* layout.cc (Layout::layout_eh_frame): Mark a writable .eh_frame
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Layout::Relaxation_debug_check methods.
59
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66     const Layout::Section_list& sections,
67     const Layout::Data_list& special_outputs)
68 {
69   for(Layout::Section_list::const_iterator p = sections.begin();
70       p != sections.end();
71       ++p)
72     gold_assert((*p)->address_and_file_offset_have_reset_values());
73
74   for(Layout::Data_list::const_iterator p = special_outputs.begin();
75       p != special_outputs.end();
76       ++p)
77     gold_assert((*p)->address_and_file_offset_have_reset_values());
78 }
79   
80 // Save information of SECTIONS for checking later.
81
82 void
83 Layout::Relaxation_debug_check::read_sections(
84     const Layout::Section_list& sections)
85 {
86   for(Layout::Section_list::const_iterator p = sections.begin();
87       p != sections.end();
88       ++p)
89     {
90       Output_section* os = *p;
91       Section_info info;
92       info.output_section = os;
93       info.address = os->is_address_valid() ? os->address() : 0;
94       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95       info.offset = os->is_offset_valid()? os->offset() : -1 ;
96       this->section_infos_.push_back(info);
97     }
98 }
99
100 // Verify SECTIONS using previously recorded information.
101
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104     const Layout::Section_list& sections)
105 {
106   size_t i = 0;
107   for(Layout::Section_list::const_iterator p = sections.begin();
108       p != sections.end();
109       ++p, ++i)
110     {
111       Output_section* os = *p;
112       uint64_t address = os->is_address_valid() ? os->address() : 0;
113       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
115
116       if (i >= this->section_infos_.size())
117         {
118           gold_fatal("Section_info of %s missing.\n", os->name());
119         }
120       const Section_info& info = this->section_infos_[i];
121       if (os != info.output_section)
122         gold_fatal("Section order changed.  Expecting %s but see %s\n",
123                    info.output_section->name(), os->name());
124       if (address != info.address
125           || data_size != info.data_size
126           || offset != info.offset)
127         gold_fatal("Section %s changed.\n", os->name());
128     }
129 }
130
131 // Layout_task_runner methods.
132
133 // Lay out the sections.  This is called after all the input objects
134 // have been read.
135
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
138 {
139   off_t file_size = this->layout_->finalize(this->input_objects_,
140                                             this->symtab_,
141                                             this->target_,
142                                             task);
143
144   // Now we know the final size of the output file and we know where
145   // each piece of information goes.
146
147   if (this->mapfile_ != NULL)
148     {
149       this->mapfile_->print_discarded_sections(this->input_objects_);
150       this->layout_->print_to_mapfile(this->mapfile_);
151     }
152
153   Output_file* of = new Output_file(parameters->options().output_file_name());
154   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155     of->set_is_temporary();
156   of->open(file_size);
157
158   // Queue up the final set of tasks.
159   gold::queue_final_tasks(this->options_, this->input_objects_,
160                           this->symtab_, this->layout_, workqueue, of);
161 }
162
163 // Layout methods.
164
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166   : number_of_input_files_(number_of_input_files),
167     script_options_(script_options),
168     namepool_(),
169     sympool_(),
170     dynpool_(),
171     signatures_(),
172     section_name_map_(),
173     segment_list_(),
174     section_list_(),
175     unattached_section_list_(),
176     special_output_list_(),
177     section_headers_(NULL),
178     tls_segment_(NULL),
179     relro_segment_(NULL),
180     increase_relro_(0),
181     symtab_section_(NULL),
182     symtab_xindex_(NULL),
183     dynsym_section_(NULL),
184     dynsym_xindex_(NULL),
185     dynamic_section_(NULL),
186     dynamic_symbol_(NULL),
187     dynamic_data_(NULL),
188     eh_frame_section_(NULL),
189     eh_frame_data_(NULL),
190     added_eh_frame_data_(false),
191     eh_frame_hdr_section_(NULL),
192     build_id_note_(NULL),
193     debug_abbrev_(NULL),
194     debug_info_(NULL),
195     group_signatures_(),
196     output_file_size_(-1),
197     have_added_input_section_(false),
198     sections_are_attached_(false),
199     input_requires_executable_stack_(false),
200     input_with_gnu_stack_note_(false),
201     input_without_gnu_stack_note_(false),
202     has_static_tls_(false),
203     any_postprocessing_sections_(false),
204     resized_signatures_(false),
205     have_stabstr_section_(false),
206     incremental_inputs_(NULL),
207     record_output_section_data_from_script_(false),
208     script_output_section_data_list_(),
209     segment_states_(NULL),
210     relaxation_debug_check_(NULL)
211 {
212   // Make space for more than enough segments for a typical file.
213   // This is just for efficiency--it's OK if we wind up needing more.
214   this->segment_list_.reserve(12);
215
216   // We expect two unattached Output_data objects: the file header and
217   // the segment headers.
218   this->special_output_list_.reserve(2);
219
220   // Initialize structure needed for an incremental build.
221   if (parameters->incremental())
222     this->incremental_inputs_ = new Incremental_inputs;
223
224   // The section name pool is worth optimizing in all cases, because
225   // it is small, but there are often overlaps due to .rel sections.
226   this->namepool_.set_optimize();
227 }
228
229 // Hash a key we use to look up an output section mapping.
230
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
233 {
234  return k.first + k.second.first + k.second.second;
235 }
236
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb.  Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
240
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243   // ".debug_aranges",   // not used by gdb as of 6.7.1
244   ".debug_frame",
245   ".debug_info",
246   ".debug_types",
247   ".debug_line",
248   ".debug_loc",
249   ".debug_macinfo",
250   // ".debug_pubnames",  // not used by gdb as of 6.7.1
251   ".debug_ranges",
252   ".debug_str",
253 };
254
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257   // ".debug_aranges",   // not used by gdb as of 6.7.1
258   // ".debug_frame",
259   ".debug_info",
260   // ".debug_types",
261   ".debug_line",
262   // ".debug_loc",
263   // ".debug_macinfo",
264   // ".debug_pubnames",  // not used by gdb as of 6.7.1
265   // ".debug_ranges",
266   ".debug_str",
267 };
268
269 static inline bool
270 is_gdb_debug_section(const char* str)
271 {
272   // We can do this faster: binary search or a hashtable.  But why bother?
273   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274     if (strcmp(str, gdb_sections[i]) == 0)
275       return true;
276   return false;
277 }
278
279 static inline bool
280 is_lines_only_debug_section(const char* str)
281 {
282   // We can do this faster: binary search or a hashtable.  But why bother?
283   for (size_t i = 0;
284        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285        ++i)
286     if (strcmp(str, lines_only_debug_sections[i]) == 0)
287       return true;
288   return false;
289 }
290
291 // Sometimes we compress sections.  This is typically done for
292 // sections that are not part of normal program execution (such as
293 // .debug_* sections), and where the readers of these sections know
294 // how to deal with compressed sections.  This routine doesn't say for
295 // certain whether we'll compress -- it depends on commandline options
296 // as well -- just whether this section is a candidate for compression.
297 // (The Output_compressed_section class decides whether to compress
298 // a given section, and picks the name of the compressed section.)
299
300 static bool
301 is_compressible_debug_section(const char* secname)
302 {
303   return (is_prefix_of(".debug", secname));
304 }
305
306 // We may see compressed debug sections in input files.  Return TRUE
307 // if this is the name of a compressed debug section.
308
309 bool
310 is_compressed_debug_section(const char* secname)
311 {
312   return (is_prefix_of(".zdebug", secname));
313 }
314
315 // Whether to include this section in the link.
316
317 template<int size, bool big_endian>
318 bool
319 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
320                         const elfcpp::Shdr<size, big_endian>& shdr)
321 {
322   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
323     return false;
324
325   switch (shdr.get_sh_type())
326     {
327     case elfcpp::SHT_NULL:
328     case elfcpp::SHT_SYMTAB:
329     case elfcpp::SHT_DYNSYM:
330     case elfcpp::SHT_HASH:
331     case elfcpp::SHT_DYNAMIC:
332     case elfcpp::SHT_SYMTAB_SHNDX:
333       return false;
334
335     case elfcpp::SHT_STRTAB:
336       // Discard the sections which have special meanings in the ELF
337       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
338       // checking the sh_link fields of the appropriate sections.
339       return (strcmp(name, ".dynstr") != 0
340               && strcmp(name, ".strtab") != 0
341               && strcmp(name, ".shstrtab") != 0);
342
343     case elfcpp::SHT_RELA:
344     case elfcpp::SHT_REL:
345     case elfcpp::SHT_GROUP:
346       // If we are emitting relocations these should be handled
347       // elsewhere.
348       gold_assert(!parameters->options().relocatable()
349                   && !parameters->options().emit_relocs());
350       return false;
351
352     case elfcpp::SHT_PROGBITS:
353       if (parameters->options().strip_debug()
354           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
355         {
356           if (is_debug_info_section(name))
357             return false;
358         }
359       if (parameters->options().strip_debug_non_line()
360           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
361         {
362           // Debugging sections can only be recognized by name.
363           if (is_prefix_of(".debug", name)
364               && !is_lines_only_debug_section(name))
365             return false;
366         }
367       if (parameters->options().strip_debug_gdb()
368           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
369         {
370           // Debugging sections can only be recognized by name.
371           if (is_prefix_of(".debug", name)
372               && !is_gdb_debug_section(name))
373             return false;
374         }
375       if (parameters->options().strip_lto_sections()
376           && !parameters->options().relocatable()
377           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
378         {
379           // Ignore LTO sections containing intermediate code.
380           if (is_prefix_of(".gnu.lto_", name))
381             return false;
382         }
383       // The GNU linker strips .gnu_debuglink sections, so we do too.
384       // This is a feature used to keep debugging information in
385       // separate files.
386       if (strcmp(name, ".gnu_debuglink") == 0)
387         return false;
388       return true;
389
390     default:
391       return true;
392     }
393 }
394
395 // Return an output section named NAME, or NULL if there is none.
396
397 Output_section*
398 Layout::find_output_section(const char* name) const
399 {
400   for (Section_list::const_iterator p = this->section_list_.begin();
401        p != this->section_list_.end();
402        ++p)
403     if (strcmp((*p)->name(), name) == 0)
404       return *p;
405   return NULL;
406 }
407
408 // Return an output segment of type TYPE, with segment flags SET set
409 // and segment flags CLEAR clear.  Return NULL if there is none.
410
411 Output_segment*
412 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
413                             elfcpp::Elf_Word clear) const
414 {
415   for (Segment_list::const_iterator p = this->segment_list_.begin();
416        p != this->segment_list_.end();
417        ++p)
418     if (static_cast<elfcpp::PT>((*p)->type()) == type
419         && ((*p)->flags() & set) == set
420         && ((*p)->flags() & clear) == 0)
421       return *p;
422   return NULL;
423 }
424
425 // Return the output section to use for section NAME with type TYPE
426 // and section flags FLAGS.  NAME must be canonicalized in the string
427 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
428 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
429 // is used by the dynamic linker.  IS_RELRO is true for a relro
430 // section.  IS_LAST_RELRO is true for the last relro section.
431 // IS_FIRST_NON_RELRO is true for the first non-relro section.
432
433 Output_section*
434 Layout::get_output_section(const char* name, Stringpool::Key name_key,
435                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
436                            Output_section_order order, bool is_relro)
437 {
438   elfcpp::Elf_Xword lookup_flags = flags;
439
440   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
441   // read-write with read-only sections.  Some other ELF linkers do
442   // not do this.  FIXME: Perhaps there should be an option
443   // controlling this.
444   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
445
446   const Key key(name_key, std::make_pair(type, lookup_flags));
447   const std::pair<Key, Output_section*> v(key, NULL);
448   std::pair<Section_name_map::iterator, bool> ins(
449     this->section_name_map_.insert(v));
450
451   if (!ins.second)
452     return ins.first->second;
453   else
454     {
455       // This is the first time we've seen this name/type/flags
456       // combination.  For compatibility with the GNU linker, we
457       // combine sections with contents and zero flags with sections
458       // with non-zero flags.  This is a workaround for cases where
459       // assembler code forgets to set section flags.  FIXME: Perhaps
460       // there should be an option to control this.
461       Output_section* os = NULL;
462
463       if (type == elfcpp::SHT_PROGBITS)
464         {
465           if (flags == 0)
466             {
467               Output_section* same_name = this->find_output_section(name);
468               if (same_name != NULL
469                   && same_name->type() == elfcpp::SHT_PROGBITS
470                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
471                 os = same_name;
472             }
473           else if ((flags & elfcpp::SHF_TLS) == 0)
474             {
475               elfcpp::Elf_Xword zero_flags = 0;
476               const Key zero_key(name_key, std::make_pair(type, zero_flags));
477               Section_name_map::iterator p =
478                   this->section_name_map_.find(zero_key);
479               if (p != this->section_name_map_.end())
480                 os = p->second;
481             }
482         }
483
484       if (os == NULL)
485         os = this->make_output_section(name, type, flags, order, is_relro);
486
487       ins.first->second = os;
488       return os;
489     }
490 }
491
492 // Pick the output section to use for section NAME, in input file
493 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
494 // linker created section.  IS_INPUT_SECTION is true if we are
495 // choosing an output section for an input section found in a input
496 // file.  IS_INTERP is true if this is the .interp section.
497 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
498 // dynamic linker.  IS_RELRO is true for a relro section.
499 // IS_LAST_RELRO is true for the last relro section.
500 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
501 // will return NULL if the input section should be discarded.
502
503 Output_section*
504 Layout::choose_output_section(const Relobj* relobj, const char* name,
505                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
506                               bool is_input_section, Output_section_order order,
507                               bool is_relro)
508 {
509   // We should not see any input sections after we have attached
510   // sections to segments.
511   gold_assert(!is_input_section || !this->sections_are_attached_);
512
513   // Some flags in the input section should not be automatically
514   // copied to the output section.
515   flags &= ~ (elfcpp::SHF_INFO_LINK
516               | elfcpp::SHF_GROUP
517               | elfcpp::SHF_MERGE
518               | elfcpp::SHF_STRINGS);
519
520   // We only clear the SHF_LINK_ORDER flag in for
521   // a non-relocatable link.
522   if (!parameters->options().relocatable())
523     flags &= ~elfcpp::SHF_LINK_ORDER;
524
525   if (this->script_options_->saw_sections_clause())
526     {
527       // We are using a SECTIONS clause, so the output section is
528       // chosen based only on the name.
529
530       Script_sections* ss = this->script_options_->script_sections();
531       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
532       Output_section** output_section_slot;
533       Script_sections::Section_type script_section_type;
534       const char* orig_name = name;
535       name = ss->output_section_name(file_name, name, &output_section_slot,
536                                      &script_section_type);
537       if (name == NULL)
538         {
539           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
540                                      "because it is not allowed by the "
541                                      "SECTIONS clause of the linker script"),
542                      orig_name);
543           // The SECTIONS clause says to discard this input section.
544           return NULL;
545         }
546
547       // We can only handle script section types ST_NONE and ST_NOLOAD.
548       switch (script_section_type)
549         {
550         case Script_sections::ST_NONE:
551           break;
552         case Script_sections::ST_NOLOAD:
553           flags &= elfcpp::SHF_ALLOC;
554           break;
555         default:
556           gold_unreachable();
557         }
558
559       // If this is an orphan section--one not mentioned in the linker
560       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
561       // default processing below.
562
563       if (output_section_slot != NULL)
564         {
565           if (*output_section_slot != NULL)
566             {
567               (*output_section_slot)->update_flags_for_input_section(flags);
568               return *output_section_slot;
569             }
570
571           // We don't put sections found in the linker script into
572           // SECTION_NAME_MAP_.  That keeps us from getting confused
573           // if an orphan section is mapped to a section with the same
574           // name as one in the linker script.
575
576           name = this->namepool_.add(name, false, NULL);
577
578           Output_section* os = this->make_output_section(name, type, flags,
579                                                          order, is_relro);
580
581           os->set_found_in_sections_clause();
582
583           // Special handling for NOLOAD sections.
584           if (script_section_type == Script_sections::ST_NOLOAD)
585             {
586               os->set_is_noload();
587
588               // The constructor of Output_section sets addresses of non-ALLOC
589               // sections to 0 by default.  We don't want that for NOLOAD
590               // sections even if they have no SHF_ALLOC flag.
591               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
592                   && os->is_address_valid())
593                 {
594                   gold_assert(os->address() == 0
595                               && !os->is_offset_valid()
596                               && !os->is_data_size_valid());
597                   os->reset_address_and_file_offset();
598                 }
599             }
600
601           *output_section_slot = os;
602           return os;
603         }
604     }
605
606   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
607
608   size_t len = strlen(name);
609   char* uncompressed_name = NULL;
610
611   // Compressed debug sections should be mapped to the corresponding
612   // uncompressed section.
613   if (is_compressed_debug_section(name))
614     {
615       uncompressed_name = new char[len];
616       uncompressed_name[0] = '.';
617       gold_assert(name[0] == '.' && name[1] == 'z');
618       strncpy(&uncompressed_name[1], &name[2], len - 2);
619       uncompressed_name[len - 1] = '\0';
620       len -= 1;
621       name = uncompressed_name;
622     }
623
624   // Turn NAME from the name of the input section into the name of the
625   // output section.
626   if (is_input_section
627       && !this->script_options_->saw_sections_clause()
628       && !parameters->options().relocatable())
629     name = Layout::output_section_name(name, &len);
630
631   Stringpool::Key name_key;
632   name = this->namepool_.add_with_length(name, len, true, &name_key);
633
634   if (uncompressed_name != NULL)
635     delete[] uncompressed_name;
636
637   // Find or make the output section.  The output section is selected
638   // based on the section name, type, and flags.
