Add support for PT_GNU_STACK.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL), output_file_size_(-1),
71     input_requires_executable_stack_(false),
72     input_with_gnu_stack_note_(false),
73     input_without_gnu_stack_note_(false)
74 {
75   // Make space for more than enough segments for a typical file.
76   // This is just for efficiency--it's OK if we wind up needing more.
77   this->segment_list_.reserve(12);
78
79   // We expect three unattached Output_data objects: the file header,
80   // the segment headers, and the section headers.
81   this->special_output_list_.reserve(3);
82 }
83
84 // Hash a key we use to look up an output section mapping.
85
86 size_t
87 Layout::Hash_key::operator()(const Layout::Key& k) const
88 {
89  return k.first + k.second.first + k.second.second;
90 }
91
92 // Return whether PREFIX is a prefix of STR.
93
94 static inline bool
95 is_prefix_of(const char* prefix, const char* str)
96 {
97   return strncmp(prefix, str, strlen(prefix)) == 0;
98 }
99
100 // Whether to include this section in the link.
101
102 template<int size, bool big_endian>
103 bool
104 Layout::include_section(Object*, const char* name,
105                         const elfcpp::Shdr<size, big_endian>& shdr)
106 {
107   // Some section types are never linked.  Some are only linked when
108   // doing a relocateable link.
109   switch (shdr.get_sh_type())
110     {
111     case elfcpp::SHT_NULL:
112     case elfcpp::SHT_SYMTAB:
113     case elfcpp::SHT_DYNSYM:
114     case elfcpp::SHT_STRTAB:
115     case elfcpp::SHT_HASH:
116     case elfcpp::SHT_DYNAMIC:
117     case elfcpp::SHT_SYMTAB_SHNDX:
118       return false;
119
120     case elfcpp::SHT_RELA:
121     case elfcpp::SHT_REL:
122     case elfcpp::SHT_GROUP:
123       return parameters->output_is_object();
124
125     case elfcpp::SHT_PROGBITS:
126       if (parameters->strip_debug()
127           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
128         {
129           // Debugging sections can only be recognized by name.
130           if (is_prefix_of(".debug", name)
131               || is_prefix_of(".gnu.linkonce.wi.", name)
132               || is_prefix_of(".line", name)
133               || is_prefix_of(".stab", name))
134             return false;
135         }
136       return true;
137
138     default:
139       return true;
140     }
141 }
142
143 // Return an output section named NAME, or NULL if there is none.
144
145 Output_section*
146 Layout::find_output_section(const char* name) const
147 {
148   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149        p != this->section_name_map_.end();
150        ++p)
151     if (strcmp(p->second->name(), name) == 0)
152       return p->second;
153   return NULL;
154 }
155
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear.  Return NULL if there is none.
158
159 Output_segment*
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161                             elfcpp::Elf_Word clear) const
162 {
163   for (Segment_list::const_iterator p = this->segment_list_.begin();
164        p != this->segment_list_.end();
165        ++p)
166     if (static_cast<elfcpp::PT>((*p)->type()) == type
167         && ((*p)->flags() & set) == set
168         && ((*p)->flags() & clear) == 0)
169       return *p;
170   return NULL;
171 }
172
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
175
176 Output_section*
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
179 {
180   // We should ignore some flags.
181   flags &= ~ (elfcpp::SHF_INFO_LINK
182               | elfcpp::SHF_LINK_ORDER
183               | elfcpp::SHF_GROUP
184               | elfcpp::SHF_MERGE
185               | elfcpp::SHF_STRINGS);
186
187   const Key key(name_key, std::make_pair(type, flags));
188   const std::pair<Key, Output_section*> v(key, NULL);
189   std::pair<Section_name_map::iterator, bool> ins(
190     this->section_name_map_.insert(v));
191
192   if (!ins.second)
193     return ins.first->second;
194   else
195     {
196       // This is the first time we've seen this name/type/flags
197       // combination.
198       Output_section* os = this->make_output_section(name, type, flags);
199       ins.first->second = os;
200       return os;
201     }
202 }
203
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
206 // offset of this input section without the output section.
207
208 template<int size, bool big_endian>
209 Output_section*
210 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
211                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
212 {
213   if (!this->include_section(object, name, shdr))
214     return NULL;
215
216   // If we are not doing a relocateable link, choose the name to use
217   // for the output section.
218   size_t len = strlen(name);
219   if (!parameters->output_is_object())
220     name = Layout::output_section_name(name, &len);
221
222   // FIXME: Handle SHF_OS_NONCONFORMING here.
223
224   // Canonicalize the section name.
225   Stringpool::Key name_key;
226   name = this->namepool_.add_prefix(name, len, &name_key);
227
228   // Find the output section.  The output section is selected based on
229   // the section name, type, and flags.
230   Output_section* os = this->get_output_section(name, name_key,
231                                                 shdr.get_sh_type(),
232                                                 shdr.get_sh_flags());
233
234   // Special GNU handling of sections named .eh_frame.
235   if (!parameters->output_is_object()
236       && strcmp(name, ".eh_frame") == 0
237       && shdr.get_sh_size() > 0
238       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
239       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
240     {
241       this->layout_eh_frame(object, shndx, name, shdr, os, off);
242       return os;
243     }
244
245   // FIXME: Handle SHF_LINK_ORDER somewhere.
246
247   *off = os->add_input_section(object, shndx, name, shdr);
248
249   return os;
250 }
251
252 // Special GNU handling of sections named .eh_frame.  They will
253 // normally hold exception frame data.
254
255 template<int size, bool big_endian>
256 void
257 Layout::layout_eh_frame(Relobj* object,
258                         unsigned int shndx,
259                         const char* name,
260                         const elfcpp::Shdr<size, big_endian>& shdr,
261                         Output_section* os, off_t* off)
262 {
263   if (this->eh_frame_section_ == NULL)
264     {
265       this->eh_frame_section_ = os;
266
267       if (this->options_.create_eh_frame_hdr())
268         {
269           Stringpool::Key hdr_name_key;
270           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
271                                                      false,
272                                                      &hdr_name_key);
273           Output_section* hdr_os =
274             this->get_output_section(hdr_name, hdr_name_key,
275                                      elfcpp::SHT_PROGBITS,
276                                      elfcpp::SHF_ALLOC);
277
278           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
279           hdr_os->add_output_section_data(hdr_posd);
280
281           Output_segment* hdr_oseg =
282             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
283           this->segment_list_.push_back(hdr_oseg);
284           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
285         }
286     }
287
288   gold_assert(this->eh_frame_section_ == os);
289
290   *off = os->add_input_section(object, shndx, name, shdr);
291 }
292
293 // Add POSD to an output section using NAME, TYPE, and FLAGS.
294
295 void
296 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
297                                 elfcpp::Elf_Xword flags,
298                                 Output_section_data* posd)
299 {
300   // Canonicalize the name.
