sized_create_version_sections<32, false>(versions, symtab,
4508                                                      local_symcount,
4509                                                      dynamic_symbols, dynstr);
4510       break;
4511 #endif
4512 #ifdef HAVE_TARGET_32_BIG
4513     case Parameters::TARGET_32_BIG:
4514       this->sized_create_version_sections<32, true>(versions, symtab,
4515                                                     local_symcount,
4516                                                     dynamic_symbols, dynstr);
4517       break;
4518 #endif
4519 #ifdef HAVE_TARGET_64_LITTLE
4520     case Parameters::TARGET_64_LITTLE:
4521       this->sized_create_version_sections<64, false>(versions, symtab,
4522                                                      local_symcount,
4523                                                      dynamic_symbols, dynstr);
4524       break;
4525 #endif
4526 #ifdef HAVE_TARGET_64_BIG
4527     case Parameters::TARGET_64_BIG:
4528       this->sized_create_version_sections<64, true>(versions, symtab,
4529                                                     local_symcount,
4530                                                     dynamic_symbols, dynstr);
4531       break;
4532 #endif
4533     default:
4534       gold_unreachable();
4535     }
4536 }
4537
4538 // Create the version sections, sized version.
4539
4540 template<int size, bool big_endian>
4541 void
4542 Layout::sized_create_version_sections(
4543     const Versions* versions,
4544     const Symbol_table* symtab,
4545     unsigned int local_symcount,
4546     const std::vector<Symbol*>& dynamic_symbols,
4547     const Output_section* dynstr)
4548 {
4549   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4550                                                      elfcpp::SHT_GNU_versym,
4551                                                      elfcpp::SHF_ALLOC,
4552                                                      false,
4553                                                      ORDER_DYNAMIC_LINKER,
4554                                                      false, false, false);
4555
4556   // Check for NULL since a linker script may discard this section.
4557   if (vsec != NULL)
4558     {
4559       unsigned char* vbuf;
4560       unsigned int vsize;
4561       versions->symbol_section_contents<size, big_endian>(symtab,
4562                                                           &this->dynpool_,
4563                                                           local_symcount,
4564                                                           dynamic_symbols,
4565                                                           &vbuf, &vsize);
4566
4567       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4568                                                                 "** versions");
4569
4570       vsec->add_output_section_data(vdata);
4571       vsec->set_entsize(2);
4572       vsec->set_link_section(this->dynsym_section_);
4573     }
4574
4575   Output_data_dynamic* const odyn = this->dynamic_data_;
4576   if (odyn != NULL && vsec != NULL)
4577     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4578
4579   if (versions->any_defs())
4580     {
4581       Output_section* vdsec;
4582       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4583                                           elfcpp::SHT_GNU_verdef,
4584                                           elfcpp::SHF_ALLOC,
4585                                           false, ORDER_DYNAMIC_LINKER, false,
4586                                           false, false);
4587
4588       if (vdsec != NULL)
4589         {
4590           unsigned char* vdbuf;
4591           unsigned int vdsize;
4592           unsigned int vdentries;
4593           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4594                                                            &vdbuf, &vdsize,
4595                                                            &vdentries);
4596
4597           Output_section_data* vddata =
4598             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4599
4600           vdsec->add_output_section_data(vddata);
4601           vdsec->set_link_section(dynstr);
4602           vdsec->set_info(vdentries);
4603
4604           if (odyn != NULL)
4605             {
4606               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4607               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4608             }
4609         }
4610     }
4611
4612   if (versions->any_needs())
4613     {
4614       Output_section* vnsec;
4615       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4616                                           elfcpp::SHT_GNU_verneed,
4617                                           elfcpp::SHF_ALLOC,
4618                                           false, ORDER_DYNAMIC_LINKER, false,
4619                                           false, false);
4620
4621       if (vnsec != NULL)
4622         {
4623           unsigned char* vnbuf;
4624           unsigned int vnsize;
4625           unsigned int vnentries;
4626           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4627                                                             &vnbuf, &vnsize,
4628                                                             &vnentries);
4629
4630           Output_section_data* vndata =
4631             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4632
4633           vnsec->add_output_section_data(vndata);
4634           vnsec->set_link_section(dynstr);
4635           vnsec->set_info(vnentries);
4636
4637           if (odyn != NULL)
4638             {
4639               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4640               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4641             }
4642         }
4643     }
4644 }
4645
4646 // Create the .interp section and PT_INTERP segment.
4647
4648 void
4649 Layout::create_interp(const Target* target)
4650 {
4651   gold_assert(this->interp_segment_ == NULL);
4652
4653   const char* interp = parameters->options().dynamic_linker();
4654   if (interp == NULL)
4655     {
4656       interp = target->dynamic_linker();
4657       gold_assert(interp != NULL);
4658     }
4659
4660   size_t len = strlen(interp) + 1;
4661
4662   Output_section_data* odata = new Output_data_const(interp, len, 1);
4663
4664   Output_section* osec = this->choose_output_section(NULL, ".interp",
4665                                                      elfcpp::SHT_PROGBITS,
4666                                                      elfcpp::SHF_ALLOC,
4667                                                      false, ORDER_INTERP,
4668                                                      false, false, false);
4669   if (osec != NULL)
4670     osec->add_output_section_data(odata);
4671 }
4672
4673 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4674 // called by the target-specific code.  This does nothing if not doing
4675 // a dynamic link.
4676
4677 // USE_REL is true for REL relocs rather than RELA relocs.
4678
4679 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4680
4681 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4682 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4683 // some targets have multiple reloc sections in PLT_REL.
4684
4685 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4686 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4687 // section.
4688
4689 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4690 // executable.