639   return this->get_output_section(name, name_key, type, flags, order, is_relro);
640 }
641
642 // Return the output section to use for input section SHNDX, with name
643 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
644 // index of a relocation section which applies to this section, or 0
645 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
646 // relocation section if there is one.  Set *OFF to the offset of this
647 // input section without the output section.  Return NULL if the
648 // section should be discarded.  Set *OFF to -1 if the section
649 // contents should not be written directly to the output file, but
650 // will instead receive special handling.
651
652 template<int size, bool big_endian>
653 Output_section*
654 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
655                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
656                unsigned int reloc_shndx, unsigned int, off_t* off)
657 {
658   *off = 0;
659
660   if (!this->include_section(object, name, shdr))
661     return NULL;
662
663   Output_section* os;
664
665   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
666   // correct section types.  Force them here.
667   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
668   if (sh_type == elfcpp::SHT_PROGBITS)
669     {
670       static const char init_array_prefix[] = ".init_array";
671       static const char preinit_array_prefix[] = ".preinit_array";
672       static const char fini_array_prefix[] = ".fini_array";
673       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
674       static size_t preinit_array_prefix_size =
675         sizeof(preinit_array_prefix) - 1;
676       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
677
678       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
679         sh_type = elfcpp::SHT_INIT_ARRAY;
680       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
681                == 0)
682         sh_type = elfcpp::SHT_PREINIT_ARRAY;
683       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
684         sh_type = elfcpp::SHT_FINI_ARRAY;
685     }
686
687   // In a relocatable link a grouped section must not be combined with
688   // any other sections.
689   if (parameters->options().relocatable()
690       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
691     {
692       name = this->namepool_.add(name, true, NULL);
693       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
694                                      ORDER_INVALID, false);
695     }
696   else
697     {
698       os = this->choose_output_section(object, name, sh_type,
699                                        shdr.get_sh_flags(), true,
700                                        ORDER_INVALID, false);
701       if (os == NULL)
702         return NULL;
703     }
704
705   // By default the GNU linker sorts input sections whose names match
706   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
707   // are sorted by name.  This is used to implement constructor
708   // priority ordering.  We are compatible.
709   if (!this->script_options_->saw_sections_clause()
710       && (is_prefix_of(".ctors.", name)
711           || is_prefix_of(".dtors.", name)
712           || is_prefix_of(".init_array.", name)
713           || is_prefix_of(".fini_array.", name)))
714     os->set_must_sort_attached_input_sections();
715
716   // FIXME: Handle SHF_LINK_ORDER somewhere.
717
718   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
719                                this->script_options_->saw_sections_clause());
720   this->have_added_input_section_ = true;
721
722   return os;
723 }
724
725 // Handle a relocation section when doing a relocatable link.
726
727 template<int size, bool big_endian>
728 Output_section*
729 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
730                      unsigned int,
731                      const elfcpp::Shdr<size, big_endian>& shdr,
732                      Output_section* data_section,
733                      Relocatable_relocs* rr)
734 {
735   gold_assert(parameters->options().relocatable()
736               || parameters->options().emit_relocs());
737
738   int sh_type = shdr.get_sh_type();
739
740   std::string name;
741   if (sh_type == elfcpp::SHT_REL)
742     name = ".rel";
743   else if (sh_type == elfcpp::SHT_RELA)
744     name = ".rela";
745   else
746     gold_unreachable();
747   name += data_section->name();
748
749   // In a relocatable link relocs for a grouped section must not be
750   // combined with other reloc sections.
751   Output_section* os;
752   if (!parameters->options().relocatable()
753       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
754     os = this->choose_output_section(object, name.c_str(), sh_type,
755                                      shdr.get_sh_flags(), false,
756                                      ORDER_INVALID, false);
757   else
758     {
759       const char* n = this->namepool_.add(name.c_str(), true, NULL);
760       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
761                                      ORDER_INVALID, false);
762     }
763
764   os->set_should_link_to_symtab();
765   os->set_info_section(data_section);
766
767   Output_section_data* posd;
768   if (sh_type == elfcpp::SHT_REL)
769     {
770       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
771       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
772                                            size,
773                                            big_endian>(rr);
774     }
775   else if (sh_type == elfcpp::SHT_RELA)
776     {
777       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
778       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
779                                            size,
780                                            big_endian>(rr);
781     }
782   else
783     gold_unreachable();
784
785   os->add_output_section_data(posd);
786   rr->set_output_data(posd);
787
788   return os;
789 }
790
791 // Handle a group section when doing a relocatable link.
792
793 template<int size, bool big_endian>
794 void
795 Layout::layout_group(Symbol_table* symtab,
796                      Sized_relobj<size, big_endian>* object,
797                      unsigned int,
798                      const char* group_section_name,
799                      const char* signature,
800                      const elfcpp::Shdr<size, big_endian>& shdr,
801                      elfcpp::Elf_Word flags,
802                      std::vector<unsigned int>* shndxes)
803 {
804   gold_assert(parameters->options().relocatable());
805   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
806   group_section_name = this->namepool_.add(group_section_name, true, NULL);
807   Output_section* os = this->make_output_section(group_section_name,
808                                                  elfcpp::SHT_GROUP,
809                                                  shdr.get_sh_flags(),
810                                                  ORDER_INVALID, false);
811
812   // We need to find a symbol with the signature in the symbol table.
813   // If we don't find one now, we need to look again later.
814   Symbol* sym = symtab->lookup(signature, NULL);
815   if (sym != NULL)
816     os->set_info_symndx(sym);
817   else
818     {
819       // Reserve some space to minimize reallocations.
820       if (this->group_signatures_.empty())
821         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
822
823       // We will wind up using a symbol whose name is the signature.
824       // So just put the signature in the symbol name pool to save it.
825       signature = symtab->canonicalize_name(signature);
826       this->group_signatures_.push_back(Group_signature(os, signature));
827     }
828
829   os->set_should_link_to_symtab();
830   os->set_entsize(4);
831
832   section_size_type entry_count =
833     convert_to_section_size_type(shdr.get_sh_size() / 4);
834   Output_section_data* posd =
835     new Output_data_group<size, big_endian>(object, entry_count, flags,
836                                             shndxes);
837   os->add_output_section_data(posd);
838 }
839
840 // Special GNU handling of sections name .eh_frame.  They will
841 // normally hold exception frame data as defined by the C++ ABI
842 // (http://codesourcery.com/cxx-abi/).
843
844 template<int size, bool big_endian>
845 Output_section*
846 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
847                         const unsigned char* symbols,
848                         off_t symbols_size,
849                         const unsigned char* symbol_names,
850                         off_t symbol_names_size,
851                         unsigned int shndx,
852                         const elfcpp::Shdr<size, big_endian>& shdr,
853                         unsigned int reloc_shndx, unsigned int reloc_type,
854                         off_t* off)
855 {
856   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
857   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
858
859   const char* const name = ".eh_frame";
860   Output_section* os = this->choose_output_section(object, name,
861                                                    elfcpp::SHT_PROGBITS,
862                                                    elfcpp::SHF_ALLOC, false,
863                                                    ORDER_EHFRAME, false);
864   if (os == NULL)
865     return NULL;
866
867   if (this->eh_frame_section_ == NULL)
868     {
869       this->eh_frame_section_ = os;
870       this->eh_frame_data_ = new Eh_frame();
871
872       if (parameters->options().eh_frame_hdr())
873         {
874           Output_section* hdr_os =
875             this->choose_output_section(NULL, ".eh_frame_hdr",
876                                         elfcpp::SHT_PROGBITS,
877                                         elfcpp::SHF_ALLOC, false,
878                                         ORDER_EHFRAME, false);
879
880           if (hdr_os != NULL)
881             {
882               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
883                                                         this->eh_frame_data_);
884               hdr_os->add_output_section_data(hdr_posd);
885
886               hdr_os->set_after_input_sections();
887
888               if (!this->script_options_->saw_phdrs_clause())
889                 {
890                   Output_segment* hdr_oseg;
891                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
892                                                        elfcpp::PF_R);
893                   hdr_oseg->add_output_section_to_nonload(hdr_os,
894                                                           elfcpp::PF_R);
895                 }
896
897               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
898             }
899         }
900     }
901
902   gold_assert(this->eh_frame_section_ == os);
903
904   if (this->eh_frame_data_->add_ehframe_input_section(object,
905                                                       symbols,
906                                                       symbols_size,
907                                                       symbol_names,
908                                                       symbol_names_size,
909                                                       shndx,
910                                                       reloc_shndx,
911                                                       reloc_type))
912     {
913       os->update_flags_for_input_section(shdr.get_sh_flags());
914
915       // A writable .eh_frame section is a RELRO section.
916       if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
917         os->set_is_relro();
918
919       // We found a .eh_frame section we are going to optimize, so now
920       // we can add the set of optimized sections to the output
921       // section.  We need to postpone adding this until we've found a
922       // section we can optimize so that the .eh_frame section in
923       // crtbegin.o winds up at the start of the output section.
924       if (!this->added_eh_frame_data_)
925         {
926           os->add_output_section_data(this->eh_frame_data_);
927           this->added_eh_frame_data_ = true;
928         }
929       *off = -1;
930     }
931   else
932     {
933       // We couldn't handle this .eh_frame section for some reason.
934       // Add it as a normal section.
935       bool saw_sections_clause = this->script_options_->saw_sections_clause();
936       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
937                                    saw_sections_clause);
938       this->have_added_input_section_ = true;
939     }
940
941   return os;
942 }
943
944 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
945 // the output section.
946
947 Output_section*
948 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
949                                 elfcpp::Elf_Xword flags,
950                                 Output_section_data* posd,
951                                 Output_section_order order, bool is_relro)
952 {
953   Output_section* os = this->choose_output_section(NULL, name, type, flags,
954                                                    false, order, is_relro);
955   if (os != NULL)
956     os->add_output_section_data(posd);
957   return os;
958 }
959
960 // Map section flags to segment flags.
961
962 elfcpp::Elf_Word
963 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
964 {
965   elfcpp::Elf_Word ret = elfcpp::PF_R;
966   if ((flags & elfcpp::SHF_WRITE) != 0)
967     ret |= elfcpp::PF_W;
968   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
969     ret |= elfcpp::PF_X;
970   return ret;
971 }
972
973 // Make a new Output_section, and attach it to segments as
974 // appropriate.  ORDER is the order in which this section should
975 // appear in the output segment.  IS_RELRO is true if this is a relro
976 // (read-only after relocations) section.
977
978 Output_section*
979 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
980                             elfcpp::Elf_Xword flags,
981                             Output_section_order order, bool is_relro)
982 {
983   Output_section* os;
984   if ((flags & elfcpp::SHF_ALLOC) == 0
985       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
986       && is_compressible_debug_section(name))
987     os = new Output_compressed_section(&parameters->options(), name, type,
988                                        flags);
989   else if ((flags & elfcpp::SHF_ALLOC) == 0
990            && parameters->options().strip_debug_non_line()
991            && strcmp(".debug_abbrev", name) == 0)
992     {
993       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
994           name, type, flags);
995       if (this->debug_info_)
996         this->debug_info_->set_abbreviations(this->debug_abbrev_);
997     }
998   else if ((flags & elfcpp::SHF_ALLOC) == 0
999            && parameters->options().strip_debug_non_line()
1000            && strcmp(".debug_info", name) == 0)
1001     {
1002       os = this->debug_info_ = new Output_reduced_debug_info_section(
1003           name, type, flags);
1004       if (this->debug_abbrev_)
1005         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1006     }
1007   else
1008     {
1009       // FIXME: const_cast is ugly.
1010       Target* target = const_cast<Target*>(&parameters->target());
1011       os = target->make_output_section(name, type, flags);
1012     }
1013
1014   // With -z relro, we have to recognize the special sections by name.
1015   // There is no other way.
1016   bool is_relro_local = false;
1017   if (!this->script_options_->saw_sections_clause()
1018       && parameters->options().relro()
1019       && type == elfcpp::SHT_PROGBITS
1020       && (flags & elfcpp::SHF_ALLOC) != 0
1021       && (flags & elfcpp::SHF_WRITE) != 0)
1022     {
1023       if (strcmp(name, ".data.rel.ro") == 0)
1024         is_relro = true;
1025       else if (strcmp(name, ".data.rel.ro.local") == 0)
1026         {
1027           is_relro = true;
1028           is_relro_local = true;
1029         }
1030       else if (type == elfcpp::SHT_INIT_ARRAY
1031                || type == elfcpp::SHT_FINI_ARRAY
1032                || type == elfcpp::SHT_PREINIT_ARRAY)
1033         is_relro = true;
1034       else if (strcmp(name, ".ctors") == 0
1035                || strcmp(name, ".dtors") == 0
1036                || strcmp(name, ".jcr") == 0)
1037         is_relro = true;
1038     }
1039
1040   if (is_relro)
1041     os->set_is_relro();
1042
1043   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1044     order = this->default_section_order(os, is_relro_local);
1045
1046   os->set_order(order);
1047
1048   parameters->target().new_output_section(os);
1049
1050   this->section_list_.push_back(os);
1051
1052   // The GNU linker by default sorts some sections by priority, so we
1053   // do the same.  We need to know that this might happen before we
1054   // attach any input sections.
1055   if (!this->script_options_->saw_sections_clause()
1056       && (strcmp(name, ".ctors") == 0
1057           || strcmp(name, ".dtors") == 0
1058           || strcmp(name, ".init_array") == 0
1059           || strcmp(name, ".fini_array") == 0))
1060     os->set_may_sort_attached_input_sections();
1061
1062   // Check for .stab*str sections, as .stab* sections need to link to
1063   // them.
1064   if (type == elfcpp::SHT_STRTAB
1065       && !this->have_stabstr_section_
1066       && strncmp(name, ".stab", 5) == 0
1067       && strcmp(name + strlen(name) - 3, "str") == 0)
1068     this->have_stabstr_section_ = true;
1069
1070   // If we have already attached the sections to segments, then we
1071   // need to attach this one now.  This happens for sections created
1072   // directly by the linker.
1073   if (this->sections_are_attached_)
1074     this->attach_section_to_segment(os);
1075
1076   return os;
1077 }
1078
1079 // Return the default order in which a section should be placed in an
1080 // output segment.  This function captures a lot of the ideas in
1081 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1082 // linker created section is normally set when the section is created;
1083 // this function is used for input sections.
1084
1085 Output_section_order
1086 Layout::default_section_order(Output_section* os, bool is_relro_local)
1087 {
1088   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1089   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1090   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1091   bool is_bss = false;
1092
1093   switch (os->type())
1094     {
1095     default:
1096     case elfcpp::SHT_PROGBITS:
1097       break;
1098     case elfcpp::SHT_NOBITS:
1099       is_bss = true;
1100       break;
1101     case elfcpp::SHT_RELA:
1102     case elfcpp::SHT_REL:
1103       if (!is_write)
1104         return ORDER_DYNAMIC_RELOCS;
1105       break;
1106     case elfcpp::SHT_HASH:
1107     case elfcpp::SHT_DYNAMIC:
1108     case elfcpp::SHT_SHLIB:
1109     case elfcpp::SHT_DYNSYM:
1110     case elfcpp::SHT_GNU_HASH:
1111     case elfcpp::SHT_GNU_verdef:
1112     case elfcpp::SHT_GNU_verneed:
1113     case elfcpp::SHT_GNU_versym:
1114       if (!is_write)
1115         return ORDER_DYNAMIC_LINKER;
1116       break;
1117     case elfcpp::SHT_NOTE:
1118       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1119     }
1120
1121   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1122     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1123
1124   if (!is_bss && !is_write)
1125     {
1126       if (is_execinstr)
1127         {
1128           if (strcmp(os->name(), ".init") == 0)
1129             return ORDER_INIT;
1130           else if (strcmp(os->name(), ".fini") == 0)
1131             return ORDER_FINI;
1132         }
1133       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1134     }
1135
1136   if (os->is_relro())
1137     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1138
1139   if (os->is_small_section())
1140     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1141   if (os->is_large_section())
1142     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1143
1144   return is_bss ? ORDER_BSS : ORDER_DATA;
1145 }
1146
1147 // Attach output sections to segments.  This is called after we have
1148 // seen all the input sections.
1149
1150 void
1151 Layout::attach_sections_to_segments()
1152 {
1153   for (Section_list::iterator p = this->section_list_.begin();
1154        p != this->section_list_.end();
1155        ++p)
1156     this->attach_section_to_segment(*p);
1157
1158   this->sections_are_attached_ = true;
1159 }
1160
1161 // Attach an output section to a segment.
1162
1163 void
1164 Layout::attach_section_to_segment(Output_section* os)
1165 {
1166   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1167     this->unattached_section_list_.push_back(os);
1168   else
1169     this->attach_allocated_section_to_segment(os);
1170 }
1171
1172 // Attach an allocated output section to a segment.
1173
1174 void
1175 Layout::attach_allocated_section_to_segment(Output_section* os)
1176 {
1177   elfcpp::Elf_Xword flags = os->flags();
1178   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1179
1180   if (parameters->options().relocatable())
1181     return;
1182
1183   // If we have a SECTIONS clause, we can't handle the attachment to
1184   // segments until after we've seen all the sections.
1185   if (this->script_options_->saw_sections_clause())
1186     return;
1187
1188   gold_assert(!this->script_options_->saw_phdrs_clause());
1189
1190   // This output section goes into a PT_LOAD segment.
1191
1192   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1193
1194   // Check for --section-start.
1195   uint64_t addr;
1196   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1197
1198   // In general the only thing we really care about for PT_LOAD
1199   // segments is whether or not they are writable or executable,
1200   // so that is how we search for them.
1201   // Large data sections also go into their own PT_LOAD segment.
1202   // People who need segments sorted on some other basis will
1203   // have to use a linker script.
1204
1205   Segment_list::const_iterator p;
1206   for (p = this->segment_list_.begin();
1207        p != this->segment_list_.end();
1208        ++p)
1209     {
1210       if ((*p)->type() != elfcpp::PT_LOAD)
1211         continue;
1212       if (!parameters->options().omagic()
1213           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1214         continue;
1215       if (parameters->options().rosegment()
1216           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1217         continue;
1218       // If -Tbss was specified, we need to separate the data and BSS
1219       // segments.