301   Stringpool::Key name_key;
302   name = this->namepool_.add(name, true, &name_key);
303
304   Output_section* os = this->get_output_section(name, name_key, type, flags);
305   os->add_output_section_data(posd);
306 }
307
308 // Map section flags to segment flags.
309
310 elfcpp::Elf_Word
311 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
312 {
313   elfcpp::Elf_Word ret = elfcpp::PF_R;
314   if ((flags & elfcpp::SHF_WRITE) != 0)
315     ret |= elfcpp::PF_W;
316   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
317     ret |= elfcpp::PF_X;
318   return ret;
319 }
320
321 // Make a new Output_section, and attach it to segments as
322 // appropriate.
323
324 Output_section*
325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
326                             elfcpp::Elf_Xword flags)
327 {
328   Output_section* os = new Output_section(name, type, flags);
329   this->section_list_.push_back(os);
330
331   if ((flags & elfcpp::SHF_ALLOC) == 0)
332     this->unattached_section_list_.push_back(os);
333   else
334     {
335       // This output section goes into a PT_LOAD segment.
336
337       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
338
339       // The only thing we really care about for PT_LOAD segments is
340       // whether or not they are writable, so that is how we search
341       // for them.  People who need segments sorted on some other
342       // basis will have to wait until we implement a mechanism for
343       // them to describe the segments they want.
344
345       Segment_list::const_iterator p;
346       for (p = this->segment_list_.begin();
347            p != this->segment_list_.end();
348            ++p)
349         {
350           if ((*p)->type() == elfcpp::PT_LOAD
351               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
352             {
353               (*p)->add_output_section(os, seg_flags);
354               break;
355             }
356         }
357
358       if (p == this->segment_list_.end())
359         {
360           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
361                                                     seg_flags);
362           this->segment_list_.push_back(oseg);
363           oseg->add_output_section(os, seg_flags);
364         }
365
366       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
367       // segment.
368       if (type == elfcpp::SHT_NOTE)
369         {
370           // See if we already have an equivalent PT_NOTE segment.
371           for (p = this->segment_list_.begin();
372                p != segment_list_.end();
373                ++p)
374             {
375               if ((*p)->type() == elfcpp::PT_NOTE
376                   && (((*p)->flags() & elfcpp::PF_W)
377                       == (seg_flags & elfcpp::PF_W)))
378                 {
379                   (*p)->add_output_section(os, seg_flags);
380                   break;
381                 }
382             }
383
384           if (p == this->segment_list_.end())
385             {
386               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
387                                                         seg_flags);
388               this->segment_list_.push_back(oseg);
389               oseg->add_output_section(os, seg_flags);
390             }
391         }
392
393       // If we see a loadable SHF_TLS section, we create a PT_TLS
394       // segment.  There can only be one such segment.
395       if ((flags & elfcpp::SHF_TLS) != 0)
396         {
397           if (this->tls_segment_ == NULL)
398             {
399               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
400                                                       seg_flags);
401               this->segment_list_.push_back(this->tls_segment_);
402             }
403           this->tls_segment_->add_output_section(os, seg_flags);
404         }
405     }
406
407   return os;
408 }
409
410 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
411 // is whether we saw a .note.GNU-stack section in the object file.
412 // GNU_STACK_FLAGS is the section flags.  The flags give the
413 // protection required for stack memory.  We record this in an
414 // executable as a PT_GNU_STACK segment.  If an object file does not
415 // have a .note.GNU-stack segment, we must assume that it is an old
416 // object.  On some targets that will force an executable stack.
417
418 void
419 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
420 {
421   if (!seen_gnu_stack)
422     this->input_without_gnu_stack_note_ = true;
423   else
424     {
425       this->input_with_gnu_stack_note_ = true;
426       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
427         this->input_requires_executable_stack_ = true;
428     }
429 }
430
431 // Create the dynamic sections which are needed before we read the
432 // relocs.
433
434 void
435 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
436                                         Symbol_table* symtab)
437 {
438   if (parameters->doing_static_link())
439     return;
440
441   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
442   this->dynamic_section_ = this->make_output_section(dynamic_name,
443                                                      elfcpp::SHT_DYNAMIC,
444                                                      (elfcpp::SHF_ALLOC
445                                                       | elfcpp::SHF_WRITE));
446
447   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
448                                 this->dynamic_section_, 0, 0,
449                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
450                                 elfcpp::STV_HIDDEN, 0, false, false);
451
452   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
453
454   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
455 }
456
457 // For each output section whose name can be represented as C symbol,
458 // define __start and __stop symbols for the section.  This is a GNU
459 // extension.
460
461 void
462 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
463 {
464   for (Section_list::const_iterator p = this->section_list_.begin();
465        p != this->section_list_.end();
466        ++p)
467     {
468       const char* const name = (*p)->name();
469       if (name[strspn(name,
470                       ("0123456789"
471                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
472                        "abcdefghijklmnopqrstuvwxyz"
473                        "_"))]
474           == '\0')
475         {
476           const std::string name_string(name);
477           const std::string start_name("__start_" + name_string);
478           const std::string stop_name("__stop_" + name_string);
479
480           symtab->define_in_output_data(target,
481                                         start_name.c_str(),
482                                         NULL, // version
483                                         *p,
484                                         0, // value
485                                         0, // symsize
486                                         elfcpp::STT_NOTYPE,
487                                         elfcpp::STB_GLOBAL,
488                                         elfcpp::STV_DEFAULT,
489                                         0, // nonvis
490                                         false, // offset_is_from_end
491                                         false); // only_if_ref
492
493           symtab->define_in_output_data(target,
494                                         stop_name.c_str(),
495                                         NULL, // version
496                                         *p,
497                                         0, // value
498                                         0, // symsize
499                                         elfcpp::STT_NOTYPE,
500                                         elfcpp::STB_GLOBAL,
501                                         elfcpp::STV_DEFAULT,
502                                         0, // nonvis
503                                         true, // offset_is_from_end
504                                         false); // only_if_ref
505         }
506     }
507 }
508
509 // Find the first read-only PT_LOAD segment, creating one if
510 // necessary.
511
512 Output_segment*
513 Layout::find_first_load_seg()
514 {
515   for (Segment_list::const_iterator p = this->segment_list_.begin();
516        p != this->segment_list_.end();
517        ++p)
518     {
519       if ((*p)->type() == elfcpp::PT_LOAD
520           && ((*p)->flags() & elfcpp::PF_R) != 0
521           && ((*p)->flags() & elfcpp::PF_W) == 0)
522         return *p;
523     }
524
525   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
526   this->segment_list_.push_back(load_seg);
527   return load_seg;
528 }
529
530 // Finalize the layout.  When this is called, we have created all the
531 // output sections and all the output segments which are based on
532 // input sections.  We have several things to do, and we have to do
533 // them in the right order, so that we get the right results correctly
534 // and efficiently.