4691
4692 void
4693 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4694                                 const Output_data* plt_rel,
4695                                 const Output_data_reloc_generic* dyn_rel,
4696                                 bool add_debug, bool dynrel_includes_plt)
4697 {
4698   Output_data_dynamic* odyn = this->dynamic_data_;
4699   if (odyn == NULL)
4700     return;
4701
4702   if (plt_got != NULL && plt_got->output_section() != NULL)
4703     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4704
4705   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4706     {
4707       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4708       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4709       odyn->add_constant(elfcpp::DT_PLTREL,
4710                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4711     }
4712
4713   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4714       || (dynrel_includes_plt
4715           && plt_rel != NULL
4716           && plt_rel->output_section() != NULL))
4717     {
4718       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4719       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4720       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4721                                 (have_dyn_rel
4722                                  ? dyn_rel->output_section()
4723                                  : plt_rel->output_section()));
4724       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4725       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4726         odyn->add_section_size(size_tag,
4727                                dyn_rel->output_section(),
4728                                plt_rel->output_section());
4729       else if (have_dyn_rel)
4730         odyn->add_section_size(size_tag, dyn_rel->output_section());
4731       else
4732         odyn->add_section_size(size_tag, plt_rel->output_section());
4733       const int size = parameters->target().get_size();
4734       elfcpp::DT rel_tag;
4735       int rel_size;
4736       if (use_rel)
4737         {
4738           rel_tag = elfcpp::DT_RELENT;
4739           if (size == 32)
4740             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4741           else if (size == 64)
4742             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4743           else
4744             gold_unreachable();
4745         }
4746       else
4747         {
4748           rel_tag = elfcpp::DT_RELAENT;
4749           if (size == 32)
4750             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4751           else if (size == 64)
4752             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4753           else
4754             gold_unreachable();
4755         }
4756       odyn->add_constant(rel_tag, rel_size);
4757
4758       if (parameters->options().combreloc() && have_dyn_rel)
4759         {
4760           size_t c = dyn_rel->relative_reloc_count();
4761           if (c > 0)
4762             odyn->add_constant((use_rel
4763                                 ? elfcpp::DT_RELCOUNT
4764                                 : elfcpp::DT_RELACOUNT),
4765                                c);
4766         }
4767     }
4768
4769   if (add_debug && !parameters->options().shared())
4770     {
4771       // The value of the DT_DEBUG tag is filled in by the dynamic
4772       // linker at run time, and used by the debugger.
4773       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4774     }
4775 }
4776
4777 void
4778 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4779 {
4780   Output_data_dynamic* odyn = this->dynamic_data_;
4781   if (odyn == NULL)
4782     return;
4783   odyn->add_constant(tag, val);
4784 }
4785
4786 // Finish the .dynamic section and PT_DYNAMIC segment.
4787
4788 void
4789 Layout::finish_dynamic_section(const Input_objects* input_objects,
4790                                const Symbol_table* symtab)
4791 {
4792   if (!this->script_options_->saw_phdrs_clause()
4793       && this->dynamic_section_ != NULL)
4794     {
4795       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4796                                                        (elfcpp::PF_R
4797                                                         | elfcpp::PF_W));
4798       oseg->add_output_section_to_nonload(this->dynamic_section_,
4799                                           elfcpp::PF_R | elfcpp::PF_W);
4800     }
4801
4802   Output_data_dynamic* const odyn = this->dynamic_data_;
4803   if (odyn == NULL)
4804     return;
4805
4806   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4807        p != input_objects->dynobj_end();
4808        ++p)
4809     {
4810       if (!(*p)->is_needed() && (*p)->as_needed())
4811         {
4812           // This dynamic object was linked with --as-needed, but it
4813           // is not needed.
4814           continue;
4815         }
4816
4817       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4818     }
4819
4820   if (parameters->options().shared())
4821     {
4822       const char* soname = parameters->options().soname();
4823       if (soname != NULL)
4824         odyn->add_string(elfcpp::DT_SONAME, soname);
4825     }
4826
4827   Symbol* sym = symtab->lookup(parameters->options().init());
4828   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4829     odyn->add_symbol(elfcpp::DT_INIT, sym);
4830
4831   sym = symtab->lookup(parameters->options().fini());
4832   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4833     odyn->add_symbol(elfcpp::DT_FINI, sym);
4834
4835   // Look for .init_array, .preinit_array and .fini_array by checking
4836   // section types.
4837   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4838       p != this->section_list_.end();
4839       ++p)
4840     switch((*p)->type())
4841       {
4842       case elfcpp::SHT_FINI_ARRAY:
4843         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4844         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4845         break;
4846       case elfcpp::SHT_INIT_ARRAY:
4847         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4848         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4849         break;
4850       case elfcpp::SHT_PREINIT_ARRAY:
4851         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4852         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4853         break;
4854       default:
4855         break;
4856       }
4857
4858   // Add a DT_RPATH entry if needed.
4859   const General_options::Dir_list& rpath(parameters->options().rpath());
4860   if (!rpath.empty())
4861     {
4862       std::string rpath_val;
4863       for (General_options::Dir_list::const_iterator p = rpath.begin();
4864            p != rpath.end();
4865            ++p)
4866         {
4867           if (rpath_val.empty())
4868             rpath_val = p->name();
4869           else
4870             {
4871               // Eliminate duplicates.
4872               General_options::Dir_list::const_iterator q;
4873               for (q = rpath.begin(); q != p; ++q)
4874                 if (q->name() == p->name())
4875                   break;
4876               if (q == p)
4877                 {
4878                   rpath_val += ':';
4879                   rpath_val += p->name();
4880                 }
4881             }
4882         }
4883
4884       if (!parameters->options().enable_new_dtags())
4885         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4886       else
4887         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4888     }
4889
4890   // Look for text segments that have dynamic relocations.
4891   bool have_textrel = false;
4892   if (!this->script_options_->saw_sections_clause())
4893     {
4894       for (Segment_list::const_iterator p = this->segment_list_.begin();
4895            p != this->segment_list_.end();
4896            ++p)
4897         {
4898           if ((*p)->type() == elfcpp::PT_LOAD
4899               && ((*p)->flags() & elfcpp::PF_W) == 0
4900               && (*p)->has_dynamic_reloc())
4901             {
4902               have_textrel = true;
4903               break;
4904             }
4905         }
4906     }
4907   else
4908     {
4909       // We don't know the section -> segment mapping, so we are
4910       // conservative and just look for readonly sections with
4911       // relocations.  If those sections wind up in writable segments,
4912       // then we have created an unnecessary DT_TEXTREL entry.