1220       if (parameters->options().user_set_Tbss())
1221         {
1222           if ((os->type() == elfcpp::SHT_NOBITS)
1223               == (*p)->has_any_data_sections())
1224             continue;
1225         }
1226       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1227         continue;
1228
1229       if (is_address_set)
1230         {
1231           if ((*p)->are_addresses_set())
1232             continue;
1233
1234           (*p)->add_initial_output_data(os);
1235           (*p)->update_flags_for_output_section(seg_flags);
1236           (*p)->set_addresses(addr, addr);
1237           break;
1238         }
1239
1240       (*p)->add_output_section_to_load(this, os, seg_flags);
1241       break;
1242     }
1243
1244   if (p == this->segment_list_.end())
1245     {
1246       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1247                                                        seg_flags);
1248       if (os->is_large_data_section())
1249         oseg->set_is_large_data_segment();
1250       oseg->add_output_section_to_load(this, os, seg_flags);
1251       if (is_address_set)
1252         oseg->set_addresses(addr, addr);
1253     }
1254
1255   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1256   // segment.
1257   if (os->type() == elfcpp::SHT_NOTE)
1258     {
1259       // See if we already have an equivalent PT_NOTE segment.
1260       for (p = this->segment_list_.begin();
1261            p != segment_list_.end();
1262            ++p)
1263         {
1264           if ((*p)->type() == elfcpp::PT_NOTE
1265               && (((*p)->flags() & elfcpp::PF_W)
1266                   == (seg_flags & elfcpp::PF_W)))
1267             {
1268               (*p)->add_output_section_to_nonload(os, seg_flags);
1269               break;
1270             }
1271         }
1272
1273       if (p == this->segment_list_.end())
1274         {
1275           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1276                                                            seg_flags);
1277           oseg->add_output_section_to_nonload(os, seg_flags);
1278         }
1279     }
1280
1281   // If we see a loadable SHF_TLS section, we create a PT_TLS
1282   // segment.  There can only be one such segment.
1283   if ((flags & elfcpp::SHF_TLS) != 0)
1284     {
1285       if (this->tls_segment_ == NULL)
1286         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1287       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1288     }
1289
1290   // If -z relro is in effect, and we see a relro section, we create a
1291   // PT_GNU_RELRO segment.  There can only be one such segment.
1292   if (os->is_relro() && parameters->options().relro())
1293     {
1294       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1295       if (this->relro_segment_ == NULL)
1296         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1297       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1298     }
1299 }
1300
1301 // Make an output section for a script.
1302
1303 Output_section*
1304 Layout::make_output_section_for_script(
1305     const char* name,
1306     Script_sections::Section_type section_type)
1307 {
1308   name = this->namepool_.add(name, false, NULL);
1309   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1310   if (section_type == Script_sections::ST_NOLOAD)
1311     sh_flags = 0;
1312   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1313                                                  sh_flags, ORDER_INVALID,
1314                                                  false);
1315   os->set_found_in_sections_clause();
1316   if (section_type == Script_sections::ST_NOLOAD)
1317     os->set_is_noload();
1318   return os;
1319 }
1320
1321 // Return the number of segments we expect to see.
1322
1323 size_t
1324 Layout::expected_segment_count() const
1325 {
1326   size_t ret = this->segment_list_.size();
1327
1328   // If we didn't see a SECTIONS clause in a linker script, we should
1329   // already have the complete list of segments.  Otherwise we ask the
1330   // SECTIONS clause how many segments it expects, and add in the ones
1331   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1332
1333   if (!this->script_options_->saw_sections_clause())
1334     return ret;
1335   else
1336     {
1337       const Script_sections* ss = this->script_options_->script_sections();
1338       return ret + ss->expected_segment_count(this);
1339     }
1340 }
1341
1342 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1343 // is whether we saw a .note.GNU-stack section in the object file.
1344 // GNU_STACK_FLAGS is the section flags.  The flags give the
1345 // protection required for stack memory.  We record this in an
1346 // executable as a PT_GNU_STACK segment.  If an object file does not
1347 // have a .note.GNU-stack segment, we must assume that it is an old
1348 // object.  On some targets that will force an executable stack.
1349
1350 void
1351 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1352                          const Object* obj)
1353 {
1354   if (!seen_gnu_stack)
1355     {
1356       this->input_without_gnu_stack_note_ = true;
1357       if (parameters->options().warn_execstack()
1358           && parameters->target().is_default_stack_executable())
1359         gold_warning(_("%s: missing .note.GNU-stack section"
1360                        " implies executable stack"),
1361                      obj->name().c_str());
1362     }
1363   else
1364     {
1365       this->input_with_gnu_stack_note_ = true;
1366       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1367         {
1368           this->input_requires_executable_stack_ = true;
1369           if (parameters->options().warn_execstack()
1370               || parameters->options().is_stack_executable())
1371             gold_warning(_("%s: requires executable stack"),
1372                          obj->name().c_str());
1373         }
1374     }
1375 }
1376
1377 // Create automatic note sections.
1378
1379 void
1380 Layout::create_notes()
1381 {
1382   this->create_gold_note();
1383   this->create_executable_stack_info();
1384   this->create_build_id();
1385 }
1386
1387 // Create the dynamic sections which are needed before we read the
1388 // relocs.
1389
1390 void
1391 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1392 {
1393   if (parameters->doing_static_link())
1394     return;
1395
1396   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1397                                                        elfcpp::SHT_DYNAMIC,
1398                                                        (elfcpp::SHF_ALLOC
1399                                                         | elfcpp::SHF_WRITE),
1400                                                        false, ORDER_RELRO,
1401                                                        true);
1402
1403   this->dynamic_symbol_ =
1404     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1405                                   this->dynamic_section_, 0, 0,
1406                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1407                                   elfcpp::STV_HIDDEN, 0, false, false);
1408
1409   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1410
1411   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1412 }
1413
1414 // For each output section whose name can be represented as C symbol,
1415 // define __start and __stop symbols for the section.  This is a GNU
1416 // extension.
1417
1418 void
1419 Layout::define_section_symbols(Symbol_table* symtab)
1420 {
1421   for (Section_list::const_iterator p = this->section_list_.begin();
1422        p != this->section_list_.end();
1423        ++p)
1424     {
1425       const char* const name = (*p)->name();
1426       if (is_cident(name))
1427         {
1428           const std::string name_string(name);
1429           const std::string start_name(cident_section_start_prefix
1430                                        + name_string);
1431           const std::string stop_name(cident_section_stop_prefix
1432                                       + name_string);
1433
1434           symtab->define_in_output_data(start_name.c_str(),
1435                                         NULL, // version
1436                                         Symbol_table::PREDEFINED,
1437                                         *p,
1438                                         0, // value
1439                                         0, // symsize
1440                                         elfcpp::STT_NOTYPE,
1441                                         elfcpp::STB_GLOBAL,
1442                                         elfcpp::STV_DEFAULT,
1443                                         0, // nonvis
1444                                         false, // offset_is_from_end
1445                                         true); // only_if_ref
1446
1447           symtab->define_in_output_data(stop_name.c_str(),
1448                                         NULL, // version
1449                                         Symbol_table::PREDEFINED,
1450                                         *p,
1451                                         0, // value
1452                                         0, // symsize
1453                                         elfcpp::STT_NOTYPE,
1454                                         elfcpp::STB_GLOBAL,
1455                                         elfcpp::STV_DEFAULT,
1456                                         0, // nonvis
1457                                         true, // offset_is_from_end
1458                                         true); // only_if_ref
1459         }
1460     }
1461 }
1462
1463 // Define symbols for group signatures.
1464
1465 void
1466 Layout::define_group_signatures(Symbol_table* symtab)
1467 {
1468   for (Group_signatures::iterator p = this->group_signatures_.begin();
1469        p != this->group_signatures_.end();
1470        ++p)
1471     {
1472       Symbol* sym = symtab->lookup(p->signature, NULL);
1473       if (sym != NULL)
1474         p->section->set_info_symndx(sym);
1475       else
1476         {
1477           // Force the name of the group section to the group
1478           // signature, and use the group's section symbol as the
1479           // signature symbol.
1480           if (strcmp(p->section->name(), p->signature) != 0)
1481             {
1482               const char* name = this->namepool_.add(p->signature,
1483                                                      true, NULL);
1484               p->section->set_name(name);
1485             }
1486           p->section->set_needs_symtab_index();
1487           p->section->set_info_section_symndx(p->section);
1488         }
1489     }
1490
1491   this->group_signatures_.clear();
1492 }
1493
1494 // Find the first read-only PT_LOAD segment, creating one if
1495 // necessary.
1496
1497 Output_segment*
1498 Layout::find_first_load_seg()
1499 {
1500   Output_segment* best = NULL;
1501   for (Segment_list::const_iterator p = this->segment_list_.begin();
1502        p != this->segment_list_.end();
1503        ++p)
1504     {
1505       if ((*p)->type() == elfcpp::PT_LOAD
1506           && ((*p)->flags() & elfcpp::PF_R) != 0
1507           && (parameters->options().omagic()
1508               || ((*p)->flags() & elfcpp::PF_W) == 0))
1509         {
1510           if (best == NULL || this->segment_precedes(*p, best))
1511             best = *p;
1512         }
1513     }
1514   if (best != NULL)
1515     return best;
1516
1517   gold_assert(!this->script_options_->saw_phdrs_clause());
1518
1519   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1520                                                        elfcpp::PF_R);
1521   return load_seg;
1522 }
1523
1524 // Save states of all current output segments.  Store saved states
1525 // in SEGMENT_STATES.
1526
1527 void
1528 Layout::save_segments(Segment_states* segment_states)
1529 {
1530   for (Segment_list::const_iterator p = this->segment_list_.begin();
1531        p != this->segment_list_.end();
1532        ++p)
1533     {
1534       Output_segment* segment = *p;
1535       // Shallow copy.
1536       Output_segment* copy = new Output_segment(*segment);
1537       (*segment_states)[segment] = copy;
1538     }
1539 }
1540
1541 // Restore states of output segments and delete any segment not found in
1542 // SEGMENT_STATES.
1543
1544 void
1545 Layout::restore_segments(const Segment_states* segment_states)
1546 {
1547   // Go through the segment list and remove any segment added in the
1548   // relaxation loop.
1549   this->tls_segment_ = NULL;
1550   this->relro_segment_ = NULL;
1551   Segment_list::iterator list_iter = this->segment_list_.begin();
1552   while (list_iter != this->segment_list_.end())
1553     {
1554       Output_segment* segment = *list_iter;
1555       Segment_states::const_iterator states_iter =
1556           segment_states->find(segment);
1557       if (states_iter != segment_states->end())
1558         {
1559           const Output_segment* copy = states_iter->second;
1560           // Shallow copy to restore states.
1561           *segment = *copy;
1562
1563           // Also fix up TLS and RELRO segment pointers as appropriate.
1564           if (segment->type() == elfcpp::PT_TLS)
1565             this->tls_segment_ = segment;
1566           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1567             this->relro_segment_ = segment;
1568
1569           ++list_iter;
1570         } 
1571       else
1572         {
1573           list_iter = this->segment_list_.erase(list_iter); 
1574           // This is a segment created during section layout.  It should be
1575           // safe to remove it since we should have removed all pointers to it.
1576           delete segment;
1577         }
1578     }
1579 }
1580
1581 // Clean up after relaxation so that sections can be laid out again.
1582
1583 void
1584 Layout::clean_up_after_relaxation()
1585 {
1586   // Restore the segments to point state just prior to the relaxation loop.
1587   Script_sections* script_section = this->script_options_->script_sections();
1588   script_section->release_segments();
1589   this->restore_segments(this->segment_states_);
1590
1591   // Reset section addresses and file offsets
1592   for (Section_list::iterator p = this->section_list_.begin();
1593        p != this->section_list_.end();
1594        ++p)
1595     {
1596       (*p)->restore_states();
1597
1598       // If an input section changes size because of relaxation,
1599       // we need to adjust the section offsets of all input sections.
1600       // after such a section.
1601       if ((*p)->section_offsets_need_adjustment())
1602         (*p)->adjust_section_offsets();
1603
1604       (*p)->reset_address_and_file_offset();
1605     }
1606   
1607   // Reset special output object address and file offsets.
1608   for (Data_list::iterator p = this->special_output_list_.begin();
1609        p != this->special_output_list_.end();
1610        ++p)
1611     (*p)->reset_address_and_file_offset();
1612
1613   // A linker script may have created some output section data objects.
1614   // They are useless now.
1615   for (Output_section_data_list::const_iterator p =
1616          this->script_output_section_data_list_.begin();
1617        p != this->script_output_section_data_list_.end();
1618        ++p)
1619     delete *p;
1620   this->script_output_section_data_list_.clear(); 
1621 }
1622
1623 // Prepare for relaxation.
1624
1625 void
1626 Layout::prepare_for_relaxation()
1627 {
1628   // Create an relaxation debug check if in debugging mode.
1629   if (is_debugging_enabled(DEBUG_RELAXATION))
1630     this->relaxation_debug_check_ = new Relaxation_debug_check();
1631
1632   // Save segment states.
1633   this->segment_states_ = new Segment_states();
1634   this->save_segments(this->segment_states_);
1635
1636   for(Section_list::const_iterator p = this->section_list_.begin();
1637       p != this->section_list_.end();
1638       ++p)
1639     (*p)->save_states();
1640
1641   if (is_debugging_enabled(DEBUG_RELAXATION))
1642     this->relaxation_debug_check_->check_output_data_for_reset_values(
1643         this->section_list_, this->special_output_list_);
1644
1645   // Also enable recording of output section data from scripts.
1646   this->record_output_section_data_from_script_ = true;
1647 }
1648
1649 // Relaxation loop body:  If target has no relaxation, this runs only once
1650 // Otherwise, the target relaxation hook is called at the end of
1651 // each iteration.  If the hook returns true, it means re-layout of
1652 // section is required.  
1653 //
1654 // The number of segments created by a linking script without a PHDRS
1655 // clause may be affected by section sizes and alignments.  There is
1656 // a remote chance that relaxation causes different number of PT_LOAD
1657 // segments are created and sections are attached to different segments.
1658 // Therefore, we always throw away all segments created during section
1659 // layout.  In order to be able to restart the section layout, we keep
1660 // a copy of the segment list right before the relaxation loop and use
1661 // that to restore the segments.
1662 // 
1663 // PASS is the current relaxation pass number. 
1664 // SYMTAB is a symbol table.
1665 // PLOAD_SEG is the address of a pointer for the load segment.
1666 // PHDR_SEG is a pointer to the PHDR segment.
1667 // SEGMENT_HEADERS points to the output segment header.
1668 // FILE_HEADER points to the output file header.
1669 // PSHNDX is the address to store the output section index.
1670
1671 off_t inline
1672 Layout::relaxation_loop_body(
1673     int pass,
1674     Target* target,
1675     Symbol_table* symtab,
1676     Output_segment** pload_seg,
1677     Output_segment* phdr_seg,
1678     Output_segment_headers* segment_headers,
1679     Output_file_header* file_header,
1680     unsigned int* pshndx)
1681 {
1682   // If this is not the first iteration, we need to clean up after
1683   // relaxation so that we can lay out the sections again.
1684   if (pass != 0)
1685     this->clean_up_after_relaxation();
1686
1687   // If there is a SECTIONS clause, put all the input sections into
1688   // the required order.
1689   Output_segment* load_seg;
1690   if (this->script_options_->saw_sections_clause())
1691     load_seg = this->set_section_addresses_from_script(symtab);
1692   else if (parameters->options().relocatable())
1693     load_seg = NULL;
1694   else
1695     load_seg = this->find_first_load_seg();
1696
1697   if (parameters->options().oformat_enum()
1698       != General_options::OBJECT_FORMAT_ELF)
1699     load_seg = NULL;
1700
1701   // If the user set the address of the text segment, that may not be
1702   // compatible with putting the segment headers and file headers into
1703   // that segment.
1704   if (parameters->options().user_set_Ttext())
1705     load_seg = NULL;
1706
1707   gold_assert(phdr_seg == NULL
1708               || load_seg != NULL
1709               || this->script_options_->saw_sections_clause());
1710
1711   // If the address of the load segment we found has been set by
1712   // --section-start rather than by a script, then adjust the VMA and
1713   // LMA downward if possible to include the file and section headers.
1714   uint64_t header_gap = 0;
1715   if (load_seg != NULL
1716       && load_seg->are_addresses_set()
1717       && !this->script_options_->saw_sections_clause()
1718       && !parameters->options().relocatable())
1719     {
1720       file_header->finalize_data_size();
1721       segment_headers->finalize_data_size();
1722       size_t sizeof_headers = (file_header->data_size()
1723                                + segment_headers->data_size());
1724       const uint64_t abi_pagesize = target->abi_pagesize();
1725       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1726       hdr_paddr &= ~(abi_pagesize - 1);
1727       uint64_t subtract = load_seg->paddr() - hdr_paddr;
1728       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1729         load_seg = NULL;
1730       else
1731         {
1732           load_seg->set_addresses(load_seg->vaddr() - subtract,
1733                                   load_seg->paddr() - subtract);
1734           header_gap = subtract - sizeof_headers;
1735         }
1736     }
1737
1738   // Lay out the segment headers.
1739   if (!parameters->options().relocatable())
1740     {
1741       gold_assert(segment_headers != NULL);
1742       if (header_gap != 0 && load_seg != NULL)
1743         {
1744           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1745           load_seg->add_initial_output_data(z);
1746         }
1747       if (load_seg != NULL)
1748         load_seg->add_initial_output_data(segment_headers);
1749       if (phdr_seg != NULL)
1750         phdr_seg->add_initial_output_data(segment_headers);
1751     }
1752
1753   // Lay out the file header.