535
536 // 1) Finalize the list of output segments and create the segment
537 // table header.
538
539 // 2) Finalize the dynamic symbol table and associated sections.
540
541 // 3) Determine the final file offset of all the output segments.
542
543 // 4) Determine the final file offset of all the SHF_ALLOC output
544 // sections.
545
546 // 5) Create the symbol table sections and the section name table
547 // section.
548
549 // 6) Finalize the symbol table: set symbol values to their final
550 // value and make a final determination of which symbols are going
551 // into the output symbol table.
552
553 // 7) Create the section table header.
554
555 // 8) Determine the final file offset of all the output sections which
556 // are not SHF_ALLOC, including the section table header.
557
558 // 9) Finalize the ELF file header.
559
560 // This function returns the size of the output file.
561
562 off_t
563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
564 {
565   Target* const target = input_objects->target();
566
567   target->finalize_sections(this);
568
569   this->create_gold_note();
570   this->create_executable_stack_info(target);
571
572   Output_segment* phdr_seg = NULL;
573   if (!parameters->doing_static_link())
574     {
575       // There was a dynamic object in the link.  We need to create
576       // some information for the dynamic linker.
577
578       // Create the PT_PHDR segment which will hold the program
579       // headers.
580       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
581       this->segment_list_.push_back(phdr_seg);
582
583       // Create the dynamic symbol table, including the hash table.
584       Output_section* dynstr;
585       std::vector<Symbol*> dynamic_symbols;
586       unsigned int local_dynamic_count;
587       Versions versions;
588       this->create_dynamic_symtab(target, symtab, &dynstr,
589                                   &local_dynamic_count, &dynamic_symbols,
590                                   &versions);
591
592       // Create the .interp section to hold the name of the
593       // interpreter, and put it in a PT_INTERP segment.
594       this->create_interp(target);
595
596       // Finish the .dynamic section to hold the dynamic data, and put
597       // it in a PT_DYNAMIC segment.
598       this->finish_dynamic_section(input_objects, symtab);
599
600       // We should have added everything we need to the dynamic string
601       // table.
602       this->dynpool_.set_string_offsets();
603
604       // Create the version sections.  We can't do this until the
605       // dynamic string table is complete.
606       this->create_version_sections(&versions, symtab, local_dynamic_count,
607                                     dynamic_symbols, dynstr);
608     }
609
610   // FIXME: Handle PT_GNU_STACK.
611
612   Output_segment* load_seg = this->find_first_load_seg();
613
614   // Lay out the segment headers.
615   Output_segment_headers* segment_headers;
616   segment_headers = new Output_segment_headers(this->segment_list_);
617   load_seg->add_initial_output_data(segment_headers);
618   this->special_output_list_.push_back(segment_headers);
619   if (phdr_seg != NULL)
620     phdr_seg->add_initial_output_data(segment_headers);
621
622   // Lay out the file header.
623   Output_file_header* file_header;
624   file_header = new Output_file_header(target, symtab, segment_headers);
625   load_seg->add_initial_output_data(file_header);
626   this->special_output_list_.push_back(file_header);
627
628   // We set the output section indexes in set_segment_offsets and
629   // set_section_offsets.
630   unsigned int shndx = 1;
631
632   // Set the file offsets of all the segments, and all the sections
633   // they contain.
634   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
635
636   // Create the symbol table sections.
637   this->create_symtab_sections(input_objects, symtab, &off);
638
639   // Create the .shstrtab section.
640   Output_section* shstrtab_section = this->create_shstrtab();
641
642   // Set the file offsets of all the sections not associated with
643   // segments.
644   off = this->set_section_offsets(off, &shndx);
645
646   // Create the section table header.
647   Output_section_headers* oshdrs = this->create_shdrs(&off);
648
649   file_header->set_section_info(oshdrs, shstrtab_section);
650
651   // Now we know exactly where everything goes in the output file.
652   Output_data::layout_complete();
653
654   this->output_file_size_ = off;
655
656   return off;
657 }
658
659 // Create a .note section for an executable or shared library.  This
660 // records the version of gold used to create the binary.
661
662 void
663 Layout::create_gold_note()
664 {
665   if (parameters->output_is_object())
666     return;
667
668   // Authorities all agree that the values in a .note field should
669   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
670   // they differ on what the alignment is for 64-bit binaries.
671   // The GABI says unambiguously they take 8-byte alignment:
672   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
673   // Other documentation says alignment should always be 4 bytes:
674   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
675   // GNU ld and GNU readelf both support the latter (at least as of
676   // version 2.16.91), and glibc always generates the latter for
677   // .note.ABI-tag (as of version 1.6), so that's the one we go with
678   // here.
679 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
680   const int size = parameters->get_size();
681 #else
682   const int size = 32;
683 #endif
684
685   // The contents of the .note section.
686   const char* name = "GNU";
687   std::string desc(std::string("gold ") + gold::get_version_string());
688   size_t namesz = strlen(name) + 1;
689   size_t aligned_namesz = align_address(namesz, size / 8);
690   size_t descsz = desc.length() + 1;
691   size_t aligned_descsz = align_address(descsz, size / 8);
692   const int note_type = 4;
693
694   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
695
696   unsigned char buffer[128];
697   gold_assert(sizeof buffer >= notesz);
698   memset(buffer, 0, notesz);
699
700   bool is_big_endian = parameters->is_big_endian();
701
702   if (size == 32)
703     {
704       if (!is_big_endian)
705         {
706           elfcpp::Swap<32, false>::writeval(buffer, namesz);
707           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
708           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
709         }
710       else
711         {
712           elfcpp::Swap<32, true>::writeval(buffer, namesz);
713           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
714           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
715         }
716     }
717   else if (size == 64)
718     {
719       if (!is_big_endian)
720         {
721           elfcpp::Swap<64, false>::writeval(buffer, namesz);
722           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
723           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
724         }
725       else
726         {
727           elfcpp::Swap<64, true>::writeval(buffer, namesz);
728           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
729           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
730         }
731     }
732   else
733     gold_unreachable();
734
735   memcpy(buffer + 3 * (size / 8), name, namesz);
736   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
737
738   const char* note_name = this->namepool_.add(".note", false, NULL);
739   Output_section* os = this->make_output_section(note_name,
740                                                  elfcpp::SHT_NOTE,
741                                                  0);
742   Output_section_data* posd = new Output_data_const(buffer, notesz,
743                                                     size / 8);
744   os->add_output_section_data(posd);
745 }
746
747 // Record whether the stack should be executable.  This can be set
748 // from the command line using the -z execstack or -z noexecstack
749 // options.  Otherwise, if any input file has a .note.GNU-stack
750 // section with the SHF_EXECINSTR flag set, the stack should be
751 // executable.  Otherwise, if at least one input file a
752 // .note.GNU-stack section, and some input file has no .note.GNU-stack
753 // section, we use the target default for whether the stack should be
754 // executable.  Otherwise, we don't generate a stack note.  When
755 // generating a object file, we create a .note.GNU-stack section with
756 // the appropriate marking.  When generating an executable or shared
757 // library, we create a PT_GNU_STACK segment.