4913       for (Section_list::const_iterator p = this->section_list_.begin();
4914            p != this->section_list_.end();
4915            ++p)
4916         {
4917           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4918               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4919               && (*p)->has_dynamic_reloc())
4920             {
4921               have_textrel = true;
4922               break;
4923             }
4924         }
4925     }
4926
4927   if (parameters->options().filter() != NULL)
4928     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4929   if (parameters->options().any_auxiliary())
4930     {
4931       for (options::String_set::const_iterator p =
4932              parameters->options().auxiliary_begin();
4933            p != parameters->options().auxiliary_end();
4934            ++p)
4935         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4936     }
4937
4938   // Add a DT_FLAGS entry if necessary.
4939   unsigned int flags = 0;
4940   if (have_textrel)
4941     {
4942       // Add a DT_TEXTREL for compatibility with older loaders.
4943       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4944       flags |= elfcpp::DF_TEXTREL;
4945
4946       if (parameters->options().text())
4947         gold_error(_("read-only segment has dynamic relocations"));
4948       else if (parameters->options().warn_shared_textrel()
4949                && parameters->options().shared())
4950         gold_warning(_("shared library text segment is not shareable"));
4951     }
4952   if (parameters->options().shared() && this->has_static_tls())
4953     flags |= elfcpp::DF_STATIC_TLS;
4954   if (parameters->options().origin())
4955     flags |= elfcpp::DF_ORIGIN;
4956   if (parameters->options().Bsymbolic()
4957       && !parameters->options().have_dynamic_list())
4958     {
4959       flags |= elfcpp::DF_SYMBOLIC;
4960       // Add DT_SYMBOLIC for compatibility with older loaders.
4961       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4962     }
4963   if (parameters->options().now())
4964     flags |= elfcpp::DF_BIND_NOW;
4965   if (flags != 0)
4966     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4967
4968   flags = 0;
4969   if (parameters->options().global())
4970     flags |= elfcpp::DF_1_GLOBAL;
4971   if (parameters->options().initfirst())
4972     flags |= elfcpp::DF_1_INITFIRST;
4973   if (parameters->options().interpose())
4974     flags |= elfcpp::DF_1_INTERPOSE;
4975   if (parameters->options().loadfltr())
4976     flags |= elfcpp::DF_1_LOADFLTR;
4977   if (parameters->options().nodefaultlib())
4978     flags |= elfcpp::DF_1_NODEFLIB;
4979   if (parameters->options().nodelete())
4980     flags |= elfcpp::DF_1_NODELETE;
4981   if (parameters->options().nodlopen())
4982     flags |= elfcpp::DF_1_NOOPEN;
4983   if (parameters->options().nodump())
4984     flags |= elfcpp::DF_1_NODUMP;
4985   if (!parameters->options().shared())
4986     flags &= ~(elfcpp::DF_1_INITFIRST
4987                | elfcpp::DF_1_NODELETE
4988                | elfcpp::DF_1_NOOPEN);
4989   if (parameters->options().origin())
4990     flags |= elfcpp::DF_1_ORIGIN;
4991   if (parameters->options().now())
4992     flags |= elfcpp::DF_1_NOW;
4993   if (parameters->options().Bgroup())
4994     flags |= elfcpp::DF_1_GROUP;
4995   if (flags != 0)
4996     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4997 }
4998
4999 // Set the size of the _DYNAMIC symbol table to be the size of the
5000 // dynamic data.
5001
5002 void
5003 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5004 {
5005   Output_data_dynamic* const odyn = this->dynamic_data_;
5006   if (odyn == NULL)
5007     return;
5008   odyn->finalize_data_size();
5009   if (this->dynamic_symbol_ == NULL)
5010     return;
5011   off_t data_size = odyn->data_size();
5012   const int size = parameters->target().get_size();
5013   if (size == 32)
5014     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5015   else if (size == 64)
5016     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5017   else
5018     gold_unreachable();
5019 }
5020
5021 // The mapping of input section name prefixes to output section names.
5022 // In some cases one prefix is itself a prefix of another prefix; in
5023 // such a case the longer prefix must come first.  These prefixes are
5024 // based on the GNU linker default ELF linker script.
5025
5026 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5027 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5028 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5029 {
5030   MAPPING_INIT(".text.", ".text"),
5031   MAPPING_INIT(".rodata.", ".rodata"),
5032   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5033   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5034   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5035   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5036   MAPPING_INIT(".data.", ".data"),
5037   MAPPING_INIT(".bss.", ".bss"),
5038   MAPPING_INIT(".tdata.", ".tdata"),
5039   MAPPING_INIT(".tbss.", ".tbss"),
5040   MAPPING_INIT(".init_array.", ".init_array"),
5041   MAPPING_INIT(".fini_array.", ".fini_array"),
5042   MAPPING_INIT(".sdata.", ".sdata"),
5043   MAPPING_INIT(".sbss.", ".sbss"),
5044   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5045   // differently depending on whether it is creating a shared library.
5046   MAPPING_INIT(".sdata2.", ".sdata"),
5047   MAPPING_INIT(".sbss2.", ".sbss"),
5048   MAPPING_INIT(".lrodata.", ".lrodata"),
5049   MAPPING_INIT(".ldata.", ".ldata"),
5050   MAPPING_INIT(".lbss.", ".lbss"),
5051   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5052   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5053   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5054   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5055   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5056   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5057   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5058   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5059   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5060   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5061   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5062   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5063   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5064   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5065   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5066   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5067   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5068   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5069   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5070   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5071   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5072 };
5073 #undef MAPPING_INIT
5074 #undef MAPPING_INIT_EXACT
5075
5076 const int Layout::section_name_mapping_count =
5077   (sizeof(Layout::section_name_mapping)
5078    / sizeof(Layout::section_name_mapping[0]));
5079
5080 // Choose the output section name to use given an input section name.
5081 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5082 // length of NAME.