1754   if (load_seg != NULL)
1755     load_seg->add_initial_output_data(file_header);
1756
1757   if (this->script_options_->saw_phdrs_clause()
1758       && !parameters->options().relocatable())
1759     {
1760       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1761       // clause in a linker script.
1762       Script_sections* ss = this->script_options_->script_sections();
1763       ss->put_headers_in_phdrs(file_header, segment_headers);
1764     }
1765
1766   // We set the output section indexes in set_segment_offsets and
1767   // set_section_indexes.
1768   *pshndx = 1;
1769
1770   // Set the file offsets of all the segments, and all the sections
1771   // they contain.
1772   off_t off;
1773   if (!parameters->options().relocatable())
1774     off = this->set_segment_offsets(target, load_seg, pshndx);
1775   else
1776     off = this->set_relocatable_section_offsets(file_header, pshndx);
1777
1778    // Verify that the dummy relaxation does not change anything.
1779   if (is_debugging_enabled(DEBUG_RELAXATION))
1780     {
1781       if (pass == 0)
1782         this->relaxation_debug_check_->read_sections(this->section_list_);
1783       else
1784         this->relaxation_debug_check_->verify_sections(this->section_list_);
1785     }
1786
1787   *pload_seg = load_seg;
1788   return off;
1789 }
1790
1791 // Search the list of patterns and find the postion of the given section
1792 // name in the output section.  If the section name matches a glob
1793 // pattern and a non-glob name, then the non-glob position takes
1794 // precedence.  Return 0 if no match is found.
1795
1796 unsigned int
1797 Layout::find_section_order_index(const std::string& section_name)
1798 {
1799   Unordered_map<std::string, unsigned int>::iterator map_it;
1800   map_it = this->input_section_position_.find(section_name);
1801   if (map_it != this->input_section_position_.end())
1802     return map_it->second;
1803
1804   // Absolute match failed.  Linear search the glob patterns.
1805   std::vector<std::string>::iterator it;
1806   for (it = this->input_section_glob_.begin();
1807        it != this->input_section_glob_.end();
1808        ++it)
1809     {
1810        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1811          {
1812            map_it = this->input_section_position_.find(*it);
1813            gold_assert(map_it != this->input_section_position_.end());
1814            return map_it->second;
1815          }
1816     }
1817   return 0;
1818 }
1819
1820 // Read the sequence of input sections from the file specified with
1821 // --section-ordering-file.
1822
1823 void
1824 Layout::read_layout_from_file()
1825 {
1826   const char* filename = parameters->options().section_ordering_file();
1827   std::ifstream in;
1828   std::string line;
1829
1830   in.open(filename);
1831   if (!in)
1832     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1833                filename, strerror(errno));
1834
1835   std::getline(in, line);   // this chops off the trailing \n, if any
1836   unsigned int position = 1;
1837
1838   while (in)
1839     {
1840       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
1841         line.resize(line.length() - 1);
1842       // Ignore comments, beginning with '#'
1843       if (line[0] == '#')
1844         {
1845           std::getline(in, line);
1846           continue;
1847         }
1848       this->input_section_position_[line] = position;
1849       // Store all glob patterns in a vector.
1850       if (is_wildcard_string(line.c_str()))
1851         this->input_section_glob_.push_back(line);
1852       position++;
1853       std::getline(in, line);
1854     }
1855 }
1856
1857 // Finalize the layout.  When this is called, we have created all the
1858 // output sections and all the output segments which are based on
1859 // input sections.  We have several things to do, and we have to do
1860 // them in the right order, so that we get the right results correctly
1861 // and efficiently.
1862
1863 // 1) Finalize the list of output segments and create the segment
1864 // table header.
1865
1866 // 2) Finalize the dynamic symbol table and associated sections.
1867
1868 // 3) Determine the final file offset of all the output segments.
1869
1870 // 4) Determine the final file offset of all the SHF_ALLOC output
1871 // sections.
1872
1873 // 5) Create the symbol table sections and the section name table
1874 // section.
1875
1876 // 6) Finalize the symbol table: set symbol values to their final
1877 // value and make a final determination of which symbols are going
1878 // into the output symbol table.
1879
1880 // 7) Create the section table header.
1881
1882 // 8) Determine the final file offset of all the output sections which
1883 // are not SHF_ALLOC, including the section table header.
1884
1885 // 9) Finalize the ELF file header.
1886
1887 // This function returns the size of the output file.
1888
1889 off_t
1890 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1891                  Target* target, const Task* task)
1892 {
1893   target->finalize_sections(this, input_objects, symtab);
1894
1895   this->count_local_symbols(task, input_objects);
1896
1897   this->link_stabs_sections();
1898
1899   Output_segment* phdr_seg = NULL;
1900   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1901     {
1902       // There was a dynamic object in the link.  We need to create
1903       // some information for the dynamic linker.
1904
1905       // Create the PT_PHDR segment which will hold the program
1906       // headers.
1907       if (!this->script_options_->saw_phdrs_clause())
1908         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1909
1910       // Create the dynamic symbol table, including the hash table.
1911       Output_section* dynstr;
1912       std::vector<Symbol*> dynamic_symbols;
1913       unsigned int local_dynamic_count;
1914       Versions versions(*this->script_options()->version_script_info(),
1915                         &this->dynpool_);
1916       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1917                                   &local_dynamic_count, &dynamic_symbols,
1918                                   &versions);
1919
1920       // Create the .interp section to hold the name of the
1921       // interpreter, and put it in a PT_INTERP segment.
1922       if (!parameters->options().shared())
1923         this->create_interp(target);
1924
1925       // Finish the .dynamic section to hold the dynamic data, and put
1926       // it in a PT_DYNAMIC segment.
1927       this->finish_dynamic_section(input_objects, symtab);
1928
1929       // We should have added everything we need to the dynamic string
1930       // table.
1931       this->dynpool_.set_string_offsets();
1932
1933       // Create the version sections.  We can't do this until the
1934       // dynamic string table is complete.
1935       this->create_version_sections(&versions, symtab, local_dynamic_count,
1936                                     dynamic_symbols, dynstr);
1937
1938       // Set the size of the _DYNAMIC symbol.  We can't do this until
1939       // after we call create_version_sections.
1940       this->set_dynamic_symbol_size(symtab);
1941     }
1942   
1943   // Create segment headers.
1944   Output_segment_headers* segment_headers =
1945     (parameters->options().relocatable()
1946      ? NULL
1947      : new Output_segment_headers(this->segment_list_));
1948
1949   // Lay out the file header.
1950   Output_file_header* file_header
1951     = new Output_file_header(target, symtab, segment_headers,
1952                              parameters->options().entry());
1953
1954   this->special_output_list_.push_back(file_header);
1955   if (segment_headers != NULL)
1956     this->special_output_list_.push_back(segment_headers);
1957
1958   // Find approriate places for orphan output sections if we are using
1959   // a linker script.
1960   if (this->script_options_->saw_sections_clause())
1961     this->place_orphan_sections_in_script();
1962   
1963   Output_segment* load_seg;
1964   off_t off;
1965   unsigned int shndx;
1966   int pass = 0;
1967
1968   // Take a snapshot of the section layout as needed.
1969   if (target->may_relax())
1970     this->prepare_for_relaxation();
1971   
1972   // Run the relaxation loop to lay out sections.
1973   do
1974     {
1975       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1976                                        phdr_seg, segment_headers, file_header,
1977                                        &shndx);
1978       pass++;
1979     }
1980   while (target->may_relax()
1981          && target->relax(pass, input_objects, symtab, this, task));
1982
1983   // Set the file offsets of all the non-data sections we've seen so
1984   // far which don't have to wait for the input sections.  We need
1985   // this in order to finalize local symbols in non-allocated
1986   // sections.
1987   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1988
1989   // Set the section indexes of all unallocated sections seen so far,
1990   // in case any of them are somehow referenced by a symbol.
1991   shndx = this->set_section_indexes(shndx);
1992
1993   // Create the symbol table sections.
1994   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1995   if (!parameters->doing_static_link())
1996     this->assign_local_dynsym_offsets(input_objects);
1997
1998   // Process any symbol assignments from a linker script.  This must
1999   // be called after the symbol table has been finalized.
2000   this->script_options_->finalize_symbols(symtab, this);
2001
2002   // Create the incremental inputs sections.
2003   if (this->incremental_inputs_)
2004     {
2005       this->incremental_inputs_->finalize();
2006       this->create_incremental_info_sections(symtab);
2007     }
2008
2009   // Create the .shstrtab section.
2010   Output_section* shstrtab_section = this->create_shstrtab();
2011
2012   // Set the file offsets of the rest of the non-data sections which
2013   // don't have to wait for the input sections.
2014   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2015
2016   // Now that all sections have been created, set the section indexes
2017   // for any sections which haven't been done yet.
2018   shndx = this->set_section_indexes(shndx);
2019
2020   // Create the section table header.
2021   this->create_shdrs(shstrtab_section, &off);
2022
2023   // If there are no sections which require postprocessing, we can
2024   // handle the section names now, and avoid a resize later.
2025   if (!this->any_postprocessing_sections_)
2026     {
2027       off = this->set_section_offsets(off,
2028                                       POSTPROCESSING_SECTIONS_PASS);
2029       off =
2030           this->set_section_offsets(off,
2031                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2032     }
2033
2034   file_header->set_section_info(this->section_headers_, shstrtab_section);
2035
2036   // Now we know exactly where everything goes in the output file
2037   // (except for non-allocated sections which require postprocessing).
2038   Output_data::layout_complete();
2039
2040   this->output_file_size_ = off;
2041
2042   return off;
2043 }
2044
2045 // Create a note header following the format defined in the ELF ABI.
2046 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2047 // of the section to create, DESCSZ is the size of the descriptor.
2048 // ALLOCATE is true if the section should be allocated in memory.
2049 // This returns the new note section.  It sets *TRAILING_PADDING to
2050 // the number of trailing zero bytes required.
2051
2052 Output_section*
2053 Layout::create_note(const char* name, int note_type,
2054                     const char* section_name, size_t descsz,
2055                     bool allocate, size_t* trailing_padding)
2056 {
2057   // Authorities all agree that the values in a .note field should
2058   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2059   // they differ on what the alignment is for 64-bit binaries.
2060   // The GABI says unambiguously they take 8-byte alignment:
2061   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2062   // Other documentation says alignment should always be 4 bytes:
2063   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2064   // GNU ld and GNU readelf both support the latter (at least as of
2065   // version 2.16.91), and glibc always generates the latter for
2066   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2067   // here.
2068 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2069   const int size = parameters->target().get_size();
2070 #else
2071   const int size = 32;
2072 #endif
2073
2074   // The contents of the .note section.
2075   size_t namesz = strlen(name) + 1;
2076   size_t aligned_namesz = align_address(namesz, size / 8);
2077   size_t aligned_descsz = align_address(descsz, size / 8);
2078
2079   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2080
2081   unsigned char* buffer = new unsigned char[notehdrsz];
2082   memset(buffer, 0, notehdrsz);
2083
2084   bool is_big_endian = parameters->target().is_big_endian();
2085
2086   if (size == 32)
2087     {
2088       if (!is_big_endian)
2089         {
2090           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2091           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2092           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2093         }
2094       else
2095         {
2096           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2097           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2098           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2099         }
2100     }
2101   else if (size == 64)
2102     {
2103       if (!is_big_endian)
2104         {
2105           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2106           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2107           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2108         }
2109       else
2110         {
2111           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2112           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2113           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2114         }
2115     }
2116   else
2117     gold_unreachable();
2118
2119   memcpy(buffer + 3 * (size / 8), name, namesz);
2120
2121   elfcpp::Elf_Xword flags = 0;
2122   Output_section_order order = ORDER_INVALID;
2123   if (allocate)
2124     {
2125       flags = elfcpp::SHF_ALLOC;
2126       order = ORDER_RO_NOTE;
2127     }
2128   Output_section* os = this->choose_output_section(NULL, section_name,
2129                                                    elfcpp::SHT_NOTE,
2130                                                    flags, false, order, false);
2131   if (os == NULL)
2132     return NULL;
2133
2134   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2135                                                            size / 8,
2136                                                            "** note header");
2137   os->add_output_section_data(posd);
2138
2139   *trailing_padding = aligned_descsz - descsz;
2140
2141   return os;
2142 }
2143
2144 // For an executable or shared library, create a note to record the
2145 // version of gold used to create the binary.
2146
2147 void
2148 Layout::create_gold_note()
2149 {
2150   if (parameters->options().relocatable())
2151     return;
2152
2153   std::string desc = std::string("gold ") + gold::get_version_string();
2154
2155   size_t trailing_padding;
2156   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2157                                          ".note.gnu.gold-version", desc.size(),
2158                                          false, &trailing_padding);
2159   if (os == NULL)
2160     return;
2161
2162   Output_section_data* posd = new Output_data_const(desc, 4);
2163   os->add_output_section_data(posd);
2164
2165   if (trailing_padding > 0)
2166     {
2167       posd = new Output_data_zero_fill(trailing_padding, 0);
2168       os->add_output_section_data(posd);
2169     }
2170 }
2171
2172 // Record whether the stack should be executable.  This can be set
2173 // from the command line using the -z execstack or -z noexecstack
2174 // options.  Otherwise, if any input file has a .note.GNU-stack
2175 // section with the SHF_EXECINSTR flag set, the stack should be
2176 // executable.  Otherwise, if at least one input file a
2177 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2178 // section, we use the target default for whether the stack should be
2179 // executable.  Otherwise, we don't generate a stack note.  When
2180 // generating a object file, we create a .note.GNU-stack section with
2181 // the appropriate marking.  When generating an executable or shared
2182 // library, we create a PT_GNU_STACK segment.
2183
2184 void
2185 Layout::create_executable_stack_info()
2186 {
2187   bool is_stack_executable;
2188   if (parameters->options().is_execstack_set())
2189     is_stack_executable = parameters->options().is_stack_executable();
2190   else if (!this->input_with_gnu_stack_note_)
2191     return;
2192   else
2193     {
2194       if (this->input_requires_executable_stack_)
2195         is_stack_executable = true;
2196       else if (this->input_without_gnu_stack_note_)
2197         is_stack_executable =
2198           parameters->target().is_default_stack_executable();
2199       else
2200         is_stack_executable = false;
2201     }
2202
2203   if (parameters->options().relocatable())
2204     {
2205       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2206       elfcpp::Elf_Xword flags = 0;
2207       if (is_stack_executable)
2208         flags |= elfcpp::SHF_EXECINSTR;
2209       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2210                                 ORDER_INVALID, false);
2211     }
2212   else
2213     {
2214       if (this->script_options_->saw_phdrs_clause())
2215         return;
2216       int flags = elfcpp::PF_R | elfcpp::PF_W;
2217       if (is_stack_executable)
2218         flags |= elfcpp::PF_X;
2219       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2220     }
2221 }
2222
2223 // If --build-id was used, set up the build ID note.
2224
2225 void
2226 Layout::create_build_id()
2227 {
2228   if (!parameters->options().user_set_build_id())
2229     return;
2230
2231   const char* style = parameters->options().build_id();
2232   if (strcmp(style, "none") == 0)
2233     return;
2234
2235   // Set DESCSZ to the size of the note descriptor.  When possible,
2236   // set DESC to the note descriptor contents.
2237   size_t descsz;
2238   std::string desc;
2239   if (strcmp(style, "md5") == 0)
2240     descsz = 128 / 8;
2241   else if (strcmp(style, "sha1") == 0)
2242     descsz = 160 / 8;
2243   else if (strcmp(style, "uuid") == 0)
2244     {
2245       const size_t uuidsz = 128 / 8;
2246
2247       char buffer[uuidsz];
2248       memset(buffer, 0, uuidsz);
2249
2250       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2251       if (descriptor < 0)
2252         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2253                    strerror(errno));
2254       else
2255         {
2256           ssize_t got = ::read(descriptor, buffer, uuidsz);
2257           release_descriptor(descriptor, true);
2258           if (got < 0)
2259             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2260           else if (static_cast<size_t>(got) != uuidsz)
2261             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2262                        uuidsz, got);
2263         }
2264
2265       desc.assign(buffer, uuidsz);
2266       descsz = uuidsz;
2267     }
2268   else if (strncmp(style, "0x", 2) == 0)
2269     {
2270       hex_init();
2271       const char* p = style + 2;
2272       while (*p != '\0')
2273         {
2274           if (hex_p(p[0]) && hex_p(p[1]))
2275             {
2276               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2277               desc += c;
2278               p += 2;
2279             }
2280           else if (*p == '-' || *p == ':')
2281             ++p;
2282           else
2283             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2284                        style);
2285         }
2286       descsz = desc.size();
2287     }
2288   else
2289     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2290
2291   // Create the note.
2292   size_t trailing_padding;
2293   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2294                                          ".note.gnu.build-id", descsz, true,
2295                                          &trailing_padding);
2296   if (os == NULL)
2297     return;
2298
2299   if (!desc.empty())
2300     {
2301       // We know the value already, so we fill it in now.
2302       gold_assert(desc.size() == descsz);
2303
2304       Output_section_data* posd = new Output_data_const(desc, 4);
2305       os->add_output_section_data(posd);
2306
2307       if (trailing_padding != 0)
2308         {
2309           posd = new Output_data_zero_fill(trailing_padding, 0);
2310           os->add_output_section_data(posd);
2311         }
2312     }
2313   else
2314     {
2315       // We need to compute a checksum after we have completed the
2316       // link.
2317       gold_assert(trailing_padding == 0);
2318       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2319       os->add_output_section_data(this->build_id_note_);
2320     }
2321 }
2322
2323 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2324 // field of the former should point to the latter.  I'm not sure who
2325 // started this, but the GNU linker does it, and some tools depend
2326 // upon it.