758
759 void
760 Layout::create_executable_stack_info(const Target* target)
761 {
762   bool is_stack_executable;
763   if (this->options_.is_execstack_set())
764     is_stack_executable = this->options_.is_stack_executable();
765   else if (!this->input_with_gnu_stack_note_)
766     return;
767   else
768     {
769       if (this->input_requires_executable_stack_)
770         is_stack_executable = true;
771       else if (this->input_without_gnu_stack_note_)
772         is_stack_executable = target->is_default_stack_executable();
773       else
774         is_stack_executable = false;
775     }
776
777   if (parameters->output_is_object())
778     {
779       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
780       elfcpp::Elf_Xword flags = 0;
781       if (is_stack_executable)
782         flags |= elfcpp::SHF_EXECINSTR;
783       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
784     }
785   else
786     {
787       int flags = elfcpp::PF_R | elfcpp::PF_W;
788       if (is_stack_executable)
789         flags |= elfcpp::PF_X;
790       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
791       this->segment_list_.push_back(oseg);
792     }
793 }
794
795 // Return whether SEG1 should be before SEG2 in the output file.  This
796 // is based entirely on the segment type and flags.  When this is
797 // called the segment addresses has normally not yet been set.
798
799 bool
800 Layout::segment_precedes(const Output_segment* seg1,
801                          const Output_segment* seg2)
802 {
803   elfcpp::Elf_Word type1 = seg1->type();
804   elfcpp::Elf_Word type2 = seg2->type();
805
806   // The single PT_PHDR segment is required to precede any loadable
807   // segment.  We simply make it always first.
808   if (type1 == elfcpp::PT_PHDR)
809     {
810       gold_assert(type2 != elfcpp::PT_PHDR);
811       return true;
812     }
813   if (type2 == elfcpp::PT_PHDR)
814     return false;
815
816   // The single PT_INTERP segment is required to precede any loadable
817   // segment.  We simply make it always second.
818   if (type1 == elfcpp::PT_INTERP)
819     {
820       gold_assert(type2 != elfcpp::PT_INTERP);
821       return true;
822     }
823   if (type2 == elfcpp::PT_INTERP)
824     return false;
825
826   // We then put PT_LOAD segments before any other segments.
827   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
828     return true;
829   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
830     return false;
831
832   // We put the PT_TLS segment last, because that is where the dynamic
833   // linker expects to find it (this is just for efficiency; other
834   // positions would also work correctly).
835   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
836     return false;
837   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
838     return true;
839
840   const elfcpp::Elf_Word flags1 = seg1->flags();
841   const elfcpp::Elf_Word flags2 = seg2->flags();
842
843   // The order of non-PT_LOAD segments is unimportant.  We simply sort
844   // by the numeric segment type and flags values.  There should not
845   // be more than one segment with the same type and flags.
846   if (type1 != elfcpp::PT_LOAD)
847     {
848       if (type1 != type2)
849         return type1 < type2;
850       gold_assert(flags1 != flags2);
851       return flags1 < flags2;
852     }
853
854   // We sort PT_LOAD segments based on the flags.  Readonly segments
855   // come before writable segments.  Then executable segments come
856   // before non-executable segments.  Then the unlikely case of a
857   // non-readable segment comes before the normal case of a readable
858   // segment.  If there are multiple segments with the same type and
859   // flags, we require that the address be set, and we sort by
860   // virtual address and then physical address.
861   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
862     return (flags1 & elfcpp::PF_W) == 0;
863   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
864     return (flags1 & elfcpp::PF_X) != 0;
865   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
866     return (flags1 & elfcpp::PF_R) == 0;
867
868   uint64_t vaddr1 = seg1->vaddr();
869   uint64_t vaddr2 = seg2->vaddr();
870   if (vaddr1 != vaddr2)
871     return vaddr1 < vaddr2;
872
873   uint64_t paddr1 = seg1->paddr();
874   uint64_t paddr2 = seg2->paddr();
875   gold_assert(paddr1 != paddr2);
876   return paddr1 < paddr2;
877 }
878
879 // Set the file offsets of all the segments, and all the sections they
880 // contain.  They have all been created.  LOAD_SEG must be be laid out
881 // first.  Return the offset of the data to follow.
882
883 off_t
884 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
885                             unsigned int *pshndx)
886 {
887   // Sort them into the final order.
888   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
889             Layout::Compare_segments());
890
891   // Find the PT_LOAD segments, and set their addresses and offsets
892   // and their section's addresses and offsets.
893   uint64_t addr;
894   if (options_.user_set_text_segment_address())
895     addr = options_.text_segment_address();
896   else
897     addr = target->default_text_segment_address();
898   off_t off = 0;
899   bool was_readonly = false;
900   for (Segment_list::iterator p = this->segment_list_.begin();
901        p != this->segment_list_.end();
902        ++p)
903     {
904       if ((*p)->type() == elfcpp::PT_LOAD)
905         {
906           if (load_seg != NULL && load_seg != *p)
907             gold_unreachable();
908           load_seg = NULL;
909
910           // If the last segment was readonly, and this one is not,
911           // then skip the address forward one page, maintaining the
912           // same position within the page.  This lets us store both
913           // segments overlapping on a single page in the file, but
914           // the loader will put them on different pages in memory.
915
916           uint64_t orig_addr = addr;
917           uint64_t orig_off = off;
918
919           uint64_t aligned_addr = addr;
920           uint64_t abi_pagesize = target->abi_pagesize();
921
922           // FIXME: This should depend on the -n and -N options.
923           (*p)->set_minimum_addralign(target->common_pagesize());
924
925           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
926             {
927               uint64_t align = (*p)->addralign();
928
929               addr = align_address(addr, align);
930               aligned_addr = addr;
931               if ((addr & (abi_pagesize - 1)) != 0)
932                 addr = addr + abi_pagesize;
933             }
934
935           unsigned int shndx_hold = *pshndx;
936           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
937           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
938
939           // Now that we know the size of this segment, we may be able
940           // to save a page in memory, at the cost of wasting some
941           // file space, by instead aligning to the start of a new
942           // page.  Here we use the real machine page size rather than
943           // the ABI mandated page size.