5083
5084 const char*
5085 Layout::output_section_name(const Relobj* relobj, const char* name,
5086                             size_t* plen)
5087 {
5088   // gcc 4.3 generates the following sorts of section names when it
5089   // needs a section name specific to a function:
5090   //   .text.FN
5091   //   .rodata.FN
5092   //   .sdata2.FN
5093   //   .data.FN
5094   //   .data.rel.FN
5095   //   .data.rel.local.FN
5096   //   .data.rel.ro.FN
5097   //   .data.rel.ro.local.FN
5098   //   .sdata.FN
5099   //   .bss.FN
5100   //   .sbss.FN
5101   //   .tdata.FN
5102   //   .tbss.FN
5103
5104   // The GNU linker maps all of those to the part before the .FN,
5105   // except that .data.rel.local.FN is mapped to .data, and
5106   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5107   // beginning with .data.rel.ro.local are grouped together.
5108
5109   // For an anonymous namespace, the string FN can contain a '.'.
5110
5111   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5112   // GNU linker maps to .rodata.
5113
5114   // The .data.rel.ro sections are used with -z relro.  The sections
5115   // are recognized by name.  We use the same names that the GNU
5116   // linker does for these sections.
5117
5118   // It is hard to handle this in a principled way, so we don't even
5119   // try.  We use a table of mappings.  If the input section name is
5120   // not found in the table, we simply use it as the output section
5121   // name.
5122
5123   const Section_name_mapping* psnm = section_name_mapping;
5124   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5125     {
5126       if (psnm->fromlen > 0)
5127         {
5128           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5129             {
5130               *plen = psnm->tolen;
5131               return psnm->to;
5132             }
5133         }
5134       else
5135         {
5136           if (strcmp(name, psnm->from) == 0)
5137             {
5138               *plen = psnm->tolen;
5139               return psnm->to;
5140             }
5141         }
5142     }
5143
5144   // As an additional complication, .ctors sections are output in
5145   // either .ctors or .init_array sections, and .dtors sections are
5146   // output in either .dtors or .fini_array sections.
5147   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5148     {
5149       if (parameters->options().ctors_in_init_array())
5150         {
5151           *plen = 11;
5152           return name[1] == 'c' ? ".init_array" : ".fini_array";
5153         }
5154       else
5155         {
5156           *plen = 6;
5157           return name[1] == 'c' ? ".ctors" : ".dtors";
5158         }
5159     }
5160   if (parameters->options().ctors_in_init_array()
5161       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5162     {
5163       // To make .init_array/.fini_array work with gcc we must exclude
5164       // .ctors and .dtors sections from the crtbegin and crtend
5165       // files.
5166       if (relobj == NULL
5167           || (!Layout::match_file_name(relobj, "crtbegin")
5168               && !Layout::match_file_name(relobj, "crtend")))
5169         {
5170           *plen = 11;
5171           return name[1] == 'c' ? ".init_array" : ".fini_array";
5172         }
5173     }
5174
5175   return name;
5176 }
5177
5178 // Return true if RELOBJ is an input file whose base name matches
5179 // FILE_NAME.  The base name must have an extension of ".o", and must
5180 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5181 // to match crtbegin.o as well as crtbeginS.o without getting confused
5182 // by other possibilities.  Overall matching the file name this way is
5183 // a dreadful hack, but the GNU linker does it in order to better
5184 // support gcc, and we need to be compatible.
5185
5186 bool
5187 Layout::match_file_name(const Relobj* relobj, const char* match)
5188 {
5189   const std::string& file_name(relobj->name());
5190   const char* base_name = lbasename(file_name.c_str());
5191   size_t match_len = strlen(match);
5192   if (strncmp(base_name, match, match_len) != 0)
5193     return false;
5194   size_t base_len = strlen(base_name);
5195   if (base_len != match_len + 2 && base_len != match_len + 3)
5196     return false;
5197   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5198 }
5199
5200 // Check if a comdat group or .gnu.linkonce section with the given
5201 // NAME is selected for the link.  If there is already a section,
5202 // *KEPT_SECTION is set to point to the existing section and the
5203 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5204 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5205 // *KEPT_SECTION is set to the internal copy and the function returns
5206 // true.
5207
5208 bool
5209 Layout::find_or_add_kept_section(const std::string& name,
5210                                  Relobj* object,
5211                                  unsigned int shndx,
5212                                  bool is_comdat,
5213                                  bool is_group_name,
5214                                  Kept_section** kept_section)
5215 {
5216   // It's normal to see a couple of entries here, for the x86 thunk
5217   // sections.  If we see more than a few, we're linking a C++
5218   // program, and we resize to get more space to minimize rehashing.
5219   if (this->signatures_.size() > 4
5220       && !this->resized_signatures_)
5221     {
5222       reserve_unordered_map(&this->signatures_,
5223                             this->number_of_input_files_ * 64);
5224       this->resized_signatures_ = true;
5225     }
5226
5227   Kept_section candidate;
5228   std::pair<Signatures::iterator, bool> ins =
5229     this->signatures_.insert(std::make_pair(name, candidate));
5230
5231   if (kept_section != NULL)
5232     *kept_section = &ins.first->second;
5233   if (ins.second)
5234     {
5235       // This is the first time we've seen this signature.
5236       ins.first->second.set_object(object);
5237       ins.first->second.set_shndx(shndx);
5238       if (is_comdat)
5239         ins.first->second.set_is_comdat();
5240       if (is_group_name)
5241         ins.first->second.set_is_group_name();
5242       return true;
5243     }
5244
5245   // We have already seen this signature.
5246
5247   if (ins.first->second.is_group_name())
5248     {
5249       // We've already seen a real section group with this signature.
5250       // If the kept group is from a plugin object, and we're in the
5251       // replacement phase, accept the new one as a replacement.
5252       if (ins.first->second.object() == NULL
5253           && parameters->options().plugins()->in_replacement_phase())
5254         {
5255           ins.first->second.set_object(object);
5256           ins.first->second.set_shndx(shndx);
5257           return true;
5258         }
5259       return false;
5260     }
5261   else if (is_group_name)
5262     {
5263       // This is a real section group, and we've already seen a
5264       // linkonce section with this signature.  Record that we've seen
5265       // a section group, and don't include this section group.