2327
2328 void
2329 Layout::link_stabs_sections()
2330 {
2331   if (!this->have_stabstr_section_)
2332     return;
2333
2334   for (Section_list::iterator p = this->section_list_.begin();
2335        p != this->section_list_.end();
2336        ++p)
2337     {
2338       if ((*p)->type() != elfcpp::SHT_STRTAB)
2339         continue;
2340
2341       const char* name = (*p)->name();
2342       if (strncmp(name, ".stab", 5) != 0)
2343         continue;
2344
2345       size_t len = strlen(name);
2346       if (strcmp(name + len - 3, "str") != 0)
2347         continue;
2348
2349       std::string stab_name(name, len - 3);
2350       Output_section* stab_sec;
2351       stab_sec = this->find_output_section(stab_name.c_str());
2352       if (stab_sec != NULL)
2353         stab_sec->set_link_section(*p);
2354     }
2355 }
2356
2357 // Create .gnu_incremental_inputs and related sections needed
2358 // for the next run of incremental linking to check what has changed.
2359
2360 void
2361 Layout::create_incremental_info_sections(Symbol_table* symtab)
2362 {
2363   Incremental_inputs* incr = this->incremental_inputs_;
2364
2365   gold_assert(incr != NULL);
2366
2367   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2368   incr->create_data_sections(symtab);
2369
2370   // Add the .gnu_incremental_inputs section.
2371   const char* incremental_inputs_name =
2372     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2373   Output_section* incremental_inputs_os =
2374     this->make_output_section(incremental_inputs_name,
2375                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2376                               ORDER_INVALID, false);
2377   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2378
2379   // Add the .gnu_incremental_symtab section.
2380   const char* incremental_symtab_name =
2381     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2382   Output_section* incremental_symtab_os =
2383     this->make_output_section(incremental_symtab_name,
2384                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2385                               ORDER_INVALID, false);
2386   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2387   incremental_symtab_os->set_entsize(4);
2388
2389   // Add the .gnu_incremental_relocs section.
2390   const char* incremental_relocs_name =
2391     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2392   Output_section* incremental_relocs_os =
2393     this->make_output_section(incremental_relocs_name,
2394                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2395                               ORDER_INVALID, false);
2396   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2397   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2398
2399   // Add the .gnu_incremental_got_plt section.
2400   const char* incremental_got_plt_name =
2401     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2402   Output_section* incremental_got_plt_os =
2403     this->make_output_section(incremental_got_plt_name,
2404                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2405                               ORDER_INVALID, false);
2406   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2407
2408   // Add the .gnu_incremental_strtab section.
2409   const char* incremental_strtab_name =
2410     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2411   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2412                                                         elfcpp::SHT_STRTAB, 0,
2413                                                         ORDER_INVALID, false);
2414   Output_data_strtab* strtab_data =
2415       new Output_data_strtab(incr->get_stringpool());
2416   incremental_strtab_os->add_output_section_data(strtab_data);
2417
2418   incremental_inputs_os->set_after_input_sections();
2419   incremental_symtab_os->set_after_input_sections();
2420   incremental_relocs_os->set_after_input_sections();
2421   incremental_got_plt_os->set_after_input_sections();
2422
2423   incremental_inputs_os->set_link_section(incremental_strtab_os);
2424   incremental_symtab_os->set_link_section(incremental_inputs_os);
2425   incremental_relocs_os->set_link_section(incremental_inputs_os);
2426   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2427 }
2428
2429 // Return whether SEG1 should be before SEG2 in the output file.  This
2430 // is based entirely on the segment type and flags.  When this is
2431 // called the segment addresses has normally not yet been set.
2432
2433 bool
2434 Layout::segment_precedes(const Output_segment* seg1,
2435                          const Output_segment* seg2)
2436 {
2437   elfcpp::Elf_Word type1 = seg1->type();
2438   elfcpp::Elf_Word type2 = seg2->type();
2439
2440   // The single PT_PHDR segment is required to precede any loadable
2441   // segment.  We simply make it always first.
2442   if (type1 == elfcpp::PT_PHDR)
2443     {
2444       gold_assert(type2 != elfcpp::PT_PHDR);
2445       return true;
2446     }
2447   if (type2 == elfcpp::PT_PHDR)
2448     return false;
2449
2450   // The single PT_INTERP segment is required to precede any loadable
2451   // segment.  We simply make it always second.
2452   if (type1 == elfcpp::PT_INTERP)
2453     {
2454       gold_assert(type2 != elfcpp::PT_INTERP);
2455       return true;
2456     }
2457   if (type2 == elfcpp::PT_INTERP)
2458     return false;
2459
2460   // We then put PT_LOAD segments before any other segments.
2461   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2462     return true;
2463   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2464     return false;
2465
2466   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2467   // segment, because that is where the dynamic linker expects to find
2468   // it (this is just for efficiency; other positions would also work
2469   // correctly).
2470   if (type1 == elfcpp::PT_TLS
2471       && type2 != elfcpp::PT_TLS
2472       && type2 != elfcpp::PT_GNU_RELRO)
2473     return false;
2474   if (type2 == elfcpp::PT_TLS
2475       && type1 != elfcpp::PT_TLS
2476       && type1 != elfcpp::PT_GNU_RELRO)
2477     return true;
2478
2479   // We put the PT_GNU_RELRO segment last, because that is where the
2480   // dynamic linker expects to find it (as with PT_TLS, this is just
2481   // for efficiency).
2482   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2483     return false;
2484   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2485     return true;
2486
2487   const elfcpp::Elf_Word flags1 = seg1->flags();
2488   const elfcpp::Elf_Word flags2 = seg2->flags();
2489
2490   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2491   // by the numeric segment type and flags values.  There should not
2492   // be more than one segment with the same type and flags.
2493   if (type1 != elfcpp::PT_LOAD)
2494     {
2495       if (type1 != type2)
2496         return type1 < type2;
2497       gold_assert(flags1 != flags2);
2498       return flags1 < flags2;
2499     }
2500
2501   // If the addresses are set already, sort by load address.
2502   if (seg1->are_addresses_set())
2503     {
2504       if (!seg2->are_addresses_set())
2505         return true;
2506
2507       unsigned int section_count1 = seg1->output_section_count();
2508       unsigned int section_count2 = seg2->output_section_count();
2509       if (section_count1 == 0 && section_count2 > 0)
2510         return true;
2511       if (section_count1 > 0 && section_count2 == 0)
2512         return false;
2513
2514       uint64_t paddr1 = (seg1->are_addresses_set()
2515                          ? seg1->paddr()
2516                          : seg1->first_section_load_address());
2517       uint64_t paddr2 = (seg2->are_addresses_set()
2518                          ? seg2->paddr()
2519                          : seg2->first_section_load_address());
2520
2521       if (paddr1 != paddr2)
2522         return paddr1 < paddr2;
2523     }
2524   else if (seg2->are_addresses_set())
2525     return false;
2526
2527   // A segment which holds large data comes after a segment which does
2528   // not hold large data.
2529   if (seg1->is_large_data_segment())
2530     {
2531       if (!seg2->is_large_data_segment())
2532         return false;
2533     }
2534   else if (seg2->is_large_data_segment())
2535     return true;
2536
2537   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2538   // segments come before writable segments.  Then writable segments
2539   // with data come before writable segments without data.  Then
2540   // executable segments come before non-executable segments.  Then
2541   // the unlikely case of a non-readable segment comes before the
2542   // normal case of a readable segment.  If there are multiple
2543   // segments with the same type and flags, we require that the
2544   // address be set, and we sort by virtual address and then physical
2545   // address.
2546   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2547     return (flags1 & elfcpp::PF_W) == 0;
2548   if ((flags1 & elfcpp::PF_W) != 0
2549       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2550     return seg1->has_any_data_sections();
2551   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2552     return (flags1 & elfcpp::PF_X) != 0;
2553   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2554     return (flags1 & elfcpp::PF_R) == 0;
2555
2556   // We shouldn't get here--we shouldn't create segments which we
2557   // can't distinguish.
2558   gold_unreachable();
2559 }
2560
2561 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2562
2563 static off_t
2564 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2565 {
2566   uint64_t unsigned_off = off;
2567   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2568                           | (addr & (abi_pagesize - 1)));
2569   if (aligned_off < unsigned_off)
2570     aligned_off += abi_pagesize;
2571   return aligned_off;
2572 }
2573
2574 // Set the file offsets of all the segments, and all the sections they
2575 // contain.  They have all been created.  LOAD_SEG must be be laid out
2576 // first.  Return the offset of the data to follow.
2577
2578 off_t
2579 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2580                             unsigned int* pshndx)
2581 {
2582   // Sort them into the final order.
2583   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2584             Layout::Compare_segments());
2585
2586   // Find the PT_LOAD segments, and set their addresses and offsets
2587   // and their section's addresses and offsets.
2588   uint64_t addr;
2589   if (parameters->options().user_set_Ttext())
2590     addr = parameters->options().Ttext();
2591   else if (parameters->options().output_is_position_independent())
2592     addr = 0;
2593   else
2594     addr = target->default_text_segment_address();
2595   off_t off = 0;
2596
2597   // If LOAD_SEG is NULL, then the file header and segment headers
2598   // will not be loadable.  But they still need to be at offset 0 in
2599   // the file.  Set their offsets now.
2600   if (load_seg == NULL)
2601     {
2602       for (Data_list::iterator p = this->special_output_list_.begin();
2603            p != this->special_output_list_.end();
2604            ++p)
2605         {
2606           off = align_address(off, (*p)->addralign());
2607           (*p)->set_address_and_file_offset(0, off);
2608           off += (*p)->data_size();
2609         }
2610     }
2611
2612   unsigned int increase_relro = this->increase_relro_;
2613   if (this->script_options_->saw_sections_clause())
2614     increase_relro = 0;
2615
2616   const bool check_sections = parameters->options().check_sections();
2617   Output_segment* last_load_segment = NULL;
2618
2619   for (Segment_list::iterator p = this->segment_list_.begin();
2620        p != this->segment_list_.end();
2621        ++p)
2622     {
2623       if ((*p)->type() == elfcpp::PT_LOAD)
2624         {
2625           if (load_seg != NULL && load_seg != *p)
2626             gold_unreachable();
2627           load_seg = NULL;
2628
2629           bool are_addresses_set = (*p)->are_addresses_set();
2630           if (are_addresses_set)
2631             {
2632               // When it comes to setting file offsets, we care about
2633               // the physical address.
2634               addr = (*p)->paddr();
2635             }
2636           else if (parameters->options().user_set_Tdata()
2637                    && ((*p)->flags() & elfcpp::PF_W) != 0
2638                    && (!parameters->options().user_set_Tbss()
2639                        || (*p)->has_any_data_sections()))
2640             {
2641               addr = parameters->options().Tdata();
2642               are_addresses_set = true;
2643             }
2644           else if (parameters->options().user_set_Tbss()
2645                    && ((*p)->flags() & elfcpp::PF_W) != 0
2646                    && !(*p)->has_any_data_sections())
2647             {
2648               addr = parameters->options().Tbss();
2649               are_addresses_set = true;
2650             }
2651
2652           uint64_t orig_addr = addr;
2653           uint64_t orig_off = off;
2654
2655           uint64_t aligned_addr = 0;
2656           uint64_t abi_pagesize = target->abi_pagesize();
2657           uint64_t common_pagesize = target->common_pagesize();
2658
2659           if (!parameters->options().nmagic()
2660               && !parameters->options().omagic())
2661             (*p)->set_minimum_p_align(common_pagesize);
2662
2663           if (!are_addresses_set)
2664             {
2665               // Skip the address forward one page, maintaining the same
2666               // position within the page.  This lets us store both segments
2667               // overlapping on a single page in the file, but the loader will
2668               // put them on different pages in memory. We will revisit this
2669               // decision once we know the size of the segment.
2670
2671               addr = align_address(addr, (*p)->maximum_alignment());
2672               aligned_addr = addr;
2673
2674               if ((addr & (abi_pagesize - 1)) != 0)
2675                 addr = addr + abi_pagesize;
2676
2677               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2678             }
2679
2680           if (!parameters->options().nmagic()
2681               && !parameters->options().omagic())
2682             off = align_file_offset(off, addr, abi_pagesize);
2683           else if (load_seg == NULL)
2684             {
2685               // This is -N or -n with a section script which prevents
2686               // us from using a load segment.  We need to ensure that
2687               // the file offset is aligned to the alignment of the
2688               // segment.  This is because the linker script
2689               // implicitly assumed a zero offset.  If we don't align
2690               // here, then the alignment of the sections in the
2691               // linker script may not match the alignment of the
2692               // sections in the set_section_addresses call below,
2693               // causing an error about dot moving backward.
2694               off = align_address(off, (*p)->maximum_alignment());
2695             }
2696
2697           unsigned int shndx_hold = *pshndx;
2698           bool has_relro = false;
2699           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2700                                                           &increase_relro,
2701                                                           &has_relro,
2702                                                           &off, pshndx);
2703
2704           // Now that we know the size of this segment, we may be able
2705           // to save a page in memory, at the cost of wasting some
2706           // file space, by instead aligning to the start of a new
2707           // page.  Here we use the real machine page size rather than
2708           // the ABI mandated page size.  If the segment has been
2709           // aligned so that the relro data ends at a page boundary,
2710           // we do not try to realign it.
2711
2712           if (!are_addresses_set && !has_relro && aligned_addr != addr)
2713             {
2714               uint64_t first_off = (common_pagesize
2715                                     - (aligned_addr
2716                                        & (common_pagesize - 1)));
2717               uint64_t last_off = new_addr & (common_pagesize - 1);
2718               if (first_off > 0
2719                   && last_off > 0
2720                   && ((aligned_addr & ~ (common_pagesize - 1))
2721                       != (new_addr & ~ (common_pagesize - 1)))
2722                   && first_off + last_off <= common_pagesize)
2723                 {
2724                   *pshndx = shndx_hold;
2725                   addr = align_address(aligned_addr, common_pagesize);
2726                   addr = align_address(addr, (*p)->maximum_alignment());
2727                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2728                   off = align_file_offset(off, addr, abi_pagesize);
2729
2730                   increase_relro = this->increase_relro_;
2731                   if (this->script_options_->saw_sections_clause())
2732                     increase_relro = 0;
2733                   has_relro = false;
2734
2735                   new_addr = (*p)->set_section_addresses(this, true, addr,
2736                                                          &increase_relro,
2737                                                          &has_relro,
2738                                                          &off, pshndx);
2739                 }
2740             }
2741
2742           addr = new_addr;
2743
2744           // Implement --check-sections.  We know that the segments
2745           // are sorted by LMA.
2746           if (check_sections && last_load_segment != NULL)
2747             {
2748               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2749               if (last_load_segment->paddr() + last_load_segment->memsz()
2750                   > (*p)->paddr())
2751                 {
2752                   unsigned long long lb1 = last_load_segment->paddr();
2753                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2754                   unsigned long long lb2 = (*p)->paddr();
2755                   unsigned long long le2 = lb2 + (*p)->memsz();
2756                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2757                                "[0x%llx -> 0x%llx]"),
2758                              lb1, le1, lb2, le2);
2759                 }
2760             }
2761           last_load_segment = *p;
2762         }
2763     }
2764
2765   // Handle the non-PT_LOAD segments, setting their offsets from their
2766   // section's offsets.
2767   for (Segment_list::iterator p = this->segment_list_.begin();
2768        p != this->segment_list_.end();
2769        ++p)
2770     {
2771       if ((*p)->type() != elfcpp::PT_LOAD)
2772         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2773                          ? increase_relro
2774                          : 0);
2775     }
2776
2777   // Set the TLS offsets for each section in the PT_TLS segment.
2778   if (this->tls_segment_ != NULL)
2779     this->tls_segment_->set_tls_offsets();
2780
2781   return off;
2782 }
2783
2784 // Set the offsets of all the allocated sections when doing a
2785 // relocatable link.  This does the same jobs as set_segment_offsets,
2786 // only for a relocatable link.
2787
2788 off_t
2789 Layout::set_relocatable_section_offsets(Output_data* file_header,
2790                                         unsigned int* pshndx)
2791 {
2792   off_t off = 0;
2793
2794   file_header->set_address_and_file_offset(0, 0);
2795   off += file_header->data_size();
2796
2797   for (Section_list::iterator p = this->section_list_.begin();
2798        p != this->section_list_.end();
2799        ++p)
2800     {
2801       // We skip unallocated sections here, except that group sections
2802       // have to come first.
2803       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2804           && (*p)->type() != elfcpp::SHT_GROUP)
2805         continue;
2806
2807       off = align_address(off, (*p)->addralign());
2808
2809       // The linker script might have set the address.
2810       if (!(*p)->is_address_valid())
2811         (*p)->set_address(0);
2812       (*p)->set_file_offset(off);
2813       (*p)->finalize_data_size();
2814       off += (*p)->data_size();
2815
2816       (*p)->set_out_shndx(*pshndx);
2817       ++*pshndx;
2818     }
2819
2820   return off;
2821 }
2822
2823 // Set the file offset of all the sections not associated with a
2824 // segment.
2825
2826 off_t
2827 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2828 {
2829   for (Section_list::iterator p = this->unattached_section_list_.begin();
2830        p != this->unattached_section_list_.end();
2831        ++p)
2832     {
2833       // The symtab section is handled in create_symtab_sections.
2834       if (*p == this->symtab_section_)
2835         continue;
2836
2837       // If we've already set the data size, don't set it again.
2838       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2839         continue;
2840
2841       if (pass == BEFORE_INPUT_SECTIONS_PASS
2842           && (*p)->requires_postprocessing())
2843         {
2844           (*p)->create_postprocessing_buffer();
2845           this->any_postprocessing_sections_ = true;
2846         }
2847
2848       if (pass == BEFORE_INPUT_SECTIONS_PASS
2849           && (*p)->after_input_sections())
2850         continue;
2851       else if (pass == POSTPROCESSING_SECTIONS_PASS
2852                && (!(*p)->after_input_sections()
2853                    || (*p)->type() == elfcpp::SHT_STRTAB))
2854         continue;
2855       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2856                && (!(*p)->after_input_sections()
2857                    || (*p)->type() != elfcpp::SHT_STRTAB))
2858         continue;
2859
2860       off = align_address(off, (*p)->addralign());
2861       (*p)->set_file_offset(off);
2862       (*p)->finalize_data_size();
2863       off += (*p)->data_size();
2864
2865       // At this point the name must be set.