944
945           if (aligned_addr != addr)
946             {
947               uint64_t common_pagesize = target->common_pagesize();
948               uint64_t first_off = (common_pagesize
949                                     - (aligned_addr
950                                        & (common_pagesize - 1)));
951               uint64_t last_off = new_addr & (common_pagesize - 1);
952               if (first_off > 0
953                   && last_off > 0
954                   && ((aligned_addr & ~ (common_pagesize - 1))
955                       != (new_addr & ~ (common_pagesize - 1)))
956                   && first_off + last_off <= common_pagesize)
957                 {
958                   *pshndx = shndx_hold;
959                   addr = align_address(aligned_addr, common_pagesize);
960                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
961                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
962                 }
963             }
964
965           addr = new_addr;
966
967           if (((*p)->flags() & elfcpp::PF_W) == 0)
968             was_readonly = true;
969         }
970     }
971
972   // Handle the non-PT_LOAD segments, setting their offsets from their
973   // section's offsets.
974   for (Segment_list::iterator p = this->segment_list_.begin();
975        p != this->segment_list_.end();
976        ++p)
977     {
978       if ((*p)->type() != elfcpp::PT_LOAD)
979         (*p)->set_offset();
980     }
981
982   return off;
983 }
984
985 // Set the file offset of all the sections not associated with a
986 // segment.
987
988 off_t
989 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
990 {
991   for (Section_list::iterator p = this->unattached_section_list_.begin();
992        p != this->unattached_section_list_.end();
993        ++p)
994     {
995       (*p)->set_out_shndx(*pshndx);
996       ++*pshndx;
997       if ((*p)->offset() != -1)
998         continue;
999       off = align_address(off, (*p)->addralign());
1000       (*p)->set_address(0, off);
1001       off += (*p)->data_size();
1002     }
1003   return off;
1004 }
1005
1006 // Create the symbol table sections.  Here we also set the final
1007 // values of the symbols.  At this point all the loadable sections are
1008 // fully laid out.
1009
1010 void
1011 Layout::create_symtab_sections(const Input_objects* input_objects,
1012                                Symbol_table* symtab,
1013                                off_t* poff)
1014 {
1015   int symsize;
1016   unsigned int align;
1017   if (parameters->get_size() == 32)
1018     {
1019       symsize = elfcpp::Elf_sizes<32>::sym_size;
1020       align = 4;
1021     }
1022   else if (parameters->get_size() == 64)
1023     {
1024       symsize = elfcpp::Elf_sizes<64>::sym_size;
1025       align = 8;
1026     }
1027   else
1028     gold_unreachable();
1029
1030   off_t off = *poff;
1031   off = align_address(off, align);
1032   off_t startoff = off;
1033
1034   // Save space for the dummy symbol at the start of the section.  We
1035   // never bother to write this out--it will just be left as zero.
1036   off += symsize;
1037   unsigned int local_symbol_index = 1;
1038
1039   // Add STT_SECTION symbols for each Output section which needs one.
1040   for (Section_list::iterator p = this->section_list_.begin();
1041        p != this->section_list_.end();
1042        ++p)
1043     {
1044       if (!(*p)->needs_symtab_index())
1045         (*p)->set_symtab_index(-1U);
1046       else
1047         {
1048           (*p)->set_symtab_index(local_symbol_index);
1049           ++local_symbol_index;
1050           off += symsize;
1051         }
1052     }
1053
1054   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1055        p != input_objects->relobj_end();
1056        ++p)
1057     {
1058       Task_lock_obj<Object> tlo(**p);
1059       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1060                                                         off,
1061                                                         &this->sympool_);
1062       off += (index - local_symbol_index) * symsize;
1063       local_symbol_index = index;
1064     }
1065
1066   unsigned int local_symcount = local_symbol_index;
1067   gold_assert(local_symcount * symsize == off - startoff);
1068
1069   off_t dynoff;
1070   size_t dyn_global_index;
1071   size_t dyncount;
1072   if (this->dynsym_section_ == NULL)
1073     {
1074       dynoff = 0;
1075       dyn_global_index = 0;
1076       dyncount = 0;
1077     }
1078   else
1079     {
1080       dyn_global_index = this->dynsym_section_->info();
1081       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1082       dynoff = this->dynsym_section_->offset() + locsize;
1083       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1084       gold_assert(static_cast<off_t>(dyncount * symsize)
1085                   == this->dynsym_section_->data_size() - locsize);
1086     }
1087
1088   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1089                          dyncount, &this->sympool_);
1090
1091   if (!parameters->strip_all())
1092     {
1093       this->sympool_.set_string_offsets();
1094
1095       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1096       Output_section* osymtab = this->make_output_section(symtab_name,
1097                                                           elfcpp::SHT_SYMTAB,
1098                                                           0);
1099       this->symtab_section_ = osymtab;
1100
1101       Output_section_data* pos = new Output_data_space(off - startoff,
1102                                                        align);
1103       osymtab->add_output_section_data(pos);
1104
1105       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1106       Output_section* ostrtab = this->make_output_section(strtab_name,
1107                                                           elfcpp::SHT_STRTAB,
1108                                                           0);
1109
1110       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1111       ostrtab->add_output_section_data(pstr);
1112
1113       osymtab->set_address(0, startoff);
1114       osymtab->set_link_section(ostrtab);
1115       osymtab->set_info(local_symcount);
1116       osymtab->set_entsize(symsize);
1117
1118       *poff = off;
1119     }
1120 }
1121
1122 // Create the .shstrtab section, which holds the names of the
1123 // sections.  At the time this is called, we have created all the
1124 // output sections except .shstrtab itself.
1125
1126 Output_section*
1127 Layout::create_shstrtab()
1128 {
1129   // FIXME: We don't need to create a .shstrtab section if we are
1130   // stripping everything.
1131
1132   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1133
1134   this->namepool_.set_string_offsets();
1135
1136   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1137
1138   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1139   os->add_output_section_data(posd);
1140
1141   return os;
1142 }
1143
1144 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1145 // offset.
1146
1147 Output_section_headers*
1148 Layout::create_shdrs(off_t* poff)
1149 {
1150   Output_section_headers* oshdrs;
1151   oshdrs = new Output_section_headers(this,
1152                                       &this->segment_list_,
1153                                       &this->unattached_section_list_,
1154                                       &this->namepool_);
1155   off_t off = align_address(*poff, oshdrs->addralign());
1156   oshdrs->set_address(0, off);
1157   off += oshdrs->data_size();
1158   *poff = off;
1159   this->special_output_list_.push_back(oshdrs);
1160   return oshdrs;
1161 }
1162
1163 // Create the dynamic symbol table.
1164
1165 void
1166 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1167                               Output_section **pdynstr,
1168                               unsigned int* plocal_dynamic_count,
1169                               std::vector<Symbol*>* pdynamic_symbols,
1170                               Versions* pversions)
1171 {
1172   // Count all the symbols in the dynamic symbol table, and set the
1173   // dynamic symbol indexes.
1174
1175   // Skip symbol 0, which is always all zeroes.