5266       ins.first->second.set_is_group_name();
5267       return false;
5268     }
5269   else
5270     {
5271       // We've already seen a linkonce section and this is a linkonce
5272       // section.  These don't block each other--this may be the same
5273       // symbol name with different section types.
5274       return true;
5275     }
5276 }
5277
5278 // Store the allocated sections into the section list.
5279
5280 void
5281 Layout::get_allocated_sections(Section_list* section_list) const
5282 {
5283   for (Section_list::const_iterator p = this->section_list_.begin();
5284        p != this->section_list_.end();
5285        ++p)
5286     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5287       section_list->push_back(*p);
5288 }
5289
5290 // Store the executable sections into the section list.
5291
5292 void
5293 Layout::get_executable_sections(Section_list* section_list) const
5294 {
5295   for (Section_list::const_iterator p = this->section_list_.begin();
5296        p != this->section_list_.end();
5297        ++p)
5298     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5299         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5300       section_list->push_back(*p);
5301 }
5302
5303 // Create an output segment.
5304
5305 Output_segment*
5306 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5307 {
5308   gold_assert(!parameters->options().relocatable());
5309   Output_segment* oseg = new Output_segment(type, flags);
5310   this->segment_list_.push_back(oseg);
5311
5312   if (type == elfcpp::PT_TLS)
5313     this->tls_segment_ = oseg;
5314   else if (type == elfcpp::PT_GNU_RELRO)
5315     this->relro_segment_ = oseg;
5316   else if (type == elfcpp::PT_INTERP)
5317     this->interp_segment_ = oseg;
5318
5319   return oseg;
5320 }
5321
5322 // Return the file offset of the normal symbol table.
5323
5324 off_t
5325 Layout::symtab_section_offset() const
5326 {
5327   if (this->symtab_section_ != NULL)
5328     return this->symtab_section_->offset();
5329   return 0;
5330 }
5331
5332 // Return the section index of the normal symbol table.  It may have
5333 // been stripped by the -s/--strip-all option.
5334
5335 unsigned int
5336 Layout::symtab_section_shndx() const
5337 {
5338   if (this->symtab_section_ != NULL)
5339     return this->symtab_section_->out_shndx();
5340   return 0;
5341 }
5342
5343 // Write out the Output_sections.  Most won't have anything to write,
5344 // since most of the data will come from input sections which are
5345 // handled elsewhere.  But some Output_sections do have Output_data.
5346
5347 void
5348 Layout::write_output_sections(Output_file* of) const
5349 {
5350   for (Section_list::const_iterator p = this->section_list_.begin();
5351        p != this->section_list_.end();
5352        ++p)
5353     {
5354       if (!(*p)->after_input_sections())
5355         (*p)->write(of);
5356     }
5357 }
5358
5359 // Write out data not associated with a section or the symbol table.
5360
5361 void
5362 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5363 {
5364   if (!parameters->options().strip_all())
5365     {
5366       const Output_section* symtab_section = this->symtab_section_;
5367       for (Section_list::const_iterator p = this->section_list_.begin();
5368            p != this->section_list_.end();
5369            ++p)
5370         {
5371           if ((*p)->needs_symtab_index())
5372             {
5373               gold_assert(symtab_section != NULL);
5374               unsigned int index = (*p)->symtab_index();
5375               gold_assert(index > 0 && index != -1U);
5376               off_t off = (symtab_section->offset()
5377                            + index * symtab_section->entsize());
5378               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5379             }
5380         }
5381     }
5382
5383   const Output_section* dynsym_section = this->dynsym_section_;
5384   for (Section_list::const_iterator p = this->section_list_.begin();
5385        p != this->section_list_.end();
5386        ++p)
5387     {
5388       if ((*p)->needs_dynsym_index())
5389         {
5390           gold_assert(dynsym_section != NULL);
5391           unsigned int index = (*p)->dynsym_index();
5392           gold_assert(index > 0 && index != -1U);
5393           off_t off = (dynsym_section->offset()
5394                        + index * dynsym_section->entsize());
5395           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5396         }
5397     }
5398
5399   // Write out the Output_data which are not in an Output_section.
5400   for (Data_list::const_iterator p = this->special_output_list_.begin();
5401        p != this->special_output_list_.end();
5402        ++p)
5403     (*p)->write(of);
5404
5405   // Write out the Output_data which are not in an Output_section
5406   // and are regenerated in each iteration of relaxation.
5407   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5408        p != this->relax_output_list_.end();
5409        ++p)
5410     (*p)->write(of);
5411 }
5412
5413 // Write out the Output_sections which can only be written after the
5414 // input sections are complete.
5415
5416 void
5417 Layout::write_sections_after_input_sections(Output_file* of)
5418 {
5419   // Determine the final section offsets, and thus the final output
5420   // file size.  Note we finalize the .shstrab last, to allow the
5421   // after_input_section sections to modify their section-names before
5422   // writing.
5423   if (this->any_postprocessing_sections_)
5424     {
5425       off_t off = this->output_file_size_;
5426       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5427
5428       // Now that we've finalized the names, we can finalize the shstrab.
5429       off =
5430         this->set_section_offsets(off,
5431                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5432
5433       if (off > this->output_file_size_)
5434         {
5435           of->resize(off);
5436           this->output_file_size_ = off;
5437         }
5438     }
5439
5440   for (Section_list::const_iterator p = this->section_list_.begin();
5441        p != this->section_list_.end();
5442        ++p)
5443     {
5444       if ((*p)->after_input_sections())
5445         (*p)->write(of);
5446     }
5447
5448   this->section_headers_->write(of);
5449 }
5450
5451 // If a tree-style build ID was requested, the parallel part of that computation
5452 // is already done, and the final hash-of-hashes is computed here.  For other
5453 // types of build IDs, all the work is done here.