2866       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2867         this->namepool_.add((*p)->name(), false, NULL);
2868     }
2869   return off;
2870 }
2871
2872 // Set the section indexes of all the sections not associated with a
2873 // segment.
2874
2875 unsigned int
2876 Layout::set_section_indexes(unsigned int shndx)
2877 {
2878   for (Section_list::iterator p = this->unattached_section_list_.begin();
2879        p != this->unattached_section_list_.end();
2880        ++p)
2881     {
2882       if (!(*p)->has_out_shndx())
2883         {
2884           (*p)->set_out_shndx(shndx);
2885           ++shndx;
2886         }
2887     }
2888   return shndx;
2889 }
2890
2891 // Set the section addresses according to the linker script.  This is
2892 // only called when we see a SECTIONS clause.  This returns the
2893 // program segment which should hold the file header and segment
2894 // headers, if any.  It will return NULL if they should not be in a
2895 // segment.
2896
2897 Output_segment*
2898 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2899 {
2900   Script_sections* ss = this->script_options_->script_sections();
2901   gold_assert(ss->saw_sections_clause());
2902   return this->script_options_->set_section_addresses(symtab, this);
2903 }
2904
2905 // Place the orphan sections in the linker script.
2906
2907 void
2908 Layout::place_orphan_sections_in_script()
2909 {
2910   Script_sections* ss = this->script_options_->script_sections();
2911   gold_assert(ss->saw_sections_clause());
2912
2913   // Place each orphaned output section in the script.
2914   for (Section_list::iterator p = this->section_list_.begin();
2915        p != this->section_list_.end();
2916        ++p)
2917     {
2918       if (!(*p)->found_in_sections_clause())
2919         ss->place_orphan(*p);
2920     }
2921 }
2922
2923 // Count the local symbols in the regular symbol table and the dynamic
2924 // symbol table, and build the respective string pools.
2925
2926 void
2927 Layout::count_local_symbols(const Task* task,
2928                             const Input_objects* input_objects)
2929 {
2930   // First, figure out an upper bound on the number of symbols we'll
2931   // be inserting into each pool.  This helps us create the pools with
2932   // the right size, to avoid unnecessary hashtable resizing.
2933   unsigned int symbol_count = 0;
2934   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2935        p != input_objects->relobj_end();
2936        ++p)
2937     symbol_count += (*p)->local_symbol_count();
2938
2939   // Go from "upper bound" to "estimate."  We overcount for two
2940   // reasons: we double-count symbols that occur in more than one
2941   // object file, and we count symbols that are dropped from the
2942   // output.  Add it all together and assume we overcount by 100%.
2943   symbol_count /= 2;
2944
2945   // We assume all symbols will go into both the sympool and dynpool.
2946   this->sympool_.reserve(symbol_count);
2947   this->dynpool_.reserve(symbol_count);
2948
2949   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2950        p != input_objects->relobj_end();
2951        ++p)
2952     {
2953       Task_lock_obj<Object> tlo(task, *p);
2954       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2955     }
2956 }
2957
2958 // Create the symbol table sections.  Here we also set the final
2959 // values of the symbols.  At this point all the loadable sections are
2960 // fully laid out.  SHNUM is the number of sections so far.
2961
2962 void
2963 Layout::create_symtab_sections(const Input_objects* input_objects,
2964                                Symbol_table* symtab,
2965                                unsigned int shnum,
2966                                off_t* poff)
2967 {
2968   int symsize;
2969   unsigned int align;
2970   if (parameters->target().get_size() == 32)
2971     {
2972       symsize = elfcpp::Elf_sizes<32>::sym_size;
2973       align = 4;
2974     }
2975   else if (parameters->target().get_size() == 64)
2976     {
2977       symsize = elfcpp::Elf_sizes<64>::sym_size;
2978       align = 8;
2979     }
2980   else
2981     gold_unreachable();
2982
2983   off_t off = *poff;
2984   off = align_address(off, align);
2985   off_t startoff = off;
2986
2987   // Save space for the dummy symbol at the start of the section.  We
2988   // never bother to write this out--it will just be left as zero.
2989   off += symsize;
2990   unsigned int local_symbol_index = 1;
2991
2992   // Add STT_SECTION symbols for each Output section which needs one.
2993   for (Section_list::iterator p = this->section_list_.begin();
2994        p != this->section_list_.end();
2995        ++p)
2996     {
2997       if (!(*p)->needs_symtab_index())
2998         (*p)->set_symtab_index(-1U);
2999       else
3000         {
3001           (*p)->set_symtab_index(local_symbol_index);
3002           ++local_symbol_index;
3003           off += symsize;
3004         }
3005     }
3006
3007   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3008        p != input_objects->relobj_end();
3009        ++p)
3010     {
3011       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3012                                                         off, symtab);
3013       off += (index - local_symbol_index) * symsize;
3014       local_symbol_index = index;
3015     }
3016
3017   unsigned int local_symcount = local_symbol_index;
3018   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
3019
3020   off_t dynoff;
3021   size_t dyn_global_index;
3022   size_t dyncount;
3023   if (this->dynsym_section_ == NULL)
3024     {
3025       dynoff = 0;
3026       dyn_global_index = 0;
3027       dyncount = 0;
3028     }
3029   else
3030     {
3031       dyn_global_index = this->dynsym_section_->info();
3032       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3033       dynoff = this->dynsym_section_->offset() + locsize;
3034       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3035       gold_assert(static_cast<off_t>(dyncount * symsize)
3036                   == this->dynsym_section_->data_size() - locsize);
3037     }
3038
3039   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3040                          &this->sympool_, &local_symcount);
3041
3042   if (!parameters->options().strip_all())
3043     {
3044       this->sympool_.set_string_offsets();
3045
3046       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3047       Output_section* osymtab = this->make_output_section(symtab_name,
3048                                                           elfcpp::SHT_SYMTAB,
3049                                                           0, ORDER_INVALID,
3050                                                           false);
3051       this->symtab_section_ = osymtab;
3052
3053       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
3054                                                              align,
3055                                                              "** symtab");
3056       osymtab->add_output_section_data(pos);
3057
3058       // We generate a .symtab_shndx section if we have more than
3059       // SHN_LORESERVE sections.  Technically it is possible that we
3060       // don't need one, because it is possible that there are no
3061       // symbols in any of sections with indexes larger than
3062       // SHN_LORESERVE.  That is probably unusual, though, and it is
3063       // easier to always create one than to compute section indexes
3064       // twice (once here, once when writing out the symbols).
3065       if (shnum >= elfcpp::SHN_LORESERVE)
3066         {
3067           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3068                                                                false, NULL);
3069           Output_section* osymtab_xindex =
3070             this->make_output_section(symtab_xindex_name,
3071                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3072                                       ORDER_INVALID, false);
3073
3074           size_t symcount = (off - startoff) / symsize;
3075           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3076
3077           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3078
3079           osymtab_xindex->set_link_section(osymtab);
3080           osymtab_xindex->set_addralign(4);
3081           osymtab_xindex->set_entsize(4);
3082
3083           osymtab_xindex->set_after_input_sections();
3084
3085           // This tells the driver code to wait until the symbol table
3086           // has written out before writing out the postprocessing
3087           // sections, including the .symtab_shndx section.
3088           this->any_postprocessing_sections_ = true;
3089         }
3090
3091       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3092       Output_section* ostrtab = this->make_output_section(strtab_name,
3093                                                           elfcpp::SHT_STRTAB,
3094                                                           0, ORDER_INVALID,
3095                                                           false);
3096
3097       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3098       ostrtab->add_output_section_data(pstr);
3099
3100       osymtab->set_file_offset(startoff);
3101       osymtab->finalize_data_size();
3102       osymtab->set_link_section(ostrtab);
3103       osymtab->set_info(local_symcount);
3104       osymtab->set_entsize(symsize);
3105
3106       *poff = off;
3107     }
3108 }
3109
3110 // Create the .shstrtab section, which holds the names of the
3111 // sections.  At the time this is called, we have created all the
3112 // output sections except .shstrtab itself.
3113
3114 Output_section*
3115 Layout::create_shstrtab()
3116 {
3117   // FIXME: We don't need to create a .shstrtab section if we are
3118   // stripping everything.
3119
3120   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3121
3122   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3123                                                  ORDER_INVALID, false);
3124
3125   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3126     {
3127       // We can't write out this section until we've set all the
3128       // section names, and we don't set the names of compressed
3129       // output sections until relocations are complete.  FIXME: With
3130       // the current names we use, this is unnecessary.
3131       os->set_after_input_sections();
3132     }
3133
3134   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3135   os->add_output_section_data(posd);
3136
3137   return os;
3138 }
3139
3140 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3141 // offset.
3142
3143 void
3144 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3145 {
3146   Output_section_headers* oshdrs;
3147   oshdrs = new Output_section_headers(this,
3148                                       &this->segment_list_,
3149                                       &this->section_list_,
3150                                       &this->unattached_section_list_,
3151                                       &this->namepool_,
3152                                       shstrtab_section);
3153   off_t off = align_address(*poff, oshdrs->addralign());
3154   oshdrs->set_address_and_file_offset(0, off);
3155   off += oshdrs->data_size();
3156   *poff = off;
3157   this->section_headers_ = oshdrs;
3158 }
3159
3160 // Count the allocated sections.
3161
3162 size_t
3163 Layout::allocated_output_section_count() const
3164 {
3165   size_t section_count = 0;
3166   for (Segment_list::const_iterator p = this->segment_list_.begin();
3167        p != this->segment_list_.end();
3168        ++p)
3169     section_count += (*p)->output_section_count();
3170   return section_count;
3171 }
3172
3173 // Create the dynamic symbol table.
3174
3175 void
3176 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3177                               Symbol_table* symtab,
3178                               Output_section** pdynstr,
3179                               unsigned int* plocal_dynamic_count,
3180                               std::vector<Symbol*>* pdynamic_symbols,
3181                               Versions* pversions)
3182 {
3183   // Count all the symbols in the dynamic symbol table, and set the
3184   // dynamic symbol indexes.
3185
3186   // Skip symbol 0, which is always all zeroes.
3187   unsigned int index = 1;
3188
3189   // Add STT_SECTION symbols for each Output section which needs one.
3190   for (Section_list::iterator p = this->section_list_.begin();
3191        p != this->section_list_.end();
3192        ++p)
3193     {
3194       if (!(*p)->needs_dynsym_index())
3195         (*p)->set_dynsym_index(-1U);
3196       else
3197         {
3198           (*p)->set_dynsym_index(index);
3199           ++index;
3200         }
3201     }
3202
3203   // Count the local symbols that need to go in the dynamic symbol table,
3204   // and set the dynamic symbol indexes.
3205   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3206        p != input_objects->relobj_end();
3207        ++p)
3208     {
3209       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3210       index = new_index;
3211     }
3212
3213   unsigned int local_symcount = index;
3214   *plocal_dynamic_count = local_symcount;
3215
3216   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3217                                      &this->dynpool_, pversions);
3218
3219   int symsize;
3220   unsigned int align;
3221   const int size = parameters->target().get_size();
3222   if (size == 32)
3223     {
3224       symsize = elfcpp::Elf_sizes<32>::sym_size;
3225       align = 4;
3226     }
3227   else if (size == 64)
3228     {
3229       symsize = elfcpp::Elf_sizes<64>::sym_size;
3230       align = 8;
3231     }
3232   else
3233     gold_unreachable();
3234
3235   // Create the dynamic symbol table section.
3236
3237   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3238                                                        elfcpp::SHT_DYNSYM,
3239                                                        elfcpp::SHF_ALLOC,
3240                                                        false,
3241                                                        ORDER_DYNAMIC_LINKER,
3242                                                        false);
3243
3244   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3245                                                            align,
3246                                                            "** dynsym");
3247   dynsym->add_output_section_data(odata);
3248
3249   dynsym->set_info(local_symcount);
3250   dynsym->set_entsize(symsize);
3251   dynsym->set_addralign(align);
3252
3253   this->dynsym_section_ = dynsym;
3254
3255   Output_data_dynamic* const odyn = this->dynamic_data_;
3256   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3257   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3258
3259   // If there are more than SHN_LORESERVE allocated sections, we
3260   // create a .dynsym_shndx section.  It is possible that we don't
3261   // need one, because it is possible that there are no dynamic
3262   // symbols in any of the sections with indexes larger than
3263   // SHN_LORESERVE.  This is probably unusual, though, and at this
3264   // time we don't know the actual section indexes so it is
3265   // inconvenient to check.
3266   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3267     {
3268       Output_section* dynsym_xindex =
3269         this->choose_output_section(NULL, ".dynsym_shndx",
3270                                     elfcpp::SHT_SYMTAB_SHNDX,
3271                                     elfcpp::SHF_ALLOC,
3272                                     false, ORDER_DYNAMIC_LINKER, false);
3273
3274       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3275
3276       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3277
3278       dynsym_xindex->set_link_section(dynsym);
3279       dynsym_xindex->set_addralign(4);
3280       dynsym_xindex->set_entsize(4);
3281
3282       dynsym_xindex->set_after_input_sections();
3283
3284       // This tells the driver code to wait until the symbol table has
3285       // written out before writing out the postprocessing sections,
3286       // including the .dynsym_shndx section.
3287       this->any_postprocessing_sections_ = true;
3288     }
3289
3290   // Create the dynamic string table section.
3291
3292   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3293                                                        elfcpp::SHT_STRTAB,
3294                                                        elfcpp::SHF_ALLOC,
3295                                                        false,
3296                                                        ORDER_DYNAMIC_LINKER,
3297                                                        false);
3298
3299   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3300   dynstr->add_output_section_data(strdata);
3301
3302   dynsym->set_link_section(dynstr);
3303   this->dynamic_section_->set_link_section(dynstr);
3304
3305   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3306   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3307
3308   *pdynstr = dynstr;
3309
3310   // Create the hash tables.
3311
3312   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3313       || strcmp(parameters->options().hash_style(), "both") == 0)
3314     {
3315       unsigned char* phash;
3316       unsigned int hashlen;
3317       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3318                                     &phash, &hashlen);
3319
3320       Output_section* hashsec =
3321         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3322                                     elfcpp::SHF_ALLOC, false,
3323                                     ORDER_DYNAMIC_LINKER, false);
3324
3325       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3326                                                                    hashlen,
3327                                                                    align,
3328                                                                    "** hash");
3329       hashsec->add_output_section_data(hashdata);
3330
3331       hashsec->set_link_section(dynsym);
3332       hashsec->set_entsize(4);
3333
3334       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3335     }
3336
3337   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3338       || strcmp(parameters->options().hash_style(), "both") == 0)
3339     {
3340       unsigned char* phash;
3341       unsigned int hashlen;
3342       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3343                                     &phash, &hashlen);
3344
3345       Output_section* hashsec =
3346         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3347                                     elfcpp::SHF_ALLOC, false,
3348                                     ORDER_DYNAMIC_LINKER, false);
3349
3350       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3351                                                                    hashlen,
3352                                                                    align,
3353                                                                    "** hash");
3354       hashsec->add_output_section_data(hashdata);
3355
3356       hashsec->set_link_section(dynsym);
3357
3358       // For a 64-bit target, the entries in .gnu.hash do not have a
3359       // uniform size, so we only set the entry size for a 32-bit
3360       // target.
3361       if (parameters->target().get_size() == 32)
3362         hashsec->set_entsize(4);
3363
3364       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3365     }
3366 }
3367
3368 // Assign offsets to each local portion of the dynamic symbol table.
3369
3370 void
3371 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3372 {
3373   Output_section* dynsym = this->dynsym_section_;
3374   gold_assert(dynsym != NULL);
3375
3376   off_t off = dynsym->offset();
3377
3378   // Skip the dummy symbol at the start of the section.
3379   off += dynsym->entsize();
3380
3381   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3382        p != input_objects->relobj_end();
3383        ++p)
3384     {
3385       unsigned int count = (*p)->set_local_dynsym_offset(off);
3386       off += count * dynsym->entsize();
3387     }
3388 }
3389
3390 // Create the version sections.
3391
3392 void
3393 Layout::create_version_sections(const Versions* versions,
3394                                 const Symbol_table* symtab,
3395                                 unsigned int local_symcount,
3396                                 const std::vector<Symbol*>& dynamic_symbols,
3397                                 const Output_section* dynstr)
3398 {
3399   if (!versions->any_defs() && !versions->any_needs())
3400     return;
3401
3402   switch (parameters->size_and_endianness())
3403     {
3404 #ifdef HAVE_TARGET_32_LITTLE
3405     case Parameters::TARGET_32_LITTLE:
3406       this->sized_create_version_sections<32, false>(versions, symtab,
3407                                                      local_symcount,
3408                                                      dynamic_symbols, dynstr);
3409       break;
3410 #endif
3411 #ifdef HAVE_TARGET_32_BIG
3412     case Parameters::TARGET_32_BIG:
3413       this->sized_create_version_sections<32, true>(versions, symtab,
3414                                                     local_symcount,
3415                                                     dynamic_symbols, dynstr);
3416       break;
3417 #endif
3418 #ifdef HAVE_TARGET_64_LITTLE
3419     case Parameters::TARGET_64_LITTLE:
3420       this->sized_create_version_sections<64, false>(versions, symtab,
3421                                                      local_symcount,
3422                                                      dynamic_symbols, dynstr);
3423       break;
3424 #endif
3425 #ifdef HAVE_TARGET_64_BIG
3426     case Parameters::TARGET_64_BIG:
3427       this->sized_create_version_sections<64, true>(versions, symtab,
3428                                                     local_symcount,
3429                                                     dynamic_symbols, dynstr);
3430       break;
3431 #endif
3432     default:
3433       gold_unreachable();
3434     }
3435 }
3436
3437 // Create the version sections, sized version.