1176   unsigned int index = 1;
1177
1178   // Add STT_SECTION symbols for each Output section which needs one.
1179   for (Section_list::iterator p = this->section_list_.begin();
1180        p != this->section_list_.end();
1181        ++p)
1182     {
1183       if (!(*p)->needs_dynsym_index())
1184         (*p)->set_dynsym_index(-1U);
1185       else
1186         {
1187           (*p)->set_dynsym_index(index);
1188           ++index;
1189         }
1190     }
1191
1192   // FIXME: Some targets apparently require local symbols in the
1193   // dynamic symbol table.  Here is where we will have to count them,
1194   // and set the dynamic symbol indexes, and add the names to
1195   // this->dynpool_.
1196
1197   unsigned int local_symcount = index;
1198   *plocal_dynamic_count = local_symcount;
1199
1200   // FIXME: We have to tell set_dynsym_indexes whether the
1201   // -E/--export-dynamic option was used.
1202   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1203                                      &this->dynpool_, pversions);
1204
1205   int symsize;
1206   unsigned int align;
1207   const int size = parameters->get_size();
1208   if (size == 32)
1209     {
1210       symsize = elfcpp::Elf_sizes<32>::sym_size;
1211       align = 4;
1212     }
1213   else if (size == 64)
1214     {
1215       symsize = elfcpp::Elf_sizes<64>::sym_size;
1216       align = 8;
1217     }
1218   else
1219     gold_unreachable();
1220
1221   // Create the dynamic symbol table section.
1222
1223   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1224   Output_section* dynsym = this->make_output_section(dynsym_name,
1225                                                      elfcpp::SHT_DYNSYM,
1226                                                      elfcpp::SHF_ALLOC);
1227
1228   Output_section_data* odata = new Output_data_space(index * symsize,
1229                                                      align);
1230   dynsym->add_output_section_data(odata);
1231
1232   dynsym->set_info(local_symcount);
1233   dynsym->set_entsize(symsize);
1234   dynsym->set_addralign(align);
1235
1236   this->dynsym_section_ = dynsym;
1237
1238   Output_data_dynamic* const odyn = this->dynamic_data_;
1239   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1240   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1241
1242   // Create the dynamic string table section.
1243
1244   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1245   Output_section* dynstr = this->make_output_section(dynstr_name,
1246                                                      elfcpp::SHT_STRTAB,
1247                                                      elfcpp::SHF_ALLOC);
1248
1249   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1250   dynstr->add_output_section_data(strdata);
1251
1252   dynsym->set_link_section(dynstr);
1253   this->dynamic_section_->set_link_section(dynstr);
1254
1255   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1256   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1257
1258   *pdynstr = dynstr;
1259
1260   // Create the hash tables.
1261
1262   // FIXME: We need an option to create a GNU hash table.
1263
1264   unsigned char* phash;
1265   unsigned int hashlen;
1266   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1267                                 &phash, &hashlen);
1268
1269   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1270   Output_section* hashsec = this->make_output_section(hash_name,
1271                                                       elfcpp::SHT_HASH,
1272                                                       elfcpp::SHF_ALLOC);
1273
1274   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1275                                                                hashlen,
1276                                                                align);
1277   hashsec->add_output_section_data(hashdata);
1278
1279   hashsec->set_link_section(dynsym);
1280   hashsec->set_entsize(4);
1281
1282   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1283 }
1284
1285 // Create the version sections.
1286
1287 void
1288 Layout::create_version_sections(const Versions* versions,
1289                                 const Symbol_table* symtab,
1290                                 unsigned int local_symcount,
1291                                 const std::vector<Symbol*>& dynamic_symbols,
1292                                 const Output_section* dynstr)
1293 {
1294   if (!versions->any_defs() && !versions->any_needs())
1295     return;
1296
1297   if (parameters->get_size() == 32)
1298     {
1299       if (parameters->is_big_endian())
1300         {
1301 #ifdef HAVE_TARGET_32_BIG
1302           this->sized_create_version_sections
1303               SELECT_SIZE_ENDIAN_NAME(32, true)(
1304                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1305                   SELECT_SIZE_ENDIAN(32, true));
1306 #else
1307           gold_unreachable();
1308 #endif
1309         }
1310       else
1311         {
1312 #ifdef HAVE_TARGET_32_LITTLE
1313           this->sized_create_version_sections
1314               SELECT_SIZE_ENDIAN_NAME(32, false)(
1315                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1316                   SELECT_SIZE_ENDIAN(32, false));
1317 #else
1318           gold_unreachable();
1319 #endif
1320         }
1321     }
1322   else if (parameters->get_size() == 64)
1323     {
1324       if (parameters->is_big_endian())
1325         {
1326 #ifdef HAVE_TARGET_64_BIG
1327           this->sized_create_version_sections
1328               SELECT_SIZE_ENDIAN_NAME(64, true)(
1329                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1330                   SELECT_SIZE_ENDIAN(64, true));
1331 #else
1332           gold_unreachable();
1333 #endif
1334         }
1335       else
1336         {
1337 #ifdef HAVE_TARGET_64_LITTLE
1338           this->sized_create_version_sections
1339               SELECT_SIZE_ENDIAN_NAME(64, false)(
1340                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1341                   SELECT_SIZE_ENDIAN(64, false));
1342 #else
1343           gold_unreachable();
1344 #endif
1345         }
1346     }
1347   else
1348     gold_unreachable();
1349 }
1350
1351 // Create the version sections, sized version.
1352
1353 template<int size, bool big_endian>
1354 void
1355 Layout::sized_create_version_sections(
1356     const Versions* versions,
1357     const Symbol_table* symtab,
1358     unsigned int local_symcount,
1359     const std::vector<Symbol*>& dynamic_symbols,
1360     const Output_section* dynstr
1361     ACCEPT_SIZE_ENDIAN)
1362 {
1363   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1364   Output_section* vsec = this->make_output_section(vname,
1365                                                    elfcpp::SHT_GNU_versym,
1366                                                    elfcpp::SHF_ALLOC);
1367
1368   unsigned char* vbuf;
1369   unsigned int vsize;
1370   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1371       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1372       SELECT_SIZE_ENDIAN(size, big_endian));
1373
1374   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1375
1376   vsec->add_output_section_data(vdata);
1377   vsec->set_entsize(2);
1378   vsec->set_link_section(this->dynsym_section_);
1379
1380   Output_data_dynamic* const odyn = this->dynamic_data_;
1381   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1382
1383   if (versions->any_defs())
1384     {
1385       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1386       Output_section *vdsec;
1387       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1388                                         elfcpp::SHF_ALLOC);
1389
1390       unsigned char* vdbuf;
1391       unsigned int vdsize;
1392       unsigned int vdentries;
1393       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1394           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1395           SELECT_SIZE_ENDIAN(size, big_endian));
1396
1397       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1398                                                                  vdsize,
1399                                                                  4);
1400
1401       vdsec->add_output_section_data(vddata);
1402       vdsec->set_link_section(dynstr);
1403       vdsec->set_info(vdentries);
1404
1405       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1406       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1407     }
1408
1409   if (versions->any_needs())
1410     {
1411       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1412       Output_section* vnsec;
1413       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1414                                         elfcpp::SHF_ALLOC);
1415
1416       unsigned char* vnbuf;
1417       unsigned int vnsize;
1418       unsigned int vnentries;
1419       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1420         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1421          SELECT_SIZE_ENDIAN(size, big_endian));
1422
1423       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1424                                                                  vnsize,
1425                                                                  4);
1426
1427       vnsec->add_output_section_data(vndata);
1428       vnsec->set_link_section(dynstr);
1429       vnsec->set_info(vnentries);
1430
1431       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1432       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1433     }
1434 }
1435
1436 // Create the .interp section and PT_INTERP segment.