5454
5455 void
5456 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5457                        size_t size_of_hashes) const
5458 {
5459   if (this->build_id_note_ == NULL)
5460     return;
5461
5462   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5463                                           this->build_id_note_->data_size());
5464
5465   if (array_of_hashes == NULL)
5466     {
5467       const size_t output_file_size = this->output_file_size();
5468       const unsigned char* iv = of->get_input_view(0, output_file_size);
5469       const char* style = parameters->options().build_id();
5470
5471       // If we get here with style == "tree" then the output must be
5472       // too small for chunking, and we use SHA-1 in that case.
5473       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5474         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5475       else if (strcmp(style, "md5") == 0)
5476         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5477       else
5478         gold_unreachable();
5479
5480       of->free_input_view(0, output_file_size, iv);
5481     }
5482   else
5483     {
5484       // Non-overlapping substrings of the output file have been hashed.
5485       // Compute SHA-1 hash of the hashes.
5486       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5487                   size_of_hashes, ov);
5488       delete[] array_of_hashes;
5489     }
5490
5491   of->write_output_view(this->build_id_note_->offset(),
5492                         this->build_id_note_->data_size(),
5493                         ov);
5494 }
5495
5496 // Write out a binary file.  This is called after the link is
5497 // complete.  IN is the temporary output file we used to generate the
5498 // ELF code.  We simply walk through the segments, read them from
5499 // their file offset in IN, and write them to their load address in
5500 // the output file.  FIXME: with a bit more work, we could support
5501 // S-records and/or Intel hex format here.
5502
5503 void
5504 Layout::write_binary(Output_file* in) const
5505 {
5506   gold_assert(parameters->options().oformat_enum()
5507               == General_options::OBJECT_FORMAT_BINARY);
5508
5509   // Get the size of the binary file.
5510   uint64_t max_load_address = 0;
5511   for (Segment_list::const_iterator p = this->segment_list_.begin();
5512        p != this->segment_list_.end();
5513        ++p)
5514     {
5515       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5516         {
5517           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5518           if (max_paddr > max_load_address)
5519             max_load_address = max_paddr;
5520         }
5521     }
5522
5523   Output_file out(parameters->options().output_file_name());
5524   out.open(max_load_address);
5525
5526   for (Segment_list::const_iterator p = this->segment_list_.begin();
5527        p != this->segment_list_.end();
5528        ++p)
5529     {
5530       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5531         {
5532           const unsigned char* vin = in->get_input_view((*p)->offset(),
5533                                                         (*p)->filesz());
5534           unsigned char* vout = out.get_output_view((*p)->paddr(),
5535                                                     (*p)->filesz());
5536           memcpy(vout, vin, (*p)->filesz());
5537           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5538           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5539         }
5540     }
5541
5542   out.close();
5543 }
5544
5545 // Print the output sections to the map file.
5546
5547 void
5548 Layout::print_to_mapfile(Mapfile* mapfile) const
5549 {
5550   for (Segment_list::const_iterator p = this->segment_list_.begin();
5551        p != this->segment_list_.end();
5552        ++p)
5553     (*p)->print_sections_to_mapfile(mapfile);
5554   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5555        p != this->unattached_section_list_.end();
5556        ++p)
5557     (*p)->print_to_mapfile(mapfile);
5558 }
5559
5560 // Print statistical information to stderr.  This is used for --stats.
5561
5562 void
5563 Layout::print_stats() const
5564 {
5565   this->namepool_.print_stats("section name pool");
5566   this->sympool_.print_stats("output symbol name pool");
5567   this->dynpool_.print_stats("dynamic name pool");
5568
5569   for (Section_list::const_iterator p = this->section_list_.begin();
5570        p != this->section_list_.end();
5571        ++p)
5572     (*p)->print_merge_stats();
5573 }
5574
5575 // Write_sections_task methods.
5576
5577 // We can always run this task.
5578
5579 Task_token*
5580 Write_sections_task::is_runnable()
5581 {
5582   return NULL;
5583 }
5584
5585 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5586 // when finished.
5587
5588 void
5589 Write_sections_task::locks(Task_locker* tl)
5590 {
5591   tl->add(this, this->output_sections_blocker_);
5592   if (this->input_sections_blocker_ != NULL)
5593     tl->add(this, this->input_sections_blocker_);
5594   tl->add(this, this->final_blocker_);
5595 }
5596
5597 // Run the task--write out the data.
5598
5599 void
5600 Write_sections_task::run(Workqueue*)
5601 {
5602   this->layout_->write_output_sections(this->of_);
5603 }
5604
5605 // Write_data_task methods.
5606
5607 // We can always run this task.
5608
5609 Task_token*
5610 Write_data_task::is_runnable()
5611 {
5612   return NULL;
5613 }
5614
5615 // We need to unlock FINAL_BLOCKER when finished.
5616
5617 void
5618 Write_data_task::locks(Task_locker* tl)
5619 {
5620   tl->add(this, this->final_blocker_);
5621 }
5622
5623 // Run the task--write out the data.
5624
5625 void
5626 Write_data_task::run(Workqueue*)
5627 {
5628   this->layout_->write_data(this->symtab_, this->of_);
5629 }
5630
5631 // Write_symbols_task methods.
5632
5633 // We can always run this task.
5634
5635 Task_token*
5636 Write_symbols_task::is_runnable()
5637 {
5638   return NULL;
5639 }
5640
5641 // We need to unlock FINAL_BLOCKER when finished.
5642
5643 void
5644 Write_symbols_task::locks(Task_locker* tl)
5645 {
5646   tl->add(this, this->final_blocker_);
5647 }
5648
5649 // Run the task--write out the symbols.
5650
5651 void
5652 Write_symbols_task::run(Workqueue*)
5653 {
5654   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5655                                this->layout_->symtab_xindex(),
5656                                this->layout_->dynsym_xindex(), this->of_);
5657 }
5658
5659 // Write_after_input_sections_task methods.
5660
5661 // We can only run this task after the input sections have completed.
5662
5663 Task_token*
5664 Write_after_input_sections_task::is_runnable()
5665 {
5666   if (this->input_sections_blocker_->is_blocked())
5667     return this->input_sections_blocker_;
5668   return NULL;
5669 }
5670
5671 // We need to unlock FINAL_BLOCKER when finished.