3438
3439 template<int size, bool big_endian>
3440 void
3441 Layout::sized_create_version_sections(
3442     const Versions* versions,
3443     const Symbol_table* symtab,
3444     unsigned int local_symcount,
3445     const std::vector<Symbol*>& dynamic_symbols,
3446     const Output_section* dynstr)
3447 {
3448   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3449                                                      elfcpp::SHT_GNU_versym,
3450                                                      elfcpp::SHF_ALLOC,
3451                                                      false,
3452                                                      ORDER_DYNAMIC_LINKER,
3453                                                      false);
3454
3455   unsigned char* vbuf;
3456   unsigned int vsize;
3457   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3458                                                       local_symcount,
3459                                                       dynamic_symbols,
3460                                                       &vbuf, &vsize);
3461
3462   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3463                                                             "** versions");
3464
3465   vsec->add_output_section_data(vdata);
3466   vsec->set_entsize(2);
3467   vsec->set_link_section(this->dynsym_section_);
3468
3469   Output_data_dynamic* const odyn = this->dynamic_data_;
3470   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3471
3472   if (versions->any_defs())
3473     {
3474       Output_section* vdsec;
3475       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3476                                          elfcpp::SHT_GNU_verdef,
3477                                          elfcpp::SHF_ALLOC,
3478                                          false, ORDER_DYNAMIC_LINKER, false);
3479
3480       unsigned char* vdbuf;
3481       unsigned int vdsize;
3482       unsigned int vdentries;
3483       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3484                                                        &vdsize, &vdentries);
3485
3486       Output_section_data* vddata =
3487         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3488
3489       vdsec->add_output_section_data(vddata);
3490       vdsec->set_link_section(dynstr);
3491       vdsec->set_info(vdentries);
3492
3493       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3494       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3495     }
3496
3497   if (versions->any_needs())
3498     {
3499       Output_section* vnsec;
3500       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3501                                           elfcpp::SHT_GNU_verneed,
3502                                           elfcpp::SHF_ALLOC,
3503                                           false, ORDER_DYNAMIC_LINKER, false);
3504
3505       unsigned char* vnbuf;
3506       unsigned int vnsize;
3507       unsigned int vnentries;
3508       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3509                                                         &vnbuf, &vnsize,
3510                                                         &vnentries);
3511
3512       Output_section_data* vndata =
3513         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3514
3515       vnsec->add_output_section_data(vndata);
3516       vnsec->set_link_section(dynstr);
3517       vnsec->set_info(vnentries);
3518
3519       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3520       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3521     }
3522 }
3523
3524 // Create the .interp section and PT_INTERP segment.
3525
3526 void
3527 Layout::create_interp(const Target* target)
3528 {
3529   const char* interp = parameters->options().dynamic_linker();
3530   if (interp == NULL)
3531     {
3532       interp = target->dynamic_linker();
3533       gold_assert(interp != NULL);
3534     }
3535
3536   size_t len = strlen(interp) + 1;
3537
3538   Output_section_data* odata = new Output_data_const(interp, len, 1);
3539
3540   Output_section* osec = this->choose_output_section(NULL, ".interp",
3541                                                      elfcpp::SHT_PROGBITS,
3542                                                      elfcpp::SHF_ALLOC,
3543                                                      false, ORDER_INTERP,
3544                                                      false);
3545   osec->add_output_section_data(odata);
3546
3547   if (!this->script_options_->saw_phdrs_clause())
3548     {
3549       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3550                                                        elfcpp::PF_R);
3551       oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3552     }
3553 }
3554
3555 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3556 // called by the target-specific code.  This does nothing if not doing
3557 // a dynamic link.
3558
3559 // USE_REL is true for REL relocs rather than RELA relocs.
3560
3561 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3562
3563 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3564 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3565 // some targets have multiple reloc sections in PLT_REL.
3566
3567 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3568 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3569
3570 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3571 // executable.
3572
3573 void
3574 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3575                                 const Output_data* plt_rel,
3576                                 const Output_data_reloc_generic* dyn_rel,
3577                                 bool add_debug, bool dynrel_includes_plt)
3578 {
3579   Output_data_dynamic* odyn = this->dynamic_data_;
3580   if (odyn == NULL)
3581     return;
3582
3583   if (plt_got != NULL && plt_got->output_section() != NULL)
3584     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3585
3586   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3587     {
3588       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3589       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3590       odyn->add_constant(elfcpp::DT_PLTREL,
3591                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3592     }
3593
3594   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3595     {
3596       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3597                                 dyn_rel);
3598       if (plt_rel != NULL && dynrel_includes_plt)
3599         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3600                                dyn_rel, plt_rel);
3601       else
3602         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3603                                dyn_rel);
3604       const int size = parameters->target().get_size();
3605       elfcpp::DT rel_tag;
3606       int rel_size;
3607       if (use_rel)
3608         {
3609           rel_tag = elfcpp::DT_RELENT;
3610           if (size == 32)
3611             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3612           else if (size == 64)
3613             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3614           else
3615             gold_unreachable();
3616         }
3617       else
3618         {
3619           rel_tag = elfcpp::DT_RELAENT;
3620           if (size == 32)
3621             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3622           else if (size == 64)
3623             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3624           else
3625             gold_unreachable();
3626         }
3627       odyn->add_constant(rel_tag, rel_size);
3628
3629       if (parameters->options().combreloc())
3630         {
3631           size_t c = dyn_rel->relative_reloc_count();
3632           if (c > 0)
3633             odyn->add_constant((use_rel
3634                                 ? elfcpp::DT_RELCOUNT
3635                                 : elfcpp::DT_RELACOUNT),
3636                                c);
3637         }
3638     }
3639
3640   if (add_debug && !parameters->options().shared())
3641     {
3642       // The value of the DT_DEBUG tag is filled in by the dynamic
3643       // linker at run time, and used by the debugger.
3644       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3645     }
3646 }
3647
3648 // Finish the .dynamic section and PT_DYNAMIC segment.
3649
3650 void
3651 Layout::finish_dynamic_section(const Input_objects* input_objects,
3652                                const Symbol_table* symtab)
3653 {
3654   if (!this->script_options_->saw_phdrs_clause())
3655     {
3656       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3657                                                        (elfcpp::PF_R
3658                                                         | elfcpp::PF_W));
3659       oseg->add_output_section_to_nonload(this->dynamic_section_,
3660                                           elfcpp::PF_R | elfcpp::PF_W);
3661     }
3662
3663   Output_data_dynamic* const odyn = this->dynamic_data_;
3664
3665   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3666        p != input_objects->dynobj_end();
3667        ++p)
3668     {
3669       if (!(*p)->is_needed()
3670           && (*p)->input_file()->options().as_needed())
3671         {
3672           // This dynamic object was linked with --as-needed, but it
3673           // is not needed.
3674           continue;
3675         }
3676
3677       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3678     }
3679
3680   if (parameters->options().shared())
3681     {
3682       const char* soname = parameters->options().soname();
3683       if (soname != NULL)
3684         odyn->add_string(elfcpp::DT_SONAME, soname);
3685     }
3686
3687   Symbol* sym = symtab->lookup(parameters->options().init());
3688   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3689     odyn->add_symbol(elfcpp::DT_INIT, sym);
3690
3691   sym = symtab->lookup(parameters->options().fini());
3692   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3693     odyn->add_symbol(elfcpp::DT_FINI, sym);
3694
3695   // Look for .init_array, .preinit_array and .fini_array by checking
3696   // section types.
3697   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3698       p != this->section_list_.end();
3699       ++p)
3700     switch((*p)->type())
3701       {
3702       case elfcpp::SHT_FINI_ARRAY:
3703         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3704         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3705         break;
3706       case elfcpp::SHT_INIT_ARRAY:
3707         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3708         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3709         break;
3710       case elfcpp::SHT_PREINIT_ARRAY:
3711         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3712         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3713         break;
3714       default:
3715         break;
3716       }
3717   
3718   // Add a DT_RPATH entry if needed.
3719   const General_options::Dir_list& rpath(parameters->options().rpath());
3720   if (!rpath.empty())
3721     {
3722       std::string rpath_val;
3723       for (General_options::Dir_list::const_iterator p = rpath.begin();
3724            p != rpath.end();
3725            ++p)
3726         {
3727           if (rpath_val.empty())
3728             rpath_val = p->name();
3729           else
3730             {
3731               // Eliminate duplicates.
3732               General_options::Dir_list::const_iterator q;
3733               for (q = rpath.begin(); q != p; ++q)
3734                 if (q->name() == p->name())
3735                   break;
3736               if (q == p)
3737                 {
3738                   rpath_val += ':';
3739                   rpath_val += p->name();
3740                 }
3741             }
3742         }
3743
3744       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3745       if (parameters->options().enable_new_dtags())
3746         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3747     }
3748
3749   // Look for text segments that have dynamic relocations.
3750   bool have_textrel = false;
3751   if (!this->script_options_->saw_sections_clause())
3752     {
3753       for (Segment_list::const_iterator p = this->segment_list_.begin();
3754            p != this->segment_list_.end();
3755            ++p)
3756         {
3757           if (((*p)->flags() & elfcpp::PF_W) == 0
3758               && (*p)->has_dynamic_reloc())
3759             {
3760               have_textrel = true;
3761               break;
3762             }
3763         }
3764     }
3765   else
3766     {
3767       // We don't know the section -> segment mapping, so we are
3768       // conservative and just look for readonly sections with
3769       // relocations.  If those sections wind up in writable segments,
3770       // then we have created an unnecessary DT_TEXTREL entry.
3771       for (Section_list::const_iterator p = this->section_list_.begin();
3772            p != this->section_list_.end();
3773            ++p)
3774         {
3775           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3776               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3777               && ((*p)->has_dynamic_reloc()))
3778             {
3779               have_textrel = true;
3780               break;
3781             }
3782         }
3783     }
3784
3785   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3786   // post-link tools can easily modify these flags if desired.
3787   unsigned int flags = 0;
3788   if (have_textrel)
3789     {
3790       // Add a DT_TEXTREL for compatibility with older loaders.
3791       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3792       flags |= elfcpp::DF_TEXTREL;
3793
3794       if (parameters->options().text())
3795         gold_error(_("read-only segment has dynamic relocations"));
3796       else if (parameters->options().warn_shared_textrel()
3797                && parameters->options().shared())
3798         gold_warning(_("shared library text segment is not shareable"));
3799     }
3800   if (parameters->options().shared() && this->has_static_tls())
3801     flags |= elfcpp::DF_STATIC_TLS;
3802   if (parameters->options().origin())
3803     flags |= elfcpp::DF_ORIGIN;
3804   if (parameters->options().Bsymbolic())
3805     {
3806       flags |= elfcpp::DF_SYMBOLIC;
3807       // Add DT_SYMBOLIC for compatibility with older loaders.
3808       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3809     }
3810   if (parameters->options().now())
3811     flags |= elfcpp::DF_BIND_NOW;
3812   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3813
3814   flags = 0;
3815   if (parameters->options().initfirst())
3816     flags |= elfcpp::DF_1_INITFIRST;
3817   if (parameters->options().interpose())
3818     flags |= elfcpp::DF_1_INTERPOSE;
3819   if (parameters->options().loadfltr())
3820     flags |= elfcpp::DF_1_LOADFLTR;
3821   if (parameters->options().nodefaultlib())
3822     flags |= elfcpp::DF_1_NODEFLIB;
3823   if (parameters->options().nodelete())
3824     flags |= elfcpp::DF_1_NODELETE;
3825   if (parameters->options().nodlopen())
3826     flags |= elfcpp::DF_1_NOOPEN;
3827   if (parameters->options().nodump())
3828     flags |= elfcpp::DF_1_NODUMP;
3829   if (!parameters->options().shared())
3830     flags &= ~(elfcpp::DF_1_INITFIRST
3831                | elfcpp::DF_1_NODELETE
3832                | elfcpp::DF_1_NOOPEN);
3833   if (parameters->options().origin())
3834     flags |= elfcpp::DF_1_ORIGIN;
3835   if (parameters->options().now())
3836     flags |= elfcpp::DF_1_NOW;
3837   if (flags)
3838     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3839 }
3840
3841 // Set the size of the _DYNAMIC symbol table to be the size of the
3842 // dynamic data.
3843
3844 void
3845 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3846 {
3847   Output_data_dynamic* const odyn = this->dynamic_data_;
3848   odyn->finalize_data_size();
3849   off_t data_size = odyn->data_size();
3850   const int size = parameters->target().get_size();
3851   if (size == 32)
3852     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3853   else if (size == 64)
3854     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3855   else
3856     gold_unreachable();
3857 }
3858
3859 // The mapping of input section name prefixes to output section names.
3860 // In some cases one prefix is itself a prefix of another prefix; in
3861 // such a case the longer prefix must come first.  These prefixes are
3862 // based on the GNU linker default ELF linker script.
3863
3864 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3865 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3866 {
3867   MAPPING_INIT(".text.", ".text"),
3868   MAPPING_INIT(".ctors.", ".ctors"),
3869   MAPPING_INIT(".dtors.", ".dtors"),
3870   MAPPING_INIT(".rodata.", ".rodata"),
3871   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3872   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3873   MAPPING_INIT(".data.", ".data"),
3874   MAPPING_INIT(".bss.", ".bss"),
3875   MAPPING_INIT(".tdata.", ".tdata"),
3876   MAPPING_INIT(".tbss.", ".tbss"),
3877   MAPPING_INIT(".init_array.", ".init_array"),
3878   MAPPING_INIT(".fini_array.", ".fini_array"),
3879   MAPPING_INIT(".sdata.", ".sdata"),
3880   MAPPING_INIT(".sbss.", ".sbss"),
3881   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3882   // differently depending on whether it is creating a shared library.
3883   MAPPING_INIT(".sdata2.", ".sdata"),
3884   MAPPING_INIT(".sbss2.", ".sbss"),
3885   MAPPING_INIT(".lrodata.", ".lrodata"),
3886   MAPPING_INIT(".ldata.", ".ldata"),
3887   MAPPING_INIT(".lbss.", ".lbss"),
3888   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3889   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3890   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3891   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3892   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3893   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3894   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3895   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3896   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3897   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3898   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3899   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3900   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3901   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3902   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3903   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3904   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3905   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3906   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3907   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3908   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3909 };
3910 #undef MAPPING_INIT
3911
3912 const int Layout::section_name_mapping_count =
3913   (sizeof(Layout::section_name_mapping)
3914    / sizeof(Layout::section_name_mapping[0]));
3915
3916 // Choose the output section name to use given an input section name.
3917 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3918 // length of NAME.
3919
3920 const char*
3921 Layout::output_section_name(const char* name, size_t* plen)
3922 {
3923   // gcc 4.3 generates the following sorts of section names when it
3924   // needs a section name specific to a function:
3925   //   .text.FN
3926   //   .rodata.FN
3927   //   .sdata2.FN
3928   //   .data.FN
3929   //   .data.rel.FN
3930   //   .data.rel.local.FN
3931   //   .data.rel.ro.FN
3932   //   .data.rel.ro.local.FN
3933   //   .sdata.FN
3934   //   .bss.FN
3935   //   .sbss.FN
3936   //   .tdata.FN
3937   //   .tbss.FN
3938
3939   // The GNU linker maps all of those to the part before the .FN,
3940   // except that .data.rel.local.FN is mapped to .data, and
3941   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3942   // beginning with .data.rel.ro.local are grouped together.
3943
3944   // For an anonymous namespace, the string FN can contain a '.'.
3945
3946   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3947   // GNU linker maps to .rodata.
3948
3949   // The .data.rel.ro sections are used with -z relro.  The sections
3950   // are recognized by name.  We use the same names that the GNU
3951   // linker does for these sections.
3952
3953   // It is hard to handle this in a principled way, so we don't even
3954   // try.  We use a table of mappings.  If the input section name is
3955   // not found in the table, we simply use it as the output section
3956   // name.
3957
3958   const Section_name_mapping* psnm = section_name_mapping;
3959   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3960     {
3961       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3962         {
3963           *plen = psnm->tolen;
3964           return psnm->to;
3965         }
3966     }
3967
3968   return name;
3969 }
3970
3971 // Check if a comdat group or .gnu.linkonce section with the given
3972 // NAME is selected for the link.  If there is already a section,
3973 // *KEPT_SECTION is set to point to the existing section and the
3974 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3975 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3976 // *KEPT_SECTION is set to the internal copy and the function returns
3977 // true.
3978
3979 bool
3980 Layout::find_or_add_kept_section(const std::string& name,
3981                                  Relobj* object,
3982                                  unsigned int shndx,
3983                                  bool is_comdat,
3984                                  bool is_group_name,
3985                                  Kept_section** kept_section)
3986 {
3987   // It's normal to see a couple of entries here, for the x86 thunk
3988   // sections.  If we see more than a few, we're linking a C++
3989   // program, and we resize to get more space to minimize rehashing.
3990   if (this->signatures_.size() > 4
3991       && !this->resized_signatures_)
3992     {
3993       reserve_unordered_map(&this->signatures_,
3994                             this->number_of_input_files_ * 64);
3995       this->resized_signatures_ = true;
3996     }
3997
3998   Kept_section candidate;
3999   std::pair<Signatures::iterator, bool> ins =
4000     this->signatures_.insert(std::make_pair(name, candidate));
4001
4002   if (kept_section != NULL)
4003     *kept_section = &ins.first->second;
4004   if (ins.second)
4005     {
4006       // This is the first time we've seen this signature.
4007       ins.first->second.set_object(object);
4008       ins.first->second.set_shndx(shndx);
4009       if (is_comdat)
4010         ins.first->second.set_is_comdat();
4011       if (is_group_name)
4012         ins.first->second.set_is_group_name();
4013       return true;
4014     }
4015
4016   // We have already seen this signature.
4017
4018   if (ins.first->second.is_group_name())
4019     {
4020       // We've already seen a real section group with this signature.