1437
1438 void
1439 Layout::create_interp(const Target* target)
1440 {
1441   const char* interp = this->options_.dynamic_linker();
1442   if (interp == NULL)
1443     {
1444       interp = target->dynamic_linker();
1445       gold_assert(interp != NULL);
1446     }
1447
1448   size_t len = strlen(interp) + 1;
1449
1450   Output_section_data* odata = new Output_data_const(interp, len, 1);
1451
1452   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1453   Output_section* osec = this->make_output_section(interp_name,
1454                                                    elfcpp::SHT_PROGBITS,
1455                                                    elfcpp::SHF_ALLOC);
1456   osec->add_output_section_data(odata);
1457
1458   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1459   this->segment_list_.push_back(oseg);
1460   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1461 }
1462
1463 // Finish the .dynamic section and PT_DYNAMIC segment.
1464
1465 void
1466 Layout::finish_dynamic_section(const Input_objects* input_objects,
1467                                const Symbol_table* symtab)
1468 {
1469   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1470                                             elfcpp::PF_R | elfcpp::PF_W);
1471   this->segment_list_.push_back(oseg);
1472   oseg->add_initial_output_section(this->dynamic_section_,
1473                                    elfcpp::PF_R | elfcpp::PF_W);
1474
1475   Output_data_dynamic* const odyn = this->dynamic_data_;
1476
1477   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1478        p != input_objects->dynobj_end();
1479        ++p)
1480     {
1481       // FIXME: Handle --as-needed.
1482       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1483     }
1484
1485   // FIXME: Support --init and --fini.
1486   Symbol* sym = symtab->lookup("_init");
1487   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1488     odyn->add_symbol(elfcpp::DT_INIT, sym);
1489
1490   sym = symtab->lookup("_fini");
1491   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1492     odyn->add_symbol(elfcpp::DT_FINI, sym);
1493
1494   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1495
1496   // Add a DT_RPATH entry if needed.
1497   const General_options::Dir_list& rpath(this->options_.rpath());
1498   if (!rpath.empty())
1499     {
1500       std::string rpath_val;
1501       for (General_options::Dir_list::const_iterator p = rpath.begin();
1502            p != rpath.end();
1503            ++p)
1504         {
1505           if (rpath_val.empty())
1506             rpath_val = p->name();
1507           else
1508             {
1509               // Eliminate duplicates.
1510               General_options::Dir_list::const_iterator q;
1511               for (q = rpath.begin(); q != p; ++q)
1512                 if (q->name() == p->name())
1513                   break;
1514               if (q == p)
1515                 {
1516                   rpath_val += ':';
1517                   rpath_val += p->name();
1518                 }
1519             }
1520         }
1521
1522       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1523     }
1524 }
1525
1526 // The mapping of .gnu.linkonce section names to real section names.
1527
1528 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1529 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1530 {
1531   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1532   MAPPING_INIT("t", ".text"),
1533   MAPPING_INIT("r", ".rodata"),
1534   MAPPING_INIT("d", ".data"),
1535   MAPPING_INIT("b", ".bss"),
1536   MAPPING_INIT("s", ".sdata"),
1537   MAPPING_INIT("sb", ".sbss"),
1538   MAPPING_INIT("s2", ".sdata2"),
1539   MAPPING_INIT("sb2", ".sbss2"),
1540   MAPPING_INIT("wi", ".debug_info"),
1541   MAPPING_INIT("td", ".tdata"),
1542   MAPPING_INIT("tb", ".tbss"),
1543   MAPPING_INIT("lr", ".lrodata"),
1544   MAPPING_INIT("l", ".ldata"),
1545   MAPPING_INIT("lb", ".lbss"),
1546 };
1547 #undef MAPPING_INIT
1548
1549 const int Layout::linkonce_mapping_count =
1550   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1551
1552 // Return the name of the output section to use for a .gnu.linkonce
1553 // section.  This is based on the default ELF linker script of the old
1554 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1555 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1556 // initialized to the length of NAME.
1557
1558 const char*
1559 Layout::linkonce_output_name(const char* name, size_t *plen)
1560 {
1561   const char* s = name + sizeof(".gnu.linkonce") - 1;
1562   if (*s != '.')
1563     return name;
1564   ++s;
1565   const Linkonce_mapping* plm = linkonce_mapping;
1566   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1567     {
1568       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1569         {
1570           *plen = plm->tolen;
1571           return plm->to;
1572         }
1573     }
1574   return name;
1575 }
1576
1577 // Choose the output section name to use given an input section name.
1578 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1579 // length of NAME.
1580
1581 const char*
1582 Layout::output_section_name(const char* name, size_t* plen)
1583 {
1584   if (Layout::is_linkonce(name))
1585     {
1586       // .gnu.linkonce sections are laid out as though they were named
1587       // for the sections are placed into.
1588       return Layout::linkonce_output_name(name, plen);
1589     }
1590
1591   // gcc 4.3 generates the following sorts of section names when it
1592   // needs a section name specific to a function:
1593   //   .text.FN
1594   //   .rodata.FN
1595   //   .sdata2.FN
1596   //   .data.FN
1597   //   .data.rel.FN
1598   //   .data.rel.local.FN
1599   //   .data.rel.ro.FN
1600   //   .data.rel.ro.local.FN
1601   //   .sdata.FN
1602   //   .bss.FN
1603   //   .sbss.FN
1604   //   .tdata.FN
1605   //   .tbss.FN
1606
1607   // The GNU linker maps all of those to the part before the .FN,
1608   // except that .data.rel.local.FN is mapped to .data, and
1609   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1610   // beginning with .data.rel.ro.local are grouped together.
1611
1612   // For an anonymous namespace, the string FN can contain a '.'.
1613
1614   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1615   // GNU linker maps to .rodata.