5672
5673 void
5674 Write_after_input_sections_task::locks(Task_locker* tl)
5675 {
5676   tl->add(this, this->final_blocker_);
5677 }
5678
5679 // Run the task.
5680
5681 void
5682 Write_after_input_sections_task::run(Workqueue*)
5683 {
5684   this->layout_->write_sections_after_input_sections(this->of_);
5685 }
5686
5687 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5688 // or as a "tree" where each chunk of the string is hashed and then those
5689 // hashes are put into a (much smaller) string which is hashed with sha1.
5690 // We compute a checksum over the entire file because that is simplest.
5691
5692 void
5693 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5694 {
5695   Task_token* post_hash_tasks_blocker = new Task_token(true);
5696   const Layout* layout = this->layout_;
5697   Output_file* of = this->of_;
5698   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5699                            : static_cast<size_t>(layout->output_file_size()));
5700   unsigned char* array_of_hashes = NULL;
5701   size_t size_of_hashes = 0;
5702
5703   if (strcmp(this->options_->build_id(), "tree") == 0
5704       && this->options_->build_id_chunk_size_for_treehash() > 0
5705       && filesize > 0
5706       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5707     {
5708       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5709       const size_t chunk_size =
5710           this->options_->build_id_chunk_size_for_treehash();
5711       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5712       post_hash_tasks_blocker->add_blockers(num_hashes);
5713       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5714       array_of_hashes = new unsigned char[size_of_hashes];
5715       unsigned char *dst = array_of_hashes;
5716       for (size_t i = 0, src_offset = 0; i < num_hashes;
5717            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5718         {
5719           size_t size = std::min(chunk_size, filesize - src_offset);
5720           workqueue->queue(new Hash_task(of,
5721                                          src_offset,
5722                                          size,
5723                                          dst,
5724                                          post_hash_tasks_blocker));
5725         }
5726     }
5727
5728   // Queue the final task to write the build id and close the output file.
5729   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5730                                                            layout,
5731                                                            of,
5732                                                            array_of_hashes,
5733                                                            size_of_hashes),
5734                                      post_hash_tasks_blocker,
5735                                      "Task_function Close_task_runner"));
5736 }
5737
5738 // Close_task_runner methods.
5739
5740 // Finish up the build ID computation, if necessary, and write a binary file,
5741 // if necessary.  Then close the output file.
5742
5743 void
5744 Close_task_runner::run(Workqueue*, const Task*)
5745 {
5746   // At this point the multi-threaded part of the build ID computation,
5747   // if any, is done.  See Build_id_task_runner.
5748   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5749                                 this->size_of_hashes_);
5750
5751   // If we've been asked to create a binary file, we do so here.
5752   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5753     this->layout_->write_binary(this->of_);
5754
5755   this->of_->close();
5756 }
5757
5758 // Instantiate the templates we need.  We could use the configure
5759 // script to restrict this to only the ones for implemented targets.
5760
5761 #ifdef HAVE_TARGET_32_LITTLE
5762 template
5763 Output_section*
5764 Layout::init_fixed_output_section<32, false>(
5765     const char* name,
5766     elfcpp::Shdr<32, false>& shdr);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_32_BIG
5770 template
5771 Output_section*
5772 Layout::init_fixed_output_section<32, true>(
5773     const char* name,
5774     elfcpp::Shdr<32, true>& shdr);
5775 #endif
5776
5777 #ifdef HAVE_TARGET_64_LITTLE
5778 template
5779 Output_section*
5780 Layout::init_fixed_output_section<64, false>(
5781     const char* name,
5782     elfcpp::Shdr<64, false>& shdr);
5783 #endif
5784
5785 #ifdef HAVE_TARGET_64_BIG
5786 template
5787 Output_section*
5788 Layout::init_fixed_output_section<64, true>(
5789     const char* name,
5790     elfcpp::Shdr<64, true>& shdr);
5791 #endif
5792
5793 #ifdef HAVE_TARGET_32_LITTLE
5794 template
5795 Output_section*
5796 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5797                           unsigned int shndx,
5798                           const char* name,
5799                           const elfcpp::Shdr<32, false>& shdr,
5800                           unsigned int, unsigned int, off_t*);
5801 #endif
5802
5803 #ifdef HAVE_TARGET_32_BIG
5804 template
5805 Output_section*
5806 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5807                          unsigned int shndx,
5808                          const char* name,
5809                          const elfcpp::Shdr<32, true>& shdr,
5810                          unsigned int, unsigned int, off_t*);
5811 #endif
5812
5813 #ifdef HAVE_TARGET_64_LITTLE
5814 template
5815 Output_section*
5816 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5817                           unsigned int shndx,
5818                           const char* name,
5819                           const elfcpp::Shdr<64, false>& shdr,
5820                           unsigned int, unsigned int, off_t*);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_64_BIG
5824 template
5825 Output_section*
5826 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5827                          unsigned int shndx,
5828                          const char* name,
5829                          const elfcpp::Shdr<64, true>& shdr,
5830                          unsigned int, unsigned int, off_t*);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_LITTLE
5834 template
5835 Output_section*
5836 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5837                                 unsigned int reloc_shndx,
5838                                 const elfcpp::Shdr<32, false>& shdr,
5839                                 Output_section* data_section,
5840                                 Relocatable_relocs* rr);
5841 #endif
5842
5843 #ifdef HAVE_TARGET_32_BIG
5844 template
5845 Output_section*
5846 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5847                                unsigned int reloc_shndx,
5848                                const elfcpp::Shdr<32, true>& shdr,
5849                                Output_section* data_section,
5850                                Relocatable_relocs* rr);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_LITTLE
5854 template
5855 Output_section*
5856 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5857                                 unsigned int reloc_shndx,
5858                                 const elfcpp::Shdr<64, false>& shdr,
5859                                 Output_section* data_section,
5860                                 Relocatable_relocs* rr);
5861 #endif
5862
5863 #ifdef HAVE_TARGET_64_BIG
5864 template
5865 Output_section*