4021       // If the kept group is from a plugin object, and we're in the
4022       // replacement phase, accept the new one as a replacement.
4023       if (ins.first->second.object() == NULL
4024           && parameters->options().plugins()->in_replacement_phase())
4025         {
4026           ins.first->second.set_object(object);
4027           ins.first->second.set_shndx(shndx);
4028           return true;
4029         }
4030       return false;
4031     }
4032   else if (is_group_name)
4033     {
4034       // This is a real section group, and we've already seen a
4035       // linkonce section with this signature.  Record that we've seen
4036       // a section group, and don't include this section group.
4037       ins.first->second.set_is_group_name();
4038       return false;
4039     }
4040   else
4041     {
4042       // We've already seen a linkonce section and this is a linkonce
4043       // section.  These don't block each other--this may be the same
4044       // symbol name with different section types.
4045       return true;
4046     }
4047 }
4048
4049 // Store the allocated sections into the section list.
4050
4051 void
4052 Layout::get_allocated_sections(Section_list* section_list) const
4053 {
4054   for (Section_list::const_iterator p = this->section_list_.begin();
4055        p != this->section_list_.end();
4056        ++p)
4057     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4058       section_list->push_back(*p);
4059 }
4060
4061 // Create an output segment.
4062
4063 Output_segment*
4064 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4065 {
4066   gold_assert(!parameters->options().relocatable());
4067   Output_segment* oseg = new Output_segment(type, flags);
4068   this->segment_list_.push_back(oseg);
4069
4070   if (type == elfcpp::PT_TLS)
4071     this->tls_segment_ = oseg;
4072   else if (type == elfcpp::PT_GNU_RELRO)
4073     this->relro_segment_ = oseg;
4074
4075   return oseg;
4076 }
4077
4078 // Write out the Output_sections.  Most won't have anything to write,
4079 // since most of the data will come from input sections which are
4080 // handled elsewhere.  But some Output_sections do have Output_data.
4081
4082 void
4083 Layout::write_output_sections(Output_file* of) const
4084 {
4085   for (Section_list::const_iterator p = this->section_list_.begin();
4086        p != this->section_list_.end();
4087        ++p)
4088     {
4089       if (!(*p)->after_input_sections())
4090         (*p)->write(of);
4091     }
4092 }
4093
4094 // Write out data not associated with a section or the symbol table.
4095
4096 void
4097 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4098 {
4099   if (!parameters->options().strip_all())
4100     {
4101       const Output_section* symtab_section = this->symtab_section_;
4102       for (Section_list::const_iterator p = this->section_list_.begin();
4103            p != this->section_list_.end();
4104            ++p)
4105         {
4106           if ((*p)->needs_symtab_index())
4107             {
4108               gold_assert(symtab_section != NULL);
4109               unsigned int index = (*p)->symtab_index();
4110               gold_assert(index > 0 && index != -1U);
4111               off_t off = (symtab_section->offset()
4112                            + index * symtab_section->entsize());
4113               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4114             }
4115         }
4116     }
4117
4118   const Output_section* dynsym_section = this->dynsym_section_;
4119   for (Section_list::const_iterator p = this->section_list_.begin();
4120        p != this->section_list_.end();
4121        ++p)
4122     {
4123       if ((*p)->needs_dynsym_index())
4124         {
4125           gold_assert(dynsym_section != NULL);
4126           unsigned int index = (*p)->dynsym_index();
4127           gold_assert(index > 0 && index != -1U);
4128           off_t off = (dynsym_section->offset()
4129                        + index * dynsym_section->entsize());
4130           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4131         }
4132     }
4133
4134   // Write out the Output_data which are not in an Output_section.
4135   for (Data_list::const_iterator p = this->special_output_list_.begin();
4136        p != this->special_output_list_.end();
4137        ++p)
4138     (*p)->write(of);
4139 }
4140
4141 // Write out the Output_sections which can only be written after the
4142 // input sections are complete.
4143
4144 void
4145 Layout::write_sections_after_input_sections(Output_file* of)
4146 {
4147   // Determine the final section offsets, and thus the final output
4148   // file size.  Note we finalize the .shstrab last, to allow the
4149   // after_input_section sections to modify their section-names before
4150   // writing.
4151   if (this->any_postprocessing_sections_)
4152     {
4153       off_t off = this->output_file_size_;
4154       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4155
4156       // Now that we've finalized the names, we can finalize the shstrab.
4157       off =
4158         this->set_section_offsets(off,
4159                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4160
4161       if (off > this->output_file_size_)
4162         {
4163           of->resize(off);
4164           this->output_file_size_ = off;
4165         }
4166     }
4167
4168   for (Section_list::const_iterator p = this->section_list_.begin();
4169        p != this->section_list_.end();
4170        ++p)
4171     {
4172       if ((*p)->after_input_sections())
4173         (*p)->write(of);
4174     }
4175
4176   this->section_headers_->write(of);
4177 }
4178
4179 // If the build ID requires computing a checksum, do so here, and
4180 // write it out.  We compute a checksum over the entire file because
4181 // that is simplest.
4182
4183 void
4184 Layout::write_build_id(Output_file* of) const
4185 {
4186   if (this->build_id_note_ == NULL)
4187     return;
4188
4189   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4190
4191   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4192                                           this->build_id_note_->data_size());
4193
4194   const char* style = parameters->options().build_id();
4195   if (strcmp(style, "sha1") == 0)
4196     {
4197       sha1_ctx ctx;
4198       sha1_init_ctx(&ctx);
4199       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4200       sha1_finish_ctx(&ctx, ov);
4201     }
4202   else if (strcmp(style, "md5") == 0)
4203     {
4204       md5_ctx ctx;
4205       md5_init_ctx(&ctx);
4206       md5_process_bytes(iv, this->output_file_size_, &ctx);
4207       md5_finish_ctx(&ctx, ov);
4208     }
4209   else
4210     gold_unreachable();
4211
4212   of->write_output_view(this->build_id_note_->offset(),
4213                         this->build_id_note_->data_size(),
4214                         ov);
4215
4216   of->free_input_view(0, this->output_file_size_, iv);
4217 }
4218
4219 // Write out a binary file.  This is called after the link is
4220 // complete.  IN is the temporary output file we used to generate the
4221 // ELF code.  We simply walk through the segments, read them from
4222 // their file offset in IN, and write them to their load address in
4223 // the output file.  FIXME: with a bit more work, we could support
4224 // S-records and/or Intel hex format here.
4225
4226 void
4227 Layout::write_binary(Output_file* in) const
4228 {
4229   gold_assert(parameters->options().oformat_enum()
4230               == General_options::OBJECT_FORMAT_BINARY);
4231
4232   // Get the size of the binary file.
4233   uint64_t max_load_address = 0;
4234   for (Segment_list::const_iterator p = this->segment_list_.begin();
4235        p != this->segment_list_.end();
4236        ++p)
4237     {
4238       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4239         {
4240           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4241           if (max_paddr > max_load_address)
4242             max_load_address = max_paddr;
4243         }
4244     }
4245
4246   Output_file out(parameters->options().output_file_name());
4247   out.open(max_load_address);
4248
4249   for (Segment_list::const_iterator p = this->segment_list_.begin();
4250        p != this->segment_list_.end();
4251        ++p)
4252     {
4253       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4254         {
4255           const unsigned char* vin = in->get_input_view((*p)->offset(),
4256                                                         (*p)->filesz());
4257           unsigned char* vout = out.get_output_view((*p)->paddr(),
4258                                                     (*p)->filesz());
4259           memcpy(vout, vin, (*p)->filesz());
4260           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4261           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4262         }
4263     }
4264
4265   out.close();
4266 }
4267
4268 // Print the output sections to the map file.
4269
4270 void
4271 Layout::print_to_mapfile(Mapfile* mapfile) const
4272 {
4273   for (Segment_list::const_iterator p = this->segment_list_.begin();
4274        p != this->segment_list_.end();
4275        ++p)
4276     (*p)->print_sections_to_mapfile(mapfile);
4277 }
4278
4279 // Print statistical information to stderr.  This is used for --stats.
4280
4281 void
4282 Layout::print_stats() const
4283 {
4284   this->namepool_.print_stats("section name pool");
4285   this->sympool_.print_stats("output symbol name pool");
4286   this->dynpool_.print_stats("dynamic name pool");
4287
4288   for (Section_list::const_iterator p = this->section_list_.begin();
4289        p != this->section_list_.end();
4290        ++p)
4291     (*p)->print_merge_stats();
4292 }
4293
4294 // Write_sections_task methods.
4295
4296 // We can always run this task.
4297
4298 Task_token*
4299 Write_sections_task::is_runnable()
4300 {
4301   return NULL;
4302 }
4303
4304 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4305 // when finished.
4306
4307 void
4308 Write_sections_task::locks(Task_locker* tl)
4309 {
4310   tl->add(this, this->output_sections_blocker_);
4311   tl->add(this, this->final_blocker_);
4312 }
4313
4314 // Run the task--write out the data.
4315
4316 void
4317 Write_sections_task::run(Workqueue*)
4318 {
4319   this->layout_->write_output_sections(this->of_);
4320 }
4321
4322 // Write_data_task methods.
4323
4324 // We can always run this task.
4325
4326 Task_token*
4327 Write_data_task::is_runnable()
4328 {
4329   return NULL;
4330 }
4331
4332 // We need to unlock FINAL_BLOCKER when finished.
4333
4334 void
4335 Write_data_task::locks(Task_locker* tl)
4336 {
4337   tl->add(this, this->final_blocker_);
4338 }
4339
4340 // Run the task--write out the data.
4341
4342 void
4343 Write_data_task::run(Workqueue*)
4344 {
4345   this->layout_->write_data(this->symtab_, this->of_);
4346 }
4347
4348 // Write_symbols_task methods.
4349
4350 // We can always run this task.
4351
4352 Task_token*
4353 Write_symbols_task::is_runnable()
4354 {
4355   return NULL;
4356 }
4357
4358 // We need to unlock FINAL_BLOCKER when finished.
4359
4360 void
4361 Write_symbols_task::locks(Task_locker* tl)
4362 {
4363   tl->add(this, this->final_blocker_);
4364 }
4365
4366 // Run the task--write out the symbols.
4367
4368 void
4369 Write_symbols_task::run(Workqueue*)
4370 {
4371   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4372                                this->layout_->symtab_xindex(),
4373                                this->layout_->dynsym_xindex(), this->of_);
4374 }
4375
4376 // Write_after_input_sections_task methods.
4377
4378 // We can only run this task after the input sections have completed.
4379
4380 Task_token*
4381 Write_after_input_sections_task::is_runnable()
4382 {
4383   if (this->input_sections_blocker_->is_blocked())
4384     return this->input_sections_blocker_;
4385   return NULL;
4386 }
4387
4388 // We need to unlock FINAL_BLOCKER when finished.
4389
4390 void
4391 Write_after_input_sections_task::locks(Task_locker* tl)
4392 {
4393   tl->add(this, this->final_blocker_);
4394 }
4395
4396 // Run the task.
4397
4398 void
4399 Write_after_input_sections_task::run(Workqueue*)
4400 {
4401   this->layout_->write_sections_after_input_sections(this->of_);
4402 }
4403
4404 // Close_task_runner methods.
4405
4406 // Run the task--close the file.
4407
4408 void
4409 Close_task_runner::run(Workqueue*, const Task*)
4410 {
4411   // If we need to compute a checksum for the BUILD if, we do so here.
4412   this->layout_->write_build_id(this->of_);
4413
4414   // If we've been asked to create a binary file, we do so here.
4415   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4416     this->layout_->write_binary(this->of_);
4417
4418   this->of_->close();
4419 }
4420
4421 // Instantiate the templates we need.  We could use the configure
4422 // script to restrict this to only the ones for implemented targets.
4423
4424 #ifdef HAVE_TARGET_32_LITTLE
4425 template
4426 Output_section*
4427 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4428                           const char* name,
4429                           const elfcpp::Shdr<32, false>& shdr,
4430                           unsigned int, unsigned int, off_t*);
4431 #endif
4432
4433 #ifdef HAVE_TARGET_32_BIG
4434 template
4435 Output_section*
4436 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4437                          const char* name,
4438                          const elfcpp::Shdr<32, true>& shdr,
4439                          unsigned int, unsigned int, off_t*);
4440 #endif
4441
4442 #ifdef HAVE_TARGET_64_LITTLE
4443 template
4444 Output_section*
4445 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4446                           const char* name,
4447                           const elfcpp::Shdr<64, false>& shdr,
4448                           unsigned int, unsigned int, off_t*);
4449 #endif
4450
4451 #ifdef HAVE_TARGET_64_BIG
4452 template
4453 Output_section*
4454 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4455                          const char* name,
4456                          const elfcpp::Shdr<64, true>& shdr,
4457                          unsigned int, unsigned int, off_t*);
4458 #endif
4459
4460 #ifdef HAVE_TARGET_32_LITTLE
4461 template
4462 Output_section*
4463 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4464                                 unsigned int reloc_shndx,
4465                                 const elfcpp::Shdr<32, false>& shdr,
4466                                 Output_section* data_section,
4467                                 Relocatable_relocs* rr);
4468 #endif
4469
4470 #ifdef HAVE_TARGET_32_BIG
4471 template
4472 Output_section*
4473 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4474                                unsigned int reloc_shndx,
4475                                const elfcpp::Shdr<32, true>& shdr,
4476                                Output_section* data_section,
4477                                Relocatable_relocs* rr);
4478 #endif
4479
4480 #ifdef HAVE_TARGET_64_LITTLE
4481 template
4482 Output_section*
4483 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4484                                 unsigned int reloc_shndx,
4485                                 const elfcpp::Shdr<64, false>& shdr,
4486                                 Output_section* data_section,
4487                                 Relocatable_relocs* rr);
4488 #endif
4489
4490 #ifdef HAVE_TARGET_64_BIG
4491 template
4492 Output_section*
4493 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4494                                unsigned int reloc_shndx,
4495                                const elfcpp::Shdr<64, true>& shdr,
4496                                Output_section* data_section,
4497                                Relocatable_relocs* rr);
4498 #endif
4499
4500 #ifdef HAVE_TARGET_32_LITTLE
4501 template
4502 void
4503 Layout::layout_group<32, false>(Symbol_table* symtab,
4504                                 Sized_relobj<32, false>* object,
4505                                 unsigned int,
4506                                 const char* group_section_name,
4507                                 const char* signature,
4508                                 const elfcpp::Shdr<32, false>& shdr,
4509                                 elfcpp::Elf_Word flags,
4510                                 std::vector<unsigned int>* shndxes);
4511 #endif
4512
4513 #ifdef HAVE_TARGET_32_BIG
4514 template
4515 void
4516 Layout::layout_group<32, true>(Symbol_table* symtab,
4517                                Sized_relobj<32, true>* object,
4518                                unsigned int,
4519                                const char* group_section_name,
4520                                const char* signature,
4521                                const elfcpp::Shdr<32, true>& shdr,
4522                                elfcpp::Elf_Word flags,
4523                                std::vector<unsigned int>* shndxes);
4524 #endif
4525
4526 #ifdef HAVE_TARGET_64_LITTLE
4527 template
4528 void
4529 Layout::layout_group<64, false>(Symbol_table* symtab,
4530                                 Sized_relobj<64, false>* object,
4531                                 unsigned int,
4532                                 const char* group_section_name,
4533                                 const char* signature,
4534                                 const elfcpp::Shdr<64, false>& shdr,
4535                                 elfcpp::Elf_Word flags,
4536                                 std::vector<unsigned int>* shndxes);
4537 #endif
4538
4539 #ifdef HAVE_TARGET_64_BIG
4540 template
4541 void
4542 Layout::layout_group<64, true>(Symbol_table* symtab,
4543                                Sized_relobj<64, true>* object,
4544                                unsigned int,
4545                                const char* group_section_name,
4546                                const char* signature,
4547                                const elfcpp::Shdr<64, true>& shdr,
4548                                elfcpp::Elf_Word flags,
4549                                std::vector<unsigned int>* shndxes);
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_LITTLE
4553 template
4554 Output_section*
4555 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4556                                    const unsigned char* symbols,
4557                                    off_t symbols_size,
4558                                    const unsigned char* symbol_names,
4559                                    off_t symbol_names_size,
4560                                    unsigned int shndx,
4561                                    const elfcpp::Shdr<32, false>& shdr,
4562                                    unsigned int reloc_shndx,
4563                                    unsigned int reloc_type,
4564                                    off_t* off);
4565 #endif
4566
4567 #ifdef HAVE_TARGET_32_BIG
4568 template
4569 Output_section*
4570 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4571                                    const unsigned char* symbols,
4572                                    off_t symbols_size,
4573                                   const unsigned char* symbol_names,
4574                                   off_t symbol_names_size,
4575                                   unsigned int shndx,
4576                                   const elfcpp::Shdr<32, true>& shdr,
4577                                   unsigned int reloc_shndx,
4578                                   unsigned int reloc_type,
4579                                   off_t* off);
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_LITTLE
4583 template
4584 Output_section*
4585 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4586                                    const unsigned char* symbols,
4587                                    off_t symbols_size,
4588                                    const unsigned char* symbol_names,
4589                                    off_t symbol_names_size,
4590                                    unsigned int shndx,
4591                                    const elfcpp::Shdr<64, false>& shdr,
4592                                    unsigned int reloc_shndx,
4593                                    unsigned int reloc_type,
4594                                    off_t* off);
4595 #endif
4596
4597 #ifdef HAVE_TARGET_64_BIG
4598 template
4599 Output_section*
4600 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4601                                    const unsigned char* symbols,
4602                                    off_t symbols_size,
4603                                   const unsigned char* symbol_names,
4604                                   off_t symbol_names_size,
4605                                   unsigned int shndx,
4606                                   const elfcpp::Shdr<64, true>& shdr,
4607                                   unsigned int reloc_shndx,
4608                                   unsigned int reloc_type,
4609                                   off_t* off);
4610 #endif
4611
4612 } // End namespace gold.