1616
1617   // The .data.rel.ro sections enable a security feature triggered by
1618   // the -z relro option.  Section which need to be relocated at
1619   // program startup time but which may be readonly after startup are
1620   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1621   // segment.  The dynamic linker will make that segment writable,
1622   // perform relocations, and then make it read-only.  FIXME: We do
1623   // not yet implement this optimization.
1624
1625   // It is hard to handle this in a principled way.
1626
1627   // These are the rules we follow:
1628
1629   // If the section name has no initial '.', or no dot other than an
1630   // initial '.', we use the name unchanged (i.e., "mysection" and
1631   // ".text" are unchanged).
1632
1633   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1634
1635   // Otherwise, we drop the second '.' and everything that comes after
1636   // it (i.e., ".text.XXX" becomes ".text").
1637
1638   const char* s = name;
1639   if (*s != '.')
1640     return name;
1641   ++s;
1642   const char* sdot = strchr(s, '.');
1643   if (sdot == NULL)
1644     return name;
1645
1646   const char* const data_rel_ro = ".data.rel.ro";
1647   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1648     {
1649       *plen = strlen(data_rel_ro);
1650       return data_rel_ro;
1651     }
1652
1653   *plen = sdot - name;
1654   return name;
1655 }
1656
1657 // Record the signature of a comdat section, and return whether to
1658 // include it in the link.  If GROUP is true, this is a regular
1659 // section group.  If GROUP is false, this is a group signature
1660 // derived from the name of a linkonce section.  We want linkonce
1661 // signatures and group signatures to block each other, but we don't
1662 // want a linkonce signature to block another linkonce signature.
1663
1664 bool
1665 Layout::add_comdat(const char* signature, bool group)
1666 {
1667   std::string sig(signature);
1668   std::pair<Signatures::iterator, bool> ins(
1669     this->signatures_.insert(std::make_pair(sig, group)));
1670
1671   if (ins.second)
1672     {
1673       // This is the first time we've seen this signature.
1674       return true;
1675     }
1676
1677   if (ins.first->second)
1678     {
1679       // We've already seen a real section group with this signature.
1680       return false;
1681     }
1682   else if (group)
1683     {
1684       // This is a real section group, and we've already seen a
1685       // linkonce section with this signature.  Record that we've seen
1686       // a section group, and don't include this section group.
1687       ins.first->second = true;
1688       return false;
1689     }
1690   else
1691     {
1692       // We've already seen a linkonce section and this is a linkonce
1693       // section.  These don't block each other--this may be the same
1694       // symbol name with different section types.
1695       return true;
1696     }
1697 }
1698
1699 // Write out data not associated with a section or the symbol table.
1700
1701 void
1702 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1703 {
1704   if (!parameters->strip_all())
1705     {
1706       const Output_section* symtab_section = this->symtab_section_;
1707       for (Section_list::const_iterator p = this->section_list_.begin();
1708            p != this->section_list_.end();
1709            ++p)
1710         {
1711           if ((*p)->needs_symtab_index())
1712             {
1713               gold_assert(symtab_section != NULL);
1714               unsigned int index = (*p)->symtab_index();
1715               gold_assert(index > 0 && index != -1U);
1716               off_t off = (symtab_section->offset()
1717                            + index * symtab_section->entsize());
1718               symtab->write_section_symbol(*p, of, off);
1719             }
1720         }
1721     }
1722
1723   const Output_section* dynsym_section = this->dynsym_section_;
1724   for (Section_list::const_iterator p = this->section_list_.begin();
1725        p != this->section_list_.end();
1726        ++p)
1727     {
1728       if ((*p)->needs_dynsym_index())
1729         {
1730           gold_assert(dynsym_section != NULL);
1731           unsigned int index = (*p)->dynsym_index();
1732           gold_assert(index > 0 && index != -1U);
1733           off_t off = (dynsym_section->offset()
1734                        + index * dynsym_section->entsize());
1735           symtab->write_section_symbol(*p, of, off);
1736         }
1737     }
1738
1739   // Write out the Output_sections.  Most won't have anything to
1740   // write, since most of the data will come from input sections which
1741   // are handled elsewhere.  But some Output_sections do have
1742   // Output_data.
1743   for (Section_list::const_iterator p = this->section_list_.begin();
1744        p != this->section_list_.end();
1745        ++p)
1746     (*p)->write(of);
1747
1748   // Write out the Output_data which are not in an Output_section.
1749   for (Data_list::const_iterator p = this->special_output_list_.begin();
1750        p != this->special_output_list_.end();
1751        ++p)
1752     (*p)->write(of);
1753 }
1754
1755 // Write_data_task methods.
1756
1757 // We can always run this task.
1758
1759 Task::Is_runnable_type
1760 Write_data_task::is_runnable(Workqueue*)
1761 {
1762   return IS_RUNNABLE;
1763 }
1764
1765 // We need to unlock FINAL_BLOCKER when finished.
1766
1767 Task_locker*
1768 Write_data_task::locks(Workqueue* workqueue)
1769 {
1770   return new Task_locker_block(*this->final_blocker_, workqueue);
1771 }
1772
1773 // Run the task--write out the data.
1774
1775 void
1776 Write_data_task::run(Workqueue*)
1777 {
1778   this->layout_->write_data(this->symtab_, this->of_);
1779 }
1780
1781 // Write_symbols_task methods.
1782
1783 // We can always run this task.
1784
1785 Task::Is_runnable_type
1786 Write_symbols_task::is_runnable(Workqueue*)
1787 {
1788   return IS_RUNNABLE;
1789 }
1790
1791 // We need to unlock FINAL_BLOCKER when finished.
1792
1793 Task_locker*
1794 Write_symbols_task::locks(Workqueue* workqueue)
1795 {
1796   return new Task_locker_block(*this->final_blocker_, workqueue);
1797 }
1798
1799 // Run the task--write out the symbols.
1800
1801 void
1802 Write_symbols_task::run(Workqueue*)
1803 {
1804   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1805                                this->of_);
1806 }
1807
1808 // Close_task_runner methods.
1809
1810 // Run the task--close the file.
1811
1812 void
1813 Close_task_runner::run(Workqueue*)
1814 {
1815   this->of_->close();
1816 }
1817
1818 // Instantiate the templates we need.  We could use the configure
1819 // script to restrict this to only the ones for implemented targets.
1820
1821 #ifdef HAVE_TARGET_32_LITTLE
1822 template
1823 Output_section*
1824 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1825                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1826 #endif
1827
1828 #ifdef HAVE_TARGET_32_BIG
1829 template
1830 Output_section*
1831 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1832                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1833 #endif
1834
1835 #ifdef HAVE_TARGET_64_LITTLE
1836 template
1837 Output_section*
1838 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1839                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1840 #endif
1841
1842 #ifdef HAVE_TARGET_64_BIG
1843 template
1844 Output_section*
1845 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1846                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1847 #endif
1848
1849
1850 } // End namespace gold.