5866 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5867                                unsigned int reloc_shndx,
5868                                const elfcpp::Shdr<64, true>& shdr,
5869                                Output_section* data_section,
5870                                Relocatable_relocs* rr);
5871 #endif
5872
5873 #ifdef HAVE_TARGET_32_LITTLE
5874 template
5875 void
5876 Layout::layout_group<32, false>(Symbol_table* symtab,
5877                                 Sized_relobj_file<32, false>* object,
5878                                 unsigned int,
5879                                 const char* group_section_name,
5880                                 const char* signature,
5881                                 const elfcpp::Shdr<32, false>& shdr,
5882                                 elfcpp::Elf_Word flags,
5883                                 std::vector<unsigned int>* shndxes);
5884 #endif
5885
5886 #ifdef HAVE_TARGET_32_BIG
5887 template
5888 void
5889 Layout::layout_group<32, true>(Symbol_table* symtab,
5890                                Sized_relobj_file<32, true>* object,
5891                                unsigned int,
5892                                const char* group_section_name,
5893                                const char* signature,
5894                                const elfcpp::Shdr<32, true>& shdr,
5895                                elfcpp::Elf_Word flags,
5896                                std::vector<unsigned int>* shndxes);
5897 #endif
5898
5899 #ifdef HAVE_TARGET_64_LITTLE
5900 template
5901 void
5902 Layout::layout_group<64, false>(Symbol_table* symtab,
5903                                 Sized_relobj_file<64, false>* object,
5904                                 unsigned int,
5905                                 const char* group_section_name,
5906                                 const char* signature,
5907                                 const elfcpp::Shdr<64, false>& shdr,
5908                                 elfcpp::Elf_Word flags,
5909                                 std::vector<unsigned int>* shndxes);
5910 #endif
5911
5912 #ifdef HAVE_TARGET_64_BIG
5913 template
5914 void
5915 Layout::layout_group<64, true>(Symbol_table* symtab,
5916                                Sized_relobj_file<64, true>* object,
5917                                unsigned int,
5918                                const char* group_section_name,
5919                                const char* signature,
5920                                const elfcpp::Shdr<64, true>& shdr,
5921                                elfcpp::Elf_Word flags,
5922                                std::vector<unsigned int>* shndxes);
5923 #endif
5924
5925 #ifdef HAVE_TARGET_32_LITTLE
5926 template
5927 Output_section*
5928 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5929                                    const unsigned char* symbols,
5930                                    off_t symbols_size,
5931                                    const unsigned char* symbol_names,
5932                                    off_t symbol_names_size,
5933                                    unsigned int shndx,
5934                                    const elfcpp::Shdr<32, false>& shdr,
5935                                    unsigned int reloc_shndx,
5936                                    unsigned int reloc_type,
5937                                    off_t* off);
5938 #endif
5939
5940 #ifdef HAVE_TARGET_32_BIG
5941 template
5942 Output_section*
5943 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5944                                   const unsigned char* symbols,
5945                                   off_t symbols_size,
5946                                   const unsigned char* symbol_names,
5947                                   off_t symbol_names_size,
5948                                   unsigned int shndx,
5949                                   const elfcpp::Shdr<32, true>& shdr,
5950                                   unsigned int reloc_shndx,
5951                                   unsigned int reloc_type,
5952                                   off_t* off);
5953 #endif
5954
5955 #ifdef HAVE_TARGET_64_LITTLE
5956 template
5957 Output_section*
5958 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5959                                    const unsigned char* symbols,
5960                                    off_t symbols_size,
5961                                    const unsigned char* symbol_names,
5962                                    off_t symbol_names_size,
5963                                    unsigned int shndx,
5964                                    const elfcpp::Shdr<64, false>& shdr,
5965                                    unsigned int reloc_shndx,
5966                                    unsigned int reloc_type,
5967                                    off_t* off);
5968 #endif
5969
5970 #ifdef HAVE_TARGET_64_BIG
5971 template
5972 Output_section*
5973 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5974                                   const unsigned char* symbols,
5975                                   off_t symbols_size,
5976                                   const unsigned char* symbol_names,
5977                                   off_t symbol_names_size,
5978                                   unsigned int shndx,
5979                                   const elfcpp::Shdr<64, true>& shdr,
5980                                   unsigned int reloc_shndx,
5981                                   unsigned int reloc_type,
5982                                   off_t* off);
5983 #endif
5984
5985 #ifdef HAVE_TARGET_32_LITTLE
5986 template
5987 void
5988 Layout::add_to_gdb_index(bool is_type_unit,
5989                          Sized_relobj<32, false>* object,
5990                          const unsigned char* symbols,
5991                          off_t symbols_size,
5992                          unsigned int shndx,
5993                          unsigned int reloc_shndx,
5994                          unsigned int reloc_type);
5995 #endif
5996
5997 #ifdef HAVE_TARGET_32_BIG
5998 template
5999 void
6000 Layout::add_to_gdb_index(bool is_type_unit,
6001                          Sized_relobj<32, true>* object,
6002                          const unsigned char* symbols,
6003                          off_t symbols_size,
6004                          unsigned int shndx,
6005                          unsigned int reloc_shndx,
6006                          unsigned int reloc_type);
6007 #endif
6008
6009 #ifdef HAVE_TARGET_64_LITTLE
6010 template
6011 void
6012 Layout::add_to_gdb_index(bool is_type_unit,
6013                          Sized_relobj<64, false>* object,
6014                          const unsigned char* symbols,
6015                          off_t symbols_size,
6016                          unsigned int shndx,
6017                          unsigned int reloc_shndx,
6018                          unsigned int reloc_type);
6019 #endif
6020
6021 #ifdef HAVE_TARGET_64_BIG
6022 template
6023 void
6024 Layout::add_to_gdb_index(bool is_type_unit,
6025                          Sized_relobj<64, true>* object,
6026                          const unsigned char* symbols,
6027                          off_t symbols_size,
6028                          unsigned int shndx,
6029                          unsigned int reloc_shndx,
6030                          unsigned int reloc_type);
6031 #endif
6032
6033 } // End namespace gold.